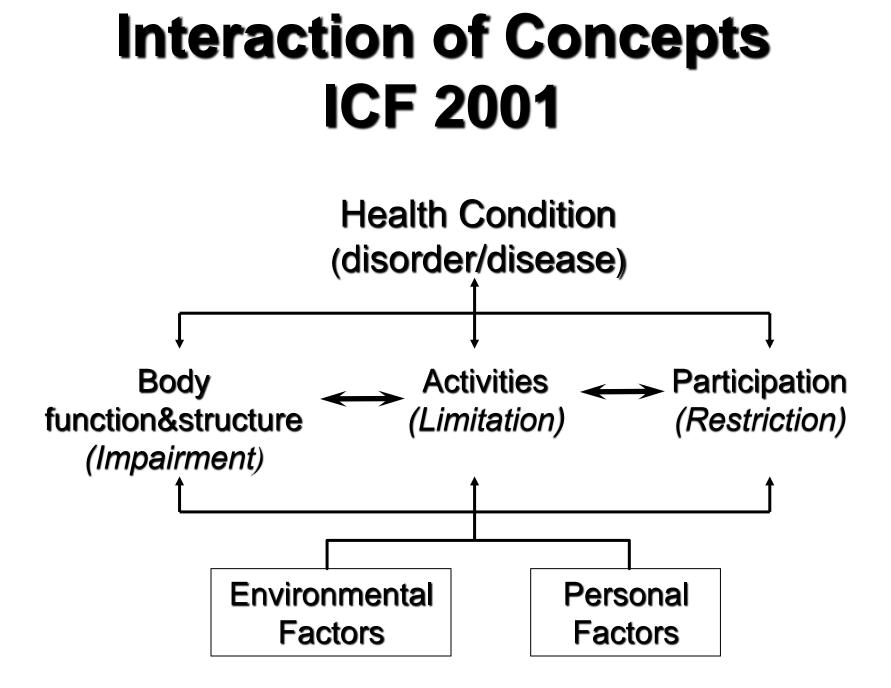
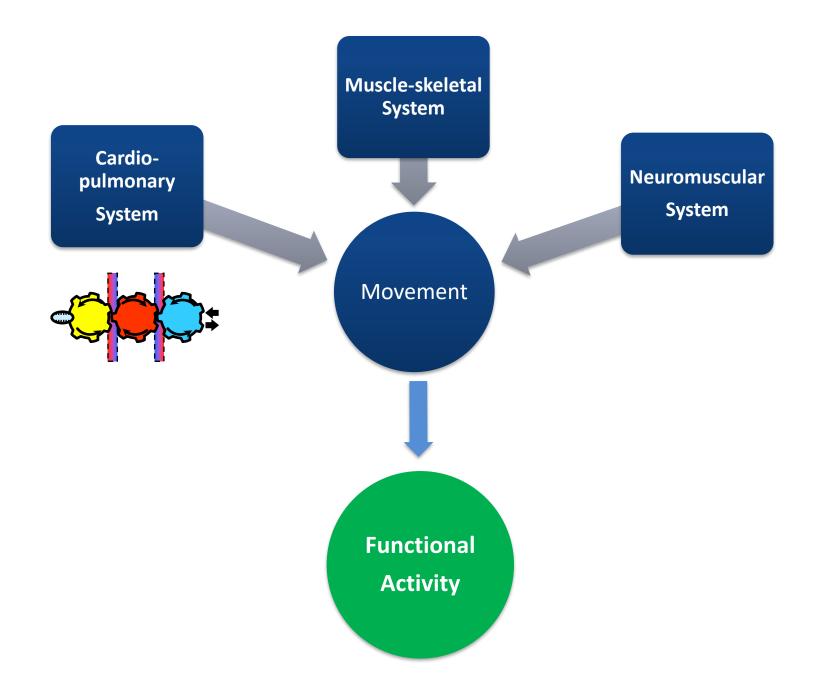
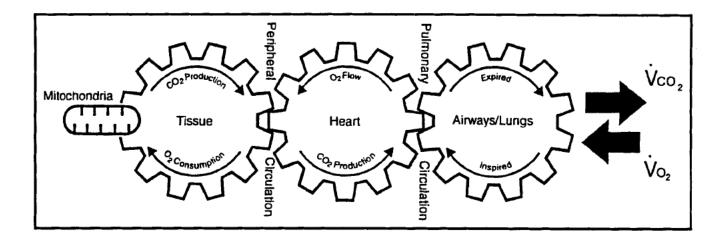
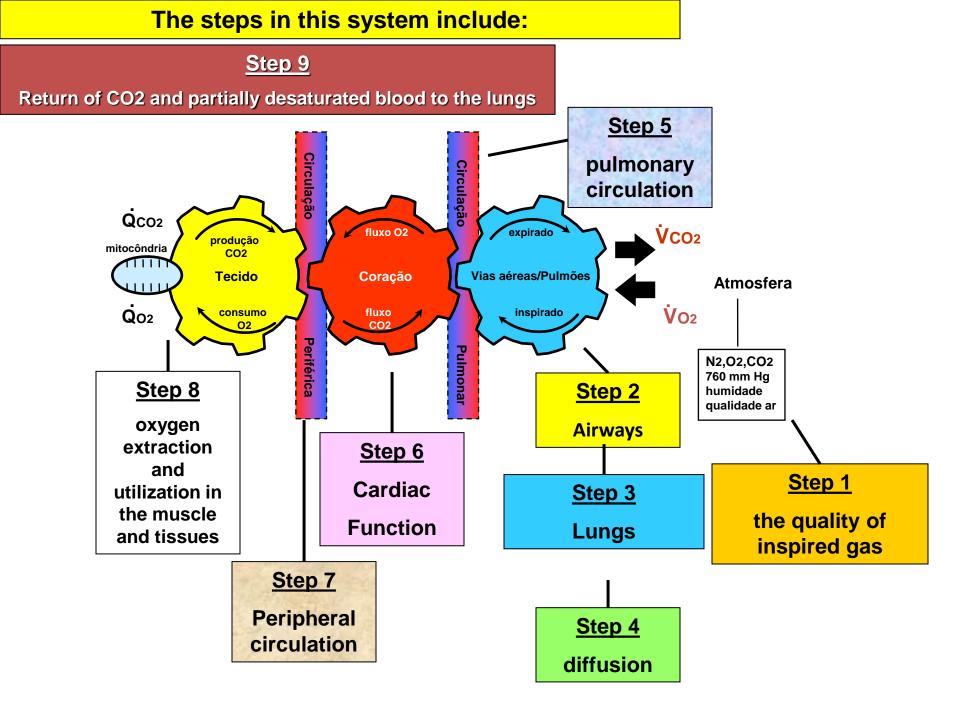


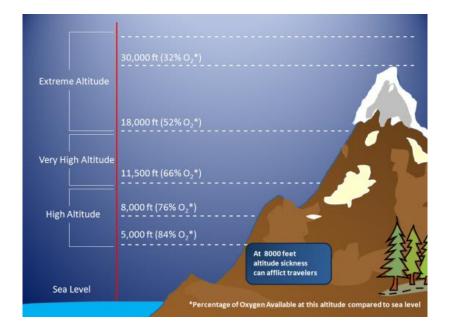
SANTA CASA da Misericórdia de Lisboa


Oxygen transport: a physiologically-based conceptual framework for the promotion of Funcionality


António Alves Lopes Portugal >> Groninger | 2015






Oxygen Transport System

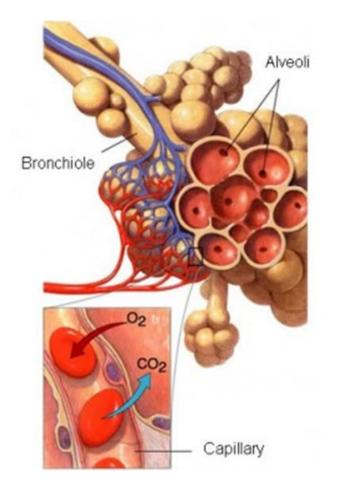

Delivery or supply of **fully oxygenated blood** to peripheral tissues, the cellular uptake of oxygen, the utilization of oxygen in the tissue, and the return of **partially desaturated blood** to the lungs.

Atmospheric air consists of 79% nitrogen, 20.97% oxygen, and 0.03% carbon dioxide

- altitude,
- geographical area,
- season,
- population density,
- home and work environment,
- level of ventilation,
 - •••

Airway structure and function

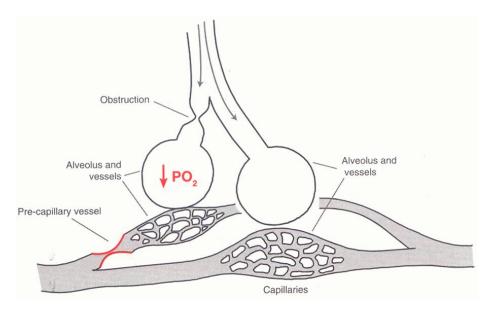
Airway obstruction and increased resistance to airflow, is caused by multiple factors:


 edema, mucus, foreign objects, calcification, particulate matter, spaceoccupying lesions, and hyperreactivity of bronchial smooth muscle.

Step 3: Lungs and Chest Wall

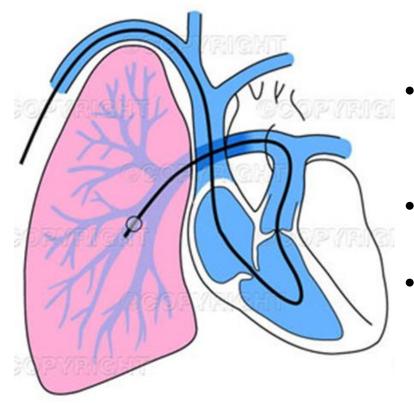
Air entry to the lungs depends on the integrity of :

- Respiratory drive (CNS)
- Respiratory muscles, in particular the diaphragm
- Chest wall (mobility and protection)
- Pleural (negative intrapleural pressure gradient)
- Parenchyma (compliance and elastic recoil)

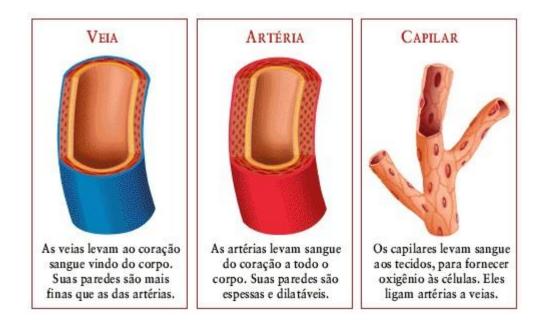


Diffusion of oxygen from the alveolar sacs to the pulmonary arterial circulation depends on:

- area of the alveolar capillary membrane,
- diffusing capacity of the alveolar capillary membrane,
- pulmonary capillary blood volume,
- ventilation-perfusion ratio


(Ganong, 2003).

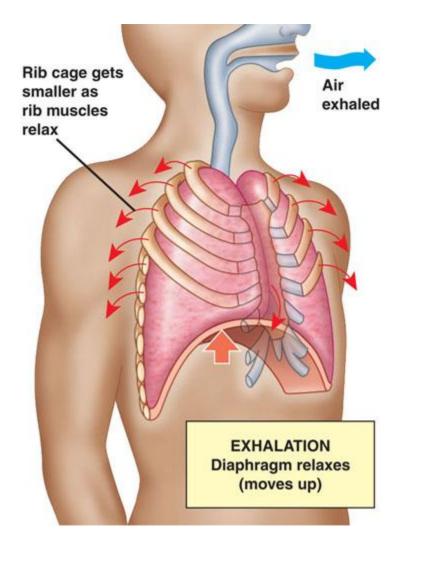
The distribution of blood perfusing the lungs is primarily gravity dependent:

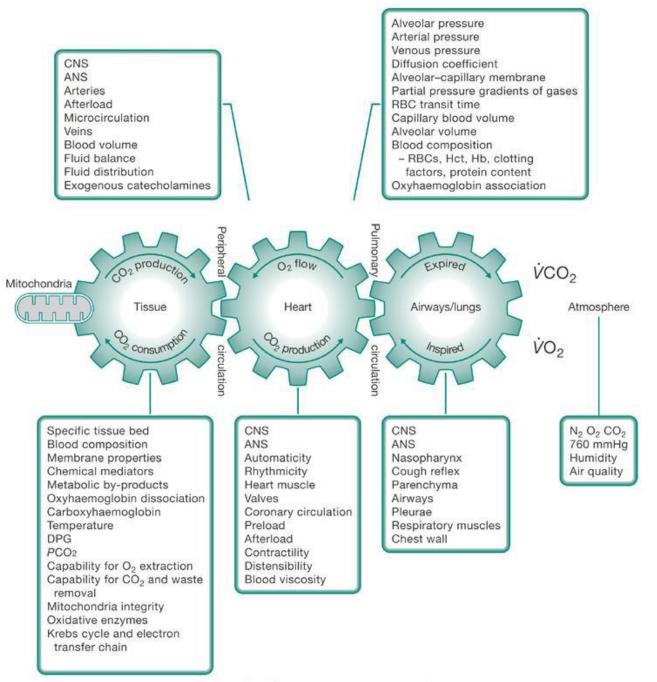

- In the upright lung the bases are better perfused than the apices.
- Ventilation and perfusion matching is optimal in the midzones of the lungs when a person is upright (West, 1985).

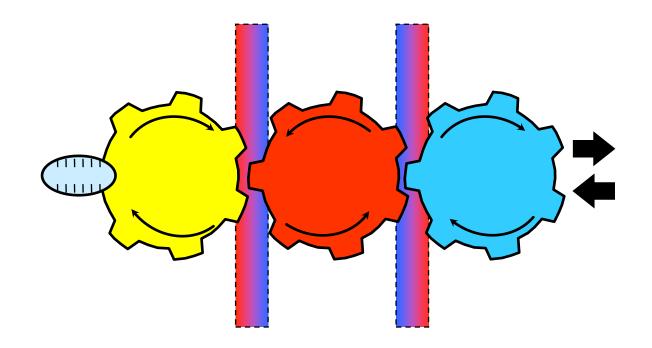
Optimal myocardial function and cardiac output depend on:

- Synchronized coupling of electrical excitation of the heart and mechanical contraction
- The distensibility of the ventricles
- Contractility of the myocardial muscle

Once oxygenated blood is ejected from the heart, the peripheral circulation provides a conduit for supplying this blood to metabolically active tissue

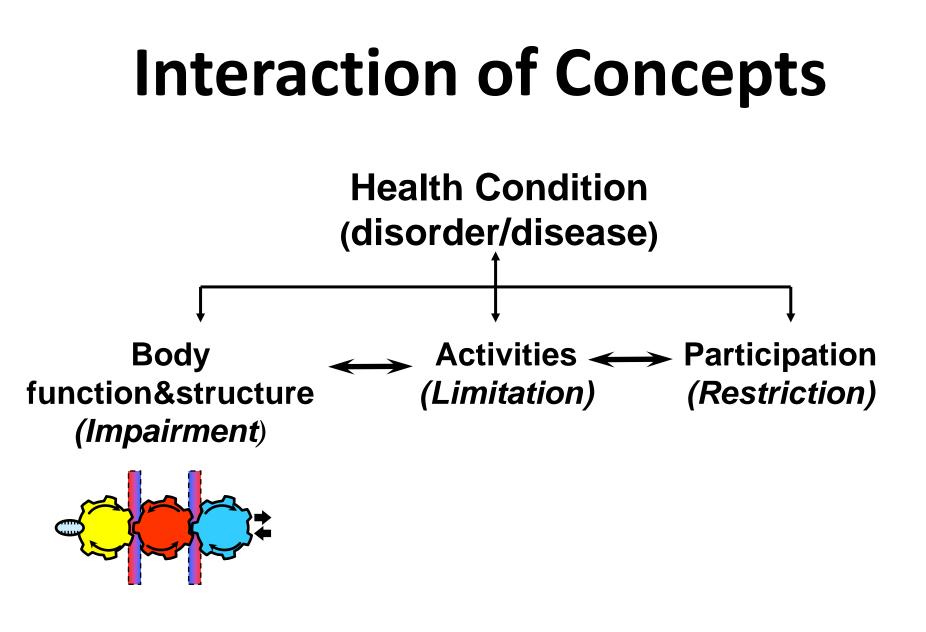

Step 8: Tissue Extraction and Utilization of Oxygen


All cells in the body continually use oxygen, which rapidly diffuses out of the circulation and through cell membranes to meet metabolic needs:


- Distance between the capillaries and the cells is variable
- Oxygen pressure (PaO2)
- Rate of oxygen extraction by the cells is regulated by their oxygen demand

Step 9: Return of Partially Desaturated Blood and Carbon Dioxide to the Lungs

- Partially desaturated blood and carbon dioxide are removed from the cells via the venous circulation to the right side of the heart and lungs;
- Carbon dioxide diffuses across the alveolar capillary membrane and is eliminated from the body via the respiratory system, and the deoxygenated venous blood is reoxygenated;

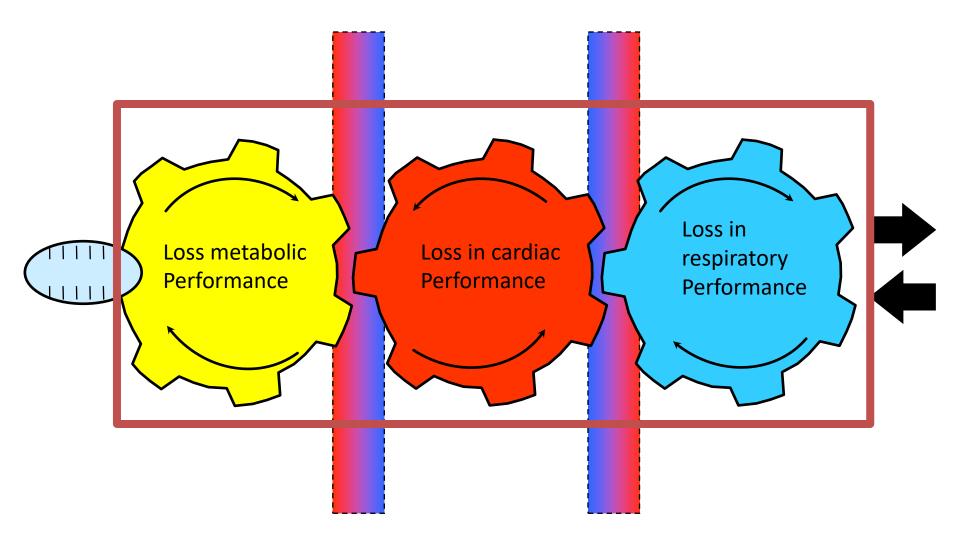


- No one step is rate limiting; rather each step can individually alter oxygen transport to organ tissues.
- The system attempts to compensate for limitations at any step.
- In healthy person, this system is acutely responsive to changes in oxygen demand, and changes oxygen delivery correspondingly.

Impact during the Life Span

Respiratory System: Functional Divisions and Changes with Aging

Functional Division	Components	Function	Change(s) with Aging
Conducting airways	All airways not involved in gas exchange (mouth to terminal bronchioles)	Gas movement between environment and alveolar space	Slight changes in size; calcification; glandular hypertrophy
Lung parenchyma	Gas-exchanging airways and vessels; connective tissue framework	Gas exchange between alveolar space and capillary blood	Enlarged terminal airspaces; ventilation/perfusion mismatching
Bellows apparatus	Chest wall and muscles of respiration	Provide mechanical forces for ventilation	Increased rigidity of chest wall; decreased respiratory muscle strength
Ventilatory control	Respiratory control center (pons and medulla); carotid and aortic bodies	Maintaining homeostasis by altering ventilation to match metabolic needs	Markedly decreased responses to hypercapnia and hypoxemia
Cardiovascular system	Heart and systemic vasculature	Blood transport and tissue exchange of respiratory gases	Decreased maximal heart rate and cardiac output; decreased responsiveness to hypoxemia

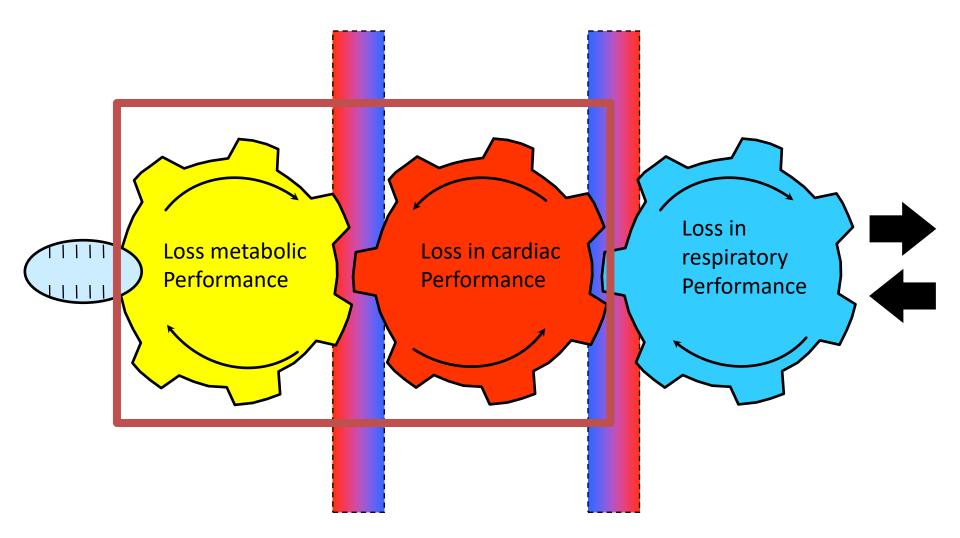

Fishman's Pulmonary Diseases and Disorders (2008)

Impact during the Life Span

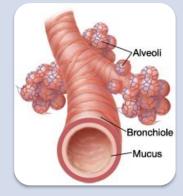
Variables Associated with a Decline in Exercise Capacity with Age					
Variable	Comment				
Decreased muscle mass	These changes especially affect $\dot{V}O_2$ calculated per kg of body weight				
Increased fat mass					
Decreased cardiac output oxygen	As a result of the decreased cardiac output and maximal $C(a - \bar{v})O$ delivery and extraction are reduced; decreased cardiac output is a major contributor to the age-related decline in exercise capacity				
Decreased maximal stroke volume					
Decreased maximal heart rate					
Decreased maximal $C(a - \bar{v})O_2$ difference					
Decreased maximum voluntary ventilation					
Increased ventilation at each workload	At each workload, older individuals breathe more and work harder for each breath than younger persons; however, the effect is small and contributes little to the decline in exercise capacity with aging				
Increased oxygen cost of breathing					
Sedentary life-style	Life-style issues play a large role in the rate at which exercise capacity is lost with age; the good news is that, like other deconditioned groups, the elderly respond very well to exercise training				
Decreased training intensity in active persons					
Decreased willingness to work to maximal level during tests					

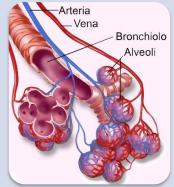
Fishman's Pulmonary Diseases and Disorders (2008)

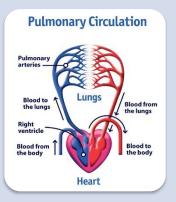
Impact on the Oxygen Transport System

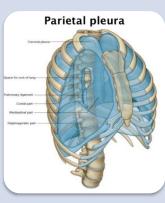


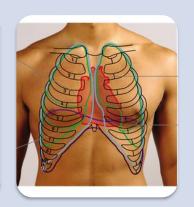
What are common health consequences of overweight and obesity?


Raised BMI is a major risk factor for noncommunicable diseases such as:


- cardiovascular diseases (mainly heart disease and stroke), which were the leading cause of death in 2012;
- diabetes;
- musculoskeletal disorders (especially osteoarthritis - a highly disabling degenerative disease of the joints);
- some cancers (endometrial, breast, and colon).


Impact on the Oxygen Transport System





Lung Diseases Affecting the Airways Lung Diseases Affecting the Air Sacs (Alveoli) Lung Diseases Affecting Blood Vessels Lung Diseases Affecting the Pleura Lung Diseases Affecting the Chest Wall

Consequences

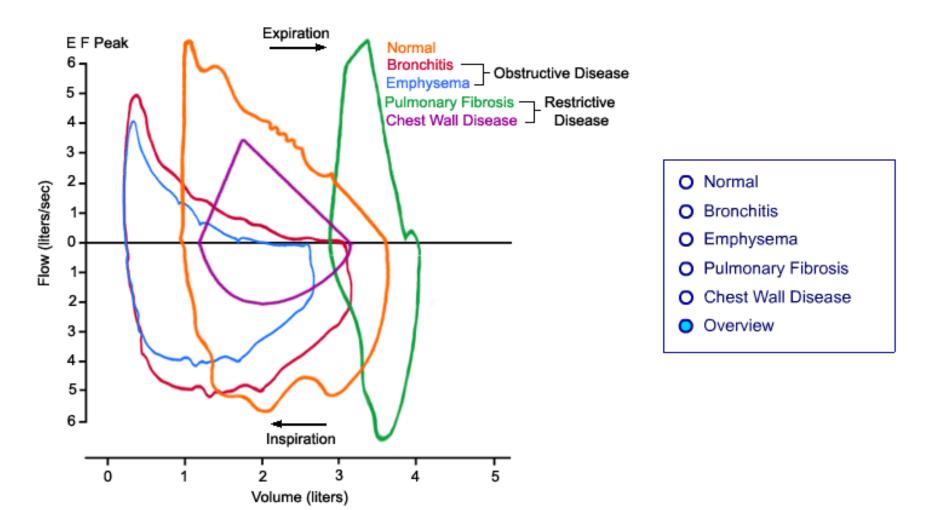
Obstrutive

Restrictive

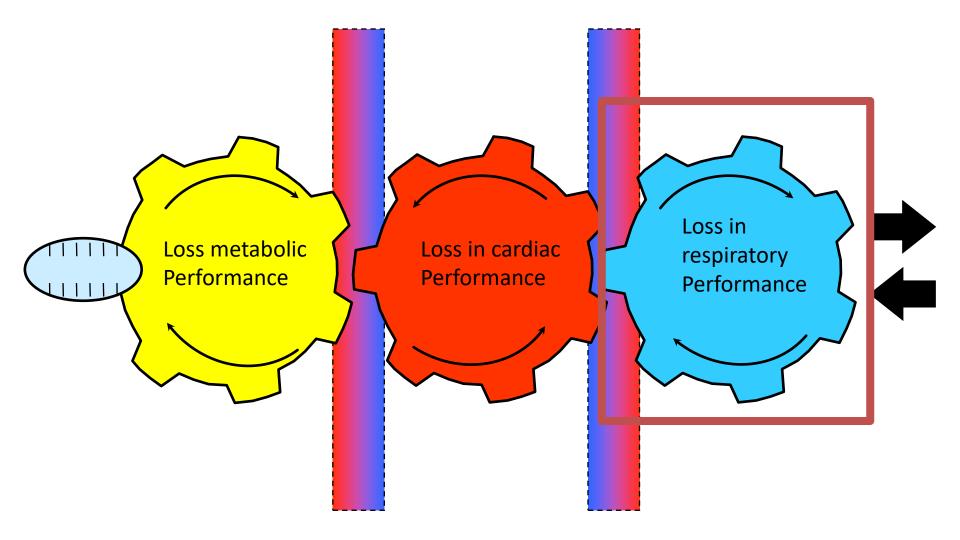
People with obstructive lung disease have shortness of breath due to difficulty exhaling all the air from the lungs.

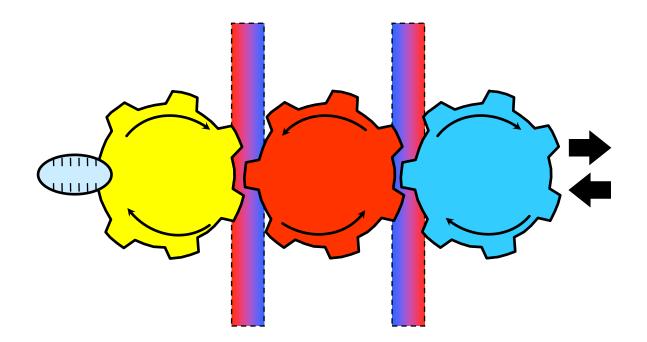
Because of damage to the lungs or narrowing of the airways inside the lungs, exhaled air comes out more slowly than normal. People with restrictive lung disease cannot fully fill their lungs with air. Their lungs are restricted from fully expanding.

Often results from a condition causing stiffness in the lungs or stiffness of the chest wall, weak muscles, or damaged nerves


ASTHMA

- More intermittent airflow obstruction
- Improvement in airways obstruction with bronchodilators and steroids
- Cellular inflammation with eosinophils, mast cells, Tlymphocytes, and neutrophils in more severe disease
- Broad inflammatory mediator response
- Airways remodeling


COPD


- Progressively worsening airflow obstruction
- Often presents in 6th decade of life or later in patients
- More permanent airflow obstruction; less reversibility and less normalization of airflow obstruction
- Cellular inflammation: neutrophils, macrophages, eosinophils and mast cells may occur
- Emphysema frequently found

Pulmonary Function output

Impact on the Oxygen Transport System

An ability to analyze the contribution or threat of these factors to oxygen transport will ensure that strategies are directed at the underlying limitations, promoting a maximally beneficial and cost effective intervention.

Dean & Frownfelter (2006)

Identifying the steps of STO2 that are compromised

Recognize when the risks outweigh the benefits of intervention

Identifying what factors are dependent on the intervention

Choose the appropriate intervention to the context

Dean & Frownfelter (2006)

So... what is the best intervention to optimize the Oxygen Transport System?

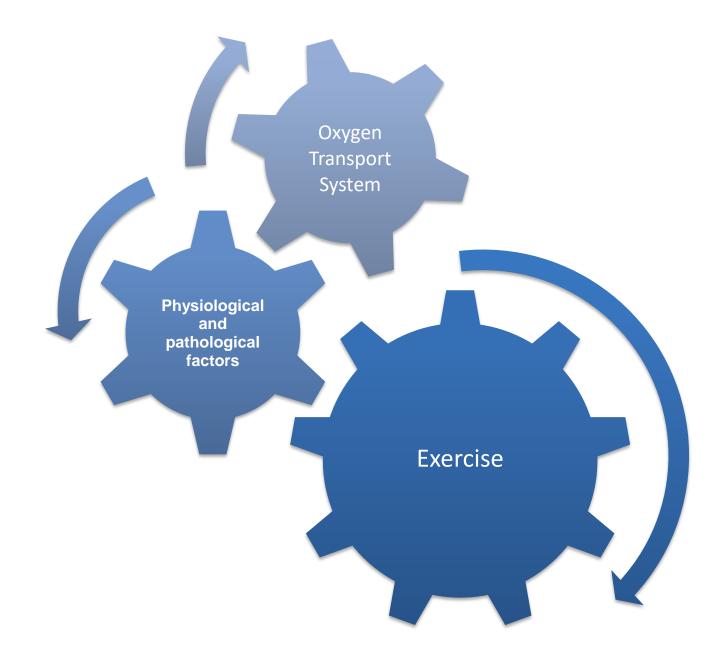
The position of optimal physiological function is being upright and moving

2 º Premise

"The best stimulation is one that enhances the oxygencarrying capacity of the individual and produces the greatest adjustment without causing damage."

Dean (2012)

What is the evidence of these interventions?


Table 1 Results of selected meta-analyses of randomised controlled trials on the benefits of exercise therapy in the treatment of patients with specific diseases

Study, year	Disease	Outcome measure	No. studies (no. participants)	Effect size of exercise compared to controls, pooled statistics (95% CI)*
Fransen <i>et al</i> , 2008 ³	Osteoarthritis	Self-reported pain	32 (3616)	Standardised mean difference -0.40 (-0.50 to -0.30)
Fransen <i>et al</i> , 2008 ³	Osteoarthritis	Self-reported physical function limitations	31 (3719)	Standardised mean difference -0.37 (-0.49 to -0.25)
Hernandez-Molina <i>et al,</i> 2008 ⁶	Hip osteoarthritis	Self-reported pain	8 (493)	Standardised mean difference -0.46 (-0.64 to -0.28)
Hayden <i>et al</i> , 2005 ¹²	Non-specific chronic (> 12 weeks) low back pain	Pain, visual analogue scale (scaled to 0 to 100 points)	8 (370)	Weighted mean difference -10.20 points (-19.09 -1.31)
Hayden <i>et al</i> , 2005 ¹²	Non-specific chronic (> 12 weeks) low back pain	Condition-specific functioning limitations (scaled to 0 to 100 points)	7 (337)	Weighted mean difference -2.97 points (-6.48 t 0.53)
Busch <i>et al</i> , 2007 ¹⁴	Fibromyalgia	Pain	4 (223)	Standardised mean difference -0.81 (-1.47 to -0.15)
Busch et al, 2007 ¹⁴	Fibromyalgia	Tender points	6 (349)	Standardised mean difference -0.76 (-1.53 to 0.0
Busch et al, 2007 ¹⁴	Fibromyalgia	Global well-being	4 (269)	Standardised mean difference 0.49 (0.23 to 0.75)
Busch et al, 200714	Fibromyalgia	Physical function	4 (253)	Standardised mean difference 0.66 (0.41 to 0.92)
Jolliffe et al, 2001 ¹⁵	Coronary heart disease	All cause mortality	12 (2582)	Odds ratio 0.73 (0.54 to 0.98)
Jolliffe et al. 200115	Coronary heart disease	Cardiac mortality	8 (2312)	Odds ratio 0.69 (0.51 to 0.94)
Jolliffe et al, 2001 ¹⁵	Coronary heart disease	Non-fatal myocardial infarction	9 (2104)	Odds ratio 0.96 (0.69 to 1.35)
Nolan et al, 200817				
	Coronary heart disease	Heart rate variability	16 (631)	Standardised mean difference 0.36 (0.18 to 0.55)
Rees et al, 2004 ¹⁹	Heart failure	Maximal oxygen uptake	24 (848)	Weighted mean difference 2.16 ml/kg/min (1.49 to 2.82)
Rees et al, 200419	Heart failure	Distance on 6-min walk	8 (282)	Weighted mean difference 41 m (17 to 65)
Smart and Marwick, 2004 ²⁰	Heart failure	Mortality	30 (1197)	Odds ratio 0.71 (0.37, 1.02)
Watson et al, 2008 ²¹	Intermittent claudication	Maximal walking time	7 (255)	Weighted mean difference 5.12 min (4.51 to 7.52
van de Port <i>et al</i> , 2007 ²³	Stroke	Maximum walking speed	12 (501)	Standardised effect size 0.45 (0.27 to 0.63)
van de Port <i>et al</i> , 2007 ²³	Stroke	Walking distance	9 (451)	Standardised effect size 0.62 (0.30 to 0.95)
Cornelissen and Fagard, 2005 ²⁴	Hypertension	Systolic blood pressure	30 (492)	Mean net change -6.9 mm Hg (-9.1 to -4.6)
Cornelissen and Fagard, 2005 ²⁴	Hypertension	Diastolic blood pressure	30 (492)	Mean net change -4.9 mm Hg (-6.5 to -3.3)
Kelley et al, 2006 ²⁶	Cardiovascular disease	HDL cholesterol	6 (637)	Weighted mean difference 3.7 mg/dl (1.2 to 6.1)
Kelley <i>et al</i> , 2006 ²⁶	Cardiovascular disease	Triglycerides	9 (1172)	Weighted mean difference $-19.3 \text{ mg/dl} (-30.1 \text{ tr} -8.5)$
Thomas et al, 2006 ²⁷	Type 2 diabetes	Glycated haemoglobin percentage (HbA _{1c})	13 (361)	Weighted mean difference -0.62% (-0.91% to -0.33%)
Boyle et al, 2003 ²⁸	Type 2 diabetes	Maximal oxygen uptake	9 (266)	Standardised mean difference 0.53 (0.18 to 0.88)
Kelley and Kelley, 2007 ³¹	Type 2 diabetes	LDL cholesterol	4 (156)	Weighted mean difference $-6.4 \text{ mg/dl} (-11.8 \text{ to} -1.1)$
Ram et al, 2005 ³²	Asthma	Resting lung function (FEV1)	5 (129)	Weighted mean difference 0.01 litres (-0.14 to 0.1
Ram <i>et al</i> , 2005 ³²	Asthma	Maximal ventilation (VE_{max})	4 (111)	Weighted mean difference 6.00 litres/min (1.57 to 10.43)
Ram <i>et al</i> , 2005 ³²	Asthma	Maximal oxygen uptake	7 (175)	Weighted mean difference 5.4 ml/kg/min (4.2 to 6
Salman et al, 200333	COPD	Walking distance	20 (979)	Standardised effect size 0.71 (0.43 to 0.99)
Salman <i>et al</i> , 2003 ³³	COPD	Shortness of breath by Chronic Respiratory Disease Questionnaire	12 (723)	Standardised effect size -0.62 (-0.91 to -0.26)
Goodwin <i>et al</i> , 2008 ³⁶	Parkinson disease	Physical functioning limitations	7 (360)	Standardised mean difference -0.47 (-0.82 to -0.12)
Goodwin <i>et al</i> , 2008 ³⁶	Parkinson disease	Health-related quality of life limitations	4 (292)	Standardised mean difference -0.27 (-0.51 to -0.04)
Heyn <i>et al</i> , 2004 ³⁸	Cognitive impairment	Cardiovascular fitness	18 (1059)	Standardised effect size 0.62 (0.45 to 0.78)
Heyn et al 200438	Cognitive impairment	Cognitive outcomes	12 (820)	Standardised effect size 0.57 (0.38 to 0.75)
Mead <i>et al</i> , 2008 ³⁹	Depression	Depression symptoms	23 (907)	Standardised mean difference -0.82 (-1.12 to -0.51)
Edmonds et al, 200440	Chronic fatigue syndrome	Chalder fatigue scale	5 (286)	Standardised mean difference -0.77 (-1.26 to -0.28)
Edmonds et al, 200440	Chronic fatigue syndrome	Quality of life limitations, SF-36 physical functioning subscale	3 (162)	Standardised mean difference -0.64 (-0.96 to -0.33)
Shamliyan et al, 200841	Urinary incontinence	Contingence rate	4 (647)	Pooled risk difference 0.13 (0.07 to 0.20)
Markes et al, 200642	Breast cancer	Cardiorespiratory fitness	5 (207)	Standardised mean difference 0.66 (0.20 to 1.12)
Cramp and Daniel,	Cancer	Fatigue	30 (1662)	Standardised mean difference -0.23 (-0.33 to
200843				-0.13)

Evidence on the effects of exercise therapy in the treatment of chronic disease (2010)

*All estimates reported in this table favour exercise groups; effect sizes as reported by the authors of original meta-analyses.

COPD, chronic obstructive pulmonary disease; HDL, high-density lipoprotein; FEV1, forced expiratory volume in 1 s; LDL, low-density lipoprotein, SF-36, Short Form 36

SANTA CASA da Misericórdia de Lisboa

Oxygen transport: a physiologically-based conceptual framework for the promotion of Funcionality

•Dean E. Oxygen transport: a physiological ly-based conceptual framework for the practice of cardiopulmonary physiotherapy. Physiother. 1994;80:347-359.

•Wasserman K, Hansen JE, Sue DY, Whipp Bj. Principles of Exercise Testing and Interpretation. Philadelphia, Pa: Lea & Febiger; 1987.

•Dean E. Optimizing treatment prescription. Relating treatment to the underlying pathophysiology. In: Frownfelter D, Dean E (eds). Principles and Practice of Cardiopulmonary Physical Therapy. ed. St. Louis, MO: Mosby; 2006. Dean E, Frownfelter D. Deficits in oxygen transport: The basis for diagnosis and treatment prescription. In: A Clinical Case Study Guide to Accompany Principles and Practice of Cardiopulmonary Physical Therapy. 3rd ed. St. Louis, MO: Mosby; 1996. Dean E. Oxygen transport deficits in systemic disease and implications for physical therapy. Phys Ther. 1997;77:187-202.

•Dean E, Ross J. Mobilization and exercise conditioning. In: Zadai C (ed). Pulmonary Management in Physical Therapy. Clinics in Physical Therapy. New York, NY: Churchill Livingstone: 1992.

•Ross J, Dean E. Body positioning. In: Zadai C (ed). Pulmonary Management in Physical Therapy. Clinics in Physical Therapy. New York, NY: J, Purves S. Improving the validity of clinical exercise testing: the relationship between practice and performance. Arch Phys Med Rehabil.

1989;70:599-604.

Frownfelter D; Dean E - Principles and Practice of Cardiopulmonary Physical Therapy. 5rd ed., St. Louis, Mosby-Year Book, 2012.