
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Object tracking using 3D point clouds
and RGB images for autonomous

driving

Daniel Ferreira Brandão

Mestrado em Engenharia Informática e Computação

Supervisor: Luís Filipe Teixeira

July 29, 2022

Object tracking using 3D point clouds and RGB images
for autonomous driving

Daniel Ferreira Brandão

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. João Paulo Fernandes
External Examiner: Luis Rosado
Supervisor: Prof. Luís Filipe Teixeira

July 29, 2022

Abstract

Autonomous driving development has been a strong focus for the automotive industry in the past
years. Vehicles with autonomous capabilities make streets safer since they are less susceptible
to traffic accidents caused by human errors. Object tracking is a necessary component of an
autonomous driving system, allowing it to be aware of other traffic participants. Since other high-
level autonomous driving modules rely on tracking to make decisions, it is imperative that the
tracking is done accurately. Autonomous vehicles are often equipped with sensors and devices
that capture 3D information about their surroundings. 3D point clouds captured by LiDARs are
commonly used for 3D object detection and tracking. LiDAR sensors measure the time-of-flight
of their emitted lasers, working independently of illumination. However, the data from this sensor
is sparse, has a low range, and is often noisy. In order to attenuate these problems, some 3D object
tracking frameworks fuse 3D point cloud data with RGB images since cameras have a dense and
rich visual signal, performing better in distant object tracking. Furthermore, fusing information
from multiple sensors might reduce the impact caused by occlusions in one of the sensors.

This project analyzes and evaluates a State-of-the-Art sensor fusion tracking framework, using
multiple 2D and 3D object detectors. Moreover, we perform an analysis on how sensor fusion
mitigates the tracking performance reduction caused by occlusions.

The results obtained show that the combination of Point-GNN 3D detector and the 2D detec-
tions obtained from TrackRCNN outperform every other setup in the tracking task. The sensor
fusion occlusion analysis demonstrates that sensor fusion significantly improves the tracking per-
formance when one of the sensors is occluded.

Keywords: Autonomous Driving, 3D Object Tracking, Computer Vision, Machine Learning

i

ii

Resumo

O desenvolvimento de condução autónoma tem sido um forte foco para a indústria automóvel nos
últimos anos. Os veículos com capacidades autónomas tornam as ruas mais seguras, uma vez que
são menos susceptíveis a acidentes de viação causados por erros humanos. Object Tracking é uma
componente necessária de um sistema de condução autónomo, permitindo-lhe estar ciente dos
outros participantes no trânsito. Uma vez que outros módulos de condução autónoma de alto nível
dependem do Tracking para tomar decisões, é imperativo que o tracking seja feito com precisão.
Os veículos autónomos são frequentemente equipados com sensores e dispositivos que captam a
informação 3D do seu ambiente. As 3D Point Clouds capturadas pelos LiDARs são normalmente
utilizadas para a detecção e tracking de objectos 3D. Os sensores LiDAR medem o tempo de voo
dos seus lasers emitidos, trabalhando independentemente da iluminação. No entanto, os dados
deste sensor são escassos, têm um alcance baixo, e são frequentemente ruidosos.A fim de atenuar
estes problemas, algumas estruturas de 3D Object Tracking fundem dados de 3D Point Clouds
com imagens RGB, uma vez que as câmaras têm um sinal visual denso e rico, tendo um melhor
desempenho no rastreio de objectos distantes. Além disso, a fusão de informação de múltiplos
sensores pode reduzir o impacto causado por oclusões num dos sensores.

Este projecto analisa e avalia uma framework de tracking com fusão de sensores de última ger-
ação, utilizando múltiplos detectores de objectos 2D e 3D. Além disso, efectuamos uma análise
sobre como a fusão de sensores atenua a redução do desempenho do tracking causado por oc-
clusões.

Os resultados obtidos mostram que a combinação do detector 3D Point-GNN e as detecções
2D obtidas a partir do TrackRCNN superam todas as outras configurações na tarefa de tracking.
A análise de oclusão por fusão de sensores demonstra que a fusão de sensores melhora significa-
tivamente o desempenho do tracking quando um dos sensores é ocluído.

Keywords: Autonomous Driving, 3D Object Tracking, Computer Vision, Machine Learning

iii

iv

Acknowledgements

I would like to thank my supervisor, Dr. Luís Filipe Teixeira, for his advice, supervision and
availability.

I am also extremely grateful to my family and friends for their unwavering support.
This work is supported by European Structural and Investment Funds in the FEDER compo-

nent, through the Operational Competitiveness and Internationalization Programme (COMPETE
2020) [Project nº 047264; Funding Reference: POCI-01-0247-FEDER-047264]

Daniel Ferreira Brandão

v

vi

“The best way to predict the future is to implement it.”

David H. Hansson

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 3
1.3 Objectives . 3
1.4 Document Structure . 3

2 Background 5
2.1 Artificial Neural Networks . 5
2.2 Deep Learning . 6
2.3 Convolutional Neural Networks . 7
2.4 Object detection . 8
2.5 Multi-Object Tracking . 9

3 Object Detection and Multi-Object Tracking with 3D Point Clouds 11
3.1 3D Point Clouds . 11

3.1.1 Sensor Fusion . 12
3.2 3D Object Detection . 13

3.2.1 Set-Based Methods . 14
3.2.2 Grid-Based Methods . 15
3.2.3 Graph-Based Methods . 16

3.3 3D Multi Object Tracking . 16
3.3.1 Evaluation Metrics . 17
3.3.2 Benchmark Datasets . 20
3.3.3 Multi Object Tracking for Autonomous Driving 21

4 Methodology 29
4.1 EagerMOT . 29
4.2 Proposal . 29

4.2.1 Framework Analysis . 29
4.2.2 Sensor Fusion Occlusion Analysis . 29

4.3 Experimental Setup . 30
4.3.1 Dataset . 30
4.3.2 3D and 2D Detections . 31
4.3.3 Artificial Occlusions . 32
4.3.4 Training Configurations . 33

ix

x CONTENTS

5 Results and Discussion 37
5.1 Framework Analysis . 37
5.2 Sensor Fusion Occlusion Analysis . 40

5.2.1 Fusion Analysis . 44

6 Conclusions and Future Work 45

References 47

A Sensor Fusion Occlusion Results 53

List of Figures

1.1 Levels of automation set forth in SAE J3016 standard, extracted from [13] 2

2.1 Perceptron overview, extracted from [26]. 5
2.2 Example of a Deep Neural Network architecture, with three hidden layers, ex-

tracted from [4]. 6
2.3 Example of a CNN, extracted from [38]. 7
2.4 Example of a Object Detection task, extracted from [47]. 8
2.5 Example of a Object Tracking task, extracted from [9]. 9

3.1 Example of a 3D Point Cloud scene, extracted from [45]. 12
3.2 Overview of the most used ways to represent point clouds in matrix representa-

tions, extracted from [6] (a) 3D Voxelization (b) Range view (c) Bird’s eye view. 13
3.3 PointNet++ set feature learning module, extracted from [28]. 14
3.4 VoxelNet arquitecture overview, extracted from [56]. 15
3.5 Point-GNN arquitecture overview, extracted from [37]. 17
3.6 Example of 3D MOT task, extracted from [15]. 17
3.7 Loc-IoU calculation visualisation, extracted from [22]. 18
3.8 Sensor setup used to record the KITTI dataset, extracted from [11]. 20
3.9 Overview of Beyond Pixels Method, extracted from [33]. 22
3.10 Overview of FANTrack Method, extracted from [2]. 23
3.11 Overview of AB3DMOT Method, extracted from [46]. 24
3.12 Overview of mmMOT Method, extracted from [55]. 25
3.13 Overview of EagerMOT Method, extracted from [46]. 26
3.14 Overview of PC-TCNN Method, extracted from [49]. 27

4.1 Example of a full occlusion of a pedestrian caused by another tracked object, ex-
tracted from [27]. 30

4.2 Visualisation of a 3D point cloud in the KITTI [10] tracking dataset. 31
4.3 2D image in the KITTI [10] tracking dataset. 31
4.4 Example of detections obtained with OpenPCDet [41] framework using PVRCNN

3D detector, on the KITTI [10] tracking dataset. Green bounding boxes represent
Cars, while light blue bounding boxes represent pedestrians. 34

5.1 Comparison of EagerMOT [17] HOTA in KITTI [10] tracking dataset ’Car’ class,
with artificially occluded Point-GNN [37] detections with occ f rames = 1, occ f rames =
3 and occ f rames = 5 and varying occratio with and without using TrackRCNN [39]
as 2D detector. 41

xi

xii LIST OF FIGURES

5.2 Comparison of EagerMOT [17] HOTA in KITTI [10] tracking dataset ’Car’ class,
with artificially occluded Point-GNN [37] detections with occratio = 0.05, occratio =
0.15 and varying occ f rames with and without using TrackRCNN [39] as 2D detector. 41

5.3 Comparison of EagerMOT [17] AssRe in KITTI [10] tracking dataset ’Car’ class,
with artificially occluded Point-GNN [37] detections with occ f rames = 1, occ f rames =
3 and occ f rames = 5 and varying occratio with and without using TrackRCNN [39]
as 2D detector. 42

5.4 Comparison of EagerMOT [17] IDs in KITTI [10] tracking dataset ’Car’ class,
with artificially occluded Point-GNN [37] detections with occ f rames = 1, occ f rames =
3 and occ f rames = 5 and varying occratio with and without using TrackRCNN [39]
as 2D detector. 42

5.5 Comparison of EagerMOT [17] HOTA in KITTI [10] tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN [37] detections with occ f rames = 1,
occ f rames = 3 and occ f rames = 5 and varying occratio with and without using Track-
RCNN [39] as 2D detector. 43

5.6 Comparison of EagerMOT [17] AssRe in KITTI [10] tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN [37] detections with occ f rames = 1,
occ f rames = 3 and occ f rames = 5 and varying occratio with and without using Track-
RCNN [39] as 2D detector. 43

List of Tables

3.1 Comparison of MOT methods performance on KITTI dataset for ’Car’ class [10]. 27
3.2 Comparison of MOT methods properties, the approaches are Tracking-By-Detection

(TBD) and End-to-End (ETE). 27

4.1 Training split of the KITTI [10] tracking dataset properties. 31
4.2 Comparative results of 3D object detection on the KITTI [10] test 3D detection

benchmark. The letters ’E,’ ’M,’ and ’H’ represent easy, moderate, and difficult
difficulties, respectively. Values not present are represented by ’-’. Cars require
an 3D bounding box overlap of 70% and pedestrians require a 3D bounding box
overlap of 50%, adapted from [11]. 32

4.3 Comparative results of 2D object detection on the KITTI [10] test 3D detection
benchmark. The letters ’E,’ ’M,’ and ’H’ represent easy, moderate, and difficult
difficulties, respectively. Values not present are represented by ’-’. Cars require
an overlap of 70% and pedestrians require a 3D bounding box overlap of 50%,
adapted from [11]. 32

4.4 OpenPCDet 3D Detector pre-trained models. 34
4.5 EagerMOT [17] hyperparameters used in the experiments. 35

5.1 Comparison of EagerMOT [17] tracking performance in KITTI [10] tracking dataset
’Car’ class using different 3D detectors and RRC [30] as the 2D detector. 38

5.2 Comparison of EagerMOT [17] tracking performance in KITTI [10] tracking dataset
’Pedestrian’ class using different 3D detectors and RRC [30] as the 2D detector. . 38

5.3 Comparison of EagerMOT [17] tracking performance in KITTI [10] tracking dataset
’Car’ class using different 3D detectors and TrackRCNN [39] as the 2D detector. 39

5.4 Comparison of EagerMOT [17] tracking performance in KITTI [10] tracking dataset
’Pedestrian’ class using different 3D detectors and TrackRCNN [39] as the 2D de-
tector. 39

5.5 Average difference in EagerMOT [17] tracking performance between TrackR-
CNN [39] and RRC [30] as 2D detector in the ’Car’ and ’Pedestrian’ KITTI [10]
tracking dataset classes. Positive values indicate higher metric value using Track-
RCNN [39]. 40

5.6 Comparison of EagerMOT [17] instance association results in KITTI [10] tracking
dataset , with artificially occluded Point-GNN [37] detections with occ f rames = 3
and varying occratio using TrackRCNN [39] as 2D detector. ’3D&2D’, ’3D’ and
’2D’ represent instances with 3D and 2D information, instances with only 3D
information and instances with only 2D information, respectively. 44

xiii

xiv LIST OF TABLES

A.1 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’
class, with artificially occluded Point-GNN detections with occ f rames = 1, varying
occratio and using TrackRCNN as 2D detector. 53

A.2 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’
class, with artificially occluded Point-GNN detections with occ f rames = 3, varying
occratio and using TrackRCNN as 2D detector. 53

A.3 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’
class, with artificially occluded Point-GNN detections with occ f rames = 5, varying
occratio and using TrackRCNN as 2D detector. 53

A.4 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’
class, with artificially occluded Point-GNN detections with occ f rames = 1, varying
occratio without using 2D detections. 54

A.5 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’
class, with artificially occluded Point-GNN detections with occ f rames = 3, varying
occratio without using 2D detections. 54

A.6 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’
class, with artificially occluded Point-GNN detections with occ f rames = 5, varying
occratio without using 2D detections. 54

A.7 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedes-
trian’ class, with artificially occluded Point-GNN detections with occ f rames = 1,
varying occratio and using TrackRCNN as 2D detector. 54

A.8 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedes-
trian’ class, with artificially occluded Point-GNN detections with occ f rames = 3,
varying occratio and using TrackRCNN as 2D detector. 55

A.9 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedes-
trian’ class, with artificially occluded Point-GNN detections with occ f rames = 5,
varying occratio and using TrackRCNN as 2D detector. 55

A.10 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedes-
trian’ class, with artificially occluded Point-GNN detections with occ f rames = 1,
varying occratio without using 2D detections. 55

A.11 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedes-
trian’ class, with artificially occluded Point-GNN detections with occ f rames = 3,
varying occratio without using 2D detections. 55

A.12 Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedes-
trian’ class, with artificially occluded Point-GNN detections with occ f rames = 5,
varying occratio without using 2D detections. 56

A.13 Comparison of EagerMOT instance association results in Kitti tracking dataset,
with artificially occluded Point-GNN detections with occ f rames = 1 and varying
occratio using TrackRCNN as 2D detector. ’3D&2D’, ’3D’ and ’2D’ represent
instances with 3D and 2D information, instances with only 3D information and
instances with only 2D information, respectively. 56

A.14 Comparison of EagerMOT instance association results in Kitti tracking dataset ,
with artificially occluded Point-GNN detections with occ f rames = 3 and varying
occratio using TrackRCNN as 2D detector. ’3D&2D’, ’3D’ and ’2D’ represent
instances with 3D and 2D information, instances with only 3D information and
instances with only 2D information, respectively. 56

LIST OF TABLES xv

A.15 Comparison of EagerMOT instance fusion results in Kitti tracking dataset , with
artificially occluded Point-GNN [37] detections with , occ f rames = 5 and varying
occratio using TrackRCNN [39]as 2D detector. ’3D&2D’, ’3D’ and ’2D’ represent
instances with 3D and 2D information, instances with only 3D information and
instances with only 2D information, respectively. 56

xvi LIST OF TABLES

Abbreviations

ANN Artificial Neural Networks
CNN Convolutional Neural Networks
DL Deep Learning
DNN Deep Neural Networks
ETE End-to-End
FPS Frames-per-Second
GNN Graph Neural Network
LiDAR Light Detection and Ranging
ML Machine Learning
MLP Multi Layer Perceptron
MOT Multi-Oject Tracking
RADAR Radio Detection and Ranging
TBT Tracking-By-Detection

xvii

Chapter 1

Introduction

According to National Highway Traffic Safety Administration (NHTSA), an estimated 94% of

road accidents happen due to human error [40]. Furthermore, Thomas et al. [42] reported that, in

Europe, more than 50% road accidents are associated with timing errors of the driver. These types

of road accidents make for a considerable portion of the estimated 1.35 million people worldwide

that die due to traffic accidents each year. Autonomous driving systems intend to provide a safer

road experience by developing autonomous driving systems that replace parts of the driving ac-

tivity, preventing human failures. In recent years, much progress in autonomous driving systems

has been made, thanks to the improvements in Artificial Intelligence and Deep Learning technolo-

gies. In order to be fit for the context of autonomous driving, these systems must be accurate and

efficient, making their development a challenging task.

1.1 Context

The automotive industry has been researching and developing perceptive systems in recent years,

aiming to equip vehicles with autonomous driving systems. There is a great urge to improve

these systems with the main objectives of making the streets safer and providing a more liberating

road experience for the driver. The end goal of this ongoing research is achieving full automation

in autonomous driving, making the human driver a mere passenger. To classify the levels of

automation of an automation system, a standard adopted by SAE is used. There are six levels of

automation, ranging from 0 to 5, whereas level 0 refers to a vehicle without driving automation and

level 5 to full automation. Figure 1.1 shows the mentioned levels. In level 0, there is no automation

system, only depending on the driver to operate the vehicle. In Levels 1-2, the autonomous driving

systems assist the human drivers, but they are still responsible for monitoring the environment.

The system only carries out this activity in levels 3-5. In level 5, full automation, there is no

necessary interaction between the driver and the system. Achieving this level is the aim of various

companies, to make it part of a consumer product or for transportation purposes.

1

2 Introduction

Figure 1.1: Levels of automation set forth in SAE J3016 standard, extracted from [13]

Typically, autonomous cars are equipped with one or multiple sensors to capture the data

needed for perception, e.g., Cameras, Light Detection and Ranging (LiDAR), Radio Detection

and Ranging (RADAR), and ultra-sound sensors. These sensors make self-driving systems able

to create a 3D visualization in real-time. While the choice of sensors used in autonomous driving

vehicles is not the same amongst companies, recently, many of them have been equipped with

LiDAR sensors. These sensors provide 3D information about the surrounding environment but

are expensive and provide a sparse and often noisy signal. On the other hand, stereo cameras are

cheaper, provide a richer signal, and have mature and reliable perception systems developed for

their type of data [17]. Furthermore, every piece of information needed to drive autonomously

(roads, signals, etc.) is built for the human eye. Nevertheless, Cameras have inferior performance

under rough weather conditions and weak depth estimation.

In order to perform its task, a self-driving vehicle needs various modules. The vehicle needs

to be aware of its surroundings, making perception systems necessary. Since every other module

of an autonomous vehicle is dependent on perception, the perception system must be highly reli-

able and accurate. Autonomous driving systems interact with other traffic participants (e.g., cars,

pedestrians) and for this reason, the autonomous driving system must have a system that detects

and tracks objects in the surroundings. Tracking multiple objects allows the vehicle to be aware of

other traffic participants, enabling navigation, planning, localization, and traffic behavior analysis.

If the system is not tracking particular objects correctly, the decisions could result in destructive

actions.

1.2 Motivation 3

1.2 Motivation

As previously mentioned in Section 1.1, autonomous driving systems must know their surround-

ings in order to make decisions. Using the data from the vehicle sensors and various percep-

tion tasks, the system can understand the environment. A fundamental problem of environmental

perception is Multi-Object Tracking (MOT) which is the process of identifying multiple objects

in a scene and tracking them through time. The structured data extracted can then be used by

other higher-level autonomous driving modules. While image-based 2D Object tracking is a well-

developed area and 3D Object tracking using 3D point clouds research is gaining traction, the use

of multi-modal data, more specifically 3D Point Clouds and RGB images, for MOT is still rela-

tively new. Moreover, the fusion of the information from these modalities can help mitigate the

performance drop caused by occlusions.

1.3 Objectives

The main goal of this dissertation is to study different 3D MOT approaches in the context of

autonomous driving. Since almost all MOT approaches rely on object detection in the first step,

different 3D and 2D object detectors are evaluated in the context of MOT. This evaluation is

done using a State-of-the-Art MOT framework on a benchmark dataset for tracking methods.

Furthermore, an analysis of how sensor fusion mitigates occlusion performance reduction in MOT

is done.

1.4 Document Structure

This document is organized into six chapters. This first Chapter presents the context of this dis-

sertation, motivation, and goals. Chapter 2 explains some theoretical background, used in the

following chapters. Chapter 3 goes into detail about 3D Object Detection and Tracking and its

respective State-of-the-Art. In Chapter 4 the methodology that is being used in this dissertation is

presented, and Chapter 5 shows and discusses the results obtained. Finally, Chapter 6 presents the

main conclusions and identifies future research paths.

4 Introduction

Chapter 2

Background

This chapter covers the underlying concepts essential for the Multi-Object Tracking task. Most of

the concepts explained work for both the context of 2D and 3D object tracking.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are a paradigm of Machine Learning (ML) based on biological

models of the human brain. These networks provide learning capability to computers without

being explicitly programmed.

Analogical to biological neural networks, ANN are composed of nodes connected by links

called artificial neurons. The perceptron, introduced in 1957, is the base unit of a neural network,

as seen in Figure 2.1. These are connected by weighted links that adjust with learning, increas-

ing or decreasing the strength of the connection, using a learning algorithm, such as the Percep-

tron learning algorithm and the Back-propagation algorithm [32]. The perceptron computes the

weighted sum of the inputs along with a bias value and then applies an activation function [1].

Figure 2.1: Perceptron overview, extracted from [26].

5

6 Background

The obtain the output, y of a perceptron i, the following equation is used:

y = ϕ((
n

∑
j=0

wi jx j)+bi) (2.1)

Where ϕ(), wi j and bi are the activation function, weight associated with the input x j and bias

of the neuron, respectively.

To simulate tasks done by the human brain, ANNs commonly have multiple layers of con-

nected perceptrons: An input layer, one or multiple hidden layers, and an output layer. The num-

ber of perceptrons, as well as the number of hidden layers, is variable, depending on the task that

is being solved.

Depending on how an ANN system is being trained, it can be categorized into different

paradigms [1]:

• Supervised Neural Network: The network is trained using the inputs and outputs. When

fully trained, it is supplied with testing data, previously unseen data, to anticipate the result.

• Unsupervised Neural Network: The network is trained without the output. Its goal is to

establish a correlation between the incoming data and then group it appropriately. When

new data is presented as input, it recognizes its feature and assigns it to one of the categories.

• Reinforced Neural Network: Learns with past decisions by getting penalized for bad deci-

sions and rewarded for good choices. The weights producing correct outputs are increased

and vice-versa.

Figure 2.2: Example of a Deep Neural Network architecture, with three hidden layers, extracted
from [4].

2.2 Deep Learning

Deep learning (DL) is a subset of ML, where the network has two or more hidden layers, as can

be seen in Figure 2.2. Due to increased computational power and better algorithms to train these

2.3 Convolutional Neural Networks 7

networks, DL methods have reemerged in recent years. With multiple layers, Deep Neural Net-

works (DNN) can ingest and process unstructured data, eliminating data pre-processing typically

involved with machine learning. These networks benefit from large amounts of data, learning

more relevant characteristics, opening the doors to solving more complex problems and process-

ing more difficult data. DL has various applications ranging from Natural Language Processing to

Investment Modeling, with Computer Vision being one of the most prominent.

2.3 Convolutional Neural Networks

A Convolutional Neural Network, often known as CNN or ConvNet, is a type of deep learning

network architecture that specializes in processing data with a grid-like layout, such as an image.

CNNs reduce the requirement for manual feature extraction since the features are learned directly.

Furthermore, CNNs generate extremely accurate recognition results. The architecture is designed

so that simpler patterns (lines, curves, etc.) are detected first, followed by more complicated

patterns (faces, objects, etc.). This is accomplished using convolutional layers and pooling layers.

An example of a CNN is depicted in figure 2.3.

Figure 2.3: Example of a CNN, extracted from [38].

The CNN’s main building block is the convolution layer, carrying the majority of the com-

putational load on the network. This layer Converts the input tensor (e.g., an RGB picture) to a

feature map via a convolution operation. Because linking every pixel of the input image to the

neurons on the first convolutional layer would result in an exponential increase in the number of

network parameters, convolutional layers employ weight sharing between neurons.

The pooling layer’s major goal is to reduce the number of trainable parameters by shrinking

the spatial size of the image, lowering the computational cost. It reduces the size of its input

tensor by using local (or global) pooling, effectively compressing the information in a feature

map. Maximum or average operations are typically used to accomplish this. These types of layers

do not have associated weights and, consequently, do not learn any parameters.

8 Background

2.4 Object detection

Object detection is a computer vision task that aims to detect an instance of visual objects in a

scene. These objects are located and classified into classes (e.g., Humans, Cars, Animals), as

shown in Figure 2.4. Thus, object detection can be classified as a regression problem to estimate

the position and size of an object’s bounding box and its classification. Object detection provides

the basis of multiple computer vision tasks, including instance segmentation, event detection, and

object tracking [57]. Consequently, object detection supports an extended range of applications

such as robot vision, security, autonomous driving, and augmented reality [21].

Figure 2.4: Example of a Object Detection task, extracted from [47].

Object detection techniques can be categorized into two approaches: Traditional based meth-

ods and Deep Learning Algorithms. The latter is now the most used approach, following the

successful application of deep neural networks to the object detection task in 2014 [12].

Object detection methods are often divided into three stages: informative region selection,

feature extraction, and classification. First, the image is scanned to generate region proposals,

which are bounding boxes indicating likely item positions. The features from the region proposals

are extracted using an algorithm in the second phase, Feature Extraction. Finally, a classifier is

utilized to differentiate a target object from all other categories.

Most deep learning approaches use deep learning neural networks, especially Convolutional

Neural Networks (CNN), for the feature extraction phase. This type of architecture is referred to as

a two-stage object detector. Conversely, a One-Stage object detector proposes predicted boxes di-

rectly from the input image, skipping the region proposal step, such as YOLO [29]. Consequently,

these types of methods are less computationally expensive, making them suitable for real-time

applications, but achieve lower performance.

2.5 Multi-Object Tracking 9

2.5 Multi-Object Tracking

The aim of Multi-Object Tracking (MOT) is to locate multiple objects in a scene, yielding their

identities and maintaining their individual trajectories with high accuracy in a video. In other

words, MOT automatically identifies objects and interprets them as a set of trajectories. It is a task

that is necessary for high-level tasks such as action recognition, pose estimation, and behavior

analysis [25]. Its practical applications include visual surveillance, autonomous driving systems,

and virtual reality.

Figure 2.5: Example of a Object Tracking task, extracted from [9].

MOT frameworks follow three main paradigms [25]:

• Detection-free tracking: A fixed number of object detections are inserted manually in a

frame, then these are tracked in the following frames.

• Tracking-By-Detection: In the first phase, objects are detected in a single frame, using 2D

or 3D Object detectors. The second phase associates objects across frames by applying a

filtering algorithm, which is often the hardest step in the tracking-by-detection paradigm.

This is the most popular approach for MOT frameworks since new objects are automatically

discovered, and, likewise, disappearing objects are terminated automatically. Moreover,

pre-trained Object detectors can be used.

• End-to-End: In this approach, one model is responsible for both tasks. While harder to

implement, it can have better tracking accuracy since the whole network can be trained

using tracking metrics, and it is not reliant on the quality of the object trackers.

These frameworks can also be classified on their processing mode, with the difference being

whether future frames can be analyzed when handling the current frame [25].

• Online tracking: In online tracking, frames are handled in a sequential manner. Only infor-

mation from the current and previous frames is used. These methods are less accurate than

offline tracking methods but are needed for online tasks (e.g., autonomous driving)

10 Background

• Offline tracking: A batch of frames, including future frames, is used for tracking in the

current frame. This approach requires all the frames being processed to be obtained before-

hand.

Chapter 3

Object Detection and Multi-Object
Tracking with 3D Point Clouds

This chapter discusses 3D Object Detection and 3D Multi-Object Tracking, as well as 3D Point

clouds and how they are used in those subjects.

3.1 3D Point Clouds

3D Point Clouds are a set of data points in 3D space. The point cloud of a scene is the collection

of 3D points around objects in that scene, shown in Figure 3.1. Each point is represented with

XYZ coordinates but can have additional information such as the light pulse intensity and RGB

values. Light Detection and Ranging (LiDAR) sensors are the most common device to capture 3D

Point Cloud data. These sensors work by emitting pulsed light waves from a laser and measuring

the time it takes to travel back. The light rays are reflected on the scene’s object, indicating their

distance from the sensor. LiDAR is commonly used for mapping areas in multiple disciplines,

such as geography, engineering, control, and navigation.

Despite providing depth to the data, 3D Point clouds have considerable shortcomings. Point

clouds are often sparse since sample points are not uniformly distributed in the 3D space, have high

dimensionality, low resolution, and are unstructured, which makes creating perception models for

this type of data challenging. When Point cloud data is not sparse, it can easily reach hundreds

of millions of points. Moreover, if the data is acquired from a single viewpoint, objects located

behind the surrounding environment will not be captured by the LiDAR since the first object hit by

the laser will block them. This phenomenon is named occlusion, and since Autonomous driving

vehicles only capture data from a single viewpoint, it affects perception methods in the context of

autonomous driving. The low resolution of LiDAR sensors also makes detecting faraway objects

harder, especially compared to RGB Images provided by a camera sensor [44].

As previously mentioned, 3D Point clouds are a set of data points, unordered and without any

structure. A point in a 3D Point Cloud is often represented as pi = (x,y,z, p), where p is the light

11

12 Object Detection and Multi-Object Tracking with 3D Point Clouds

Figure 3.1: Example of a 3D Point Cloud scene, extracted from [45].

pulse intensity. To use this data in perception methods, 3D Point clouds are often represented in

four different matrix representations [6]:

• Raw Points: Every single 3D point in the set is listed as one row in a matrix. This is the

simplest and less processed way to represent 3D Point clouds in a matrix. Furthermore, it

preserves all the original information. However, this method does not take advantage of the

geometric properties of 3D Point Clouds.

• 3D Voxelization: The 3D space is discretized into voxels that represent a 3D point cloud.

Usually, the 3D space is partitioned into equally sized non-overlapping voxels, as presented

in Figure 3.2 (a). Voxels are coupled with a natural hierarchical structure in this method,

which reduces storage space. The loss of resolution is the most significant disadvantage.

• Range view: This approach models how a LiDAR captures 3D points. The 3D points are

rearranged into a 2D range-view image. Each pixel in the range-view image corresponds to

a frustum in the 3D space, as seen in Figure 3.2 (b). This approach makes for a compact

range-view image; however, modeling an unorganized point cloud is hard.

• Bird’s eye view: This approach is a subset of voxelization that disregards height. It projects

3D voxels to a Bird’s eye view (BEV) image, presented in Figure 3.2 (c). The main advan-

tages of this approach is that it is possible to apply 2D perception methods, easy to merge

information, and the object’s size is independent of range, unlike the range view approach.

3.1.1 Sensor Fusion

While LiDAR’s 3D Point Clouds provide 3D information of the surrounding environment. These

sensors are less affected by weather variation and illumination changes than cameras. However,

they also present a lot of downsides, mentioned in 3.1, such as sparse data and low resolution.

3.2 3D Object Detection 13

Figure 3.2: Overview of the most used ways to represent point clouds in matrix representations,
extracted from [6] (a) 3D Voxelization (b) Range view (c) Bird’s eye view.

Conversely, RGB images have a rich signal, provide texture information, and are long-range.

Fusing the data between these two sensor modalities benefits perceptions methods, namely MOT

methods, by complementing the shortcomings of each sensor. There are three main approaches to

fusing LiDAR and RGB data:

• Early Fusion: Early Fusion approaches fuse raw or pre-processed data from both sensors

before feeding it into the framework. Since only the network to process the fused data

is needed, this approach has a low computational cost compared to other methods. Since

sensors can have different sampling rates and defects, extra pre-processing is needed.

– Sequential Fusion: Sequential fusion is a type of early fusion that merges the extracted

information from one module with the data from the other sensor.

• Late Fusion: Conversely to early fusion, late fusion approaches consist of having different

networks for each sensor and then combining the output into a single parameter. This ap-

proach has high flexibility since it allows for choice in architectures that process each type

of sensor data that can also be trained separately, without interfering with each other. How-

ever, since it requires multiple networks, these models are less computationally efficient

than early fusion methods.

• Deep Fusion: A deep fusion architecture combines early and late fusion methods, fusing

data or feature representations from different modalities multiple times across the network.

Consequently, the network can learn cross modalities with varying features along with the

network.

3.2 3D Object Detection

Self-driving cars need to be completely aware of their surroundings. For these vehicles to identify

which road elements, such as cars, cyclists, and pedestrians, are present in the scene, 3D object

detection is essential. The process of 3D object detection entails identifying oriented 3D bounding

boxes corresponding to different objects in each scene formed by LiDAR data. Contrary to 2D

14 Object Detection and Multi-Object Tracking with 3D Point Clouds

object detection, a more developed area, 3D object detection remains an open subject with plenty

of room for improvement and study.

3D object detectors are commonly classified into three types based on the way they handle

point cloud representation: grid-based, set-based (or point-based), and graph-based networks

3.2.1 Set-Based Methods

Set-based methods are sometimes known as point-based methods since they use the original point

cloud representation. These approaches are often intended to receive unaltered point clouds with

the goal of extracting features, classifying 3D shapes, and segmenting them. The LiDAR point

cloud retains its unstructured form; however, when translated into a defined size, its representation

becomes more compact. This is performed by subsampling the point cloud from its original size to

a smaller fixed size of N points using random sampling and Furthest Point Sampling (FPS) [54].

PointNet [7], proposed in 2016, is a revolutionary effort in Deep Learning networks for point

clouds that has influenced a wide spectrum of point cloud perception methods. Despite the fact

that it was created for segmentation and classification, most 3D object detectors currently employ

PointNet or variations of it to extract features from unaltered point cloud data. Point clouds are

a naturally unordered set of vectors that are sparse and locality sensitive. As a result, PointNet

was created to interpret 3D points regardless of their order. The core concept is to use a group

of MLPs, global max-pooling, and spatial transformer networks to ensure input-wise permutation

invariance and independent extraction of pointwise features from a set of 3D points. Nevertheless,

PointNet does not capture spatial and geometric knowledge between local points. PointNet++ [28],

introduced in 2017, proposed an abstraction level, shown in Figure 3.3, consisting of a sampling

layer, a grouping layer, and the PointNet-based learning layer, aimed to counteract this issue.

Figure 3.3: PointNet++ set feature learning module, extracted from [28].

Since both PointNet and PointNet++ were not developed for 3D object identification, they are

not 3D object detectors. However, they did introduce important feature extraction processes, such

as the PointNet architecture and set abstraction layers, which are important components used by a

large number of 3D object detection methods.

3.2 3D Object Detection 15

3.2.2 Grid-Based Methods

The process of allocating points to voxels is known as voxelization. Grid-based or 3D voxel-based

approaches transform point clouds into regular grids to be processed by 2D or 3D convolutional

neural networks. Partitioning 3D space using a Cartesian or cylindrical coordinate frame yields

voxels with cuboid or cylindrical slice shapes, respectively.

VoxelNet [56] is an important pillar for grid-based methods. The voxel feature learning net-

work, depicted in figure 3.5, is the centerpiece of VoxelNet. It employs the PointNet [7] approach

to integrating the points’ features in the voxel via learnable Voxel Feature Encoding (VFE) layers.

The VFE is fed a set number of points sampled from each voxel as input. Each point has three

dimensions, reflectivity and a relative offset from the physical center point. The VFE translates

raw LiDAR data to a 3D voxelization-based representation while simultaneously learning point-

wise features in each voxel using a PointNet. Finally, an area proposal network is linked to predict

3D bounding boxes. Despite their efficiency and utility, 3D convolutions are computationally ex-

pensive, impacting the network’s inference time significantly. Furthermore, due to the sparsity of

point clouds, voxel representation generates a considerable number of blank voxels, resulting in

needless calculations.

Figure 3.4: VoxelNet arquitecture overview, extracted from [56].

To mitigate this issue, Yan et al. proposed SECOND [51], in which 3D convolutions in Voxel-

Net [56] are substituted by submanifold convolutional layers and sparse convolution layers. SEC-

OND enhances VoxelNet’s performance and achieves a significantly faster speed, but its 3D con-

volutions remain an efficiency bottleneck.

PointPillars [20] eliminates 3D convolutions by considering the pseudo-BEV map as a vox-

elized representation, allowing for end-to-end learning with only 2D convolutions, resulting in

higher speed, being 3 times as fast as SECOND [51].

PV-RCNN [35] captures point-wise characteristics from PointNet-based networks to enrich

3D voxel CNN proposals. The point-wise feature is encoded from a limited collection of key

16 Object Detection and Multi-Object Tracking with 3D Point Clouds

points sampled from the entire point cloud by the FPS method. The keypoint feature is a concate-

nation of three features: a raw point cloud recovered by PointNet [7], a bird-view feature retrieved

by voxelization, and z-axis feature aggregation, and aggregation of neighbor voxel features with

differing receptive fields extracted by PointNet.

To save follow-up computations and to encode representative scene properties, Voxel R-CNN [8]

summarizes the 3D scene using a 3D voxel CNN into a compact set of keypoints using a novel

voxel set abstraction module. Given the voxel CNN’s high-quality 3D proposals, RoI-grid pooling

is proposed to abstract proposal-specific properties from keypoints to RoI-grid points via keypoint

set abstraction with multiple receptive fields. The RoI-grid feature points encode far richer con-

text information than standard pooling processes, allowing for more accurate estimation of object

confidences and locations.

Part-A2 Net [36], which stands for Part Aware and Part Aggregation Network, is a two-stage

detector that comes in two varieties: Anchor-based and Anchor-free, all of which follow the same

architectural principles. Part-A2 Net [36] uses free intra-object annotations and point-wise se-

mantic annotations to monitor voxel feature learning. The voxelized point cloud is fed into the

first stage of Part-A2 Net [36]. A backbone network with sparse convolution and deconvolution

learns to segment foreground points and estimate the intra-object part placement of all foreground

points. In the first stage, 3D object proposals are generated concurrently. In the second stage

Part-A2 Net [36] partitions each candidate 3D box into multiple voxels to pool all features from

both non-empty and empty voxels for improved geometric information capture.

3.2.3 Graph-Based Methods

The point cloud is transformed into a graph in this representation. Points are regarded nodes, while

connections between points that are located within a given radius are considered edges. Because

building a graph from raw point clouds is computationally inefficient, a down-sampled point cloud

is utilized instead, usually after voxelization.

Point-GNN [37], a one-stage detector, employs a graph-based technique from start to finish.

After building a graph after voxelization, the initial feature of each vertex is calculated using

MLPs, similarly to PointNet [7]. For high-dimension feature extraction, a 3DBN based on a graph

neural network(GNN) architecture composed of MLPs is used. Point-GNN, unlike traditional

GNNs, is engineered to encode spatial information with learned high-dimensional characteristics.

The GNN is run for a set number of iterations. Because the MLPs differ for each iteration, weights

are not shared between iterations. In an Anchor-free approach, two separate MLPs are utilized at

the conclusion of GNN, one for classification and one for per class 3D Bounding box regression.

3.3 3D Multi Object Tracking

The purpose of 3D MOT is to associate 3D detections in a sequence, as seen in figure 3.6. 3D

multi-object tracking is an important component in an autonomous driving system since it gives

critical information to various onboard modules such as perception, prediction, and planning. The

3.3 3D Multi Object Tracking 17

Figure 3.5: Point-GNN arquitecture overview, extracted from [37].

difference is that the input detections are in 3D space rather than the image plane. As a result,

3D MOT systems may acquire motion and appearance information in 3D space while avoiding

perspective distortion. LiDAR is the most popular sensor used by self-driving vehicles to perceive

their environment.

Figure 3.6: Example of 3D MOT task, extracted from [15].

The tracking-by-detection architecture, explained in section 2.5, is used by the majority of

3D multi-object tracking systems. They provide 3D object detection results as input to tracking

techniques. Various distance metrics are employed in the data association step to discover the

matching track-detection pairs.

3.3.1 Evaluation Metrics

In order to evaluate and compare the performance of MOT frameworks, there is a necessity to

use various tracking metrics. Moreover, while developing a system, it is important to observe the

influence of different parameters and modules in said system. The HOTA (Higher Order Tracking

Accuracy) [24] metrics were introduced in 2021, designed to address many of the shortcomings

of previous measures, such as overemphasizing the importance of either detection or association.

The previously tracking metrics included the CLEARMOT metrics [3], the Identity metrics [31]

and the Track mAP metrics [52].

HOTA may be considered as a mixture of three IoU scores. It splits the process of evaluating

tracking into three subtasks: localization, detection, and association, and assigns a score to each

using an IoU (intersection over union) formulation. It then aggregates the three IoU scores for

each subtask to provide the final HOTA score.

18 Object Detection and Multi-Object Tracking with 3D Point Clouds

The localization subtask measures the spatial alignment between one predicted detection and

one ground-truth detection. Localization IoU (Loc-IoU) is utilized to measure localization accu-

racy and can be computed as the ratio of the intersection (overlap) of the two detections to the

entire area covered by each of them (union). A visualization is depicted in figure 3.7.

Figure 3.7: Loc-IoU calculation visualisation, extracted from [22].

This notion can be extended from bounding boxes to segmentation masks; increasing the Loc-

IoU score improves the spatial alignment of anticipated and ground-truth detections. The Local-

ization Accuracy (LocA) can be calculated by averaging the Loc-IoU across all pairs of matching

predicted and ground-truth detections in the whole dataset, as seen in the following equation:

LocA =
1

|TP| ∑
c∈TP

Loc−IoU(c) (3.1)

Where T P and c are True positives and a dataset instance, respectively.

Detection measures the alignment between the set of all predicted detections and the set of

all ground-truth detections. For assessing detection accuracy, detection IoU (Det-IoU) is often

utilized. A location threshold (e.g., Loc-IoU > 0.5) is used to define the set of predicted detections

intersecting with ground-truth detections. One predicted detection, however, may overlap with

more than one ground-truth detection (and vice-versa). To address this, the Hungarian method [19]

is used to find a one-to-one match between predicted and true detections. These matching detection

pairs are known as True Positives (TP), and they represent the intersection of the two sets of

detections. False Positives (FP) are predicted detections that do not match, and False Negatives

(FN) are ground-truth detections that do not match (FN). Det-Iou can be defined as:

Det−IoU =
|T P|

|T P|+ |FN|+ |FP|
(3.2)

While Loc-IoU assesses the alignment of a single expected and ground-truth detection, Det-

IoU measures the alignment of all predicted and ground-truth detections. Detection Accuracy

(DetA) can be obtained by calculating Det-IoU using the whole dataset, defined as:

DetA = Det−IoU =
|T P|

|T P|+ |FN|+ |FP|
(3.3)

3.3 3D Multi Object Tracking 19

The ability of a tracker to link detections over time into the same identities (IDs) is measured by

association. This can be measured by taking a predicted detection and a ground-truth detection that

have been matched together (using the Hungarian matching) and evaluating the alignment between

the anticipated detection’s whole track and the ground-truth detection’s entire track, which can be

represented in another IoU formulation.

The intersection of two tracks may be quantified as the number of True Positive matches

between the two tracks, named True Positive Associations (TPA). Detections that are either mis-

matched to other ground-truth tracks or to none are False Positive Associations (FPA), and the

remaining detections in the ground-truth track are False Negative Associations (FNA). The Asso-

ciation IoU (Ass-IoU) may be computed in the same manner as shown:

Ass−IoU =
|T PA|

|T PA|+ |FNA|+ |FPA|
(3.4)

The overall Association Accuracy (AssA) may be calculated by averaging the Ass-IoU over

all pairs of matching predicted and ground-truth detections in the whole dataset:

AssA =
1

|TP| ∑
c∈TP

Ass−IoU(c) (3.5)

Where T P and c are True positives and a dataset instance, respectively.

HOTA is a combination of all three IoU scores previously defined. Every subcomponent men-

tioned is extremely important for measuring tracking performance, hence the importance of having

a single metric that combines all of them. HOTA can be calculated as follows:

HOTAα =
√

DetAα ·AssAα =

√
∑c∈TPα

Ass−IoUα(c)
|TPα |+ |FNα |+ FPα |

(3.6)

HOTA =
∫

0<α≤1
HOTAα ≈ 1

19

0.95

∑
α=0.05

HOTAα (3.7)

Where α is the location threshold.

There are also metrics with concepts commonly used in object detection. Detection recall (De-

tRe) is the proportion of ground-truth detections that were accurately predicted, whereas detection

accuracy (DetPr) is the percentage of right detection predictions made, defined as follows:

DetRe =
|T P|

|T P|+ |FN|
(3.8)

DetPr =
|T P|

|T P|+ |FP|
(3.9)

As for the association counterpart, association recall (AssRe) measures how well predicted

trajectories cover ground-truth trajectories, and association precision (AssPr) measures how well

predicted trajectories keep tracking the same ground-truth trajectories. These metrics can be de-

fined as:

20 Object Detection and Multi-Object Tracking with 3D Point Clouds

AssRe =
1

|TP| ∑
c∈TP

|T PA(c)|
|T PA(c)|+ |FNA(c)|

(3.10)

AssPr =
1

|TP| ∑
c∈TP

|T PA(c)|
|T PA(c)|+ |FPA(c)|

(3.11)

3.3.2 Benchmark Datasets

Deep learning algorithms, such as 3D object detection networks, require a vast amount of data

for training. Because it is done manually, collecting and annotating data can be an expensive and

laborious procedure. Fortunately, there are a number of datasets available for research.

3.3.2.1 KITTI

Despite its 2012 release, KITTI [10] has become the standard dataset for perception tasks like 2D

or 3D object detection, scene flow, depth evaluation, tracking, and so on. Cutting-edge models are

still tested and assessed using this dataset. It was created by carefully sampling a fraction of the

raw sensor input and calibration data, labeling it, and structuring it according to the needs of each

activity.

The KITTI dataset is especially relevant to autonomous driving tasks, as it is recorded in the

streets of Karlsruhe, Germany, using a LiDAR sensor, two forward-facing stereo cameras, and a

GPS, as shown in figure 3.8.

Figure 3.8: Sensor setup used to record the KITTI dataset, extracted from [11].

The tracking benchmark was released in 2013 and consists of 21 training sequences and 29

test sequences, with a total of 8026 frames and 11125 frames, respectively. Every frame contains

a 3D Point Cloud, a 2D image and calibration information. Despite the fact that eight different

classes are labeled, only the classes ’Car’ and ’Pedestrian’ are examined in the benchmark since

only those classes have enough instances tagged for a full evaluation.

3.3 3D Multi Object Tracking 21

3.3.2.2 nuScenes

NuScenes [5] is a more recent public multi-model dataset for detection and tracking in the context

of autonomous driving. It is larger and more robust than KITTI [10], providing illumination and

weather changes. Its scenes are recorded with six cameras, five radars, 1 LiDAR, and a GPS, all

with a full 360-degree field of view. NuScenes comprises 1000 scenes, each 20 seconds long, for

23 classes and eight attributes.

3.3.3 Multi Object Tracking for Autonomous Driving

This subsection goes into detail about recent developments in MOT methods used for Autonomous

Driving. An overview of these methods’ performance and their properties can be seen in tables

3.1 and 3.2, respectively.

3.3.3.1 Beyond Pixels

In recent years, significant improvements have been made in 3D MOT. Beyond Pixels, [33] pro-

posed a fast and straightforward yet accurate and robust MOT applied to urban road scenarios

by taking advantage of objects’ shapes and poses temporal consistency. This algorithm uses the

tracking-by-detection approach, explained in section 2.5, where the objects are detected in the

first phase and then associated with objects from previous frames. This technique uses LiDAR

and RGB data to take advantage of some characteristics inherent to the object and its movements,

such as object pose, shape, and motion.

First, the paper uses two different object detectors to compare results - RCC [30] and Sub-

CNN [50]. A threshold for confidence scores filters the detections obtained, and a NMS is used to

reduce multiple detections around the same object. To obtain the associations in the second phase,

the method computes the associated cost for every object as follows:

• 3D-2D cost: measures the overlap of the target’s expected 2D region with a given 3D detec-

tion;

• 3D-3D cost: measures the overlap of the target’s expected 3D bounding box with a given

3D detection;

• Appearance cost: uses a DNN to measure appearance between 2D regions;

• Shape and Pose cost: explores additional information provided by an external algorithm that

computes a vector of deformation coefficients. The similarity between a target object and a

given detection is calculated with that information.

After computing the costs, the detections and tracked objects are associated using a Hungarian

algorithm [19].

In terms of results, this paper [33] achieved a HOTA of 63.74% on the KITTI dataset [10],

as can be seen in table 3.1. Despite its good results, this method has a high number of identity

22 Object Detection and Multi-Object Tracking with 3D Point Clouds

Figure 3.9: Overview of Beyond Pixels Method, extracted from [33].

(ID) switches and can only run at 3 FPS, which is lower than the 10 FPS threshold of real-time

tracking. Beyond suggests that the ID switches problem is the result of the proposed approach of

implementing an online tracker, but more developed online trackers mitigated this issue by using

a tracker with a more sophisticated cost association.

3.3.3.2 FANTrack

In 2019, FANTrack [2] used siamese networks to model the similarities between tracked objects

and detections, as well as DLNN to mitigate the association problem in MOT. This method also

takes as an input LiDAR and RGB data. Here, multiple branches inside the similarity network for

the association cost problem are applied:

• Bounding box branch: outputs a vector of dimension features for detections and targets,

later used to calculate bounding box similarities;

• Appearance branch: outputs a vector of 2D visual cues for both detections and targets;

• Importance branch: receives as input the first two branches, and its goal is to determine the

relative relevance of each branch.

A similarity map of each target is generated, where the outputs of the previous branches are

considered, i.e., the weight of the first two branches (bounding box and appearance) is set by

the latter branch (importance). Then, the targets and detections are associated to create pairs,

using another siamese network that outputs the probability for each target-detection pair. Finally,

it updates the tracking information, a future state prediction is made for each target, and tracks

are initiated and pruned if a new object is detected or stops being detected, respectively. The 3D

Object detector used in the paper was Aggregate View Object Detection (AVOD) [18].

In terms of results, this paper achieved a worse performance (HOTA of 60.85% - table 3.1) than

Beyond’s approach; however, it had considerably fewer ID switches and ran at higher a refresh rate

(25 FPS) suitable for autonomous driving. It is also penalized by the KITTI evaluations because

they are done in 2D, while this approach provides inferences in 3D.

3.3 3D Multi Object Tracking 23

Figure 3.10: Overview of FANTrack Method, extracted from [2].

3.3.3.3 AB3DMOT

AB3DMOT [46], a fast and effective 3D MOT, was proposed in 2020. This architecture, unlike

the previous, only uses 3D data and presents great results compared to them. The method has

several modules, composing a simple pipeline, as can be seen in Figure 3.11:

• Object detector: Outputs detected objects - their center, orientation, size and detection con-

fidence;

• State prediction: Module that predicts object’s next frame state - its position, direction, and

velocity - using a Kalman filter. Only predicts the velocity after the second frame, with a

constant velocity model;

• State update: This module updated object data with a weighted average of both detection

and tracking in order to account for detection and tracking uncertainty;

• Data association: Associates detections with tracked objects using a Hungarian algorithm.

Rejects pairs that have an intersection over union (IoU) lower than a threshold. Outputs

three types of results: detections and tracks matched, tracks unmatched, and detections

unmatched (new objects).

• Birth and death memory: Starts and deletes tracks, with the aim of avoiding creating false

positives and false negatives, since unmatched defections could be a detector error and de-

tectors could miss detection an object, respectively. To prevent this, new tacks are only

created after detecting the same object a certain number of times. Likewise, tracks are only

deleted if it is not matched with detections for a certain number of times in a row.

Except for the pre-trained 3D detection module, this system requires no training and may be

utilized for inference right away.

24 Object Detection and Multi-Object Tracking with 3D Point Clouds

Figure 3.11: Overview of AB3DMOT Method, extracted from [46].

In terms of results, this paper achieved 69.99% HOTA score 3D MOT performance on the

KITTI dataset, as we can see in table 3.1. It also achieved an impressive 313 ID switches and had

a low computation cost, running at 207 FPS.

3.3.3.4 mmMOT

Multi-modality MOT (mmMOT) [55] is a 3D MOT framework that works with various optional

sensor modalities (Camera, LiDAR, radar). The main idea of this approach is to preserve reli-

ability by independent multisensor feature extraction and improve accuracy via modality fusion.

Consequently, it also follows the tracking-by-detection paradigm. This framework contains four

modules, presented in Figure 3.12:

• Object detector: Detections for each modality are obtained by different 3D object detectors;

• Feature extractor: First features from each modality are extracted using independent feature

extractors. The features are then combined with three different fusion modules in the robust

fusion module. The first concatenates the features, the second fuses them with addition,

and the third uses an attention mechanism in order to guide the information fusion from

different sensor modalities since, depending on the situation, the sensor’s information might

have different significance.

• Adjacency Estimation: The adjacency estimator calculates the confidence, affinity, start,

and finish scores in the min-cost flow graph depending on each modality using the multi-

modality features as input.

• Optimization: The framework uses linear programming to determine the best solution from

the min-cost flow graph using the prediction score from the neural network as an input.

This method achieves an 62.05% HOTA value on the KITTI tracking dataset, as presented in

table 3.1.

3.3.3.5 EagerMOT

EagerMOT [17] is another tracking-by-detection MOT framework that fuses LiDAR and RGB

data with state-of-the-art performance. This approach uses pre-trained object detectors to merge

3.3 3D Multi Object Tracking 25

Figure 3.12: Overview of mmMOT Method, extracted from [55].

complimentary 2D and 3D object evidence. The data passes through the following modules after

receiving object detections from various sensor modalities as an input(Figure 3.11):

• Fusion module: This module fuses the 2D and 3D detections into fused object instances.

To associate the detections in 3D and 2D, they are greedily associated using their overlap

in the image domain. The greedy association sorts all possible detection pairings by their

overlap in descending order. Pairs are considered one by one and only joined if their overlap

is above a certain threshold and neither detections as been matched yet.

• Two-stage data association module: This module allows the method to update object tracks

using two stages. First, instances with 3D information are matched to existing tracks. The

module greedily pairs detected instances with tracks based on the scaled distance between

instances’ oriented bounding boxes and tracks’ predicted oriented boxes. In the second

phase, tracks that were unmatched in the previous step are matched with instances localized

only in 2D. This association stage greedily associate instances to remaining tracks based

on the 2D IoU criterion. With the two-stage data association module, the method is able to

recover from temporary occlusions and maintain an approximate 3D location when one of

the detectors fails.

• Track management module: This module manages Object trajectories and life cycles. The

rules used are as follows: If a track has not been updated with any instance in a certain

amount of frames, it is discarded; If a track is associated with an instance in the current

frame and has been updated with 2D information in the last few frames it is considered

confirmed; Detected instances start new tracks if they were never matched before.

The experiments were done with Point-GNN [37] and Point R-CNN [34] 3D object detectors

and RRC [30] 2D detector. This setup obtained a 74.39% HOTA score on the KITTI dataset as we

can see in table 3.1.

26 Object Detection and Multi-Object Tracking with 3D Point Clouds

Figure 3.13: Overview of EagerMOT Method, extracted from [46].

3.3.3.6 PC-TCNN

The accuracy of a MOT framework relies on the quality of detections inside it. To circumvent this

issue, PC-TCNN [49] was proposed, being an end-to-end tracklet-based (short trajectory) network

instead of the tracking-by-detection approach that the previous methods followed. This method

is a tracklet proposal Convolutional Neural Network, exploiting the temporal-consistent features

to improve tracklet tracking accuracy. Since the detection and tracking are joint, they are trained

together, improving thus the overall tracking performance. This method requires LiDAR and GPS

data.

This framework consists of three modules:

• Tracklet proposal generation: Contrastly to most online approaches, instead of only using

the previous and current frame, the input is a sequence of point cloud frames. These are

encoded into birds’ eye view feature maps, and a 3D object proposal generation and motion

regression are computed to generate a set of tracklet proposals.

• Tracklet proposal refinement: The goal of this module is to increase the accuracy of tracklet

detections. A tracklet feature aggregation technique addresses this by capturing features

from the spatial-temporal region of interest on the point cloud series, resulting in more

accurate object detection and localization in tracklets.

• Tracklet association: To create the final tracking results, this module links the refined track-

lets with earlier trajectories (initialized with an empty set at the first timestamp). A greedy

matching technique connects tracklets and trajectories based on their 3D IoU. If the tracklets

are not matched, the following frame will begin a new trajectory.

PC-TCNN provides state-of-the-art performance with a HOTA of 80.90 %in the ’Car’ class of

KITTI tracking dataset [10].

3.3 3D Multi Object Tracking 27

Figure 3.14: Overview of PC-TCNN Method, extracted from [49].

Table 3.1: Comparison of MOT methods performance on KITTI dataset for ’Car’ class [10].

Method HOTA ↑ DetA ↑ AssA ↑ DetRe ↑ DetPr ↑ AssRe ↑ AssPr ↑ LocA ↑ Dets IDs
BeyondPixels [33] 63.75 % 72.87 % 56.40 % 76.58 % 85.38 % 59.05 % 86.70 % 86.90 % 30850 1560
FANTrack [2] 60.85 % 64.36 % 58.69 % 69.17 % 80.82 % 60.78 % 88.94 % 84.72 % 29435 1582
AB3DMot [46] 69.99 % 71.13 % 69.33 % 75.66 % 84.40 % 72.31 % 89.02 % 86.85 % 13619 313
mmMOT [55] 62.05 % 72.29 % 54.02 % 76.17 % 84.89 % 58.98 % 82.40 % 86.58 % 30860 1484
EagerMOT [17] 74.39 % 75.27 % 74.16 % 78.77 % 86.42 % 76.24 % 91.05 % 87.17 % 16352 724
PC-TCNN [49] 80.90 % 78.46 % 84.13 % 84.22 % 84.58 % 87.46 % 90.47 % 87.48 % 34245 777

Table 3.2: Comparison of MOT methods properties, the approaches are Tracking-By-Detection
(TBD) and End-to-End (ETE).

Method Modality Approach
BeyondPixels [33] LiDAR + RGB TBD
FANTrack [2] LiDAR + RGB TBD
AB3DMot [46] LiDAR TBD
mmMOT [55] LiDAR + RGB TBD
EagerMOT [17] LiDAR + RGB TBD
PC-TCNN [49] LiDAR + GPS ETE

28 Object Detection and Multi-Object Tracking with 3D Point Clouds

Chapter 4

Methodology

This chapter describes the techniques used in the experiments conducted in this thesis. The

adopted framework for MOT is introduced at the beginning of the chapter. Lastly, the method-

ology of the proposed techniques is described in depth in the chapter’s final section.

4.1 EagerMOT

As previously stated, EagerMOT [17] is a robust and modular sensor fusion framework for object

tracking with SOTA performance. Another advantage of this framework is its adaptability and

flexible architecture. Since the only required inputs are the dataset and its corresponding 2D

and 3D detections, it is possible to create a multitude of experiments by changing the 3D or 2D

detections used as input.

4.2 Proposal

4.2.1 Framework Analysis

Despite obtaining impressive results, the original EagerMOT [17] article only experiments with a

small number of 2D and 3D detectors: Point-GNN and Point R-CNN for the 3D source and RRC

and Track-RCNN for the 2D source. Therefore, part of this project evaluates the performance of

EagerMOT [17] using various 3D and 2D Object detectors for both Car and Pedestrian tracking.

The results obtained give insight into the performance of these detectors in the context of object

tracking, as well as how the 3D detectors perform in combination with 2D detectors.

4.2.2 Sensor Fusion Occlusion Analysis

One of the most difficult challenges in MOT are occlusions caused by scene structures and other

objects that are being tracked, as can be seen in figure 4.1. The latter is most common in the

context of autonomous driving since vehicles that are being tracked often occlude other objects

in the scene and vice-versa. These occlusions can be classified as partial occlusions or complete

29

30 Methodology

occlusions, depending on how visible the object is to the sensor. Ideally, MOT methods keep track

of occluded objects and keep their identification until they are visible again by a sensor.

Figure 4.1: Example of a full occlusion of a pedestrian caused by another tracked object, extracted
from [27].

As mentioned in section 3.1.1, fusing two sensor modalities has multiple advantages for per-

ception tasks. Additionally, having multiple sensors can mitigate the occlusion problem because

of the different nature, perspective, and position of each sensor, making some objects visible to

only one sensor.

As mentioned before, EagerMOT [17] makes use of sensor fusion from 2D and 3D sources,

which can be beneficial in occlusion mitigation. Therefore, an analysis of how artificial occlu-

sions in one of the sensors affects the overall performance of the framework is conducted. More-

over, the results are compared with the same scenarios but without using the information from the

non-occluded sensor, helping us understand if the sensor fusion performed by EagerMOT [17] is

mitigating the occlusion problem.

4.3 Experimental Setup

4.3.1 Dataset

The dataset chosen for the project was the KITTI [10] tracking dataset, more specifically, the train-

ing split of the dataset. While other datasets commonly used for autonomous driving tasks such as

nuScenes [5] offer some advantages over KITTI [10], such as denser information and more cate-

gories, the KITTI [10] tracking dataset has more support and, consequently, more readily available

3D and 2D detectors. Furthermore, KITTI [10] continues to serve as a benchmark for all proposed

object tracking methods, and it serves as the primary benchmark for comparing new architectures.

For the same reason, the training split of the dataset was chosen since other tracking methods often

make detections on the training split of the tracking dataset available. Since EagerMOT [17] does

not have a training phase, the usual distinction between the training and testing split is not relevant,

and all the methods can be fairly compared using it.

4.3 Experimental Setup 31

The KITTI [10] tracking dataset is made of different sequences with multiple frames each.

Each frame contains both 3D and 2D information in the format of a 3D point cloud and an image,

correspondingly, as depicted in figures 4.2 and 4.3.

Figure 4.2: Visualisation of a 3D point cloud in the KITTI [10] tracking dataset.

Figure 4.3: 2D image in the KITTI [10] tracking dataset.

The training split consists of 21 sequences containing a total of 8027 frames. A summary of

this dataset is shown in table 4.1. The largest sequence contains 1058 frames, while the smallest

one contains 77 frames.

Table 4.1: Training split of the KITTI [10] tracking dataset properties.

Property Value
Sequences 21

Frames 8027
Car detections 24070

Car tracks 564
Pedestrian detections 11109

Pedestrian tracks 167

4.3.2 3D and 2D Detections

The object detectors used for the Framework analysis and Sensor Fusion Occlusion Analysis ex-

periments are PV-RCNN [35], Voxel R-CNN [8], Second [51], Second IoU [51], Part-A2-free [36],

32 Methodology

Part-A2-anchor [36], Point-GNN [37] and PointPillars [20] as 3D sources, and RRC [30] and

TrackRCNN [39] for the 2D detections. This set of detectors covers most of the 3D and 2D de-

tectors commonly used in the field of object detection in recent years. All of the 3D detectors

are briefly explained in section 3.2. Second IoU is a 3D object detector based on Second [51]

but optimized by Intersection-over-Union (IoU). TrackRCNN [39] is a Multi-Object Tracking

and Segmentation method, based on the object instance segmentation, Mask R-CNN [14]. An

overview of the 3D and 2D detectors, along with their performance in the KITTI [10] test 3D

detection benchmark is shown on tables 4.2 and 4.3, respectively.

In order to evaluate the performance of the different model combinations, the HOTA metrics

mentioned in section 3.3.1 are used. While all HOTA sub-metrics (detection, association, and

location) are analyzed in the results, in order to observe where each combination prevails, the

performance ranking of the different models will be only based on HOTA, as it balances the effect

of all subcategories into a single unified metric for comparing trackers.

Table 4.2: Comparative results of 3D object detection on the KITTI [10] test 3D detection bench-
mark. The letters ’E,’ ’M,’ and ’H’ represent easy, moderate, and difficult difficulties, respectively.
Values not present are represented by ’-’. Cars require an 3D bounding box overlap of 70% and
pedestrians require a 3D bounding box overlap of 50%, adapted from [11].

Method Type Car Pedestrian
M E H M E H

PV-RCNN [35] Grid-Based 82.01 90.13 77.53 47.02 55.84 42.94
Voxel R-CNN [8] Grid-Based 81.62 90.9 77.06 - - -
Second [51] Grid-Based 79.46 87.44 73.97 48.96 38.78 34.91
Second IoU [51] Grid-Based - - - - - -
Part-A2-free [36] Grid-Based 78.96 88.48 78.36 - - -
Part-A2-anchor [36] Grid-Based 79.47 89.47 78.54 51.12 59.72 48.04
Point-GNN [37] Graph-Based 79.36 87.78 74.15 51.92 43.77 40.14
PointPillars [20] Grid-Based 74.31 82.58 68.99 51.45 41.92 38.89

Table 4.3: Comparative results of 2D object detection on the KITTI [10] test 3D detection bench-
mark. The letters ’E,’ ’M,’ and ’H’ represent easy, moderate, and difficult difficulties, respectively.
Values not present are represented by ’-’. Cars require an overlap of 70% and pedestrians require
a 3D bounding box overlap of 50%, adapted from [11].

Method Car Pedestrian
M E H M E H

RRC [30] 93.40 95.68 87.37 76.61 85.98 71.47
TrackRCNN [39] - - - - - -

4.3.3 Artificial Occlusions

The experiments on sensor fusion occlusion mitigation analysis will be conducted using the best

performing pair of 3D and 2D detectors, the pair that has the highest HOTA value, in the Ea-

4.3 Experimental Setup 33

gerMOT [17] framework Analysis experiments, as it demonstrates EagerMOT [17] best tracking

capabilities.

In order to simulate occlusions on the 3D sensor, random frames are removed from the 3D

detections used as input. Removing a whole frame of detections mimics every object detected

on that frame being occluded from that frame of detections. Consequently, one of the variables

of these experiments is the percentage of removed frames, occratio If the frames are removed

consecutively, objects will be occluded for various frames in a row. Because in real occlusions,

objects are often occluded in this manner, the experiments will include another variable, occ f rames,

representing the number of frames removed in a row. occ f rames does not influence the ratio of

removed frames, only the pattern on which frames are removed from detections. For example, if

occratio = 0.1 and occ f rames = 5, the ratio of removed frames will still be 0.1.

These experiments are also made using only the best performant 3D detector, excluding the

2D detector. The values used for occratio are 0.00, 0.05, 0.10, 0.15, 0.20, meaning the percentage

of removed frames will range from 0% to 20% while occ f rames values are 1, 3 and 5, meaning the

number of consecutive frames removed will range from 1 to 5 frames in a row.

The HOTA metrics are used to compare the results obtained, similarly to the framework anal-

ysis experiment. Special attention is taken into the association sub-metrics (AssA, AssRe), as they

directly measure the effect of generated occlusions since these metrics measure how well a tracker

links detections over time into the same identities.

Additionally, observations on EagerMOT [17]’s fusion phase during these experiments are

done. More specifically, the percentage of fused instances (with 3D and 2D information), instances

with only 3D, and instances with only 2D information in each experiment. These results help

visualize how the artificial occlusions on one of the sensors impact the fusion phase of the method.

4.3.3.1 Limitations

Due to the way the EagerMOT [17] two-stage data association module functions, tracks can not be

created using only 2D information. Thus, experiments where the 2D sensor is artificially occluded

while the 3D is not are not relevant since it is not possible to compare the results to those without

using the non-occluded sensor.

4.3.4 Training Configurations

This section discusses the training configurations of the models, including the hardware, frame-

work, data, and hyperparameters.

4.3.4.1 Hardware

The project was developed using a machine equipped with an AMD EPYC 75F3 32-Core Proces-

sor, 8 NVIDIA A100 Tensor Core Graphics Processing Units (GPUs), with 40GB each and 1TB

of RAM. This machine served as the development of all the experiments made, as well as 3D point

cloud experiments.

34 Methodology

4.3.4.2 Framework

Part of the 2D and 3D detections from the detectors that are used in the KITTI [10] tracking

dataset were available directly from other researchers. In particular, PV-RCNN [35] detections

were available in P3CT [48] repository, RRC [30] 2D detections were available in MOTSFusion

repository [23], TrackRCNN [43] detections were available in its repository and Point-GNN [37]’s

detections were available in EagerMOT [17] own repository. The remaining methods detections

were all conducted using the OpenPCDet [41] repository. OpenPCDet [41] is a 3D object detec-

tion codebase created by Open-MMLab aimed to solve the lack of a general 3D object detection

codebase. OpenPCDet, which was released in 2019, supports both single and multi-modality state-

of-the-art 3D object detectors. The software was modified in order to work with the KITTI [10]

tracking dataset directly. Voxel R-CNN [8] model was only trained for the ’Car’ class. Therefore,

it is not evaluated in the ’Pedestrian’ experiments. Figure 4.4 depicts an example of detections

obtained in the tracking dataset using one of the supported methods.

(a) 3D Point cloud (b) Detections on the 3D Point Cloud

Figure 4.4: Example of detections obtained with OpenPCDet [41] framework using PVRCNN 3D
detector, on the KITTI [10] tracking dataset. Green bounding boxes represent Cars, while light
blue bounding boxes represent pedestrians.

The models used were available in a model zoo in the OpenPCDet [41] repository, presented

in table 4.4, along with their training times. All models were trained with 8 GTX 1080Ti GPUs.

Table 4.4: OpenPCDet 3D Detector pre-trained models.

Model Training Time
Voxel R-CNN 2.2 hours
Second 1.7 hours
Second-IoU -
Part-A2-free 3.8 hours
Part-A2-anchor 4.3 hours
PointPillars 1.2 hours

After obtaining the detections for each model, EagerMOT [17] is used to obtain the track-

ing results. The format of some detections file structures or individual detection formats varies,

4.3 Experimental Setup 35

consequently, support for these formats was added to the EagerMOT [17] software.

TrackEval [16] was used in order to evaluate the results of each experiment. TrackEval pro-

vides code for a number of different tracking evaluation metrics, including the HOTA metrics, as

well as support for multiple benchmarks. The output of the evaluation is detailed and includes

plots for easy reading.

For the occlusion experiments, a tool was developed that takes as an input the 3D detections,

occratio, and occ f rames and outputs the respective detections with removed frames.

4.3.4.3 Hyperparameters

The EagerMOT [17] framework was run using the optimal hyperparameters for the KITTI [10]

tracking dataset according to the authors, depicted in table 4.5. The overlap fusion threshold

was set at θ f usion = 0.01, the assossiation maximum 3D threshhold and 2D threshold was set at

θ3d = 0.01 and θ2d = 0.3, respectively. The maximum age of any track (2D or 3D) was set at

Agemax = 3 and the maximum lifespan for a track without 2D information was set to Age2d = 3.

The minimum confidence threshold for car and pedestrian detections were set at T hresholdcar =

−3.5 and T hresholdpedestrian =−0.3, respectively.

Table 4.5: EagerMOT [17] hyperparameters used in the experiments.

Hyperparameter Value
θ f usion 0.01
θ3d 0.01
θ2d 0.3
Agemax 3
Age2d 3
T hresholdcar -3.5
T hresholdpedestrian -0.3

36 Methodology

Chapter 5

Results and Discussion

This chapter describes and discusses the results obtained from the framework analysis and sensor

fusion occlusion analysis.

5.1 Framework Analysis

This section compares and discusses the tracking performance obtained by the different 3D and

2D detectors using EagerMOT [17] as the framework.

Table 5.1 depicts the performance of EagerMOT [17] using different 3D detectors and RRC [30]

as the 2D detector, in the ’Car’ class. Point-GNN [37] is the best performing 3D detector cou-

pled with RRC [30] with HOTA = 78.037. This combination outperforms the other 3D detec-

tors in all three tracking subtasks: detection, association, and localization, with higher DetA,

AssA, and LocA, respectively. This combination also boasts the lower number of total detec-

tions (Dets = 23977) and IDs (IDs = 1023). Compared to the ground-truth value (section 4.3.1),

the number of total detections is slightly lower (GT Dets = 24070), while the track values are

almost double (GT IDs = 564), indicating that some tracks got split in multiple. Following Point-

GNN [37], the best performing detectors are Voxel R-CNN [8] and PV-RCNN [35]. After that

Part-A2-free [36] outperforms the anchor counterpart despite having a lower Association score.

The bottom performing 3D models are Second IoU [51], Second [51] and PointPillars [20]. We

can observe that the HOTA score is heavily impacted by the detection sub-metric, as it is the

component that varies the most between Detectors (from DetA = 76.802 in Point-GNN [37] to

DetA = 45.572 in PointPillars [20]). This can be partly explained by the increasing number of IDs

as the detection sub-metric and, consequently, the HOTA metric decreases across 3D Detectors,

indicating a large number of False Positive (FP) instances on lower-performing detectors.

Table 5.2 shows the same experiment as the previous table but depicts the results in the

’Pedestrian’ class of the KITTI [10] tracking dataset. Similarly to the ’Car’ class, the combi-

nation of Point-GNN [37] along with RRC [30] was the best performing with HOTA = 47.449.

37

38 Results and Discussion

Table 5.1: Comparison of EagerMOT [17] tracking performance in KITTI [10] tracking dataset
’Car’ class using different 3D detectors and RRC [30] as the 2D detector.

3D Detector HOTA ↑ DetA ↑ AssA ↑ DetRe ↑ DetPr ↑ AssRe ↑ AssPr ↑ LocA ↑ Dets IDs
Point-GNN [37] 78.037 76.802 79.515 83.964 84.29 83.202 89.931 88.796 23977 1023
Voxel R-CNN [8] 61.971 54.652 70.664 77.988 59.682 80.642 79.541 84.728 31453 3629
PV-RCNN [35] 59.794 51.564 69.742 78.312 55.824 80.764 78.424 84.592 33766 4038
Part-A2-free [36] 56.21 46.44 68.329 76.744 51.125 79.39 78.842 85.713 36132 5819
Part-A2-anchor [36] 54.772 43.235 69.787 77.694 46.417 80.81 78.397 84.458 40289 7767
Second IoU [51] 50.425 37.203 68.612 78.734 39.223 80.072 77.134 84.229 48317 10906
Second [51] 50.107 36.158 69.705 76.096 38.788 81.108 77.805 84.466 47221 11059
PointPillars [20] 45.572 30.403 68.521 77.919 31.851 79.872 76.912 83.957 58884 12648

Contrary to the ’Car’ class, this combination does not completely outperform in every HOTA

sub-metric, having the lowest location performance of every combination with LocA = 73.435,

meaning this combination has the lowest spacial alignment between predicted and ground-truth

detections. Once again the tracking performance using Part-A2-free [36] and Part-A2-anchor [36]

is similar, with Part-A2-anchor [36] performing slightly better overall in the ’Pedestrian’ cate-

gory (HOTA = 39.813 compared to Part-A2-anchor [36] HOTA = 38.869). As expected, PV-

RCNN [35] has worse tracking performance relative to other detectors in the ’Pedestrian’ class,

as its detection performance, seen in table 4.2, is noticeably weaker than in the ’Car’ class. The

worst performing Detector combinations are the same as in the ’Car’ class with Second IoU [51]

followed by Second [51] and PointPillars [20].

Table 5.2: Comparison of EagerMOT [17] tracking performance in KITTI [10] tracking dataset
’Pedestrian’ class using different 3D detectors and RRC [30] as the 2D detector.

3D Detector HOTA ↑ DetA ↑ AssA ↑ DetRe ↑ DetPr ↑ AssRe ↑ AssPr ↑ LocA ↑ Dets IDs
Point-GNN [37] 47.449 48.333 46.963 59.604 56.028 50.583 69.201 73.435 11818 701
Part-A2-free [36] 39.813 42.55 37.624 57.921 50.633 40.887 71.064 74.521 12708 1883
Part-A2-anchor [36] 38.869 40.149 37.978 61.366 45.291 41.547 70.232 74.598 15052 2244
PV-RCNN [35] 36.376 36.719 36.34 58.947 42.243 39.523 70.493 74.682 15502 2552
Second IoU [51] 28.695 24.104 34.398 57.61 26.56 37.588 69.549 74.002 24096 5547
Second [51] 28.616 22.608 36.404 58.832 24.561 39.974 69.45 74.086 26610 6359
PointPillars [20] 23.747 15.537 36.557 57.259 16.552 40.276 67.773 73.747 38429 9405

Tables 5.3 and 5.4 show the EagerMOT [17] tracking performance in KITTI [10] track-

ing dataset ’Car’ and ’Pedestrian’ classes, respetively, using different 3D detectors and Track-

RCNN [39] as the 2D detector. Overall the results using TrackRCNN [39] instead of RRC [30] as

the 2D Detector are similar. The 3D detector performance rankings for both ’Car’ and ’Pedestrian’

classes remain unchanged except for Second [51] and Second IoU [51] in the ’Car’ class, which

switched places, albeit with a similar HOTA score (HOTA = 50.432 and HOTA = 50.317, for

Second [51] and Second IoU [51], respectively). Combining the 2D sensor with detections from

Point-GNN [37] still have the best tracking results with HOTA = 78.332 and HOTA = 48.196, in

’Car’ and ’Pedestrian’ classes, respectively. This combination boasts the best overall performance

with a 0.295 and 0.747 increase in HOTA compared to using RRC [30] as the 2D detector, in ’Car’

and ’Pedestrian’ classes, respectively. Similarly to the RRC [30] results, the detection submetric

(DetA) influences the most the HOTA score ranging from DetA = 76.158 in Point-GNN [37] to

5.1 Framework Analysis 39

DetA = 30.232 in PointPillars [20] in the ’Car’ class. The best performing combinations are,

again, the ones with less number of detections in both ’Car’ and ’Pedestrian’ classes. The number

of detections using the worst 3D model (PointPillars [20]) is more than triple the number of detec-

tions obtained with Point-GNN [37] (Dets= 38777 compared to Dets= 12127) in the ’Pedestrian’

class, compared to 11109 ground truth detections.

Table 5.3: Comparison of EagerMOT [17] tracking performance in KITTI [10] tracking dataset
’Car’ class using different 3D detectors and TrackRCNN [39] as the 2D detector.

3D Detector HOTA ↑ DetA ↑ AssA ↑ DetRe ↑ DetPr ↑ AssRe ↑ AssPr ↑ LocA ↑ Dets IDs
Point-GNN [37] 78.332 76.158 80.784 84.661 82.789 85.087 89.186 88.706 24614 1003
Voxel R-CNN [8] 62.218 54.429 71.509 79.348 58.667 81.762 79.351 84.733 32555 3707
PV-RCNN [35] 59.973 51.243 70.592 78.791 55.194 81.903 78.176 84.541 34361 4035
Part-A2-free [36] 56.623 46.452 69.322 77.615 50.726 80.442 78.956 85.583 36829 5806
Part-A2-anchor [36] 54.582 42.918 69.802 78.232 45.878 80.984 78.203 84.483 41045 7748
Second [51] 50.423 36.318 70.268 79.271 38.201 81.698 77.872 84.526 49948 11684
Second IoU [51] 50.317 37 68.68 78.276 39.119 80.262 77.017 84.246 48163 10643
PointPillars [20] 45.603 30.232 68.991 78.348 31.602 80.485 76.856 84.006 59675 12624

The 3D detectors performance discrepancy between the tracking and detection (table 4.2) tasks

might indicate some are better generalized relative to others. Detectors are often fine-tuned to

achieve the highest performance in each benchmark dataset and might not be as performant in

other datasets, in this case, the KITTI [10] tracking dataset. The graph-based detector Point-

GNN [37] outperforms all the other 3D detectors in both ’Car’ and ’Pedestrian’ classes, despite

having one of the lower scores in the ’Car’ class in the detection benchmark, showing better

adaptability to the tracking dataset compared to others.

Table 5.4: Comparison of EagerMOT [17] tracking performance in KITTI [10] tracking dataset
’Pedestrian’ class using different 3D detectors and TrackRCNN [39] as the 2D detector.

3D Detector HOTA ↑ DetA ↑ AssA ↑ DetRe ↑ DetPr ↑ AssRe ↑ AssPr ↑ LocA ↑ Dets IDs
Point-GNN [37] 48.196 48.989 47.812 60.909 55.796 51.669 68.97 73.494 12127 720
Part-A2-free [36] 40.355 43.16 38.109 59.188 50.505 41.422 70.94 74.484 13019 1917
Part-A2-anchor [36] 39.062 40.276 38.239 61.821 45.2 41.843 70.144 74.586 15194 2267
PV-RCNN [35] 36.632 36.95 36.625 59.62 42.189 39.861 70.456 74.657 15699 2582
Second IoU [51] 29.238 24.783 34.739 58.562 27.167 37.953 69.405 73.967 23947 5427
Second [51] 28.67 22.383 36.916 59.719 24.149 40.643 69.294 74.084 27472 6628
PointPillars [20] 24.081 15.887 36.781 58.72 16.822 40.533 67.698 73.701 38777 9437

In Table 5.5 we can see the average difference between TrackRCNN [39] and RRC [30] as

the 2D detector in the last experiments, in the ’Car’ and ’Pedestrian’ KITTI [10] tracking dataset

classes. The average HOTA value is higher in both classes using TrackRCNN [39] detections, es-

pecially the ’Pedestrian’ class with a 0.381 average increase. For the detection HOTA sub-metric

(DetA), TrackRCNN [39] has a lower average score compared to RRC [30] (-0.213) in the ’Car’

class but higher in the ’Pedestrian’ class (+0.347). TrackRCNN [39] outperforms RRC [30] in

the association sub-metric with a 0.634 and 0.422 average increase in the ’Car’ and ’Pedestrian’

classes, respectively. The location sub-metric average difference is almost negligible, with only a

-0.014 difference in both classes between TrackRCNN [39] and RRC [30]. The average number of

detections is higher on average using TrackRCNN [39] 2D detections with 893.875 and 288.571

40 Results and Discussion

increases over RRC [30], in the ’Car’ and ’Pedestrian’ classes, respectively. The number of av-

erage IDs is also higher with TrackRCNN [39] in both classes, partly because of the increased

number of detections.

Table 5.5: Average difference in EagerMOT [17] tracking performance between TrackRCNN [39]
and RRC [30] as 2D detector in the ’Car’ and ’Pedestrian’ KITTI [10] tracking dataset classes.
Positive values indicate higher metric value using TrackRCNN [39].

Object Classes HOTA ↑ DetA ↑ AssA ↑ DetRe ↑ DetPr ↑ AssRe ↑ AssPr ↑ LocA ↑ Dets IDs
Car 0.148 -0.213 0.634 0.886 -0.628 0.845 -0.171 -0.014 893.875 45.125
Pedestrian 0.381 0.347 0.422 1.000 -0.006 0.507 -0.122 -0.014 288.571 41.000

5.2 Sensor Fusion Occlusion Analysis

In this section, the results from the occlusion experiments are presented and discussed. These ex-

periments were made using EagerMOT [17] with Point-GNN [37] as the 3D detector and TrackR-

CNN [39] as the 2D detector, since it was the best performing setup experimented in section 5.1,

with HOTA = 78.332 and HOTA = 48.196 in the ’Car’ and ’Pedestrian’ classes, respectively. The

full results are presented in appendix A.

Figure 5.1 shows how varying the occratio (ratio of occluded frames) from 0 to 0.2 in 3 dif-

ferent occ f rames configurations (occ f rames = 1, occ f rames = 3 and occ f rames = 5) affects the overall

HOTA score of EagerMOT [17] with and without using a 2D detector, in the ’Car’ class. Without

any occlusion (occratio = 0) the difference in HOTA between using and not using 2D detections

is not substantial with a 1.817 HOTA difference (HOTA = 78.332 with TrackRCNN [39] and

HOTA = 76.515 without). With occ f rames = 1, the HOTA remains stable by varying the occratio

up to 0.2, while using 2D detections (HOTA = 78.022 with occratio = 0.05 to HOTA = 75.072

with occratio = 0.20). On the other hand, without using 2D detections, the HOTA score drops sig-

nificantly with each increment of occratio (HOTA= 72.975 with occratio = 0.05 to HOTA= 56.772

with occratio = 0.20). The difference in performance between using and not using 2D detections

is increased by the occlusion ratio (1.817 with occratio = 0.00 to 18.300 with occratio = 0.20). The

results with occ f rames = 3 and occ f rames = 5 are similar, with the major difference being a general

drop off in performance with every occratio compared to occ f rames = 1.

In figure 5.2 we can better visualize how varying occ f rames affects performance with occratio =

0.05 and occratio = 0.15. For both configurations, the performance lowers when occ f rames is in-

creased from 1 to 3 with and without using TrackRCNN [39]. When increasing occ f rames from 3

to 5, the HOTA value using TrackRCNN [39] stabilizes, while the setup not using 2D information

continues to have lower performance.

In figure 5.3 the same experiment shown in figure 5.1 is done, but the performance is evaluated

with association recall (AssRe). The degree to which predicted trajectories cover ground-truth tra-

jectories is measured by association recall. A low AssRe, for example, will result when a tracker

divides an object into many predicted tracks. This is a useful metric to analyze the effect of oc-

clusions, as occlusions often make the tracker split an object track into two, before the occlusion

5.2 Sensor Fusion Occlusion Analysis 41

0 0.05 0.1 0.15 0.2
40

60

50

70

60

80

occratio

H
O

TA
occ f rames = 1

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
40

60

50

70

60

80

occratio

occ f rames = 3

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
40

60

50

70

60

80

occratio

occ f rames = 5

TrackRCNN
No 2D

Figure 5.1: Comparison of EagerMOT [17] HOTA in KITTI [10] tracking dataset ’Car’ class, with
artificially occluded Point-GNN [37] detections with occ f rames = 1, occ f rames = 3 and occ f rames =
5 and varying occratio with and without using TrackRCNN [39] as 2D detector.

1 3 5
40

60

50

70

60

80

occ f rames

H
O

TA

occratio = 0.05

TrackRCNN
No 2D

1 3 5
40

60

50

70

60

80

occ f rames

occratio = 0.15

TrackRCNN
No 2D

Figure 5.2: Comparison of EagerMOT [17] HOTA in KITTI [10] tracking dataset ’Car’ class, with
artificially occluded Point-GNN [37] detections with occratio = 0.05, occratio = 0.15 and varying
occ f rames with and without using TrackRCNN [39] as 2D detector.

and after, wrongly recognizing it as a new object. We can observe that these results are extremely

similar to those using HOTA as the metric, indicating that the association sub-metric is heavily

correlated with the final performance. When comparing AssRe instead of HOTA, we can make

similar observations, most important being the major drop in performance the setups without 2D

detections have while occratio increases, compared to those using TrackRCNN [39] 2D detections.

For example, with occ f rames = 5 the AssRe value ranges from 85.087 to 71.126, with occratio = 0

to occratio = 0.20 with TrackRCNN [39] while the setup not using 2D detections ranges from

80.945 to 31.063, with occratio = 0 to occratio = 0.20. The difference in AssRe in this configu-

rations starts at 4.142 with occratio = 0, up to 40.063 with occratio = 0.20. Similar results can be

seen with occ f rames = 1 and occ f rames = 3. These results indicate that increasing occratio has an

enormous impact in dividing objects into multiple tracks as a result of increasing occlusions when

not using the 2D sensor in the ’Car’ class. On the other hand, when using a 2D sensor with the

same occlusion properties, this issue is mitigated. This can be further visualized in figure 5.4,

where the visualized metric is IDs. With occ f rames = 1 the number of IDs using TrackRCNN [39]

stays almost the same across the different occratio values, while the setup without 2D detections

increases from IDs = 1081 to IDs = 1209, indicating some tracks are divided into multiple. With

42 Results and Discussion

occ f rames = 3 and occ f rames = 5 this effect is amplified in setups without 2D information, with

maximum IDs values of 1720 and 2266. respectively. On the other hand, the experiments with

TrackRCNN [39] had maximum ID values of 1174 and 1195, respectively, confirming the attenu-

ation of occlusions using the 2D sensor.

0 0.05 0.1 0.15 0.2
30

40

60

50

70

60

80

90

occratio

A
ss

R
e

occ f rames = 1

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
30

40

60

50

70

60

80

90

occratio

occ f rames = 3

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
30

40

60

50

70

60

80

90

occratio

occ f rames = 5

TrackRCNN
No 2D

Figure 5.3: Comparison of EagerMOT [17] AssRe in KITTI [10] tracking dataset ’Car’ class, with
artificially occluded Point-GNN [37] detections with occ f rames = 1, occ f rames = 3 and occ f rames =
5 and varying occratio with and without using TrackRCNN [39] as 2D detector.

0 0.05 0.1 0.15 0.2
900

1,100

1,300

1,500

1,700

1,900

occratio

ID
s

occ f rames = 1

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
900

1,100

1,300

1,500

1,700

1,900

occratio

occ f rames = 3

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
900

1,100

1,400

1,700

2,000

2,300

occratio

occ f rames = 5

TrackRCNN
No 2D

Figure 5.4: Comparison of EagerMOT [17] IDs in KITTI [10] tracking dataset ’Car’ class, with
artificially occluded Point-GNN [37] detections with occ f rames = 1, occ f rames = 3 and occ f rames =
5 and varying occratio with and without using TrackRCNN [39] as 2D detector.

For the ’Pedestrian’ class, figure 5.5 shows how varying the occratio in 3 different occ f rames

configurations affects the overall HOTA score of EagerMOT [17] with and without using a 2D

detector. Without any occlusion (occratio = 0) the HOTA values for the setups with and without

2D information is almost equal (48.196 and 47.449, respectively). With occ f rames = 1, the setup

without 2D information follows similar results as the experiments with the ’Car’ class, dropping in

performance as occratio increases, however the setup using TrackRCNN [39] failed to keep a stable

HOTA score with increasing occratio, as in the ’Car’ class, ranging from HOTA = 47.449 with

occratio = 0 to HOTA = 33.077 with occratio = 0.20. The results obtained with occ f rames = 3 and

occ f rames = 5 are similar, but with higher performance drops with increasing occratio, including

the setup using TrackRCNN [39]. While the performance is still higher than the without 2D

information counterpart in every experiment, the margin is not as high and the percentage of

performance loss with each occratio step is similar without using 2D detections.

5.2 Sensor Fusion Occlusion Analysis 43

0 0.05 0.1 0.15 0.2
20

30

40

50

occratio

H
O

TA
occ f rames = 1

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
20

30

40

50

occratio

occ f rames = 3

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
20

30

40

50

occratio

occ f rames = 5

TrackRCNN
No 2D

Figure 5.5: Comparison of EagerMOT [17] HOTA in KITTI [10] tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN [37] detections with occ f rames = 1, occ f rames = 3 and
occ f rames = 5 and varying occratio with and without using TrackRCNN [39] as 2D detector.

With figure 5.6 we can see how the association recall (AssRe) metric behaves with the previous

experiment. This is useful to determine if the HOTA improvements in the ’Pedestrian’ class are

only from other sub-metrics (Location and Detection) or are impacted by the association sub-

metric, which is a more direct metric to the issue of occlusion mitigation. Overall, while the

AssRe value is always higher on the setup with 2D information, the margin is small, always being

close to the baseline comparison with no occlusions (AssRe = 51.669 and AssRe = 50.583, with

and without using TrackRCNN [39], respectively, with a 1.086 difference). Compared to the ’Car’

class experiments, the 2D information does not seem to prevent track splitting nearly as much.

For example, for occ f rames = 5 and occratio = 0.20, the ’Car’ class improved the AssRe score

128.97% by using 2D information, while the ’Pedestrian’ class improved 21.28%. Lackluster 2D

detections compared to the 3D ’Pedestrian’ detections obtained with Point-GNN [37] could be a

possible explanation for such observations. There is still mitigation to the occlusion problem in

the ’Pedestrian’ class, with fewer tracks being split by occlusions but not as significant as in the

’Car’ class.

0 0.05 0.1 0.15 0.2
10

20

30

40

50

60

occratio

A
ss

R
e

occ f rames = 1

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
10

20

30

40

50

60

occratio

occ f rames = 3

TrackRCNN
No 2D

0 0.05 0.1 0.15 0.2
10

20

30

40

50

60

occratio

occ f rames = 5

TrackRCNN
No 2D

Figure 5.6: Comparison of EagerMOT [17] AssRe in KITTI [10] tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN [37] detections with occ f rames = 1, occ f rames = 3 and
occ f rames = 5 and varying occratio with and without using TrackRCNN [39] as 2D detector.

44 Results and Discussion

5.2.1 Fusion Analysis

During the occlusion experiments, the fusion module statistics were stored to observe how the

instance fusion changed with the different artificial occlusion parameters occ f rames and occratio. In

table 5.6 we can see how changing occratio, affects the percentage of instances with 3D and 2D

information, instances with only 3D information and instances with only 2D information, with

occ f rames = 3. By increasing occratio, the percentage of instances with 3D information (’3D&2D’

and ’3D’) lowers, while instances with only 2D information have a higher percentage. By remov-

ing 3D detections, instances that previously had information from both sensors now only have 2D

information. On the other hand, instances that only had 3D information and were removed are

completely lost. The results with other occ f rames are similar to those in table 5.6 and are presented

in appendix A.

Table 5.6: Comparison of EagerMOT [17] instance association results in KITTI [10] tracking
dataset , with artificially occluded Point-GNN [37] detections with occ f rames = 3 and varying
occratio using TrackRCNN [39] as 2D detector. ’3D&2D’, ’3D’ and ’2D’ represent instances
with 3D and 2D information, instances with only 3D information and instances with only 2D
information, respectively.

occratio 3D&2D 3D 2D
0.00 51.95% 2.31% 45.74%
0.05 50.05% 2.14% 47.81%
0.10 48.73% 2.09% 49.18%
0.15 47.97% 2.07% 49.96%
0.20 43.61% 1.85% 54.54%

Chapter 6

Conclusions and Future Work

In recent years, the automotive and tech industries have been focusing on the development of au-

tonomous driving. Self-driving vehicles must accurately assess their surroundings to react and

make judgments. As a result, Multi-Object-Tracking is a crucial task in autonomous driving tech-

nology, making it possible for the system to be aware of the scene both spatially and temporally.

Self-driving vehicles are often equipped with LiDAR and Camera sensors which provide 3D

and 2D information in the form of 3D Point Clouds and Images, respectively. Most MOT methods

are developed to only use information from one of these sensors, not relying on the advantages

provided by both sensors. RGB images have a richer signal, range, and texture information, while

3D Point Clouds are less affected by weather variation and illumination changes and provide

3D information. Furthermore, MOT methods can reduce the impact caused by occlusions on

one of the sensors by using information from multiple sensors. EagerMOT [17] is a modular

and adaptable MOT method that uses both 2D and 3D information, obtaining State-of-the-Art

performance. Although the only required inputs are the detections provided by the 2D and 3D

detectors, the original paper’s authors only experimented with a limited amount of detectors.

This thesis analyses the tracking performance of EagerMOT [17] using multiple combinations

of widely used 2D and 3D object detectors. The KITTI [10] tracking dataset and the HOTA

tracking metrics were used to compare the performance between setups. A combination of Point-

GNN [37] as the 3D detector and using the 2D detections from TrackRCNN [39] outperformed

every other combination in all HOTA sub-metrics (Association, Detection, and Localization) in

the ’Car’ class while being the best overall setup in the ’Pedestrian’ class.

Furthermore, an analysis of how sensor fusion mitigates occlusions was done by artificially

occluding detections from the 3D sensor in EagerMOT [17]. Comparing results from setups with

and without using 2D information, we observe that the performance difference relative to the setup

without occlusions increases significantly in the setup using a 2D sensor (from a 2.347% HOTA

difference without occlusions to 48.194% HOTA difference in the setup with a higher ratio and

45

46 Conclusions and Future Work

more sequential occlusions), indicating a reduction of performance loss as a consequence of sensor

fusion.

This dissertation’s study and this specific topic of investigation could be supplemented in a

variety of ways. The following are some prospective research topics:

1. Analyse EagerMOT [17] using larger and more robust datasets, such as nuScenes [5], to

determine how different detectors perform in more extreme conditions, with illumination

and weather changes.

2. Experiment with other State-of-the-Art 2D and 3D detectors such as 3DSSD [53]. While

these methods were not at the time supported by OpenPCDet [41], they are methods with

outstanding detection performance that should perform well in the tracking task using Ea-

gerMOT.

3. Develop and experiment with a more sophisticated occlusion tool that accurately represents

real world occlusions. This tool should use ground truth data to occlude specific objects

in the scene and not whole frames of objects. Using the output from this tool, occlusion

analysis would be more accurate compared to real-world occlusions.

4. Conduct the occlusion experiments with occlusions in the 2D sensor. While it was impos-

sible to conduct these experiments natively, a slight modification to the EagerMOT [17]

software should make this analysis possible.

5. Compare the sensor fusion occlusion analysis performed in EagerMOT [17] with other sen-

sor fusion MOT methods.

References

[1] Jafar Alzubi, Anand Nayyar, and Akshi Kumar. Machine learning from theory to algorithms:
an overview. In Journal of physics: conference series, volume 1142, page 012012. IOP
Publishing, 2018.

[2] Erkan Baser, Venkateshwaran Balasubramanian, Prarthana Bhattacharyya, and Krzysztof
Czarnecki. Fantrack: 3d multi-object tracking with feature association network. In 2019
IEEE Intelligent Vehicles Symposium (IV), pages 1426–1433. IEEE, 2019.

[3] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance:
the clear mot metrics. EURASIP Journal on Image and Video Processing, 2008:1–10, 2008.

[4] Facundo Bre, Juan M Gimenez, and Víctor D Fachinotti. Prediction of wind pressure coeffi-
cients on building surfaces using artificial neural networks. Energy and Buildings, 158:1429–
1441, 2018.

[5] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11621–11631, 2020.

[6] Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-Gonzalez, and Carl Wellington. 3d
point cloud processing and learning for autonomous driving: Impacting map creation, local-
ization, and perception. IEEE Signal Processing Magazine, 38(1):68–86, 2020.

[7] Ian Cherabier, Christian Häne, Martin R. Oswald, and Marc Pollefeys. Multi-label semantic
3d reconstruction using voxel blocks. In 2016 Fourth International Conference on 3D Vision
(3DV), pages 601–610, 2016.

[8] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and Houqiang Li.
Voxel r-cnn: Towards high performance voxel-based 3d object detection. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pages 1201–1209, 2021.

[9] Yosra Dorai, Sami Gazzah, Frederic Chausse, and Najoua Essoukri Ben Amara. Tracking
multi-object using tracklet and faster r-cnn: Phd forum. In Proceedings of the 10th Interna-
tional Conference on Distributed Smart Camera, pages 222–223, 2016.

[10] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driving? The KITTI
Vision Benchmark Suite. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[11] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Welcome to the kitti
vision benchmark suite! http://www.cvlibs.net/datasets/kitti/index.php,
2012.

47

http://www.cvlibs.net/datasets/kitti/index.php

48 REFERENCES

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 580–587, 2014.

[13] Ryan Harrington, Carmine Senatore, John Scanlon, and Ryan M Yee. The role of infrastruc-
ture in an automated vehicle future. The Bridge, 48(2), 2018.

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings
of the IEEE international conference on computer vision, pages 2961–2969, 2017.

[15] John. A project for 3d multi-object tracking with python. https://pythonawesome.
com/a-project-for-3d-multi-object-tracking-with-python/, 2021.

[16] Arne Hoffhues Jonathon Luiten. Trackeval. https://github.com/JonathonLuiten/
TrackEval, 2020.

[17] Aleksandr Kim, Aljoša Ošep, and Laura Leal-Taixé. Eagermot: 3d multi-object tracking via
sensor fusion. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 11315–11321. IEEE, 2021.

[18] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L Waslander. Joint 3d
proposal generation and object detection from view aggregation. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 1–8. IEEE, 2018.

[19] H. Kuhn. The hungarian method for the assignment problem. Naval Research Logistic
Quarterly, 2, 05 2012.

[20] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.
Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 12697–12705,
2019.

[21] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti
Pietikäinen. Deep learning for generic object detection: A survey. International journal of
computer vision, 128(2):261–318, 2020.

[22] Jonathon Luiten. How to evaluate tracking with the hota metricspermalink. https://
autonomousvision.github.io/hota-metrics, 2021.

[23] Jonathon Luiten, Tobias Fischer, and Bastian Leibe. Track to reconstruct and reconstruct to
track. IEEE Robotics and Automation Letters, 5(2):1803–1810, 2020.

[24] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger, Laura Leal-
Taixé, and Bastian Leibe. Hota: A higher order metric for evaluating multi-object tracking.
International journal of computer vision, 129(2):548–578, 2021.

[25] Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, and Tae-Kyun Kim.
Multiple object tracking: A literature review. Artificial Intelligence, 293:103448, 2021.

[26] Tashapais medium. https://tashapais.medium.com/
self-learning-computers-and-the-covid-19-vaccine-youre-getting-f591f335a0ee.
Accessed: 2022-02-13.

https://pythonawesome.com/a-project-for-3d-multi-object-tracking-with-python/
https://pythonawesome.com/a-project-for-3d-multi-object-tracking-with-python/
https://github.com/JonathonLuiten/TrackEval
https://github.com/JonathonLuiten/TrackEval
https://autonomousvision.github.io/hota-metrics
https://autonomousvision.github.io/hota-metrics
https://tashapais.medium.com/self-learning-computers-and-the-covid-19-vaccine-youre-getting-f591f335a0ee
https://tashapais.medium.com/self-learning-computers-and-the-covid-19-vaccine-youre-getting-f591f335a0ee

REFERENCES 49

[27] Andras Palffy, Julian Kooij, and Dariu Gavrila. Occlusion aware sensor fusion for early
crossing pedestrian detection. pages 1768–1774, 06 2019.

[28] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hier-
archical feature learning on point sets in a metric space. Advances in neural information
processing systems, 30, 2017.

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[30] Jimmy Ren, Xiaohao Chen, Jianbo Liu, Wenxiu Sun, Jiahao Pang, Qiong Yan, Yu-Wing Tai,
and Li Xu. Accurate single stage detector using recurrent rolling convolution. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 5420–5428, 2017.

[31] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi. Performance
measures and a data set for multi-target, multi-camera tracking. In European conference on
computer vision, pages 17–35. Springer, 2016.

[32] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[33] S. Sharma, J. A. Ansari, J. K. Murthy, and K. M. Krishna. Beyond Pixels: Leveraging
Geometry and Shape Cues for Online Multi-Object Tracking. CoRR, abs/1802.09298,
2018.

[34] S Shi, X Wang, H PointRCNN Li, et al. 3d object proposal generation and detection from
point cloud. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, Long Beach, CA, USA, pages 16–20, 2019.

[35] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hong-
sheng Li. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10529–
10538, 2020.

[36] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From points
to parts: 3d object detection from point cloud with part-aware and part-aggregation network.
IEEE transactions on pattern analysis and machine intelligence, 43(8):2647–2664, 2020.

[37] Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in
a point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1711–1719, 2020.

[38] Shreya. Convolutional neural network(cnn). https://www.analyticsvidhya.com/
blog/2022/01/convolutional-neural-networkcnn/, 2022.

[39] Bing Shuai, Andrew G Berneshawi, Davide Modolo, and Joseph Tighe. Multi-object tracking
with siamese track-rcnn. arXiv preprint arXiv:2004.07786, 2020.

[40] Santokh Singh. Critical reasons for crashes investigated in the national motor vehicle crash
causation survey. Technical report, 2015.

[41] OpenPCDet Development Team. Openpcdet: An open-source toolbox for 3d object detection
from point clouds. https://github.com/open-mmlab/OpenPCDet, 2020.

https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-networkcnn/
https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-networkcnn/
https://github.com/open-mmlab/OpenPCDet

50 REFERENCES

[42] Pete Thomas, Andrew Morris, Rachel Talbot, and Helen Fagerlind. Identifying the causes of
road crashes in europe. Annals of advances in automotive medicine, 57:13, 2013.

[43] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin Balachandar Gnana
Sekar, Andreas Geiger, and Bastian Leibe. Mots: Multi-object tracking and segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7942–7951, 2019.

[44] Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt J Kusner. Unsupervised point
cloud pre-training via occlusion completion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9782–9792, 2021.

[45] Zhiyu Wang, Bin Dai, and Hao Fu. A fast approach for vehicle-like region proposal based on
3d lidar data. In 2015 7th International Conference on Intelligent Human-Machine Systems
and Cybernetics, volume 2, pages 508–512. IEEE, 2015.

[46] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani. 3d multi-object tracking: A
baseline and new evaluation metrics. In 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 10359–10366. IEEE, 2020.

[47] Wikimedia commons. https://commons.wikimedia.org/wiki/File:
Detected-with-YOLO--Schreibtisch-mit-Objekten.jpg. Accessed: 2022-02-
15.

[48] Hai Wu, Wenkai Han, Chenglu Wen, Xin Li, and Cheng Wang. 3d multi-object tracking in
point clouds based on prediction confidence-guided data association. IEEE Transactions on
Intelligent Transportation Systems, 2021.

[49] Hai Wu, Qing Li, Chenglu Wen, Xin Li, Xiaoliang Fan, and Cheng Wang. Tracklet proposal
network for multi-object tracking on point clouds. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 1165–1171, 2021.

[50] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese. Subcategory-aware convolu-
tional neural networks for object proposals and detection. In 2017 IEEE winter conference
on applications of computer vision (WACV), pages 924–933. IEEE, 2017.

[51] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection.
Sensors, 18(10):3337, 2018.

[52] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 5188–5197, 2019.

[53] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd: Point-based 3d single stage ob-
ject detector. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11040–11048, 2020.

[54] Georgios Zamanakos, Lazaros Tsochatzidis, Angelos Amanatiadis, and Ioannis Pratikakis.
A comprehensive survey of lidar-based 3d object detection methods with deep learning for
autonomous driving. Computers & Graphics, 99:153–181, 2021.

[55] Wenwei Zhang, Hui Zhou, Shuyang Sun, Zhe Wang, Jianping Shi, and Chen Change Loy.
Robust multi-modality multi-object tracking. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2365–2374, 2019.

https://commons.wikimedia.org/wiki/File:Detected-with-YOLO--Schreibtisch-mit-Objekten.jpg
https://commons.wikimedia.org/wiki/File:Detected-with-YOLO--Schreibtisch-mit-Objekten.jpg

REFERENCES 51

[56] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object de-
tection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4490–4499, 2018.

[57] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years: A
survey. arXiv preprint arXiv:1905.05055, 2019.

52 REFERENCES

Appendix A

Sensor Fusion Occlusion Results

Table A.1: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’ class,
with artificially occluded Point-GNN detections with occ f rames = 1, varying occratio and using
TrackRCNN as 2D detector.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 78.332 76.158 80.784 84.661 82.789 85.087 89.186 88.706 24614 1003
0.05 78.022 75.927 80.386 84.291 82.798 84.668 89.047 88.596 24504 986
0.10 77.348 75.701 79.243 83.872 82.867 83.467 89.065 88.507 24362 989
0.15 76.092 75.638 76.768 83.498 83.101 80.842 89.056 88.377 24185 1013
0.20 75.072 75.205 75.144 83.284 82.714 79.351 88.655 88.266 24236 999

Table A.2: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’ class,
with artificially occluded Point-GNN detections with occ f rames = 3, varying occratio and using
TrackRCNN as 2D detector.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 78.332 76.158 80.784 84.661 82.789 85.087 89.186 88.706 24614 1003
0.05 74.392 75.684 73.332 84.074 82.73 77.322 89.193 88.583 24461 1049
0.10 72.122 74.721 69.835 82.977 82.457 73.76 88.778 88.274 24222 1087
0.15 70.207 74.157 66.696 82.203 82.539 70.413 88.6 88.217 23972 1114
0.20 69.311 73.43 65.669 81.21 82.489 69.261 88.631 87.977 23697 1174

Table A.3: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’ class,
with artificially occluded Point-GNN detections with occ f rames = 5, varying occratio and using
TrackRCNN as 2D detector.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 78.332 76.158 80.784 84.661 82.789 85.087 89.186 88.706 24614 1003
0.05 74.164 75.554 73.013 84.007 82.596 77.039 89.082 88.508 24481 1067
0.10 73.198 75.197 71.459 83.538 82.564 75.48 88.88 88.381 24354 1081
0.15 71.877 74.577 69.509 82.652 82.563 73.389 88.828 88.192 24096 1166
0.20 70.262 73.682 67.238 81.773 82.193 71.126 88.357 87.932 23947 1195

53

54 Sensor Fusion Occlusion Results

Table A.4: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’ class,
with artificially occluded Point-GNN detections with occ f rames = 1, varying occratio without using
2D detections.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 76.515 75.527 77.731 81.726 85.194 80.945 90.551 89.037 23090 1081
0.05 72.975 72.159 74.003 77.85 85.159 76.949 90.57 89.043 22004 1074
0.10 69.048 68.882 69.424 73.986 85.245 72.029 90.646 89.025 20891 1087
0.15 63.143 64.774 61.737 69.24 85.331 63.86 90.919 89.043 19531 1136
0.20 56.772 61.589 52.509 65.8 85.041 54.365 90.988 89.028 18624 1209

Table A.5: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’ class,
with artificially occluded Point-GNN detections with occ f rames = 3, varying occratio without using
2D detections.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 76.515 75.527 77.731 81.726 85.194 80.945 90.551 89.037 23090 1081
0.05 64.975 72.232 58.667 77.921 85.19 60.951 91.192 89.062 22016 1241
0.10 54.617 66.145 45.318 70.986 85.104 46.957 91.848 89.084 20077 1547
0.15 52.325 64.768 42.488 69.205 85.376 44.033 92.029 89.041 19511 1589
0.20 47.668 61.389 37.22 65.416 85.264 38.319 92.472 89.016 18467 1720

Table A.6: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Car’ class,
with artificially occluded Point-GNN detections with occ f rames = 5, varying occratio without using
2D detections.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 76.515 75.527 77.731 81.726 85.194 80.945 90.551 89.037 23090 1081
0.05 61.96 72.121 53.436 77.726 85.202 55.408 91.405 88.986 21958 1402
0.10 54.807 69.297 43.566 74.511 85.205 45.097 91.906 89.039 21049 1631
0.15 47.183 64.773 34.586 69.369 85.098 35.675 92.549 88.997 19621 2032
0.20 42.975 61.414 30.293 65.513 85.215 31.063 93.097 89.067 18505 2266

Table A.7: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN detections with occ f rames = 1, varying occratio and
using TrackRCNN as 2D detector.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 48.196 48.989 47.812 60.909 55.796 51.669 68.97 73.494 12127 720
0.05 46.377 48.982 44.378 60.27 56.345 47.852 69.283 73.486 11883 737
0.10 45.382 48.759 42.657 59.467 56.725 45.765 69.597 73.42 11646 776
0.15 40.185 48.04 34.185 58.018 57.083 36.407 70.625 73.416 11291 873
0.20 40.072 47.646 34.277 57.184 57.22 36.613 70.634 73.315 11102 926

Sensor Fusion Occlusion Results 55

Table A.8: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN detections with occ f rames = 3, varying occratio and
using TrackRCNN as 2D detector.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 48.196 48.989 47.812 60.909 55.796 51.669 68.97 73.494 12127 720
0.05 43.53 48.426 39.631 59.536 56.15 42.576 69.71 73.361 11779 792
0.10 37.82 47.206 30.891 57.641 56.219 32.823 70.502 73.335 11390 864
0.15 34.628 46.464 26.6 56.343 56.343 28.235 71.68 73.268 11109 940
0.20 33.031 45.83 24.541 54.951 56.628 25.886 71.71 73.047 10780 987

Table A.9: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN detections with occ f rames = 5, varying occratio and
using TrackRCNN as 2D detector.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 48.196 48.989 47.812 60.909 55.796 51.669 68.97 73.494 12127 720
0.05 41.562 48.345 36.242 59.715 55.934 38.734 70.317 73.438 11860 827
0.10 35.154 46.976 26.962 57.453 56.041 28.725 71.604 73.312 11389 984
0.15 31.499 45.64 22.526 55.106 56.312 23.872 72.991 73.153 10871 1203
0.20 29.225 44.877 19.786 54.007 56.314 20.883 73.521 73.174 10654 1292

Table A.10: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN detections with occ f rames = 1, varying occratio without
using 2D detections.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 47.449 48.333 46.963 59.604 56.028 50.583 69.201 73.435 11818 701
0.05 45.256 46.453 44.475 56.657 56.151 47.618 69.563 73.417 11209 709
0.10 40.161 44.07 37.111 52.922 56.475 39.646 70.346 73.451 10410 747
0.15 33.689 41.62 27.73 49.437 56.485 29.242 71.598 73.421 9723 815
0.20 33.077 39.284 28.264 46.002 56.757 29.848 71.228 73.402 9004 813

Table A.11: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN detections with occ f rames = 3, varying occratio without
using 2D detections.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 47.449 48.333 46.963 59.604 56.028 50.583 69.201 73.435 11818 701
0.05 42.001 46.71 38.214 57.04 56.155 40.782 69.979 73.422 11284 761
0.10 34.596 43.584 28.023 52.508 56.147 29.543 71.588 73.448 10389 847
0.15 32.178 40.369 26.12 47.943 56.069 27.623 72.703 73.367 9499 939
0.20 26.772 37.486 19.767 43.964 56.3 20.671 74.674 73.583 8675 1002

56 Sensor Fusion Occlusion Results

Table A.12: Comparison of EagerMOT tracking performance in Kitti tracking dataset ’Pedestrian’
class, with artificially occluded Point-GNN detections with occ f rames = 5, varying occratio without
using 2D detections.

occratio HOTA DetA AssA DetRe DetPr AssRe AssPr LocA Dets IDs
0.00 47.449 48.333 46.963 59.604 56.028 50.583 69.201 73.435 11818 701
0.05 38.249 45.877 32.457 55.891 56.072 34.396 70.95 73.414 11073 828
0.10 31.094 43.09 23.029 51.805 56.103 24.285 72.569 73.389 10258 987
0.15 26.854 40.039 18.555 47.538 56.115 19.303 74.826 73.477 9411 1117
0.20 24.174 37.149 16.403 43.338 56.428 17.218 76.016 73.441 8532 1160

Table A.13: Comparison of EagerMOT instance association results in Kitti tracking dataset, with
artificially occluded Point-GNN detections with occ f rames = 1 and varying occratio using TrackR-
CNN as 2D detector. ’3D&2D’, ’3D’ and ’2D’ represent instances with 3D and 2D information,
instances with only 3D information and instances with only 2D information, respectively.

occratio 3D&2D 3D 2D
0.00 51.95% 2.31% 45.74%
0.05 49.33% 2.18% 48.49%
0.10 45.90% 2.07% 52.03%
0.15 44.97% 1.95% 53.08%
0.20 42.75% 1.84% 55.41%

Table A.14: Comparison of EagerMOT instance association results in Kitti tracking dataset , with
artificially occluded Point-GNN detections with occ f rames = 3 and varying occratio using TrackR-
CNN as 2D detector. ’3D&2D’, ’3D’ and ’2D’ represent instances with 3D and 2D information,
instances with only 3D information and instances with only 2D information, respectively.

occratio 3D&2D 3D 2D
0.00 51.95% 2.31% 45.74%
0.05 50.05% 2.14% 47.81%
0.10 48.73% 2.09% 49.18%
0.15 47.97% 2.07% 49.96%
0.20 43.61% 1.85% 54.54%

Table A.15: Comparison of EagerMOT instance fusion results in Kitti tracking dataset , with
artificially occluded Point-GNN [37] detections with , occ f rames = 5 and varying occratio using
TrackRCNN [39]as 2D detector. ’3D&2D’, ’3D’ and ’2D’ represent instances with 3D and 2D
information, instances with only 3D information and instances with only 2D information, respec-
tively.

occratio 3D&2D 3D 2D
0.00 51.95% 2.31% 45.74%
0.05 50.04% 2.27% 47.69%
0.10 47.97% 2.09% 49.94%
0.15 45.17% 1.96% 52.87%
0.20 39.11% 1.72% 59.16%

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 Background
	2.1 Artificial Neural Networks
	2.2 Deep Learning
	2.3 Convolutional Neural Networks
	2.4 Object detection
	2.5 Multi-Object Tracking

	3 Object Detection and Multi-Object Tracking with 3D Point Clouds
	3.1 3D Point Clouds
	3.1.1 Sensor Fusion

	3.2 3D Object Detection
	3.2.1 Set-Based Methods
	3.2.2 Grid-Based Methods
	3.2.3 Graph-Based Methods

	3.3 3D Multi Object Tracking
	3.3.1 Evaluation Metrics
	3.3.2 Benchmark Datasets
	3.3.3 Multi Object Tracking for Autonomous Driving

	4 Methodology
	4.1 EagerMOT
	4.2 Proposal
	4.2.1 Framework Analysis
	4.2.2 Sensor Fusion Occlusion Analysis

	4.3 Experimental Setup
	4.3.1 Dataset
	4.3.2 3D and 2D Detections
	4.3.3 Artificial Occlusions
	4.3.4 Training Configurations

	5 Results and Discussion
	5.1 Framework Analysis
	5.2 Sensor Fusion Occlusion Analysis
	5.2.1 Fusion Analysis

	6 Conclusions and Future Work
	References
	A Sensor Fusion Occlusion Results

