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Abstract: Age estimation is a paramount issue in criminal, anthropological, and forensic research.
Because of this, several areas of research have focused on the establishment of new approaches for age
prediction, including bimolecular and anthropological methods. In recent years, DNA methylation
(DNAm) has arisen as one of the hottest topics in the field. Many studies have developed age-
prediction models (APMs) based on evaluation of DNAm levels of many genes in different tissue
types and using different methodological approaches. However, several challenges and confounder
factors should be considered before using methylation levels for age estimation in forensic contexts.
To provide in-depth knowledge about DNAm age estimation (DNAm age) and to understand why it
is not yet a current tool in forensic laboratories, this review encompasses the literature for the most
relevant scientific works published from 2015 to 2021 to address the challenges and future directions
in the field. More than 60 papers were considered focusing essentially on studies that developed
models for age prediction in several sample types.

Keywords: forensic science; age estimation; DNA methylation levels; epigenetic age; medico-legal
laboratories

1. Introduction

Age estimation is a paramount issue in forensic science, being required for the identifi-
cation process of deceased and living individuals. For deceased ones, including human
skeletonized remains, the estimative of age can lead to an exclusion; for living individ-
uals, age estimation is important to solve cases of immigration, cases of minors, or for
determination of criminal responsibility, for instance [1–4].

Aging, being a complex biological process, is difficult to predict and the use of a
multidisciplinary approach can improve the age estimation [5–7]. For instance, Shi et al. [6]
demonstrated the power of the combination of the anthropological approach (dental and
skeletal ages) with the epigenetic approach using DNA methylation (DNAm) levels. During
recent years, several areas of knowledge such as anthropology, odontology, chemistry,
genetics, and more recently epigenetics, have been continually focused on the improvement
of age estimation research. As a result, new methods in several fields have been proposed.
In any case, there is not an elected method or approach for age estimation that can be applied
to all the forensic cases (living and deceased individuals), with the same accuracy in all
age ranges [1,8]. In the past, the evaluation of changes in DNAm levels in age-associated
genes has been explored as the epigenetic modification with the strongest potential for age
prediction in forensic contexts [3,9–19]. As a result, DNAm levels of many age-correlated
genes have been evaluated in different tissue types, proposing the development of many
highly accurate age prediction models (APMs) [20]. Despite the increase in research on
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epigenetic age or DNAm age estimation (DNAm age) in recent years, this tool for age
estimation was not implemented until now in forensic laboratories, essentially because of
several challenges and confounding factors that need to be considered in future research.

The main aim of this review is to provide in-depth knowledge about DNAm as a tool
for age estimation in forensic contexts. For this main purpose, in the first step, we discuss
the most promising epigenetic mechanism (DNAm) associated with aging research and the
underlying mechanisms of DNAm changes with age that allowed the use of DNAm levels
as a tool for age estimation (points 2 and 3). In the second step, we explain the basis of
some of the most currently used methodologies for DNAm evaluation and quantification,
and review some of the most important works in the literature to date, focusing on the
evaluation of the correlation between DNAm and age in many different tissue types (points
4 and 5). Lastly, we discuss future directions and challenges for the application of DNAm as
a practicable tool for age estimation in forensic laboratories, considering the implementation
of DNAm age in forensic cases (points 6 and 7).

2. DNA Methylation (DNAm): An Epigenetic Mechanism

Epigenetics is a large area of research nowadays. The main epigenetic features (histone
modifications, regulation by non-coding RNAs and DNAm) have been associated with
several clinical conditions, such as cancer and Alzheimer’s disease, and forensic issues,
including age estimation [21–23]. One of the most important bases of aging research is
DNAm, which has arisen in recent years as one of the most promising and investigated
epigenetic features associated with aging [3,12,15,17–19]. DNAm is characterized by the
addition of a methyl group (CH3) to the fifth carbon (5C) position of cytosines in the
DNA molecule [24,25]. Commonly, the methylation of DNA occurs in dinucleotide CpGs
(5′-CpG-3′ cytosine–phosphate–guanine) across the genome. However, there are some
CpG sites located at clusters named CpG islands, mainly in the promoter regions of the
active genes, in which there is no methylation. During aging, there is a change in the
human genome methylation levels: most CpGs across the genome lose methylation, and
CpG islands gain methylation [10,26–30]. These changes in the pattern of DNAm can be
consistent across the individuals or result from stochastic factors. Based on these consistent
alterations in DNAm levels of some genes (age-correlated genes), the first generation of
“epigenetic clocks” has arisen in different tissue types [9,10,31–33].

3. Underling Mechanisms of DNAm Changes with Age

As mentioned previously, with aging several changes in DNAm have been observed:
consistent alterations across the individuals (epigenetic clock), due to nonstochastic
events [29,34]; or non-consistent DNAm changes that lead to a DNAm divergence across
individuals due to stochastic or environmental factors, such as smoking habits, alcohol
consumption, or physical activity (epigenetic drift) [16,29,35,36]. Indeed, the level of methy-
lation of the CpG sites across the genome can be influenced by several intrinsic factors, such
as sex, age and ancestry, or external factors, such as diet, nutrition, stress, toxin exposure,
and lifestyles, being useful to predict many individual epigenomic variations also referred
to as the epigenetic fingerprint. These epigenomic marks can be related to many phenotypic
aspects such as individual lifestyle, health status, physical appearance and individual age
estimation [37]. Despite these two levels of influence, several studies have been conducted
in recent years to investigate the relationship between the chronological age of individ-
uals and DNAm levels of some CpGs located at many genes, such as ELOVL2, FHL2,
EDARADD, PDE4C, PENK, CCDC102B, C1orf132, TRIM59, and KLF14 [16,19,20,38–40].
Some of these genes showed a positive correlation with age, meaning that DNAm levels
increase with the increase in chronological age; others revealed a negative age correlation,
in which DNAm patterns decrease with the increase in age (Figure 1).
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Figure 1. Positive (a) and negative (b) correlations between DNAm levels (%) and chronological age
(years) in blood and bone samples. Methylation information is captured through SNaPshot assay
in 59 blood samples of living individuals, 62 blood samples of deceased individuals, and 31 bone
samples collected during routine autopsies. The corresponding Spearman correlation coefficients (r)
are depicted inside each plot. Plots were adapted from ref. [41].
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It should be noted that the same genes or CpGs reveal different patterns of age
correlation in different tissues, for instance blood or bone samples, or considering the state
of life of the individual in the same tissue type. As shown in Figure 1, using the same
methodology (SNaPshot) for assessing the DNAm levels of the same CpGs from ELOVL2,
FHL2, C1orf132, KLF14, and TRIM59, higher age correlation values were obtained for blood
samples from living individuals in comparison to the values obtained in bone samples for
the same CpGs. This can be related to the tissue specificity of DNAm levels. Several studies
have shown different age correlation values for the same genes in different tissues [9,42–44].
This points to the necessity of evaluating the most promising gene in each tissue or building
multi-tissue APMs with genes that revealed similar values of correlation among several
tissues such as the case of the ELOVL2 gene [32,42]. In addition, the state of life of the
individual can also influence the correlation with chronological age. In a study developed
by our group [40] it has been shown that age correlation values obtained for ELOVL2,
FHL2, C1orf132, KLF14, and TRIM59 genes, captured using the SNaPshot method, were
higher in blood samples from living individuals in comparison to age-correlated values
captured in blood samples from deceased individuals (Figure 1). This can be related to
postmortem DNAm differences although this issue has not been clarified to date [40,45].

4. Methodologies for DNAm Evaluation

Based on the highest age-correlated markers, several authors built many tissue-specific
APMs in recent years [16,19,20,38,39,46–48]. In these studies, the evaluation of DNAm
levels is undertaken essentially after sodium bisulfite conversion of genomic DNA. Bisulfite
conversion is a chemical modification that allows the easy identification of methylated
cytosine and non-methylated cytosine. This treatment with sodium bisulfite leads to the
conversion of non-methylated cytosine to uracil, while the methylated cytosine remains
as cytosine. Thus, after conversion with sodium bisulfite, followed by amplification using
polymerase chain reaction (PCR) and sequencing methods such as SNaPshot, pyrosequenc-
ing, Sanger sequencing, or massively parallel sequencing (MPS), the level of methylation in
the chromatogram or electropherogram can be quantified [42,49,50].

Of note, it seems that the basics of each methodology can influence DNAm quantifica-
tion. A recent study by Freire-Aradas and collaborators [48] showed that depending on
the age-correlated gene, the measurement of DNAm levels can be influenced if different
methodologies were used. For instance, the DNAm level of the C1orf132 gene is not in-
dependent of the methodology used to access to DNAm levels. However, ELOVL2 and
FHL2 genes revealed similar patterns of DNAm in EpiTYPER, pyrosequencing, and MiSeq
methodologies. Meanwhile, for DNAm levels of ELOVL2, different values were reported
between SNaPshot and EpiTYPER or MiSeq methodologies, which can be explained by the
use of dyes with different signals intensities in the SNaPshot method, which can require
caution in the interpretation of DNAm quantification [48].

Pyrosequencing has been a widely used method for DNAm evaluation in the
past [5,10,43,51–59]. Pyrosequencing is easy to use and reveals quantitative data, however,
demands high costs [37]. In recent years, SNaPshot, despite being a semi-quantitative
method, has shown promising results in DNAm assessment due to multiplexing analy-
sis [42,60–62]. In addition, the droplet digital PCR (ddPCR) method has also revealed
promising results in age estimation allowing to improve age prediction compared to other
methodologies [63]. However, until now only three studies have developed APMs based
on this method [6,63,64].

In the near future, it is expected that massively parallel sequencing (MPS), a powerful
technology that shows large multiplexing capacities, high sensitivity, and single base resolution,
could become a currently used method in forensic contexts for DNAm evaluation. Meanwhile,
MPS has been used in a few studies in recent years [44,65–68] showing high model accuracy.

Lastly, considering the methodological aspects of assessment of DNAm levels and the
current use of many methodologies for quantification of methylation information, it seems
that, in the future, it will be necessary to evaluate the differences between laboratories
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using the same methodology [58] and differences between different methodologies [48] or
propose one elected method with standard guidelines to access DNAm levels.

5. Epigenetic Models for Age Estimation Based on DNAm Changes
5.1. Tissue-Specific APMs

Several models for age estimation have been proposed in the literature. To the best of
our knowledge, the first study that evaluated the correlation between DNAm levels and
chronological age has been proposed by Bocklandt et al. [33]. The authors developed a
powerful APM with only two genes in saliva samples, obtaining an accuracy of 5.2 years
(Table 1). The authors used the Illumina Infinium 27K platform to access to DNAm levels
of EDARADD, TOM1L1, and NPTX2 genes. After that, several other APMs have been
built, essentially for blood samples [5,10,11,40,42,44,51,53–59,64,68–73]. With the growth of
DNAm age research, many authors have investigated DNAm levels in many tissue types
such as buccal swabs [42–44,52,59], sperm [60,74], bloodstains [11,53,56], teeth [51,75–78],
bones [44,77,79,80], and hair samples [81,82]. These studies included different genes or
CpGs, different methodologies for evaluation of methylation levels, and used many sta-
tistical approaches. One of the most relevant works published in 2015 was proposed by
Bekaert et al. [51]. The authors were the first to consider blood samples from deceased
individuals, despite observing similar DNAm changes in blood from living and deceased
individuals. Moreover, they were also the first to investigate DNAm levels of some genes
in dentin samples. In their model for age prediction using blood samples developed
with the pyrosequencing methodology, an accuracy of 3.75 years has been obtained using
methylation information of four CpGs located at ELOVL2, PDE4C, EDARADD, and ASPA
genes. In the same study, using dentin samples, an accurate APM with 4.86 years has
been built using 7 CpGs located at three genes (PDE4C, ELOVL2 and EDARADD). In
the same year, Zbieć-Piekarska and collaborators [53] and Huang and collaborators [11],
investigating DNAm levels through pyrosequencing on blood and bloodstains, have shown
that DNAm levels show stability in bloodstains. In addition, during 2015, Zbieć-Piekarska
and collaborators [54], evaluated DNAm levels of 41 CpG sites from ELOVL2, C1orf132,
TRIM59, KLF14, and FHL2 genes using pyrosequencing methodology on blood sam-
ples of Polish individuals, developing an online age predictive calculator with five CpGs
(ELOVL2, Chr6:11044634; C1orf132, Chr1:207823681; TRIM59, Chr3:160450199; KLF14,
Chr7:130734355; FHL2, Chr2:105399288) (www.agecalculator.ies.krakow.pl, accessed on
31 August 2022) with an MAD of 3.4 years. One year later, in 2016, Eipel and collabora-
tors [43], using the same methodology, showed the importance of selecting the best genes
or CpGs in each tissue type to obtain better age prediction accuracies. This is an important
factor in forensic contexts and leads to the concern about the development of multi-tissue
APMs. In 2017, Cho et al. [5] and Thong et al. [56] revealed the importance of evaluat-
ing the population-specific differences in DNAm patterns testing a previously developed
age-predictive equation in different populations [54]. Similar to Zbieć-Piekarska et al. [54],
they used the pyrosequencing method for evaluation of DNAm levels of several CpG sites
located at ELOVL2, FHL2, TRIM59, KLF14, and C1orf132 genes, and observed several differ-
ences in age correlation values for the same CpG sites between populations: Polish [54], Ko-
reans [5], and Singaporeans [56]; however, the model accuracy of the developed population-
specific APMs remains relatively consistent. Of note, Cho et al. [5] and Zbieć-Piekarska
et al. [54] developed a population-specific model with the five CpGs, while Thong et al. [56]
developed an APM with three CpGs. Despite this, these studies also revealed an improve-
ment in the model accuracy when a population-specific model is developed. For instance,
Cho et al. [5] with the five best age-correlated sites (ELOVL2, Chr6:11044628; C1orf132
Chr1:207823681; TRIM59, Chr3:160450189; KLF14, Chr7:130734355; FHL2, Chr2:105399282)
in Koreans achieved an MAD of 3.34 years, while an MAD of 4.18 years was obtained
when applying the model of Zbieć-Piekarska et al. [54] to the Korean population sample.
In addition, Thong et al. [56] developed a specific model for Singaporeans with three CpGs
(ELOVL2, Chr6:11044642; TRIM59, Chr3:160450189; KLF14, Chr7:130734357) obtaining an

www.agecalculator.ies.krakow.pl
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MAD of 3.3 years (test set) and an MAD of 5.0 years (validation set). Using the validation
set and testing the predictive equation of Zbieć-Piekarska et al. [54] with five CpGs, an
MAD value of 4.8 years was obtained. In concordance, some years later, in 2020, our
group showed that the value of age correlation obtained for CpGs located at ELOVL2,
FHL2, KLF14, TRIM59, and C1orf132 genes captured using the SNaPshot methodology
are higher in blood samples from Portuguese individuals [40] compared to blood samples
from Koreans captured using the same methodology [42]. Despite this, strong (R between
0.70 and 0.9) or very strong (R between 0.9 and 1) age correlation values were obtained for
the Portuguese and Korean individuals for CpGs located at all genes, except for the CpG at
the C1orf132 gene in Korean people (R = −0.637) [42]. One powerful study in 2018 was
the contribution from Naue and collaborators [44], in which the authors evaluated through
MPS the correlation of DNAm levels from some genes in several samples from deceased
individuals, including bone samples. To the best of our knowledge, this was the first
attempt to evaluate the correlation between chronological age and DNAm levels of some
genes in bone samples. In this study, the ELOVL2 gene was revealed to be one of the most
promising genes to be used in bone samples following its power of prediction in several
other tissues [20]. One year later, Gopalan and colleagues [79] using Illumina Infinium
450 K and Illumina EPIC arrays, developed the first bone clock “37 bone clock CpGs” based
on DNAm levels of CpGs located, among other genes, at TRIM59, ELOVL2, and KLF14.
In 2020, Correia Dias et al. [71], using the Sanger sequencing methodology, developed a
specific model for blood samples from deceased individuals, the first model that used only
blood from deceased individuals collected during autopsies. This APM developed for
Portuguese individuals revealed an accuracy of 6.08 years. The authors observed some
differences in DNAm levels between blood samples from living and deceased individuals.
These DNAm differences between blood of living and deceased individuals have also been
corroborated by another study in 2020 using the SNaPshot methodology [40]. Still, in the
year of 2020, Márquez-Ruiz and collaborators [76] tested DNAm levels of CpGs located
at ELOVL2, ASPA, and PDE4C genes in tooth samples. The authors developed an APM
using DNAm levels captured using pyrosequencing with a MAE (mean absolute error)
of 5.08 years. In the year of 2021, an important study was undertaken by Koop et al. [83]
evaluating methylation levels of the PDE4C gene through the same methodology in buccal
swabs from living and deceased individuals. The developed model with only one CpG of
the PDE4C gene in buccal swabs from living individuals revealed a high age correlation,
and an MAD of 9.1 years when applied to buccal swabs from deceased individuals. Another
important contribution in the field of DNAm age research in this year were the studies
proposed by Hao et al. [81] and Naue et al. [82] that investigated DNAm levels in hair
samples using the multiplex methylation SNaPshot assay and MPS, respectively. Naue and
collaborators [82] observed that the most powerful genes to be included in a final assay for
hair samples were ELOVL2, KLF14, RPA2, TRIM59, and ZYG11A. In accordance, the study
of Hao et al. [81] after building four APMs, selected an APM with 10 CpGs as the best for
age prediction. This model showed a prediction accuracy of 3.68 years and included CpGs
from ELOVL2 and KLF14, among other genes. To the best of our knowledge, these are
the only two models developed for hair samples to date. Still, in the year of 2021, Zapico
and collaborators [78] developed the fifth study including tooth samples. They evaluated
DNAm levels of 46 CpGs located at ELOVL2, KLF14, SCGN, NPTX2, and FHL2 genes, using
pyrosequencing in 20 third molars, developing four accurate APMs for pulp samples. The
best model includes 14 CpGs from the five genes, reveals a very strong age correlation value
(R = 0.987), and allowed for predicting age with a MAE of 1.55 years. In 2022, Correia Dias
et al. [77] developed two APMs for bone samples using Sanger sequencing methodology and
a multiplex methylation SNaPshot assay. The model developed using Sanger sequencing
revealed an accuracy of 2.56 years; through the SNaPshot method, the developed bone-APM
showed a MAD of 7.18 years. The authors also investigated DNAm levels in tooth samples,
obtaining the best results for the SNaPshot methodology, building a model with two CpGs
located at ELOVL2 and KLF14 genes, with a MAD value of 7.07 years.
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Table 1. Summary of some identified studies based on tissue-specific DNAm age estimation.

CpGs or Genes Main Findings Reference

NPTX2, EDARADD, TOM1L1 The first study using DNAm levels for age prediction.
APM (2 CpGs) for saliva revealed an accuracy of 5.2 years. [33]

ELOVL2, Clorf132, TRIM59,
KLF14, FHL2

The first age-prediction calculator available online for blood samples
(www.agecalculator.ies.krakow.pl, accessed on 31 August 2022). Model with
5 CpGs revealed high accuracy with a MAD value of 3.4 years.

[54]

ELOVL2
High model accuracy using only 2 CpGs from ELOVL2: MAD = 5.03 years.
The first study that evaluated DNAm patterns in bloodstains, it has shown
that the DNAm did not change after one-month storage as bloodstains.

[53]

ASPA, ELOVL2, PDE4C, EDARADD

The first study that investigated DNAm levels in blood samples from deceased
individuals and dentin samples.
A MAD value of 3.75 years has been obtained evaluating 4 CpGs in blood from
living and deceased individuals. An accurate APM with a 4.86 years of MAD
value has been developed using 7 CpGs in dentin samples.

[51]

ELOVL2, FHL2, PENK The first study that evaluated DNAm levels in different layers of tooth
samples (cementum: 2.45 years; dentin: 7.07 years; dental pulp: 2.25 years). [75]

DDO, ELOVL2, F5, GRM2, HOXC4,
KLF14, LDB2, MEIS1-AS3,
NKIRAS2, RPA2, SAMD10,
TRIM59, ZYG11A.

The first study that evaluated the correlation between DNAm levels and age in
bone samples.
The authors investigated the correlation between DNAm levels of 13
blood–age-correlated loci used in [44] and age in many samples from
deceased individuals.

[44]

Total of 485.577 CpG sites investigated;
CpGs selected are located at DDO,
PRPH2, DHX8, ITGA2B and at one
unknown gene with the Illumina ID
number of 22398226

Highly accurate models developed for young children (aged 6–15 years):
MAE = 0.47 years (boys); MAE = 0.33 years (girls).
The first study that combined anthropological and epigenetic approaches.

[6]

ELOVL2, FHL2, KLF14,
C1orf132, TRIM59

Tissue-specific APMs for blood (MAD = 3.17 years), buccal swabs
(MAD = 3.82 years), and saliva (MAD = 3.29 years).
A multi-tissue APM that is highly accurate (MAD = 3.55 years).

[42]

ELOVL2, PDE4C, FHL2,
EDARADD, C1orf132

The first study developed only for blood samples from deceased individuals.
MAD = 6.08 years. [71]

CpGs located, among other genes, at
TRIM59, ELOVL2 and KLF14

The first model developed for bones namely the “37 bone clock CpGs”,
revealing an accuracy of 4.9 years (RMSE).
DNAm levels of forensic samples have been evaluated, however, these
were excluded.

[79]

ELOVL2, KLF14, C1orf132,
FHL2, TRIM59

Population-specific differences in DNAm levels. The authors applied the
predictive equation developed by [37] in Korean to Portuguese living
individuals obtaining a MAD value of 15.26 years.
APM for Portuguese people: MAD = 4.25 years (living); MAD =
5.36 years (deceased); MAD = 4.97 years (living and deceased individuals).

[40]

ELOVL2, KLF14, C1orf132, FHL2,
TRIM59, PDE4C, EDARADD

The second APMs developed for bones in the literature (MAD = 7.18 years,
using SNaPshot; MAD = 2.56 years, using Sanger sequencing). [77]

LAG3, SCGN, ELOVL2, KLF14,
C1orf132, SLC12A5, GRIA2, PDE4C

The first study developed for hair samples.
Accuracy of 3.68 years using 10 CpGs. [81]

Abbreviations: MAD, mean absolute deviation between predicted and chronological ages; RMSE, root mean
square error; MAE, mean absolute error.

A brief review of some of these tissue-specific APMs is presented in Table 1.

5.2. Multi-Tissue APMs

In addition, during these recent years, the development of multi-tissue APMs applied
to several sample types has arisen [9,42,45,84]. Horvath [9] was the first to propose an
accurate multi-tissue APM (accuracy of 2.9 years) that included the information of methyla-

www.agecalculator.ies.krakow.pl
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tion levels from many genes in different cellular tissues such as whole blood, cerebellar
samples, occipital cortex, colon, peripheral blood mononuclear cells, liver, lung, saliva,
buccal epithelium, uterine cervix, uterine endometrium, CD4 T cells and CD14 mono-
cytes, among others, using about 8000 samples. However, the authors included a larger
number of CpGs in the model (353 CpGs). This brought a disadvantage for its usage in
forensic contexts. Four years later, Alsaleh et al. [84] proposed a multi-tissue model for
whole blood, saliva, semen, menstrual blood, and vaginal secretions, using methylation
information of only 10 CpGs and revealing a model accuracy of 3.8 years. Although the
inclusion of a larger number of markers leads to the improvement of the age prediction,
the authors defended that to be practicable in forensic contexts, the number of markers
must not exceed 10 CpGs. Another relevant multi-tissue with less CpGs was developed
by Jung and collaborators [42] in 2019. This multi-tissue included only five CpGs and has
been developed for saliva, blood, and buccal swabs. The age prediction accuracy obtained
using this model measured through the MAD value was 3.6 years. Despite these promising
multi-tissue APMs developed for different samples and highly accurate for use in forensic
contexts, one challenge remains to be clarified: what about teeth and bones, which are
the most promising human remains, very often found in forensic cases? To answer this
challenge and improve age prediction in forensic cases, at the end of 2021, Correia Dias
et al. [45] developed a study presenting two multi-tissue APMs developed using Sanger
sequencing and SNaPshot methodologies, and applied to blood, bones, and teeth. These
multi-tissue APMs, namely BBT-APMs (Blood–Bone–Tooth APMs) can be implemented
in forensic laboratories and revealed high accuracy in age predictions, MAD = 6.06 years
using methylation information captured using Sanger sequencing and MAD = 6.49 years
using the SNaPshot assay. These BBT-APMs are the only multi-tissue APMs in the literature
that included bone and tooth samples.

Some of other relevant aspects of these five multi-tissue APMs developed until now
can be observed in Table 2.

Table 2. Summary of some multi-tissue APMs based on DNAm levels.

Year CpGs Main Findings Reference

2013 353 CpGs

The first multi-tissue model with different cellular tissues such as whole blood, occipital
cortex, colon, peripheral blood mononuclear cells, liver, lung, saliva, buccal epithelium,
among others, was developed using microarray hybridization technology, revealing an
accuracy of 2.9 years.

[9]

2017 10 CpGs
A multi-tissue model developed for whole blood, saliva, semen, menstrual blood, and
vaginal secretions with methylation data captured using the Illumina Infinium HM450
platform with an accuracy of 3.8 years.

[84]

2019 5 CpGs
APM developed in Korean people for saliva, blood, and buccal swabs.
Multi-tissue with DNAm levels of ELOVL2, FHL2, KLF14, TRIM59, and C1orf132 genes
developed using the SNaPshot method, revealing a MAD of 3.6 years.

[42]

The first multi-tissue APMs developed including bone and tooth samples.
Multi-tissue APMs developed for Portuguese individuals.

2021 7 CpGs
A Blood–Bone–Tooth APM (BBT-APM) with an MAD of 6.06 years developed with
methylation information of CpGs located at EDARADD, FHL2,
ELOVL2, PDE4C, and C1orf132 genes using Sanger sequencing.

[45]

3 CpGs BBT-APM with a MAD of 6.49 years developed with DNAm levels of ELOVL2, KLF14,
and C1orf132 genes, using the SNaPshot assay.

6. Future Direction in DNAm Age Research

Despite the growth in DNAm age research and the great development of many tissue-
specific APMs and some multi-tissue APMs, there are several confusing factors that should
be considered before the implementation of DNAm age as a new tool for forensic casework.
DNAm levels can be affected by intrinsic influences (such as aging, sex, or ancestry) or
environmental factors (including lifestyle, disease, alcohol consumption, or social environ-
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ments) [12,85]. The future challenges in this field should be the correct evaluation of the
effect of these factors on the accuracy of age predictions through DNAm analysis.

6.1. Intrinsic Influences

One of the most relevant factors that should be considered for current use of DNAm
age in forensic laboratories is the difference between predicted and chronological ages with
the increase in age. As demonstrated in many studies [9,40,51,54,56,59,68,69,72], younger
individuals show lower MAD values, reflecting a high model accuracy, comparing to
older ages. This can be explained by the increase in differences between biological and
chronological ages with the increase in age as a result of the higher accumulation of specific
alterations in DNAm patterns due to the stochastic or environmental factors (epigenetic
drift) [16,29,36]. Consequently, APMs developed essentially for younger individuals should
not be suitable for application to older ones. In the forensic field, this can be a challenge. If
we do not know the age range of the individual, we do not know the most suitable model to
be applied in the case. Another factor that could influence DNAm age is the putative effect
of the sex. Despite not being reflected in the model accuracy, different studies [10,54,58]
found some differences between males and females. However, some other studies observed
no significant sex influence on DNAm levels [11,51,76,86–88]. In any case, considering
these confusing results, the effect of sex on DNAm levels of age-correlated genes should
always be explored and needs to be clarified in future research.

In addition, the possible influence of ancestry should be considered for the imple-
mentation of APMs. It is necessary to test the predictive equations that have already been
developed for specific population groups in other ancestry groups to address potential
DNAm differences at the same CpG sites. This was completed by Cho et al. [5] in Koreans
and Thong et al. [56] in Singaporean individuals, applying the APM of Zbieć-Piekarska
et al. [54] developed in Polish individuals (MAD = 3.4 years). Additionally, our group [40]
replicated the model of Jung et al. [42] developed in Korean individuals (MAD = 3.17 years)
and observed a higher MAD value (15.26 years) in a sample set of Portuguese individuals,
suggesting some differences in DNAm patterns probably due to ancestry.

6.2. Environmental Factors

Some environmental factors can also influence DNAm patterns of many genes. For
instance, certain diseases can alter the methylation information of some genes, and con-
sequently the accuracy of the APMs built with these genes can be affected, as shown by
Spólnicka et al. [57]. The authors suggest that each gene can show a specificity and/or
sensibility to each disease. As a result, there are some genes more accurate for measure-
ment of age [57,89]. Thus, it is necessary to test the effect of some common diseases in
DNAm levels of some age-correlated genes in order to avoid the influence of external
factors in age predictions made through DNAm analysis. Another slightly more radical
suggestion was proposed by Bell and collaborators [90] suggesting the construction of
disease-specific models for age prediction based on DNAm evaluation as a future direction
in the forensic field.

Finally, despite the confusing data that has been reported until now [85], the impact
of several socioeconomic factors (such as education) and lifestyle choices (such as tobacco
and alcohol consumption) on DNAm clocks should also be evaluated [91]. The knowledge
of all the possible factors that influence methylation level assessment, and consequently
the accuracy of DNAm clocks previously developed, is one of the most important issues
for good practice and future application of DNAm age in forensic contexts.

6.3. Technical Aspects of DNAm Evaluation

In addition, it has been observed that there are several technical and laboratorial as-
pects that should be considered for the current use of DNAm age. For example, DNAm lev-
els captured using Sanger sequencing methodology are not the same as those captured using
SNaPshot, even using the same sample types and the same CpGs [40,72,77]. In blood sam-
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ples from living individuals, when evaluating CpG located at C1orf132 (Chr1:207823681),
the correlation value is−0.788 using Sanger sequencing (data not published), and for SNaP-
shot the value is higher, R = −0.924 [40]. In agreement, for bones, DNAm levels of C1orf132
(Chr1:207823681) captured using Sanger sequencing revealed a correlation value of −0.834,
while for the SNaPshot method the value is lower, R = −0.507 [77]. In concordance, the
use of other methodologies for DNAm evaluation such as MPS, pyrosequencing, digital
PCR, among others, can lead to differences in DNA methylation information. For instance,
in the study of Freire-Aradas et al. [48], the methylation information of the same CpG
sites located at ELOVL2, MIR29B2, and FHL2 captured using pyrosequencing, MiSeq and
EpiTYPERR, and SNaPshot technologies was compared. The authors observed comparable
DNAm levels and, consequently, a comparable accuracy in age estimation for the three first
methodologies. However, they observed greater differences in DNAm levels for SNaPshot
methodology in comparison with the others. This can be explained by the semi-quantitative
nature of the SNaPshot methodology focused on the measurement of fluorescence using
dyes with different signal intensities. As a result, a decrease in age prediction accuracy
using the SNaPshot method has been observed when comparing with the other three
technologies investigated. This can also be a relevant aspect to implement DNAm age in
forensic laboratories. With so many models built using different methodologies, which ones
should be implemented in forensic routine? This and other questions remain to be clarified.

7. Implementation of DNAm Age in Forensic Cases

Age estimation through DNAm level evaluation has revolutionized the field of foren-
sics. As previously mentioned, there are several confusing factors that need to be clarified
before use of DNAm as a tool for age predictions. DNAm age has a long way to go before
the implementation in medico-legal laboratories. Meanwhile, with the increase in APMs
developed with SNaPshot and MPS, the routine use of DNAm age in forensic laboratories
can be possible in the near future.

New efforts have been continually made to improve the access of age through DNAm
levels. An example of these efforts is the development of online age-prediction calculators
that allow the expert to use developed APMs constructed previously by other researchers
across the world, such as the online calculator (https://dnamage.genetics.ucla.edu/, ac-
cessed on 31 August 2022) proposed by Horvath [9] in 2013, the age tool for age es-
timation (www.agecalculator.ies.krakow.pl, accessed on 31 August 2022) proposed by
Zbieć-Piekarska and collaborators [54] in 2015, and the age predictor available at http:
//mathgene.usc.es/cgi-bin/snps/age_tools/processmethylation-first.cgi (accessed on 31
August 2022), proposed by Freire-Aradas et al. [87] in 2016, among others. This year
(2022), our group developed an epigenetic calculator, named DNAMethylAGE (https:
//osteomics.com/DNAMethylAGE/, accessed on 31 August 2022), comprising all the pre-
viously developed tissue-specific and multi-tissue APMs through SNaPshot methodology
for Portuguese individuals [40,41,45,77]. These online calculators, besides using different
methodologies, can be used in forensic cases, allowing to predict epigenetic age and im-
proving age estimation in forensic contexts. It will be expected that the experts, using these
online calculators to evaluate and compare differences between population groups, age
ranges, tissue types, laboratories, methodologies, among other variables, would provide
new insights for DNAm age assessment.

8. Concluding Remarks

DNAm age has arisen in the field of forensics as the hottest topic. In the last decade,
many investigations on forensic age prediction have been reported using different method-
ological approaches to assess DNAm levels, which are considered the most promising age
prediction tool. Several models for age prediction were developed in several specific tissue
types, essentially in blood samples from living individuals. Other APMs were suggested
across multiple tissues. These models showed similar age prediction accuracies, despite
using different methodological approaches, several age-correlated genes, different tissue

https://dnamage.genetics.ucla.edu/
www.agecalculator.ies.krakow.pl
http://mathgene.usc.es/cgi-bin/snps/age_tools/processmethylation-first.cgi
http://mathgene.usc.es/cgi-bin/snps/age_tools/processmethylation-first.cgi
https://osteomics.com/DNAMethylAGE/
https://osteomics.com/DNAMethylAGE/
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types, or different statistical methods. Although several models for age estimation based
on the evaluation of methylation levels have been built, to the best of our knowledge, none
of these models are currently used in forensic laboratories for identification purposes. At
this point, it seems important to establish guidelines or requirements for implementation
of some of the developed models in forensic contexts. It is also clear that new advances
and new methodologies should be tested in several tissues such as MPS, that seems a
promising technique for DNAm age evaluation in forensic contexts. This is an important
step because some differences in DNAm information captured from different methodolo-
gies were reported, such as for Sanger sequencing, SNaPshot, MPS, or pyrosequencing,
among others. As a consequence, the first step could be to propose the most advanta-
geous methodology for the evaluation of methylation information for forensic purposes.
In addition, we should also keep in mind that there are several intrinsic and extrinsic
aspects that need to be clarified, such as the effect of diseases, ancestry, and sex, among
others. Being an epigenetic feature, DNAm can be affected by several factors rather than
the age of the individual, and this could possibly affect the age prediction made through the
assessment of DNAm levels. These confounders need to be elucidated in future research
because DNAm analysis could be in the future the best choice for estimating the age of an
individual in forensic laboratories.
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