
NeuralLog: A Neural
Logic System for
Parameter and
Structure Learning

Victor Augusto Lopes Guimarães
PhD in Computer Science
Department of Computer Science
2022

Supervisor
Vítor Manuel de Morais Santos Costa, Associated Professor, Faculty of Sciences

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

Sworn Statement

I, Victor Augusto Lopes Guimarães, born in Brazil, resident in Portugal, of Portuguese

nationality, bearer of Identification Card No. 31710677, enrolled in the Doctor’s Degree in

Computer Science at the Faculty of Sciences of the University of Porto hereby declare, in

accordance with the provisions of paragraph a) of Article 14 of the Code of Ethical Conduct

of the University of Porto, that the content of this thesis reflects perspectives, research work

and my own interpretations at the time of its submission.

By submitting this thesis, I also declare that it contains the results of my own research work

and contributions that have not been previously submitted to this or any other institution.

I further declare that all references to other authors fully comply with the rules of attribution

and are referenced in the text by citation and identified in the bibliographic references section.

This thesis does not include any content whose reproduction is protected by copyright laws.

I am aware that the practice of plagiarism and self-plagiarism constitute a form of academic

o↵ense.

Victor Augusto Lopes Guimarães

05/09/2022

Victor Guimarães

Agradecimentos

Agradeço primeiramente aos meus pais, Augusto e Lourdes, por todo o suporte e apoio, além

de todo o investimento feito no meu desenvolvimento.

Agradeço a Livia, que acompanhou de perto todas as conquistas e dificuldades na realização

deste trabalho, e que me apoiou, para que os objetivos tenham sido atingidos.

Agradeço a todos os professores que participaram da minha formação, cada um deles

contribuindo com um pouco do seu conhecimento, para que eu pudesse chegar onde estou

hoje. Em especial ao Professor Vı́tor Santos Costas, que me orientou durante este trabalho,

sem o qual, este trabalho não seria o mesmo. Agradeço em especial também ao Professor

Gerson Zaverucha e a Professora Aline Paes, por anos de orientação durante a minha vida

académica.

Agradeço aos Professores Aĺıpio Mário Guedes Jorge, Artur d’Avila Garcez, Ashwin

Srinivasan, Pedro Manuel Pinto Ribeiro e António Mário da Silva Marcos Florido por

aceitarem participar do júri desta tese, cujos comentários contribúıram para a melhoria

deste trabalho.

A equipa administrativa e de manutenção da Universidade do Porto, da Faculdade de

Ciências da Universidade do Porto e do INESC-TEC, pelo acolhimento e suporte necessário

para a conclusão do programa de doutoramento.

Aos meus familiares e amigos, pelo suporte e compreensão durante esta jornada.

A toda comunidade cient́ıfica, principalmente aqueles cujos trabalhos estão relacionados a

esta tese. Espero que a mesma também contribua positivamente para o avanço da fronteira

do conhecimento.

Por fim, mas não menos importante, à agência portuguesa de apoio à investigação em ciência,

tecnologia e inovação, FCT - Fundação para a Ciência e a Tecnologia, pelo suporte financeiro

prestado, através da bolsa de doutoramento de número 2020.05718.BD; e ao INESC-TEC

por ser a instituição de acolhimento.

iii

iv

Abstract

Application domains that require considering relationships among objects which have real-

valued attributes are becoming even more important. While neural networks have been

remarkably successful on a wide range of tasks, most of the neural network models focus on

propositional tasks, where there are no relationships among the examples.

In this thesis, we propose NeuralLog, a first-order logic language that is compiled to a neural

network. The main goal of NeuralLog is to provide a language to define neural networks,

based on logic, in order to bridge logic programming and deep learning, allowing advances in

both fields to be combined to obtain better machine learning models. The main advantages

of NeuralLog are to allow neural networks to be described as logic programs; and to be able

to handle numeric attributes and functions.

In our experiments, we show that NeuralLog is capable of representing neural networks for

relational tasks, as well as Multilayer Perceptrons, and even call neural network models as

logic predicates. Since the neural network structure is described as logic, in NeuralLog, we

applied structure learning algorithms from Inductive Logic Programming in order to find

the structure of neural network models from data, both in batch and in online learning

environments.

We compared NeuralLog, for parameter learning, with two distinct systems that use first-

order logic to build neural network models. These experiments show that NeuralLog can learn

link prediction and classification tasks, using the same theories as the compared systems, and

achieving better results for both the area under the ROC curve and the average precision in

four datasets: Cora and UWCSE, for link predictions; Yelp and PAKDD15, for classification;

and comparable results for link prediction in the WordNet dataset.

In addition, we implemented a Multilayer Perceptron, fully in the NeuralLog language, and

applied it to the traditional propositional task, in the well-known Iris dataset. Also, we show

how to use a state-of-the-art neural network model for the Named Entity Recognition task,

using it as a logic predicate in NeuralLog.

When learning the structure of NeuralLog programs on batch environments, we used a

v

vi

Meta-Interpretive Learning (MIL) approach, NeuralLog+MIL. NeuralLog+MIL obtained

competitive results for the link prediction task when compared with Neural-LP in three

di↵erent datasets. Achieving comparable values for the hit at top 10 entities and the

mean rank metric in the UMLS and WordNet datasets; and outperforming Neural-LP in

the UWCSE dataset in those metrics.

On the online learning environment, we applied techniques of theory revision from examples,

which starts from a, possibly empty, logic theory and changes it to cope with new examples.

We ported the Online Structure Learner by Revision (OSLR) algorithm to NeuralLog, which

we called NeuralLog+OSLR. Furthermore, we implemented a theory revision mechanism

combining the mechanism from OSLR with the search strategy from MIL, which we called

NeuralLog+OMIL. To the best of our knowledge, it is the first time a MIL system is used

for online learning.

We compared NeuralLog+OSLR and NeuralLog+OMIL with the original OSLR approach

and RDN-Boost, a system that learns Relational Dependency Networks (RDNs) models. Our

experiments showed that NeuralLog+OMIL outperformed OSLR and RDN-Boost, for link

prediction, on three out of the four target relations from the Cora dataset, and in the UMLS

dataset. While both systems, NeuralLog+OSLR and NeuralLog+OMIL, outperformed

OSLR and RDN-Boost on the UWCSE, assuming a good initial theory is provided.

Keywords Neural-Symbolic Integration, Inductive Logic Programming, Neural Network,

Deep Learning, Relational Learning, Meta-Interpretive Learning, Online Learning and

Theory Revision from Examples

Resumo

Domı́nios de aplicações que requerem considerar relações entre objetos, que possuem

atributos de valores reais, estão se tornando cada vez mais importantes. Enquanto redes

neuronais têm obtido sucessos notáveis num amplo espectro de tarefas, a maioria desses

modelos de redes neuronais focam em tarefas proposicionais, onde não existem relações

entre os exemplos.

Nesta tese, nós propomos NeuralLog, uma linguagem lógica de primeira ordem que é

compilada para uma rede neuronal. O principal objetivo de NeuralLog é prover uma

linguagem, baseada em lógica, que define uma rede neuronal, de modo a conectar

programação lógica com aprendizado profundo, permitindo que avanços em ambos os campos

possam ser combinados para obtenção de melhores modelos de aprendizado. As principais

vantagens de NeuralLog são permitir que redes neuronais sejam descritas como programas

lógicos e ser capaz de lidar com atributos numéricos e funções.

Nas nossas experiências, nós mostramos que NeuralLog é capaz de representar redes

neuronais para tarefas relacionais, assim como Perceptron multicamadas, e até chamar

modelos de redes neuronais a partir de predicados lógicos. Dado que estruturas de redes

neuronais são descritas como programas lógicos, em NeuralLog, nós aplicamos algoritmos de

Programação em Lógica Indutiva (ILP) de modo a encontrar estruturas de modelos de redes

neuronais a partir de dados, tanto em ambientes de aprendizados por batelada, quanto em

ambientes de aprendizado online.

Nós comparamos NeuralLog, para aprendizado de parâmetros, com dois sistemas distintos

que usam lógica de primeira ordem para construir modelos de redes neuronais. Estas

experiências mostram que NeuralLog pode aprender tarefas de predição de ligação e

classificação, usando as mesmas teorias que os sistemas de comparação, e obtendo resultados

melhores, tanto para a área sob a curva ROC, quanto para a precisão média, em quatro

conjuntos de dados: Cora e UWCSE, para predição de ligação; Yelp e PAKDD15, para

classificação; e obtendo resultados comparáveis para predição de ligação no conjunto de

dados do WordNet.

No mais, nós implementamos um Perceptron multicamadas, completamente na linguagem

vii

viii

NeuralLog, e aplicamos ele a uma tarefa proposicional tradicional, no conhecido conjunto de

dados do Iris. Também mostramos como usar um modelo de rede neuronal, do estado da

arte, como um predicado lógico, para a tarefa de Reconhecimento de Entidade Mencionada

(NER).

Quanto a aprender a estrutura de programas lógicos, em NeuralLog, em ambiente

de batelada, nós usamos uma abordagem de Aprendizado Meta-Interpretativo (MIL),

NeuralLog+MIL. NeuralLog+MIL obteve resultados competitivos para as tarefas de predição

de ligação, quando comparados com Neural-LP, em três conjuntos de dados diferentes.

Obtendo valores comparáveis para o acerto entre as 10 entitidades do topo do ranking e

para a métrica do ranking médio no conjunto de dados do UMLS e do WordNet; e obteve

um melhor desempenho que Neural-LP, nestas métricas, no conjunto de dados do UWCSE.

No ambiente de aprendizado online, nós aplicamos técnicas de revisão de teoria a partir de

exemplos, o que começa a partir de uma teoria lógica, possivelmente vazia, e a modifica

para lidar com novos exemplos. Nós portamos o algoritmo do Online Structure Learner

by Revision (OSLR) para NeuralLog, o que nós chamamos de NeuralLog+OSLR. Não o

bastante, nós implementamos um mecanismo de revisão de teoria combinando o mecanismo

do OSLR com a estratégia de busca do MIL, o que nós chamamos de NeuralLog+OMIL.

No melhor de nosso conhecimento, esta é a primeira vez que um sistema MIL é usado para

aprendizado online.

Nós comparamos NeuralLog+OSLR e NeuralLog+OMIL com a abordagem original do

OSLR e com o RDN-Boost, um sistema que aprende modelos de Redes de Dependência

Relacional (RDNs). As nossas experiências mostraram que NeuralLog+OMIL obteve melhor

desempenho do que OSLR e RDN-Boost, para predicação de ligação, em três das quatro

relações alvo do conjunto de dados do Cora, e para o conjunto de dados do UMLS. Enquanto

ambos os sistemas, NeuralLog+OSLR e NeuralLog+OMIL, desempenharam melhor do que

OSLR e RDN-Boost no conjunto de dados do UWCSE, assumindo que uma boa teoria inicial

é fornecida.

Palavras-chave Integração Neuro-Simbólica, Programação Lógica Indutiva, Rede Neu-

ronal, Aprendizado Profundo, Aprendizado Relacional, Aprendizado Meta-Interpretativo,

Aprendizado Online e Revisão de Teoria a partir de Exemplos

Contents

List of Tables xiii

List of Figures xv

List of Algorithms xvii

List of Acronyms xix

1 Introduction 1

2 Background Knowledge 9

2.1 Logic Fundamentals . 9

2.1.1 SLD-Resolution . 11

2.1.2 Inductive Logic Programming . 12

2.1.2.1 Meta-Interpretive Learning 13

2.1.2.2 Theory Revision from Examples 14

2.2 Neural Networks Fundamentals . 15

2.3 Online vs O✏ine Learning . 17

2.4 Related Work . 18

3 The NeuralLog System 23

3.1 NeuralLog: a Bridge from Logic Programming to Neural Networks 23

3.1.1 Fact Representation . 24

ix

x CONTENTS

3.1.1.1 Function Predicates . 24

3.1.1.2 Real-valued Data . 25

3.1.2 Rule Representation . 26

3.1.3 Network Construction . 33

3.2 NeuralLog Structure Learning Algorithms . 37

3.2.1 Meta-Interpretive Learning . 38

3.2.2 Online Structure Learner by Revision 40

3.2.2.1 Data Representation . 41

3.2.2.2 Theory Revision . 42

3.2.2.3 Accepting the Revision . 43

3.2.2.4 Clause Modifiers . 43

3.2.3 Online Meta-Interpretive Learning . 44

3.3 Discussion . 47

4 Experiments & Results 51

4.1 Parameter Learning . 51

4.1.1 NeuralLog in Comparison with Other Logic-based Systems 52

4.1.1.1 Methodology . 53

4.1.1.2 Results . 55

4.1.2 NeuralLog with Numeric Values . 59

4.1.2.1 Iris Dataset . 59

4.1.2.2 NCBI Disease Dataset . 61

4.2 Structure Learning . 62

4.2.1 Batch Structure Learning . 63

4.2.1.1 Methodology . 63

4.2.1.2 Results . 65

4.2.1.3 Comparison with Embedding Systems 66

CONTENTS xi

4.2.2 Online Structure Learning . 67

4.2.2.1 Simulating the Online Environment 68

4.2.2.2 Results . 69

5 Conclusions 75

5.1 Future Works . 77

References 79

A The NeuralLog Language 87

A.1 The Language . 87

A.1.1 Special Predicates . 88

A.1.1.1 Learn . 89

A.1.1.2 Example . 89

A.1.1.3 Mega Example . 90

A.1.1.4 Set Parameter . 90

A.1.1.5 Set Predicate Parameter . 91

A.1.2 Special Terms . 91

A.1.3 Syntax Sugars . 92

A.1.3.1 For-each Loop . 92

A.1.3.2 Wildcard Syntax . 93

A.1.4 Comments . 94

A.2 Compilation Process . 94

A.2.1 Facts Representation . 95

A.2.2 Functional Predicates . 96

A.2.3 Rules Representation . 97

A.2.4 NeuralLog Parameters . 97

A.2.4.1 Model Parameters . 98

xii CONTENTS

A.2.4.2 Training Parameters . 100

List of Tables

2.1 Kinship Example . 10

2.2 Metagol Higher-order Theory . 13

3.1 A Set of Facts in NeuralLog . 24

3.2 Higher-order Logic Theory . 40

3.3 Theory Example for the UWCSE Dataset . 41

4.1 Maximum Relation Depth . 54

4.2 Size of the Datasets . 54

4.3 Average Precision for Cora, UWCSE and WordNet Datasets 55

4.4 Area Under the ROC curve for Cora, UWCSE and WordNet Datasets 56

4.5 Average Precision for Yelp and PAKDD15 Datasets 57

4.6 Area Under the ROC curve for Yelp and PAKDD15 Datasets 57

4.7 Example of Learned Weights for WordNet and Cora Datasets 58

4.8 Results for the Named Entity Recognition on the NCBI Disease Dataset . . . 62

4.9 The Meta-Theory Used by NeuralLog+MIL 64

4.10 Results for the Filtered Rank Metric . 65

4.11 Example of Learned Rules and Weights for WordNet Dataset 66

4.12 Comparison with Embedding Systems . 66

4.13 Size of the Datasets . 68

xiii

xiv LIST OF TABLES

A.1 Mega Examples . 90

A.2 A Set of Facts . 95

A.3 Functional Predicate Definition . 97

List of Figures

1.1 Overview of the Components of NeuralLog . 3

2.1 SLD-Resolution Tree . 12

2.2 Multilayer Perceptron Example . 16

3.1 The Tensors from the NeuralLog Facts . 25

3.2 Example of the DAG representation (on the left-hand side) and the found

paths (on right-hand side) of the rule . 27

3.3 NeuralLog Network Example . 35

3.4 Meta SLD-Resolution Tree . 40

3.5 Tree Structure Representation of the UWCSE Theory Example 41

4.1 The Evaluation of the Cora Dataset . 70

4.2 The Evaluation of the UMLS and UWCSE Datasets 71

A.1 The Tensors from the NeuralLog Program . 96

xv

xvi LIST OF FIGURES

List of Algorithms

1 Find paths: algorithm to find the paths between the source and destination

terms . 29

2 Find clause paths: algorithm to find the paths between the sources and the

destination terms of a clause and the disconnected literals 30

3 Theory to construct a Multilayer Perceptron for the Iris dataset 60

4 Special NeuralLog Terms . 92

5 For-each Loop Syntax . 93

6 For-each Loop Example . 93

xvii

xviii LIST OF ALGORITHMS

List of Acronyms

@ILP Di↵erentiable Inductive Logic Programming

ANN Artificial Neural Network

BCP Bottom Clause Propositionalization

BERT Bidirectional Encoder Representations from Transformers

BK Background Knowledge

CWA Closed World Assumption

DAG Directed Acyclic Graph

ILP Inductive Logic Programming

ISG Iterated Structural Gradient

KB Knowledge Base

LCWA Local Closed World Assumption

LNN Logic Neural Network

LP Logic Programming

LRNN Lifted Relational Neural Network

LTN Logic Tensor Network

MIL Meta-Interpretive Learning

MLN Markov Logic Network

MLP Multilayer Perceptron

xix

xx LIST OF ACRONYMS

MRR Mean Reciprocal Rank

NEN Named Entity Normalization

NER Named Entity Recognition

NLP Natural Language Processing

NN Neural Network

OMIL Online Meta-Interpretive Learning

OSLR Online Structure Learner by Revision

RDN Relational Dependency Network

SLD Selective Linear Definite

SLP Stochastic Logic Programming

SRL Statistical Relational Learning

StarAI Statistical Relational Artificial Intelligence

UMLS Unified Medical Language System

Chapter 1

Introduction

Neural Networks (NNs) have achieved a great success on a wide range of tasks, given the

advance of deep learning techniques [1]. However, traditional neural network models cannot

take advantage of Background Knowledge (BK), which may contain additional information

about the examples as well as expert knowledge. On the other hand, Logic Programming

(LP) [2] uses logic programs to describe and to reason about structured and multi-relational

data, which pose as Background Knowledge [3]. However, LP struggles to deal with numeric

features, uncertainty and noise; which are inherent characteristics of real world applications.

The field of Neural-Symbolic Learning and Reasoning tries to combine the strengths of both

neural networks and logic programming, in order to obtain models that are both capable of

dealing with numeric features, uncertainty and noise and can also take advantage of existing

Background Knowledge [4].

In this work, we propose NeuralLog, a first-order logic language that is compiled to a neural

network. The main goal of NeuralLog is to bridge logic programming and deep learning in

order to exploit the advantages of these fields in both discrete and continuous data.

Another advantage of NeuralLog is that it allows the user to abstract the design of deep

neural networks by the use of a logic language, which would facilitate the use of deep learning

models by people that are not familiarized with common programming language.

In addition, NeuralLog also supports numeric attributes and the use of numeric functions,

which makes NeuralLog a very flexible language, and thus, provides the user the ability

to create generic neural networks; in contrast with some previous works in this field [5, 6],

that are restricted at combining logic with neural networks on discrete domains composed

of relations among entities. Furthermore, the logic program is mapped to a neural network

in such a way that the logic of the program can be easily identified in the structure of the

network and vice versa, making the model easier to interpret.

1

2 CHAPTER 1. INTRODUCTION

NeuralLog was designed to transform a first-order logic program into a neural network. It

receives as input a set of first-order rules that are used to define the neural network structure,

and a set of facts that become weights in the neural network. Then, those weights are fine-

tuned given a set of examples.

A great advantage of a system based on first-order logic is that we can rely on a wide range

of Inductive Logic Programming (ILP) algorithms in order to find logic theories from data.

ILP is a field of study concerned with developing algorithms to learn first-order logic theories

from a set of examples, given Background Knowledge [3].

In addition to the inference system of NeuralLog, we also propose three structure learning

algorithms to learn first-order logic programs from data in NeuralLog language. The first

structure learning algorithm presented is NeuralLog+MIL, a structure learning algorithm

based on Metagol [7].

Metagol [7] is a novel Meta-Interpretive Learning (MIL) system that uses higher-order logic

theory to define the possible clauses that shall appear in the first-order program. In addition

to defining the hypotheses space of the first-order program, the higher-order theory is also

used to navigate in this hypotheses space. We believe that the use of higher-order logic

to define the possible first-order program is well-suited to integrate with NeuralLog, since

it allows the user to precisely define the structure of the clauses that will be used in the

program.

Traditional structure learning systems such as [7–9] are designed to learn in batch

environment, where the examples are expected to be available at the beginning of the learning

process. However, given the availability of data sources where the data changes over time,

the need for online learning algorithms has been increasing. An online learning algorithm,

di↵erent from the batch learners, receives as input a stream of examples and adapts its model

to cope with the new examples [10].

In order to give NeuralLog the ability to learn in online environments, we implemented

NeuralLog+OSLR, a ported version of Online Structure Learner by Revision (OSLR) [11,12].

OSLR is an online-learning algorithm that applies theory revision to adapt an existing theory

to new arriving examples. We opted to use OSLR, since it is a novel theory revision approach

for Stochastic Logic Programming (SLP) [13], which achieved good results in comparison

with other methods [11,12]. In addition, OSLR has a clear separation of the revision theory

algorithm and the underlying inference engine, which makes it easier to port it to di↵erent

inference engines.

Inspired by the revision algorithm of Online Structure Learner by Revision (OSLR) and the

MIL approach of NeuralLog+MIL, we also propose NeuralLog+OMIL, an online structure

learning algorithm that uses the same revision mechanism of NeuralLog+OSLR, but it uses

a MIL operator to propose revisions in the logic theory, based on a higher-order theory. To

3

B'

E

Compilation Parameter
Learning

Structure
Learning

T

Neural Network
B

Prediction

E'
Serialization

Theory

T1

Figure 1.1: Overview of the Components of NeuralLog

the best of our knowledge, it is the first time that Meta-Interpretive Learning is applied to

online learning.

In order to better integrate the structure learning algorithms with the neural network aspects

of NeuralLog, we implemented the concept of clause modifiers, which takes the proposed

clauses from the structure learning algorithms and modify it to append attributes of neural

networks, such as activation functions or weights.

Figure 1.1 gives an overview of the components of NeuralLog. On the top part of the figure,

we have the parameter learning components, which will be described in details in Section

3.1. On the bottom part, we have the structure learning component, that will be described

in details in Section 3.2.

The parameter learning part is composed of two main components, the compilation

component, which takes a set of examples E and Background Knowledge B, composed

of a set of (weighted) facts and rules, as input and turns it into a neural network. While the

parameter learning component takes the neural network and a set of examples E and learns

the parameters, represented as the weights of the facts, in order to fit the examples. After

the parameter learning phase, we can use the neural network to compute the prediction E0 of

a set of examples; or we can store it back in logic form B0, by updating B with the adjusted

weights that were learned during the parameter learning phase.

In addition, NeuralLog also has a structure learning component. There are two paradigms

for structure learning with NeuralLog: batch (o✏ine) learning and online learning. For batch

learning, the component receives as input a Background Knowledge B, and the examples E;

4 CHAPTER 1. INTRODUCTION

and it appends a set of new rules to B which is then compiled into a neural network where

parameter learning can be performed as usual.

For online learning, in addition to the Background Knowledge and examples, the component

also receives a theory T as input, that can be empty, and is represented as the dashed square

in the figure. A theory is a set of logic rules, which di↵ers from the rules in the Background

Knowledge in the way that the rules in the theory can be changed by the structure learning

component, while the ones in the Background Knowledge are fixed.

Di↵erent from batch learning, online learning receives a stream of examples, where sets of

examples are arriving over time. When a set of examples arrives, the component uses these

examples to, possibly, propose a theory T1, by modifying the input theory T , which are then

compiled into a neural network; the parameters are trained on the examples, and the theory

and Background Knowledge with adjusted weights are stored. When another set of examples

arrives, this process is repeated, starting from the last proposed theory, with the last learned

weights, until no more examples are given.

It is important to notice that the structure learning component can make use of the

predictions of the neural network, on the set of examples, in order to propose changes to the

theory.

We compared NeuralLog, for parameter learning, with two state-of-the-art systems in

two very di↵erent domains: link prediction with TensorLog [14] and classification with

RelNN [15]. Our results show that NeuralLog outperforms TensorLog in three out of four

target relations in the Cora dataset [16], and in the UWCSE dataset [17]; while achieving

comparable results in the WordNet dataset [18]. In the classification tasks, NeuralLog

outperformed RelNN in both experimented datasets: Yelp and PAKDD15 [15]. NeuralLog

outperformed these two other systems on tasks for which they were designed, which supports

our claim that NeuralLog is a significant contribution towards a flexible neural relational

system.

Furthermore, we applied NeuralLog to a propositional classification task on the classic Iris

dataset [19,20], showing how one can define a Multilayer Perceptron (MLP) on the NeuralLog

language. In addition, in order to demonstrate the capacity of NeuralLog to integrate

with other neural network models, we applied NeuralLog to a Named Entity Recognition

(NER) task, using a state-of-the-art neural network model called Bidirectional Encoder

Representations from Transformers (BERT) [21], which is called as a logic predicate.

In our experiments to learn logic structure in batch environments, we compared

NeuralLog+MIL with Neural-LP [8], a neural network system that is based on TensorLog

[14], a system closely related to NeuralLog. We performed link prediction on three datasets:

UMLS [22], WordNet [18] and UWCSE [17]. NeuralLog+MIL achieved results comparable to

Neural-LP, for the hit at top 10 and mean rank metrics [23] for the UMLS and the WordNet

5

datasets; and outperformed Neural-LP in the UWCSE dataset.

Finally, in the online structure learning environment, we compared NeuralLog+OSLR and

NeuralLog+OMIL with the original OSLR approach [11, 12] and RDN-Boost [24], a system

that learn Relational Dependency Networks (RDNs) [25], which was also used in [11, 12].

Our experiments showed that NeuralLog+OMIL outperformed OSLR and RDN-Boost, for

link prediction, on three out of the four target relations from the Cora dataset and in the

UMLS dataset. While NeuralLog+OSLR and NeuralLog+OMIL can outperform OSLR and

RDN-Boost on the UWCSE, assuming a good initial theory is provided.

The main contribution of this thesis is NeuralLog, a framework for relational learning that

combines first-order logic with neural networks. We can summarize the contribution of

NeuralLog as follows:

• It is a flexible first-order language to describe neural networks for relational tasks;

• It allows the use of numeric attributes in the logic program, which allows the definition

of some neural network structures, such as Multilayer Perceptrons (MLPs), directly in

the logic language;

• It allows the user to call complex neural network structures as logic predicates;

• It has a structure learning algorithm to learn batch tasks, that can learn first-order

programs using MIL, a novel ILP framework;

• It has two structure learning algorithms to learn online tasks, which are based on

theory revision, one of which uses MIL to revise theories.

In order to access the value of this work, we performed experiments to answer five research

questions:

Q1 Can NeuralLog represent link prediction models?

Q2 Can NeuralLog represent classification models?

Q3 Can NeuralLog+MIL learn the structure representation of NeuralLog models for link

prediction tasks?

Q4 Can NeuralLog+OSLR and NeuralLog+OMIL learn the structure of NeuralLog models

online, by using theory revision, for link prediction tasks?

Q5 Can NeuralLog+OSLR and NeuralLog+OMIL benefit from a previous existing theory,

when learning the structure of NeuralLog models online, for link prediction tasks?

6 CHAPTER 1. INTRODUCTION

In order to answer each of the first two questions, we compared NeuralLog with TensorLog

[14] and RelNN [15], respectively. The results of our experiments showed that NeuralLog

outperformed the other systems in most of the datasets, a�rmatively answering the

questions.

In order to answer the third question, we compared NeuralLog+MIL with Neural-LP [8].

NeuralLog+MIL achieved results comparable to Neural-LP in two of the three experimented

datasets, and outperformed Neural-LP in one of the experimented datasets, a�rmatively

answering the question.

Furthermore, to answer the last two questions, we compared NeuralLog+OSLR and

NeuralLog+OMIL with OSLR [11, 12] and RDN-Boost [24] in three datasets, where

NeuralLog+OSLR and NeuralLog+OMIL outperformed the other systems in two datasets,

starting from empty theories; and outperformed the other system in the third dataset,

whenever a good initial theory was available. Thus, we can a�rmatively answer the last

two questions.

We chose to compare NeuralLog with the systems mentioned above, because they are closely

related to NeuralLog in the tasks for which they were tested. Finally, this work directly

resulted in the following publications, which include the experiments presented here:

• Victor Guimarães and Vı́tor Santos Costa. Neurallog: a neural logic language. CoRR,

abs/2105.01442, 2021, which presents the NeuralLog language; the compilation process

of the first-order logic program into a neural network; and its inference and parameter

training mechanisms. This work is shown in this thesis in Sections 3.1 and 4.1;

• Victor Guimarães and Vı́tor Santos Costa. Meta-interpretive learning meets neural

networks. The Semantic Data Mining Workshop, SEDAMI 2021, 08 2021, which

presents our batch structure learning algorithm NeuralLog+MIL. This work is shown

in the Subsections 3.2.1 and 4.2.1; and

• Victor Guimarães and Vı́tor Santos Costa. Online learning of logic based neural

network structures. In Inductive Logic Programming, Athens, Greece, 2021. Springer

International Publishing, which presents our online structure learning algorithms,

NeuralLog+OSLR and NeuralLog+OMIL. This work is shown in Subsections 3.2.2,

3.2.3 and 4.2.2.

The motivation of this work was to develop a logic language capable of better integrating

neural networks with first-order logic, where the inference of the neural network is related

with the logic structure. The parameter learning experiments show that the NeuralLog

language is capable of representing neural networks for (relational) classification and link

prediction. In addition, the experiments with the Iris dataset [19, 20] and for the NER task

7

show how NeuralLog can be better integrated with traditional neural networks, due to its

capability of handling attribute predicates, which have numeric values.

Nonetheless, the structure learning experiments show that traditional ILP systems can be

easily ported to NeuralLog, contributing to advance the integration between first-order logic

and neural networks. In addition, it indicates that NeuralLog inference is related to the logic

theory, which makes it easier to interpret the meaning of NeuralLog models, by looking at

the logic theories and the learned weights.

The remainder of this thesis is organized as follows: we start Chapter 2 by giving the reader

Background Knowledge in order to better understand this work, and we finish this chapter

by presenting the works related to ours in Section 2.4; then, we present NeuralLog in Chapter

3; followed by the performed experiments in Chapter 4; we conclude this work in Chapter

5, also presenting some directions for future works. Finally, Appendix A gives a detailed

description of the syntax of the NeuralLog language.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background Knowledge

In this chapter, we give the fundamental knowledge and the notation required in order to

better understand this work.

We start by presenting the fundamentals of Logic Programming (LP), which is the base of

this work. In Section 2.1, we explain the fundamentals of LP, passing through first-order

logic, higher-order logic and finishing with theory revision. Then, in Section 2.2, we explain

the fundamentals behind neural networks. In Section 2.3, we compare online vs o✏ine

(batch) learning. Finally, in Section 2.4, we give an overview of works related to this thesis.

2.1 Logic Fundamentals

In this work we use first-order logic to represent and learn neural network models in multi-

relational tasks. First-order logic is a paradigm that uses a formal language in order to

represent knowledge and to reason about this knowledge [2]. The knowledge is composed of

logic entities, which may have relations among each other; while the reason is made through

logic rules. A set of Horn clauses will be referred hereafter as logic program or Knowledge

Base (KB).

In order to represent both the knowledge and to reason about it, we use Horn clauses [29].

A Horn clause has the form of:

h(.) b0(.) ^ · · · ^ bn(.).

Where h and bi are predicates and (.) are (possibly empty) lists of terms. A term can be

either a constant or a variable. A constant is represented by a string starting with a lower

case letter, while a variable starts with an upper case letter. The predicate, followed by

its terms, is called atom. A literal is either an atom or the negation of an atom, which is

9

10 CHAPTER 2. BACKGROUND KNOWLEDGE

Table 2.1: Kinship Example

(f1) father(andrew, james).

(f2) father(andrew, jennifer).

(f3) father(james, charlotte).

(r1) parent(X,Y) father(X,Y).

(r2) grandparent(X,Y) parent(X,Z) ^ parent(Z, Y).

represented with the not keyword in front of it. The atom h(.) is called the head of the

clause, while the conjunction of literals bi(.) is collectively called the body of the clause.

Although we do not consider negation in this work, we will still refer to the atoms in the

body of a clause as literals, in order to distinguish them from the atom in the head. If an

atom has no variables in it, we say that the atom is grounded. A clause that has an empty

body and no variables is called a fact and is used to define the knowledge; otherwise, it is

called a rule and is used to reason about the knowledge.

The arity of a predicate p is the number of terms n an atom of this predicate accepts, also

represented as p/n. An atom of arity 0 is called a propositional atom and is represented by

the name of the predicate, without parenthesis. For example, the fact rain. states that it

rains. In this work, we do not consider first-order functions, only numeric functions, as will

be described in more details in Chapter 3. We also limit the facts to have arity no greater

than two.

A fact represents the existence of a relation between entities. The relation is represented by

the predicate, while the entities are represented by the logic constants. An atom is proved

(considered to be true) whenever it exists as a fact in the KB, or it can be proved by rules

and facts from the KB. A variable is a term that can be replaced by a constant, in order to

make an atom equal to a fact in the KB.

A rule proves the atom in its head whenever there is a substitution of its variables that

proves all the literals in its body, possibly by using other rules. A negated literal not A is

proved whenever we fail to prove its non-negated form A.

Table 2.1 shows an example of the kinship dataset [30]. The first three lines are facts that

relate a fatherhood; and the remaining are rules that define the concept of parent and

grandparent, based on the predicate father/2.

We base the NeuralLog syntax on DataLog [31], adding the weighted fact syntax from

ProbLog [32]. DataLog is a first-order logic language without first-order functions.

2.1. LOGIC FUNDAMENTALS 11

2.1.1 SLD-Resolution

A common approach to perform inference of logic program containing a set of Horn clauses is

to use the Selective Linear Definite (SLD) clause resolution, also known as SLD-Resolution.

The SLD-Resolution starts from a goal we would like to answer. This goal can be either an

atom or a conjunction of atoms, often represented as a headless Horn clause. The result of the

SLD-Resolution is the substitution of the variables of the goal which proves it, with respect

to the knowledge base, if such substitution exists. One could also continue the resolution in

order to find all the possible substitutions. If the goal has no variables, it returns whether

it is proved or not.

The resolution starts by creating a SLD-Resolution tree, where the root node is the initial

goal and an empty variable substitution. Then, it tries to solve the first goal in the list of

goals of the root node by finding a Horn clause whose head can be unified with the goal. We

say that two atoms A and B can be unified if there is a substitution ✓ of the variables of the

atoms such as A✓ = B✓. In this case, the most general unifier is used, which is the simplest

variable substitution that makes both atoms equals, with respect to the knowledge base.

If a clause is used to solve a goal, a child node is created by replacing the goal, from the list

of the parent node, by the body of the applied clause with the substitution applied to the

clause, and the substitution of the child node becomes the used substitution appended to

the substitution of the parent node.

If the body of the clause is empty, in the case of a fact, the list of goals gets smaller. Whenever

the list of goals of a node becomes empty, we call this node a solution. Otherwise, if there

is no Horn clause that can be applied to a node, the path fails; in this case, the algorithm

backtracks to another path, if it exists.

This algorithm is applied recursively to the tree, usually in a depth-first order, until a solution

is found or no other path is possible. If a solution is found, it can either quit or backtrack to

find other solutions. Each solution node has an associated substitution that, when applied

to the original query, would produce a valid answer, given the KB.

Figure 2.1 shows a subset of the SLD-Resolution tree used to resolve the goal

grandparent(X, charlotte), given the KB in Table 2.1. Each edge contains the clause used

to create it alongside the substitution ✓ used to unify the goal from the parent node with

the head of the used clause. The underlined atoms in the nodes are the current goals. The

solution node is marked with a ⇤, while ⇥ nodes represent the end of a failed path. We

omitted some renaming substitution of variables for clarity.

The goal is to find all the grandparents of charlotte. In other words, all the valid substitutions

of the variable X. Finally, we can see that the only solution is the substitutions X/andrew,

12 CHAPTER 2. BACKGROUND KNOWLEDGE

meaning that andrew is the only grandparent of charlotte, given this specific KB.

grandparent(X, charlotte)

parent(X,Z), parent(Z, charlotte)

father(X,Z), parent(Z, charlotte)

parent(james, charlotte) parent(jennifer, charlotte)

parent(charlotte, charlotte)father(james, charlotte)

X = andrew ⇤

· · ·

⇥⇥

Clause r2

✓ = {Y/charlotte}

Clause r1

✓ = {Y/charlotte}

Clause f1

✓ = {X/andrew, Y/charlotte, Z/james}
Clause f2

✓ = {X/andrew, Y/charlotte, Z/jennifer}

Clause f3

✓ = {X/james, Y/charlotte, Z/charlotte}

Clause r1

✓ = {X/andrew, Y/charlotte, Z/james}

Clause f3

✓ = {X/andrew, Y/charlotte, Z/james}

Figure 2.1: SLD-Resolution Tree

The SLD-Resolution is the proof mechanism used by the Prolog interpreter [33], which is

proved to be sound and complete for sets of Horn clauses. We refer the reader to [34] for a

broader overview on first-order logic and SLD-Resolution.

2.1.2 Inductive Logic Programming

Inductive Logic Programming (ILP) is a subfield of machine learning which is concerned

with finding logic theories from examples [34]. Formally, given Background Knowledge (BK)

consisting of a set of logic rules and facts; and a set of examples E = E+ [E�, where E+ is

the set of positive examples and E� is the set of negative examples; ILP algorithms would

try to induce a hypothesis H, composed of a set of rules, which conforms with the constraints

below:

1. BK ^H ✏ E+, this is, H is complete; and

2. BK ^H 2 E�, this is, H is consistent.

A hypothesis that conforms with both constraints is said to be correct [34].

In real world applications, usually it is not possible to find a correct hypothesis. Thus, these

constraints are often relaxed, and the algorithms try to find a hypothesis that optimizes a

given metric.

There are several systems to learn logic programs, such as FOIL [35], Progol [36], Aleph [37],

among others. In the remaining of this subsection, we show two di↵erent ILP approaches

2.1. LOGIC FUNDAMENTALS 13

Table 2.2: Metagol Higher-order Theory

P (X,Y) Q(X,Y).

P (X,Y) Q(X,Z), R(Z, Y).

P (X,Y) Q(X,Z), P (Z, Y).

used in this work: Metagol, which is a Meta-Interpretive Learning algorithm; and Online

Structure Learner by Revision (OSLR), which is an online algorithm based on theory revision

from examples.

2.1.2.1 Meta-Interpretive Learning

Meta-Interpretive Learning is a method that learns first-order logic theories by the use of a

higher-order logic theory that will guide the search through the hypothesis space [7].

In first-order logic, the predicate names in the rules, which represent the relations between

the logic entities, are constant. In higher-order logic, those predicate names might also be

variables, and the logic inference system should find the substitution of the name in order

to prove the rule.

Metagol is a MIL system that uses a higher-order theory in order to construct a first-order

hypothesis consistent with BK and a set of examples [7]. Metagol achieves its goal by using

a modified Prolog meta-interpreter that transverses the higher-order theory in a similar way

a conventional first-order SLD-Resolution algorithm would do [33]. However, in the higher-

order resolution, the higher-order predicate symbols must also be substituted to first-order

predicates found in the BK.

Table 2.2 shows the higher-order theory used by Metagol. In this higher-order theory, P , Q

and R are higher-order variables, which shall be replaced by first-order predicate names; and

X,Y and Z are first-order variables, which work in the same way as in first-order theory.

These rules are applied to the examples in order to find the substitutions of both the higher-

order and first-order variables that prove the positive examples without proving the negative

ones. Then, the proof path of the meta SLD-Resolution tree will hold a set of instantiated

rules, where the first-order terms are transformed into variables in order to generate a first-

order theory.

In subsection 3.2.1, we show an example on how the construction of the first-order theory is

performed in our implementation of a MIL structure learning algorithm.

14 CHAPTER 2. BACKGROUND KNOWLEDGE

2.1.2.2 Theory Revision from Examples

Theory revision from examples is a subfield of ILP that focuses on modifying an initial

(partially correct) theory in order to improve it with respect to a new set of examples [38,39].

This characteristic of starting from a (possibly empty) initial theory in order to adapt it to

new examples makes theory revision a suitable candidate to be applied to online environment,

where new examples are arriving over time.

The top-level algorithm of a theory revision system can be described as four main steps: (1)

finding examples that are incorrectly classified by the current theory (model); (2) finding

the revision points, the points of the theory responsible for the incorrect classification of the

examples; (3) propose the application of the revision operators to these points, which will

propose changes in the corresponding part of the theory; and, finally, (4) deciding whether

the proposed changes must be applied to the theory.

Revision Points. The revision points are points in the theory responsible for misclassify-

ing some example. Those points can either be an entire rule or a specific literal in the body

of a rule, and they are usually categorized as follows:

• Specialization revision point: representing rules in the theory that participate in

the proof of negative examples. This kind of revision point indicates that the theory

is too generic and, thus, needs to be specialized in order to avoid such proves;

• Generalization revision point: representing literals in rules that prevent positive

examples to be proved. This kind of revision point indicates that the theory is too

specific and, thus, needs to be generalized in order to allow such proves.

Revision Operators. The revision operators are operators that can be applied to the

revision points in order to modify it to better describe the new examples. They are usually

classified in four categories:

1. Add rule: it appends a new rule to the existing theory in order to prove positive

examples. It can create a new rule based on an existing one or from scratch;

2. Delete antecedent: it erases literals from the body of a rule in order to make the

rule prove positive examples;

3. Delete rule: it erases a rule in order to avoid the proof of negative examples;

4. Add antecedent: it appends new literals to the body of an existing rule in order to

avoid the proof of negative examples by the rule.

2.2. NEURAL NETWORKS FUNDAMENTALS 15

The former two operators are called generalizing operators, while the last ones are called

specializing operators. Those are the four main revision operators. There are more revision

operators, but they are usually a combination of these ones.

It is important to notice that a revision operator proposes a revision to the theory. However,

such revision might not be implemented by the revising system, since it can hurt the

performance of the theory on current or previous examples. Deciding whether to apply

a revision to the theory is also part of the theory revision system. In addition, not all

operators are suitable to all revision points.

Normally, all suitable operators are applied to all revision points and the one that brings the

most improvement is implemented. Then, the algorithm can proceed to find new revision

points and to apply the revisions on them, following a greedy approach, until no further

improvement of the theory is possible [40].

2.2 Neural Networks Fundamentals

Artificial Neural Networks (ANNs), in this work, simply referred as Neural Networks (NNs),

are structures inspired by the human brain which are able to learn mathematical functions

to describe a set of examples [41].

In this work, it is su�cient to say that a Neural Network is a directed graph of layers, where

each layer receives as inputs the results of its income layers and computes its output based

on its inputs and its internal parameters. In this graph, there is a set of layers that are

called input layers, which represents the input of the NN and whose inputs are given from

the features of the examples. In addition, there is a set of output layers, whose output

represents the output of the NN.

Figure 2.2 shows an example of a Multilayer Perceptron (MLP), a simple neural network

which is composed of a sequence of fully connected layers [42]. A MLP network consists of

a single input layer, a sequence of hidden layers and a single output layer. Each layer is

internally composed of a number of neurons. The input layer has a neuron to represent each

feature of the example, while the output layer has a neuron to represent each label of the

example, this is, the result of the function we would like to learn. In this case, the input

layer has three neurons and the output layer has two neurons. This means that the function

we would like to learn receives, as input, three values and returns, as output, two values.

In a MLP network, all the layers are fully connected, this means that each neuron in a layer

receives as input the output of all the neurons from the previous layer. For each connection,

there is a weight, and the output of a neuron in a fully connected layer is given by the formula

f(
Pn

i=0wixi + b), where f is a di↵erentiable function, xi are the inputs of the neuron, wi

16 CHAPTER 2. BACKGROUND KNOWLEDGE

are the weights corresponding to the inputs and b is a bias. The weights and biases are

called the parameters of the neural network. In the internal layers, the function f is called

activation function; and in the output layer, it is called output function, and gives the result

of the neural network for the given example.

x0Input 0

x1Input 1

x2Input 2

u0

u1

u2

u3

v0

v1

v2

v3

y0 Output 0

y1 Output 1

Hidden

Layer 1

Hidden

Layer 2

Input

Layer

Output

Layer

Figure 2.2: Multilayer Perceptron Example

The goal of a neural network is to map the features of each example to a desired output. To

achieve this goal, the features of the examples are fed to the input layers, which pass them to

the inner layers connected to it, until it reaches an output layer. The final value of the output

layers is then compared with the desired values of the examples by a di↵erentiable function

called loss function. The closer the output of the neural network is to the expected value of

the example, the smaller the result of the loss function must be. Finally, the parameters of

the neural network are adjusted in order to minimize the loss function, which is called the

learning phase.

The usual way to adjust the loss of the NN is to use a gradient descent algorithm, which

di↵erentiates the loss function according to the parameters of the neural networks and adjusts

the parameters in order to reduce the loss of the network, possibly applying some sort of

regularization in order to prevent overfitting [43].

Recent neural network advances came in the field of deep learning, where several layers are

stacked to form deep neural networks. These advances come in the form of new network and

layer structures and better learning algorithms. A notable example is Bidirectional Encoder

Representations from Transformers (BERT) [21], a model that uses attention mechanism (a

mechanism that learns which part of the input is more relevant at a given moment) and

is trained on a large set of unlabelled text in order to achieve a good performance on text

processing tasks.

BERT has achieved state-of-the-art performance in several text processing tasks, including

2.3. ONLINE VS OFFLINE LEARNING 17

in our previous work, where we extracted diseases from biomedical scientific literature [44].

Although powerful, those models are hard to interpret. In this work, we propose a logic

language that is: on one hand, able to define neural network structures based on logic, thus,

easier to interpret; while, on the other hand, it can use complex neural logic structures which

have state-of-the-art performance. In addition, it can also combine both types of structures.

Since the input and output of the neural network are n-tuples of numeric values, they are

commonly represented as vectors. Consequently, MLP layers are represented as matrices,

and the computation of the neural network is performed by multiplying the input vector by

the matrix of the layer, summing the bias and applying the activation function, element-wise.

Then, the output of a layer is passed as input to next layer, until the output layer is reached.

This matrix representation is the foundation of the NeuralLog knowledge representation, as

will be shown in Chapter 3.

2.3 Online vs O✏ine Learning

Conventional machine learning algorithms are designed for batch (o✏ine) learning. This is,

they start on a learning phase, where they receive all the available examples, then they train

on those examples to create a model that will be used during the test/production phase.

If new examples become available, in order to incorporate their knowledge, the algorithm

would need to create a new model, from scratch, to replace the current one.

In order to take advantage of already existing models, online learning algorithms were

proposed. Di↵erent from batch learning algorithms, online learning methods take the current

model as a starting point and try to modify it in order to cope with the new examples.

Online learning algorithms are usually applied to stream of data, where examples are arriving

over time and the algorithm keep adapting the model to also describe the new examples [10].

Theory revision from examples is a suitable technique to be applied to online learning, since

it starts its process from an existing theory and adapts it to new examples. In this case,

it would always start using the current model as the initial theory and adapt it, according

to the new arriving examples. Then, the new theory will become the current one and the

process would continue to the new examples.

Another advantage of using theory revision is that it can start from a pre-existing logic

theory, allowing the use of expert knowledge, if present. It is known from other studies that

starting from an initial theory, even if it is only partially correct, may improve the quality

of the model even on the presence of fewer examples [40, 45,46].

18 CHAPTER 2. BACKGROUND KNOWLEDGE

2.4 Related Work

The combination of ILP with deep learning can leverage deep learning the ability of

handling relational data while addressing the problem of uncertainty and noise from Logic

Programming. The integration of logic reasoning and neural networks is precisely the goal

of Neural-Symbolic Learning and Reasoning [4].

Furthermore, other approaches that try to address the logic problem of uncertainty and

noise without using neural networks exist. Most of them achieve this goal by combining

logic with probabilist and/or statistic frameworks. Those approaches are known by di↵erent

names such as Stochastic Logic Programming (SLP) [13] and Statistical Relational Learning

(SRL) [47], among others; which have recently been generically called Statistical Relational

Artificial Intelligence (StarAI) [48].

There are many ways to combine first-order logic with neural networks, from using logic

features as input to other machine learning models [5, 49] to the use of logic rules to define

the structure of the neural network [6, 50–54].

Our approach is more closely related to the latter, where all the logic knowledge is embedded

on the neural network weights and structure. In addition to NeuralLog language, which

describes the structure and weights of a neural network through a logic program, we also

propose structure learning algorithms to learn NeuralLog program from examples.

The field of Neural-Symbolic Learning and Reasoning is receiving a lot of attention in the

recent years. In this section, we will focus at works that combine first-order logic with neural

networks and are closely related to NeuralLog.

These works can be divided into two types: (1) the ones that represent logic as neural

networks; and (2) the ones that learn a neural network structure based on logic. Notice

that NeuralLog is related to both types, since it is capable of representing logic as neural

networks and also of learning the neural network structure.

CILP++ [50] is an extension of C-IL2P [6] that deals with first-order logic. C-IL2P is

a system that generates a neural network from a set of propositional Horn clauses. The

author of [50] proposes a Bottom Clause Propositionalization (BCP) to extend the network

creating mechanism from C-IL2P to first-order logic. BCP extends the Progol’s bottom

clause mechanism [55] to deal with a set of examples while keeping track of the variable

substitution of the terms among the examples. The bottom clauses are then used to build a

neural network.

Lifted Relational Neural Network (LRNN) [52] consists of a set of weighted, non-recursive

and function-free Horn clauses and facts that are used to instantiate a ground neural network

for each example to be predicted. It uses the first-order rules to ground a di↵erent neural

2.4. RELATED WORK 19

network model for each example, that can be optimized by using gradient descent in order

to tune the weights of the facts and the rules. In addition, the weight of equal facts and

rules are shared among the di↵erent grounded neural networks.

The drawback of propositionalization, which is used by [50, 52], is that neural network

structure depends on the example to be predicted, which may cause the system to change

the structure of the neural network based on the example [50]; or to create a di↵erent neural

network for each example [52], which might be computationally expensive.

Riegel et al. [56] proposes a method which converts a logic program composed of weighed

formulas, propositions and facts into a Logic Neural Network (LNN), which is used to predict

lower and upper bound values for logic formulas. It is trained using a two-passing approach,

where an upward passing adjusts the bounds of the formulas given the propositions and

facts, then a downward passing adjusts the weights of the proposition and facts, given the

bounds of the formulas. At each passing, the bound of the formulas are tightened, and this

process is repeated until convergence.

LNN requires a set of real-value activation functions to return suitable values for logic

conjunctions, disjunctions, and 8 and 9 first-order qualifiers. Since the inference of the

network returns a lower and upper bound, twice the number of functions is required to

properly compute both the lower and upper bounds.

TensorLog [14] is a system that performs inference of first-order logic by using numeric

operations. It represents the logic facts as matrices and performs logic inference through

mathematical operations on those matrices. It defines a belief propagation method to

compute the value of variable in a rule through di↵erentiable operation on the matrices.

In this way, it can use an out-of-the-shelf gradient descent algorithm in order to train the

weights on a set of examples.

This transformation of logic into a di↵erentiable operation allows a closer integration between

the logic method and neural network structures. However, TensorLog is limited in the set

of logic rules it supports, for instance, it does not support logic rules with free variables

in its body (this is, variables that appear only once in the rule). This limitation might be

prejudicial in some tasks, as we show later on our experiments.

Similarly to TensorLog, RelNN uses matrices and vector operations to perform relational

learning, using convolution neural networks [15]. They use the number of logic proves of the

rules as features, that can also be combined into other rules, multiplied by weights, added to

bias, and passed as input to activation functions. A considerable limitation of RelNN, in the

version used in our experiments, is that the structure of the neural network is hard-coded

into the system, despite it being based on a logic program. This makes it hard to apply

RelNN to di↵erent tasks, since one would have to know the internal API defined by the

system in order to define di↵erent neural networks.

20 CHAPTER 2. BACKGROUND KNOWLEDGE

Another well-known work that relies on matrix representation is Logic Tensor Network (LTN)

[57], which uses a tensor network [58] to predict the confidence of logic formulas. LTN

defines logic entities as numeric vector in IRn, where n is defined by the user. Then, they

apply matrices operations on those vectors in order to fit a set of examples. The set of

operations is defined by a logic program and the goal is to find the matrices and/or the

vector representation of the logic entities that satisfies the set of example.

A negative aspect of LTNs [57] is that they represent logic entities as vectors that might

either be handcrafted by human, which might be cumbersome; or be latent features learned

from data, whose meaning is hard to interpret.

DeepProbLog [59] combines neural networks with logic by adding neural predicates to

ProbLog [32]. ProbLog is a probabilistic logic system that follows Sato’s semantics [60]

of possible worlds [32]. DeepProbLog extends ProbLog by adding neural predicates, which

are predicates whose value is given by the output of a neural network. It integrates the

learning mechanism of ProbLog with neural networks, and uses gradient descent to jointly

learn the parameter of ProbLog and the neural networks representing the neural predicate. A

downside of possible worlds semantics is that its inference can be computationally expensive.

Di↵erentiable Inductive Logic Programming (@ILP) [61] defines a way of inferring logic rules

through di↵erentiable operations, so it can use a template to generate a set of logic rules

and learn the weights of those rules by applying a gradient descent algorithm to fit a set of

examples. However, @ILP [61] has several constraints on the logic programs it supports, such

as the number of clauses for the same predicate in the head and the number of literals on the

body of the clause. Shindo et al. [62] improves upon @ILP by relaxing some of its constraints.

In addition, it proposes another structure learning method based on the refinement of general

clauses.

Similarly, Neural-LP [8] proposes an end-to-end di↵erentiable framework, based on

TensorLog [14], to learn both the Horn clauses and its parameters to infer new facts from a

knowledge base. In order to achieve this, the authors restricted themselves to a very restrict

subset of Horn clauses, which forms a linear path between the variables in its body and

has a maximum length of T , defined by the user. Then, Neural-LP uses a recurrent neural

network [63] to decide how to combine the rules from this restrict hypotheses space.

The idea of applying MIL to other inference mechanisms based on first-order is not novel.

Iterated Structural Gradient (ISG) [9] proposes to apply MIL to learn theories for ProPPR

[64], a Stochastic Logic Programming (SLP) system [13]. However, ProPPR uses a di↵erent

inference mechanism that cannot be easily integrated with deep learning.

Meta-Interpretive Learning is well suited to integrate with NeuralLog, since the higher-order

theory allows the user to define a template in order to create the relational part of the logic

theory. This template can be used to append the relational part to an existing theory, which

2.4. RELATED WORK 21

might include the definition of an existing neural network. Furthermore, the higher-order

theory may also be used to find the logic part that integrates with the neural network part,

by specifying a constant predicate that will pose as a connection point between the logic

part and the neural network.

We implemented the Online Structure Learner by Revision (OSLR) theory revision algorithm

as our online learning mechanism [11, 12]. We opted for this algorithm because it has a

clear separation between the structure learning algorithm and the underneath inference

mechanism, which allowed us to easily port it to work with NeuralLog. Finally, the flexibility

of OSLR allowed us to implement a new MIL revision operator to apply Meta-Interpretive

Learning online. To the best of our knowledge, it is the first time that MIL is applied to

online learning tasks.

22 CHAPTER 2. BACKGROUND KNOWLEDGE

Chapter 3

The NeuralLog System

In this chapter we present NeuralLog. NeuralLog is a system based on a first-order logic

language of same name, which compiles programs written in the NeuralLog language into

neural networks, in order to perform learning tasks. In addition, the NeuralLog system o↵ers

three structure learning algorithms to find first-order logic theories based on examples.

First, we present the NeuralLog language and how it is compiled into a neural network.

Then, we present the algorithms we use, in order to learn first-order logic theories from

examples, in this language; thus, learning structure of the neural networks generated by

NeuralLog. Finally, we conclude this chapter by discussing the position of NeuralLog among

related works.

We will refer to both the system and the logic language as NeuralLog. Whenever it is not

clear, from the context, to which one we are referring, we will explicitly indicate it.

3.1 NeuralLog: a Bridge from Logic Programming to Neural

Networks

The NeuralLog language is a first-order logic language designed to be compiled into a neural

network, in order to perform relational tasks. Its syntax is based on DataLog [31], a well

known logic language, that is often used as query language in databases.

Since neural networks require numeric inputs, we have to transform the logic KB into a

numeric form. In order to achieve this goal, we represent each set of facts from a predicate

as a (sparse) numeric tensor with n dimensions, where n is the arity of the predicate. This

transformation will allow us to compute the inference of the rules through di↵erentiable

algebraic operations on those matrices, similar to how it is done by [14].

23

24 CHAPTER 3. THE NEURALLOG SYSTEM

Table 3.1: A Set of Facts in NeuralLog

parent/2 male/1 Index

parent(a, c). male(a). 0: a

0.5 :: parent(b, c). male(d). 1: b

0.3 :: parent(c, d). 2: c

3: d

3.1.1 Fact Representation

Let us consider that a NeuralLog program is composed of a set of facts F , a set of entities

E and a set of rules R; where each fact may have at most two arguments and always has an

associated weight, which will be 1, if omitted.

We first construct an index for E by assigning a distinct integer value in [0, n) to each entity

e 2 E, where n = |E|. Then, for each binary (arity 2) predicate p 2 F , we create a matrix

P 2 IRn⇥n where Pij = w if there is a fact p(ei, ej), with weight w, in F ; where i and j

correspond to the indices of the entities ei and ej , respectively. All the remaining entries of

the matrix are set to 0.

We make an analogous process to the unary (arity 1) and propositional (arity 0) predicates,

where the unary predicates are represented by vectors in IRn and propositional predicates

are scalar in IR. Similarly, a logic constant is represented by an one-hot vector, which have

the value of 1 for the entry correspondent to the index of the entity in E, and the value of

0 for the other entries.

Table 3.1 shows a set of weighted facts, in NeuralLog language, for the predicates parent/2

and male/1. The last column of the table shows the corresponding index of each logic entity.

In addition, Figure 3.1 shows the tensor representation for the facts on Table 3.1, where the

P matrix represents the facts of predicate parent/2, the M vector represents the facts for

predicate male/1, and the a and b vectors represent the a and b logic constants, respectively.

3.1.1.1 Function Predicates

In addition to the logic predicates, NeuralLog also supports the definition of function

predicates. Instead of relying on a logic definition, a function predicate has an associated

di↵erentiable function that is applied to its input vector. This function must be di↵erentiable,

because it will become part of the constructed neural network, and the gradient descent

algorithms used to tune the weights of the neural network require di↵erentiable functions.

The user can provide the implementation of the desired function and associate it to a

3.1. NEURALLOG: A BRIDGE FROM LOGIC PROGRAMMING TONEURAL NETWORKS25

P =

a b c d

a

b

c

d

0 1

0

0

0

0

0

0.5 0

0 0 0.3

0 0 0 0

M =

a b c d

0 01 1

1 00 0b =

0 01 0a =

Figure 3.1: The Tensors from the NeuralLog Facts

predicate or simply use a predicate whose name matches a function provided by TensorFlow’s

Keras API in order to use that function. This di↵erentiable function may be simple functions,

other neural network layers, or even a whole neural network model.

3.1.1.2 Real-valued Data

One of the goals in the design of NeuralLog was for it to support numeric value data in

a seamless way with the logic representation. In order to achieve this goal we allow the

definition of numeric terms.

These numeric terms must be associated with logic constants by the use of binary predicates

in the form of p(e, a), where e 2 E and a 2 IR. We call this form of predicate as an attribute

predicate, since it defines a numeric attribute value for an entity in the KB.

NeuralLog uses two vectors, pw 2 IRn and pv 2 IRn, in order to describe an attribute

predicate p. For each fact p(e, a), with weight w, of the predicate p in F , the vector pw

stores the weight w in the position corresponding to the entity e, while the vector pv stores

the value a, in the same position. The positions whose facts are not presented in the KB are

set to 0.

This definition of numeric values in the terms of the logic predicate allows a more flexible

use of those values in the NeuralLog program, since the value of the numeric attributes can

be captured by logic variables in the definition of rules. This logic variables can, then, be

passed to function predicates in a clearer way.

26 CHAPTER 3. THE NEURALLOG SYSTEM

3.1.2 Rule Representation

We can now proceed to the rule representation, since we have already defined the

representation of the facts. The key idea behind NeuralLog is to transform a logic program

into a neural network, in such way that the rule inference can be performed by the neural

network through matrix operations. In such neural network, the structure is defined by the

rules in the NeuralLog program, while the weights are defined by the facts.

The goal of NeuralLog is to find all possible entities that might replace the variable Y ,

associated with the entity X = a, with relation p, for a given query of the form ?� p(X,Y);

with respect to the knowledge base and the clauses.

In order to compute the value of Y for the query, consider first the most simple case: a

KB composed of facts for a single binary predicate p/2. We start by representing this KB

in numeric form, as explained above. This will result in a matrix P , representing the facts

and a one-hot row vector a, representing the entity, which contains the value 1 for the

entry corresponding to the entity, and the value 0 anywhere else. In this representation,

we compute Y = aP , representing the matrix multiplication between a and P . Finally,

the vector Y will contain the weights, at the corresponding entries, for each logic entity

related to a, given the relation p. In the other direction, if we would like to compute the

vector for the entities X related to a where Y = a, we would transpose matrix P such as

X = aP | = (Pa|)|. This is equivalent to assuming that, for each relation p 2 KB, there is

an inverse relation p�1 such that 8a, b 2 E, p(a, b) = p�1(b, a).

In addition, this method is extended to unary and attribute predicates by using the

element-wise multiplication, also known as the Hadamard product, instead of the matrix

multiplication; and to propositional facts, by multiplying the vector by the scalar weight of

the propositional fact.

This approach can be extended to queries that form a path, of the form ?�p(X,Y)^q(Y, Z),

where we want to compute the values of Z given X, by first computing Y as above and then

computing Z such as Z = Y Q, since Y = aP , we have that Z = aPQ, where Q is the

matrix representation of the predicate q/2. It is also the base of TensorLog [14]. However,

NeuralLog extends this approach in a di↵erent way, in order to compute the output values

of any arbitrary rule.

Given an arbitrary rule, we first create an undirected graph representation of the rule, where

the nodes are the terms in the rule; and there is an edge between two nodes if they both

appear together in the same literal of the body of the rule, only considering literals whose

arity is greater than 1. Then, we define the last term in the head of the rule as the output

(destination) node and the remaining terms in the head as input (source) nodes.

We perform a breadth-first search in this graph, in order to find all paths from the source

3.1. NEURALLOG: A BRIDGE FROM LOGIC PROGRAMMING TONEURAL NETWORKS27

X Z Y w

V

U

p0(X,Z)

p1(X,Z)

p2(Z, Y)

p3(X,V)

p4(U, Y)

any(V, Y)

any(X,U)

(a) The DAG representation of the rule (without

loop predicates)

Z Z V U

X

Z Z

Y Y

Y Y

p0 p1 p3 any

p5 p5 any p4

p2 p2

(b) All paths from X to Y represented as a tree

Figure 3.2: Example of the DAG representation (on the left-hand side) and the found paths

(on right-hand side) of the rule

nodes to the destination node. We constrain ourselves with rules whose arity of the head are

greater than 0, and we use a topological order to disallow back-edges and loops, making it

a Directed Acyclic Graph (DAG).

Figure 3.2 shows an example of the DAG (3.2a); and the found paths (3.2b), as a tree, of

the rule below:

target(X,Y) p0(X,Z) ^ p1(X,Z) ^ p2(Z, Y) ^ p3(X,V) ^ p4(U, Y) ^ p5(Z) ^ w. (3.1)

Since we do not allow cycles, some nodes may not appear in any path between the source

and the destination. Which is the case of V and U , in this example. However, from a logic

perspective, such nodes might influence the output value of Y . In order to account for the

influence of these type of nodes we use a special any/2 predicate, inspired by TensorLog [14],

that is essentially true for any pair of terms.

In NeuralLog, there are two possible cases where this predicate can be used:

1. Nodes that have a path from the source, but the path does not reach the destination:

in this case, we add the any/2 predicate to connect the node to the destination, as is

the case of the edge V � Y shown in Figure 3.2a;

2. Nodes that have a path connected to the destination, but the path does not reach the

source: in this case, we add the any/2 predicate to connect the node to the source, as

is the case of the edge X � U shown in Figure 3.2a.

28 CHAPTER 3. THE NEURALLOG SYSTEM

The addition of the any/2 predicates allows the neural network to account for the influence

of those nodes.

To illustrate how the influence of such nodes is important in the inference of logic rules,

consider the following rules:

advisedBy(X,Y) student(X).

advisedBy(X,Y) professor(Y).

In the first rule, X (source) is not connected to Y (destination), however, the student

predicate must be considered, since only entities that are student must be proved by the

rule. The any/2 predicate takes this into account by connecting X to Y . Analogously for

the second rule, where the output must be a professor.

In order to find the any/2 predicates from the second case, we restart the path searching

process from the destination to the source, if there are nodes in the rule that are not included

in any path. Then, we add the reverse of the found paths to the set of paths of the clause.

By calling the searching algorithm, inverting the source and the destination, the second case

of the any/2 predicate is treated in the same way as the first case.

This process is repeated until no new edges are added to the graph. The search always

terminates, since the number of steps is bounded by the number of nodes in the graph.

Algorithm 1 shows how to find the paths between two terms in a clause, and the list of

nodes that are included on these paths; while Algorithm 2, which uses Algorithm 1 as

subroutine, describes the process of finding all paths in the clause.

The function get non loop literals(clause) returns all the literals from the clause that do not

represent a loop in the graph representation, this is, literals with arity greater than 1, whose

input terms are di↵erent from the output term; the remaining literals, if any, are loop literals.

The function get literal with term(literals, terms) returns all the literals l 2 literals that

contain the term in it. The function compute end term(path, literal) computes the term

that represents the end of path, when the new literal is appended to it. Finally, the function

append loops to paths(clause, paths) appends the loop literals for each path p 2 paths.

Given the found paths, which are the result of Algorithm 2 applied to the rule, we construct

a DAG representation of the rule. Equal edges in di↵erent paths are collapsed into a single

edge; and di↵erent incoming any/2 edges to the destination are represented as a single

any/n literal, where n is the number of distinct terms appearing in all these edges, where

the destination is the last term. All unary predicates (which would represent a loop in the

graph) are then added to their correspondent node. The any/n predicate represents a set

of any/2 predicates that has the same destination. The order of the input terms in the

any/n predicate is not specified and does not a↵ect its result, since the inputs are computed

independently and are then combined through an element-wise multiplication, which does

3.1. NEURALLOG: A BRIDGE FROM LOGIC PROGRAMMING TONEURAL NETWORKS29

Algorithm 1 Find paths: algorithm to find the paths between the source and destination

terms

Input: The clause (clause); the source term (source); the destination term (destination);

the visited nodes (visited nodes); and all source terms (sources set);

Output: The paths from the source terms to destination; and the visited nodes

1: function find paths(clause, source, destination, visited nodes, sources set)

2: completed paths []

3: partial paths [[source]]

4: edge literals get non loop literals(clause)

5: while |partial paths| > 0 do

6: size |partial paths|
7: for i 0; i < size; i++ do

8: path pop left(partial paths)

9: if end(path) = destination then

10: completed paths completed paths+ [path]

11: continue to next for iteration

12: not added path True

13: for each literal 2 get literal with term(edge literals, end(path)) do

14: new end compute end term(path, literal)

15: if new end 2 path or new end 2 sources set then

16: continue to the next iteration of the for-each loop (line 13)

. path comes back to itself or to another input

17: new path path+ [literal, new end]

18: if new end = destination then

19: completed paths completed paths+ [new path]

20: else

21: partial paths partial paths+ [new path]

22: visited nodes visited nodes [literal

23: not added path False

24: if not added path then

25: completed paths completed paths+ [path+ [ANY, destination]]

26: completed paths append loops to paths(clause, completed paths)

27: return completed paths, visited nodes

30 CHAPTER 3. THE NEURALLOG SYSTEM

Algorithm 2 Find clause paths: algorithm to find the paths between the sources and the

destination terms of a clause and the disconnected literals

Input: The clause (clause); and the destination term index (dest index);

Output: The paths from the source terms to destination; and the disconnected grounded

literals;

1: function find clause paths(clause, dest index)

2: sources clause.head.terms

3: compute reverse True

4: destination source[dest index]

5: if |sources| > 1 then

6: sources.remove[dest index]

7: else

8: compute reverse False

9: all paths {}
10: all visited nodes {}
11: sources set set(sources)

12: for each source 2 sources do

13: visited nodes {}
14: paths, visited nodes

find paths(clause, source, destination, visited nodes, sources set)

15: all paths all paths [paths

16: all visited nodes all visited nodes [visited nodes

17: if compute reverse and clause.body * all visited nodes then

18: destination source

19: for each source 2 sources do

20: sources set set(clause.head.terms)�{destination}
21: backwards paths, all visited nodes

find paths(clause, source, destination, all visited nodes, sources set)

22: for each backwards path 2 backwards paths do

23: path reverse(backwards path)

24: all paths all paths [{path}

25: disconnected literals get disconnected literals(clause, all visited nodes)

. gets the grounded literals that does not belong to any path

26: return all paths, disconnected literals

3.1. NEURALLOG: A BRIDGE FROM LOGIC PROGRAMMING TONEURAL NETWORKS31

not depend on the order of the factors.

The inference of the rule, given its inputs, is represented by the result of the destination

node in the DAG, multiplied by any disconnected grounded literal in the body of the rule.

Those are grounded literals that do not appear in any path, which include the propositional

literals. Since they do not have variables, they are represented as scalars. It is important to

notice that, in the example above, w is a propositional predicate, whose weight is represented

by a scalar, and not a term.

In order to compute the result of a node, we combine the values of its incoming edges by an

element-wise multiplication (representing a logic AND); then we combine the values of the

unary predicates of the node, if any, in the same order as they appear in the rule.

In order to compute the value of an edge (which represents a literal) we multiply the vector

representing the input term of the edge by the matrix representation of the edge’s predicate.

If the predicate is represented as a vector (in the case of unary predicates), we perform an

element-wise multiplication, instead. If it is an attribute predicate, we perform the element-

wise multiplication between the input term, the weights and the attribute vectors. Since

we need the values of the incoming nodes to compute the value of the current node, we

recursively traverse the DAG, starting from the destination node, until we reach a source

node, whose value is given by the input.

The any/n predicate has a special treatment. First, it is important to notice that the any/n

predicate can only appear in two specific situations, as enumerated above: (1) connecting

the end of a path to the destination; or (2) connecting an input term to the beginning of

a path that will lead to the destination (which was computed from the destination to the

input and then reversed).

In order to compute the first case of the any/n predicate, for each term of the predicate,

except the last one, we compute the vector resulting from the term and sum it to get a

scalar. For the last term (which is always the destination term of the rule), we compute

the vector resulting from this term, based on its unary predicates, by passing a 1 vector (a

vector where every entry has value 1) as input value for the predicates; then, we multiply it

by the scalar representation of the previous terms.

Intuitively, the result represents the multiplication of the sum of the results of each (any)

term by the results of each (any) entity of the last term. The final result is combined with

other possible edges, arriving at the destination term. In this case, the unary predicate is not

combined with the final result, since it has already been combined by the any/n predicate.

The second case of the any/n predicate occurs when we have edges connected to the

destination that do not lead to any input. As such, the first n � 1 terms are input terms

and the last term T is the beginning of the path that leads to the destination. In this case,

32 CHAPTER 3. THE NEURALLOG SYSTEM

we pass a 1 vector (a vector where every entry has value 1), representing the value of the

term T , and continue the computation of the path as usual. In numeric terms, the 1 vector

represents the union of all (any) logic constants in the KB. In logic terms, the node represents

a free variable in the rule, thus, the result of the rule does not depend on it, meaning that

it is valid for any constant substitution of this variable.

Finally, the result of the rule is the resulting vector of the output node, multiplied by the

weights of all grounded literals in the rule. In the example, the weight of w is multiplied

by the final result of the rule, acting as the weight of the rule, since rules do not have

associated weights. We restricted the weight to only facts, in order to make it easier to

define which weights should be learned by the neural network. This approach does not

reduce the expressiveness of NeuralLog, since we can include the weights to the rules in the

form of literals. Furthermore, it allows the user to share the same weight among di↵erent

rules, if desired.

In addition, NeuralLog allows the use of numeric functions. The functions are applied, in

order of appearance in the rule, to the computed vector of its inputs. There is no explicit

di↵erence between functions and logic predicates in the NeuralLog language. The di↵erence

is that logic predicates have facts defined in the KB and the computations are given by

multiplying the input terms with the matrix (or vector) representation of the facts of the

predicate; while the result of function predicates is the application of the function to the

input terms. These functions can be any di↵erentiable function, including other network

layers or even whole network models.

Moreover, if a relation involves a constant, we multiply the input (output) variable with the

vector representation of the input (output) constant, which represents a logic AND between

the input (output) variable and the constant.

In order to better illustrate this process, allow us to consider one more time the facts

described on Table 3.1 and shown on Figure 3.1 alongside the rule described on Equation

3.2, which define the grandfather relationship using the available predicates. This is a simple

example that illustrates the idea behind NeuralLog inference mechanism.

grandfather(X,Y) male(X) ^ parent(X,Z) ^ parent(Z, Y). (3.2)

In order to represent this rule, and then perform the inference of it, we first apply Algorithm

2 to find all the paths between X and Y , the variables in the head of the rule. Then, we can

construct a DAG from the single existent path X ! parent! Z ! parent! Y , which will

be used to compute the rule. Finally, we also have to include the “loop” literal male(X).

Given this DAG and the values from the Table 3.1, we can compute the value of Y for a

given constant given as input X. If we would like to compute the rule for X = a, we would

3.1. NEURALLOG: A BRIDGE FROM LOGIC PROGRAMMING TONEURAL NETWORKS33

have that X = a �M (element wise), than Z = XP , and, finally, Y = ZP = [0, 0, 0.3, 0],

which indicates that a is grandparent of c (the third entity from the logic base) with value

0.3. If we would like to repeat this process for b, we would get an all zeros vector for Y ,

since b is not a male and would be filtered out on the first step.

Consider a logic program composed of a set of rules, where which rule describes a single

path between the input and the output variables, possibly containing unary predicates on

the existing variables in the body of the rule; no recursions; and a set of facts containing

only positive weight. In this case, we can compute the intermediary variable in the rule, by

multiplying the input variable by the matrix representation of the relation, similar to the way

the neighbours of a node can be computed using the adjacent matrix of a graph; and we can

filter the variables that appears in unary relation by doing an element-wise multiplication

between the vector of the variable and the vector representation of the relation. Assuming

that the non-zero values of the output vector represent proved entities, we can retrieve the

same logic semantics for this subset of NeuralLog programs.

However, NeuralLog is not restricted to this very limited subset of logic programs, and

the equivalence with the logic inference is relaxed in exchange for flexibility to define more

complex programs, which is important to improve performance on certain tasks, as we will

show in Chapter 4. Nonetheless, we try to follow the logic intuition as much as possible,

which may facilitate the interpretation of the model by humans. In the next section, we

explain how to construct a full neural network, by generalizing it to any kind of NeuralLog

program.

3.1.3 Network Construction

We have explained how we represent the knowledge base facts and how to compute an

individual rule defined as a Horn clause. In this subsection, we show how to construct the

complete neural network from a NeuralLog program.

In order to build the neural network, we start by creating a Literal Layer for each target

predicate, which are the predicates found in the examples. This literal layer receives as

input all the clauses (rules and facts) that share its predicate in their heads. The output of

a literal layer is the sum of the results of the Fact Layer (represented by the matrix of facts

in the KB) and the Rule Layers of the target predicate, given the input terms of the literal,

similarly to [52]. The sum of the results represents a logic OR.

The output of the Fact Layer is the input vector multiplied by the matrix (or vector) of

the weights of the facts in the KB. For attribute facts, their weights and value vectors are

combined by an element-wise multiplication.

Recursively, for each rule connected to the target predicate node, we create a Rule Layer,

34 CHAPTER 3. THE NEURALLOG SYSTEM

and connect the correspondent Literal Layers from the rule’s body, as its inputs. The result

from Algorithm 2 is used to define the internal structure of the rule layers. We represent

function predicates in the body of the rules as Function Layers, the output of a function

layer is the application of the function to the vector representation of its input terms. The

computation of the rule layer is performed as explained in the section above, using the

computation performed by the literal layers, instead of multiplying the matrices of the facts.

We repeat this process until no more layers are created.

In this way, we unfold the network from the structure of the logic rules, similarly to [51].

However, our language allows the use of attribute predicates and functions. Whenever a

recursion is found in the rules, it is unfolded until a pre-defined depth. Since the rule

inference operation is di↵erentiable, the unfolding of the rules, and thus, the whole neural

network, is di↵erentiable.

The Literal Layers of the target predicates receive as input the vectors corresponding to

their input terms, and represent the inputs of the neural network; while the result of these

layers represents the output. Note that if we want to compute an inverted literal, by going

from the last term of the literal to the first, we can simply use the transpose matrix of the

relation, for the fact layer; and compute the reversed paths, for the rule layers.

The depth of the neural network is defined by the logic program, and the user can create a

hierarchy of abstract concepts by defining new predicate through rules, on top of the facts

in the knowledge base.

Figure 3.3 shows the neural network created by NeuralLog, from the target/2 rule in

Equation 3.1. In the figure, Pi 2 IRn⇥n for i 2 [0, 4] are the matrices representations of the

predicates pi/2 of the rule; p5/1 is a functional predicate whose function is P5 : IRn ! IRn;

T represents the matrix representation of the facts for the target/2 predicate; and n is the

number of distinct entities in the NeuralLog program. X is a row vector representing the

input of the neural network, while Y is a row vector representing the output. Vector letters

followed by 0 (prime) sign(s) represent intermediary values of the corresponding logic variable

(in the rule), represented by the same letter.

Each rounded rectangle represents a layer, and each layer has its output expressed by the

equation in it, and the output of the rule layer is the combination of the outputs from its

inner layer. The ⌦ represents the element-wise multiplication of its inputs; the � represents

the element-wise sum of its inputs; and the operations between matrices and vectors, in the

equations, are matrices multiplications.

We also assume that the target/2 predicate is defined by a set of facts and a single rule,

in the background knowledge; and all the remaining logic predicates are defined exclusive

through logic facts, and no rules. If there were more rule layers for a given predicate, it

would be added to its literal layer, and their results would be summed with the facts of this

3.1. NEURALLOG: A BRIDGE FROM LOGIC PROGRAMMING TONEURAL NETWORKS35

X +

Literal Layer target/2

Fact Layer target/2
Y' = XT

Rule Layer
target(X, Y) ← p0(X, Z) ∧ p1(X, Z) ∧ p2(Z, Y) ∧ p3(X, V) ∧ p4(U, Y) ∧ p5(Z) ∧ w.

Literal Layer p0/2

Literal Layer
any/2 (case 1)×

×

Function Layer p5/1
Z = P5(Z''')
P5: Rn → Rn

Fact Layer p0/2
Z' = XP0

Fact Layer p1/2
Z'' = XP1

Fact Layer p3/2
V = XP3

Fact Layer p2/2
Y'' = ZP2

Fact Layer p4/2
Y'''' = UP4

Fact Layer w/0
w

Literal Layer p1/2

Literal Layer p3/2

Literal Layer p2/2

Literal Layer w/0

Literal Layer p4/2

Y''' = ∑Vi
i = 1

n

Literal Layer
any/2 (case 1)

Literal Layer
any/2 (case 2)
U = [1, ..., 1] ∈ Rn

Y

Figure 3.3: NeuralLog Network Example

predicate, as is done for the target/2 predicate.

In order to construct the whole network described on Figure 3.3, we start by getting the

target predicate target/2 and creating the literal layer for it. Then, we add the fact layer for

the target/2 predicate to its literal layer, in order to account for the facts of the predicate.

After that, for each rule containing the target/2 predicate in the head, we create a rule layer,

and we add it to the fact layer. Finally, the input of the network is the input of the fact

layer for the target/2 predicate, while the output of the network is the output of the layer.

In order to create the rule layer, we start from the rule for the target/2 predicate described

in Equation 3.1, the only rule in our example. We apply the Algorithm 2 to the rule, in order

to find the paths between the input and output terms of the rule. These paths are then used

to construct the DAG of the rule. Then, we use the DAG to construct all the literal in the

paths from X to Y , by applying the same procedure to the inner literal on the rule.

In this example, we continue to create the literal layer for the p0/2 predicate, which is

composed of the fact layer for the predicate. Analogously, we create the literal layer for the

p1/2 predicate and combine the output of both by applying an element-wise multiplication

to them, which represents a logic AND. After, we construct the function layer for the

predicate p5/1, which applies a function to the output of the element-wise multiplication,

finally computing the value of the variable Z. Then, we can create the literal layer for p2/2,

which will compute one of the components of Y , that is described by this path.

36 CHAPTER 3. THE NEURALLOG SYSTEM

We continue this process until all the layers for the rule are constructed, then we connect

all the path to Y , inside the same rule, with an element-wise multiplication, representing

the conjunction (AND) of the literal in the body of the rule. The results of di↵erent rules,

for the same predicate in the head, are combined with an element-wise sum, alongside the

results of the fact for this predicate, which represents the logic OR.

The layer for the case 1 of the any/2 predicate shows the computation of the any(V, Y)

literal by computing Y 000 =
Pn

i=1 Vi. Furthermore, it can be generalized for the any/n

predicate, to compute the output of the literal any(X1, . . . Xn�1, Y) by using the formula

Y 0 =
Qn�1

i=1 (
Pm

j=1Xij), where m is the number of distinct entities in the logic program.

In order to learn a task from data, we allow the user to specify predicates whose weights

will be adjusted from the examples. In this way, the weights of those predicates will become

parameters to be learned in the neural network. Those weights can be adjusted as usual

during the learning phase of the neural network and, thereafter, the new values of those

weights can be saved back to NeuralLog’s logic program.

Saving the weights back into logic form is important for two reasons: (1) it allows us to better

interpret the weights learned by the network, by analysing where these weights appear, for

example, in which facts and which rules use these facts; and (2) it allows the online learning

mechanism to change the learned neural network by changing only the logic theory and still

keeping the learned weights that are not involved in the changes, for instance, it can add a

new rule with a new fact whose weight will be learned, without changing the weight of facts

used by other rules.

NeuralLog is implemented in Python [65] using TensorFlow [66] as backend and its source

code is publicly available1. Using TensorFlow as backend allows NeuralLog to transparently

run on di↵erent hardware such as CPU and GPU (or other acceleration hardware for neural

network) as long as it is supported by TensorFlow.

Although NeuralLog provides a very flexible approach, it has some limitations, for instance,

it is unable of handling propositional predicates in the head of the rules, since it would

not be possible to specify a source and a destination in order to create the paths. We also

limited the use of facts to predicates with arity up to two, since TensorFlow, in its used

version (2.0), cannot handle sparse tensors with more than two dimensions, and the use

of dense tensors to represent facts with arity greater than two would easily consume too

much memory. Although not a negligible limitation, it is also presented in other works such

as [7, 14]. On the other hand, predicates with arity greater than two are allowed when used

as target predicates, since one can provide more information for each example; and they

are also allowed in the rules, to combine di↵erent information, facilitating, for instance, the

definition of siamese networks [67].

1https://github.com/guimaraes13/NeuralLog

https://github.com/guimaraes13/NeuralLog

3.2. NEURALLOG STRUCTURE LEARNING ALGORITHMS 37

Moreover, di↵erent from TensorLog [14], NeuralLog can handle free variables in rules, this

is, variables that appear only once in the rule, as described above. This capacity allows

NeuralLog to represent more complex logic theories, which may lead to better performance

on relational tasks, as we will show in Chapter 4.

We opted to use multiplication to represent the logic AND and summation to represent the

logic OR because, although simple, they provide similar meaning to what we would expect

from logic programs.

It is important to point out that our goal is to use a first-order logic language in order to

describe a neural network model. For logic programs containing facts with positive weights;

rules with binary predicates in their head and bodies that form a path between the input

and output variable in the head, and possibly unary predicates on existing variables in the

rule; and no recursion; the semantics of the neural network is equivalent to the first-order

semantics, considering that the non-zero entries of the resulting vector Y , for the query

? � p(a, Y), computed by the neural network, would coincide with the logic entities proved

by a logic inference system.

This follows from our design of considering logic AND as multiplication and logic OR as

summation. Given a logic query ?� p(a, Y), we want to compute all the entities related to a

through relation p. Following our matrix representation, we have that the multiplication of

the one-hot row vector representing a by the matrix representing p will result in a row vector

with non-zero values in the position of the entities connected to a, assuming all weights are

positive and missing facts have zero weight. Analogously, we can compute the result of an

arbitrary path rule, by computing the result of the inner variables at each step of the path.

Since, in logic, a relation can be proved by any rule or fact, and since we sum the result of

the di↵erent rules and facts, we retrieve the logic OR from logic, given positive weights.

However, NeuralLog is not restricted to this subset of logic programs. Instead, it allows the

user to define di↵erent types of neural networks, where the logic language is used to define

how the entities relate to each other, while the semantics of the network may be di↵erent

from the semantics of a traditional logic program. This semantics is given by the way the

network is constructed, as described in this section, and it is partially learned from the

examples and the gradient descent mechanism, which adjusts the weights of the facts.

Finally, we give more details about the NeuralLog language itself in the Appendix A.

3.2 NeuralLog Structure Learning Algorithms

In this section, we present the di↵erent algorithms used by NeuralLog in order to learn

first-order logic programs from examples.

38 CHAPTER 3. THE NEURALLOG SYSTEM

The syntax of NeuralLog is based on DataLog [31], which is a subset of Prolog [33], a widely

used language in the ILP community. There are several structure learning algorithms based

on Prolog, or similar languages, such as: FOIL [35], Progol [36], Tilde [68], ALEPH [37],

among others. Each of these algorithms implements a di↵erent way of navigating through

the hypotheses space, in order to find the best logic theory to describe a set of examples,

given the background knowledge.

In addition to traditional structure learning algorithms, which find rules to describe

examples, given the background knowledge, there are theory revision algorithms, which are

able to modify existing rules in the background knowledge, in order to better describe the

set of examples. FORTE [40] is a well-known theory revision algorithm that revises theories

by identifying the revision points and applying revision operators to these points. Other

works propose to improve FORTE; some examples of these works are: FORTE-MBC [45],

which uses the concept of Bottom Clause [36] to define the hypotheses space for FORTE;

and YAVFORTE [46], which employs stochastic search for FORTE.

Some of those structure learning algorithms can be easily integrated to NeuralLog, in order

to find logic theories in the NeuralLog language, then, these theories are compiled to neural

network models. We ported two of those algorithms to NeuralLog, namely: Metagol [7], a

system that uses a higher-order logic program in order limit the hypotheses space and guide

the search of the solution; and Online Structure Learner by Revision (OSLR) [12], a system

designed to learn a logic theory in an online manner, where the examples are arriving over

time.

Moreover, we propose a novel learning algorithm, by combing Metagol and OSLR. It relies

on the online learning algorithm of OSLR, but uses Metagol’s higher-order logic mechanism

in order to search for the possible revisions of the theory.

We give more details about each one of these three structure learning algorithms in the

subsections below.

3.2.1 Meta-Interpretive Learning

We first introduce the NeuralLog+MIL, a structure learning algorithm based on Metagol [7],

which is a Meta-Interpretive Learning system.

Meta-Interpretive Learning is a method that learns first-order logic theories by the use of a

higher-order logic theory that will define the hypotheses space and guide the search of the

hypothesis in this space [7].

In first-order logic, the predicate names in the rules, which represent the relations between the

logic entities, are constant. In higher-order logic, those predicate names might be variable,

3.2. NEURALLOG STRUCTURE LEARNING ALGORITHMS 39

and the logic inference system should find the substitution of these names in order to prove

the rule.

Metagol uses a modified Prolog meta-interpreter that generates a first-order logic theory

that proves the positive examples, without proving the negative ones, given the background

knowledge. It does it by traversing a higher-order theory in a similar way a SLD-Resolution

algorithm would do [33].

NeuralLog+MIL takes a slightly di↵erent approach: instead of adding rules to the first-order

theory as needed, it creates a first-order theory by adding all possible rules that satisfy the

higher-order program, given a pre-defined depth. Each rule will then receive an associated

weight and an activation function.

This approach is better suited to be integrated with NeuralLog, since a single neural network

is created and the task to find the weight of the rules is passed to the neural network

optimization process. If we had followed Metagol’s approach, we would have to create

and evaluate several intermediary neural networks, which would be more computationally

expensive.

Given a higher-order theory and a target predicate p, NeuralLog+MIL creates a “meta”

SLD-Resolution tree, starting with a list of goals [q], replacing its terms by distinct variables,

as the root node. Then, for each node in the tree, a child node is created by applying a

meta-clause that unifies with one of the goals in the node; in the same way a conventional

SLD-Resolution method would. The new child node is created with the list of goals from

the parent node, with the goal whose rule was applied replaced by the body of the unified

meta-clause.

We grow this tree, breadth-first, by applying all possible meta-clauses to all goals in all nodes

until we reach the maximum depth. Each edge represents the application of a meta-clause

whose head was unified to the used goal in the parent node. For each path from the root to

a leaf, we have a meta-program with variable predicates to be instantiated.

Finally, for each meta-program we generate a first-order program by replacing the set of

variable predicates for each possible predicate in the knowledge base. The final program is

the concatenation of all generated clauses in all the programs.

For instance, consider the higher-order theory in Table 3.2 and a target predicate p/2. The

tree would start with the root node containing the goal [p(X,Y)], referred here as level 0. By

applying each clause to the goal of the root node, we would end up with two nodes at level

1: the node [Q(X,Y)], generated by the unified clauses p(X,Y) Q(X,Y).; and the node

[Q(X,Z), R(Z, Y)], generated by the unified clause p(X,Y) Q(X,Z)^R(Z, Y). After the

addition of both nodes, the level 1 would be complete.

40 CHAPTER 3. THE NEURALLOG SYSTEM

Table 3.2: Higher-order Logic Theory

(1) P (X,Y) Q(X,Y).

(2) P (X,Y) Q(X,Z) ^R(Z, Y).

[p(X,Y)]

[Q(X,Y)] [Q(X,Z), R(Z, Y)]

[Q0(X,Y)] [Q0(X,Z), R(Z, Y)]

[Q00(X,Y 0), R0(Y 0, Z), R(Z, Y)] [Q0(X,Z), Q00(Z,Z 0), R0(Z 0, Y)]

p(X,Y) Q(X,Y). p(X,Y) Q(X,Z) ^R(Z, Y).

Q(X,Y) Q0(X,Y). Q(X,Y) Q0(X,Z) ^R(Z, Y).

Q0(X,Z) Q00(X,Z 0) ^R0(Z 0, Z). R(Z, Y) Q0(Z,Z 0) ^R0(Z 0, Y).

Figure 3.4: Meta SLD-Resolution Tree

If we would like to go further in the resolution, we could apply the meta-clause to each goal

in the nodes and keep adding new nodes until a pre-defined depth. Figure 3.4 shows an

example of part of a tree until depth 3; where some nodes were omitted for clarity.

3.2.2 Online Structure Learner by Revision

Online Structure Learner by Revision (OSLR) [12] is a system developed to learn logic

theories in an online fashion, originally based on ProPPR [64]. It relies on theory revision

techniques in order to adapt an existing theory to cope with new arriving examples. In this

subsection, we present NeuralLog+OSLR, our implementation of OSLR to learn theories in

the NeuralLog language.

The top-level revision algorithm implemented by OSLR is as follows: when new examples

arrive, they are placed into a tree structure that represents the logic theory; then, a revision

is proposed to the point of the theory that has the biggest potential to bring a gain for the

theory; after, the revision is evaluated against an accepting criterion; finally, the revision

is either accepted or rejected and the algorithm evaluates the next revision, until no more

revision points are changed by the current examples, when the algorithm waits for further

examples.

NeuralLog+OSLR follows the OSLR top-level algorithm with minimal changes, in order to

make it better suited for neural networks. In the remainder of this subsection, we resumed

the OSLR algorithm implemented by NeuralLog+OSLR, in order to keep this work self-

contained. In addition, we point out the di↵erences between NeuralLog+OSLR and the

original OSLR. However, we refer the reader to [11, 12], for a more detailed explanation

3.2. NEURALLOG STRUCTURE LEARNING ALGORITHMS 41

advisedBy(X,Y) . . .

taughtBy(C, Y)falsepublication(Z,X)

publication(Z, Y) false falseta(C,X)

hasCourse(C,Z) false inPhase(X,W)

Figure 3.5: Tree Structure Representation of the UWCSE Theory Example

Table 3.3: Theory Example for the UWCSE Dataset

advisedBy(X,Y) taughtBy(C, Y) ^ ta(C,X) ^ hasCourse(C,Z).

advisedBy(X,Y) taughtBy(C, Y) ^ ta(C,X) ^ inPhase(X,W).

advisedBy(X,Y) publication(Z,X) ^ publication(Z, Y).

about OSLR.

3.2.2.1 Data Representation

Online Structure Learner by Revision (OSLR) starts by constructing a tree representation

of a (possibly empty) theory for each target predicate. This tree structure represents all the

rules in the theory, whose head predicate is equal to the target predicate. The root of the

tree represents the head of the rules for the target predicate, while the other nodes represent

the literals in the body of the rules. The level immediately after the head represents the

literals in the first position in the body of the rules, and there will be a node for each di↵erent

literal in the first position. The next level represents the literal in the second position and

so on. For each internal node in the tree (nodes that are not leaves), a default false node is

appended as child. The false nodes are always leaves.

This tree structure plays two roles: the first one is to identify revision points on the theory;

the second, is to store the examples that shall be used to revise those points. Figure 3.5

shows an example of the tree representation of the theory shown in Table 3.3.

Each path from the root of the tree to a non-false leaf represents a rule in the theory. Rules

that are a subset of another rule are not considered. The leafs in the tree represent the

possible revision points and are shown as squares in Figure 3.5.

When a new example, for the target predicate, arrives, we pass it through the tree to decide

where it will be placed. The example starts in the root, then it is recursively passed through

42 CHAPTER 3. THE NEURALLOG SYSTEM

the nodes in the tree as describes: for each node u in the children nodes of the current node

v, if the (partial) rule from the root to u proves the example, we pass the example down to

u. If the example is not proved by any of the children nodes of v, it is placed in the false

node connected to v. This process is repeated until the example reaches the leaves of the

tree. If the example is proved by more than one child node, it goes to all the nodes that

prove it.

3.2.2.2 Theory Revision

After placing the arrived examples in the correspondent leaves, all the leaves that received

examples are candidates to be revised. OSLR uses a heuristic function in order to sort the

revision points to prioritize the ones that may have the bigger impact in the evaluation of

the theory. This heuristic is simply the number of misclassified examples in the leaf. The

number of misclassified examples is the number of positive examples, in the case of a false

leaf; or the number of negative examples in the case of a non-false leaf.

In order to propose the revision to the theory, it uses revision operators that are applied to

the revision points. There are two possible operations to revise the tree: adding new nodes

to the tree; or removing nodes from the tree. OSLR applies all the possible operators to

each revision point and uses the examples contained in the point in order to evaluate the

revision on the theory.

Adding Node. It can be applied to both false and non-false leaves. When applied to a

false leaf, the new nodes are used in order to generate a new rule that starts from the root

until the parent of the false leaf. This new rule will be added to the theory in order to make

the theory more generic and it is an attempt to prove positive examples that fell in the false

leaf. On the other hand, adding node to a non-false leaf extends the path from the root

to the new leaf, thus, extending the rule and making the theory more specific, which is an

attempt to avoid proving false examples in the non-false leaf. There are two algorithms to

select the nodes to be added, both relying on the concept of the bottom clause [36]: the

hill-climbing, which tries to add a candidate literal at a time, until certain stop criteria is

met; and the relational path-finding [69], which tries to find a path between the variables of

the example.

Deleting Node. It can be applied to non-false leaves or to false leaves whose parent has

a single non-false child and this non-false child is also a leaf; this approach is described as

Alternative 1 in [11]. When applied to the false leaf, it deletes the literal represented by the

sibling node, in an attempt to make the theory more generic, in order to prove the positive

examples in the false leaf. When applied to a non-false leaf, it deletes the rule represented

3.2. NEURALLOG STRUCTURE LEARNING ALGORITHMS 43

by the leaf, in an attempt to make the theory more specific and to avoid proving negative

examples.

After applying all the possible revision operators to a given revision point, the operator that

better improves the performance of the theory, given the examples in the revision point,

is selected to be evaluated against the acceptance criterion, which will be discussed in the

following subsubsection.

The adding node operator is actually two distinct revision operators, one for the hill-climbing

and another for the relational path-finding. Thus, alongside the deletion operator, they all

compete among each other and the one that achieves the best result for the revision point

is selected.

3.2.2.3 Accepting the Revision

Once the operator that has the biggest metric in a given revision point is selected, OSLR

uses a threshold to decide if the improvement of the revised theory over the current theory

is significant.

This threshold is based on the Hoe↵ding’s bound [70] and is given by the equation:

✏ =

r
R2 ln 1/�

2n
(3.3)

where R is the size of the range of the given metric, n is the number of examples used in the

evaluation and � is a parameter defined by the user. An improvement larger than ✏ means

that the probability of the revised theory to be actually better than the current theory is

1� �.

The examples used to evaluate the theories are the ones in the revision points. If the

improvement of the revised theory over the current one is greater than ✏, the revision is

accepted and the examples used to evaluate it are discarded. Otherwise, the revision is

discarded and the examples are unchanged. After either case, the algorithm continues to try

to revise the remaining revision points, if there are any revision points left to be revised.

3.2.2.4 Clause Modifiers

In OSLR, after a revision is accepted, a feature, in the ProPPR language [64], is generated

for the rule that was modified by the revision. This is the point that the implementation of

NeuralLog+OSLR and OSLR di↵ers the most.

NeuralLog language does not support the ProPPR features, although, in some cases, they

might be similar to the addition of a literal to the rule whose weight should be learned by

44 CHAPTER 3. THE NEURALLOG SYSTEM

the neural network.

As such, instead of computing the features in the same way OSLR would do, which would

select a subset of terms in the rule to have associated weights to be learned, we create a

unique weight for each rule, which is learned by the neural network and is independent of

the instantiation of the terms in the rule. Our experiments, using OSLR, showed that the

di↵erence between this approach and the original one is minimal, for the used datasets.

The addition of the weight is done by a clause modifier, which append the weight to the body

of the revised rules. These weights are represented in the form of a literal, with a unique

constant for each rule; and this literal is marked as learnable in the NeuralLog language.

More details of how to mark a predicate to be learned by the neural network can be found

in Appendix A.

In addition, to append a literal to the rule with a unique constant, we have two more clause

modifiers that are useful for the neural network construction.

The first one is a clause modifier that appends a literal to the rule with a term from the

head of the rule. This modifier is used to append an activation function for the rule, whose

term must be the last variable in the head of the rule.

The other modifier changes the predicate name of the head of the rule to another name, by

appending a su�x at the end of the name. This modifier is useful to learn a set of rules that

indirectly proves the examples.

For instance, suppose one wants to learn examples from the predicate p/2 without changing

rules that have the p/2 predicate in the head. One could add the rule p(X,Y) p1(X,Y).

to the background knowledge and use a clause modifier to change the head of the rules,

learned from the examples, from p/2 to p1/2.

This is specially useful in the definition of neural networks, because it allows the user to

isolate the learned part of the theory and to add neural network components around it. The

use of those clause modifiers will become clearer in our experiments in Chapter 4.

3.2.3 Online Meta-Interpretive Learning

In this work, we propose a novel approach by combining the MIL hypotheses search strategy

with the online learning mechanism from OSLR. We call this approach Online Meta-

Interpretive Learning (OMIL) and its NeuralLog variation, NeuralLog+OMIL.

In order to achieve such a goal, we created a new revision operator that uses the MIL search

strategy to propose new nodes in the OSLR tree representation. Then, we used the same

NeuralLog+OSLR machinery, replacing the three original revision operators by our MIL

3.2. NEURALLOG STRUCTURE LEARNING ALGORITHMS 45

revision operator.

In order to reuse NeuralLog+OSLR machinery, we have to slightly adapt the

NeuralLog+MIL algorithm, so it can work with the OSLR tree structure.

The first di↵erence between NeuralLog+OMIL and the NeuralLog+MIL is that

NeuralLog+OMIL does not return a concatenation of all the programs generated by the

higher-order theory, as NeuralLog+MIL does. Instead, it evaluates a modified version of

the current theory, with each set of clauses generated by each node from the meta SLD-

Resolution tree; and it returns the first modified theory whose evaluation is greater than the

Hoe↵ding’s bound threshold, if such theory exists. It uses a breadth-first search to grow the

tree and evaluates the sets of clauses in the order they are generated.

The second di↵erence between both systems is that NeuralLog+OMIL is applied to a node

in the tree representation structure, and not to the income example itself. In this way, the

first clause generated by the MIL operator should be a rule of the form p(.) , where

p(.) is the node in the tree where the operator was applied.

Instead of adding all the clauses generated by the operator, we get the body of the first rule

and use its literals as the proposed node to be appended to the tree, as does the adding nodes

operators from NeuralLog+OSLR. In the same way as NeuralLog+OSLR, if the operator is

applied to the false leaf, it uses the new nodes to create a new rule whose body starts with

the path from the root to the parent of the false leaf node in the tree. On the other hand,

if it is applied to a non-false leaf, it uses the new literal to replace the literal represented by

the leaf.

In order to give the OMIL operator more information, we change the variables of the target

atom, depending on the situation.

Root node. When the operator is applied to the false leaf of the root node, we use the

predicate of the example as target atom; in this case, the operator tries to learn a rule to

directly predict the examples.

Propositional literal. When the literal has no variables, the target atom is a special

predicate name, only used inside this operator, with the same variables as the head of the

rule. This will inform the operator the input and output variable of the rule.

Literal connected to the output. When the target literal is connected to the output,

it will be the target atom. In this way, the same terms of the target literal will be used by

the operator.

46 CHAPTER 3. THE NEURALLOG SYSTEM

Literal disconnected from the output. When the literal is not connected to the output,

the target atom will have the special predicate name, and the variables will be the input

variable of the disconnected literal and the output variable of the rule. As such, the operator

will be able to find a body which connects the input of the literal to the output of the rule,

closing this path.

These modifications to the target atom gives the OMIL operator enough information in order

to find meaningful rules: (1) having the information about the input and output variables

of the rule in the first two cases; (2) the information about the final part of a path in the

rule in the third case; and (3) the information about an open path and the output variable

of the rule, in the last case.

How this information is used will depend on the higher-order theory. However, it allows the

user to define meta-rules that might: (1) create new paths, (2) replace the final part of an

existing path, or (3) close an existing open path; respectively.

The remaining clauses generated by the operator, for a given node, are added to the theory,

as usual. It only happens if the depth of the application of the meta-clauses is bigger than 1.

These additional clauses must be added to the theory, because they might define predicates

that were invented by previously generated clauses.

Finally, the third di↵erence between the systems is that we add two special rules to the

higher-order theory:

P (X,Y) true.

P (X,Y) false.
(3.4)

These special rules are used in order to get the deletion behaviour from NeuralLog+OSLR.

The true literal is a special literal that is always true. Since the body of a rule in a conjunction

of literals, in order words, represents a logic AND between the literals, the addition of a

literal that is always true does not change the result of the conjunction, as such, it can be

removed from the rule. When the true rule is applied to a literal, the literal is replaced by

the true literal, that is not added to the rule, since it will have no e↵ect on it, thus, the

application of this rule represents a literal removal.

On the other hand, the false literal is a special literal that is always false. A rule whose

body includes a false literal will always fail to be proved, as such, it can be removed from

the theory. Thus, the application of the false rule to append a literal in the body of a rule

will result in the deletion of the rule from the theory.

Both rules only have e↵ect when applied to a non-false leaf. Applying it to a false leaf would

not have any a↵ect. For the true rule, it would generate a rule whose body is a subset

of another rule, which is not allowed by the OSLR algorithm. For the false rule, it would

3.3. DISCUSSION 47

result in an attempt to create a new rule with the false literal in the body, which would be

discarded and the theory would remain the same.

After the proposal of the modification of the theory, by the operator, the clause modifiers

are applied to the modified rule as usual, which will be the rule formed by the existing tree

and the literal in the body of the first clause generated by the higher-order theory.

Consider again the tree shown in Figure 3.5 and the rule P (X,Y) Q(X,Z) ^ R(Z, Y).

shown in Table 3.2.

If the rule is applied to the root node, by trying to prove the examples in its false leaf, the

target atom would be advisedBy(X,Y) and the operator will propose a new rule in the form

advisedBy(X,Y) Q(X,Z) ^ R(Z, Y)., where Q and R will be replaced by two binary

predicates from the knowledge base.

If the rule is applied to the leaf publication(Z, Y), the target atom would be the literal

itself and the operator will propose a rule of the form publication(Z, Y) Q(Z, Y 0) ^
R(Y 0, Y). In this case, the literal will be replaced by the body of the proposed rule, changing

the rule advisedBy(X,Y) publication(Z,X) ^ publication(Z, Y). to advisedBy(X,Y)
publication(Z,X)^Q(Z, Y 0)^R(Y 0, Y). Once again, Q and R will be replaced by two binary

predicates from the knowledge base.

Finally, if the rule is applied to the leaf hasCourse(C,Z), the target atom would be

new pred (C, Y). The term C in the target atom is because it is the input of the literal,

given by the rule advisedBy(X,Y) taughtBy(C, Y) ^ ta(C,X) ^ hasCourse(C,Z)., and

the term Y is because it is the output of the rule, this is, the last variable of the head.

The operator will propose a rule of the form new pred (C, Y) Q(C,Z 0) ^ R(Z 0, Y).

where the body would replace the hasCourse(C,Z) in the original rule. This will give the

higher-order theory the chance to close the path from Z to Y , which is open in the current

rule.

As in the previous cases, the higher-order predicates Q and R are replaced by first-order

predicates from the knowledge base. The permutations are evaluated in no particular order,

and the first one to exceed the Hoe↵ding’s bound threshold is returned, if any; otherwise,

the theory is kept unchanged.

3.3 Discussion

In this section, we show how NeuralLog relates to other systems that use logic language to

generate neural networks, and to systems that learn logic structures that are used as neural

networks.

48 CHAPTER 3. THE NEURALLOG SYSTEM

Di↵erently from systems such as [50,52], NeuralLog does not rely on propositionalization in

order to create the neural network, instead, the neural network is directly created based on

the first-order rules and facts. Furthermore, NeuralLog generate a single neural network for

the task, independently of the example at hand. In addition, a single neural network can be

used to predict more than one target relation, and weights might be shared among di↵erent

(target) relations.

NeuralLog uses the same underlying idea of systems like TensorLog [14], by representing logic

facts as matrices and performing mathematical operations to compute logic rules. However,

it di↵ers from TensorLog in two main aspects: (1) in the way the logic rules are compiled to

a neural network; and (2) by treating numeric attributes as logic terms that can be flexibly

manipulated and also given as input to numeric functions. This allows NeuralLog to be more

flexible than TensorLog.

More precisely, NeuralLog allows the use of rules containing free variables (variables that

appear only once in the rule). This might be important for some tasks, as we will show in our

experiments on Chapter 4. Moreover, NeuralLog allows the definition of numeric attributes

and the use of numeric functions in the logic language itself, as well as defining all the

relevant hyperparameters for the training of the neural network, while TensorLog requires

the user to configure some of those hyperparameters directly into the Python program [71].

NeuralLog is quite di↵erent from LTN [57]; in NeuralLog, the facts are represented as

matrices and the entities are one-hot vectors (vectors that have the value of 1 in a single

position, and the value 0 in all other positions), where the goal is to find the weights of the

facts that better describe the examples. On the other hand, LTN represents the entities as

dense vectors and the predicates are represented as functions on those vectors, where the

goal is to find the parameters of these functions (and possibly the numeric representation of

the entities) that better describe the examples.

DeepProbLog [59] has its own probabilistic logic inference mechanism and integrates it with

neural networks. Di↵erently from NeuralLog, which creates a neural network from a logic

program and the whole inference is performed by the neural network itself. Thus, NeuralLog

does not follow Sato’s semantics of possible worlds used by DeepProbLog.

Di↵erently from the mentioned works, that are based on a logic system and only change the

interpretation of the program, NeuralLog brings additional features to the logic language and

its meaning, allowing a better integration between the logic and the neural network parts.

These features include the capability of handling predicates with numeric values in it and

new syntaxes to define similar rules by using a for-loop or a template rule that is instantiated

based on other predicates, as we described in Section 3.1. We will show an example of these

features on Subsection 4.1.2.

The addition of these features makes the NeuralLog language a superset of DataLog [31],

3.3. DISCUSSION 49

which means that NeuralLog accepts DataLog programs (as long as the maximum arity

of the facts is two), but the users can also take advantage of these special features. This

similarity with DataLog, which is a well-known logic language, allows us to port other ILP

algorithms to NeuralLog with minimal changes.

Systems such as @ILP [61] and Neural-LP [8] are related to the structure learning approaches

from NeuralLog, since they also learn the structure of logic programs which are inferred as

neural networks. In particular, @ILP generates a set of rules, defined by a template, and

learns the weights of the rules using gradient descent, which is similar to NeuralLog+MIL

for NeuralLog, but the semantic of the neural network is di↵erent from @ILP, for instance

NeuralLog allows a broader set of logic programs, including recursive programs and

predicates defined by both rules and facts, which @ILP does not support.

Another strong feature of NeuralLog is that it supports the definition of rules that can

combine logic predicates with other neural network structures. In order to achieve this, one

can use background knowledge containing such rules. Neither Neural-LP [8] nor @ILP [61]

take advantage of this feature, since they use their own generated theory, not accepting a

pre-existing one.

Finally, our main goal with NeuralLog was to propose a language to better integrate first-

order logic with neural networks, which motivated us to, on one hand, follow the DataLog

syntax to better integrate the logic side, but also, on the other hand, to allow the use

of numeric attributes and to call numerical functions through the use of logic predicates

to better integrate it to the neural network side. This integration is corroborated by our

experiments, where we used logic programs to describe neural networks for relational and

propositional learning; and the structure learning algorithms also learned logic rules to

describe neural networks in NeuralLog.

50 CHAPTER 3. THE NEURALLOG SYSTEM

Chapter 4

Experiments & Results

In this chapter we present the experiments that support our work. We divide the experiments

into two main sections: parameter learning; and structure learning. Following the division

presented in Chapter 3.

In the first section, we perform di↵erent experiments and show some applications of

NeuralLog, assuming that a logic theory exists, for each dataset. Only the parameters

of the theory will be learned by NeuralLog, through gradient descent optimization of the

neural network, in order to better describe the set of examples.

In the next section, we give a step further and apply NeuralLog to learn both the logic

theory and the parameters of the theory, to describe the set of examples, given background

knowledge. There are two setups for these experiments, a batch (o✏ine) learning scenario,

where all the training examples are given at the beginning of the process; and an online

learning scenario, where training examples are arriving over time and the model must adjust

itself to fit the new examples.

4.1 Parameter Learning

In this section, we present the parameter learning experiments performed with NeuralLog,

in order to demonstrate its flexibility to represent di↵erent kinds of models. It is worthy to

point out that the goal of the experiments is not to find the best possible model for each

task, but to show how NeuralLog can represent di↵erent types of models.

Nevertheless, one could manually implement the presented models, without using NeuralLog.

However, we show that NeuralLog is a powerful and flexible language to define di↵erent neural

network models, specially for relational learning tasks, abstracting much of the complexity

of defining the neural network structure and the data processing pipeline. Furthermore, the

51

52 CHAPTER 4. EXPERIMENTS & RESULTS

use of a logic language to abstract the design of neural network structures could facilitate

the use of such models by people less familiarized with common programming languages.

4.1.1 NeuralLog in Comparison with Other Logic-based Systems

In order to demonstrate the flexibility of NeuralLog, we compared it with two distinct

relational systems that use first-order logic to create relational neural networks. In these

experiments, we would like to answer two main research questions, in order to address the

flexibility of NeuralLog: (Q1) can NeuralLog represent link prediction models? And (Q2)

can NeuralLog represent classification models?

In order to answer each question, we compared NeuralLog with other similar systems

proposed specifically for each of the above type of tasks. The first system is TensorLog [14],

which uses belief propagation to compile logic theories into neural networks. The second one

is RelNN [15], which learns relational neural networks that use the number of instantiation

of logic rules as features to predict the value of a logic atom with a given entity.

TensorLog and RelNN are two distinct systems that use logic to build neural networks. On

one hand, TensorLog focus at link prediction, by answering queries of the form q(a,X),

where the goal is to find all the entities that are related (as second term) to the entity a (as

first term) through relation q. On the other hand, RelNN focus at classification tasks, by

predicting the value of relations of the form q(X), for a given entity a, based on the relations

of a, defined by a set of logic rules.

We compared NeuralLog with TensorLog and RelNN, in particular, because in those systems

the structure of the neural network clearly reflects the logic theory, and it makes them closely

related to NeuralLog. All the three systems (NeuralLog, TensorLog and RelNN) use a logic

theory in order to define the neural network structure and fine-tune the weights of the

network to better predict the set of examples.

First, we compared NeuralLog with TensorLog. Since TensorLog predicts the values of

the entities related to a given entity, we ran link prediction experiments in three datasets:

the Cora dataset [16], and the UWCSE dataset [17], two popular datasets among the ILP

community; and the WordNet dataset [18], a frequently used benchmark dataset for link

prediction (the version from [8], since it was already properly divide into train, validation

and test sets).

The link prediction task is the task of predicting the entities that relate to a given entity,

through a target predicate [72]. To perform this task, we have a set of examples in the form

q(a, x), where we give the first entity a to the system in order to predict the last entity x.

Afterwards, we compared NeuralLog with RelNN in classification tasks in two di↵erent

4.1. PARAMETER LEARNING 53

datasets: the Yelp dataset; and the PAKDD15 dataset. Both datasets were available with

RelNN [15]. For the Yelp dataset, the task is to predict whether a restaurant serves Mexican

food through the mexican/1 predicate; while, in the PAKDD15 dataset, the task is to

predict the gender of a person, based on the movies the person watched, through the male/1

predicate.

4.1.1.1 Methodology

In order to perform a fair comparison between the systems, we used the same logic theory

available with the compared systems for the respective datasets. In our system, for the Cora

and for the WordNet datasets, we applied an activation function to the output of the rules,

and also added a bias to the target predicate; then, applying an output function to the

weighted sum of the rules and the bias for the final result. Those functions act as activation

and output functions, respectively, from a conventional neural network.

The original theories for the Yelp and PAKDD15 datasets already included the sigmoid

function as activation and output functions and already had biases.

In the case of the UWCSE, we have used a manually written theory provided by Alchemy 1.

Since Alchemy supports a more complex logic language than both NeuralLog and TensorLog,

we removed the rules that use logic features not supported by the compared systems, resulting

in a theory with 8 clauses. The UWCSE dataset also contains ternary relations (of arity 3),

which are not supported by either the compared systems. We converted them into binary

relations by concatenating two terms that always appear together in the theory. We also

added two additional predicates to extract either term, given the concatenated form.

A bias rule has the form target(X,Y) b, where b is a fact to be learned. Since the variables

of the head do not depend on its body, the rule is always true. Then, the rule is summed to

other rules with the same head, acting as a bias.

We used adagrad to optimize the mean square error with a learning rate of 0.1 (except for

UWCSE, which used a learning rate of 0.01) and no regularization, running for 16 epochs

for the Cora and UWCSE datasets; and for 10 epochs for the WordNet, Yelp and PAKDD15

datasets. We set the recursion depth to 1, meaning that recursive rules are applied only once

to itself.

The depth of the models generated from NeuralLog may not be directly compared with

traditional neural networks. However, we can have an approximated meaning of the depth

of a neural network, by defining the depth of a NeuralLog network as follows: the depth of

an atom is equal to the maximum depth of the rules which have the predicate of the atom

in its head; the depth of a functional atom or an atom without variables is 0, in the case of

1http://alchemy.cs.washington.edu/

http://alchemy.cs.washington.edu/

54 CHAPTER 4. EXPERIMENTS & RESULTS

Table 4.1: Maximum Relation Depth

Relation Depth Relation Depth

Cora (each target relation) 6 WordNet 2

Advised by 4 Yelp 2

Advised by sim 2 PAKDD15 3

Table 4.2: Size of the Datasets

Dataset Facts
Train Test

Pos Neg Pos Neg

Cora 44,711 28,180 24,104 7,318 3,660

WordNet 106,088 35,354 53,732 5,000 9,098

UWCSE 3,146 90 49,622 23 3,320

Yelp 45,541 2,160 1,368 540 342

PAKDD15 127,420 5,301 18,702 1,325 4,676

these experiments, where the functional predicates are simple activation or output functions;

the depth of an atom only defined by facts is 1; and, finally, the depth of a rule is the sum

of the depth of the literals in its body.

Table 4.1 shows the maximum depth of each relation, following our definition of the depth

of a NeuralLog network.

We ran each experiment 10 times and reported the average metrics of the runs. We used

holdout with the Cora and the WordNet datasets; and 5-folds cross-validation with the

UWCSE, Yelp and PAKDD15 datasets; following the way in which each dataset was split.

In order to evaluate the results, we used the area under the ROC curve and the average

precision2 in order to evaluate the models.

For TensorLog and RelNN, we used the parameters reported at their papers [14] and

[15], respectively. Since TensorLog had no parameters for the UWCSE, we experimented

using the same parameters as Cora, for a di↵erent number of epochs, with and without

l2 regularization. The best results were obtained by running for 16 epochs without

regularization.

In the WordNet dataset, we used 25% of the facts in the train set as training examples

2The average precision is a way of summarizing the Precision-Recall curve, but it can be less optimistic

than the area under the curve https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average

precision score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

4.1. PARAMETER LEARNING 55

Table 4.3: Average Precision for Cora, UWCSE and WordNet Datasets

Relation NeuralLog NeuralLog � TensorLog Baseline

Same Author ind 1.0000± 0.0000 0.9984± 0.0001 0.9914± 0.0000 0.9053

Same Bib ind 0.9556± 0.0158 0.9043± 0.0202 0.9614± 0.0000 0.6827

Same Title ind 0.8907± 0.0003 0.9184± 0.0002 0.0000± 0.0000 0.5099

Same Venue ind 0.8060± 0.0081 0.7866± 0.0056 0.0000± 0.0000 0.5238

Same Author 0.9939± 0.0062 0.9996± 0.0007 0.9854± 0.0004 0.9053

Same Bib 0.9654± 0.0034 0.9476± 0.0066 0.9058± 0.0319 0.6827

Same Title 0.8946± 0.0083 0.9295± 0.0026 0.8779± 0.0176 0.5099

Same Venue 0.7992± 0.0056 0.7512± 0.0133⇤ 0.7256± 0.0072⇤ 0.5238

Advised by 0.2058± 0.0076 0.1699± 0.0067 0.1037± 0.0000 0.0075

Advised by sim 0.2272± 0.0061 0.2232± 0.0061 0.1037± 0.0000 0.0075

WordNet 0.5654± 0.0004 0.4664± 0.0230 0.5661± 0.0001 0.3541

WordNet (un) 0.6048± 0.0005 0.5039± 0.0298 0.6054± 0.0003 0.3749

and the remaining as background knowledge. Since WordNet has no negative examples, we

artificially generated approximately 2 negative examples for each entity appearing in the

first position of a target relation. We did this by replacing the second entity of each example

by another entity appearing in the same relation, which does not appear as positive example

for the first entity, following the Local Closed World Assumption (LCWA) [73]. At each run,

the negative examples were resampled.

The size of the datasets can be seen in Table 4.2. The UWCSE, Yelp and PAKDD15 lines

show the average size of the cross-validation folds.

4.1.1.2 Results

We applied NeuralLog and TensorLog to each relation of the Cora dataset and to the UWCSE

dataset. Tables 4.3 and 4.4 show the average precision and the area under the ROC curve,

respectively, averaged for the 10 runs of each dataset.

The NeuralLog column shows the results using tanh as both activation and output functions,

while the NeuralLog � uses sigmoid and softmax as activation and output functions,

respectively. The baseline column represents a dumb classifier that predicts 0 for every

example. For each line, the highest value is bold-faced; and pairs of underlined values, or

values followed by ⇤, means that there is no statistical-significant di↵erence between the

marked values, based on the two-tailed paired t-test with p < 0.05.

56 CHAPTER 4. EXPERIMENTS & RESULTS

Table 4.4: Area Under the ROC curve for Cora, UWCSE and WordNet Datasets

Relation NeuralLog NeuralLog � TensorLog Baseline

Same Author ind 1.0000± 0.0000 0.9838± 0.0008 0.9276± 0.0000 0.5000

Same Bib ind 0.9120± 0.0179 0.8361± 0.0174 0.9339± 0.0000 0.5000

Same Title ind 0.8712± 0.0003 0.9074± 0.0002 0.0000± 0.0000 0.5000

Same Venue ind 0.7699± 0.0081 0.7370± 0.0374 0.0000± 0.0000 0.5000

Same Author 0.9432± 0.0552 0.9957± 0.0073 0.8863± 0.0020 0.5000

Same Bib 0.9261± 0.0056 0.9154± 0.0056 0.8376± 0.0545 0.5000

Same Title 0.8771± 0.0118 0.9296± 0.0032 0.8351± 0.0309 0.5000

Same Venue 0.7637± 0.0069 0.6589± 0.0059⇤ 0.6933± 0.0071⇤ 0.5000

Advised by 0.9527± 0.0013 0.9434± 0.0025 0.7107± 0.0000 0.5000

Advised by sim 0.7115± 0.0002 0.7501± 0.0005 0.7107± 0.0000 0.5000

WordNet 0.6603± 0.0002 0.5516± 0.0301 0.6609± 0.0001 0.5000

WordNet (un) 0.6865± 0.0003 0.5429± 0.0368 0.6868± 0.0001 0.5000

The Cora relations ending with ind are the results when running the system for each

target relation individually, while the others are the results when jointly learning the four

relations of the Cora dataset. When learning each relation individually, TensorLog can

only outperform NeuralLog for the Same Bib relation, jointly learning the four relations,

NeuralLog outperforms TensorLog for all tests but the Same Venue relation for the

NeuralLog � model, however, without statistical significance.

It is worthy to point out that TensorLog was not able to individually learn the Same Title

nor the Same Venue relations in any of the 10 runs. When jointly learning the relations,

TensorLog was able to learn in only 8 and 2 out of the 10 runs, for the Same Title and Same

Venue relations, respectively. We reported the average of the successful runs.

In the UWCSE dataset, TensorLog was not able to run using the full theory, since it contains

some rules with free variables and rules whose output variables do not have inputs, such as

advisedBy(X1, X2) student(X1) ^ professor(X2). Thus, we had to create a simplified

theory, by removing those rules from the theory and keeping only simpler rules. The results

of this theory are in the lines Advised by sim. We repeated the TensorLog results, with the

same simplified theory, in the lines advised by for easy comparison.

It is interesting to notice that NeuralLog achieved an average precision of 0.2272 ± 0.0061

for the UW-CSE dataset, which is greater than the area under the precision-recall curve

of 0.215 ± 0.0172, reported by [17] for a Markov Logic Network (MLN) model. MLN is

method that transform a logic background knowledge, containing weighted clauses, into a

4.1. PARAMETER LEARNING 57

Table 4.5: Average Precision for Yelp and PAKDD15 Datasets

Relation NeuralLog NeuralLog � RelNN Baseline

Yelp 0.8139± 0.0061 0.8070± 0.0050 0.7990± 0.0010 0.6122

PAKDD15 0.6652± 0.0016 0.6660± 0.0008 0.6384± 0.0017 0.2208

Table 4.6: Area Under the ROC curve for Yelp and PAKDD15 Datasets

Relation NeuralLog NeuralLog � RelNN Baseline

Yelp 0.7649± 0.0055 0.7410± 0.0055 0.7521± 0.0007 0.5000

PAKDD15 0.8106± 0.0010 0.8109± 0.0008 0.7722± 0.0007 0.5000

Markov Network, where the facts are predicted by the Markov networks [74] in such a way

that violating a clause with a high weight would make the fact less likely to be true [17].

The MLN model used the full original theory provided by Alchemy for the same dataset.

Although our experiments are not exactly comparable with the experiments from [17], it

demonstrates the power of NeuralLog, to achieve a similar performance using only 3 rules,

which is a fraction of the 72 rules used by the MLN.

Tables 4.5 and 4.6 show the comparison between NeuralLog and RelNN for classification

in the Yelp and PAKDD15 datasets. In this case, NeuralLog outperforms RelNN in both

datasets, meaning that NeuralLog is also suited to classification tasks.

We can also see from the experiments, that the choice of the activation and output functions

might have a great impact in the performance of the NeuralLog models. Since NeuralLog

allows the user to choose between di↵erent functions directly in the logic theory, it makes it

easier to experiment with di↵erent options, di↵erently from TensorLog and RelNN, whose

functions are fixed.

Despite the better results achieved by tanh in some cases, its use must be done carefully.

Since the output of the tanh function is in [�1, 1], the element-wise multiplication of di↵erent

paths to which the tanh have been applied would possibly lose the logic meaning of an AND.

It is not the case of these experiments, since all the rules have only a single path, thus, no

element-wise multiplication is performed with the results of the tanh.

Furthermore, Table 4.7 shows the weights learned for some rules to predict the also see/2

relation from the WordNet dataset, and for the sameauthor/2 relation from Cora dataset.

For clarity, we omitted the activation function from the body of the rule. Remembering

that NeuralLog rules do not hold weights, only the facts do, and weights are represented

in the rule by adding a literal for the corresponding fact, for instance: also see(X,Y)

58 CHAPTER 4. EXPERIMENTS & RESULTS

Table 4.7: Example of Learned Weights for WordNet and Cora Datasets

Weight Rule

0.71315 also see(X,Y) deriv related form(X,Z) ^ deriv related form(Z, Y) ^ w(w1).

-0.00081 also see(X,Y) deriv related form(Y,X) ^ w(w2).

-0.02814 also see(X,Y) deriv related form(X,Z) ^ hyponym(Z, Y) ^ w(w3).

0.92750 sameauthor(A1, A2)
haswordauthor(A1,W) ^ kaw(W) ^ haswordauthorinverse(W,A2) ^ w(authorword).

similar to(X,Y) ^ act func(Y) ^ w(w4)., where w(w4) represents the weight of the rule,

and act func(Y) represents the activation function.

As can be seen from the first rule in the table, there is a strong relation of type also see/2

between entities X and Y , if they both are connected to another entity Z through the

derivationally related form/2 relation, and the result of the first rule will also be propor-

tional to the number of possibly entities Z between X and Y . On the other hand, entities

X and Y that are connected by a path passing through derivationally related form/2 and

hyponym/2 will have a lower prediction for also see/2, given the negative weight of the last

rule in the table. Notwithstanding, the second rule has a low impact on the prediction of

the also see/2, given its small weight, in absolute value.

Looking at the last rule from Table 4.7, from the Cora dataset, we can see that it is similar

to the first rule in the table, in the sense that it will give a higher score to entities A1 and A2

that are related through and entity W in a path formed by the relations haswordauthor/2

and haswordauthorinverse/2. However, since the predicate kaw/1, which is applied to the

word W , is marked as a learnable predicate, the neural network is able to learn a, potentially,

di↵erent weight for each word W that might appear in the rule. Thus, in addition to the

weight represented by the literal w(authorword), that is the same for any instantiation of

the rule, this rule has a weight that might be di↵erent for each instantiation of the word W .

The weight for the word W might also decrease the prediction of the rule, if it is negative,

which could be learned from words that indicate an inverse correlation with the relation

sameauthor/2.

As can be seen from the experiments, NeuralLog achieved better performance than the

compared systems, in tasks for which they were designed, even if we look for a single variant

of NeuralLog (tanh; or sigmoid and softmax). The main goal of these experiments were to

show that NeuralLog is flexible enough to perform both classification and link prediction

tasks, thus, a�rmatively answering both questions Q1 and Q2.

4.1. PARAMETER LEARNING 59

4.1.2 NeuralLog with Numeric Values

In order to show the capabilities of NeuralLog to deal with numeric attributes and to

incorporate complex neural network models, we experimented with NeuralLog on the classical

Iris dataset [19, 20] and in a Named Entity Recognition (NER) NCBI Disease dataset [75].

4.1.2.1 Iris Dataset

The Iris dataset is a dataset of flowers containing 3 classes (iris setosa, iris versicolor and

iris virginica), with 50 examples each, where the task is to predict the class of each example,

given 4 numeric attributes: sepal length, sepal width, petal length and petal width.

We split the dataset into training and test sets using a 70%-30% ratio and applied a simple

Multilayer Perceptron (MLP) neural network with a single hidden layer, using sigmoid for

both activation and output functions. MLPs are simple neural networks composed of a

sequence of fully-connected layers, where all the neurons from a layer are connected to all

the neurons of the next layer [42].

Algorithm 3 shows the theory to construct the neural network. The lines 1-3 specify the

parameters whose weights will be learned from the examples, the remaining is the theory to

define the neural network itself.

In order to facilitate the definition of rules with similar bodies, we created two syntax sugars.

The first one is a simple for-each loop that iterates a variable over a list of elements, inspired

by the bash syntax. The list can be defined in two ways: (1) by enumerating the whole

list; or (2) by passing a range of the form {i..j}, i  j, which will iterate from i to j, with

both extremes included. The for-each loop simply repeats everything within it, replacing

the iteration variable by a value of the list at a time. The for-each loop defined in line 4 is

used to create a hidden layer with 15 neurons, by multiplying each input feature by a weight

(defined by w1/1) and summing a bias (defined by b/1). Notice that the rules from the line

5 to line 8 use the four attribute predicates, where the Y variable represents the value of the

numeric predicate.

The second syntax sugar first appears in line 11, which defines the activation of the hidden

layer. We call each term surrounded by curly brackets a wildcard. A wildcard can appear

as (part of) a predicate name or as (part of) a term. Whenever a wildcard appears in the

head of a rule, it must also appear in its body, this restriction is not applied to the variables

defined in the for-each loops.

Then, we create a set S of all possible values a wildcard in the body of a clause may assume,

as follows:

60 CHAPTER 4. EXPERIMENTS & RESULTS

Algorithm 3 Theory to construct a Multilayer Perceptron for the Iris dataset

1: learn(w1).

2: learn(w2).

3: learn(b).

4: for i in {0..14} do

5: hidden {i}(X) :- sepal length(X, Y), w1(h1 {i} 1).

6: hidden {i}(X) :- sepal width(X, Y), w1(h1 {i} 2).

7: hidden {i}(X) :- petal length(X, Y), w1(h1 {i} 3).

8: hidden {i}(X) :- petal width(X, Y), w1(h1 {i} 4).

9: hidden {i}(X) :- b(h {i}).
10: done

11: activation {i}(X) :- hidden {i}(X), sigmoid(X).

12: for type in setosa versicolor virginica do

13: output {type}(X) :- activation {i}(X), w2(output {type} {i}).
14: output {type}(X) :- b(output {type}).

15: iris {type}(X) :- output {type}(X), sigmoid(X).

16: done

4.1. PARAMETER LEARNING 61

• If the wildcard appears as (part of) a predicate name, we add to S all possible values

this wildcard could assume, in order to make the name of the predicate equal to the

name of another predicate defined in the program;

• If the wildcard appears as (part of) a term name, we add to S all possible values this

wildcard could assume, in order to make the name of the term equal to the name

of another term defined in the program, as long as the names of other predicates

containing this wildcard would still exist in the program.

Finally, for each possible permutation of the values of each wildcard in the clause, we generate

a new clause, replacing the wildcard by those values.

We need to filter for existing predicates in order to replace the value of a wildcard in the

name of a predicate in the body, because it does not make sense to define new predicates

in the body of a rule, that do not appear elsewhere. This restriction does not apply to the

head of the rule, since a rule can create new a predicate in its head, while the definition of

this predicate is given by the body of the rule. The generation of new terms is also allowed

and new entities are added to the program. We refer the reader to Appendix A for more

details about the NeuralLog language.

The second for-each loop, in line 12, defines the output layer with 3 neurons, represented

by the predicates iris setosa, iris versicolor and iris virginica. It starts by summing the

output of the hidden neurons multiplied by a weight (defined by w2/1), and then summing a

bias (defined by b/1). Finally, it creates the output neurons by summing the correspondent

combinations of the hidden layer and bias, and applying the output function. As expected,

this model can perfectly learn the Iris task, achieving 100% accuracy.

4.1.2.2 NCBI Disease Dataset

In the NCBI Disease dataset, we performed the Named Entity Recognition (NER) task. The

NER consist of identifying which words in a sentence belong to an entity. In the case of the

NCBI Disease, which words correspond to diseases.

In order to perform this task, we implemented the Bidirectional Encoder Representations

from Transformers (BERT) model as a function, a state-of-the-art model to perform Natural

Language Processing (NLP) tasks [21]. The BERT model learns how to represent words in a

vector space representation. We assigned the bert/2 predicate to represent the BERT model

and the dense/2 predicate to be a dense layer, which will compute the final label of the word,

given the representation learned by BERT. Aside from the configuration, the logic theory to

construct the neural network has only a single rule ner(X,Y) bert(X,W)^ dense(W,Y).

In this experiment, the input X is processed as a sequence of words, representing a sentence;

and the output Y is a sequence of labels.

62 CHAPTER 4. EXPERIMENTS & RESULTS

Table 4.8: Results for the Named Entity Recognition on the NCBI Disease Dataset

Metric No pre-train 5 Epochs 20 Epochs BioBERT

Precision 27.34 73.53 80.98 88.22

Recall 14.58 74.38 88.23 91.25

F1 19.02 73.95 84.45 89.71

We ran three experiments, one learning the task directly for 5 epochs without pre-training,

and two more using the set BioBERT v1.13 of pre-trained weights for biomedical domain

provided by [76]. We fine-tuned the model to the task for 5 and 20 epochs, respectively.

All experiments used stochastic gradient descent with learning rate of 0.01, to minimize the

mean squared error with 0.01 L2 regularization rate.

Table 4.8 shows the results of each model. In addition, we included, into the table, the results

achieved by BioBERT itself, fine-tuned for NER, which was extracted from its paper [76].

As we can see, NeuralLog can represent models to learn NER, although it has not achieved

the best possible performance. We believe that the di↵erence in performance is due to

di↵erent training parameters, which is not easy to find, since this model takes a long time to

train. Nonetheless, it corroborates our claims that NeuralLog can represent di↵erent neural

network architectures.

In our recent survey [77], we summarized several deep learning models to perform NLP

tasks on biomedical domains. In addition, in our previous work [44], we used two separated

state-of-the-art models to perform Named Entity Recognition (NER) and Named Entity

Normalization (NEN) on biomedical text. Named Entity Normalization is the task of

assigning a piece of text to a known entity from a dictionary. This piece of text is often

the output of a NER model. We believe that a logic layer, that can be described as a logic

theory and supported by background knowledge, can improve the result of NLP models in

such tasks. As such, NeuralLog would be a suitable tool in order to combine the strengths of

deep learning, which reads the raw text; with relational learning, which is based on relations

between the entities in the text, represented by first order logic.

4.2 Structure Learning

In this section, we present the results of our experiments of the structure learning algorithms

from NeuralLog. We split it into two subsections: batch learning and online learning.

3The BioBERT model was a courtesy of the U.S. National Library of Medicine and can be found at

https://github.com/dmis-lab/biobert

https://github.com/dmis-lab/biobert

4.2. STRUCTURE LEARNING 63

4.2.1 Batch Structure Learning

In order to demonstrate the capabilities of NeuralLog to batch learn neural network

structures using MIL, we compared NeuralLog+MIL with Neural-LP [8] in three datasets:

the Unified Medical Language System (UMLS) [22]; the WordNet dataset [18]; and the

UWCSE dataset [17]. We chose to compare NeuralLog+MIL with Neural-LP, since Neural-

LP is based on TensorLog, which is closely related to NeuralLog.

4.2.1.1 Methodology

We focused at the link prediction task, where we are given a query of the form ?� q(a,X),

and the goal is to find all the entities that are related (as second term) to the entity a (as

first term) through relation q. For each dataset, we selected a set of target relations and

applied the system to learn them. Then, we evaluated the system by using the mean rank,

the Mean Reciprocal Rank (MRR) and the hit at top 10 entities, based on the filtered rank

of the entities, following the procedure described in [23]. In these experiments, we would like

to answer the research question (Q3) can NeuralLog+MIL learn the structure representation

of NeuralLog models for link prediction tasks?

We use these rank metrics to reproduce the experiments from Neural-LP [8]. Since Neural-

LP only uses positive examples, to achieve a fair comparison, we give NeuralLog only positive

examples as well. Here, we take advantage of the sparse representation of NeuralLog. Since

positive examples have an associated value of 1 and the missing examples will have an

associated value of 0, the loss function will be able to tune the weights in order to prove only

the positive examples. This is equivalent to consider all the missing examples as negatives,

which is known as the Closed World Assumption (CWA).

UMLS. It is a dataset consisting of 46 relations between biomedical concepts. We selected

the most frequent relation (A↵ects) as target relation and applied the system to predict this

relation from the remaining ones. We randomly selected 90% of the facts from the target

relation as training examples and the other 10% as test examples, following the procedure

and dataset used in [9]. We repeated this process 10 times and reported the average of the

runs.

WordNet. It is a dataset consisting of 18 relations between words, and it is already split

into train, development and test sets. We ran each system once, holding out one relation at

a time and reported the mean results of the relations.

64 CHAPTER 4. EXPERIMENTS & RESULTS

Table 4.9: The Meta-Theory Used by NeuralLog+MIL

P (X,Y) Q(X,Y).

P (X,Y) Q(Y,X).

P (X,Y) Q(X,Z) ^R(Z, Y).

UWCSE. It is already split into 5-folds for the Advised by relation. We run the system

once for each fold and reported the mean results. We applied the same transformation in

order to change the ternary relations in a set of binary relations, as used in the parameter

learning experiments.

The used meta-theory was the one shown in Table 4.9, with the depth of 1. It means that

each meta-clause is applied directly to the example. For instance, applying the first clause

to the example advisedby(X,Y) would generate the clause advisedby(X,Y) Q(X,Y).,

where Q is replaced for each valid predicate in the knowledge base (KB). If the depth were

2, in addition to replacing Q for each example in the KB, we would also have tried to prove

it with another meta-clause; for instance, the last one, which would result in an invented

predicate f(X,Y) Q(X,Z) ^ R(Z, Y)., but it would also exponentially increase the size

of the theory.

The head of each generated rule is changed from the target predicate p/2 to a predicate

p0/2, and a rule of the form p0(X,Y) p(X,Y), output function(Y). is added to the

theory. Also, each generated rule has two atoms appended to it. The first one is the

activation function(Y) atom, where Y is the output of the rule, and it serves as an activation

function to the output result of the rule. The second one is an atom of the form w(id), where

id is a unique constant for each rule and w is a predicate whose weight will be learned by

the network and will multiply the final result of the rule. Finally, we add a rule of the form

p(X,Y) b. to the theory. Since this rule does not depend on the input, it will be true for

any input and its value will be b, which will be added to the output of the other rules with

the predicate p/2 in the head, acting as a bias. The weight of the predicate b will also be

learned by the network.

We used sigmoid as activation function and softmax as output function; and adagrad to

minimize the binary cross-entropy with L2 regularization for 50 epochs in the case of the

UMLS and UWCSE datasets, and 10 epochs for the WordNet dataset.

We used the default parameters for Neural-LP, which achieved good results in two of the

three datasets.

4.2. STRUCTURE LEARNING 65

Table 4.10: Results for the Filtered Rank Metric

Dataset
NeuralLog+MIL Neural-LP

Hit @ 10 Mean Rank MRR Hit @ 10 Mean Rank MRR

UMLS 0.9894 1.6056 0.8856 0.9970 1.2773 0.9303

WordNet 0.8216 10.0647 0.6221 0.9418 9.2479 0.9298

UWCSE 0.9165 5.5818 0.2158 0.4446 36.8060 0.2458

4.2.1.2 Results

Table 4.10 shows the results for each dataset. The lower the mean rank, the better; for

the other metrics, the higher, the better. The best value of each metric, for each dataset

is bold-faced. Pair of underlined values, of the same metric, in the same dataset, means

that the di↵erence between the values has statistical significance according to the two-tailed

paired t-test with p < 0.05.

As can be seen from the table, NeuralLog+MIL shows a competitive result with Neural-LP

in both the UMLS and WordNet datasets; and is considerably better in the UWCSE dataset,

for the hit at top 10 entities and the mean rank.

WordNet is composed of 18 relations with a di↵erent number of examples for each relation. If

we take the average of the metrics, weighted by the number of examples of each relation, the

di↵erence between NeuralLog+MIL and Neural-LP is even smaller, being 0.9280 against

0.9544, for the hit at top 10 entities; and 4.1480 against 6.1228, for the mean rank;

for the NeuralLog+MIL and Neural-LP, respectively. In this scenario, the mean rank of

NeuralLog+MIL is better than the one of Neural-LP.

Table 4.11 shows examples of rules learned by the system, alongside their weights. By looking

at the weights of the rules, we can try to interpret the reasoning of the learned model. For

instance, we can see that entities are related through the also see/2 relations if there is a path

between entities X and Y through the pair of relations (hyponym/2 and hypernym/2) or

the pair (synset dom usage of/2 and memb of dom usage/2). On the other hand, we can

see that the paths composed of the pairs (memb meronym/2 and memb holonym/2) and

(memb of dom region/2 and deriv related form/2) have small impact on the prediction of

the also see/2 relation, given the small absolute value of the weights of their corresponding

rules.

66 CHAPTER 4. EXPERIMENTS & RESULTS

Table 4.11: Example of Learned Rules and Weights for WordNet Dataset

Weight Rule

0.1357 also see(X,Y) hyponym(X,Z) ^ hypernym(Z, Y) ^ w(w 392)

0.1161 also see(X,Y) synset dom usage of(X,Z) ^memb of dom usage(Z, Y) ^ w(w 194).

�2.2248⇥ 10�08 also see(X,Y) memb meronym(X,Z) ^memb holonym(Z, Y) ^ w(w 214).

�2.2248⇥ 10�08 also see(X,Y) memb of dom region(X,Z) ^ deriv related form(Z, Y) ^ w(w 109).

Table 4.12: Comparison with Embedding Systems

Dataset
WordNet

Hit @ 10 Mean Rank

TransE 0.892 251

TransH 0.867 303

CTransR 0.923 218

NeuralLog+MIL 0.8216 10.0647

Neural-LP 0.9418 9.2479

4.2.1.3 Comparison with Embedding Systems

Furthermore, on Table 4.12 we compare NeuralLog+MIL and Neural-LP against TransE [23],

TransH [78] and CTransR [79]. The table was extracted from the results reported on [79].

TransE is a system that performs link prediction based on an embedding technique. It

represents entities and relations as dense low-dimensional vectors that “embeds” the semantic

meaning of the entities and relations. Those vectors are learned from a set of examples,

then the link prediction is performed based on calculation on the vectors [23]. Although

simple, TransE achieved a great result for link prediction at the time. Several systems, such

as TransH [78], TransR and CTransR [79] tried to improve upon TransE by adding some

complexity to overcome some of its limitations.

Although the experiments are not exactly comparable, due to di↵erences on the setup of the

dataset and the evaluation, Table 4.12 shows that logic based approaches are competitive

against embeddings based approach, for link prediction, on the Hit@10 metric. In addition,

the logic based approaches (NeuralLog+MIL and Neural-LP) achieved a much better result

for the mean rank metric. Nonetheless, logic based models are easier to interpret, given that

their meaning is given by logic rules; di↵erently from embeddings approaches that embed

the knowledge on dense vectors and calculations on these vectors, which are hard to be

interpreted by humans.

Finally, from these results, we show that NeuralLog+MIL can learn the structure of

NeuralLog models for link prediction tasks, a�rmatively answering Q3.

4.2. STRUCTURE LEARNING 67

4.2.2 Online Structure Learning

In this subsection, we present the two online learning algorithms. In order to show the

capabilities of NeuralLog+OSLR and NeuralLog+OMIL, we compared them with OSLR

in online learning of logic theories for link prediction in three distinct datasets: the Cora

dataset, which is a citation matching dataset [16]; the Unified Medical Language System

(UMLS), which is a medical dataset [22]; and the UWCSE dataset, which describes relations

between professors and students in the University of Washington [17]. In addition, we also

include the comparison with RDN-Boost [24], a system that learns Relational Dependency

Networks (RDNs) [25], which was also used in [11,12].

The online structure learning algorithms for NeuralLog take advantage that NeuralLog is

able to store the weights learned by the neural network back into the logic program. In this

way, these algorithms can focus on changing the logic theory directly, and it will result in a

new neural network that is able to preserve the learned weights from the facts that were not

changed on the new theory. Thus, the learning algorithm could add a new rule with a new

fact, and the weight of the other facts will be the same that was already learned from the

previous network, for the rest of the program. Then, all the weights, the old and the new

ones, can be adjusted by the current neural network.

In this set of experiments, we would like to answer the following research questions: (Q4) can

NeuralLog+OSLR and NeuralLog+OMIL learn the structure of NeuralLog models online,

by using theory revision, for link prediction tasks? And (Q5) can NeuralLog+OSLR and

NeuralLog+OMIL benefit from a previous existing theory, when learning the structure of

NeuralLog models online, for link prediction tasks? Following the previous experiments, we

receive a query of the form ? � q(a,X) as input and would like to find the substitutions of

X that match the positive examples, without matching the negative ones.

Cora. The Cora dataset contains four target relations, Same Author, Same Bib, Same

Title and Same Venue. We ran each of these relations separately.

UMLS. It is a dataset of biomedical entities. We selected the A↵ects as target relation,

since it is the most frequent relation in this dataset, as it is done in the batch experiments

above and in [9]. Since it has no negative examples, we generated approximately 2 negative

examples for each positive example, by selecting a random output entity that appears in

the target relation, but is not related to the input entity, following the Local Closed World

Assumption (LCWA) [73].

68 CHAPTER 4. EXPERIMENTS & RESULTS

Table 4.13: Size of the Datasets

Relation # Positives # Negatives

Same Author 488 66

Same Bib 30,971 21,952

Same Title 661 714

Same Venue 2,887 4,976

A↵ects 1,022 -

Advised by 113 16,601

UWCSE. This dataset has one target relation Advised by, that relates the students with

supervisors. Again, we converted the ternary predicates into binary predicates, in the same

way it was done in the previous experiments.

Table 4.13 shows the statistics of the datasets, for a total of 6 target relations. Since the

number of negative examples in the UWCSE is much bigger than the positive ones, we

downsampled the set of negative examples to be twice as much as the number of positives

ones, as it is done in [11,12,24].

4.2.2.1 Simulating the Online Environment

In order to properly evaluate the online systems, we use these datasets to simulate an online

environment by reproducing the procedure used in [11, 12]. We split each target relation

into N + 1 iterations, where iteration 0 has only the background knowledge and each of the

following iterations has approximately |E|/N examples, where |E| is the total number of

examples of each relation.

We pass each iteration, in order, to the system. When an iteration arrives, the current

model is tested with it, before training. Then, the system trains on this iteration and the

evaluation of each iteration is recorded. This evaluation procedure is known as Prequential

[80]. Since RDN-Boost is designed for batch learning, we transformed each iteration of the

online learning environment into a batch learning task by appending all the examples from

the previous iteration to it. Then, we applied RDN-Boost to each of those tasks.

Following the procedure from [11, 12], we set the number N of iterations to 30 for all the

target relations except the Advised by which was set to 91. We ran each experiment 30 times

and reported the average of the area under the Precision-Recall curve as evaluation metric.

The Hoe↵ding’s bound � parameter was set to 10�3 and updated to half its value, each time

a revision was accepted. The systems only consider the number of unrelated examples to

4.2. STRUCTURE LEARNING 69

compute the Hoe↵ding’s bound [11, 12]. However, we had to relax this restriction for the

UMLS dataset, given the reduced number of unrelated examples.

NeuralLog adds a weight for each rule, as well as an activation function. Also, a bias is

added to the output of the target relation, which then passes through an output function.

The weights and biases are parameters to be learned by the neural network. After each

accepted revision, the neural network adjusts its parameters on the same set of examples

used by the revision. It uses the adagrad optimization algorithm to reduce the mean squared

error loss function with L2-regularization for 10 epochs, with a learning rate of 0.01 and the

l2 � = 0.01. For OSLR, we replaced its feature generation by another one that creates a

single weight for each rule, in order to be closely related to NeuralLog. This change had only

a small impact on the final result.

4.2.2.2 Results

We now present the results of the experiments. All pairs of systems were compared for

statistical significance using two-tailored paired t-test with p < 0.05. There is a statistical

significance between the pairs, unless stated otherwise.

Figure 4.1 shows the evaluation of the systems in the Cora dataset over the epochs. As can be

seen, NeuralLog+OMIL outperforms both OSLR and RDN-Boost over all iterations for the

Same Author and the Same Venue relations, while it underperforms OSLR and RDN-Boost

on all iterations on the Same Bib relation. For the Same Title relation, NeuralLog+OMIL

has a stable behaviour over the iterations, while OSLR have some ups and downs. However,

OSLR is able to achieve a better result in the final iteration, where all the examples are

used, and also has a better overall result, measured by the area under the curve of iterations.

NeuralLog+OSLR performed worse than OSLR in all relations of the Cora dataset, but it

is able to outperform RDN-Boost in all relations, except for the Same Bib.

There were no statistical di↵erence between NeuralLog+OMIL and OSLR, and

NeuralLog+OSLR and RDN-Boost for the area under the curve and the final result, in

the Same Author relation. There were no statistical di↵erence between OSLR and RDN-

Boost for the area under the curve and the final result, in the Same Bib relation. Finally,

there were no statistical di↵erence between NeuralLog+OMIL and OSLR for the area under

the curve and the final result, in the Same Title relation.

Figure 4.2 shows the results of the experiments for the UMLS and UWCSE datasets.

On Figure 4.2a, we can see that NeuralLog+OMIL, OSLR and RDN-Boost get better as

new examples arrive, ending with an evaluation greater than NeuralLog+OSLR. However,

NeuralLog+OSLR performs much better than the other systems on the initial iterations,

and also achieved a better overall evaluation, given the area under the curve. There

70 CHAPTER 4. EXPERIMENTS & RESULTS

(a) Same Author (b) Same Bib

(c) Same Title (d) Same Venue

Figure 4.1: The Evaluation of the Cora Dataset

4.2. STRUCTURE LEARNING 71

(a) UMLS (b) UWCSE

(c) UWCSE — Initial Theory (Simplified) (d) UWCSE — Complete Theory

Figure 4.2: The Evaluation of the UMLS and UWCSE Datasets

was no statistical di↵erence between NeuralLog+OSLR and NeuralLog+OMIL nor between

NeuralLog+OMIL and RDN-Boost, for the result of the final iteration. Also, there was no

statistical di↵erence for the area under the curve between OSLR and RDN-Boost.

In order to evaluate the impact of an initial theory, we performed three experiments with

the UWCSE dataset, using a hand-crafted theory provided by Alchemy4. Since Alchemy

supports a more complex logic language, we removed the rules whose logic feature were not

supported by both OSLR and NeuralLog. Then, we used two sets of rules: a complete

set, containing more rules, which are more specific; and a simplified version of this theory,

containing only some generic rules from the complete set. The Theory lines in the figures

show the result of the initial theory, while the The sim shows the results of the simplified

theory; both theories were inferred by OSLR, without any training.

4http://alchemy.cs.washington.edu/

http://alchemy.cs.washington.edu/

72 CHAPTER 4. EXPERIMENTS & RESULTS

As can be seen in Figures 4.2b, OSLR outperforms both NeuralLog systems and RDN-Boost,

when they all start from an empty theory. However, it cannot outperform the complete

theory. On the other hand, when the systems start from the simplified theory (Figure 4.2c),

OSLR can improve over the simplified theory, but not yet outperforming the complete theory;

while NeuralLog systems stay close to the performance of the simplified theory and RDN-

Boost performed worse than the theory itself. Finally, when starting from the complete

theory (Figure 4.2d), both NeuralLog+OSLR and NeuralLog+OMIL are able to improve

over the complete theory, with a slight advantage for NeuralLog+OSLR; while OSLR is only

capable of achieving the same performance as the complete theory; and RDN-Boost, again,

performed worse than the theory. However, neither NeuralLog+OSLR nor NeuralLog+OMIL

were able to change the complete theory, showing that the improvement in this dataset was

due to the NeuralLog inference mechanism itself.

This demonstrates the strength of revision theory methods, that are capable of improving

the results of initial existing theories, even when the theories are only partially correct,

corroborating results already found in other works such as [40, 45, 46]. On the other hand,

RDN-Boost is not able to change the initial theory and cannot fix possible mistakes of the

theory.

For the empty initial theory, there is no statistical di↵erence between: NeuralLog+OSLR

and NeuralLog+OMIL, in either metrics; OSLR and the simplified theory nor OSLR

and RDN-Boost, for the area under the curve; and RDN-Boost and the simplified

theory, in either metrics. For the initial simplified theory, there is no statistical

di↵erence between: NeuralLog+OSLR and NeuralLog+OMIL, in either metrics; and

NeuralLog+OSLR/NeuralLog+OMIL and the simplified theory, in either metrics. For the

initial complete theory, there is no statistical di↵erence between: NeuralLog+OSLR and

NeuralLog+OMIL, in either metrics; NeuralLog+OSLR and OSLR, for the final iteration;

NeuralLog+OSLR and the complete theory, for the final iteration; NeuralLog+OMIL and

OSLR for the final iteration; NeuralLog+OMIL and the complete theory, for the final

iteration; and OSLR and the complete theory, in either metrics.

By analysing the changes in the theories during the iterations, we saw that, in most cases,

NeuralLog+OSLR and NeuralLog+MIL learned a few rules during the first iterations, and

then, do not change the rules on the next iterations, when starting from an empty theory.

This behaviour was also observed on OSLR, however, OSLR often add one or two more rules,

during later iterations, after more examples are available.

On one hand, this shows that the system is able to learn to represent the examples when only

a few of them are available. On the other hand, it might be missing the opportunity to learn

from more examples. However, we notice that, for a particular run of the NeuralLog+OSLR

for the Same Venue relation, it kept adding new rules to the theory during the passing of new

iterations. This resulted on a more volatile model, where the performance had big changes

4.2. STRUCTURE LEARNING 73

from one iteration to the other (increasing and decreasing), and with a worse performance

overall, both for the area under the curve and for the performance on the final iteration.

We can see from the experiments that both NeuralLog+OSLR and NeuralLog+OMIL are

able to online learn the structure of NeuralLog models for link predictions tasks, thus, we

can a�rmatively answer Q4. When starting from an initial theory, both NeuralLog+OSLR

and NeuralLog+OMIL can be at least as good as the initial theory; and, in the case of the

complete theory for the UWCSE dataset, both systems were able to outperform the initial

theory, showing that starting from an initial theory, when available, can improve the quality

of the learned model, positively answering Q5.

74 CHAPTER 4. EXPERIMENTS & RESULTS

Chapter 5

Conclusions

In this paper we presented NeuralLog, a first-order logic language that is compiled into a

neural network. Our goal in the design of NeuralLog was to bridge the gap between first-order

logic and neural networks.

Previous works in the field of Neural-Symbolic Learning and Reasoning [4] are often focused

at constructing neural network structures by the use of logic rules, transforming the logic

representation into di↵erentiable operations [6, 15, 50]. However, these approaches make it

hard to integrate logic with other neural network models. NeuralLog, on the other hand,

allows the user to define any neural network structure, which can be easily integrated with

the logic part through the definition of function predicates.

Furthermore, the definition of attribute predicates, which allows NeuralLog to handle numeric

values directly in the logic program, also facilitates the integration of logic with other neural

network models. Even allowing the definition of Multilayer Perceptrons [42] directly in

NeuralLog, as shown in Subsection 4.1.2.

The parameter learning experiments, presented in this work, showed that NeuralLog is a

flexible language, capable of describing relational neural network models to perform both

link prediction and classification tasks.

In the link prediction task, we compared NeuralLog with TensorLog [14], a system that

performs logic inference through numeric operations, representing a neural network, and is

focused at link prediction. NeuralLog outperformed TensorLog in both the Cora dataset and

in the UWCSE dataset, two commonly used datasets in the ILP community. In addition,

NeuralLog achieved results comparable with TensorLog for the WordNet dataset.

In the classification task, we compared NeuralLog with RelNN [15], a system that also

generates neural networks based on logic, where the number of logic proves of the logic

rules is computed by the neural network and also poses as feature for the neural network

75

76 CHAPTER 5. CONCLUSIONS

components. NeuralLog outperformed RelNN in the two tested datasets: the Yelp and the

PAKDD15.

Moreover, in order to further show the capabilities of NeuralLog, we presented a NeuralLog

program that represents a Multilayer Perceptron for the Iris dataset [19,20]; and a NeuralLog

program to perform Named Entity Recognition (NER) that uses a state-of-the-art neural

network model called Bidirectional Encoder Representations from Transformers (BERT) [21],

which is called as a logic predicate. Nevertheless, di↵erently from TensorLog [14], NeuralLog

is capable of handling rules with free variables, which largely improved the results in the

UWCSE dataset, for the area under the ROC curve.

A great advantage of using a language based on first-order logic is that we can rely on a

wide range of algorithms from Inductive Logic Programming (ILP) that can be used to learn

logic programs based on examples. However, some small changes on the ILP algorithm must

be done, so it can better integrate with NeuralLog and take advantage of neural network

characteristics.

In this work, we presented three structure learning algorithms for NeuralLog. The first

structure learning algorithm presented was NeuralLog+MIL, a structure learning algorithm

based on Metagol [7]. Metagol is a system that relies on Meta-Interpretive Learning (MIL),

a method that learns first-order logic theories by the use of a higher-order theory [7].

In addition to NeuralLog+MIL, which is a system to batch learn NeuralLog models, we also

presented two algorithms for online learning, this is, to learn in an environment where the

examples are arriving over time. First we presented NeuralLog+OSLR, a ported version of

Online Structure Learner by Revision (OSLR), an online learning system initially designed

to work with ProPPR [64], a Stochastic Logic Programming (SLP) language [13]. OSLR is

based on theory revision, this means that it starts from a, possibly empty, initial theory and

changes it in order to cope with the new examples. Taking advantage of the theory revision

mechanism from OSLR, we proposed NeuralLog+OMIL, a system that uses MIL searching

strategy to online learn first-order logic theories through theory revision.

In order to better integrate the structure learning systems with NeuralLog, we implemented

the concept of clause modifiers, which receive the proposed clauses from the structure

learning systems and modify them in order to append characteristics of neural networks,

such as activation functions and weights.

Our experiments showed that NeuralLog+MIL has competitive results when compared with

Neural-LP [14], for link prediction in batch environments, for the UMLS [22] and WordNet

[18] datasets; and outperformed Neural-LP in the UWCSE dataset [17].

In the online environment, we compared NeuralLog+OSLR and NeuralLog+MIL with

OSLR [11, 12] and RDN-Boost [24] for link prediction tasks on three di↵erent datasets:

5.1. FUTURE WORKS 77

Cora [16], UMLS [22] and UWCSE [17]. NeuralLog+OMIL outperforms OSLR and RDN-

Boost on three of the four target relations from the Cora and in the UMLS datasets.

While NeuralLog+OSLR and NeuralLog+OMIL outperform OSLR and RDN-Boost on the

UWCSE dataset, whenever a good initial theory is provided.

5.1 Future Works

In this work we presented the NeuralLog language, its inference mechanism and its structure

learning algorithms. We believe that each of these components may open interesting lines of

research. Thus, in this section, we enumerate some directions for future works.

In the NeuralLog language, a future work would be to expand its expressibility, for instance,

by adding support for facts with arity greater than two. In addition, the definition of rules

with propositional predicates in their head would also be beneficial.

Still in the NeuralLog language and in the inference mechanism, a future work could be to

investigate the inference of higher-order rules directly, without transforming it to first-order

rules. This could be achieved by assigning a vector for each higher-order predicate in the

rule, containing a weight for each possible first-order substitution of the predicate. Then,

this vector could be learned from data.

On the structure learning mechanism, di↵erently from inferring higher-order rules directly,

an approach would be to learn which higher-order rule would get the best result in the

revision of the theory, at each moment, thus, improving the e�ciency of the algorithm by

applying a better sequence of revision. Furthermore, once a sequence of revision is learned

for a given task, it would be interesting to investigate whether it can be transferred to other

similar tasks.

Regarding further experiments, a natural path would be to investigate the performance of

NeuralLog for both parameter and structure learning on di↵erent datasets. Specially on

datasets where relational knowledge is required alongside neural network structures to take

advantage of raw inputs of some kind, such as: images, text, audio, among others. By using

the clause modifiers, one could provide the neural network structure for the raw input and

let the structure learning algorithm learn the relational part of the task.

In addition, experiments using the MIL structure learning algorithms with a deeper higher-

order resolution tree, which would allow the invention of new predicates, are also worthy of

investigation.

Furthermore, it would be interesting to experiment with NeuralLog+OSLR and

NeuralLog+OMIL on datasets containing concept drift, when the underling distribution of

the examples changes over time and the model must adapt itself to the new distribution [81].

78 CHAPTER 5. CONCLUSIONS

Notwithstanding, NeuralLog has an experimental implementation of negation. However, it

imposes some constraints to the logic program. As future work, one could investigate the

benefits of using negation in NeuralLog, whether it is necessary or if it can be expressed by

rules with negative weights. If negation is beneficial for learning tasks, it would be interesting

to investigate if the required constraints can be relaxed and/or ensured by the language and

the inference mechanism. Furthermore, considering that negation is beneficial, the structure

learning algorithm could be extended to consider it in their hypotheses spaces.

Nevertheless, in this work we presented NeuralLog, a first-order logic language that is

compiled to a neural network. In addition, we also presented three structure learning

algorithms for NeuralLog: one batch algorithm, and two online algorithms. Our experiments

showed that the results from NeuralLog were comparable to or greater than other state-of-

the-art systems, in tasks for which they were designed, in several datasets. Finally, we

pointed out directions that we find interesting for future works.

References

[1] Yann LeCun and Yoshua Bengio. The handbook of brain theory and neural networks.

chapter Convolutional Networks for Images, Speech, and Time Series, pages 255–258.

MIT Press, Cambridge, MA, USA, 1998.

[2] Ronald Brachman and Hector Levesque. Knowledge Representation and Reasoning.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1 edition, 2004.

[3] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and

methods. J. Log. Program., 19/20:629–679, 1994.

[4] A d’Avila Garcez, Tarek R Besold, Luc De Raedt, Peter Földiak, Pascal Hitzler, Thomas

Icard, Kai-Uwe Kühnberger, Luis C Lamb, Risto Miikkulainen, and Daniel L Silver.

Neural-symbolic learning and reasoning: contributions and challenges. In 2015 AAAI

Spring Symposium Series, 2015.

[5] Huma Lodhi. Deep relational machines. In Minho Lee, Akira Hirose, Zeng-Guang

Hou, and Rhee Man Kil, editors, Neural Information Processing, pages 212–219, Berlin,

Heidelberg, 2013. Springer Berlin Heidelberg.

[6] Artur S. Avila Garcez and Gerson Zaverucha. The connectionist inductive learning and

logic programming system. Applied Intelligence, 11(1):59–77, Jul 1999.

[7] Stephen H. Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-

interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach.

Learn., 100(1):49–73, 2015.

[8] Fan Yang, Zhilin Yang, and William W Cohen. Di↵erentiable learning of logical rules

for knowledge base reasoning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information

Processing Systems 30, pages 2319–2328. Curran Associates, Inc., 2017.

[9] William Yang Wang, Kathryn Mazaitis, and William W. Cohen. Structure learning

via parameter learning. In Proceedings of the 23rd ACM International Conference on

79

80 REFERENCES

Conference on Information and Knowledge Management, CIKM ’14, pages 1199–1208,

New York, NY, USA, 2014. Association for Computing Machinery.

[10] Pedro Domingos and Geo↵ Hulten. Mining high-speed data streams. In Proceedings of

the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’00, pages 71–80, Boston, Massachusetts, USA, August 2000. ACM.

[11] Victor Guimarães. Online probabilistic theory revision from examples: A ProPPR

approach. Master’s thesis, PESC, COPPE, Federal University of Rio de Janeiro, Rio

de Janeiro, RJ, Brazil, 2018.

[12] Victor Guimarães, Aline Paes, and Gerson Zaverucha. Online probabilistic theory

revision from examples with ProPPR. Machine Learning, 108(7):1165–1189, Jul 2019.

[13] Stephen Muggleton. Stochastic logic programs. In New Generation Computing,

volume 32, pages 254–264, Cambridge, Massachusetts, EUA, January 1996. Academic

Press.

[14] William W. Cohen, Fan Yang, and Kathryn Mazaitis. Tensorlog: A probabilistic

database implemented using deep-learning infrastructure. J. Artif. Intell. Res., 67:285–

325, 2020.

[15] Seyed Mehran Kazemi and David Poole. RelNN: A deep neural model for relational

learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-

gence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-

18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence

(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 6367–6375, 2018.

[16] Hoifung Poon and Pedro Domingos. Joint inference in information extraction. In

Proceedings of the 22Nd National Conference on Artificial Intelligence, volume 1 of

AAAI’07, pages 913–918, Vancouver, British Columbia, Canada, July 2007. AAAI

Press.

[17] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning,

62(1):107–136, 2006.

[18] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–

41, November 1995.

[19] Edgar Anderson. The species problem in iris. Annals of the Missouri Botanical Garden,

23(3):457–509, 1936.

[20] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of

Eugenics, 7(7):179–188, 1936.

REFERENCES 81

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational

Linguistics.

[22] Stanley Kok and Pedro Domingos. Statistical predicate invention. In Proceedings of the

24th International Conference on Machine Learning, ICML ’07, pages 433–440, New

York, NY, USA, 2007. Association for Computing Machinery.

[23] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana

Yakhnenko. Translating embeddings for modeling multi-relational data. In C.J.C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances

in Neural Information Processing Systems 26, pages 2787–2795. Curran Associates, Inc.,

2013.

[24] Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude Shavlik. Gradient-based

boosting for statistical relational learning: the markov logic network and missing data

cases. Machine Learning, 100(1):75–100, 2015.

[25] Jennifer Neville and David Jensen. Relational dependency networks. Machine Learning,

8(Mar):653–692, 2007.

[26] Victor Guimarães and Vı́tor Santos Costa. Neurallog: a neural logic language. CoRR,

abs/2105.01442, 2021.

[27] Victor Guimarães and Vı́tor Santos Costa. Meta-interpretive learning meets neural

networks. The Semantic Data Mining Workshop, SEDAMI 2021, 08 2021.

[28] Victor Guimarães and Vı́tor Santos Costa. Online learning of logic based neural

network structures. In Inductive Logic Programming, Athens, Greece, 2021. Springer

International Publishing.

[29] Alfred Horn. On sentences which are true of direct unions of algebras. The Journal of

Symbolic Logic, 16(1):14–21, 1951.

[30] Woodrow W. Denham. The Detection of Patterns in Alyawarra Nonverbal Behavior.

PhD thesis, University of Washington, 1973.

[31] Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of Databases:

The Logical Level. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1st edition, 1995.

82 REFERENCES

[32] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic prolog

and its application in link discovery. In Proceedings of the 20th International Joint

Conference on Artifical Intelligence, IJCAI’07, pages 2468–2473, Hyderabad, India,

January 2007. Morgan Kaufmann Publishers Inc.

[33] David H D Warren, Luis M. Pereira, and Fernando Pereira. Prolog - the language and

its implementation compared with lisp. SIGPLAN Not., 12(8):109–115, 1977.

[34] Roland de Wolf (auth.) Shan-Hwei Nienhuys-Cheng. Foundations of Inductive Logic

Programming. Lecture Notes in Computer Science 1228 : Lecture Notes in Artificial

Intelligence. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 1 edition, 1997.

[35] J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239–

266, August 1990.

[36] Stephen Muggleton. Inverse entailment and progol. New Generation Computing,

13(3):245–286, 1995.

[37] Ashwin Srinivasan. The aleph manual, 2001.

[38] Luc De Raedt. Logical and Relational Learning. Springer-Verlag Berlin Heidelberg,

Berlin, Heidelberg, 1 edition, 2008.

[39] Ehud Y. Shapiro. Algorithmic program debugging. The MIT Press, Cambridge,

Massachusetts, EUA, 1 edition, 1983.

[40] Bradley L. Richards and Raymond J. Mooney. Automated refinement of first-order

horn-clause domain theories. Machine Learning, 19(2):95–131, 1995.

[41] Tom M. Mitchell. Machine learning. McGraw Hill series in computer science. McGraw-

Hill, 1997.

[42] F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain

mechanisms. Report (Cornell Aeronautical Laboratory). Spartan Books, 1962.

[43] Simon Haykin. Neural networks, volume 2. Prentice hall New York, 1994.

[44] Nı́cia Rosário-Ferreira, Victor Guimarães, Vı́tor S. Costa, and Irina S. Moreira.

SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease

associations. BMC Bioinformatics, 22(1):482, 10 2021.

[45] Ana Lúısa Duboc, Aline Paes, and Gerson Zaverucha. Using the bottom clause and

modes declarations on FOL theory revision from examples. Machine Learning, 76(1):73–

107, 2009.

REFERENCES 83

[46] Aline Paes, Gerson Zaverucha, and Vı́tor Santos Costa. On the use of stochastic local

search techniques to revise first-order logic theories from examples. Machine Learning,

106(2):197–241, 2017.

[47] Lise Getoor and Benjamin Taskar. Introduction to Statistical Relational Learning. MIT

Press, 1 edition, 2007.

[48] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical

relational artificial intelligence: Logic, probability, and computation. Synthesis Lectures

on Artificial Intelligence and Machine Learning, 10(2):1–189, 2016.

[49] Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig, Oghenejokpeme I. Orhobor, and

Ross D. King. Large-scale assessment of deep relational machines. In Fabrizio Riguzzi,

Elena Bellodi, and Riccardo Zese, editors, Inductive Logic Programming, pages 22–37,

Cham, 2018. Springer International Publishing.

[50] Manoel V. M. França, Gerson Zaverucha, and Artur S. d’Avila Garcez. Fast relational

learning using bottom clause propositionalization with artificial neural networks.

Machine Learning, 94(1):81–104, Jan 2014.

[51] Arnaud Nguembang Fadja, Evelina Lamma, and Fabrizio Riguzzi. Deep probabilistic

logic programming. 4th International Workshop on Probabilistic logic programming,

PLP 2017, 11 2017.

[52] Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezný, Steven Schockaert, and Ondrej

Kuzelka. Lifted relational neural networks: E�cient learning of latent relational

structures. Journal of Artificial Intelligence Research, 62:69–100, 2018.

[53] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou.

Neural logic machines. In International Conference on Learning Representations, 2019.

[54] Navdeep Kaur, Gautam Kunapuli, Saket Joshi, Kristian Kersting, and Sriraam

Natarajan. Neural networks for relational data, 2019.

[55] Alireza Tamaddoni-Nezhad and Stephen Muggleton. The lattice structure and

refinement operators for the hypothesis space bounded by a bottom clause. Machine

Learning, 76(1):37–72, Jul 2009.

[56] Ryan Riegel, Alexander G. Gray, Francois P. S. Luus, Naweed Khan, Ndivhuwo

Makondo, Ismail Yunus Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona,

Udit Sharma, Shajith Ikbal, Hima Karanam, Sumit Neelam, Ankita Likhyani, and

Santosh K. Srivastava. Logical neural networks. CoRR, abs/2006.13155, 2020.

[57] Luciano Serafini and Artur S. d’Avila Garcez. Learning and reasoning with logic tensor

networks. In Giovanni Adorni, Stefano Cagnoni, Marco Gori, and Marco Maratea,

84 REFERENCES

editors, AI*IA 2016 Advances in Artificial Intelligence, pages 334–348, Cham, 2016.

Springer International Publishing.

[58] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning

with neural tensor networks for knowledge base completion. In C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in

Neural Information Processing Systems 26, pages 926–934. Curran Associates, Inc.,

2013.

[59] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and

Luc De Raedt. DeepProbLog: Neural probabilistic logic programming. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,

Advances in Neural Information Processing Systems 31, pages 3749–3759. Curran

Associates, Inc., 2018.

[60] Taisuke Sato. A statistical learning method for logic programs with distribution se-

mantics. In In Proceedings of the 12th International Conference On Logic Programming

(ICLP’95, pages 715–729, Tokyo, Japan, June 1995. The MIT Press.

[61] Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.

J. Artif. Int. Res., 61(1):1–64, jan 2018.

[62] Hikaru Shindo, Masaaki Nishino, and Akihiro Yamamoto. Di↵erentiable inductive logic

programming for structured examples. In AAAI, 2021.

[63] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,

9(8):1735–1780, 1997.

[64] William Yang Wang, Kathryn Mazaitis, Ni Lao, and William W Cohen. E�cient

inference and learning in a large knowledge base. Machine Learning, 100(1):1–26, 2015.

[65] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,

Scotts Valley, CA, 2009.

[66] Mart́ın Abadi, Ashish Agarwal, Paul Barham, and Eugene Brevdo et al. TensorFlow:

Large-scale machine learning on heterogeneous distributed systems, 2015.

[67] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.

Signature verification using a “siamese” time delay neural network. In Proceedings of

the 6th International Conference on Neural Information Processing Systems, NIPS’93,

pages 737–744, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[68] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical decision

trees. Artificial Intelligence, 101(1-2):285–297, 1998.

REFERENCES 85

[69] Bradley L. Richards and Raymond J. Mooney. Learning relations by pathfinding.

In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92),

pages 50–55, San Jose, CA, July 1992.

[70] Wassily Hoe↵ding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30, 1963.

[71] Python language reference, version 3.7. available at http://www.python.org. Python

Software Foundation.

[72] Ben Taskar, Ming fai Wong, Pieter Abbeel, and Daphne Koller. Link prediction in

relational data. In S. Thrun, L. K. Saul, and B. Schölkopf, editors, Advances in Neural

Information Processing Systems 16, pages 659–666. MIT Press, 2004.

[73] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. Amie:

Association rule mining under incomplete evidence in ontological knowledge bases. In

Proceedings of the 22Nd International Conference on World Wide Web, WWW ’13,

pages 413–422, New York, NY, USA, 2013. ACM.

[74] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[75] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. Ncbi disease corpus: A

resource for disease name recognition and concept normalization. Journal of Biomedical

Informatics, 47:1–10, 2014.

[76] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So,

and Jaewoo Kang. BioBERT: a pre-trained biomedical language representation model

for biomedical text mining. Bioinformatics, 36(4):1234–1240, 09 2019.

[77] Nı́cia Rosário-Ferreira, Catarina Marques-Pereira, Manuel Pires, Daniel Ramalhão,

Nádia Pereira, Victor Guimarães, Vı́tor Santos Costa, and Irina Sousa Moreira. The

treasury chest of text mining: Piling available resources for powerful biomedical text

mining. BioChem, 1(2):60–80, 07 2021.

[78] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph

embedding by translating on hyperplanes. In Carla E. Brodley and Peter Stone, editors,

AAAI. AAAI Press, 2014.

[79] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and

relation embeddings for knowledge graph completion. In Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pages 2181–2187. AAAI

Press, 2015.

86 REFERENCES

[80] A. P. Dawid. Present position and potential developments: Some personal views:

Statistical theory: The prequential approach. Journal of the Royal Statistical Society.

Series A (General), 147(2):278–292, 1984.

[81] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. A survey on concept drift adaptation. ACM Comput. Surv., 46(4):1053–

1060, 2014.

[82] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice

Hall Professional Technical Reference, 2nd edition, 1988.

Appendix A

The NeuralLog Language

In this appendix, we will describe in details the NeuralLog language. The NeuralLog language

is a first-order logic language designed to be compiled into a neural network. The language is

based on DataLog [31] and has some additional features to describe neural network structures

as well as model and training parameters.

A.1 The Language

A NeuralLog program is composed of a set of Horn clauses [29] of the form:

h(.) : � b1(.), . . . , bn(.), not bn+1(.), . . . , not bm(.).

Where h(.) is called the head, and the set of bi(.) is called the body. Both h(.) and bi(.) are

atoms. An atom is composed of the predicate’s name, possibly, followed by a list of terms

that the predicate requires. In the case of h(.), h is the predicate and (.) represents the list

of terms of the predicate h. The number of terms a predicate supports is called the arity of

the predicate, and we can write the predicate h of arity n as h/n. Predicates without terms,

this is, predicates of arity 0, are called propositional predicates and have no parentheses.

Additionally, we have two special predicates, true/0 and false/0, which represents the logic

values true and false, respectively.

The body of the Horn clause is composed of literals. A literal is an atom or the negation

of an atom (an atom preceded by the not keyword). Intuitively, the negation of an atom

(not A) must be true whenever we cannot prove that the atom (A) is true. In the A.2.2

subsection, we will better detail how negation works in NeuralLog.

A term can be either a string constant, a number or a variable. A string constant represents

a logic entity in the knowledge base; a number represents a numeric value that might be

87

88 APPENDIX A. THE NEURALLOG LANGUAGE

used be the neural network and a variable represents a term that might be replaced by an

entity from the logic base or a numeric value, depending on the logic semantics.

A predicate name is represented by a string starting with a lower case letter, possibly, followed

by any combination of letters, numbers, dashes and underscores. A constant can be defined

by a string following the same rules of the predicate name or by an arbitrary string between

single or double quotation marks. A constant cannot be mistaken for a predicate name,

since terms appear inside a predicate term definition, surrounded by parentheses; while the

predicate name appears outside the parentheses. A number can be defined by any sequence

of numbers, using a . (dot) to separate the decimal part; or in scientific notation in the form

of a floating number f followed by the letter e and an integer number n, which represents

f ⇥ 10n. A variable is defined in the same way as predicates and non-quoted constants, but

starting with an upper case letter instead.

Any string after either # or %, until the end of the line; and any block of text in the form

/⇤ < block of text > ⇤/, surrounded by / ⇤ ⇤/; are considered comments.

In NeuralLog, we use a set of facts to define the logic entities in the knowledge base and direct

relations between those entities. A fact can be seen as a Horn clause with an empty body.

For instance, the fact married(john,marie). represents the logic relation married between

the two entities john and marie. Which is the same as married(john,marie) : �true.
NeuralLog only supports grounded facts, this is, facts which does not contain variables in

its terms. Also, facts must not have arity bigger than two. Similarly, we can have the fact

height(john, 1.8)., which means that the entity john has an attribute height with value 1.8.

All facts have an associated weight that represents the confidence in the fact. By default, the

associated weight of each defined fact is 1.0, but it can be explicitly defined in the program,

using the following syntax w :: p(.), which says that the fact p(.) has weight w. For instance,

the fact 0.5 :: rains. says that the fact rains has weight 0.5.

In order to specify more complex relations, we use rules in the form of Horn clauses. An

example of a rule is:

mother(X,Y) : � parent(X,Y), female(X).

Which means that X is mother of Y for every pair of constants x, y that satisfies both

requirements: parent(x, y) AND female(x). The atom in the head of the rule must have

arity of 1 or greater.

A.1.1 Special Predicates

Since NeuralLog was developed to be a language that defines a neural network, which will

be later used for learning and prediction of examples, it has five special predicate names to

A.1. THE LANGUAGE 89

define the neural network model and the learning parameters, as well as the examples to be

used during the training and testing phases.

• learn

• example

• mega example

• set parameter

• set predicate parameter

Each one of these special predicate names will be described in details below.

A.1.1.1 Learn

The learn predicate name defines two predicates: learn/1 and learn/2.

learn/1 This predicate accepts only one parameter, which is another predicate name. It

can be either in the form p/n or p; where p is the name of the predicate and n is its arity. If

the program contains the fact learn(“p/n”)., the weights of the facts defined by the predicate

p with arity n will be marked as learnable and will become variable weights in the neural

network, which means that they can be adjusted by the optimization algorithm in order

to allow the neural network to better fit the examples. If the arity n is omitted, all the

predicates whose name are equal to p will be marked as learnable.

learn/2 This predicate accepts two parameters: the first parameter is the mode, which

must be the string prefix, and the second parameter is a prefix. If the program contains a

fact learn(prefix, p)., the weights of all the predicates whose name starts with p will be

marked as learnable, similarly to the learn/1 predicate.

A.1.1.2 Example

The example predicate name defines a family of predicates example/n, where n > 2. This

predicate is used to define the examples that will be used in the learning phase.

For instance, if the program has a fact example(married, john,marie)., during

the learning phase, it will try to adjust its learnable weights in order to pre-

dict the fact married(john,marie) with weight 1.0. Alternatively, a fact 0.0 ::

90 APPENDIX A. THE NEURALLOG LANGUAGE

Table A.1: Mega Examples

mega example(0, ner, “The”, “O”).

mega example(0, ner, “sun”, “O”).

mega example(0, ner, “is”, “O”).

mega example(0, ner, “shining”, “O”).

mega example(0, ner, “.”, “O”).

example(married, john, alice). would make the neural network to adjust their weights to

predict the fact married(john, alice). with weight 0.0.

A.1.1.3 Mega Example

Similar to the predicate example, the predicate mega example/n, where n > 3, allows the

definition of examples to be used for training. The di↵erence is that while the example

predicate name defines predicates that might be used in the training set in any order and

might be even shu✏ed, the mega example predicate defines a set of examples that might be

treated, by the neural network, as a batch of examples.

This predicate is specially useful if the input examples of the network are sequences, for

instance, the words in sentences. It guarantees that the words in a sentence will be processed

together and in the same order as defined in the program; although the sentences themselves

might be shu✏ed, depending on the configuration. The definition is the same as the example,

but it starts with an integer number which specifies the group of the example.

For instance, Table A.1 shows a set of facts, which defines a sentence for a text processing

task.

A.1.1.4 Set Parameter

The set parameter predicate name defines a family of predicates set parameter/n, where

n > 1. This predicate set the values for di↵erent parameters. The first term is the parameter

name, the following terms are the names of the parameters inside the previous parameter,

and the last term is the value of the parameters.

For instance, the fact set parameter(optimizer, adagrad). defines that the value of the

parameter optimizer is adagrad. While the pair of facts

set parameter(regularizer, class name, l2).

set parameter(regularizer, config, l, 0.01).

A.1. THE LANGUAGE 91

defines that the parameter regularizer has two sub-parameters class name and config,

while config is composed of another sub-parameter l. Finally, the values of the parameters

are l2 and 0.01, for the class name and l parameters, respectively. This value is

internally represented as a dictionary, which can be seen, in JSON form, as: {“regularizer”:
{“class name”: “l2”, config: {“l”: 0.01}}}.

The final values are converted to the appropriated types, which can be: float, string or

boolean.

A.1.1.5 Set Predicate Parameter

Some parameters of the system can be set individually for each di↵erent predicate whose

parameter may apply. This kind of parameter may have a default value, defined by the

set parameter predicate name, but may also have a specific value, for a given predicate,

that shall replace the default value when applied to this predicate. In order to allow this

behaviour, the parameter name set predicate parameter/n, where n > 2, is used.

This parameter name works similarly to the set parameter predicate name, but its first term

is another predicate name. The definition of the predicate parameter argument is the same

as the learn/1 predicate.

For instance, the fact set predicate parameter(“b/1”, initial value, zero). says that the

values of the facts defined by the predicate b/1 must be initialized to 0.0, when learning

the predicate b/1.

A.1.2 Special Terms

In order to allow a closer integration between the logic and the neural network parts, we

created two special terms that can be used to get information from the logic program in

order to be used to create the neural network models. These terms can be used as the last

term of either the set parameter or the set predicate parameter predicates. Both of them

will result in an integer value that will be computed at compile time.

The first special term is used to get the number of entities in a given predicate term position

and has the form “$p/n[i]”. This term will be the number of distinct entities that appears

as the i-th (starting from 0) term in the predicate of name p and arity n.

The second special term is used to get the index of an entity in a predicate term position

and has the form “$p/n[i][e]”. This term will be the index of the entity e that appears as

the i-th (starting from 0) term in the predicate of name p and arity n.

For instance, consider the NeuralLog program given in Algorithm 4. The lines 1-3 define the

92 APPENDIX A. THE NEURALLOG LANGUAGE

possible labels of the neural network: l1, l2, l3; while the lines 4-6 define that there will be a

predicate dense/2 that will be a dense neural network layer with size of “$label/1[0]”, that

will result to be the number of possible labels, defined by the predicate label/1. On the other

hand, the lines 7-9 define the dataset class, whose empty word index is equal to the index

of the entity ‘ < EMPTY >0 defined in the position 0 of the predicate empty entry/1.

Algorithm 4 Special NeuralLog Terms

1: label(l1).

2: label(l2).

3: label(l3).

4: set predicate parameter(

“dense/2”, function value, class name, “Dense”).

5: set predicate parameter(

“dense/2”, function value, config, units, “$label/1[0]”).

6: set predicate parameter(

“dense/2”, function value, config, activation, “softmax”).

7: set parameter(dataset class, class name, sequence dataset).

8: set parameter(dataset class, config, expand one hot, “False”).

9: set parameter(dataset class, config,

empty word index, “$empty entry/1[0][‘ < EMPTY >0]”).

A.1.3 Syntax Sugars

NeuralLog also has two syntax sugars in order to facilitate the definition of sets of Horn

clauses that have similar form. The first syntax sugar is a for-each loop that iterates a

variable over a list of elements. The second syntax sugar is a wildcard that will be replaced

accordingly, based on the elements found in the whole NeuralLog program. We further

explain those syntax sugars below.

A.1.3.1 For-each Loop

The for-each loop allows the definition of several rules, which share a similar structure, at

once. It was inspired by the bash syntax, and has the generic form shown in Algorithm 5.

The loop will repeat its content, once for each item in the list, replacing the wildcard of the

item in the Horn clauses in it.

The wildcards can appear as a predicate names or terms in the clauses, and is represented

by the name of the variable surrounded by curly brackets. The list of items can be a list of

A.1. THE LANGUAGE 93

strings separated by space (might include strings containing spaces, surrounded by single or

double quotes), or a range of integers in the form {i..j}, where i < j, which will result in a

range from i to j with both extremes included.

Algorithm 6 shows an example of each case. In line 1 we have a for-each loop that iterates

over a range of integers [0, 9] and in line 4 we have a for-each loop that iterates over the list

of items [setosa, versicolor, virginica].

Algorithm 5 For-each Loop Syntax

1: for <variable name> in <list of items> do

2: /* loop content */

3: done

Algorithm 6 For-each Loop Example

1: for i in {0..9} do

2: hidden {i}(X) :- embedding(X, Y), w1(h {i}).
3: done

4: for type in setosa versicolor virginica do

5: {type}(X) :- output {type}(X).
6: done

A.1.3.2 Wildcard Syntax

In addition to the for-each loop, NeuralLog has a second syntax sugar which works as a

wildcard in the rule. This wildcard appears in the form of a string surrounded by curly

brackets, as do the variables in the for-each loop. Those wildcards can appear as (part of)

a predicate name or as (part of) a term, either in the head or in the body of a Horn clause.

Di↵erently from a variable of a for-each loop, whenever a wildcard appears in the head of a

clause, it must also appear in its body.

Then, we create a set S of all possible values a template in the body of a clause may assume,

as follows:

• If the wildcard appears as (part of) a predicate name, we add to S all possible values

this wildcard could assume, in order to make the name of the predicate equal to the

name of another predicate defined in the logic program;

• If the wildcard appears as (part of) a term name, we add to S all possible values this

wildcard could assume, in order to make the name of the term equal to the name

of another term defined in the program, as long as the names of other predicates

containing this wildcard would still exist in the program.

94 APPENDIX A. THE NEURALLOG LANGUAGE

Finally, for each possible permutation of the values of each wildcard in the clause, we generate

a new clause, replacing the wildcard by those values.

It is worthy to notice that we must filter the wildcard in the predicate names in the body of

a clause, in order not to create new predicates in the body of a clause that do not appear

elsewhere in the program, because such clauses will not have a meaningful value. This

restriction is not applied to predicate names in the head of a clause, since its definition will

be given by the body of the clause. The creation of new terms is also allowed, and new

entities are added to the logic program.

The following clause gives an example of the wildcard syntax sugar:

activation {i}(X) : � hidden {i}(X), sigmoid(X).

Assuming that there are a set of predicates of the form hidden i, for i 2 [0, 9], this clause

will generate 10 clauses with the head having the form activation i, one for each hidden i.

A.1.4 Comments

A common feature of programming languages is the ability to add comments in the middle

of the code, in order to explain its parts. NeuralLog supports two types of comments: block

comments, which may span over multiple lines and are surrounded by an opening and a

closing token; and line comments, which start with a specific token and extends until the

end of the line.

For block comments, NeuralLog uses the C syntax [82]. A block comment starts with the

characters /⇤ and ends with the characters ⇤/, having the form of:

/ ⇤ COMMENTED BLOCK ⇤ /

For single line comment, NeuralLog supports two distinct tokens to indicate the beginning

of the comment: the % (percent symbol), which is also the token used by Prolog [33] to

define the line comments; and, in order to get a better integration with Python [65], it also

supports the # (number sign) token to start a line comment.

A.2 Compilation Process

In this section we explain how the compilation process of a NeuralLog program into a neural

network works. A NeuralLog program is composed of a set of Horn clauses [29]. These

clauses can be divided into two types: (1) facts, which are clauses with empty bodies and

no variable terms; and (2) rules, which are the remaining clauses.

A.2. COMPILATION PROCESS 95

Table A.2: A Set of Facts

p/2 height/2 w/1 rains/0 Index

p(a, b). height(a, 1.8). w(a). 0.5 : rains. 0: a

0.5 :: p(a, c). height(b, 1.5). w(b). 1: b

0.3 :: p(b, a). height(c, 3.14). w(d). 2: c

3: d

A set of facts of the same predicate is collectively stored in a tensor form, representing the

weights of the neural network, while rules are used to define the structure of the neural

network. In addition, there are functional predicates that represent di↵erentiable functions

in the network.

We give more detail of each one of these elements in the subsections below.

A.2.1 Facts Representation

Let us consider the NeuralLog program composed of the set of facts F in Table A.2,

containing a set of entities E; where each fact has an associated weight, which is 1 when the

weight is omitted.

We first construct an index for E by assigning a distinct integer value in [0, n) to each entity

e 2 E, where n = |E|. In this case, n = 4 and the index is shown in the last column of the

Table A.2.

Then, for each predicate in F we create a tensor, where the rank (number of dimensions)

of the tensor is the same as the arity of the predicate. For each position in the tensor, we

associate the weight corresponding to the fact containing the entities of the indices of the

position, if the fact is not in F , we associate the weight of 0.

In the case of the binary predicate p/2, we create a matrix P 2 IRn⇥n where Pij = w if there

is a fact p(ei, ej), with weight w, in F ; where i and j correspond to the indices of the entities

ei and ej , respectively. All the remaining entries of the matrix are set to 0. We make an

analogous process to the unary (arity 1) and propositional (arity 0) predicates, where the

unary predicates are represented by vector in IRn and propositional predicates are scalar in

IR.

In the case of an attribute predicate, we create two vectors, one for the weights and the other

for the attribute value. Figure A.1 shows the tensors of the facts in Table A.2.

The rules will define how the tensors are operated. A tensor is only multiplied by another

if there is a rule that contains a variable that appears in the predicate of both tensors. In

96 APPENDIX A. THE NEURALLOG LANGUAGE

P =

a b c d

a

b

c

d

1 0.5

0.3

0

0

0

0

0 0

0 0 0

0 0 0 0

a

b

c

d

weight value

height =

1

1

1

0

1.8

1.5

3.14

0

w =

a

b

c

d

1

1

1

0

rains = 0.5

Figure A.1: The Tensors from the NeuralLog Program

order to increase the performance and reduce the amount of used memory, we reduce the

dimensions of the tensors to only accommodate the entities needed for that tensor, since

the tensors only need to store the entities belonging to itself or to tensors related to it. By

analysing the rules in the NeuralLog program, we can identify which tensors are multiplied

by each other, and only store, in those tensors, the entities of the related tensors. This might

dramatically reduce the dimensions of those tensors. In addition, we use sparse matrices to

represent tensors whose weight will not be learned by the neural network and the sparsity

of the tensor is above a defined threshold.

A.2.2 Functional Predicates

In addition to the logic predicates, NeuralLog also supports the definition of function

predicates. Instead of relying on a logic definition, a function predicate has an associated

di↵erentiable function that is applied to its input vector.

There is no explicit di↵erence between functions and logic predicates in the NeuralLog

language. The di↵erence is that logic predicates have facts and/or rules defined in the

KB and the computations are given by multiplying the input terms with the matrix (or

vector) representation of the facts of the predicate and the computation of the rules; while

the result of function predicates is the application of the function to the input terms.

There are two ways to use a functional predicate. The first one is to use a predicate whose

name matches a defined function. This defined function can be: a function defined in the

TensorFlow’s Keras API marked as a Keras activation; a Keras layer; or a function defined

in NeuralLog, marked with the decorator neural log literal function. This way is easier to

use, but it is only suitable for parameterless functions, since it does not allow the user to set

the function’s parameters.

The second way to define a functional predicate is by the use of the set predicate parameter

fact, as explained in the Subsubsection A.1.1.5. In this way, the user can define a

A.2. COMPILATION PROCESS 97

Table A.3: Functional Predicate Definition

set predicate parameter(“dense/2”, function value, class name, “Dense”).

set predicate parameter(“dense/2”, function value, config, units, 10).

set predicate parameter(“dense/2”, function value, config, activation, sigmoid).

function that will be called on the use of the specified predicate, by setting the parameter

function value of this predicate. Table A.3 shows an example of how to define a dense layer

with 10 neurons and the sigmoid as activation function; and associate it with the predicate

dense/2.

As in the first way, the value of the class name must exactly match the name of the desired

function, which are the same in both cases. Since the Keras dense layer starts with a capital

letter, it could not be used directly as a constant term, since constant terms must start with

lower case letters, thus, we have to surround it with quotes.

It is also important to point out that the dense/2 predicate will be initialized only once. If

it is used in di↵erent places in the NeuralLog program, the same layer will be applied in all

places, meaning that the weights will be shared across di↵erent parts of the program. This

might be or not be the desired behaviour. In case one wants di↵erent weights for each part,

di↵erent predicates must be defined.

A.2.3 Rules Representation

The rules are Horn clauses with bodies. They define the structure of the neural network and

how the predicates relate to each other. A broader explanation of how the rules are compiled

to the neural network is given in Section 3.1.

A.2.4 NeuralLog Parameters

In NeuralLog, there are several parameters that can be set in order to customize the

compilation of the logic program into the neural networks. Those parameters can be set

with the special set parameter and set predicate parameter predicate names.

In this subsection, we will present all the available parameters, defined in two sets: the

model level parameters, with respect to the neural network model; and the training level

parameters, with respect to the training phase.

Every available parameter has an associated default value and none of them is required to be

defined in order to use NeuralLog; although, by defining other values to those parameters,

the user has the flexibility to change several aspects of the constructed model.

98 APPENDIX A. THE NEURALLOG LANGUAGE

A.2.4.1 Model Parameters

In this subsubsection, we list all the available parameters to define the construction of the

neural network model. The parameters marked with a ⇤ in the end of name might be

individually set to a specific predicate.

If a parameter is set for a specific predicate, this predicate will use the set value for it. Other

predicates, that do not have a specific set value, will use the default global value instead.

The function value parameter is the only parameter that has no global value and must be

set, individually, for each desired predicate.

• allow sparse⇤: by default, we represent constant facts as sparse matrices whenever

possible. Although it reduces the amount of used memory, it limits the multiplication

to matrices with rank at most 2. In case one needs to work with higher order matrices,

these options must be set to False. Default value: True.

• and combining function⇤: function to combine di↵erent vectors and get an ‘AND’

behaviour between them. The default is to multiply all the paths, element-wise, by

applying the tf.math.multiply function. Default value: tf.math.multiply.

• any aggregation function: function to aggregate the input of the any predicate. The

default function is the tf.reduce sum. Default value: any aggregation function.

• attributes combine function⇤: function to combine the numeric terms of a fact.

Default value: tf.math.multiply.

• avoid constant⇤: Skips adding the constants that appear in the index specified by this

parameter, when reading the examples. This may cause entities, that only appear in

the examples, not to appear in the knowledge base. This must be handled by the

dataset; otherwise, an exception will be raised. Default value: {}.

• dataset class: the class to handle the examples. Default value: default dataset.

• edge combining function⇤: function to extract the value of unary or attribute

predicates based on the input. The default is the element-wise multiplication

implemented by the tf.math.multiply function. Default value: tf.math.multiply.

• edge combining function 2d⇤: function to extract the value of binary predicates based

on the input. The default is the matrix multiplication implemented by the tf.matmul

function. Default value: tf.matmul.

• edge combining function 2d:sparse⇤: function to extract the value of binary

predicates based on the input, for sparse matrices. The default is the ma-

A.2. COMPILATION PROCESS 99

trix multiplication implemented by the tf.matmul function. Default value:

edge combining function 2d:sparse.

• edge neutral element: element used to extract the tensor value of grounded literals in a

rule. The default edge combining function is the element-wise multiplication. Thus, the

neutral element is 1.0, represented by tf.constant(1.0). Default value: {0class name0 :0

tf.constant0,0 config0 : {0value0 : 1.0}}.

• function value: the function value of a functional predicate. Default value: {}.

• initial value⇤: initializer for trainable predicates. This initializer will be used to

initialize facts from trainable predicates that are not in the knowledge base. Default

value: {0class name0 :0 random normal0,0 config0 : {0mean0 : 0.5,0 stddev0 : 0.125}}.

• invert fact function⇤: function to extract the inverse of facts. The default is the

transpose function implemented by tf.transpose. Default value: tf.transpose.

• invert fact function:sparse⇤: function to extract the inverse of facts. The default

is the transpose function implemented by tf.sparse.transpose. Default value:

tf.sparse.transpose.

• literal combining function⇤: function to combine the di↵erent proofs of a literal (Fact

Layers and Rule Layers). The default is to sum all the proofs, element-wise, by

applying the tf.math.add function to reduce the layers and fact outputs. Default

value: tf.math.add.

• literal negation function⇤: function to get the value of a negated literal from the

non-negated one, the default value is 1 � a, where a is the result of the non-negated

literal. Default value: literal negation function.

• literal negation function:sparse⇤: function to get the value of a negated literal from

the non-negated one, the default value is 1�a, where a is the result of the non-negated

literal. Default value: literal negation function:sparse.

• output extract function⇤: function to extract the value of an atom with a constant at

the last term position. The default function is the tf.nn.embedding lookup. Default

value: tf.nn.embedding lookup.

• path combining function⇤: function to combine di↵erent paths from a Rule Layer.

The default is to multiply all the paths, element-wise, by applying the tf.math.multiply

function. Default value: tf.math.multiply.

• recursion depth⇤: the maximum recursion depth for the predicate. Default value: 1.

100 APPENDIX A. THE NEURALLOG LANGUAGE

• unary literal extraction function⇤: function to extract the value of unary predicate.

The default is the matrix multiplication, implemented by the tf.matmul, applied to the

transpose of the literal predicate. Default value: unary literal extraction function.

• value constraint⇤: function to be applied to the weights of the trainable predicates

in order to constraint its value. This function must take as input the tensor

representing the unconstrained weights and return another tensor (of same shape)

with the constrained values. Default value: {}.

• weighted attribute combining function⇤: function to combine the weights and values

of the attribute facts. The default function is the tf.math.multiply. Default value:

tf.math.multiply.

A.2.4.2 Training Parameters

In this subsubsection, we list all the available parameters to define how to train the neural

network. Except for the loss function and the metrics, all the parameters are global to the

training process and are not associated to any particular predicate.

• batch size: the batch size. Default value: 1.

• best model: a dictionary with keys pointing to ModelCheckpoints in the callback

dictionary. For each entry, it will save the program and inference files (with the value

of the entry as prefix) based on the best model saved by the checkpoint defined by the

key. Default value: None.

• callback: a dictionary of callbacks to be used on training. Default value: None.

• clip labels: if True, clips the values of the labels to [0, 1]. This is useful when one wants

to keep the output of the network in the [0, 1] range and also use the mask predictions

feature. Default value: False.

• epochs: the number of epochs. Default value: 10.

• inverse relations: if True, also creates the inverted relation for each output predicate.

Default value: False.

• loss function⇤: the loss function of the neural network and, possibly, its options. It

can be individually specified for each output predicate, by just putting another term

with the name of the predicate. Default value: mean squared error.

• mask predictions: if True, it masks the output of the network during the training

phase. Before the loss function, it sets the predictions of unknown examples to 0

A.2. COMPILATION PROCESS 101

by multiplying the output of the network by the square of the labels. In order for

this method to work, the labels must be: 1, for positive examples; �1, for negative

examples; and 0, for unknown examples. Default value: False.

• metrics⇤: the metric functions to evaluate the neural network and, possibly, its options.

The default value is the loss function, which is always appended to the metrics. It can

be individually specified for each predicate, by just putting another term with the

name of the predicate. Default value: { }.

• optimizer: the optimizer for the training and, possibly, its options. Default value: sgd.

• regularizer: specifies the regularizer, it can be l1, l2 or l1 l2. The default value is:

None.

• shuffle: if True, it shu✏es the examples of the dataset for each iteration. This option

is computationally expensive. Default value: False.

• validation period: the interval (number of epochs) between the evaluation of the model

in the validation set, if set. Default value: 1.

	Agradecimentos
	Abstract
	Resumo
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms
	Introduction
	Background Knowledge
	Logic Fundamentals
	SLD-Resolution
	Inductive Logic Programming
	Meta-Interpretive Learning
	Theory Revision from Examples

	Neural Networks Fundamentals
	Online vs Offline Learning
	Related Work

	The NeuralLog System
	NeuralLog: a Bridge from Logic Programming to Neural Networks
	Fact Representation
	Function Predicates
	Real-valued Data

	Rule Representation
	Network Construction

	NeuralLog Structure Learning Algorithms
	Meta-Interpretive Learning
	Online Structure Learner by Revision
	Data Representation
	Theory Revision
	Accepting the Revision
	Clause Modifiers

	Online Meta-Interpretive Learning

	Discussion

	Experiments & Results
	Parameter Learning
	NeuralLog in Comparison with Other Logic-based Systems
	Methodology
	Results

	NeuralLog with Numeric Values
	Iris Dataset
	NCBI Disease Dataset

	Structure Learning
	Batch Structure Learning
	Methodology
	Results
	Comparison with Embedding Systems

	Online Structure Learning
	Simulating the Online Environment
	Results

	Conclusions
	Future Works

	References
	The NeuralLog Language
	The Language
	Special Predicates
	Learn
	Example
	Mega Example
	Set Parameter
	Set Predicate Parameter

	Special Terms
	Syntax Sugars
	For-each Loop
	Wildcard Syntax

	Comments

	Compilation Process
	Facts Representation
	Functional Predicates
	Rules Representation
	NeuralLog Parameters
	Model Parameters
	Training Parameters

