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Abstract

Lithium Sulfur (Li S) battery is a next-generation technology, which is

promising for applications that require higher energy density in comparison to

the available lithium-ion batteries. Along with the ongoing research on Li S

cell material development and manufacturing to improve this technology,

engineers are also working on Li S battery management systems (BMS). The

existing BMS algorithms, which are developed for lithium-ion batteries, are

not useable for the Li S mainly due to its constant voltage plateau during the

discharge phase. As a result, the Li S system has poor observability during

discharge, which limits the BMS functionality that can be implemented from

discharge information alone, and it is worth considering if information from

charging is useful. In this study, the charging behavior of a high-capacity

pouch cell is investigated and characterized for the purpose of state estimation

in a BMS. Several tests are conducted on prototype Li S cells at different tem-

peratures and age levels. An online feature extraction method is then used in

combination with a classification technique to estimate the cell's states during

charging. The proposed charging estimators can provide accurate initialization

for state estimation accuracy during discharge by providing good estimates of

the post-charging state of charge (ie, around 3%) and capacity after fading (ie,

around 2%).
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1 | INTRODUCTION

Weight is an important feature of a battery system, which
means the need for high gravimetric energy densities.
One of the promising technologies to achieve that goal is
the lithium sulfur (Li S) battery.1,2 In comparison to
the extant lithium-ion battery technologies in the market,
Li S offers some superiorities such as higher energy den-
sity (theoretically up to 2600 Wh/kg),3 enhanced safety,

and less cost because of the wide availability of sulfur in
nature. However, there are still a few impediments to the
full commercial development of this technology such as
less power capability, higher self-discharge, and shorter
cycle life.4 It should be also mentioned that there have
been lots of achievements in further development of Li S
cells in recent years.5-7 An example of such achievements
is presented in Reference [8], where a Li S cell with
more than 1000 cycles is mentioned. Alongside the
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ongoing research on the cell material and manufacturing,
engineers are also trying to develop battery management
system (BMS) for Li S batteries.9

According to the control theory and based on what is
presented in Reference [10], the Li S cell's model is not
observable as we expect for other battery types. That out-
come means it is more difficult to control the Li S bat-
tery in comparison to the other battery types via a BMS
board.11,12 For example, Figure 1 demonstrates a compar-
ison between the charge/discharge voltage curves of a
Li S cell and a lithium nickel cobalt aluminum oxide
(NCA) cell. As shown in figure, the voltage gradient,
which is clearly observed in an NCA cell, does not exist
in some regions of the Li S cell voltage curve (ie, around
30%-70% charge). Although having a flat voltage curve
might be an advantage in some aspects, it makes the sys-
tem more complicated in terms of observability and
controllability.

The engineering efforts to develop a suitable BMS for
Li S battery, have been addressed in a few previous stud-
ies mainly focusing on state-of-charge (SoC) and state-of-
health (SoH) estimation algorithms. However, more
research is required in that field. Looking at Li S battery
literature, there are few studies in which SoC estimation
techniques are developed for Li S battery and that
research area is still open. In References 13,14, Kalman
filter-based SoC estimators are modified to be applicable
for Li S cells. In another study, an adaptive neuro-fuzzy
inference system (ANFIS) is used for SoC estimation of a
Li S cell.9 In a similar approach, ANFIS was replaced by
a support vector machine (SVM) in Reference [15] to per-
form the same using an electrical circuit model and sys-
tem identification. In some other recent studies presented
in References [16,17], the possibility of using a reduced
order electrochemical Li S cell model for the estimation

of SoC is investigated as well. In none of the above-
mentioned studies, the charging process of Li S battery
is considered, which distinguishes this study from the
literature.

Despite the remarkable studies on the reasons behind
the Li S cell degradation mechanisms, there are not
enough studies on SoH estimation for BMS application.
In References [18,19], an experimental approach is used
to analyze the Li S cell's aging to be used in BMS. In
another study,20 capacity fade and internal resistance of a
3.5 Ah Li S cell is investigated using test data. A more
comprehensive study on the performance degradation of
the Li S cell is presented in Reference [21] where a
high-capacity Li S cell is subjected to degradation tests,
and all parameters of an electrical circuit model are
investigated during the discharge phase, subject to aging.

As mentioned above, in none of those studies, the
charging process of Li S battery is regarded to be used in
BMS. The battery state estimators, which are developed
to work during charging, could be investigated as com-
plementary algorithms in a BMS. Since battery discharge
patterns might change significantly from an application
to another, the state estimators' performance is affected
by the varying discharge profile. However, in this study,
the battery charging profile is considered instead to
achieve a more robust state estimation result. Particularly
for Li S battery, it makes even more sense to do the esti-
mations during charging because of the more complex
behavior of Li S battery during the discharge process.

This study investigates the charging behavior of a
high-capacity Li S pouch cell and its characterization for
state estimation in BMS. A data-driven approach, based
on charging feature extraction, is used which is new for
Li S battery. In Reference [22], a good comparison
between different data-driven battery state estimation

(A) (B)

FIGURE 1 Comparison between charge/discharge voltage curves of Li S and nickel cobalt aluminum oxide (NCA) cells: the voltage

gradient, which is observed in Li-ion cells, does not exist in some regions of Li S state-of-charge (SoC) (30%-70%)
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algorithms is discussed. Among them, the SVM method
is found as an effective method in the literature23-26

because of its speed as well as accuracy. Therefore, the
SVM method is selected and used in this study in combi-
nation with the charging feature extraction
technique.27,28

The novelties of this work can be listed as follows:

• For the first time, the charging behavior of the Li S
cell is investigated and characterized for state
estimation.

• A state-of-the-art Li S cell is tested by running a com-
prehensive set of experiments at different temperature
and age levels.

• A state observability analysis is performed for the Li S
cell to mathematically demonstrate its difference from
the other types of battery.

• New state estimators are designed and validated to be
used during Li S cell charging, as a complementary
algorithm in BMS.

• Capacity fade and charging efficiency of the prototype
cells are analyzed based on experimental data.

The objectives of the present work are:

1- To investigate and analyze the Li S cell charging
behavior using an experimental approach.

2- To perform an observability analysis on Li S state of
charge estimation.

3- To design and validate new state estimation tech-
niques to be used for Li S cell during charging.

2 | LI S CELL MODELING AND
OBSERVABILITY ANALYSIS

2.1 | Li S cell modeling

The prototype Li S pouch cell that is investigated in the
present work, is provided by OXIS Energy Ltd.29 The
cell's features are presented in Table 1. The cell has a very
low internal resistance, which makes it different from
others in the literature. The previous Li S pouch cells,
which have been investigated in References [12-14] had a
nominal capacity of 3.4 Ah whereas the present one has a
nominal capacity of 19 Ah. Here, the parameters of an
electrical circuit model, called the Thevenin model,30 are
obtained using the charge/discharge data of the cell. As
shown in Figure 2A, the Thevenin model has four param-
eters, which include the cell's open-circuit voltage (VOC),
ohmic resistance (RO), polarization resistance (RP), and
polarization capacitance (CP). The other variables shown
in the figure are the load current (iL) and terminal voltage

(Vt), which are measured as the model's input and out-
put, respectively. The mathematical equations of the
Li S cell model are:

Vt ¼VOC�ROIL�Vp

dVp

dt
¼� 1

RpCp
Vpþ 1

Cp
IL

8<
: ð1Þ

A system identification method, called forgetting factor
recursive least-squares (FFRLS),31 is used to parameterize
the Thevenin model according to the test data. As a
result, the model's parameters (included in vector θ) is
found so that the following error function (ε) is
minimized.

ε tk, θð Þ¼Vt tkð Þ� V̂ t tkjtk�1;θð Þ ð2Þ

θ¼ VOC,RO,RP,CP½ � ð3Þ

where Vt tkð Þ is the measured terminal voltage in step k
and V̂ t tkjtk�1;θð Þ is the estimated voltage in step k using
θ. Since the estimation error is a function of θ, an itera-
tive optimization procedure is necessary. Because the cell
model parameters depend on SoC as well, the whole
identification process should be repeated at different
charge levels. Figure 2B depicts an example identification
result during a discharge test, starting from fully charged
state (100% SoC) until a complete charge depletion (0%
SoC). On the other hand, Figure 2C illustrates another
example starting from 60% SoC. According to the results,
the system identification algorithm is able to identify the
model's parameters, however, the state of the system is
unknown. Assume a case in which the initial SoC is
unknown; then how can we estimate the system's state
just at the beginning? That is especially important when
the initial SoC is somewhere in the middle (around 30%-
50%) because the voltage curve is totally flat in that
region. In real life, there are several situations in which

TABLE 1 Li S cell features

Parameter Value

Cell capacity 19 (Ah)

Cell mass 141 (g)

Maximum voltage 2.6 (V)

Nominal voltage 2.15 (V)

Minimum voltage 1.9 (V)

Maximum discharge rate 3�C–57(A)

Maximum charge rate 0.25�C–4.75 (A)
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an EV or a cell phone is not fully charged by the user,
and the question is: can we have an accurate state estima-
tor during the charging phase? That is critically impor-
tant for Li S battery because all the existing state
estimators of Li S 13-15 are focused on the discharge
phase only. In the following section, an analytical formu-
lation is presented to mathematically show that the Li S
Thevenin model is not observable based on the control
theory. That fact motivated the authors to develop state
estimators which are specifically useful during the charg-
ing phase of Li S battery. Such algorithms can be used
as a complementary part beside the existing discharge
state estimators in a Li S BMS.

2.2 | Observability analysis

To mathematically investigate the impact of Li S cell's
flat voltage curve on its state observability, a more gen-
eral formulation of the Thevenin model can be repre-
sented in the state-space form as follows.

y tð Þ¼Cx tð ÞþDu tð Þ
_x tð Þ¼Ax tð ÞþBu tð Þ ð4Þ

where y tð Þ�RN and u tð Þ�RM are the vectors of outputs
and inputs, respectively, x tð Þ�RK is a time-dependent
state vector, and the matrices A�RK�K , B�RK�M ,
C�RN�K , and D�RN�M define the system's behavior.

Assume a variable X to denote the battery SoC. Based
on the Thevenin model's equations in (1), VP and X can
be considered as the model's states whereas the load cur-
rent and the battery terminal voltage are the input and
output, respectively. Now the model's equations should
be rewritten in the standard state-space format. Accord-
ing to the concept of coulomb-counting, the first state
variable (ie, SoC) is formulated as integration of the load
current over time. For the second state variable, VP, the
second part of Equation (1) can be used without any
change. In the first part of Equation (1) however, the
open-circuit voltage (VOC) must be presented as a func-
tion of SoC. According to Figure 2, VOC has a nonlinear

(B)

(C)

(A)

FIGURE 2 Thevenin battery model and its parameters (VOC, RO, RP, and CP) identified for a Li S cell at different state-of-charge

(SoCs): (A) model structure, (B) initial SoC = 100%, (C) initial SoC = 60%
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function vs SoC. Such a nonlinear function can be linear-
ized locally within a limited range of SoC. Assuming
small SoC intervals, ΔSoC, VOC can be presented as fol-
lows in the ith SoC interval.

Voc ¼ ai:Xiþbi, i�1ð Þ:ΔSoC ≤Xi ≤ i:ΔSoC ð5Þ

The coefficients ai and bi need to be calculated for
each range of SoC separately. Figure 3 shows a schematic
of the piecewise linearization procedure of Li S cell's
charge/discharge voltage curves. Although the plot is
showing the terminal voltage, the shape of VOC curve is
very similar because the load current is low (refer to
Figure 2). The resolution might be higher or lower by
changing the size of SoC intervals. Indeed, here the goal
is not to calculate such piecewise linear functions, but
this study aims at showing something else as discussed
below.

When we replace VOC by its linearized approxima-
tion, in Equation (1), we have:

Vt ¼ ai:Xþbi�RoIL�Vp ð6Þ

And a state-space representation of the cell model is
achieved.

dVp

dt

dX
dt

2
664

3
775¼

� 1
RpCp

0

0 0

2
64

3
75 Vp

X

" #
þ

1
Cp

η

Ct

2
664

3
775IL

Vt�bi ¼ �1 ai½ �
Vp

X

" #
�RoIL

8>>>>>>>><
>>>>>>>>:

ð7Þ

In control theory, such a state-space system is called
“observable” if the observability matrix, Wo, has full col-
umn rank,32 where K is the state vector's dimension.

Wo ≔

C

CA

CA2

..

.

CAK�1

2
6666664

3
7777775

ð8Þ

In our case, the Li S cell model's observability matrix is:

Wo ≔
C

CA

� �
¼

�1 ai
1

RPCP
0

2
4

3
5 ð9Þ

Because parameters RP and CP have positive non-zero
values, Wo, is always full rank except when ai becomes
zero. According to Figure 1, that condition never happens
for an NCA cell model because of its voltage curve, which
has a gradient all the time. However, looking at Figure 3,
the state observability of the Li S cell model is not pro-
vided because the parameter ai becomes zero at some
points on the voltage curve. That is an important charac-
teristic of Li S cell, which makes it different from other
battery types not only with respect to its electrochemical
reactions but also in terms of its observability in the con-
trol theory.

3 | LI S CELL CHARGING
VOLTAGE CURVE ANALYSIS

3.1 | Li S cell testing and charging
feature extraction

In this section, the charging voltage curve of the cell is
investigated based on the experimental data. The test
equipment, which is used in this study, is shown in
Figure 4A. The test rig includes a PC to design the battery

FIGURE 3 Li S cell charge/discharge voltage curve piecewise linearization
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test procedure as well as the data storage, a power source
that applies the charging current, and an environmental
chamber to control the temperature during the tests. As
depicted in Figure 4B, the cell is subjected to a full charge
cycle from 0% to 100% SoC based on the minimum and
maximum voltage limits. Accordingly, cell charging curve
analysis would be possible at different SoC levels. After
each charge cycle, the Li S cell is discharged again mak-
ing it ready for the next cycle. At each charge cycle, a
constant current of 1.9 A (ie, 0.1C for a single cell - this is
expected to be scaled up for a battery pack) is applied to
the cell based on a recommendation by the cell's

manufacturer. Moreover, to extract additional data from
the charging profile, short relaxations (around 10 s) are
considered at regular time intervals, illustrated in
Figure 4(B). Applying that technique in a real application
does not need to be repeated many times as we did in the
laboratory environment. In fact, after identifying particu-
lar SoC target points, the relaxation pulses can be applied
only a few times when needed (ie, a design parameter in
the BMS).

Two groups of features are extracted from the Li S
cell charging voltage profile: (a) instantaneous voltage
features (IVFs) and (b) time-voltage features (TVFs). In

(A)

(B)

FIGURE 4 Li S cell charge test: (A) equipment and (B) measurement
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the first group, the features are defined based on battery
voltage response to the short current relaxation pulse.
The reason for choosing a short time interval (ie, 10 sec-
onds), is to be able to implement the estimators in real-
time without causing any delay in the charging process.
As shown in Figure 5, the first feature, F1, represents the
battery terminal voltage before releasing the charging
current. Feature F2 is the battery voltage at the end of
each 10-second relaxation period. Features F3 and F4 are
instantaneous voltage drop and jump after release and
reapply of the charging current respectively. Further-
more, feature F5 is the slow drop of voltage over 10 sec-
onds during the relaxation period, and feature F6 is the
slow rise of voltage after 10 seconds of reapplying the
charging current as shown in Figure 5.

Figure 6 shows the second group of features, which
are called TVFs. The TVFs are proposed based on the
time duration of different intervals of voltage when the
Li S battery is subjected to charging as shown in
Figure 6. It should be noted that constant-current charg-
ing is the recommended way of charging Li S prototype
cells by the manufacturer. According to Figure 6, the
Li S cell's terminal voltage changes between 2.2 and
2.6 V while getting charged. According to the test results,
the gradient of the voltage-time curve is not constant. Six
features are defined (ie, F7�F12) based on equal voltage
intervals from 2.25 to 2.55V, which are the time duration
of voltage change at each interval. The whole charging
process takes around 10 hours in total, and the time axis
is presented in minutes in Figure 6 to better see the dura-
tion of each interval. Numerical values of all the IVFs
and TVFs are analyzed in the following sections for state
estimation during charging.

3.2 | The effect of temperature on Li S
cell charging features

The influence of the temperature on cell's charging fea-
tures is investigated here by repeating the above-

mentioned feature extraction technique at 10�C, 20�C,
and 30�C. An environmental chamber is used to keep the
temperature constant during the tests. Figure 7 shows
Li S cell IVFs, which are recorded at different levels of
SoC and temperature. According to the results, the tem-
perature has a different impact on each feature and its
impact depends on SoC as well. According to Figure 7,
the highest gradient vs SoC is observed for features F1
and F2, which means they are more sensitive to SoC vari-
ation. On the other hand, F3 and F4 are the least sensi-
tive features with respect to SoC. In terms of the
temperature effect, F1 and F2 are more affected in the
higher SoC range whereas no clear impact is observed in
F3 and F4 when the temperature changes. For features
F5 and F6, the temperature has a clearer impact on them
where the highest feature values are obtained at the low-
est temperature (ie, 10�C).

Figure 8 shows the effect of temperature on the Li S
cell TVF charging features. Three charging voltage curves
are illustrated in Figure 8A at 10�C, 20�C, and 30�C. The

(A) (B)

FIGURE 5 (A) A 10-second

relaxation pulse between constant

charging, (B) Li S cell's voltage

response to a single relaxation pulse and

definition of instantaneous voltage

features (IVFs)

FIGURE 6 Li S cell charging voltage profile and definition of

time-voltage features (TVFs)
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(A) (B)

(C) (D)

(E) (F)

FIGURE 7 Li S cell instantaneous voltage features (IVF) charging features recorded at different levels of state-of-charge (SoC) and

temperature
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first outcome is that a higher temperature is led to higher
charging capacity and consequently longer charging time.
Because TVFs are strongly correlated with the charging
time as well as the voltage change, it is expected to
observe an impact on them as well. Figure 8(B) summa-
rizes the effects of temperature on the TVFs. According
to the results, various features are affected in different
ways. For example, F7 does not show any influence by
the temperature change. Looking at the charging curves
in Figure 8A, an interesting outcome is that the first half
of the Li S cell's charging curve (ie, 0-50% SoC approxi-
mately) is not affected by the temperature change that
much, whereas more change is observed in the second
half. That is why we do not see any temperature sensitiv-
ity in F7. For F8 and F9, a temperature rise increases
their values mainly because of the longer charging time.
However, that trend changes for F10, F11, and F12 where
they decrease in response to temperature rise. That is
because the voltage shifts up and down at high SoCs
when the temperature decreases or increases,
respectively.

3.3 | The effect of degradation on Li S
cell charging features

In this section, the influence of cell degradation on its
charging features is investigated. Two age levels are con-
sidered and compared: (a) a fresh cell, and (b) an aged
cell. Figure 9 shows Li S cell IVFs, which are recorded
at different levels of SoC and age. The results demon-
strate that the aging process has different impacts on var-
ious features. For example, for features F3 and F4,
although the gradient vs SoC is unchanged, the whole
curve is shifted up due to cell aging. That is not helpful
for SoC estimation, however, we will discuss it in
Section 5 where the cell's SoH estimation becomes our
goal. For features F5 and F6, an increase is observed due

to aging, however, it is not as much as those of F3 and
F4. On the other hand, F1 and F2 are not showing a clear
trend of change in response to cell cycling. That means
F1 and F2 are not suitable features for cell SoH estima-
tion, however, that makes them perfect for SoC estima-
tion as discussed in Section 4.

Figure 10 shows the influence of aging on the TVF
charging features. Figure 10A compares two charging
curves of a fresh and an aged cell. The first outcome is
that the aging process has reduced the charging time,
which is explained by the capacity fade due to cycling.
The second outcome is related to voltage increase due to
aging, which can be explained by the increase in the cell's
internal resistance due to cycling. As a result, for most of
the features (ie, F7-F10), TVFs reduce by aging because
of the shorter charging time. However, F11 and F12 are
showing a slight increase due to the voltage shift at high
SoCs (similar to what was observed for the temperature
effect in Figure 8).

4 | LI-S CELL SOC ESTIMATION
DURING CHARGING

As discussed earlier, the Li S battery SoC estimation
problem is a demanding task and therefore, the current
battery estimation techniques are not necessarily useable
for it.9,12 To solve that problem, the present study was
aimed at investigating Li S cell charging behavior to
support state estimation in BMS. After defining and anal-
ysis of the Li-S cell charging features, in this section, the
possibility of their use in cell SoC estimation is investi-
gated. For that purpose, the SVM technique33,34 is used to
receive the charging features as inputs and to return the
Li S cell SoC as its output.

Various combinations of the input features are con-
sidered to train the SVM model. It should be mentioned
that separate sets of data are used for training and

(A) (B)
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FIGURE 8 The influence of temperature on Li S cell time-voltage features (TVF) charging features: (A) charging voltage curves,

(B) TVF values
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(A) (B)

(C) (D)

(E) (F)

FIGURE 9 Li S cell

charging features recorded at

different age levels
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FIGURE 10 The effect of

aging on the time-voltage features

(TVF) charging features:

(A) charging voltage curves,

(B) TVF values
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validation. To calculate the “true SoC,” the coulomb-
counting formulation is used for offline training of the
SVM model. The coulomb-counting technique suffers
from limitations like accumulated noise error.35,36 In
addition, the coulomb-counting method needs to know
the initial SoC as well as the battery capacity (which
changes under different conditions). Consequently, while
we are aware of the practical limitations of having access
to the true SoC labels in real applications, in this study, it
is only used as a benchmark for validation purposes in a
laboratory environment.

All charging features are investigated one by one to
identify the inputs that give the highest SoC estimation
accuracy. According to the results, some features like
F1 and F2 contribute more to the SoC estimation accu-
racy. That outcome can be easily explained when look-
ing at Figure 7 or Figure 9 where the gradients of F1
and F2 vs SoC are quite strong. The opposite outcome is
obtained for features F3 and F4, which have the least
gradient vs SoC (again based on Figure 7 or Figure 9),
showing that those two features are not sensitive to SoC
change. On the other hand, the TVFs (ie, F7-F12) are
not practical for SoC estimation because of the time
which is required for their calculation. In fact, those fea-
tures were defined to be used mainly for SoH estimation
rather than SoC estimation. This topic is discussed fur-
ther in Section 5.

Figure 11 illustrates an example of Li S cell SoC esti-
mation result using SVM during charging at 20�C. An
average error of 2.71% is achieved in that case. The pro-
posed SoC estimator is designed to start from an initial
value of 50% SoC when no history is available (ie, only
for the first iteration). For performance evaluation of the
proposed estimator, the “theoretical” coulomb-counting
method is used as a benchmark, which is called the “true
SoC” or the “reference SoC.”

In order to consider the effect of temperature, a sepa-
rate estimator can be trained using the data collected at
that specific temperature. In real-time applications,
switching between those estimators is possible based on
temperature sensor data. In that technique, the opera-
tional temperature range is designed first (eg, between
10�C and 30�C) and then, it is discretized into smaller

regions (let say 10�C intervals). After that, separate esti-
mators are tunned suitable for different temperature
regions.

5 | LI S CELL STATE-OF-HEALTH
ESTIMATION DURING CHARGING

In this section, Li S cell's state-of-health (SoH) is stud-
ied, and a method is proposed for online SoH estimation
of Li S cells during charging. For that purpose, charge/
discharge tests are repeated until the cells are degraded
based on their capacity fade. To analyze the degradation
process, firstly the IVFs and TVFs are obtained at differ-
ent cycles (ie, age levels). Then an SVM model is trained
using Li S cell test data, to act as a SoH estimator. There
are several other battery SoH estimation techniques in
the literature, which could be potentially used here as
well. However, applying all the available techniques is
not possible here, and the goal of this study is not to
review and compare different methodologies. So, poten-
tial further improvement of the results by applying other
techniques is left for future work.

The SoH is defined as a number between zero and
one, where SoH¼ 0 means the battery's end-of-life (EoL),
and SoH¼ 1 corresponds to a fresh battery. To be able to
measure the reference value of SoH, first, the battery EoL
should be defined. In many applications, the battery
health is evaluated based on its capacity (Qbatt) against
the initial capacity (Qinit). In that definition, the EoL hap-
pens when the capacity reaches to 80% of the initial
capacity as presented below.

SoH¼ 1� Qinit�Qbattð Þ=0:2�Qinit , 0:8Qinit ≤Qbatt ≤Qinit ð10Þ

The SoH value which is obtained by Equation (10), is
called “reference SoH” or “true SoH.” The reference SoH
value is obtained according to the experimental test data.
In fact, the reference SoH is obtained after completing all
the experiments and analysis of them. We know that
such data is not available in a real application however,
we can use it as a benchmark in a laboratory environ-
ment just for validation purposes.

FIGURE 11 Li S cell SoC

estimation using support vector

machine (SVM)
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The charging features (including both IVFs and
TVFs), which were introduced in Section 3, are investi-
gated here for SoH estimation. Since IVFs depend on SoC
as well as SoH, they are calculated at a certain SoC level
that is assumed to be SoC = 50%. Indeed, the middle
charge level is selected because it is the most probable
scenario to happen in a real application. According to the
results, some features like F1 or F10 have a clear correla-
tion with SoH whereas the others do not show a clear
trend. Of course, features with higher correlations (ie,
more sensitivity to SoH) are potentially more useful for
SoH estimation.

As mentioned earlier, the SVM technique is used for
the cell health estimation. To train the SVM model, the
collected experimental data is used, and separate sets of
data are considered for training and validation. Table 2
presents SoH estimation accuracy using SVM method
and different IVF inputs and their combinations. Accord-
ing to the results, individual features F1, F2, F3, and
F4 at SoC¼ 50% are the most promising features. When
combining them together, the pairs of (F2, F3) and (F3,
F4) give the highest accuracy of 96.4% and 95.8%, respec-
tively. On the other hand, Table 3 shows the SVM results
when TVF inputs and their combinations are used. The
results demonstrate that F8 and F10 are the best individ-
ual features among the TVFs by providing an estimation
accuracy of around 95%. When combining them together,
the estimation results are clearly improved. Using two
features instead of one, the estimation accuracy can
potentially increase to more than 96% and this trend con-
tinues to more than 97% accuracy when three features
are used at the same time. The best result is obtained
when all four features are used, which provides an accu-
racy of 98%.

Figure 12 shows an example result of the cell's health
estimation using the SVM and the best input features vs
the reference SoH. In that figure, the benchmark is used

to evaluate the performance of the proposed SoH estima-
tion technique. Table 3 and Figure 12 show that the SoH
estimation technique (ie, feature extraction in combina-
tion with SVM) is able to generate reliable outputs, which
are comparable with the standard benchmark
techniques.

6 | LI S CELL CAPACITY FADE
AND CHARGING EFFICIENCY

The capacity fade of the cell due to cycling is discussed
here. Furthermore, the charging efficiency of the cell is
calculated. Figure 13 illustrates the capacity fade of the cell
due to cycling at 20�C where the cycling test is stopped
after 52 cycles because of 20% capacity loss (although more
cycling was possible at the cost of more capacity fade). An
obvious outcome is that the Li-S battery requires further
modifications before commercialization, because of its

TABLE 2 SoH estimation accuracy

using SVM method and different IVF

inputs and their combinations

Input features

F1 F2 F3 F4 F5 F6

Accuracy (SoC¼ 100%) 85.7% 77.6% 92.1% 87.8% 80.6% 74.7%

Accuracy (SoC¼ 75%) 94.1% 87.8% 91.9% 88.2% 76.5% 81.1%

Accuracy (SoC¼ 50%) 94.76% 96.1% 95.4% 96.32% 86.02% 82.6%

Accuracy (SoC¼ 25%) 86.84% 83.75% 94.3% 93.8% 89.1% 85.3%

F1/F2 F1/F3 F1/F4 F2/F3 F2/F4 F3/F4

Accuracy (SoC¼ 50%) 93.3% 90.50% 94.2% 96.4% 94.9% 95.8%

F1/F2/F3 F1/F2/F4 F2/F3/F4 F1/F2/F3=F4

Accuracy (SoC¼ 50%) 95.8% 92.8% 92.2% 93.1%

Abbreviations: IVF, instantaneous voltage features; SoC, state-of-charge; SoH, state-of-health; SVM, support

vector machine.

TABLE 3 SoH estimation accuracy using SVM method and

different TVF inputs and their combinations

Feature Accuracy (%) Feature Accuracy (%)

F7 91.03 F9/F10 93.7

F8 95.36 F9/F12 92.31

F9 92.45 F10/F12 93.1

F10 94.8 F8/F9/F10 96.3

F11 84.33 F8/F10/F12 96.54

F12 92.05 F8/F9/F12 96.55

F8/F9 96.6 F9/F10/F12 97.41

F8/F10 95.3 F8/F9/F10/F12 98.06

F8/F12 96.66

Abbreviations: SoC, state-of-charge; SoH, state-of-health; SVM, support
vector machine; TVF, time-voltage features.
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limited cycle life.4 That is currently restricting its applica-
tions in EVs as well as many others.1,37 In the following,
some of the recent publications in that area are reviewed
briefly, but before that, an analysis of the cell charging effi-
ciency is presented.

Here, charging efficiency (ECh) is simply defined by
Equation (11) in which QDisch is the whole discharge
capacity, and QCh stands for the charging capacity. Both
the charge and discharge capacities are calculated at
every single cycle of the aging tests. Simply speaking, the
charging efficiency is calculated as the ratio of the elec-
tricity that we get out of the cell, divided by the electricity
that we put into the cell at each cycle.

ECh ¼QDisch

QCh
ð11Þ

Figure 13 demonstrates both the charge and discharge
capacities during a cycling test at 20�C. As shown in that
figure, the charging efficiency is around 96% for a fresh
cell whereas that number decreases to 92% after
52 cycles.

As discussed in Reference [38], the key causes of Li S
cell's rapid capacity fade are: (a) low electrical conductiv-
ity of sulfur and LisS2=Li2S, which can lead to a decrease
in utilization of active sulfur material and consequently

issues in power capability.39 (b) formation and accumula-
tion of nonconductive films (LisS2=Li2S) on sulfur cath-
ode, which decreases the electrochemical reaction sites
and results in capacity fade.38 (c) intermediate soluble
polysulfide, which can diffuse from cathode to the elec-
trolyte and thus, it reduces the overall quantity of sulfur
in the cathode leading to a decrease in battery capacity.40

In addition, it can diffuse to the Li-anode, reducing to
LisS2=Li2S, and deposit in Li-anode surface.41 (d) the
shuttle effect has been explained in different ways in the
literature. According to Reference [42], the consumption
of active sulfur materials by the uncontrollable deposition
layers causes a higher resistance and rapid capacity fade.
Self-discharge happens due to the shuttle effect, which
makes the charging time toward infinity and conse-
quently decreasing the efficiency and cycle life of the
battery.42

Expanding all the above-mentioned research findings
here is out of the scope of this study but to summarize
them, it should be noted that the literature shows a num-
ber of great achievements recently in this field.1,5 For
example in Reference [8], development of a prototype
Li S cell with more than 1000 cycles is mentioned.
Although different generations of Li S prototype cells
might be distinct from each other in terms of materials
used inside the cell, and their cycle life, we believe that
very similar BMS software can be applied to all of them.
In fact, their similarities in the shape of voltage curves
and state observability, make the present study or other
similar studies to be used for future generations of Li-S
cells even with much higher cycle life.

7 | CONCLUSIONS

For the first time, charging behavior of a Li S cell was
investigated and characterized for state estimation.
Charging features were analyzed at various temperatures
and age levels by running a comprehensive set of experi-
ments on a state-of-the-art Li S cell. Furthermore, a
state observability analysis was performed for the Li S
cell to mathematically demonstrate its distinction from
the other types of battery. According to the observability
calculations, the Li S cell model is unobservable at vari-
ous charge levels. That justifies the necessity of develop-
ing unique BMS algorithms for this particular type of
battery.

In the next step, new state estimators were designed
and validated to be used during Li S cell charging as
complementary algorithms in BMS. The SVM and feature
extraction techniques were combined to design the Li S
state estimators. The proposed state estimators were then
validated against experimental data. According to the

FIGURE 12 Li S cell SoH estimation using support vector

machine (SVM) technique against the reference SoH

FIGURE 13 Li S cell charge/discharge capacity during a

cycling test
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results, the proposed estimators could provide an accept-
able level of accuracy during charging with less than 3%
error in SoC estimation and less than 2% error in SoH
estimation. It is expected that the outcomes of this study
will be merged with the existing state estimators, which
have been designed to work during cell discharge.
Considering the complexities of the Li S battery state
estimation problem in comparison to the Li-ion batte-
ries, having separate state estimators for charge and dis-
charge phases is a wise strategy to reduce the overall
errors.

Finally, capacity fade and charging efficiency of the
prototype Li S cells were analyzed based on experimen-
tal data. The charging efficiency was obtained around
96% and 92% for a fresh and aged cell, respectively. In
addition, the limited cycle life of Li S cell was discussed
based on recent breakthroughs in the literature.
Although the next generations of Li S battery are
expected to be different in terms of their lifetime, the out-
comes of this study are supposed to remain usable for
them as well, because of their similarities in terms of
voltage curves and state observability.
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