
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Application of GraphQL for Dynamic
Data Models

José Pedro Maia Martins

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. António Miguel Pontes Pimenta Monteiro

July 29, 2022

© José Pedro Maia Martins, 2022

Application of GraphQL for Dynamic Data Models

José Pedro Maia Martins

Mestrado Integrado em Engenharia Informática e Computação

Approved by:

President: Prof. Jácome Miguel Costa da Cunha

Referee: Prof. António Manuel de Sousa Barros
Supervisor: Prof. António Miguel Pontes Pimenta Monteiro

July 29, 2022

Resumo

GraphQL é uma linguagem de consulta para APIs e um motor de execução para a resolução das
referidas consultas com dados existentes, cujo foco principal é dar aos clientes o poder de pedir
exatamente os dados de que necessitam de um servidor num único pedido.

A aplicação de GraphQL em aplicações cujo modelo de dados subjacente é estático está bas-
tante bem definida com numerosos recursos disponíveis online. Os programadores podem facil-
mente construir o esquema GraphQL que descreve o seu modelo de dados antecipadamente, uti-
lizando, por exemplo, a linguagem de definição do esquema de GraphQL.

Num contexto em que o modelo de dados subjacente de uma aplicação não é estático, ou seja,
o modelo é dinâmico e não é conhecido em tempo de compilação, a criação de APIs GraphQL não
é linear. O esquema GraphQL da API precisa de ser gerado dinamicamente e atualizado em tempo
de execução de modo a estar sempre em sincronia com o modelo de dados em questão. Isto, por
sua vez, proporciona uma camada adicional de complexidade à utilização padrão da tecnologia
GraphQL, que ainda não foi suficientemente estudada e analisada.

Este projecto visa analisar, implementar e avaliar uma prova de conceito que permite validar
a implementação de APIs GraphQL num contexto em que o modelo de dados subjacente não é
conhecido em tempo de compilação, com uma análise comparativa adicional em relação a APIs
REST tradicionais, tanto em termos de desempenho, como de experiência do programador e de
usabilidade, analisando as vantagens qualitativas e quantitativas em relação às últimas.

O projecto é realizado no contexto da aplicação MES da Critical Manufacturing, que, em
virtude das suas exigências comerciais, adaptabilidade e flexibilidade, tem um modelo de dados
dinâmico que não é necessariamente conhecido de antemão.

Após a conclusão do trabalho com a implementação de uma prova de conceito que permite
consultar alguns aspectos dos dados da aplicação MES da Critical Manufacturing, podemos validar
a aplicabilidade de GraphQL para modelos de dados dinâmicos.

Podemos também concluir que a utilização de GraphQL para o cenário referido é uma escolha
viável uma vez que uma API GraphQL é capaz de demonstrar um desempenho semelhante a
uma típica alternativa REST, além de proporcionar alguns benefícios extra relacionados com os
benefícios da tecnologia GraphQL, tais como a aquisição de múltiplas parcelas de informação
num único pedido.

i

Abstract

GraphQL is a query language for APIs and a execution engine for fulfilling said queries with
existing data, whose primary focus is to give clients the power to ask for exactly the data they
need from a server in a single request.

The application of GraphQL in applications whose underlying data model is static is pretty
well defined with many available resources online. Developers can easily construct the GraphQL
schema that describes their data model ahead of time, using, for example, GraphQL schema defi-
nition language.

In a context where an application’s underlying data model is not static, that is, the model is
dynamic and is not known at compile-time, the creation of GraphQL APIs is not straightforward.
The GraphQL schema of the API needs to be dynamically generated and updated in runtime so as
to always be in sync with the data model in question. This, in turn, provides an additional layer
of complexity to the standard usage of GraphQL technology, which hasn’t yet been adequately
studied and analyzed.

This project aims to analyze, implement, and evaluate a proof-of-concept that allows validating
the implementation of GraphQL APIs in a context where the underlying data model is not known
at compile-time, with further comparative analysis against traditional REST APIs, both in terms of
performance, developer experience and usability, analyzing qualitative and quantitative advantages
over the latter.

The project is carried out in the context of Critical Manufacturing’s MES application, which,
by virtue of its business requirements, adaptability, and flexibility, has a dynamic data model that
is not necessarily known in advance.

After the work’s conclusion with the implementation of a proof-of-concept that allows query-
ing some aspects of Critical Manufacturing’s MES application data, we can validate the applica-
bility of GraphQL for dynamic data models.

We can also conclude that using GraphQL for the mentioned scenario is a viable choice since
a GraphQL API can demonstrate similar performance to a typical REST alternative, in addition
to providing some extra benefits related to the GraphQL technology strengths, such as retrieving
multiple pieces of information in a single request.

ii

Acknowledgments

I would like to thank everyone who was involved in this project.
From Critical Manufacturing’s side, thanks for giving me great support and making sure I had

all the tools needed to complete this work. Special thanks to Tiago Galvão for being my main
point of contact inside the company and helping me with his knowledge and ideas.

Thanks to Prof. Miguel Pimenta Monteiro for the guidance in writing the dissertation.
Thanks to all my close friends with whom I always share good times and help me stay happy

and grateful in life.
Finally, I thank my family for enabling me to get to this position and for always helping me

with anything throughout my life. None of this would be possible without them.

José Pedro Maia Martins

iii

“An expert is a man who has made all the mistakes that can be made in a very narrow field.”

Niels Bohr

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Document Structure . 2

2 GraphQL for Dynamic Data Models 3
2.1 GraphQL . 3

2.1.1 Description . 3
2.1.2 Schema and API Example . 4
2.1.3 Factors and Forces . 5
2.1.4 Not Yet Solved Problems . 7

2.2 Related Work . 8
2.3 Innovative Factors . 9
2.4 Existing Technologies . 9

2.4.1 Characterization . 9
2.4.2 Choice . 12

3 Requirements and Functionalities 14
3.1 Dissertation Objectives . 14
3.2 Functional Requirements . 15
3.3 Non-Functional Requirements . 16
3.4 Questions To Be Answered . 18

4 Architecture 19
4.1 CM MES Software . 19
4.2 CM MES Architecture . 22

4.2.1 Data Model . 22
4.2.2 Queries and REST API . 24
4.2.3 Message Bus . 26

4.3 GraphQL Middleware Architecture . 29

5 Implementation 31
5.1 Technologies and Methodologies Used . 31

5.1.1 Technologies . 31
5.1.2 Methodologies . 32

5.2 Implementation Details . 33
5.2.1 Mutable GraphQL Schema . 33

v

CONTENTS vi

5.2.2 Generating a GraphQL Schema Dynamically 34
5.2.3 Updating the GraphQL Schema at Runtime 38
5.2.4 Pagination . 41
5.2.5 Filtering . 42
5.2.6 DataLoader . 45

6 Results Analysis 47
6.1 Applicability of GraphQL for Dynamic Data Models 47
6.2 Comparative Analysis of REST and GraphQL APIs 47

6.2.1 Performance . 47
6.2.2 Developer Experience . 51
6.2.3 Usability . 55

6.3 Discussion . 55

7 Conclusions and Future Developments 57
7.1 Main Developments and Conclusions . 57
7.2 Further Developments and Evolution . 58

References 59

A Developer Experience Questionnaire 61
A.1 API Technologies Knowledge . 61
A.2 REST vs GraphQL: Request Payloads . 64

A.2.1 Request Payloads 1 . 64
A.2.2 Request Payloads 2 . 66
A.2.3 Request Payloads 3 . 69
A.2.4 Request Payloads 4 . 71

A.3 REST vs GraphQL: Response Payloads . 74
A.3.1 Response Payloads 1 . 74
A.3.2 Response Payloads 2 . 77

A.4 Final Remarks . 82

List of Figures

2.1 Typical GraphQL based architecure . 4
2.2 Example of GraphQL schema written in GraphQL SDL 5
2.3 GraphQL query to fetch the ids of Post objects and the User that created it 6
2.4 JSON response to Figure 2.3 query . 6
2.5 GraphQL query to fetch the username of User with id equal to 1 6
2.6 JSON response to Figure 2.5 query . 6
2.7 GraphQL query to fetch the title and description of Post objects 7
2.8 JSON response to Figure 2.7 query . 7
2.9 GraphQL JavaScript hello world script . 10
2.10 GraphiQL IDE application screen . 11
2.11 Altair GraphQL Client application screen . 13

4.1 CM MES landing page . 20
4.2 CM MES tech stack architecture . 21
4.3 CM MES Queries page . 22
4.4 CM MES Static Model static model sub-schema diagram 23
4.5 CM MES Dynamic Model entities sub-schema diagram 25
4.6 CM MES Query page . 25
4.7 CM MES Queries API QueryObject Fields property 27
4.8 CM MES Queries API QueryObject Filters property 28
4.9 Message Bus architecture diagram . 29
4.10 GraphQL middleware architecure . 30

5.1 Injection of schema class into GraphQL server 34
5.2 Injection of schema instance into GraphQL server 34
5.3 Excerpt of MutableSchema class that delegates operations to its Schema field . . 35
5.4 Injection of mutable GraphQL schema . 35
5.5 Diagram representing CM MES generated GraphQL schema 36
5.6 Schema initialization and creation of query root operation type 36
5.7 Dictionary that stores a set of object types that represent Entity Types 37
5.8 Creation of Entity Types object types and population of entities dictionary 37
5.9 Creation of Entity Type field . 38
5.10 Creation of Entity Type Property field which resolves to scalar value 38
5.11 Creation of Entity Type Property field which resolves to some Entity Type instance 39
5.12 Querying of Name and Description Entity Type Properties of Folder Entity Types 39
5.13 Querying of Name, Description, ParentFolder Name and ParentFolder Descrip-

tion Entity Type Properties of Folder Entity Types 40
5.14 CM MES Security cache invalidation message 40

vii

LIST OF FIGURES viii

5.15 CM MES Entity Type cache invalidation message 40
5.16 Pagination GraphQL input type . 41
5.17 Pagination string to query SQL database . 42
5.18 GraphQL query to retrieve first and second instances of Facility entity type . . . 43
5.19 GraphQL query to retrieve third and fourth instances of Facility entity type . . . 43
5.20 Simple JSON filter example . 45
5.21 Complex JSON filter example . 45
5.22 GraphQL query which benefits from DataLoader batching 46

6.1 GraphQL query used in questionnaire for understanding developers knowledge . 53
6.2 Comparison of REST and GraphQL payloads for Scenario 1 54

A.1 Developer Experience questionnaire first question 61
A.2 Developer Experience questionnaire first question results 62
A.3 Developer Experience questionnaire second question 62
A.4 Developer Experience questionnaire second question results 62
A.5 Developer Experience questionnaire third question 63
A.6 Developer Experience questionnaire third question results 63
A.7 Developer Experience questionnaire fourth question 65
A.8 Developer Experience questionnaire fourth question results 65
A.9 Developer Experience questionnaire fifth question 65
A.10 Developer Experience questionnaire fifth question results 66
A.11 Developer Experience questionnaire sixth question 67
A.12 Developer Experience questionnaire sixth question results 68
A.13 Developer Experience questionnaire seventh question 68
A.14 Developer Experience questionnaire seventh question results 68
A.15 Developer Experience questionnaire eighth question 70
A.16 Developer Experience questionnaire eighth question results 70
A.17 Developer Experience questionnaire ninth question 70
A.18 Developer Experience questionnaire ninth question results 71
A.19 Developer Experience questionnaire tenth question 72
A.20 Developer Experience questionnaire tenth question results 73
A.21 Developer Experience questionnaire eleventh question 73
A.22 Developer Experience questionnaire eleventh question results 73
A.23 Developer Experience questionnaire twelfth question 76
A.24 Developer Experience questionnaire twelfth question results 77
A.25 Developer Experience questionnaire thirteenth question 81
A.26 Developer Experience questionnaire thirteenth question results 81
A.27 Developer Experience questionnaire fourteenth question 82
A.28 Developer Experience questionnaire fourteenth question results 82
A.29 Developer Experience questionnaire fifteenth question 82
A.30 Developer Experience questionnaire fifteenth question results 83

List of Tables

3.1 REQ.001 :: Query CM MES with GraphQL . 15
3.2 REQ.002 :: Keep GraphQL schema updated . 15
3.3 REQ.003 :: Paginate GraphQL query results . 15
3.4 REQ.004 :: Filter GraphQL query results . 16
3.5 REQ.005 :: Explore GraphQL schema . 16
3.6 REQ.006 :: Highly Performant . 16
3.7 REQ.007 :: Maintainable . 17
3.8 REQ.008 :: Extensible . 17
3.9 REQ.009 :: Use software approved for commercial use 17
3.10 REQ.010 :: Loggable . 17
3.11 REQ.011 :: Secure . 17

5.1 NuGet packages used in the GraphQL middleware 32

6.1 Response time average per ten requests in 10 groups of trial tests - Scenario 1 . . 48
6.2 Response time average per ten requests in 10 groups of trial tests - Scenario 2 . . 49
6.3 Response time average per ten requests in 10 groups of trial tests - Scenario 3 . . 49
6.4 Response time average per ten requests in 10 groups of trial tests - Scenario 4 . . 50
6.5 Response time average per ten requests in 10 groups of trial tests - Scenario 5 . . 50
6.6 Response time average per ten requests in 10 groups of trial tests - Scenario 6 . . 52

ix

Abreviaturas e Símbolos

API Application Programming Interface
CM Critical Manufacturing
GUI Graphical User Interface
IDE Integrated Development Environment
MES Manufacturing Execution System
SDL Schema Definition Language
UI User Interface
URL Uniform Resource Locator

x

Chapter 1

Introduction

GraphQL is a query language for APIs and a runtime for fulfilling said queries with existing

data [25], which has been gaining popularity in recent years as a choice for building APIs as an

alternative to REST.

1.1 Context

The application of GraphQL in applications whose underlying data model is static is pretty well de-

fined with many available resources online. Developers can easily construct the GraphQL schema

that describes their data model ahead of time, using, for example, GraphQL schema definition

language (SDL).

However, in a context where that is not the case, that is, the model is dynamic and is not known

at compile-time, the creation of GraphQL APIs is not straightforward. The GraphQL schema of

the API needs to be dynamically generated and updated at runtime to always be in sync with

the data model in question, providing an additional layer of complexity to the standard usage of

GraphQL technology.

1.2 Motivation

Critical Manufacturing (CM) MES is a leading Manufacturing Execution System, a computer-

ized system used in manufacturing to track and document the transformation of raw materials to

finished goods [14], developed by Critical Manufacturing, which, in order to support multiple

different industries and usage scenarios, features the ability to extend the pre-existing data model

by adding properties and attributes to existing business entities or creating entirely new entities

from scratch.

The ability to define a fully dynamic data model also brings the need to have an efficient way

of querying existing data. Currently, CM MES offers a REST API to build and execute custom

queries against the dynamic data model. However, these queries use a complex and very verbose

API which provides a less than ideal developer experience.

1

Introduction 2

1.3 Objectives

This project aims to analyze, implement, and evaluate a proof-of-concept that allows validating

the implementation of GraphQL APIs in a context where the underlying data model is not known

at compile-time, with further comparative analysis against traditional REST APIs, both in terms

of performance, developer experience, and usability, analyzing qualitative and quantitative advan-

tages over the latter.

The work is carried out in the context of the CM MES application, which, by virtue of its busi-

ness requirements, adaptability, and flexibility, has a dynamic data model that is not necessarily

known in advance.

At the end of this dissertation, we can conclude that GraphQL technology is a solution for

APIs that operate on top of a dynamic data model. In addition, we can say that a GraphQL API in

this scenario can perform similarly to a REST alternative, showing some benefits when it comes to

developer experience, but with the possibility of offering some compromises in terms of usability.

1.4 Document Structure

Apart from the introduction, this document has six more chapters.

In Chapter 2, we explore the state of the art regarding GraphQL, explaining the technology,

its strengths, and some not yet solved problems. We expose some related work to the context

of this dissertation and express its innovative factors. Finally, we describe some GraphQL-based

technologies and the choice of which ones to use.

Chapter 3 formally presents the objectives of this dissertation, along with the requirements

and functionalities of the work produced. In the end, some questions are raised, whose answers

are expected to be gathered from the results obtained.

In Chapter 4 a high-level view of the project involved elements is given, starting with a

description of the CM MES application and some of its components. After this, the architecture

of the developed solution is presented and explained.

Chapter 5 further details the technologies and methodologies used to produce the dissertation

work, along with describing the most critical implementation details.

After all the work has been done, Chapter 6 focuses on analyzing the results obtained and

answering the main questions presented earlier.

Finally, in Chapter 7 we finish with some conclusions about the work and results produced and

propose some ideas for further developments.

Chapter 2

GraphQL for Dynamic Data Models

Since GraphQL is still a somewhat new technology for constructing APIs and without a clearly

defined way to be used in scenarios of dynamic data models, the amount of available work and

knowledge in this context is still pretty limited.

However, there have been some advances that may help prove that this use case is possible.

The existence of new technologies that aid the usage of GraphQL for API development, from

GraphQL libraries to frameworks, can make this more accessible than ever before.

2.1 GraphQL

2.1.1 Description

GraphQL was created in 2012 by Facebook and open-sourced in 2015, and it’s becoming increas-

ingly more popular in the developer world. According to the 2020 State Of JavaScript Report,

GraphQL usage rose from 6% in 2016 to 47% in 2020, meaning that almost 1 in 2 respondents

had been in contact with the technology before [20].

GraphQL is a query language and execution engine designed to build client applications by

providing an intuitive and flexible syntax and system for describing their data requirements and

interactions. It should not be confused as a programming language capable of arbitrary compu-

tation but rather understood as a language used to make requests to application services and does

not mandate a particular programming language or storage system for application services that

implement it [24].

It works as an option for building modern APIs and has become a popular alternative to REST.

Developers create a GraphQL service for their backend that will consume GraphQL queries sent

by a client, which then validates and executes them, returning a well-formed response [24]. A

diagram representing what a standard GraphQL based architecture looks like can be seen in Figure

2.1.

3

GraphQL for Dynamic Data Models 4

Figure 2.1: Typical GraphQL based architecure

2.1.2 Schema and API Example

To better illustrate how a typical GraphQL service would work, let us assume we have an appli-

cation whose database model mimics a blog. We will have two entities, Post and User, with each

Post containing a title, an optional description, and information about the User that created it. In

contrast, a User only stores information about their username.

In order to build a GraphQL API, developers construct a GraphQL schema that describes the

set of possible data that clients can query through it. This schema works as a mapping of the

application’s underlying data model to GraphQL schema language. The most common way of

annotating this schema is with a schema-first approach, where developers manually write out their

GraphQL schema using plain GraphQL SDL. Figure 2.2 shows how the previously mentioned

scenario could be translated into GraphQL SDL, following this strategy.

The existing Query type references the query root operation type, which must be provided in

every GraphQL service and defines the set of possible query operations to the API, similar to GET

requests in REST. In this case, we assume two possible queries can be made: posts, which returns

an array of all Post objects, and user(id: Int!), which will return a User with the specified id passed

as an argument.

Two other operation types are available, namely mutations and subscriptions. Mutations, for

example, is an operation type similar to the previously mentioned queries that lets us modify

server-side data just like a POST request in REST would. A mutation operation could, for example,

allow the creation of a new Post instance in our database through a request to the GraphQL API. In

any case, the work done in this dissertation focuses only on querying a system, so other operation

types will not be explored.

The Post and User types present in the schema are referred to as object types and represent

some kind of object existent in the system. An object type is composed of a set of fields, which

can be of the following sorts:

• Object type
An object type field can be another object type itself, such as the User field inside of Post.

• Scalar type
A scalar type represents some concrete data and is the leaf of a GraphQL query. GraphQL

2.1 GraphQL 5

Figure 2.2: Example of GraphQL schema written in GraphQL SDL

comes with a set of default scalar types out of the box, which are Int, Float, String, Boolean,

and ID. An example of it is the title field of the Post object type.

• Enumeration type
An enumeration type is a special kind of scalar that is restricted to a particular set of allowed

values.

In addition to constructing a GraphQL schema, the other step needed is to make the service

aware of how to fetch the necessary data. That is made through the resolvers, which are functions

written in the service programming language that describe how to populate the data returned by

a given query. Assuming that the GraphQL API has been created and is up and running with the

mentioned schema and all necessary resolvers have been set up by a developer, the service is ready

to receive and fulfill GraphQL requests.

To demonstrate how GraphQL queries work, suppose that we want to query a list of all existing

Post objects in the system, fetching only their corresponding id and the id of the User that created

it. We can construct the GraphQL request seen in Figure 2.3 and send it to our GraphQL API,

which produces and returns the resulting data in JSON reflected in Figure 2.4. If we rather, for

example, want to query the username of the User with an id equal to 1, we instead send a request

as shown in Figure 2.5 and obtain the response seen in Figure 2.6.

2.1.3 Factors and Forces

Unlike REST APIs, GraphQL APIs expose a single endpoint, capable of fulfilling any GraphQL

request due to GraphQL APIs being organized in terms of types and fields instead of endpoints.

As such, GraphQL focuses on giving clients the ability to ask for exactly the data they need from

a server in a single request [25].

GraphQL for Dynamic Data Models 6

Figure 2.3: GraphQL query to fetch the ids
of Post objects and the User that created it

Figure 2.4: JSON response to Figure 2.3
query

Figure 2.5: GraphQL query to fetch the
username of User with id equal to 1

Figure 2.6: JSON response to Figure 2.5
query

2.1 GraphQL 7

Figure 2.7: GraphQL query
to fetch the title and descrip-
tion of Post objects

Figure 2.8: JSON response to Figure 2.7 query

While with a classic REST architecture fetching data to populate a webpage might take sev-

eral roundtrips due to calling different endpoints for getting specific pieces of information, with

a GraphQL architecture, everything can be fetched in a single request. This feature can signifi-

cantly improve the performance of an application due to less time being wasted on queries to the

backend. On top of this, the developer experience can be improved since GraphQL is inherently

self-documenting. Hence, clients quickly know what specific information can be queried and how.

Let us assume once again the example mentioned in the previous section, but this time we

want to retrieve the list of all Post objects’ titles and descriptions. We will still use the same

posts query, but now we structure it a little bit differently. We should only include the title and

description fields in the GraphQL query since these are the only pieces of data that matter to us

this moment, as shown in Figure 2.7. After executing this query against our API, we will obtain

the response seen in Figure 2.8.

This is the true power of GraphQL, fixing the under fetching and over fetching of data since

we can precisely retrieve the information we want from a server with just a single request to the

same endpoint. On the other hand, with a REST API, we would need to constantly create new

endpoints to cover new use cases or end up getting more or less data than we really wanted.

2.1.4 Not Yet Solved Problems

The usage of GraphQL for API development is pretty standardized and has excellent documenta-

tion. However, for use cases where the API’s GraphQL schema can’t be easily constructed, such as

when an application’s underlying data model isn’t known at compile-time, developing a GraphQL

API becomes rather complex.

GraphQL for Dynamic Data Models 8

A schema-first approach to constructing the GraphQL schema can’t be followed in these cir-

cumstances since a developer does not have the necessary information to be able to annotate it in

GraphQL SDL ahead of time. In this scenario, a code-first approach must be pursued.

A code-first approach allows for dynamic schema generation since the schema of the GraphQL

API is built programmatically through code. This approach might also be followed when devel-

oping GraphQL APIs since it offers more modularity and efficiency for maintaining a GraphQL

schema updated in large software projects, decreasing the number of conflicts and inconsistencies.

Even though we know that dynamic schema generation is possible, the application of GraphQL

for dynamic data models remains uncertain since the GraphQL schema of the API must also

be constantly updated during runtime to reflect the changes happening in the underlying data

model. Also, the advantages of choosing a GraphQL API over a traditional REST API in terms

of performance, developer experience, and usability in a scenario like this one haven’t yet been

adequately studied and analyzed, remaining doubts about if going with a GraphQL API might be

viable.

2.2 Related Work

The application of GraphQL for dynamic data models is still a work in progress, with no clear

solution available. The most crucial aspect needed to achieve this use case is the ability to build

GraphQL schemas automatically according to some metadata instead of having it previously de-

clared. Although this use case is uncommon, there have been some efforts to incorporate GraphQL

in scenarios with automatic schema generation.

The first example of this comes from the paper GraphQL Schema Generation for Data-

Intensive Web APIs, where a semantic-based approach to generating GraphQL schemas is pre-

sented. The authors defined an RDF-formalized semantic metamodel for GraphQL schema, des-

ignated GQL, to help represent a dataset. First, a manual annotation of the dataset schema with

the GQL metamodel is needed. After that, an automatic generation of a GraphQL schema from

the annotated RDF ontology is possible, as well as an automatic generation of a GraphQL service

that exposes the generated schema and the available data related to the annotated ontology [6].

The second example of automatic schema generation comes from Contentful, an API-first

content management platform to create, manage and publish content on any digital channel. Con-

tentful faced the problem of having to create a GraphQL API customized to each one of its users.

Since every Contentful user has their own content model, consisting of varying content types, and

with no two users’ content models being the same, each user’s data model is used to generate a

GraphQL schema tailored to them [3].

Still, the application of GraphQL in a context where dynamic schema generation and further

schema patching during runtime is needed, due to the nature of an underlying dynamic data model,

hasn’t been significantly explored.

2.3 Innovative Factors 9

2.3 Innovative Factors

GraphQL APIs are typically based on a statically defined schema that maps to an underlying static

data model. This use case is pretty straightforward to cover. Developers construct their GraphQL

schema ahead of time and can write it in a schema-first approach in plain GraphQL SDL or even

follow a code-first approach if they want. The number of available resources and documentation

online is massive, so every developer should be able to quickly learn and construct a GraphQL

API for this scenario.

However, due to the nature of the CM MES dynamic data model, GraphQL schemas will have

to be dynamically generated and updated in runtime, providing an additional layer of complexity

to the standard usage of GraphQL technology.

2.4 Existing Technologies

Since GraphQL is just a communication pattern, many tools have been created to help develop-

ers use the technology in various situations. Such examples of tools are GraphQL libraries that

make it possible to develop GraphQL applications in a particular programming language and UI

clients that enable developers to easily construct and test GraphQL queries, making the developing

experience seamless.

2.4.1 Characterization

2.4.1.1 Libraries

One of the ways available to develop GraphQL APIs with a specific programming language is

through GraphQL libraries. These libraries exist for almost every modern programming language,

such as JavaScript, Python, or Java, so developers can freely develop their GraphQL services in a

language of their choice.

Let us take JavaScript as an example. When developing a backend with this programming

language, most developers use Node.js1, a JavaScript runtime built on Chrome’s V8 JavaScript

engine. To incorporate GraphQL in their Node.js project, one can use GraphQL.js, the JavaScript

reference implementation for GraphQL [23], and with a simple command, install this package

through npm2. In just a few lines of code, we can create a script that executes a GraphQL query

and outputs its result to the console, as seen in Figure 2.9. Obviously, this program isn’t very

useful, but it shows how easy it is to start using GraphQL with a given programming language.

On top of enabling the creation of GraphQL APIs, these libraries provide a bunch of valuable

features like programmatically building a schema, the so-called code-first approach that allows the

creation of dynamic schemas contrary to the schema-first method of defining the schema for the

GraphQL service beforehand in plain GraphQL SDL.

1https://nodejs.org/en/
2https://www.npmjs.com/

https://nodejs.org/en/
https://www.npmjs.com/

GraphQL for Dynamic Data Models 10

Figure 2.9: GraphQL JavaScript hello world script

2.4 Existing Technologies 11

Figure 2.10: GraphiQL IDE application screen

2.4.1.2 GUIs

While developing a GraphQL application, a GraphQL UI client can be of great use. These GUIs

help developers debug their GraphQL applications, providing an easy-to-understand IDE with

features such as exploring the API schema, conveniently seeing its documentation, and quickly

constructing and testing GraphQL queries.

One of the most straightforward and widely used GraphQL GUIs is GraphiQL, an official

project under the GraphQL Foundation. GraphiQL is an interactive in-browser GraphQL IDE

implemented in React and is available for integration in most common programming languages,

such as Javascript or C#/.NET [22].

In Figure 2.10, we can see what a typical GraphiQL window looks like. On the left-side panel

is the query constructor sub-window that lets us build a GraphQL query and provides useful fea-

tures like auto-completion, auto-formatting, and syntax-highlighting. After having a constructed

query, we can test it by clicking on the "play" icon in the window’s top-left corner, and its result is

presented on the middle-side panel. Finally, on the right-side panel, we can see the schema explo-

ration and documentation tab that lets us explore the schema fields or search for specific schema

elements.

2.4.1.3 Other

Some other tools that help developers build applications with GraphQL are available.

Dgraph, for instance, is a new native GraphQL database built from the ground up to manage

data natively in graphs. It offers a specification-compliant GraphQL endpoint without needing

GraphQL for Dynamic Data Models 12

an additional translation layer in the tech stack. GraphQL is natively executed within the core of

Dgraph itself, and there isn’t the need to code GraphQL resolvers [5].

Another option when developing GraphQL APIs is to use a GraphQL-centered framework.

An example of this type of tool is DGS, a GraphQL server framework for Spring Boot, developed

by Netflix in 2019 and open-sourced in 2020. This framework is built on top of the graphql-java

library and includes features such as an annotation-based Spring Boot programming model, a test

framework for writing query tests as unit tests, and integration with Spring Security [18].

However, these types of tools aren’t relevant to the work done in this dissertation, and as such

further analysis of these is not considered.

2.4.2 Choice

Since CM MES is built on the .NET framework and with C# as its chosen programming lan-

guage, it also makes sense to pick a C#/.NET centered GraphQL library so to make any possible

integration with the CM MES codebase easier.

There are two main GraphQL libraries available for C#/.NET: GraphQL.NET3 and Hot Choco-

late4. The first is the most widely used library for the referred language and had its first release

in 2015 . The second one had its first release only in 2018 but has recently gained popularity in

the developer world due to its increased performance, great support, and wide range of features

compared to the former.

Picking Hot Chocolate over GraphQL.NET might seem like the obvious choice when building

a GraphQL application for C#/.NET. Still, the flexibility and rawness of GraphQL.NET make it

crucial for the use case addressed in this dissertation of building completely dynamic schemas at

runtime. Even though Hot Chocolate has some support for creating dynamic schemas, it is still

not abstract and modular enough to let us accomplish the same things as GraphQL.NET, making

the latter the chosen library to produce this work.

On top of selecting a library to develop the GraphQL application, a GraphQL GUI was also

used to help debug and validate the application. The chosen GUI was Altair, a GraphQL Client

similar to the previously mentioned GraphiQL but with extending features such as advanced

schema documentation search and automatic schema refreshing , along with a richer and more

visually appealing interface, which can be seen in Figure 2.11 [1].

3https://github.com/graphql-dotnet/graphql-dotnet
4https://github.com/ChilliCream/hotchocolate

https://github.com/graphql-dotnet/graphql-dotnet
https://github.com/ChilliCream/hotchocolate

2.4 Existing Technologies 13

Figure 2.11: Altair GraphQL Client application screen

Chapter 3

Requirements and Functionalities

After presenting the state of the art around the faced problem, we define the goals to be achieved

with this dissertation, along with the functional and non-functional requirements of the proposed

solution, and finally, a list of questions to be answered by the work conducted.

3.1 Dissertation Objectives

The problem to be explored in this dissertation lies in the application of GraphQL for dynamic data

models, that is, a model which is not known at compile-time and may undergo transformations

during the running phase of the program.

From this setting, we can infer two main objectives to be accomplished:

1. The validation of the applicability of GraphQL technology for the previously mentioned

scenario. This should be achieved by implementing a proof-of-concept that allows confirm-

ing the possible use of a GraphQL API in a context where an application’s underlying data

model is not known at compile-time. The proof-of-concept is to be developed in the CM

company facilities and in tandem with their CM MES product, which possesses a dynamic

data model due to business requirements.

2. After having a viable proof-of-concept, develop a comparative analysis of the new GraphQL

API against the existing CM MES REST API in terms of performance, developer experi-

ence, and usability. Finally, conclude the qualitative and quantitative advantages of using

a GraphQL API over a traditional REST API for querying an application that features a

dynamic data model.

14

3.2 Functional Requirements 15

3.2 Functional Requirements

The functional requirements define what a system should do and describe its functionality to a

user.

It should be possible to query CM MES with GraphQL as well as paginate and filter the results

of a query. In addition, there should be a way to properly inspect the CM MES GraphQL schema,

which must be constantly updated according to the underlying data model.

Each functional requirement is identified by a unique ID and Name, its Priority for being

present, a brief Description of what it provides, and the Motivation for its consideration.

Tables 3.1 to 3.5 display the list of functional requirements the system should meet.

Table 3.1: REQ.001 :: Query CM MES with GraphQL

REQ.001 Query CM MES with GraphQL

Priority Essential.
Description The system must have the ability to query with GraphQL the CM MES

dynamic data model Entity Types and corresponding Properties.
Motivation So to be able to validate the application of GraphQL for dynamic data mod-

els and provide a new way to query the CM MES data model in addition to
the existing REST API.

Table 3.2: REQ.002 :: Keep GraphQL schema updated

REQ.002 Keep GraphQL schema updated

Priority Essential.
Description The system must have its GraphQL schema updated according to the CM

MES data model at all times.
Motivation So that the GraphQL schema of the API always represents the most current

version of the dynamic data model, and its accurate querying is possible
and valid.

Table 3.3: REQ.003 :: Paginate GraphQL query results

REQ.003 Paginate GraphQL query results

Priority High.
Description The system should have the ability to paginate the results of a GraphQL

query.
Motivation So to be able to retrieve records from the CM MES data model at given

intervals, just like the current REST API of CM MES, which allows pagi-
nations of results.

Requirements and Functionalities 16

Table 3.4: REQ.004 :: Filter GraphQL query results

REQ.004 Filter GraphQL query results

Priority High.
Description The system should have the ability to filter the results of a GraphQL query.
Motivation So to be able to retrieve records from the CM MES data model that match

given criteria, just like the current REST API of CM MES, which allows
filtering of results.

Table 3.5: REQ.005 :: Explore GraphQL schema

REQ.005 Explore GraphQL schema

Priority Medium.
Description The system should provide a way to explore the GraphQL schema of the

CM MES data model.
Motivation So to be able to easily understand the possible queries that can be con-

structed and executed by the GraphQL API.

3.3 Non-Functional Requirements

The non-functional requirements are requirements which are not specifically concerned with the

functionality of a system. They place restrictions on the product being developed and the devel-

opment process, and they specify external constraints that the product must meet [11].

Tables 3.6 to 3.10 display the list of non-functional requirements the system must meet. It

should be highly performant, maintainable, extendable, use software approved for commercial

use, loggable and secure.

Just like in the previous list of functional requirements, each non-functional requirement is

also identified with an ID and Name, Priority type, brief Description, and Motivation.

Table 3.6: REQ.006 :: Highly Performant

REQ.006 Highly Performant

Priority Essential.
Description The GraphQL API should display high performance.
Motivation So to be able to become a viable alternative to the current REST API, the

new GraphQL API should have great performance.

3.3 Non-Functional Requirements 17

Table 3.7: REQ.007 :: Maintainable

REQ.007 Maintainable

Priority Essential.
Description The GraphQL API should be easily maintainable by other developers.
Motivation So to be able to remain a functional API in the future, the GraphQL API

should be appropriately documented to be easily maintainable by other
developers.

Table 3.8: REQ.008 :: Extensible

REQ.008 Extensible

Priority Essential.
Description The GraphQL API should be easily expandable by other developers.
Motivation So to be able to incorporate new features and enhancements in the future,

the GraphQL API should be constructed with future expandability by other
developers in mind.

Table 3.9: REQ.009 :: Use software approved for commercial use

REQ.009 Use software approved for commercial use

Priority Essential.
Description The GraphQL API should use third-party dependencies that are approved

for commercial use.
Motivation So to be able to have the GraphQL API utilized within CM MES, all third-

party dependencies should be approved for commercial use since CM MES
is a paid software.

Table 3.10: REQ.010 :: Loggable

REQ.010 Loggable

Priority Essential.
Description The GraphQL API should output logs of its execution.
Motivation So to be able to be easily debuggable and for its behavior to be better un-

derstood, the GraphQL API should output logs that document its execution.

Table 3.11: REQ.011 :: Secure

REQ.011 Secure

Priority Essential.
Description The GraphQL API should be secure from outside attacks.
Motivation So to be able not to compromise the internal system of CM MES, the

GraphQL API should be secure from common software attacks like, for
example, SQL Injection.

Requirements and Functionalities 18

3.4 Questions To Be Answered

After having finished the dissertation work and produced the final results, it is hoped to be able to

answer some questions, such as:

• Is it possible to build a GraphQL API for an application with an underlying dynamic data

model?

• How does a GraphQL API compare with a REST API in terms of performance in a scenario

where an application has an underlying dynamic data model?

• How does a GraphQL API compare with a REST API in terms of developer experience in a

scenario where an application has an underlying dynamic data model?

• How does a GraphQL API compare with a REST API in terms of usability in a scenario

where an application has an underlying dynamic data model?

• What are the qualitative and quantitative advantages of using a GraphQL API over a REST

API in an application with an underlying dynamic data model?

Chapter 4

Architecture

This chapter describes the architecture and gives a high-level view of the project components

involved.

First, an overview of the CM MES software is made, so to better contextualize the work done

in this dissertation. After that, we take a deeper look at the CM MES elements that play a role

in the work produced, starting with its dynamic data model, which is the central aspect of the

project. Following, we explore the CM MES Queries feature and current REST API and why it

offers a less than ideal developer experience. Lastly, we look at the CM MES message bus, the

application’s own message broker with a publish-subscribe messaging pattern.

At the end of the chapter, we delve into the developed GraphQL middleware architecture and

its fit with the existing CM MES components.

4.1 CM MES Software

To better understand how the components mentioned in the following sections 4.2 and 4.3 fit in

the bigger picture, a depiction of the CM MES software should first be made.

CM MES is a leading manufacturing execution system, which are computerized systems used

in manufacturing to track and document the transformation of raw materials to finished goods.

These types of systems provide information that helps manufacturing decision makers understand

how current conditions on the plant floor can be optimized to improve production output [14].

It has been developed by the Critical Manufacturing company since 2009, with its first version

being officially released in late 2010. It is sold as licensed software that manufacturing companies

buy and integrate with their production lines, whose operands in charge can access through any

modern web browser since it runs as a web page at a given address. In Figure 4.1 we can see what

the CM MES landing page looks like after a user has successfully logged in with their credentials.

19

Architecture 20

Figure 4.1: CM MES landing page

The CM MES application complete tech stack architecture can be seen in Figure 4.2, with it

being composed of the following three main parts:

• Frontend
CM MES uses Angular for the frontend, a modern framework for building mobile and desk-

top web applications, created and released by Google in 2016. The usage of this technology

for the CM MES GUI provides faster development than pure JavaScript and is a popular

choice among frontend developers.

• Backend
The backend is written in the C# programming language, on top of Microsoft’s .NET frame-

work, first released in 2002.

• Database
For its storage needs, CM MES uses Microsoft SQL Server, a relational database manage-

ment system launched in 1989 that allows for straightforward integration with the .NET

backend.

CM MES possesses a huge number of features, with new ones being released with every new

major version of the software. The work done in this dissertation was developed with version 9 of

CM MES and deals with only a single specific feature denominated Queries, whose page is shown

in Figure 4.3. This feature allows users to create and execute custom queries for the CM MES

data model Entity Types, allowing complex filtering based on given Entity Type Properties.

An explanation of what the mentioned Entity Types and Entity Type Properties are is done in

section 4.2.1, as well as a more in-depth explanation of this Queries features in section 4.2.2.

4.1 CM MES Software 21

Figure 4.2: CM MES tech stack architecture

Architecture 22

Figure 4.3: CM MES Queries page

4.2 CM MES Architecture

CM MES is a complex piece of software composed of a vast amount parts. Three of its com-

ponents, however, take an important role in this dissertation work: its dynamic data model, its

Queries feature and associated REST API, and its message bus.

4.2.1 Data Model

The CM MES data model has a particular trait which is being dynamic. The tables representing the

application schema and storing the underlying data in the databases are not the same throughout

the program’s lifetime. During runtime, the program can, for example, dynamically build new

tables which represent new Entity Types created by a user.

CM MES database model is divided into two sections, the Static Model and the Dynamic

Model.

4.2.1.1 Static Model

The Static Model handles the core information for the CM MES system. Its schema never un-

dergoes any changes and is always represented by the same pre-defined tables. It is composed of

many different sub-parts, with its main one also being named static model.

The static model sub-schema is the most significant part of the Static Model, possessing the

largest number of tables and most complexity of all, as seen in the diagram of Figure 4.4. For the

static model sub-schema, all tables also have a corresponding history table with the same name,

with the suffix Hst, and with exactly the same structure. These, however, are not present in the

mentioned diagram for simplicity purposes.

4.2 CM MES Architecture 23

Figure 4.4: CM MES Static Model static model sub-schema diagram

Architecture 24

This first section of the database model contains an overwhelming number of tables, and it can

be challenging to understand how all of them fit together as a whole. Nevertheless, we should only

focus on two of them for this dissertation work, namely T_EntityType and T_EntityTypeProperty

from the specified static model schema.

The first mentioned table stores the metadata of all Entity Types created in the CM MES

system, with information such as their name and description. An Entity Type represents a given

object associated with a manufacturing process. For example, one core Entity Type is Facility,

which might represent a factory, a production line, a distribution center, or a warehouse.

The second mentioned table stores the metadata of all existing Entity Type Properties, with

information such as their name and scalar type. An Entity Type Property represents, as its name

implies, some property belonging to an Entity Type. That property can be represented by a simple

scalar, such as a string or integer, or even be a reference to a completely different Entity Type in

the system.

4.2.1.2 Dynamic Model

The Dynamic Model handles the instances created based on the Static Model metadata. These

instances can be either Entity Types, Generic Tables, or Smart Tables, and can be created, deleted,

or modified during the program’s lifetime.

Like the Static Model, this one can also be divided into different parts, but only one of them

is of interest to us, the entities sub-schema. For each Entity Type, a set of tables are generated to

provide a base persistency schema for the Entity Type instances data, as seen in Figure 4.5.

Once again, all this information might seem confusing, but there is only one table that we

should focus on from the Dynamic Model for this dissertation, which is T_[name] from the men-

tioned entities sub-schema.

This table stores all the instances created for a given Entity Type, whose name should replace

[name] to get the proper table name. For example, let us say we want to query all instances of

the Factory Entity Type, we would access the table whose name equals to T_Factory. Each row

of this table would correspond to a single instance of a Factory object, and the columns of it

are generated according to the Factory Entity Type Properties stored in the previously mentioned

T_EntityTypeProperty table from the Static Model static model sub-schema.

4.2.2 Queries and REST API

Queries is a feature inside the CM MES application that allows inquiring the system for a given

Entity Type, returning the records that match specific criteria. Clicking on the Queries page (Figure

4.3) will display the Queries folder structure that contains all the Queries created up until date in

the system.

Selecting a specific Query brings up the Query page seen in Figure 4.6, which is divided into

two sections:

4.2 CM MES Architecture 25

Figure 4.5: CM MES Dynamic Model entities sub-schema diagram

Figure 4.6: CM MES Query page

Architecture 26

• Filters
Contains the search properties for the Query. This filtering is extraordinarily complex and

allows things like returning records whose description starts with a specific pattern or that

have been created between two given dates, for example. As well as providing these handy

property filters, the system also supports nested filter groups that use conditional logic,

connected with AND or OR logical operators, allowing for extremely powerful filtering of

an Entity Type.

• Results
Shows the results returned by the query. It is possible to choose which columns to show and

what Entity Type Properties are to be included in the output table, as well as things like their

sorting order or how they are presented (font, color, etc.).

The way these Queries work is through a call to the CM MES REST API. This API is mas-

sive, with hundreds of different endpoints available that allow the client to talk with the backend

to retrieve needed data or perform set operations. When we click on the "Execute" button, a POST

request with a complex body describing the query is sent to the CM MES /api/Query/Execute-

Query endpoint. The JSON payload sent should contain a QueryObject property, which on top

of holding a fair amount of metadata about the query to be executed, includes a Query field that

defines the query to execute.

This Query field should be composed of a multitude of extra properties as well, with the

two most important and relevant to us being Fields and Filters. Fields concerns the previously

mentioned Results section, as it tells the API what the Entity Type Properties to be fetched from

the database are. Filters on the other hand, is related to the section with the same name and

encodes the filtering criteria to apply when querying for the given Entity Type objects. As an

example, Figures 4.7 and 4.8 show, respectively, what the Fields and Filters properties of the

Query object look like for the query displayed in Figure 4.6.

Even though this Queries feature is extremely handy and powerful, its REST API uses a com-

plex and very verbose syntax, which offers a less than ideal developer experience, restricting the

speed of development of new features by the company. Thus, exploring new API technologies

such as GraphQL to improve the existing querying of the CM MES dynamic data model has been

something in the company’s mind.

4.2.3 Message Bus

The CM MES software possesses its own message bus with a high-performance publish/subscribe

environment for sending and receiving broadcast messages, built from the ground up by the com-

pany to best fit their business needs.

The message bus is a combination of a common data model, a common command set, and

a messaging infrastructure to allow different systems to communicate through a shared set of

interfaces, as represented by the diagram in Figure 4.9 [9]. There may be no guarantee of first-in-

first-out ordering, and subscribers to the message bus can come and go without the knowledge of

4.2 CM MES Architecture 27

Figure 4.7: CM MES Queries API QueryObject Fields property

Architecture 28

Figure 4.8: CM MES Queries API QueryObject Filters property

4.3 GraphQL Middleware Architecture 29

Figure 4.9: Message Bus architecture diagram

message senders. Unlike queues, where the sending application explicitly adds messages to every

queue, a message bus uses a publish/subscribe model. Messages are published to the bus, and

any application that has subscribed to that kind of message will receive it. This approach allows

applications to follow the open/closed principle, since they become open to future changes while

remaining closed to additional modification [2].

One intriguing example of the application of the CM MES message bus comes in the weigh

and dispense process. Weigh and dispense is a method to provide a controlled, computer-aided

process to guide the operator through the weighing and dispense process. It ensures that manu-

facturing processes for batches and entire lots meet strict compliance requirements for FDA, EU,

or other international regulations, which require complete traceability of the batch components

pertaining to the drug, coating, or active ingredients in a finished product [4]. When an operator

sets some weight on a container that is connected to CM MES, specific messages are published to

the message bus indicating the measurements being collected. In turn, the CM MES GUI is sub-

scribed to this particular type of message and, as such, receives real-time updates of the electronic

scale, updating the user interface accordingly.

4.3 GraphQL Middleware Architecture

The GraphQL middleware is the newly developed component that allows querying the CM MES

dynamic data model through GraphQL instead of REST. It follows a microservice approach, ex-

isting independently and living outside the CM MES codebase. This middleware is a separate

autonomous service that can run on its own, communicating only with the CM MES database and

message bus. A diagram that helps understand the GraphQL middleware architecture can be seen

in Figure 4.10.

The chosen programming language to build the middleware with was C#, on top of the .NET

framework. The reason for choosing this technology to develop the project lies in the fact that

the CM company’s internal codebase is also almost entirely written in it. By also choosing to

use .NET for the middleware, any needed integration with CM MES components becomes much

simpler, like, for example, integrating communication with the CM MES message bus.

Architecture 30

Figure 4.10: GraphQL middleware architecure

The GraphQL part of the service was built with the GraphQL.NET library. As mentioned in

2.4.2 the reason for choosing this library is its flexibility and modularity, which allow for great

abstraction while developing, not conforming to some defined methods and practices. The service

exposes two endpoints, one served at the /graphql URL and another one at /ui/altair. The former

is the single GraphQL endpoint that resolves GraphQL queries, while the latter exposes an Altair

UI client, which can be accessed through a web browser.

Direct contact with the CM MES database is made to build the GraphQL schema and fulfill

the GraphQL queries the server receives. Going with this approach allows limiting the number of

integrations the system needs. Even though the final solution may not be production-ready for the

CM company, it speeds up the development of the proof-of-concept regarding this dissertation.

The previously mentioned message bus from 4.2.3 also plays a vital part in the architecture

of the application. Its integration is used so to be able to subscribe to a specific type of broadcast

message that indicates invalidation of the entity type cache. This type of cache invalidation sym-

bolizes a change in the CM MES underlying data model and is the cue needed for our service to

know that it should refresh its GraphQL schema so that it is continuously updated and valid during

the program’s lifetime.

Chapter 5

Implementation

In this chapter, we first summarize the technologies and methodologies used to develop the work

and after that, all important details in the implementation are explained,

5.1 Technologies and Methodologies Used

To produce this work, a significant number of different technologies were used, each playing an

important role in the project. In addition, some development methodologies were followed to aid

the development process.

5.1.1 Technologies

Most of the technologies used have already been mentioned in previous chapters. Still, if someone

wants to replicate this work, there is no clear identification of what versions of them were used,

for example.

As mentioned in section 4.3, the GraphQL middleware was built in the C# programming lan-

guage with the .NET framework, more properly with ASP.NET Core, and with version 6 of .NET.

ASP.NET is a popular web-development framework for building web apps on the .NET platform,

and ASP.NET Core is the open-source version of ASP.NET that runs on Windows, Linux, macOS,

and Docker [16].

To incorporate GraphQL in our application, the usage of an external library is a must, or else

we would have to implement the GraphQL protocol all from the ground up. So, we rely on external

packages through NuGet, which is the package manager for .NET and defines how packages are

created, hosted, and consumed, also providing the tools for each of those roles [17].

A NuGet package is a single ZIP file with the .nupkg extension that contains compiled code,

other files related to that code, and a descriptive manifest that includes information like the pack-

age’s version number. Developers with code to share, create packages and publish them to a public

or private host. Package consumers obtain those packages from suitable hosts, add them to their

projects, and then call a package’s functionality in their project code [17].

31

Implementation 32

Table 5.1: NuGet packages used in the GraphQL middleware

Package Identifier Version Number

GraphQL 4.7.1
GraphQL.DataLoader 4.7.1
GraphQL.MicrosoftDI 4.7.1
GraphQL.Server.Authorization.AspNetCore 5.2.0
GraphQL.Server.Transports.AspNetCore 5.2.0
GraphQL.Server.Transports.AspNetCore.SystemTextJson 5.2.0
GraphQL.Server.Ui.Altair 5.2.0
GraphQL.SystemTextJson 4.7.1
System.Data.SqlClient 4.8.3
WebSocket4Net 0.15.2
Cmf.Foundation.Common 9.0.1
Cmf.MessageBus.Client 9.0.1.237

Both mentioned chosen technologies from section 2.4.2, GraphQL.NET and Altair, are incor-

porated in the project through NuGet packages. Also, the CM MES message bus discussed in

section 4.2.3 is integrated with the middleware in the same way, but this time through a private

NuGet package developed by the CM company.

Table 5.1 lists all the NuGet packages and respective versions used to develop the project, with

the last two being internally exclusive to the CM organization.

5.1.2 Methodologies

To ensure that the work developed could be easily maintained and expanded in the future, the

Clean Code guidelines were followed, such as using meaningful variable names, writing functions

that do a single thing, and writing informative comments [13].

On top of this, it was decided to implement the SOLID principles of object-oriented program-

ming, proposed by the same author of the Clean Code book, Robert C. Martin, which are the

following:

• Single-Responsibility Principle
A class should have only one reason to change [12].

• Open-Closed Principle
Software entities (classes, modules, functions, etc.) should be open for extension, but closed

for modification [12].

• Liskov Substitution Principle
Subtypes must be substitutable for their base types [12].

5.2 Implementation Details 33

• Interface Segregation Principle
This principle acknowledges that there are objects that require noncohesive interfaces. How-

ever, it suggests that clients should not know about them as a single class. Instead, clients

should know about abstract base classes that have cohesive interfaces [12].

• Dependency Inversion Principle
High-level modules should not depend on low-level modules. Instead, both should depend

on abstractions. Also, abstractions should not depend on details, but rather, details should

depend on abstractions [12].

5.2 Implementation Details

We now focus on some important details of the solution developed, which help understand how

the GraphQL middleware was constructed.

5.2.1 Mutable GraphQL Schema

One crucial aspect of being able to have a GraphQL API built for a dynamic data model is for its

GraphQL schema to be mutable, that is, have the ability to be replaced at runtime.

The GraphQL.NET library provides a helpful way to quickly build an ASP.NET Core server,

which aids the development process since it removes the need for writing a ton of boilerplate code,

setting up all needed endpoints, and integrations automatically. However, this approach has one

minor issue, which is the fact that all necessary dependencies that it relies on must be given at

compile-time, and can not be altered after the application starts running.

One of the needed dependencies that the server must be injected with is a class or instance of

a class that implements the ISchema interface from the GraphQL.NET library. This dependency

is used by the server to determine the GraphQL schema for the constructed API and whose future

GraphQL requests will fall on.

In a typical use case where updating a GraphQL schema at runtime is not necessary, devel-

opers create an auxiliary class that inherits the Schema class from GraphQL.NET, which in turn

implements the previously mentioned ISchema interface. This created class represents the schema

of their application, which for example, might resemble a blog as in section 2.1.2, and could be

named BlogSchema and injected into the service as seen in Figure 5.1 or Figure 5.2. However,

the problem lies in the fact that this mentioned Schema class is not mutable by default. That means

that after initializing a Schema instance, that schema cannot undergo further modifications, which

is crucial for our API to behave how we intend.

To accomplish this desired use case, an auxiliary class called MutableSchema was created (Fig.

5.3). This created class utilizes the delegation object-oriented design pattern, an implementation

mechanism in which an object forwards or delegates a request to another object. In this example,

the Schema field, denominated the delegate and an instance of the Schema class, carries out the

requests on behalf of the original MutableSchema object [7].

Implementation 34

Figure 5.1: Injection of schema class into
GraphQL server Figure 5.2: Injection of schema instance

into GraphQL server

By injecting a MutableSchema instance when creating the API (Fig. 5.4), we can later modify

its GraphQL schema on the fly by just replacing its Schema field with a completely new object

representing the new schema. All subsequent GraphQL requests will then seamlessly fall on this

new object through delegation.

5.2.2 Generating a GraphQL Schema Dynamically

Since the underlying data model of the application can change at runtime, the GraphQL schema

of the API can’t just be defined in advance and must be automatically generated on the fly. To

achieve this, a code-first approach for specifying the GraphQL schema is followed, which allows

the creation of it in a programmatically way through code.

As cited in previous sections, the proof-of-concept developed needs only to offer a way to

query CM MES Entity Types and corresponding Entity Types Properties. As such, the structure

that the GraphQL schema should adopt during the execution of the service is equivalent to the one

seen in Figure 5.5, which contains the following three well-defined levels:

• Root Level
The first and top level of the schema is the query root operation type, which is a mandatory

field in every GraphQL schema. This object type specifies all possible entry points to the

GraphQL API, providing N number of queriable fields, where N is the number of existing

Entity Types at any given time on the CM MES data model.

• Entity Type Level
The middle level represents all of the Entity Types of the system, and each of the available N

fields returns a list of instances of a given Entity Type existing in the database. These Entity

Types are defined as a GraphQL object type, which designates a kind of object fetchable by

the service with some fields of its own. For each of these N Entity Types fields, M additional

fields are available, being M the number of its corresponding Entity Type Properties.

• Entity Type Property Level
Finally, the last level represents the Entity Type Properties belonging to the Entity Types.

These Entity Type Properties can be either scalar values, such as a string representing a

name, or object types, symbolizing a reference to some other Entity Type in the system.

5.2 Implementation Details 35

Figure 5.3: Excerpt of MutableSchema class that delegates operations to its Schema field

Figure 5.4: Injection of mutable GraphQL schema

Implementation 36

Figure 5.5: Diagram representing CM MES generated GraphQL schema

To construct the mentioned schema in a programmatic way, the first step is to initialize an

empty schema and add the query root operation type, which can be done with little effort in just a

few lines of code (Fig. 5.6).

After this, it’s time to add all N previously mentioned queriable Entity Type fields to the root

query object type. We start by initializing a dictionary named entities that stores the set of object

types representing the current data model Entity Types (Fig. 5.7). Following, we query the

T_EntityType table to fetch the information of all existing Entity Types in the system and create the

necessary object types that will represent them while also populating the entities dictionary (Fig.

5.8). Finally, to finish this GraphQL schema level, we add each Entity Type field one by one to the

root query (Fig. 5.9), with the following four parameters:

• name: The name of the field. Equals the Entity Type name.

• type: The graph type of the field. Represents the type of the result to be returned by the field

and is equal to a list of non null instances of the current Entity Type matching object type.

Figure 5.6: Schema initialization and creation of query root operation type

5.2 Implementation Details 37

Figure 5.7: Dictionary that stores a set of object types that represent Entity Types

• arguments: A list of arguments for the field. Includes two possible types, pagination, and

filtering, explained in sections 5.2.4 and 5.2.5, respectively

• resolve: A field resolver delegate. It is the resolver function that tells GraphQL how to

get the data needed to fulfill the query. In a typical scenario where an application’s data

model is static, we would utilize classes to represent each possible queriable entity of the

schema, returning a list of objects which are instances of the given class. However, since

we are working in a dynamic environment, there is no way to represent an Entity Type with

a class since this type of programming template must be written at compile-time. As such,

an out-of-the-box alternative approach is needed, and each Entity Type is instead coded as a

dictionary. The keys of this dictionary are strings that map to the given Entity Type properties

names, and their matching values are objects that store the given Entity Type Property value,

if existent. The dynamic tables of the sort T_[name] previously mentioned are used in the

GetEntitiesInstancesOfType function, which queries instances of a given Entity Type based

on the given arguments and then constructs a list of the dictionaries that represent each

instance. Finally, this list is returned by the resolver function.

The last level remaining to complete the GraphQL schema is the Entity Type Property one. To

construct this part of the schema, we start by querying all existing Entity Type Properties in the

system from the T_EntityTypeProperty table. Then, we iterate through each and add them as a

field to the upper level’s corresponding Entity Type object type, resolving either to a scalar value

(Fig. 5.10) or to some Entity Type (Fig. 5.11), with the following four parameters:

• name: The name of the field. Equals the Entity Type Property name.

• type: The graph type of the field. Represents the type of the result to be returned by the field

and can be either a straight scalar or an object type corresponding to some Entity Type from

the entities dictionary.

• description: The description of the field. It is a small string that describes the Entity Type

Property.

• resolve: A field resolver delegate. It is the resolver function that tells GraphQL how to

get the data needed to fulfill the query. If the field type equals a scalar, we can directly

return its value by accessing the parent object in the graph, which should equal a dictionary

Figure 5.8: Creation of Entity Types object types and population of entities dictionary

Implementation 38

Figure 5.9: Creation of Entity Type field

representing the Entity Type to which the current Entity Type Property belongs. The value

to be returned by the field equals the value in the mentioned dictionary associated with

the key that matches the current Entity Type Property name. If, on the other hand, the

field type should resolve to some Entity Type, an inquiry to the database is made to fetch

the corresponding instance by its id, and the value returned by the field is once again a

dictionary with the same structure as the one used in the Entity Type level. In this case, an

auxiliary tool called DataLoader is also utilized, which is explained further in section 5.2.6.

Two examples of how the GraphQL requests to the API and corresponding responses look can

be seen in Figures 5.12 and 5.13. The first one represents a query to the CM MES data model

of instances of the Folder Entity Type, returning its Name and Description Entity Type Properties.

The second one is similar, but also returns additional information of its ParentFolder Entity Type

Property, which is not a scalar value but rather a reference to some Entity Type instance.

5.2.3 Updating the GraphQL Schema at Runtime

The last needed piece to complete the proof-of-concept of having a GraphQL service for an ap-

plication with a dynamic data model is for it to adapt to the model changes in real-time. To

accomplish this, we rely on the help of the CM MES messages bus mentioned in section 4.2.3.

CM MES uses caching for a lot of its data storage needs, and whenever some element of

this cache is invalidated, a particular type of broadcast message is published in the message bus,

whose subject is CMF.SYSTEM.ADMINISTRATION.INVALIDATECACHE. In Figure 5.14 and

Figure 5.15, we can see two examples of what this broadcast message might look like, being

that we are interested in reacting to the EntityTypeCache invalidation seen in the latter. This type

Figure 5.10: Creation of Entity Type Property field which resolves to scalar value

5.2 Implementation Details 39

Figure 5.11: Creation of Entity Type Property field which resolves to some Entity Type instance

Figure 5.12: Querying of Name and Description Entity Type Properties of Folder Entity Types

Implementation 40

Figure 5.13: Querying of Name, Description, ParentFolder Name and ParentFolder Description
Entity Type Properties of Folder Entity Types

of cache invalidation conveys that some change to the underlying data model has occurred, be it

because some new Entity Type has been created or because some Entity Type Property has been

modified, for example. So, whenever a message of this kind is published to the message bus, it is

the cue that our service needs to know it should update the GraphQL schema.

As such, our GraphQL service subscribes to messages published to the CM MES message

bus whose subject is CMF.SYSTEM.ADMINISTRATION.INVALIDATECACHE, and whenever the

CacheManager field is present and equal to EntityTypeCache, it generates a new schema at runtime

and, if no errors occur, substitutes the GraphQL schema of the API. If the CacheManager field is

not present or does not equal EntityTypeCache, the message can just be ignored.

This newly generated schema is constructed from scratch, causing the GraphQL schema of

the API to not be entirely valid for the short period of time that it takes to build it. Some kind of

patching could possibly be made to the outdated schema to avoid this issue instead of replacing it

altogether, however, the generation of a new schema approach was taken due to time constraints

Figure 5.14: CM MES Security cache inval-
idation message

Figure 5.15: CM MES Entity Type cache
invalidation message

5.2 Implementation Details 41

Figure 5.16: Pagination GraphQL input type

and since it offers more security against potential unexpected bugs stemming from incorrect usage

of the GraphQL library.

5.2.4 Pagination

GraphQL does not implement a way to paginate the results of a query by default. Nonetheless, CM

MES current REST API offers this ability, returning either 10, 25, 50, 100, or 200 rows of results

at each time, and as such, the developed GraphQL API should also provide a similar feature.

To incorporate pagination into the GraphQL server, a Pagination input type was created (Fig.

5.16), which can be included in any request as a paramater. This Pagination type is composed of

two fields, represented by unsigned integers and that are mandatory to be present: pageNumber

and rowsPerPage. The first one represents the page index of results to return, and starts at 0. The

second one represents the number of results to retrieve, which should be greater than 0.

As an example of how this pagination solution works, let’s say we have the following array

of data [A,B,C,D,E,F,G,H,I,J]. If we want to fetch only the first five results from this array, we

would have a Pagination object with its pageNumber field equal to 0, and its rowsPerPage field

equal to 5. If we instead want to get the last five results of the array, we would have pageNumber

equal to 1, and rowsPerPage would remain 5. If we, for example, chose a Pagination object with

pageNumber equal to 3 and rowsPerPage equal to 3, the result would only be the array [J] since

there is not enough data to fill the three rows per page we seek. By the same logic, if pageNumber

happened to equal 4, we would obtain the empty array [] as a result.

This solution developed allows for any value of rowsPerPage, compared to the previously

mentioned five pre-defined ones of the CM MES REST API. On top of this, it can offer increased

performance on querying the system since the service does not need to return all the records

matching the query, which sometimes can be in the range of thousands, and can provide them at

given intervals.

This pagination of results is implemented through the injection of a pagination string (Fig.

5.17) at the end of the SQL Server query to the database. In this query, OFFSET specifies the

Implementation 42

Figure 5.17: Pagination string to query SQL database

number of rows to skip before it starts to return rows from the query expression, and FETCH

specifies the number of rows to return after the OFFSET clause has been processed [15]. Note

that when rowsPerPage ends up being equal to 0, it is assumed that the pagination is invalid, and

as such, the empty string is injected instead, and no pagination occurs.

Figures 5.18 and 5.19 display how this Pagination argument is used in a GraphQL query,

showing two consecutive pages of results for the Facility Entity Type. In the first query, we return

the first two instances of this object in the system, while in the second query, we retrieve the third

and fourth.

5.2.5 Filtering

Like with pagination, GraphQL also does not implement an out-of-the-box solution to filter the

results of a query. Still, the CM MES REST API offers a handy way to search for Entity Types

that match some given criteria since this is a pretty recurrent use case for users of the software.

As such, the developed GraphQL API should also incorporate some kind of filtering of results to

cover this functionality.

Filtering GraphQL results, however, is not straightforward and can become rather complex.

One naive approach for a GraphQL API to deliver filtered results could be to execute a GraphQL

query as it is and then do subsequently filtering to the response obtained. This approach is a

possible solution to the problem but presents dire performance since there is an over-fetching of

data from the database, and a lot of the records being collected might end up being discarded

from the final list. Therefore, the better solution is to query directly the necessary items from the

database, with GraphQL itself being aware of that and implementing the required filtering.

To incorporate filtering results with GraphQL, we once again utilize query arguments. This

time we utilize a single string named filtering, which is quite intriguing since it should abide by

some directives that define conditional logic in a JSON format. The reason for choosing this

approach is due to the fact that GraphQL input types have a restricted set of rules that need to be

followed, which offer limited abstraction. By using a single string as an argument, we can pass

any type of information in the way we want to the backend, as long as it is coded in an expected

and predictable way.

The JSON string containing the filtering instructions is defined as a JSON filter and should

follow the following set of rules:

1. A JSON filter could be either a condition object or a condition array.

2. A condition object must contain only the following three properties:

field: Indicates to which of the Entity Type Properties the condition should apply.

5.2 Implementation Details 43

Figure 5.18: GraphQL query to retrieve first and second instances of Facility entity type

Figure 5.19: GraphQL query to retrieve third and fourth instances of Facility entity type

Implementation 44

operation: Indicates the conditional operation to apply to the field. It should be equal to

one of the following pre-defined values, whose CM MES REST API also uses:

CONTAINS: field value should contain some specified string.

STARTS_WITH: field value should start with specified string.

LIKE: field value should match a specified pattern.

NOT_LIKE: field value should not match a specified pattern.

IS_GREATER_THAN: field value should be greater than some specified number.

IS_GREATER_THAN_OR_EQUAL_TO: field value should be greater than or equal

to some specified number.

IS_LESSER_THAN: field value should be lesser than some specified number.

IS_LESSER_THAN_OR_EQUAL_TO: field value should be lesser than or equal to

some specified number.

IS_EQUAL_TO: field value should equal a specified value.

IS_DIFFERENT_THAN: field value should be different than a specified value.

IN: field value should equal one of the multiple specified values.

NOT_IN: field value should not equal one of the multiple specified values.

NULL: field value should be nonexistent. value property is ignored.

IS_NOT_NULL: field value should exist. value property is ignored.

TRUE: field value should equal to true. value property is ignored.

FALSE: field value should equal to false. value property is ignored.

value: Indicates the specified value that the field should confine to based on the given op-

eration.

3. A condition array must have at least three elements.

4. A condition array’s first entry must be either the string OR or the string AND and is the

logical operation that joins the remaining elements.

5. A condition array’s second and further entries can be either conditional objects or condi-

tional arrays themselves.

To better understand what this JSON filter can look like, Figures 5.20 and 5.21 show two

examples of possible instances of it. In the first one, we specify that we want to query all Entity

Types whose Name Entity Type Property starts with the letter "C". In the latter, the filtering is

a bit more complex. We state that not only all Entity Types named "Cookie Factory" should be

fetched, but also all of them whose Id Entity Type Property is greater than 2205280302110000018

and lesser than or equal to 2205280302110000021.

Nonetheless, this filtering solution is not perfect and possesses a significant shortcoming,

which is the inability to apply nested filters. This means that filtering can only be done at the

Entity Type level, based on its corresponding Entity Type Properties. However, suppose one of

5.2 Implementation Details 45

Figure 5.20: Simple JSON filter
example

Figure 5.21: Complex JSON filter example

these Entity Type Properties is a reference to some other Entity Type. In that case, there is no way

to filter based on the new Entity Type Properties. Since GraphQL resolves fields based on levels,

coming up with a solution to this problem is not straightforward. For example, the Folder Entity

Type possesses an Entity Type Property named ParentFolder, that references some other Folder

in the system. If we want to query all Folder objects whose ParentFolder name equals a certain

value, since GraphQL will first resolve the Entity Type level mentioned in 5.2.2 and there is no

filter to apply at this stage, all Folder objects will be loaded from the database, even though some

of them will end up not matching the given criteria. Still, the filtering implemented can cover CM

MES users’ most realistic use cases and makes the API more beneficial than not.

5.2.6 DataLoader

The DataLoader is a compelling tool that commonly appears in GraphQL APIs. It was originally

developed at Facebook by engineer Nicholas Schrock and is described as a generic utility to be

used as part of an application’s data fetching layer to provide a simplified and consistent API over

various remote data sources such as databases or web services via batching and caching [21].

A frequent issue that appears when building GraphQL APIs and that ends up negatively im-

pacting their performance is the N + 1 problem. Let us say we have the following GraphQL query

seen in Figure 5.22, where we want to fetch the names of some Facility Entity Types and their

corresponding Site names. When the GraphQL query is executed, first, a list of all Facilities is

Implementation 46

Figure 5.22: GraphQL query which benefits from DataLoader batching

fetched with a single query to the database. Then, for each Facility, the associated Site must also

be fetched. If each Site is fetched one-by-one, this will get more inefficient as the number of

Facilities (N) grows. This is known as the previously mentioned N + 1 problem. If there are 50

Facilities (N = 50), 51 separate requests would be made to load this data, 1 for getting all Facilities

instances, and then 50 extra requests for their corresponding Site. Using a DataLoader allows us

to batch together all requests for the Sites. As such, 1 request to retrieve the list of Facilities is

made, plus 1 request to load all Sites associated with those Facilities. In total, we will always have

only two requests to the database, instead of the unsatisfactory N + 1 [8].

A DataLoader helps a GraphQL service by providing both batching of results, so that fewer

roundtrips to a database are made, and caching, so that GraphQL requests do not have to be

executed yet again if a similar request has been previously made and their value is already known.

Due to time constraints, only batching was incorporated into the project since it is the one feature

that brings the most value, decreasing the response time of requests with nested fields substantially,

deemed essential for it to be able to compete with the current REST API.

Chapter 6

Results Analysis

In this section, we highlight the results obtained, answering the initial dissertation questions pre-

sented in section 3.4. Finally, a brief discussion of the findings is made.

6.1 Applicability of GraphQL for Dynamic Data Models

One of the central questions to be answered with this dissertation is the possibility of using

GraphQL technology in an application whose underlying data model is dynamic.

With the work produced, we can conclude that this use case for GraphQL is indeed doable.

Even though not all aspects of GraphQL were explored, like mutations or subscriptions, and this

still being only a mere proof-of-concept, we can confidently say that GraphQL is a solution for

building APIs on top of dynamic data models.

The development of this project on top of a real-world application like CM MES also helps val-

idate this use case since the developed GraphQL API can replace, in some situations, the existing

REST API that the company constructed, as seen more in detail in section 6.2.3.

6.2 Comparative Analysis of REST and GraphQL APIs

To analyze how the CM MES current REST API and the newly developed GraphQL API compare

with each other, three different aspects were accessed: performance, developer experience and

usability.

6.2.1 Performance

One of the main aspects that the CM company cares about in its MES product is the performance

of its API, with fast response times being essential for the software to provide the best possible

experience to its users.

To evaluate how the newly developed GraphQL middleware compares with the current REST

API, we should test similar queries for the same information and analyze the average response

47

Results Analysis 48

time each presents. As such, the following five different scenarios were thought of, which assess

different kinds of aspects:

• Scenario 1: Querying the Id and Name Entity Type Properties of the first 100 instances of

the Folder Entity Type. It evaluates the default query of an Entity Type.

• Scenario 2: Querying all scalar type Entity Type Properties of the first 100 instances of the

Folder Entity Type. It evaluates a query of many Entity Type Properties.

• Scenario 3: Querying the Id, Name, ParentFolder Id and ParentFolder Name Entity Type

Properties of the first 100 instances of the Folder Entity Type. It evaluates a query of nested

fields by fetching Entity Type Properties that refer to another Entity Type.

• Scenario 4: Querying the Id and Name Entity Type Properties of the first 100 instances of

the Folder Entity Type whose Name starts with the letter "D". It evaluates a query of an

Entity Type based on a simple filter.

• Scenario 5: Querying the Id and Name Entity Type Properties of the first 100 instances of

the Folder Entity Type whose Name starts with the letter "D" or whose Id is greater than

1805111613350000005 and lesser than 1805111613350000008. It evaluates a query of an

Entity Type based on a more complex filter.

For each scenario, a total number of 100 test requests were made to each API, separated into

10 groups of alternating trial tests composed of 10 requests each. Similar queries were elaborated

and tested with Postman1 to measure the response times, whose results can be seen in tables 6.1

through 6.5.

Table 6.1: Response time average per ten requests in 10 groups of trial tests - Scenario 1

Trial Test REST (ms) GraphQL (ms)

1 73.4 53.8
2 94.1 69.1
3 79.1 72.2
4 79.8 62.2
5 79.6 55.3
6 89.4 64.2
7 95.5 50.9
8 77.7 65.8
9 78.4 61.8
10 91.1 69.7
Total Average 83.8 62.5

1https://www.postman.com/

https://www.postman.com/

6.2 Comparative Analysis of REST and GraphQL APIs 49

Table 6.2: Response time average per ten requests in 10 groups of trial tests - Scenario 2

Trial Test REST (ms) GraphQL (ms)

1 143.9 115.1
2 157.8 118.2
3 148.4 137.6
4 177.4 90.9
5 111.7 111.8
6 146.9 126.6
7 143.9 127.8
8 128.0 125.8
9 160.5 126.3
10 146.0 104.2
Total Average 146.5 118.4

Table 6.3: Response time average per ten requests in 10 groups of trial tests - Scenario 3

Trial Test REST (ms) GraphQL (ms)

1 92.3 105.3
2 84.7 119.3
3 97.5 101.5
4 77.2 99.7
5 90.0 97.4
6 97.1 97.6
7 85.4 97.8
8 88.1 110.3
9 76.7 110.1
10 92.8 112.8
Total Average 88.2 105.2

Results Analysis 50

Table 6.4: Response time average per ten requests in 10 groups of trial tests - Scenario 4

Trial Test REST (ms) GraphQL (ms)

1 75.3 42.5
2 70.1 49.8
3 59.2 51.4
4 63.8 48.6
5 81.4 48.9
6 60.2 47.7
7 81.1 45.8
8 82.1 43.7
9 58.2 44.0
10 79.2 45.1
Total Average 71.1 46.8

Table 6.5: Response time average per ten requests in 10 groups of trial tests - Scenario 5

Trial Test REST (ms) GraphQL (ms)

1 65.6 45.2
2 64.1 42.8
3 66.4 48.9
4 64.0 45.5
5 56.6 47.3
6 68.1 54.8
7 72.9 47.4
8 69.3 48.3
9 61.6 42.0
10 62.0 48.8
Total Average 65.1 47.1

6.2 Comparative Analysis of REST and GraphQL APIs 51

From the gathered results, Scenario 3 stands out from the others since it is the only one where

the REST API outperforms the developed middleware. The goal of this scenario is to evaluate

the querying of nested fields, which is interesting since it brings out the familiar N + 1 problem

mentioned in section 5.2.6. Even though the developed solution utilizes the DataLoader tool,

which improves a GraphQL API performance for the said issue, the constructed service still falls

behind the existing REST API by some margin, being about 19% slower on average. We can

attribute this to the fact that the CM MES REST API is incredibly optimized, fetching all the data

needed to fulfill the query for the referred scenario in just a single inquiry to the database. On

the other hand, as explained before, the GraphQL API requires two roundtrips to the CM MES

database, increasing the query resolution total duration and making this API more inefficient for

this use case.

The new service performs better in the remaining four scenarios being faster on average by

about 25% in Scenario 1, 19% in Scenario 2, 34% in Scenario 4, and 28% in Scenario 5. The

adopted filtering solution mentioned in section 5.2.5 also seems to be a great choice, enabling

the GraphQL API to sustain its good performance against the REST alternative. Still, we should

remind ourselves that the developed middleware is just a proof-of-concept, and some extra oper-

ations and checks are missing that would add a bit more time to a query’s execution duration. As

such, we can not claim that GraphQL will perform better than REST in querying a dynamic data

model for these scenarios, but we can reliably state that it is a valid and competitive alternative.

An additional sixth scenario was also considered to evaluate one of the main advantages of

using a GraphQL API, retrieving many resources in just a single request to the backend, which

can be described as follows:

• Scenario 6: Querying the Id and Name Entity Type Properties of the first 100 instances of

the Folder, Facility, Product, Material and Area Entity Types. It evaluates the querying of

multiple Entity Types, which must be done in separate requests with the REST API.

The same measuring methods used for the previous five scenarios were employed for this new

one, except that this time we only recorded the times displayed by the GraphQL API since we can

assume that the REST API behaves in the same way as Scenario 1, with the difference being that

a total of five requests are needed. The results obtained for this case can be seen in table 6.6.

Looking at the measurements acquired for this last scenario is rather intriguing. If we compare

them with those of Scenario 1, it takes about double the amount of time to complete a request, but

this time we retrieve five times the amount of information. As one could expect, GraphQL’s

primary strengths still show up even in a dynamic data model scenario.

6.2.2 Developer Experience

Another essential aspect when accessing an API is the developer experience it provides. Developer

experience is defined as a user experience from a developer’s point of view, represented by the

tools, processes, and software that a developer uses when interacting with a product or system

[19].

Results Analysis 52

Table 6.6: Response time average per ten requests in 10 groups of trial tests - Scenario 6

Trial Test GraphQL (ms)

1 131.1
2 154.3
3 111.2
4 111.5
5 143.2
1 125.3
2 121.4
3 93.4
4 122.7
5 112.6
Total Average 122.7

To measure how both APIs compare on this element, a small questionnaire was prepared

asking the developers of the CM company a few questions regarding it, with a total of 16 responses

being collected, whose complete results can be seen in the appendix A.

In the first section of the questionnaire, a characterization of the CM developers was made,

focusing on their knowledge of both APIs technologies. From the responses obtained, we can

derive that their understanding of REST is significantly greater than their knowledge of GraphQL.

Everyone but one developer answered that they had used REST before, while when it comes to

GraphQL, only 12.5% had come in contact with the technology, with 50% of them not knowing

what it is used for. Still, when questioned what their understanding of the GraphQL query seen

in Figure 6.1 was, 14 of the 16 said that they were able to grasp its purpose. These answers help

support the idea that GraphQL is still somewhat new in the developer world and that its intuitive

query language may be one of the main drivers of its growing popularity.

In the following sections, the developers were asked their opinions regarding the ease of un-

derstanding and writing the payloads used to build the requests for the REST and GraphQL APIs.

Four different request scenarios were asked about, which evaluate the same aspects as Scenar-

ios 1, 3, 4, and 5 from the previous performance section. For each of these cases, respondents

should choose their preference, if existent, of which API to use when it comes to the two factors

previously mentioned.

For the questions related to Scenarios 1, 3, and 4, GraphQL is the clear winner, with no de-

veloper considering the payloads used to construct the requests to the REST API easier to either

write or understand, and with only two occurrences in the six total questions of a developer show-

ing no preference for one or the other. Figure 6.2 displays the REST and GraphQL payloads that

are needed to query information similar to Scenario 1, becoming apparent why those were the re-

sponses obtained, with the GraphQL one being much shorter and intuitive. Still, we should point

out that the CM MES REST API utilizes a lot of extra metadata not used by the developed mid-

6.2 Comparative Analysis of REST and GraphQL APIs 53

Figure 6.1: GraphQL query used in questionnaire for understanding developers knowledge

dleware, which ends up cluttering its payload. Thus, this comparison might not be entirely fair,

but it is still a good indicator since we can assume that the CM MES developers are aware of that

and can see past it and only focus on the pertinent pieces.

There are some split answers for the two questions related to Scenario 5. 75% of the respon-

dents find the GraphQL payload easier to understand, and the remaining 25% prefer the REST

one. As for the ease of writing it, there are still 75% in favor of GraphQL, but this time only

12.5% choose REST, with the remaining not having a preference. Since Scenario 5 asks for the

same information as Scenario 1, but with the addition of the searching criteria, we can infer that

the filtering solution developed is not optimal as it makes some developers switch their answers

from GraphQL to REST.

After assessing the payloads used for the requests, it’s time to focus on the ones associated with

the responses retrieved. The responses payloads asked about are only those related to Scenarios

1 and 3 since the remaining ones present a similar response to the first one due to the absence of

nested fields. Furthermore, only the ease of understanding the payload was evaluated since it is

generated in the backend by a server and not written on the client-side by a developer. For the two

questions that were posed, there were mixed answers, but GraphQL comes once again on top with

75% preferring it for Scenario 1 and 81.3% for Scenario 3. Still, these results should be viewed

with skepticism since both API payloads are highly similar, with once more the main difference

being the inclusion of extra metadata, and as such, we should not jump to the conclusion that

GraphQL is better in this respect.

Finally, in the questionnaire’s last section, some additional questions were made to determine

the developer’s view of the technology and the solution devised. On a Likert scale2 from one

to five, where one means "Strongly Disagree" and five means "Strongly Agree", 62.6% fall on

the "Agree" section when asked if they would like to see CM MES utilize GraphQL, with only

2https://en.wikipedia.org/wiki/Likert_scale

https://en.wikipedia.org/wiki/Likert_scale

Results Analysis 54

Figure 6.2: Comparison of REST and GraphQL payloads for Scenario 1

6.3 Discussion 55

one developer falling on the "Disagree" section and the rest 31.3% on the neutral side. This is

an extremely positive takeaway since it helps validate that the GraphQL API produced is indeed

worthwhile to them and legitimizes the previous results regarding the payloads. However, when

asked on the same scale if they find the ability to use nested filters within GraphQL important,

such as filtering Folder Entity Types based on its ParentFolder Name, all 16 answers fall on the

"Agree" section. As such, we can conclude that the filtering solution implemented is not sufficient

for usage past the proof-of-concept stage and is something that needs to be improved in the API

for it to become as viable as the current REST one.

6.2.3 Usability

Finally, the last characteristic considered in comparing both APIs is usability. By usability, we

mean the degree to which an API can be used by specified consumers to achieve quantified objec-

tives with effectiveness, efficiency, and satisfaction in a quantified context of use [10].

There are some obvious cases where GraphQL is not the choice to go with within CM MES.

One of them is when there is the need to apply filtering based on nested fields since the GraphQL

API does not provide this functionality at the moment, unlike its REST counterpart. Another is

when there is querying of Entity Type Properties that refer to some Entity Type since at least two

inquiries to the database will be made by the GraphQL API. In contrast, the CM MES REST API

only interrogates the database once, allowing for higher performance than the developed solution.

Regarding CM MES’s most common use case, which is querying an Entity Type scalar type

Entity Type Properties without nested filtering, both APIs are a valid choice. The two APIs present

similar performance, so the choice of which one to use falls on the developer, who should choose

whichever he finds more convenient and easier to utilize based on the previously mentioned de-

veloper experience.

One use case where the new GraphQL API is for sure better than the CM MES REST API

is when there is the need for querying multiple Entity Types. Since the current REST API only

allows the querying of one Entity Type at a time, if, let’s say, there is a need to query five different

Entity Types, five separate requests to this API need to be made. This is where GraphQL shines

since, on the other hand, the GraphQL API is capable of fulfilling this demand in just a single

request, reducing the amount of throughput that the backend receives, decreasing the time spent

on processing requests, and providing a better experience to the developer.

6.3 Discussion

After comparing the previous three aspects regarding both APIs, we can say that there is not a

clear winner, with both APIs having their pros and cons.

Even though the newly developed GraphQL API performs better by a small fraction in most

realistic use cases, it falls behind by some margin or is unusable in others. Still, some improve-

ments can be made, which can turn the GraphQL API into a more powerful contender for querying

the CM MES dynamic data model.

Results Analysis 56

Where the new GraphQL API excels is on the developer experience, being elected as the

preferred way for the CM company developers to query the Entity Types of its data model. On top

of this, the standard GraphQL benefits remain present, allowing the querying of multiple pieces of

information in just a single request to the backend, making it an excellent choice to go with when

this use case is needed.

Chapter 7

Conclusions and Future Developments

In this final chapter, we present the conclusions drawn, along with the main contributions to the

area. Finally, some possible further developments and evolution for the work are outlined.

7.1 Main Developments and Conclusions

The application of GraphQL for dynamic data models was still uncertain, with doubts existing as

to whether this use case was possible and what possible advantages it could bring over a more

traditional approach such as using a REST architecture.

With the work developed, we can conclude that GraphQL technology can indeed be used

to construct APIs on top of applications that possess a dynamic data model. Even though the

developed solution is a mere proof-of-concept, and GraphQL was not used extensively, missing

some standard features like mutations and subscriptions, we can confidently say that employing a

GraphQL API for the previous scenario is a sound choice.

The usage of GraphQL technology for the mentioned use case also brings some pros and cons

compared to going with a more conventional REST approach.

When it comes to its advantages, GraphQL’s main forces still shine, with the ability to ask the

server for specific parts of information with a single roundtrip to the backend bringing great value

to a client and allowing for a sharp performance. On top of this, the fact that GraphQL queries are

simple and easy to understand even by developers not acquainted with the technology makes it a

solid option to ensure a great developer experience for an API.

However, the GraphQL protocol can impair the performance and usability of an API that uses

this technology. When it comes to performance, the fact that a GraphQL API should resolve fields

based on levels means that in some cases, multiple inquiries will be made to a database, while

with a REST approach, we can optimize the query execution by aggregating all needed data just

from a single fetch from the database. Regarding usability, filtering query results based on nested

fields is something that is rather complex to achieve with GraphQL and can make an API with this

technology unusable for this scenario.

57

Conclusions and Future Developments 58

Still, we can say that overall, a GraphQL API can substitute a REST one for querying dynamic

data models, showing similar performance for most use cases and providing some benefits over

the latter.

7.2 Further Developments and Evolution

There is still a wide range of possible features and enhancements related to the work in this dis-

sertation that can be investigated and implemented. Of those, we consider the following the most

compelling:

• Explore the applicability of GraphQL for dynamic data models more extensively through

the usage of mutation and subscription operation types;

• Improve the performance of the GraphQL API via methods such as caching;

• Try out other C# / .NET GraphQL libraries and programming languages for the GraphQL

service to see how they compare to the chosen technologies in terms of performance;

• Analyze and develop new alternative ways to improve the filtering of GraphQL query re-

sults;

• Explore schema patching of the GraphQL API during runtime rather than total schema re-

placement;

• Further test the GraphQL API in a production environment to see how it stacks up against

the REST API in everyday tasks.

References

[1] Altair. Altair Graphql Client, 2022. Available at https://altair.sirmuel.design/,
last accessed in May 2022.

[2] Ardalis. Bus or Queue | Blog, 2022. Available at https://ardalis.com/
bus-or-queue/, last accessed in May 2022.

[3] Contentful. GraphQL dynamic schema generation for changing data models | Con-
tentful, 2018. Available at https://www.contentful.com/blog/2018/12/21/
dynamic-schema-generation-changing-data-models/, last accessed in Febru-
ary 2022.

[4] Critical Manufacturing. Critical Manufacturing - Weigh & Dispense, 2022. Avail-
able at https://www.criticalmanufacturing.com/mes-for-industry-4-0/
weigh-dispense/, last accessed in May 2022.

[5] Dgraph. Dgraph Database Overview, 2022. Available at https://dgraph.io/docs/
dgraph-overview/, last accessed in May 2022.

[6] Carles Farré, Jovan Varga, and Robert Almar. Graphql Schema Generation for Data-Intensive
Web APIs. Technical report, Universitat Politècnica de Catalunya, BarcelonaTech, 2019.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[8] GraphQL .NET. GraphQL .NET, 2022. Available at https://graphql-dotnet.
github.io/docs/guides/dataloader/, last accessed in June 2022.

[9] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, 2003.

[10] ISO 9241-11. Ergonomic Requirements for Office Work with Visual Display Terminals.
Standard, International Organization for Standardization, Geneva, 1998.

[11] Gerald Kotonya and Ian Sommerville. Requirements Engineering: Processes and Tech-
niques. John Wiley & Sons, 1998.

[12] Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices. Pearson
Education, 2003.

[13] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pearson
Education, 2008.

[14] Michael McClellan. Applying Manufacturing Execution Systems. CRC Press, 1997.

59

https://altair.sirmuel.design/
https://ardalis.com/bus-or-queue/
https://ardalis.com/bus-or-queue/
https://www.contentful.com/blog/2018/12/21/dynamic-schema-generation-changing-data-models/
https://www.contentful.com/blog/2018/12/21/dynamic-schema-generation-changing-data-models/
https://www.criticalmanufacturing.com/mes-for-industry-4-0/weigh-dispense/
https://www.criticalmanufacturing.com/mes-for-industry-4-0/weigh-dispense/
https://dgraph.io/docs/dgraph-overview/
https://dgraph.io/docs/dgraph-overview/
https://graphql-dotnet.github.io/docs/guides/dataloader/
https://graphql-dotnet.github.io/docs/guides/dataloader/

REFERENCES 60

[15] Microsoft. ORDER BY Clause (Transact-SQL) - SQL Server, 2022. Avail-
able at https://docs.microsoft.com/en-us/sql/t-sql/queries/
select-order-by-clause-transact-sql?view=sql-server-ver16, last
accessed in May 2022.

[16] Microsoft. What is ASP.NET Core? | .NET, 2022. Available at https://dotnet.
microsoft.com/en-us/learn/aspnet/what-is-aspnet-core, last accessed in
May 2022.

[17] Microsoft. What is NuGet and what does it do?, 2022. Available at https://docs.
microsoft.com/en-us/nuget/what-is-nuget, last accessed in May 2022.

[18] Netflix. Home - DGS Framework - Netflix Open Source, 2022. Available at https://
netflix.github.io/dgs/, last accessed in February 2022.

[19] Prokop Simek. Good Developer Experience | Developer Experience Knowledge
Base, 2022. Available at https://developerexperience.io/practices/
good-developer-experience, last accessed in June 2022.

[20] State of JavaScript. State of JS 2020: Data Layer, February 2022. Available
at https://2020.stateofjs.com/en-US/technologies/datalayer/
,lastaccessedinFebruary2022.

[21] The GraphQL Foundation. Github - graphql/dataloader: Dataloader is a generic utility to be
used as part of your application’s data fetching layer to provide a consistent API over various
backends and reduce requests to those backends via batching and caching., 2022. Available
at https://github.com/graphql/dataloader, last accessed in June 2022.

[22] The GraphQL Foundation. Github - graphql/graphiql: GraphiQL & the Graphql LSP
Reference Ecosystem for building browser & IDE tools., 2022. Available at https:
//github.com/graphql/graphiql, last accessed in May 2022.

[23] The GraphQL Foundation. Github - graphql/graphql-js: A reference implementation
of GraphQL for JavaScript, 2022. Available at https://github.com/graphql/
graphql-js, last accessed in May 2022.

[24] The GraphQL Foundation. GraphQL, 2022. Available at https://spec.graphql.org/
October2021/, last accessed in May 2022.

[25] The GraphQL Foundation. GraphQL | A query language for your API, 2022. Available at
https://graphql.org/, last accessed in February 2022.

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sql?view=sql-server-ver16
https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet-core
https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet-core
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://netflix.github.io/dgs/
https://netflix.github.io/dgs/
https://developerexperience.io/practices/good-developer-experience
https://developerexperience.io/practices/good-developer-experience
https://2020.stateofjs.com/en-US/technologies/datalayer/, last accessed in February 2022
https://2020.stateofjs.com/en-US/technologies/datalayer/, last accessed in February 2022
https://github.com/graphql/dataloader
https://github.com/graphql/graphiql
https://github.com/graphql/graphiql
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://spec.graphql.org/October2021/
https://spec.graphql.org/October2021/
https://graphql.org/

Appendix A

Developer Experience Questionnaire

The complete results of the developer experience questionnaire described in section 6.2.2 are pre-

sented in the following passages.

A.1 API Technologies Knowledge

Figure A.1: Developer Experience questionnaire first question

61

Developer Experience Questionnaire 62

Figure A.2: Developer Experience questionnaire first question results

Figure A.3: Developer Experience questionnaire second question

Figure A.4: Developer Experience questionnaire second question results

A.1 API Technologies Knowledge 63

Figure A.5: Developer Experience questionnaire third question

Figure A.6: Developer Experience questionnaire third question results

Developer Experience Questionnaire 64

A.2 REST vs GraphQL: Request Payloads

A.2.1 Request Payloads 1

The following payloads are used for requesting the the Id and Name Entity Type Properties of

some Folder Entity Type instances.

REST payload:
{

" Query " : {
" $ i d " : " 3 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . Query , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
" R e l a t i o n s " : [] ,
" D i s t i n c t " : f a l s e ,
" TopUnit " : 0 ,
" H a s P a r a m e t e r s " : f a l s e ,
" F i e l d s " : [

{
" $ i d " : " 4 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
" I s R e l a t i o n " : f a l s e ,
"Name " : " Id " ,
" A l i a s " : " Id " ,
" P o s i t i o n " : 0 ,
" S o r t " : 0 ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" A g g r e g a t e F u n c t i o n " : 0 ,
" Objec tType " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" ObjectName " : " F o l d e r "

} ,
{

" $ i d " : " 5 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
" I s R e l a t i o n " : f a l s e ,
"Name " : "Name " ,
" A l i a s " : "Name " ,
" P o s i t i o n " : 1 ,
" S o r t " : 0 ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" A g g r e g a t e F u n c t i o n " : 0 ,
" Objec tType " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" ObjectName " : " F o l d e r "

}
] ,
" F i l t e r s " : [] ,
" E n t i t y F i l t e r " : n u l l

}
}

GraphQL payload:
{

f o l d e r {
i d
name

}
}

A.2 REST vs GraphQL: Request Payloads 65

Figure A.7: Developer Experience questionnaire fourth question

Figure A.8: Developer Experience questionnaire fourth question results

Figure A.9: Developer Experience questionnaire fifth question

Developer Experience Questionnaire 66

Figure A.10: Developer Experience questionnaire fifth question results

A.2.2 Request Payloads 2

The following payloads are used for requesting the the Id, Name, ParentFolder Id and ParentFolder

Name Entity Type Properties of some Folder Entity Type instances.

REST payload:
{

" Query " : {
" $ i d " : " 3 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . Query , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
" F i e l d s " : [

{
" $ i d " : " 4 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : " Id " ,
" A l i a s " : " Id " ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" P o s i t i o n " : 0 ,
" S o r t " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" ObjectName " : " F o l d e r " ,
" A g g r e g a t e F u n c t i o n " : 0

} ,
{

" $ i d " : " 5 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : "Name " ,
" A l i a s " : "Name " ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" P o s i t i o n " : 1 ,
" S o r t " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" ObjectName " : " F o l d e r " ,
" A g g r e g a t e F u n c t i o n " : 0

} ,
{

" $ i d " : " 6 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : " Id " ,
" A l i a s " : " P a r e n t F o l d e r I d " ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" P o s i t i o n " : 2 ,
" S o r t " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ P a r e n t F o l d e r _ 2 " ,
" ObjectName " : " F o l d e r " ,
" A g g r e g a t e F u n c t i o n " : 0

} ,
{

" $ i d " : " 7 " ,

A.2 REST vs GraphQL: Request Payloads 67

" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : "Name " ,
" A l i a s " : " Pa ren tFo lde rName " ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" P o s i t i o n " : 3 ,
" S o r t " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ P a r e n t F o l d e r _ 2 " ,
" ObjectName " : " F o l d e r " ,
" A g g r e g a t e F u n c t i o n " : 0

}
] ,
" F i l t e r s " : [] ,
" R e l a t i o n s " : [

{
" $ i d " : " 8 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . R e l a t i o n , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
" A l i a s " : " " ,
" I s R e l a t i o n " : f a l s e ,
"Name " : " " ,
" S o u r c e E n t i t y " : " F o l d e r " ,
" S o u r c e E n t i t y A l i a s " : " F o l d e r _ 1 " ,
" S o u r c e J o i n T y p e " : 0 ,
" S o u r c e P r o p e r t y " : " P a r e n t F o l d e r I d " ,
" T a r g e t E n t i t y A l i a s " : " F o l d e r _ P a r e n t F o l d e r _ 2 " ,
" T a r g e t J o i n T y p e " : 0 ,
" T a r g e t P r o p e r t y " : " Id " ,
" T a r g e t E n t i t y " : " F o l d e r "

}
] ,
" D i s t i n c t " : f a l s e ,
" TopUnit " : 0 ,
" Q u e r y P a r a m e t e r s " : [] ,
" E n t i t y F i l t e r " : n u l l

}
}

GraphQL payload:
{

f o l d e r {
i d
name
p a r e n t F o l d e r {

i d
name

}
}

}

Figure A.11: Developer Experience questionnaire sixth question

Developer Experience Questionnaire 68

Figure A.12: Developer Experience questionnaire sixth question results

Figure A.13: Developer Experience questionnaire seventh question

Figure A.14: Developer Experience questionnaire seventh question results

A.2 REST vs GraphQL: Request Payloads 69

A.2.3 Request Payloads 3

The following payloads are used for requesting the the Id and Name Entity Type Properties of

some Folder Entity Type instances whose Name starts with the letter "D".

REST payload:
{

" Query " : {
" $ i d " : " 3 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . Query , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
" F i e l d s " : [

{
" $ i d " : " 4 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : " Id " ,
" A l i a s " : " Id " ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" P o s i t i o n " : 0 ,
" S o r t " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" ObjectName " : " F o l d e r " ,
" A g g r e g a t e F u n c t i o n " : 0

} ,
{

" $ i d " : " 5 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : "Name " ,
" A l i a s " : "Name " ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" P o s i t i o n " : 1 ,
" S o r t " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" ObjectName " : " F o l d e r " ,
" A g g r e g a t e F u n c t i o n " : 0

}
] ,
" F i l t e r s " : [

{
" $ i d " : " 6 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i l t e r , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : "Name " ,
" O p e r a t o r " : 9 ,
" L o g i c a l O p e r a t o r " : 0 ,
" ObjectName " : " F o l d e r " ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" Value " : "D" ,
" I s O p t i o n a l " : f a l s e

}
] ,
" R e l a t i o n s " : [] ,
" D i s t i n c t " : f a l s e ,
" TopUnit " : 0 ,
" Q u e r y P a r a m e t e r s " : [] ,
" E n t i t y F i l t e r " : n u l l

}
}

GraphQL payload:
{

f o l d e r (f i l t e r i n g : "{ f i e l d : ’ name ’ , o p e r a t i o n : ’STARTS_WITH’ , v a l u e : ’D’ } ") {
i d
name

}
}

Developer Experience Questionnaire 70

Figure A.15: Developer Experience questionnaire eighth question

Figure A.16: Developer Experience questionnaire eighth question results

Figure A.17: Developer Experience questionnaire ninth question

A.2 REST vs GraphQL: Request Payloads 71

Figure A.18: Developer Experience questionnaire ninth question results

A.2.4 Request Payloads 4

The following payloads are used for requesting the the Id and Name Entity Type Properties of

some Folder Entity Type instances whose Name starts with the letter "D" or whose Id is greater

than 1805111613350000005 and lesser than 1805111613350000008.

REST payload:
{

" Query " : {
" $ i d " : " 3 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . Query , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
" F i e l d s " : [

{
" $ i d " : " 4 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : " Id " ,
" A l i a s " : " Id " ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" P o s i t i o n " : 0 ,
" S o r t " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" ObjectName " : " F o l d e r " ,
" A g g r e g a t e F u n c t i o n " : 0

} ,
{

" $ i d " : " 5 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i e l d , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : "Name " ,
" A l i a s " : "Name " ,
" I s U s e r A t t r i b u t e " : f a l s e ,
" P o s i t i o n " : 1 ,
" S o r t " : 0 ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" ObjectName " : " F o l d e r " ,
" A g g r e g a t e F u n c t i o n " : 0

}
] ,
" F i l t e r s " : [

{
" $ i d " : " 6 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i l t e r , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : "Name " ,
" O p e r a t o r " : 9 ,
" L o g i c a l O p e r a t o r " : 2 ,
" ObjectName " : " F o l d e r " ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" Value " : "D" ,
" I s O p t i o n a l " : f a l s e

Developer Experience Questionnaire 72

} ,
{

" $ i d " : " 7 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i l t e r , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
" F i l t e r T y p e " : 2 ,
" L o g i c a l O p e r a t o r " : 1 ,
" I n n e r F i l t e r " : [

{
" $ i d " : " 8 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i l t e r , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : " Id " ,
" O p e r a t o r " : 2 ,
" L o g i c a l O p e r a t o r " : 1 ,
" ObjectName " : " F o l d e r " ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" Value " : "1805111613350000005" ,
" I s O p t i o n a l " : f a l s e

} ,
{

" $ i d " : " 9 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s . QueryObjec t . F i l t e r , Cmf . F o u n d a t i o n . B u s i n e s s O b j e c t s " ,
"Name " : " Id " ,
" O p e r a t o r " : 4 ,
" L o g i c a l O p e r a t o r " : 0 ,
" ObjectName " : " F o l d e r " ,
" O b j e c t A l i a s " : " F o l d e r _ 1 " ,
" Value " : "1805111613350000008" ,
" I s O p t i o n a l " : f a l s e

}
]

}
] ,
" R e l a t i o n s " : [] ,
" D i s t i n c t " : f a l s e ,
" TopUnit " : 0 ,
" Q u e r y P a r a m e t e r s " : [] ,
" E n t i t y F i l t e r " : n u l l

}
}

GraphQL payload:
{

f o l d e r (f i l t e r i n g : " [’OR’ , { f i e l d : ’ name ’ , o p e r a t i o n : ’STARTS_WITH’ , v a l u e : ’D’ } , [’AND’ , { f i e l d : ’ id ’ ,
o p e r a t i o n : ’IS_GREATER_THAN’ , v a l u e : ’1805111613350000005 ’ } , { f i e l d : ’ id ’ , o p e r a t i o n : ’IS_LESSER_THAN ’ ,
v a l u e : ’1805111613350000008 ’ }]] ") {

i d
name

}
}

Figure A.19: Developer Experience questionnaire tenth question

A.2 REST vs GraphQL: Request Payloads 73

Figure A.20: Developer Experience questionnaire tenth question results

Figure A.21: Developer Experience questionnaire eleventh question

Figure A.22: Developer Experience questionnaire eleventh question results

Developer Experience Questionnaire 74

A.3 REST vs GraphQL: Response Payloads

A.3.1 Response Payloads 1

The following payloads are sent as a response to requesting the Id and Name Entity Type Properties

of some Folder Entity Type instances.

REST payload:
{

" $ i d " : " 1 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O r c h e s t r a t i o n . QueryManagement . O u t p u t O b j e c t s . Execu teQueryOutpu t , Cmf . F o u n d a t i o n .

B u s i n e s s O r c h e s t r a t i o n " ,
" NgpDataSet " : {

" T _ R es u l t " : [
{

" Id " : "1805111613350000001" ,
"Name " : " \ \ " ,
" TotalRows " : 451

} ,
{

" Id " : "1805111613350000002" ,
"Name " : " Documents " ,
" TotalRows " : 451

} ,
{

" Id " : "1805111613350000003" ,
"Name " : " Q u e r i e s " ,
" TotalRows " : 451

} ,
{

" Id " : "1805111613350000004" ,
"Name " : " f a b L i v e s " ,
" TotalRows " : 451

} ,
{

" Id " : "1805111613350000005" ,
"Name " : " Dashboards " ,
" TotalRows " : 451

} ,
{

" Id " : "1805111613350000006" ,
"Name " : " Widgets " ,
" TotalRows " : 451

} ,
{

" Id " : "1805111613350000007" ,
"Name " : " Mul t imed ia " ,
" TotalRows " : 451

} ,
{

" Id " : "2205300000000000001" ,
"Name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_2 fc826de f4674450b1db0d81d69147c8882 " ,
" TotalRows " : 451

} ,
{

" Id " : "2205300000000000002" ,
"Name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_26e18cc767484205836ac60c40c67a7d127 " ,
" TotalRows " : 451

} ,
{

" Id " : "2205300000000000003" ,
"Name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_5c2e2eaeaea7462b9b1a76b18b824444801 " ,
" TotalRows " : 451

}
] ,
" T_Resul t_Columns " : [

{
" AllowDBNull " : f a l s e ,
" Au to Inc r emen t " : f a l s e ,
" Au to Inc remen tSeed " : " 0 " ,
" A u t o I n c r e m e n t S t e p " : " 1 " ,
" C a p t i o n " : " Id " ,
" ColumnName " : " Id " ,
" P r e f i x " : " " ,

A.3 REST vs GraphQL: Response Payloads 75

" DataType " : " System . I n t 6 4 , System . P r i v a t e . CoreLib , V e r s i o n = 6 . 0 . 0 . 0 , C u l t u r e = n e u t r a l , Publ icKeyToken =7
cec85d7bea7798e " ,

" DateTimeMode " : 3 ,
" D e f a u l t V a l u e " : n u l l ,
" E x p r e s s i o n " : " " ,
" E x t e n d e d P r o p e r t i e s " : {

" $typeCMF " : "CMFMap" ,
"CMFMapData " : []

} ,
" MaxLength " : −1 ,
" Namespace " : " " ,
" O r d i n a l " : 0 ,
" ReadOnly " : f a l s e ,
" Unique " : f a l s e ,
" ColumnMapping " : 1 ,
" S i t e " : n u l l ,
" C o n t a i n e r " : n u l l ,
" DesignMode " : f a l s e

} ,
{

" AllowDBNull " : f a l s e ,
" Au to Inc r emen t " : f a l s e ,
" Au to Inc remen tSeed " : " 0 " ,
" A u t o I n c r e m e n t S t e p " : " 1 " ,
" C a p t i o n " : "Name " ,
" ColumnName " : "Name " ,
" P r e f i x " : " " ,
" DataType " : " System . S t r i n g , System . P r i v a t e . CoreLib , V e r s i o n = 6 . 0 . 0 . 0 , C u l t u r e = n e u t r a l , Publ icKeyToken =7

cec85d7bea7798e " ,
" DateTimeMode " : 3 ,
" D e f a u l t V a l u e " : n u l l ,
" E x p r e s s i o n " : " " ,
" E x t e n d e d P r o p e r t i e s " : {

" $typeCMF " : "CMFMap" ,
"CMFMapData " : []

} ,
" MaxLength " : 256 ,
" Namespace " : " " ,
" O r d i n a l " : 1 ,
" ReadOnly " : f a l s e ,
" Unique " : f a l s e ,
" ColumnMapping " : 1 ,
" S i t e " : n u l l ,
" C o n t a i n e r " : n u l l ,
" DesignMode " : f a l s e

} ,
{

" AllowDBNull " : t r u e ,
" Au to Inc r emen t " : f a l s e ,
" Au to Inc remen tSeed " : " 0 " ,
" A u t o I n c r e m e n t S t e p " : " 1 " ,
" C a p t i o n " : " TotalRows " ,
" ColumnName " : " TotalRows " ,
" P r e f i x " : " " ,
" DataType " : " System . I n t 3 2 , System . P r i v a t e . CoreLib , V e r s i o n = 6 . 0 . 0 . 0 , C u l t u r e = n e u t r a l , Publ icKeyToken =7

cec85d7bea7798e " ,
" DateTimeMode " : 3 ,
" D e f a u l t V a l u e " : n u l l ,
" E x p r e s s i o n " : " " ,
" E x t e n d e d P r o p e r t i e s " : {

" $typeCMF " : "CMFMap" ,
"CMFMapData " : []

} ,
" MaxLength " : −1 ,
" Namespace " : " " ,
" O r d i n a l " : 2 ,
" ReadOnly " : f a l s e ,
" Unique " : f a l s e ,
" ColumnMapping " : 1 ,
" S i t e " : n u l l ,
" C o n t a i n e r " : n u l l ,
" DesignMode " : f a l s e

}
]

} ,
" TotalRows " : 451

}

Developer Experience Questionnaire 76

GraphQL payload:
{

" d a t a " : {
" f o l d e r " : [

{
" i d " : 1805111613350000001 ,
" name " : " \ \ "

} ,
{

" i d " : 1805111613350000002 ,
" name " : " Documents "

} ,
{

" i d " : 1805111613350000003 ,
" name " : " Q u e r i e s "

} ,
{

" i d " : 1805111613350000004 ,
" name " : " f a b L i v e s "

} ,
{

" i d " : 1805111613350000005 ,
" name " : " Dashboards "

} ,
{

" i d " : 1805111613350000006 ,
" name " : " Widgets "

} ,
{

" i d " : 1805111613350000007 ,
" name " : " Mul t imed ia "

} ,
{

" i d " : 2205300000000000001 ,
" name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_2 fc826de f4674450b1db0d81d69147c8882 "

} ,
{

" i d " : 2205300000000000002 ,
" name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_26e18cc767484205836ac60c40c67a7d127 "

} ,
{

" i d " : 2205300000000000003 ,
" name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_5c2e2eaeaea7462b9b1a76b18b824444801 "

}
]

}
}

Figure A.23: Developer Experience questionnaire twelfth question

A.3 REST vs GraphQL: Response Payloads 77

Figure A.24: Developer Experience questionnaire twelfth question results

A.3.2 Response Payloads 2

The following payloads are sent as a response to requesting the Id, Name, ParentFolder Id and

ParentFolder Name Entity Type Properties of some Folder Entity Type instances.

REST payload:
{

" $ i d " : " 1 " ,
" $ t y p e " : "Cmf . F o u n d a t i o n . B u s i n e s s O r c h e s t r a t i o n . QueryManagement . O u t p u t O b j e c t s . Execu teQueryOutpu t , Cmf . F o u n d a t i o n .

B u s i n e s s O r c h e s t r a t i o n " ,
" NgpDataSet " : {

" T _ R es u l t " : [
{

" Id " : "1805111613350000002" ,
"Name " : " Documents " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

} ,
{

" Id " : "1805111613350000003" ,
"Name " : " Q u e r i e s " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

} ,
{

" Id " : "1805111613350000004" ,
"Name " : " f a b L i v e s " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

} ,
{

" Id " : "1805111613350000005" ,
"Name " : " Dashboards " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

} ,
{

" Id " : "1805111613350000006" ,
"Name " : " Widgets " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

} ,
{

" Id " : "1805111613350000007" ,

Developer Experience Questionnaire 78

"Name " : " Mul t imed ia " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

} ,
{

" Id " : "2205300000000000001" ,
"Name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_2 fc826de f4674450b1db0d81d69147c8882 " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

} ,
{

" Id " : "2205300000000000002" ,
"Name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_26e18cc767484205836ac60c40c67a7d127 " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

} ,
{

" Id " : "2205300000000000003" ,
"Name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_5c2e2eaeaea7462b9b1a76b18b824444801 " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

} ,
{

" Id " : "2205300000000000004" ,
"Name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_b5b249a49cc64622bf166297e7249818735 " ,
" P a r e n t F o l d e r I d " : "1805111613350000001" ,
" Pa ren tFo lde rName " : " \ \ " ,
" TotalRows " : 450

}
] ,
" T_Resul t_Columns " : [

{
" AllowDBNull " : f a l s e ,
" Au to Inc r emen t " : f a l s e ,
" Au to Inc remen tSeed " : " 0 " ,
" A u t o I n c r e m e n t S t e p " : " 1 " ,
" C a p t i o n " : " Id " ,
" ColumnName " : " Id " ,
" P r e f i x " : " " ,
" DataType " : " System . I n t 6 4 , System . P r i v a t e . CoreLib , V e r s i o n = 6 . 0 . 0 . 0 , C u l t u r e = n e u t r a l , Publ icKeyToken =7

cec85d7bea7798e " ,
" DateTimeMode " : 3 ,
" D e f a u l t V a l u e " : n u l l ,
" E x p r e s s i o n " : " " ,
" E x t e n d e d P r o p e r t i e s " : {

" $typeCMF " : "CMFMap" ,
"CMFMapData " : []

} ,
" MaxLength " : −1 ,
" Namespace " : " " ,
" O r d i n a l " : 0 ,
" ReadOnly " : f a l s e ,
" Unique " : f a l s e ,
" ColumnMapping " : 1 ,
" S i t e " : n u l l ,
" C o n t a i n e r " : n u l l ,
" DesignMode " : f a l s e

} ,
{

" AllowDBNull " : f a l s e ,
" Au to Inc r emen t " : f a l s e ,
" Au to Inc remen tSeed " : " 0 " ,
" A u t o I n c r e m e n t S t e p " : " 1 " ,
" C a p t i o n " : "Name " ,
" ColumnName " : "Name " ,
" P r e f i x " : " " ,
" DataType " : " System . S t r i n g , System . P r i v a t e . CoreLib , V e r s i o n = 6 . 0 . 0 . 0 , C u l t u r e = n e u t r a l , Publ icKeyToken =7

cec85d7bea7798e " ,
" DateTimeMode " : 3 ,
" D e f a u l t V a l u e " : n u l l ,
" E x p r e s s i o n " : " " ,
" E x t e n d e d P r o p e r t i e s " : {

" $typeCMF " : "CMFMap" ,

A.3 REST vs GraphQL: Response Payloads 79

"CMFMapData " : []
} ,
" MaxLength " : 256 ,
" Namespace " : " " ,
" O r d i n a l " : 1 ,
" ReadOnly " : f a l s e ,
" Unique " : f a l s e ,
" ColumnMapping " : 1 ,
" S i t e " : n u l l ,
" C o n t a i n e r " : n u l l ,
" DesignMode " : f a l s e

} ,
{

" AllowDBNull " : f a l s e ,
" Au to Inc r emen t " : f a l s e ,
" Au to Inc remen tSeed " : " 0 " ,
" A u t o I n c r e m e n t S t e p " : " 1 " ,
" C a p t i o n " : " P a r e n t F o l d e r I d " ,
" ColumnName " : " P a r e n t F o l d e r I d " ,
" P r e f i x " : " " ,
" DataType " : " System . I n t 6 4 , System . P r i v a t e . CoreLib , V e r s i o n = 6 . 0 . 0 . 0 , C u l t u r e = n e u t r a l , Publ icKeyToken =7

cec85d7bea7798e " ,
" DateTimeMode " : 3 ,
" D e f a u l t V a l u e " : n u l l ,
" E x p r e s s i o n " : " " ,
" E x t e n d e d P r o p e r t i e s " : {

" $typeCMF " : "CMFMap" ,
"CMFMapData " : []

} ,
" MaxLength " : −1 ,
" Namespace " : " " ,
" O r d i n a l " : 2 ,
" ReadOnly " : f a l s e ,
" Unique " : f a l s e ,
" ColumnMapping " : 1 ,
" S i t e " : n u l l ,
" C o n t a i n e r " : n u l l ,
" DesignMode " : f a l s e

} ,
{

" AllowDBNull " : f a l s e ,
" Au to Inc r emen t " : f a l s e ,
" Au to Inc remen tSeed " : " 0 " ,
" A u t o I n c r e m e n t S t e p " : " 1 " ,
" C a p t i o n " : " Pa ren tFo lde rName " ,
" ColumnName " : " Pa ren tFo lde rName " ,
" P r e f i x " : " " ,
" DataType " : " System . S t r i n g , System . P r i v a t e . CoreLib , V e r s i o n = 6 . 0 . 0 . 0 , C u l t u r e = n e u t r a l , Publ icKeyToken =7

cec85d7bea7798e " ,
" DateTimeMode " : 3 ,
" D e f a u l t V a l u e " : n u l l ,
" E x p r e s s i o n " : " " ,
" E x t e n d e d P r o p e r t i e s " : {

" $typeCMF " : "CMFMap" ,
"CMFMapData " : []

} ,
" MaxLength " : 256 ,
" Namespace " : " " ,
" O r d i n a l " : 3 ,
" ReadOnly " : f a l s e ,
" Unique " : f a l s e ,
" ColumnMapping " : 1 ,
" S i t e " : n u l l ,
" C o n t a i n e r " : n u l l ,
" DesignMode " : f a l s e

} ,
{

" AllowDBNull " : t r u e ,
" Au to Inc r emen t " : f a l s e ,
" Au to Inc remen tSeed " : " 0 " ,
" A u t o I n c r e m e n t S t e p " : " 1 " ,
" C a p t i o n " : " TotalRows " ,
" ColumnName " : " TotalRows " ,
" P r e f i x " : " " ,
" DataType " : " System . I n t 3 2 , System . P r i v a t e . CoreLib , V e r s i o n = 6 . 0 . 0 . 0 , C u l t u r e = n e u t r a l , Publ icKeyToken =7

cec85d7bea7798e " ,
" DateTimeMode " : 3 ,

Developer Experience Questionnaire 80

" D e f a u l t V a l u e " : n u l l ,
" E x p r e s s i o n " : " " ,
" E x t e n d e d P r o p e r t i e s " : {

" $typeCMF " : "CMFMap" ,
"CMFMapData " : []

} ,
" MaxLength " : −1 ,
" Namespace " : " " ,
" O r d i n a l " : 4 ,
" ReadOnly " : f a l s e ,
" Unique " : f a l s e ,
" ColumnMapping " : 1 ,
" S i t e " : n u l l ,
" C o n t a i n e r " : n u l l ,
" DesignMode " : f a l s e

}
]

} ,
" TotalRows " : 450

}

GraphQL payload:
{

" d a t a " : {
" f o l d e r " : [

{
" i d " : 1805111613350000001 ,
" name " : " \ \ " ,
" p a r e n t F o l d e r " : n u l l

} ,
{

" i d " : 1805111613350000002 ,
" name " : " Documents " ,
" p a r e n t F o l d e r " : {

" i d " : 1805111613350000001 ,
" name " : " \ \ "

}
} ,
{

" i d " : 1805111613350000003 ,
" name " : " Q u e r i e s " ,
" p a r e n t F o l d e r " : {

" i d " : 1805111613350000001 ,
" name " : " \ \ "

}
} ,
{

" i d " : 1805111613350000004 ,
" name " : " f a b L i v e s " ,
" p a r e n t F o l d e r " : {

" i d " : 1805111613350000001 ,
" name " : " \ \ "

}
} ,
{

" i d " : 1805111613350000005 ,
" name " : " Dashboards " ,
" p a r e n t F o l d e r " : {

" i d " : 1805111613350000001 ,
" name " : " \ \ "

}
} ,
{

" i d " : 1805111613350000006 ,
" name " : " Widgets " ,
" p a r e n t F o l d e r " : {

" i d " : 1805111613350000001 ,
" name " : " \ \ "

}
} ,
{

" i d " : 1805111613350000007 ,
" name " : " Mul t imed ia " ,
" p a r e n t F o l d e r " : {

" i d " : 1805111613350000001 ,
" name " : " \ \ "

A.3 REST vs GraphQL: Response Payloads 81

}
} ,
{

" i d " : 2205300000000000001 ,
" name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_2 fc826de f4674450b1db0d81d69147c8882 " ,
" p a r e n t F o l d e r " : {

" i d " : 1805111613350000001 ,
" name " : " \ \ "

}
} ,
{

" i d " : 2205300000000000002 ,
" name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_26e18cc767484205836ac60c40c67a7d127 " ,
" p a r e n t F o l d e r " : {

" i d " : 1805111613350000001 ,
" name " : " \ \ "

}
} ,
{

" i d " : 2205300000000000003 ,
" name " : " Z_Automa t i c_Crea t ed_Tes t_Fo lde r_5c2e2eaeaea7462b9b1a76b18b824444801 " ,
" p a r e n t F o l d e r " : {

" i d " : 1805111613350000001 ,
" name " : " \ \ "

}
}

]
}

}

Figure A.25: Developer Experience questionnaire thirteenth question

Figure A.26: Developer Experience questionnaire thirteenth question results

Developer Experience Questionnaire 82

A.4 Final Remarks

Figure A.27: Developer Experience questionnaire fourteenth question

Figure A.28: Developer Experience questionnaire fourteenth question results

Figure A.29: Developer Experience questionnaire fifteenth question

A.4 Final Remarks 83

Figure A.30: Developer Experience questionnaire fifteenth question results

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 GraphQL for Dynamic Data Models
	2.1 GraphQL
	2.1.1 Description
	2.1.2 Schema and API Example
	2.1.3 Factors and Forces
	2.1.4 Not Yet Solved Problems

	2.2 Related Work
	2.3 Innovative Factors
	2.4 Existing Technologies
	2.4.1 Characterization
	2.4.2 Choice

	3 Requirements and Functionalities
	3.1 Dissertation Objectives
	3.2 Functional Requirements
	3.3 Non-Functional Requirements
	3.4 Questions To Be Answered

	4 Architecture
	4.1 CM MES Software
	4.2 CM MES Architecture
	4.2.1 Data Model
	4.2.2 Queries and REST API
	4.2.3 Message Bus

	4.3 GraphQL Middleware Architecture

	5 Implementation
	5.1 Technologies and Methodologies Used
	5.1.1 Technologies
	5.1.2 Methodologies

	5.2 Implementation Details
	5.2.1 Mutable GraphQL Schema
	5.2.2 Generating a GraphQL Schema Dynamically
	5.2.3 Updating the GraphQL Schema at Runtime
	5.2.4 Pagination
	5.2.5 Filtering
	5.2.6 DataLoader

	6 Results Analysis
	6.1 Applicability of GraphQL for Dynamic Data Models
	6.2 Comparative Analysis of REST and GraphQL APIs
	6.2.1 Performance
	6.2.2 Developer Experience
	6.2.3 Usability

	6.3 Discussion

	7 Conclusions and Future Developments
	7.1 Main Developments and Conclusions
	7.2 Further Developments and Evolution

	References
	A Developer Experience Questionnaire
	A.1 API Technologies Knowledge
	A.2 REST vs GraphQL: Request Payloads
	A.2.1 Request Payloads 1
	A.2.2 Request Payloads 2
	A.2.3 Request Payloads 3
	A.2.4 Request Payloads 4

	A.3 REST vs GraphQL: Response Payloads
	A.3.1 Response Payloads 1
	A.3.2 Response Payloads 2

	A.4 Final Remarks

