
 
 

 

High-speed and 
High-assurance 
Cryptographic 
Software 

Tiago Filipe Azevedo Oliveira 
Programa Doutoral em Informática (MAP-i) 
Departamento de Ciência de Computadores 
2022 

 
Orientador  
Manuel Bernardo Martins Barbosa, Professor Associado, 
Faculdade de Ciências da Universidade do Porto 
 
Coorientador 
José Carlos Bacelar Ferreira Junqueira Almeida, Professor Auxiliar, 
Departamento de Informática da Universidade do Minho 

 



ii



Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic
award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance
of, others, is indicated as such. Any views expressed in the dissertation are those
of the author.

SIGNED: .................................................... DATE: ..........................................

iii



iv



Dedication and acknowledgements

First of all, I want to express my gratitude to the supervisor and co-supervisor of this thesis,
Manuel Barbosa and José Almeida, first, for convincing me to embark on this fascinating
journey that was doing this Ph.D. and, second, for all the assistance and dedication into
creating what turned out to be the ideal conditions for this work to happen the way it did.

Words of appreciation are also due to the whole Jasmin team, with a particular remark going
to Benjamin Grégoire for the fantastic collaboration and countless hours we’ve spent together
since this project started. I would also like to thank all my co-authors and research colleges
for their support.

I would like to thank Peter Schwabe for all the support, motivation, and guidance always
expressed every day without exception long before I joined the Max Planck Institute for
Security and Privacy. A note of gratitude is also due to Gilles Barthe, whose observations,
comments, and advice, allow me to improve.

A warm thanks to my family and friends for all the support given throughout these years.

Finally, the most important acknowledgment is to my beloved wife Verónica, that uncondi-
tionally supported me and whose advice always revealed itself to point in the right direction.
This thesis is dedicated to you Verónica1.

1I will spend more time with you from now on. Throw this to my face if I don’t :-)

v



vi



Abstract

The implementation of cryptographic primitives is a complex task that requires a very
particular skill set. Several cryptography-specific requirements must be fulfilled, with these
being mainly related to efficiency and security. Since cryptographic code is being used at
large, a mere performance penalty of 10%, in comparison to the fastest implementations, can
impede its adoption even if advantageous safety guarantees are provided. For this reason,
cryptography is often implemented using low-level programming languages such as assembly,
qhasm, and C, with some implementations taking advantage of specific CPU extensions to
improve performance. The produced machine code should also be provably functionally
correct and protected against side-channel attacks to ensure that there are no unexpected
behaviors, such as an overflow occurring under certain conditions or variances in the execution
time that could cause a secret data leakage.

In this thesis, we first explore how formally verified C compilers impact the efficiency of
cryptographic libraries. This first study concludes that a low-level programming language and
corresponding formally verified compiler are required to achieve the desired properties. In this
context, we present, from a practitioner point-of-view, the Jasmin programming language,
which is part of the Jasmin framework. The Jasmin programming language provides a high
level of control over the resulting assembly code, which is required to produce high-speed
implementations comparable with the fastest hand-written assembly implementations. The
thesis concludes with an example base validation of the Jasmin framework. We cover several
cryptographic primitives, showing that their Jasmin implementations match the performance
of the best unverified code. We also discuss how these implementations were formally verified.
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Resumo

A implementação de primitivas criptográficas é uma tarefa que requer conhecimento e profi-
ciência em diversas áreas dado que estas devem cumprir diversos requisitos relacionados
com eficiência e segurança. Sobre a eficiência, e considerando que o código criptográfico é
utilizado em grande escala, um decréscimo de performance na ordem dos 10% de uma dada
implementação, por exemplo, pode ser um factor que impossibilite a adopção desta por parte
dos seus utilizadores, mesmo no caso em que garantias adicionais de segurança sejam provi-
denciadas. Em consequência desta necessidade por elevado desempenho, a implementação de
código criptográfico é realizada com recurso a linguagens de programação com baixo nível de
abstracção, tais como assembly, qhasm ou C, recorrendo também a extensões específicas de
certas arquitecturas de computador. A par dos apertados requisitos de eficiência encontram-
se os requisitos de segurança, no sentido que, idealmente, todo o código máquina que origina
de implementações criptográficas deveria ser formalmente verificado por forma a garantir,
por exemplo, a correcção e a ausência de variabilidades no tempo de execução dependentes
de parâmetros secretos.

Neste contexto, o da conciliação de implementações de elevado desempenho com metodolo-
gias de verificação formal, foi realizada esta tese. Inicia por apresentar uma visão global
sobre as metodologias, ferramentas e necessidades inerentes ao desenvolvimento de código
criptográfico e de que forma uma possível solução baseada em compiladores de código C,
formalmente verificados, impacta a performance quando comparada com as melhores alter-
nativas não verificadas. Consequentemente, justifica-se a necessidade de uma abordagem
alternativa que permita replicar, ou suplantar, os melhores resultados de eficiência já obtidos
em contextos não formais. Apresenta-se então a linguagem de programação Jasmin, sendo
esta apresentação particularmente orientada para programadores versados em linguagens de
programação com diminuta abstração. As implementações criptográficas desenvolvidas no
contexto desta tese são de seguida discutidas estando incluídas as primitivas ChaCha20,
Poly1305 e Curve25519. A framework Jasmin inclui uma infraestrutura que permite a
verificação formal das técnicas desenvolvidas, sendo esta baseada em EasyCrypt. As provas
de correcção dos algoritmos apresentados são também abordadas.
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Chapter 1

Introduction

Cryptography is a multi-disciplinary area with the ultimate goal of developing primitives,
schemes, and protocols to build secure systems. Mathematics, computer science, software,
and electrical engineering are vital disciplines involved in designing, validating, and imple-
menting cryptographic constructions. To be accepted by the community and its potential
users, and eventually get standardized, two essential requirements must be satisfied: security
and efficiency. Formal methods can play an important role in obtaining this assurance.
However, one particular issue remains to be solved: a sound connection between formal
verification methods and the fastest cryptographic implementations (usually written using
low-level programming languages) that can be used to relate high-level specifications with
the actual machine code that gets executed. Ideally, this connection between formal methods
and machine code should not be limited by the complexity of the implementations: it should
be possible to prove the correctness of such implementations and also to prove the existence
of any specific properties that are relevant in cryptography domain, such as the code being
constant-time under some model of execution. As such, this thesis aims to improve the state-
of-the-art in this area: the development and formal verification of high-speed cryptographic
implementations.

The introduction follows with some discussions related to high-speed, high-assurance cryp-
tographic implementations, which expose the requirements that justify the need for a new
approach. Section 1.1 focuses on the standardization of cryptographic components. One of
the criteria used to guide the standardization process, besides security claims, corresponding
proofs, and the absence of significant attacks against a particular cryptographic construction,
is the ability of a given component to be implemented and executed efficiently in a wide range
of architectures. From a candidate’s point of view, having formal guarantees in the submitted
code can increase the candidate’s chances of being selected, given that low-level code is not
easily auditable and it may contain subtle defects. Security proofs should also be strongly
tied with the evaluated machine code. An interested reader might start by consulting the

1



2 CHAPTER 1. INTRODUCTION

extended material on the subject, on Appendixes A.1 and A.2, which presents a more detailed
overview of two standardization processes, DES and AES, as additional motivation.

The deployment of non-optimized code can have a non-negligible economical impact. Ad-
ditionally, it is also not trivial to systematically measure the performance of cryptographic
software. Because of this, it is important that the development of new methodologies and
tools that bridge the gap between high-speed and high-assurance should allow the practitioner
to evaluate the performance of both verified and non-verified implementations. Section 1.2
presents some considerations on this matter.

Section 1.3 contains an overview of the current approaches used to implement high-speed
cryptographic software. It then discusses how alternative approaches, some recently pub-
lished, conciliate formal methods with performance requirements.

The previous section establishes context for our contributions, discussed in section 1.4, along
with the list of publications directly related to this document and how they relate to the
thesis’ structure.

1.1 Cryptography Standards

In 1973, the National Bureau of Standards (NBS), known as the National Institute of
Standards and Technology (NIST) since 1988, published the first solicitation of proposals for
an algorithm that could be standardized and used to protect computer data in transmission
or storage, mainly motivated by the increasing amount of digital communication [oS73].
This solicitation initiated the process that led to the Data Encryption Standard (DES), an
encryption algorithm used until 1999 in its original form [oST99a, pg.4 item 12]. One of the
main problems of DES was the secret-key length, which had only 56 bits and, because of
this, at the end of its life-cycle DES could be easily brute-forced [Cur05]. Even at the time
of the standard’s publication, in 1977, some cryptographers presented convincing arguments
to justify why 56-bit secret keys did not provide enough security [DH77]. Initially, only
hardware deployments of DES were allowed, and, in 1993, software implementations were
permitted [oST93, pg. 3, item 12]. Many implementation concerns that exist today did not
exist back then, and the most valuable lesson that can be learned from this event is that
the development of new cryptographic standards should be as open to the community as
possible. Appendix A.1 presents a more detailed overview of these events.

In 1997, NIST announced the beginning of the Advanced Encryption Standard (AES) stan-
dardization process to replace the 20-year old DES [oST97a]. In the submissions call,
the evaluation criteria covered the following topics: Security, Cost, and Algorithm and
Implementations Characteristics. The Cost section enumerated some properties that would
be evaluated, such as speed (for instance, the number of CPU cycles taken to perform a
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given operation or throughput), memory requirements, and implementation complexity and
flexibility. The AES standardization process was organized into two rounds, each focusing
on some particular properties of the submissions. In the first round’s documentation, it is
possible to observe some inconsistencies in the evaluation process. Appendix A.2 describes
these in more detail. Measuring and comparing software is an intricate task, sometimes seen
as reasonably simple, whose minor or overlooked details often affect results. The comparison
complexity significantly increases when evaluation must be done on multiple platforms and
using different environments. This observation is still valid. The constant-time policy, where
cryptographic code should not branch or, more generically, perform any variable-timing
operation (including memory accesses), that depend on secret data was also not correctly
addressed [Ber05a, TOS10]. From the five finalists, Rijndael (selected for standardization)
and Serpent were the top two candidates in a survey conducted by NIST during the last AES
conference. NIST selected only one algorithm. Rijndael, as it was evaluated, was consistently
faster than Serpent.

In early 2007, NIST announced the development of new algorithms to be included in the
Secure Hash Standard [oST07]. This standardization process, referred to as SHA-3 Project on
NIST’s website, was a response to the published attacks on SHA-1. The “Proposed Draft Sub-
mission Requirements” section from this announcement was very similar to the one previously
used for AES, but it included an additional mention to security proofs: “(...) any security
argument that is applicable, such as a security reduction proof;”. There is also a call for an
“ANSI C (...) reference implementation and an optimized implementation”. In the equivalent
announcement for AES, it is stated that the ANSI C submitted implementation will “be used
to compare software performance and memory requirements with respect to other algorithms”.
This update approximates the development practices of the cryptography community with
the standardization process: security proofs are used to reason about specific properties
of the proposed designs, and multiple implementations for the same primitive, targeting
multiple CPU architectures and architectures extensions, are also commonly used in practice
to use as most as possible the available resources. The number of candidates also grew: AES
had 15 submissions considered valid (i.e., submissions that met all requirements) and SHA-3
had 51 submissions in the same condition. Although these standardization processes relate to
different types of cryptographic operations, it can be assumed that the interest and motivation
from the community grew as well between these ten years that separate the beginning of AES
and SHA-3. The SHA-3 standardization process had three rounds in total. The Round 3
final report contains an extensive comparison between all five finalists: this comparison uses
data from the ECRYPT Benchmarking of Cryptographic System (eBACS) [BL], to study
the performance of the candidates on multiple CPU architectures and for different message
lengths [CPB+12]. In 2012, the winner of SHA-3 competition was announced: Keccak.
Although the winner did not deliver the best performance in software, it did excel on its
hardware implementation capabilities. One aspect that also favored this decision was the
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design’s flexibility and fundamentally different design principles compared to SHA-2. From
this event, it is possible to observe that performance is not the only critical factor. In an
ideal scenario, security proofs and specifications should be soundly related to the machine
code that is used in real-world deployments.

1.2 Efficiency and Cost

Efficiency is an essential property of any cryptographic implementation, and it is primarily
defined by design choices, for instance, the number of rounds of a cipher. Secondly, crypto-
graphic implementations can perform poorly when inappropriate languages or compilers are
used, and, even for similar evaluation environments, significant performance differences can be
observed. Considering that cryptography is practically omnipresent in modern systems and
that most applications use a limited set of primitives and protocols, it makes sense to optimize
the cryptographic implementations that are commonly used. It also seems reasonable to
assume that even a relatively modest performance improvement in a CPU-intensive cryp-
tographic implementation deployed worldwide over countless servers can directly translate
into the improvement of the response times of such servers and contribute to reducing server
costs.

In a Cloudflare blog post from 2017 [Kra17], Krasnov presented a study that detailed how
much CPU time is spent by cryptography-related computations in one of Cloudflare’s servers.
The profiled server was located in a data center in Germany, where, and at that time, 73% of
the requests were performed using TLS1. The used cryptographic library was BoringSSL, “a
fork of OpenSSL that is designed to meet Google’s needs”, as it can be read on the project’s
GitHub page [bor21]. It is stated in this study that only 1.8% of CPU time was spent doing
cryptographic operations. More specifically, Curve25519 and ChaCha20-Poly1305 consumed
0.06% and 0.03%, respectively, of the total CPU time. For context, 30.5% of the TLS requests
performed the key exchange using Curve25519.

In a study published in 2020 [MSL+20], it is estimated that, in 2018, data centers represented
1% of the global energy consumption, which corresponds to roughly 205 TWh. If we assume
an average cost of $0.10 per KWh, for simplicity, then data centers’ energy consumption in
2018 corresponded to $20.5 billions. Depending on the overall efficiency of the data centers
facilities, for instance, the efficiency of the cooling systems, servers can represent 50% to 70%
of the total energy consumption of the data center [KBK12, MSL+20]. If we also assume that
40% of a server’s energy consumption is directly related to the CPU, then 20% to 28% of the
$20.5 billion is spent by CPUs. If one-third of these servers are performing TLS connections
with a workload similar to the profiled Cloudflare’s server, then one can estimate that roughly
$25 million were spent during 2018 doing cryptographic operations in data centers. To

1According to Google Transparency Report, 95% of the traffic was encrypted in early of 2022.
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conclude, the discussion from this paragraph should be taken lightly, as it contains a high
number of assumptions, and several factors are ignored. Nonetheless, it serves its purpose
by showing that, even with what can be considered conservative assumptions, cryptographic
implementations can be directly associated with non-negligible costs (depending on the view).
On the other hand, estimating the negative economic impact caused by a security breach
related to some implementation defect is even more challenging. However, it is easy to
imagine several scenarios where this cost is orders of magnitude greater than the cost of
running cryptographic software. For this reason, cryptographic implementations should be
as high-assurance as possible, and performance should not be improved at the expense of
security.

1.3 Cryptography Implementations

As it was mentioned during the SHA-3 discussion, from section 1.1, there can be different
implementations of same cryptographic primitive for performance reasons. After prototyping,
which can be done using tools/programming languages with a higher level of abstraction, such
as Sage or Python, each primitive is usually implemented using the C programming language.
This first implementation is often called reference implementation and is frequently written
as close as possible to the mathematical description of the algorithm. Readability is usually
the primary concern when developing reference implementations. The goal is to provide an
accurate description of the algorithm that can simultaneously be compiled for different CPU
architectures while being reasonably efficient and used as a basis for developing optimized
versions of the algorithm.

The next step is to produce optimized versions of the primitive. Such optimizations can
be generic, meaning that the developed code still compiles in a wide range of architectures,
or they can be architecture or micro-architecture dependent. In the latter case, where the
code is non-portable, and for this discussion, three different approaches can be taken: 1)
the implementation is still written in C, but it uses some low-level machine instructions that
are only available in some architectures, and, as such, the produced code is non-portable.
Such low-level instructions can be accessed using intrinsics, which, essentially, are functions
that the compiler handles differently and usually correspond to specific machine instructions;
2) the usage of C compilers is avoided by writing the implementation directly in low level-
languages, such as assembly or qhasm; 3) the implementation is written using a mixture of
C and assembly, which can be inlined in the C code or be independently defined and be
compatible with the target calling convention. In these contexts, it is pretty common to find
optimized implementations that use instructions that simultaneously process multiple pieces
of data. These are often referred to as vectorized implementations.

To provide an initial intuition on vectorization: some CPU extensions specify an additional
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set of registers and corresponding instructions that allows the processing of multiple values at
once, often referred to as SIMD (Single Instruction, Multiple Data). For example, with Intel
AVX2 (Advanced Vector Extensions, version 2), it is possible to use 256-bit registers that can
be used to perform, for instance, some arithmetic operations on four 64-bit or eight 32-bit
values using only one instruction. Many other sub-sizes and types of instructions (bitwise
or for reorganizing the internal state of the registers) are available. When compared to non
vectorized code, that in a 64-bit CPU can use up to 64 bits of the available set of native
registers, the performance can be improved up to 4 times, depending on the algorithm’s
complexity and many other aspects.

It is generally true that optimized implementations are more prone to contain bugs than
the corresponding reference implementation due to increased complexity. It is also common
practice to use test vectors to check if an implementation performs a given computation as
expected. Intuitively, a test vector can be seen as a map between inputs and corresponding
outputs: the implementation is given each of these inputs to check if it produces the expected
outputs. For primitives that require randomness, the standard approach for testing is to
replace the function that produces the real randomness with one that produces a predefined
stream of data, for instance, by encrypting zeros with a fixed key and nonce. Although
it may seem intuitive to consider that using a test-based approach to reason about an
implementation’s correctness is more than sufficient in most cases, that is not usually true.
One can always argue that if test vectors are well-chosen, they should cover all different
scenarios and cause all types of behaviors to occur. That is, however, very difficult (if not
impossible) to achieve, for instance, in primitives that require computations on big-numbers.
At the core of the trust base of the described development model are: the developer, who
writes and optimizes the code; the tester, which designs the test vectors; and the compiler,
if the implementation needs to be compiled.

In addition to functional correctness and memory safety, to ensure that the program behaves
as expected and it does not read or write from invalid memory space, side-channel attacks
should also be considered during the development of cryptographic implementations, and
corresponding countermeasures should be implemented. For instance, the execution time of
cryptographic implementations should not depend on secret data. Otherwise, an attacker
can exploit this behavior to acquire information about it. Implementations whose execution
time does not depend on secret data are often called constant-time implementations. An
attack that takes advantage of timing variations is a timing attack. If we assume that the
execution time of the arithmetic instructions of a given architecture does not depend on the
corresponding input data, for instance, a given multiplication instruction always takes the
same execution time even if both inputs are zero, then it should suffice for the control-flow
and memory addresses to be independent of secret data. Nonetheless, any methodology and
tools produced for constant-time verification should be designed to allow for more general
leakage models and be flexible enough to capture different architectures.
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Overall, formal methods can be employed to tackle these problems: the ideal scenario would
be to have formal guarantees on the machine code corresponding to a given cryptographic
implementation that performs as efficiently as possible. The following subsections describe
some tools, methodologies, and approaches that allow implementing high-speed and/or high-
assurance cryptographic software. This establishes a basis for comparison with our approach,
presented in section 1.4.

qhasm

qhasm is a set of tools that allow the writing of high-speed software [Ber07]. The latest version
is from 2007. qhasm uses machine-description files to define the programming language for a
given target architecture. This means that it can be easily extended for different needs. For
example, the machine-description files define the available types, and, if applicable, to which
registers do they map, and the supported set of instructions. For instance, in AMD64, the
qhasm instruction “r += s” directly translates to an add assembly instruction where r is a
register and s may be a register or a memory operand. In the available version of the tool, the
configuration file needs to have two entries specifying “r += s” for the case where s is a register
and for the case where s is a stack variable. If a developer writes a program that, in a given
segment, contains more live register variables than the registers that are available, then the
program does not compile. Nevertheless, control-flow structures are typically implemented
using explicit goto-like instructions to a given label. Control-flow structures are implemented
by the qhasm developers using well-defined patterns, which allows for automatic translation
to other low-level programming languages [Oli12, ABB+17a].

The intuition of qhasm is that each statement (one line) corresponds to a predefined set of
assembly instructions (usually one). The compiler inserts no unexpected instructions during
the compilation of a qhasm program to assembly. The main advantage of using qhasm,
compared to directly programming in assembly, is that the developer does not need to perform
the register allocation and manage the stack variables manually. Also an advantage, is the
usage of a syntax closer to the C programming language, for instance. qhasm has been
used to implement numerous speed-record-breaking cryptographic implementations [Ber06a,
BS08, CS09, NNS10, BCC+12, BCS13, Cho15].

In a work published in 2014 [CHL+14], a new approach to achieve formally verification of
qhasm written programs was presented. The verification was performed at the source level
and, as the paper clearly mentions it, “The obvious disadvantage is that we rely on the cor-
rectness of qhasm translation” (to assembly). Given an annotated qhasm file, a Boolector (an
SMT-solver [BB09]) specification is produced, and most properties are automatically checked.
For the goals that Boolector fails to check, the Coq proof assistant [BC13] was used. The
methodology was validated using two different implementations (targeting different micro-
architectures that used different internal representations/radix) of the Curve25519 [Ber06b].
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Vale

In 2017, Vale, a tool/programming language that enables the automatic verification of high-
speed cryptographic assembly code, was presented [BHK+17]. Vale tool transforms a given
annotated assembly implementation into an abstract syntax tree (AST) and generates the
corresponding proof goals to be verified by an SMT solver. One of the main motivations of
this work was to provide a viable alternative (in the sense that no computational overhead
is introduced) to the development methodologies that are used in several cryptographic
implementations of OpenSSL, which are described by the authors as not to be easily analyzed.
As a quick overview, instead of writing the assembly in its final form, OpenSSL developers
leverage the text processing capabilities of Perl, together with preprocessing macros, to write
slightly more generic assembly code. For instance, instead of using registers by their names
(rax,r10,r11,...), a renaming mechanism allows for intuitive variable names. This development
approach can be seen as an extended macro mechanism. There is no automatic register/stack
allocation in OpenSSL’s approach as it is done in qhasm.

Vale is built upon Dafny[Lei10], an automatic program verifier, and it was validated with
optimized and architecture-dependent (ARM and AMD64) implementations of SHA-256,
Poly1305, and AES-CBC. The conclusions from the presented evaluation are clear: Vale
produces code whose performance matches OpenSSL’s best implementations (hand-written
assembly, also commonly referred to as Perlasm) and, in some specific contexts, surpasses the
throughput of some of those implementations, for instance, a complete Vale implementation
of Poly1305 (assembly) versus a mixture of C and assembly as it is reportedly implemented
in OpenSSL. One of the main advantages of Vale is that functional correctness and memory
safety are checked at, essentially, the machine level, which means that it is not necessary to
rely on non-formally verified compilers to achieve competitive levels of performance.

In 2019, Vale was extended via an embedding of AMD64 assembly in F* [FGH+19]. F*
is a functional programming language with native support for semi-automatic verification
that relies on SMT solvers. By using this approach, the authors verified, for the first
time, an optimized implementation of AES-GCM. One of the advantages of this solution
is that it enables the practitioner to write highly-efficient code for the performance-critical
cryptographic routines, which can be easily integrated with HACL*.

HACL* and HACLxN

HACL*, a verified cryptographic library used on Mozilla’s NSS project, was presented in
2017 [ZBPB17]. The distributed code is functionally correct, memory safe, and includes
mitigations to protect against timing attacks. The solution relies on several tools and
different techniques. Specifications are written using a higher-order functional subset of
F*. Optimized code is implemented using Low*, a low-level subset of F*. The optimized
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implementations (Low*) are verified to match the corresponding high-level F* specifications.
The verification process is semi-automatic and leverages the capabilities of the Z3 SMT
solver [MB08]. Low* implementations are compiled to C using the KreMLin tool [PZR+17],
and C implementations can be compiled to machine code using CompCert [Ler09], a formally
verified compiler. Alternatively, Clang or GCC can be used if performance is a concern.
HACL* provides implementations whose performance is competitive with alternative, non-
formally-verified, C implementations. The approach was validated with ChaCha20 [B+08],
Poly1305 [Ber05b], Curve25519 [Ber06b], Ed25519 [BDL+12a], and some other examples.
This work also provided the first verified vectorized implementation. A comprehensive
performance evaluation of the resulting source code is presented, and includes different
architectures and compilers. There are ongoing efforts to reduce the number of components
under the trusted computing base.

In 2020, HACL* was extended to support systematic C extraction of vectorized code for
different architectures and multiple CPU extensions [PBP+20]. The approach was validated
with ChaCha20, Poly1305, SHA-256, and Blake2, the second version of a final candidate
from the SHA-3 standardization process. The results of this extension to HACL* cannot be
compiled with CompCert, due to the lack of support for vectorization instructions on this
formally verified compiler.

Fiat Cryptography

In 2019, the project Fiat Cryptography was presented [EPG+19b]. It defines a new approach
to building a formally-verified C library of arithmetic operations commonly used in the
cryptography domain, mainly focused on elliptic curve computations. The approach is
instantiated with a Coq-verified compiler that takes high-level specifications and outputs the
corresponding optimized C implementations. The results of this project have been integrated
into BoringSSL, a publicly available cryptography library from Google. When compiled with
a generic C compiler, the Fiat Cryptography implementations’ performance is comparable
with hand-written assembly and faster than equivalent computations implemented using
GMP, a generic multiple precision arithmetic library. Hence, the trusted computing base
is only composed of the C compiler and a simple pretty printer. A clear advantage of this
approach is the ability to generate optimized C implementations for different prime fields
very simply. Additionally, it is mentioned that there is an interest in further reducing the
trust base by removing the C compiler from it.
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1.4 Contributions, Sources, and Structure

This section contextualizes and describes the contributions of this thesis, chapter by chapter,
stating the related publications, where applicable. Almost all writing in this thesis is entirely
novel, except for chapter 3, which includes material from the corresponding publication.

Chapter 2

The evaluation of cryptographic software’s performance is critical for several reasons. Cryp-
tographic primitives are used at scale, and introducing non-negligible performance overheads
can be unacceptable. Without exception, all the previously discussed contexts and works,
from the establishment of cryptography standards to the different approaches to implement-
ing high-assurance cryptographic routines, demonstrate a big concern with the resulting
software’s performance. Although evaluation methodologies seem to be an already solved
problem, that is sometimes not the case, considering the number of debates that frequently
arise around this topic. For that reason, chapter 2 presents the methodologies used to validate
our approach.

Chapter 3

Generic C compilers are commonly found in the trust base of many solutions which rely on
them to produce code whose performance is sometimes comparable to hand-written assem-
bly. As was previously discussed, one way of improving the performance of cryptographic
implementations is to take advantage of specific CPU extensions that allow for vectorization.
CompCert, a formally verified C compiler, does not include support for those extensions, and
as such, it is not possible to take advantage of the correctness proof of this compiler, which
provably preserves the semantics of the input programs until the last step of the compilation,
assembly, in speed-critical contexts.

In this context, in 2017, we concluded the validation of a methodology that allowed to
add support for vectorized instructions on formally verified C compilers. Our approach was
instantiated with CompCert, which, at the beginning of this research project, was in version
2.2. The available CompCert did not include support for AMD64, so we extended and
evaluated the x86 (32-bit) backend. This work was later published in 2020 [ABB+20b]. The
conclusions from this study point to the need for a different approach to ultimately bridge
the gap between high-speed and high-assurance implementations. The following publication
resulted from this work.
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[ABB+20b] Certified Compilation for Cryptography: Extended x86 Instructions
and Constant-Time Verification

(Indocrypt 2020)
This paper presents an extension to the CompCert compiler to support instruction
extensions in the x86 architecture. This work also describes a type system for constant-
time verification. The extended CompCert was evaluated within the SUPERCOP
toolkit.

Chapters 4 and 5

Several requirements related to cryptography development have been presented until now.
A set of methodologies and tools to facilitate the deployment of high-quality cryptographic
code must: allow replicating the performance (and overall behavior) of non-formally verified
alternatives such that the final user does not incur in extra-costs by using formally-verified
implementations; it must allow checking the correctness, memory safety, and absence of
leakages under different models of execution of any implementation; these properties should
be propagated to the produced assembly or machine code; and, to conclude, the level of
control that is required to achieve the best performance should not implicate extra complexity
in the development tasks. For instance, it is not sustainable for a developer to implement
all components that a vast cryptography routine requires in pure assembly (and this is why,
very frequently, and for complex routines, a mixed approach that uses C and assembly is
used).

Jasmin was developed to address these requirements. Jasmin is a framework that includes
a programming language, a Coq-verified compiler that compiles Jasmin source code to
assembly. The compiler preserves the semantics of the input programs and the constant-time
property. The compiler currently supports the AMD64 architecture, AVX/AVX2, and some
additional extensions such as ADX/BMI2. ARM will be the next supported architecture,
and it is a work in progress.

For the source-level formal verification tasks, we rely on an embedding of Jasmin to Easy-
Crypt (the translation from Jasmin programs to EasyCrypt modules is essentially a one-
to-one correspondence and is currently in the trusted computing base) [BDG+13]. Three
extraction models are supported: functional verification, verification of the constant-time
property, and memory safety verification. The idea behind the functional verification is the
following, a given specification of a cryptographic primitive (that can be written using a
functional-programming style, for instance) is proven equivalent to the extracted EasyCrypt
representation of a given Jasmin program. The compiler also includes an automatic safety-
checker and a constant-time type-checking system.

As previously mentioned, a cryptographic primitive can have several different implementa-
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tions, some vectorized. All implementations correspond to the same specification. Consider
the following scenario where it exists: an EasyCrypt specification, a reference implemen-
tation, and a vectorized implementation. Depending on the primitive characteristics, the
specification can be proven equivalent to the reference implementation, and the reference
implementation can be proven equivalent to the vectorized implementation. Alternatively, it
might be easy to prove the specification equivalent to each implementation if, for instance,
the vectorization techniques used introduce significant differences to the reference implemen-
tation. Also an advantage of following this approach is that security proofs developed in
EasyCrypt, can be related with practical implementations.

Jasmin is a low-level programming language in the sense that an experienced developer knows
exactly the assembly instructions that the compiler generates during compilation. In Jasmin,
it is the developer’s responsibility to decide which variables are placed in registers or memory.
This approach is similar to the one taken by qhasm. On the other hand, Jasmin includes
several high-level features such as function calls, control flow statements, and arrays.

Chapter 4 presents a comprehensive review of the language, and its features, from a practical
point of view. There is no available documentation for this programming language, and
this chapter aims to cover precisely that. The corresponding publication, where the Jasmin
framework was presented, is detailed next [ABB+17a]. The first approach for the formal
verification tasks of the compiler was updated, and the previous one is no longer used and
was replaced by the EasyCrypt extraction.

[ABB+17a] Jasmin: High-Assurance and High-Speed Cryptography

(CCS 2017)
This paper describes the Jasmin framework in its early stages. This work briefly
presents the Jasmin programming language, and it provides some insight into how
the compiler works. It discusses the proofs methodologies for the compiler and how
constant-time preservation is achieved. The safety and constant-time analysis were
done through an embedding of the Jasmin language into Dafny[Lei10]. The motivating
example was Curve25519, and the performance evaluation of the implementations was
done using SUPERCOP. Many other cryptographic implementations were considered to
validate the proposed approach and corresponding tool. Most of these were obtained by
automatically translating existing qhasm code to Jasmin [Oli12], to create a significant
code base quickly.

The first version of Jasmin supported the AMD64 architecture, but it did not include support
for vectorization instructions. The second Jasmin publication explains how the tools were
extended, and how the verification infrastructure was improved [ABB+20a]. It included
state-of-the-art implementations with competitive (for some input lengths, slightly better)
than all available implementations. They were formally verified using the new approach,
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which relied on EasyCrypt. The discussion on Chapter 4 covers vectorization.

[ABB+20a] The Last Mile: High-Assurance and High-speed Cryptographic Im-
plementations

(S&P 2020)
This paper describes an improvement to the Jasmin framework that allows the devel-
opment of cryptographic implementations that perform as efficiently as hand-written
assembly code. To achieve this, the language and the compiler were extended to support
new types and instructions to allow for vectorized implementations. The framework
was also extended with an embedding into the EasyCrypt framework to allow for
functional correctness and constant-time verification. The approach was validated by
implementing and verifying ChaCha20 and Poly1305, two cryptographic algorithms
used in one of the two ciphersuites recommended in TLS 1.3.

Chapter 5 presents, in detail, the design and optimization process of several different im-
plementations of ChaCha20 and Poly1305. The work described in this chapter defined the
shape of the Jasmin programming language and its compiler by clearly setting the goals: only
the best-performing code should be considered a viable option to demonstrate the quality of
our approach. In addition to the mentioned implementations, this chapter describes a novel
implementation of the Curve25519, which has outstanding performance. All implementations
are extensively evaluated and compared with alternative implementations, formally-verified
or not, with many of them being provided by the previously discussed projects such as
HACL*, Vale, or Fiat Cryptography. Regarding the formal verification, in the context of
ChaCha20 and Poly1305, an overview of the proof methodology is presented. For Curve25519,
the current status of the proof (which is a work in progress) is comprehensively detailed.

An additional paper was published in this context: it demonstrates how the Jasmin frame-
work can be used to relate machine-checked security proofs with optimized implementations.
This work is not included for extended discussion in this document.

[ABB+19] Machine-Checked Proofs for Cryptographic Standards: Indifferentia-
bility of Sponge and Secure High-Assurance Implementations of SHA-3

(CCS 2019)
This paper presents a high-assurance and high-speed implementation of the SHA-3 hash
function. Two Jasmin high-speed implementations were developed, one non-vectorized
and another that takes advantage of vectorization instructions. These were formally
verified for functional correctness, timing attack resistance, and provable security using
the EasyCrypt proof assistant.
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Chapter 6

Chapter 6 is dedicated to providing an overview, in hindsight, of the developed approaches
and how they can be extended. It overviews the impact of Jasmin in the community and
sets a series of challenges for future work.



Chapter 2

Evaluation of Cryptographic Software

Developing new methodologies and tools to produce high-speed and high-assurance cryptog-
raphy software must be accompanied by reliable evaluation methodologies. The number of
CPU cycles required to perform a computation on a given CPU architecture, or sometimes
micro-architecture, is frequently used to compare alternative approaches. Depending on
the target environment, there could be other concerns besides speed, such as stack-frame
space or binary size. The latter considerations are especially valid in heavily restricted
contexts, such as IoT applications where the devices have limited resources. Currently, we
are mainly interested in contexts where memory is not a practical limitation and, as such,
all the discussions throughout this chapter are CPU-time oriented.

We use the SUPERCOP (System for Unified Performance Evaluation Related to Crypto-
graphic Operations and Primitives) toolkit to conduct our analysis. SUPERCOP can be
downloaded on the project’s web page1. The toolkit is actively maintained and includes
thousands of cryptographic implementations and a building system that produces a crypto-
graphic library containing the implementations that perform the best in a given environment.
During the build, which can take several days to a couple of weeks depending on the target’s
hardware, implementations are tested and measured. Information about each step of the
building, including testing and measurement results, is kept in a log file. This log, which
contains some other environment information such as the CPU model and corresponding
frequency being used, can be submitted through the eBATS mailing list for the results to be
later published on the SUPERCOP website, making the collected data available for public
consultation.

Section 2.1 discusses the SUPERCOP toolkit in more detail. Section 2.2 presents an evalu-
ation methodology for cryptographic implementations.

1https://bench.cr.yp.to/supercop.html
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2.1 SUPERCOP

SUPERCOP allows building a cryptographic library targeted for a given environment. It
is also commonly used to measure the performance of cryptographic implementations. This
section starts by discussing how implementations are organized within SUPERCOP. The
discussion follows with an overview of the setup process and how the building system works
to establish ground knowledge for section 2.2.

2.1.1 Operations, Primitives and Implementations

SUPERCOP’s implementations are organized in three hierarchical levels: operations, primi-
tives, and implementations.

At the top-level directory of the toolkit, a file named OPERATIONS contains a list of all
cryptographic operations supported by the toolkit. Each operation is essentially an abstract
interface for a cryptographic component. For instance, crypto_hash and crypto_stream are
two operations that specify the API for hash functions and stream ciphers, respectively.
Each operation has a corresponding directory at the top-level directory of the toolkit. These
contain primitives, which are instantiations of their parent operation. sha256 and chacha20
(primitives) implement crypto_hash and crypto_stream (operations). Each primitive can
have several implementations. Some of these implementations are platform-independent
(frequently named ref and written in C), while others target specific architectures or CPU
extensions. Platform-dependent implementations can: 1) be written in C and use intrinsics
to access platform-specific data types and instructions; or 2) written in assembly, qhasm, or
similar.

Table 2.1 presents the API for 7 out of the 19 operations included in SUPERCOP version
20210604. SUPERCOP builds the operations’ primitives in the same order as they appear
in OPERATIONS. For example, crypto_hashblocks primitives are sometimes used by the corre-
sponding crypto_hash primitive (sha256), and, as such, the former is processed first. Table
2.1 also includes the set of MACROS that each implementation must define in a file named
api.h. The api.h file must be defined for SUPERCOP to consider a given implementation in
the evaluation process. For brevity, “unsigned char” is written as “u8”, “const unsigned char”
as “cu8”, and “unsigned long long” as “ull”. The following paragraphs provide a small overview
of each operation from Table 2.1.

crypto_verify This operation specifies an interface to verify (in constant-time) if two
given arrays x and y are equal. The length of the arrays is statically known, and the BYTES

macro specifies it. Supporting different lengths requires different primitives. SUPERCOP
has several primitives for this operation, including the following three: 32; 16; and 8. In this
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Operation API MACROS
crypto_verify int crypto_verify(cu8 *x, cu8 *y); BYTES

crypto_core int crypto_core(u8 *out, cu8 *in, cu8 *k, cu8 *c);

OUTPUTBYTES

INPUTBYTES

KEYBYTES

CONSTBYTES

crypto_hashblocks int crypto_hashblocks(u8 *statebytes, cu8 *in, ull inlen);
STATEBYTES

BLOCKBYTES

crypto_hash int crypto_hash(u8 *out, cu8 *in, ull inlen); BYTES

crypto_stream
int crypto_stream(u8 *c, ull clen, cu8 *n, cu8 *k);
int crypto_stream_xor(u8 *c, cu8 *in, ull inlen, cu8 *n, cu8 *k);

NONCEBYTES

KEYBYTES

crypto_onetimeauth
int crypto_onetimeauth(u8 *out, cu8 *in, ull inlen, cu8 *k);
int crypto_onetimeauth_verify(cu8 *h, cu8 *in, ull inlen, cu8 *k);

BYTES

KEYBYTES

crypto_scalarmult
int crypto_scalarmult(u8 *q, cu8 *n, cu8 *p);
int crypto_scalarmult_base(u8 *q, cu8 *n);

BYTES

SCALARBYTES

Table 2.1: SUPERCOP API overview.

case, the name of the primitive refers to the size in bytes of both arrays. An implementation
of this operation is expected to return 0 if inputs are equal or -1 otherwise.

crypto_core This is an interface for core cryptographic components. It expects four
arguments, out for the output, in for the input, k for a key, and c for additional inputs. All
arguments have statically known lengths, defined by the corresponding macros. Example
primitives are aes256encrypt and salsa20: the implementations of aes256encrypt do not use c
and, as such, CONSTBYTES is defined as 0; in salsa20, c is used to provide the nonce. Addi-
tionally, keccakf160064bits is a primitive of this operation, where KEYBYTES and CONSTBYTES

are defined as 0.

crypto_hashblocks This operation isolates the hash block computation from the com-
plete computation. Given a state pointer statebyte, in, and corresponding length inlen,
implementations under this operation are expected to perform an update to the state. sha256
is an example of a crypto_hashblocks primitive, and it defines STATEBYTES and BLOCKBYTES

as 32 and 64, respectively.

crypto_hash This operation provides an interface for hash functions. The contents from
the input pointer in, with length inlen, are hashed, and the result is written in out, a memory
region with BYTES bytes. This API only supports statically known lengths for the hash out-
put. For instance, in recent versions of SUPERCOP, the primitive shake256, an extendable-
output function (XOF), is included. In this case, the corresponding implementations define
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BYTES as 136 even though these functions can be called for different output lengths.

crypto_stream This operation defines two functions. The first, crypto_stream, receives
a pointer to an array c with clen bytes, a nonce n, and a secret key k. NONCEBYTES and
KEYBYTES define the sizes of n and k. The produced keystream, with length clen, is written
in c. The second, crypto_stream_xor, allows encrypting an input in with length inlen by
performing a xor with the produced keystream, parameterized by n and k.

crypto_onetimeauth This operation defines two functions related to one-time usage
authentication tags. The first, crypto_onetimeauth, allows computing and writing an au-
thentication tag in out, given an input in and corresponding length inlen, and a secret-key
k. The second, crypto_onetimeauth_verify allows verifying if a given tag h corresponds to
the expected value for the tag. crypto_onetimeauth_verify can be implemented by calling
crypto_onetimeauth to compute a tag h’, and then crypto_verify can be used to check if h is
equal to h’. BYTES and KEYBYTES define the tag and key length in bytes, respectively.

crypto_scalarmult This operation defines two functions. crypto_scalarmult performs the
multiplication between the scalar n and a point p, and the result is written in q, whose size
is defined by BYTES. For instance, in the case of curve25519, a primitive of this operation,
crypto_scalarmult_base performs the multiplication between a given secret key n (scalar) and
the x-coordinate of the base point, in this case 9. The result is written in q. Even though
crypto_scalarmult_base can be defined as a call to crypto_scalarmult with p set to 9, the
computation can be optimized because the base point is statically known.

Table 2.2 shows the number of primitives (column P) and implementations (column I)
for each operation of SUPERCOP. The next set of columns, → O, → P, and → I, are
explained next. The first of this set (→ O) shows how many other operations include code
from the current operation. The second (→ P) and third (→ I) columns show how many
primitives and implementations are included by implementations from other operations. For
instance, crypto_verify implementations are used by 67 implementations from the following
operations (the crypto_ prefix is omitted): aead, auth, encrypt, kem, onetimeauth, scalarmult,
and sign. crypto_hash is the most included operation: 19 times by crypto_encrypt, 36 times
by crypto_sign, and 92 times by crypto_kem implementations.

The next three columns show how many implementations under each operation have ref, sse,
and avx in the path. More frequently than not, a reference implementation contains ref in
the directory name. The presented data not not only includes /ref/ but also /*ref*/. The
same applies for sse and avx, where sse2, sse4, and avx2 implementations are counted. Please
note that there are no guarantees that an implementation named ref cannot contain AVX2
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instructions. For the purpose of this overview, this heuristic is sufficient. It is possible to
observe that more than 25% in SUPERCOP of the implementations are, likely, reference
implementations. Roughly 10% are specifically designed for the AVX/AVX2 extensions, and
roughly 20% of the implementations include at least one .s or .S file (the presented count
includes symbolic links).

Operation P I → O → P → I *ref* *sse* *avx* *.s *.S

crypto_verify 16 29 7 36 67 16 0 12 0
crypto_decode 35 90 2 31 51 35 0 19 0
crypto_encode 41 90 2 37 63 41 0 31 0
crypto_sort 2 18 1 18 23 0 0 2 1
crypto_core 56 194 6 35 47 63 3 59 25
crypto_hashblocks 4 34 2 7 8 4 1 4 12
crypto_hash 162 961 4 86 147 91 92 24 298
crypto_stream 41 299 5 42 78 16 19 33 141
crypto_onetimeauth 1 14 1 1 1 1 2 5 12
crypto_auth 7 19 1 1 1 6 4 0 0
crypto_secretbox 2 2 1 2 2 2 0 0 0
crypto_aead 479 1074 1 3 3 519 42 34 82
crypto_rng 3 3 0 0 0 3 0 0 0
crypto_scalarmult 3 18 2 5 5 4 0 3 10
crypto_box 2 2 0 0 0 2 0 0 0
crypto_dh 41 188 0 0 0 11 1 1 126
crypto_sign 182 428 0 0 0 151 25 77 10
crypto_kem 188 396 1 2 2 138 13 85 47
crypto_encrypt 61 92 0 0 0 38 0 13 0

1326 3951 1141 202 402 764

Table 2.2: SUPERCOP operations overview.

2.1.2 Setup and Build

SUPERCOP relies on performance evaluations to determine which implementation per-
forms best in a given environment. Before running the building script do (or do-part in
recent versions of the toolkit), some configurations must be checked to reduce variability
in benchmarks. SUPERCOP’s website2 contains a section covering this topic: “Reducing
randomness in benchmarks”. For instance, in the context of Intel CPUs, it may be necessary
to disable Turbo-Boost, a feature that increases the CPU frequency depending on the CPU

2https://bench.cr.yp.to/supercop.html

https://bench.cr.yp.to/supercop.html
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load. Additionally, it might also be helpful to disable hyper-threading, a feature in which,
for instance, two logical processors are associated with just one physical processor. The
remaining discussion provides an intuition on how to build any SUPERCOP version and, as
such, some comparisons between versions are included.

After the machine has been checked for adequate running conditions, the main building
script, do, which contains the building code written in shell, can be used to run the toolkit.
In comparison with recent versions of SUPERCOP, the do script is just a call to the do-part
script with the argument all, “exec do-part all”, and all the machinery is placed in do-part.
The tasks performed by the building script are, essentially, the following:

1. Directory bench/machine-name (where machine-name is the actual machine name given
by the command hostname minus some cleaning up) is created at the top-level directory
of SUPERCOP, and it is in this directory that the produced results are put.

2. Some local scripts are created in the directory bench/machine-name/bin. Some of these
scripts output the list of compilers that work on a given setup. The complete combi-
nation of compilers and compilers’ options can be consulted in directory okcompilers/.
For example, “gcc -O1” and “gcc -O3” could be two possible compiler configurations.
The lists included by default in the toolkit can be pretty extensive, because many
combinations between different flags are considered, but, in a scenario where the user
is fine with just using one compiler configuration (to save time), these files can be
edited before running the do main script. For example, in a context where AMD64 is
supported as target architecture, the script okc-amd64 will be put in the aforementioned
directory and, when executed, it outputs the list of C compilers that produce machine
code suitable for that target architecture.

3. Some third-party libraries distributed with the toolkit are built as part of the initial-
ization process, for instance, NTL3 and GMP4.

4. For each operation, for each primitive, and for each supported ABI (for instance, x86
and amd64 can be simultaneously considered if the specified compiler configuration
list includes these as targets), the script tries to compile each implementation with
each compiler configuration (for example, the output of okc-amd64). If the compilation
is successful, the exported functions are tested. For each operation, there exists a
file named try.c containing the testing code. Briefly, the implementation is tested
by executing it with a series of deterministically-generated inputs and maintaining a
checksum of the outputs. At the end of the testing procedure, the computed checksum is
compared with the expected checksum5. Some other checks happen while the checksum

3https://libntl.org/
4https://gmplib.org/
5Expected checksums are placed in files named checksumsmall and checksumbig, for small and long

sequences of testing, respectively.

https://libntl.org/
https://gmplib.org/
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is being computed. For instance, input pointers (i.e., message or secret key pointers)
are unaligned, and a canary, in this case, a pseudo-random sequence of bytes, is copied
to before and after the memory addresses where the implementation is expected to
write. After execution, the canary is checked. An interested reader might also want to
read file try-anything.c that sits at the top-level directory. This file contains the generic
part of the testing code. If it passes all tests and is the fastest implementation so far
(the execution time collected by one of the tests is considered) then the implementation
benchmarking executable is created and put in a specific directory for later execution.

5. After testing, the fastest implementations are benchmarked. For operations that sup-
port variable-length inputs, such as crypto_hash, the number of CPU cycles for each
considered input length is collected. The logs containing information about the ma-
chine, tests results, used compiler options, and benchmarks results are placed in a
file named data. The main script compresses this file, and it can be uploaded to be
included on the SUPERCOP website through the eBATS mailing list. A static library
containing the best implementations is built.

The previous enumeration omits many details but it provides a general intuition of how
SUPERCOP works. Recent versions of the SUPERCOP toolkit include new features, for
instance, to create two different branches (constbranchindex or timingleaks) of execution, to
handle implementations declared to be constant-time, or not.

Recent versions of SUPERCOP include a do-part script that accepts the option used, “ ./do-
part used”, where only essential components are built. Under some crypto_* operation, many
implementations contain an empty file named used to mark them as part of the essential
components that need to be built. A user who wants to use SUPERCOP as part of its
development workflow and does not need all used implementations, can delete some of these
files6 to speed up the initial setup (but not all, as some are essential for the toolkit to work).

After the initial setup has been performed, the do-part can be invoked to evaluate a given
primitive. This causes all the implementations to be evaluated as previously described:
all implementations of a given primitive are tested and the one with the best execution
time during tests is measured. It is possible to extend the do-part script to indicate which
implementation should be considered, for instance, to fully evaluate it, even if it is slower
than the alternatives7. The results are placed on the previously mentioned data file.

6https://github.com/tfaoliveira/libjc/blob/a884df7313cbe9967f71d8457c4e8cabf4ae0104/bench/
patch/20210604/remove

7https://github.com/tfaoliveira/libjc/blob/a884df7313cbe9967f71d8457c4e8cabf4ae0104/bench/
patch/20210604/do-part

https://github.com/tfaoliveira/libjc/blob/a884df7313cbe9967f71d8457c4e8cabf4ae0104/bench/patch/20210604/remove
https://github.com/tfaoliveira/libjc/blob/a884df7313cbe9967f71d8457c4e8cabf4ae0104/bench/patch/20210604/remove
https://github.com/tfaoliveira/libjc/blob/a884df7313cbe9967f71d8457c4e8cabf4ae0104/bench/patch/20210604/do-part
https://github.com/tfaoliveira/libjc/blob/a884df7313cbe9967f71d8457c4e8cabf4ae0104/bench/patch/20210604/do-part
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2.2 Evaluation of new Cryptographic Implementations

For this work we use SUPERCOP, version 20210604. The machine used for the benchmarking
has an Intel i7-6500U Skylake processor, clocked at 2.5GHz (Turbo Boost was disabled),
Ubuntu 20.04, and GCC 9.3.0.

In SUPERCOP, under each cryptographic operation directory, there is a file namedmeasure.c,
which defines the code that is used to benchmark all primitives’ implementations of that
operation. measure.c defines a function named measure, which measures how the code
performs. For variable-input implementations, this function measures TIMINGS times, the
performance of the implementations, for each input length up until MAXTEST_BYTES. The
inputs are initialized with random bytes. It outputs the collected number of cycles that
the primitive took to execute and the corresponding median. For instance, measure.c from
crypto_stream, defines TIMINGS as 15 and MAXTEST_BYTES as 4096. This evaluation is
executed LOOPS times. As such, for each input length, if applicable, there are LOOPS

measurements available for consultation in the log file. LOOPS is defined as a compiling
flag in the do-part script. LOOPS is usually defined as 3, but if can be redefined in measure.c.
For operations whose inputs’ sizes do not vary, the evaluation occurs TIMINGS times.

The corresponding measure.c files were updated to reduce benchmarks execution time and,
simultaneously, produce results that are compatible with the plots included throughout this
document: for the primitives with variable-size inputs, the presented plots contain the number
of cycles per processed byte in the y-axis; and the input length in bytes, using a logarithmic
scale of 2, in the x-axis. Figure 2.1 shows the cycles per byte that four different ChaCha20
implementations take to process messages of different lengths. The execution time can be
roughly estimated by multiplying the cycles per byte by the corresponding input length.
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Figure 2.1: Benchmarking: Example plot.
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The main reason for using a logarithmic scale in the x-axis is that too many data points
usually do not allow for the production of easily readable plots. As the input length increases,
the number of bytes that are skipped (during performance evaluation) increases accordingly:
for inputs lengths of 2n, the increment is defined as max(2(n−6), 1). For instance, for input
lengths between 1 and 64, the increment factor is 1 (with the primitive being measured for
every possible input length on that range), from 64 (26) to 128 (27) the increment factor is 2,
and from 8192 (213) to 16384 (214) is 128. Each plot interval, between powers of 2, contains
64 data points.

For the context of the primitives implemented during this work, where the performance
behavior can be classified as linear, the presented method allows clear visualization of the
implementation’s performance and benchmark results availability (it is fast to collect mea-
surements to guide the optimization process). MAXTEST_BYTES is defined as 16384, instead
of 4096, to be consistent with other publications [ZBPB17, BHK+17]. To remove outliers,
which become particularly visible when drawing plots, TIMINGS was increased, and the plots
include the best-reported median for each considered point.
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Chapter 3

Certified Compilation for
Cryptography

Several cryptographic implementations are written in assembly, qhasm, or at a similar
low level of abstraction, while many others are purely written in C. To achieve the best
performance, some of these C implementations are vectorized and, as such, use intrinsics.
Some of these optimized implementations exhibit competitive performance figures when
compiled with non-verified compilers and compared with the corresponding low-level im-
plementations. In order to understand if one could leverage all the research developments in
formal verification of C implementations, an extension to a certified compiler, CompCert, was
developed, the first with support for intrinsics [ABB+20b]. Section 3.1 presents an overview
of this extension.

Section 3.2 presents the evaluation of this extended version of CompCert, conducted using
version 20170105 of SUPERCOP. As a brief overview, SUPERCOP is a toolkit that allows
building a cryptographic library targeted for a given environment: several implementations
for each supported cryptographic primitive are distributed in this toolkit, and each imple-
mentation is tested and measured for a predefined set of compilers and compiler flags; the
produced library includes the implementations that perform best for a given context; in
addition to that, the toolkit collects extensive performance measurements. The considered
version of the toolkit, 20170105, contains 2153 different implementations covering many
CPU architectures. Some of these implementations are portable, meaning that they can
be compiled for any architecture when a C or C++ compiler is available, while others are
platform-dependent and use intrinsics. The number of available implementations is growing
in each new release of SUPERCOP and, in more recent versions, for instance, 20210604, 3951
implementations are available. Although more updated versions of this toolkit are currently
available, the primary source for this chapter was initially written in 2017 and later published
in 2020.

25
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3.1 CompCert for Cryptography

Our extension to CompCert was adapted from the 2.2 distribution of CompCert, and it
focuses only on the part of the distribution that targets the ia32 architecture. There is no
particular reason for our choice of CompCert version, except that this was the most recent
release when our project started. Equivalent enhancements can be made to more recent
versions of CompCert with some additional development effort.

3.1.1 Relevant CompCert Features

The architecture of CompCert is depicted in Figure 3.1. We follow [Ler09] in this description.
The source language of CompCert is called CompCertC, which covers most of the iso C 99
standard and some features of iso C 2011 such as the _Alignof and _Alignas attributes.
Some features of C not directly supported in CompCertC v2.2, such as struct-returning
functions, are supported via rewriting from the C source during parsing. The semantics
of CompCertC is formalized in Coq and it makes precise many behaviors unspecified or
undefined in the C standard, whilst assigning other undefined behaviours as “bad”. Memory
is modeled as a collection of byte-addressable disjoint blocks, which permits formalizing in
detail pointer arithmetic and pointer casts.

Programmed in CamlCertified in Coq
C source

Clight

C#minor

Cminor

RTL

LTL

Linear

Mach

ia32

Asm

Parser, typechecker, simplifier
Initial translation

Stack pre-allocation

CFG; instr. recognition

Opt.;Register allocation Type recognition; graph coloring

CFG Linearization

Act. record layout

ia32 instr. generation
printing

Figure 3.1: CompCert architecture.

CompCert gradually converts the CompCertC input down to assembly going through several
intermediate languages. Parts of CompCert are not implemented directly in Coq. These
include the non-certified translator from C to CompCertC and the pretty-printer of the
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assembly output file. Additionally, some internal transformations of the compiler, notably
register allocation, are implemented outside of Coq, but then subject to a translation valida-
tion step that guarantees that the transformation preserves the program semantics.

The front-end of the compiler comprises the translations down to Cminor: this is a typeless
version of C, where side-effects have been removed from expression-evaluation; local variables
are independent from the memory model; memory loads/stores and address computations
are made explicit; and a simplified control structure (e.g. a single infinite loop construct with
explicit block exit statements).

The backend starts by converting the Cminor program into one that uses processor specific
instructions, when these are recognized as beneficial, and then converted into a standard
Register Transfer Language (RTL) format, where the control-flow is represented using a
Control Flow Graph (cfg): each node contains a machine-level instruction operating over
pseudo-registers. Optimizations including constant propagation and common sub-expression
elimination are then carried out in the RTL format, before the register allocation phase that
produces what is called a LTL program: here pseudo-registers are replaced with hardware
registers or abstract stack locations. The transformation to Linear format linearizes the CFG,
introducing labels and explicit branching. The remaining transformation steps comprise the
Mach format that deals with the layout of stack frames in accordance to the function calling
conventions, and the final Asm language modeling the target assembly language.

The generation of the executable file is not included in the certified portion of CompCert
– instead, the Asm abstract syntax is pretty-printed and the resulting programs is assem-
bled/linked using standard system tools.

3.1.2 Semantic Preservation

CompCert is proven to ensure the classical notion of correctness for compilers known as
semantic preservation. Intuitively, this property guarantees that, for any given source pro-
gram S, the compiler will produce a compiled program T that operates consistently with the
semantics of S. Consistency is defined based on a notion of observable behaviour of a program,
which captures the interaction between the program’s execution and the environment. Let
us denote the evaluation of a program P over inputs ~p, resulting in outputs ~o and observable
behaviour B as P (~p) ⇓ (~o,B). Then, semantic preservation can thus be written as

∀B, ~p, ~o, T (~p) ⇓ (~o,B) =⇒ S(~p) ⇓ (~o,B)

meaning that any observable behaviour of the target program is an admissible observable
behaviour of the source program. Observable behaviours in CompCert are possibly infinite
sequence of events that model interactions of the program with the outside world, such
as accesses to volatile variables, calls to system libraries, or user defined events (so called
annotations).
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3.1.3 High-level view of our CompCert Extension

Our extension to CompCert is consistent with the typical treatment of instruction extensions
in widely used compilers such as gcc: instruction extensions appear as intrinsics, i.e.,
specially named functions at source level. Calls to intrinsics are preserved during the first
stages of the compilation, and eventually they are mapped into (typically) one assembly
instruction at the end of the compilation. Intrinsic-specific knowledge is added to the compiler
infrastructure only when this is strictly necessary, e.g., to deal with special register allocation
restrictions; so transformations and optimizations treat intrinsic calls as black-box operations.

We have extended CompCert with generic intrinsics configuration files. Our current con-
figuration was automatically generated from the gcc documentation1 and the machine-
readable x86 assembly documentation from x86asm.net.2 This configuration file allows the
CompCert parser to recognize gcc-like intrinsics as a new class of built-in functions that
were added to the CompCert semantics. For this, we needed to extend the core libraries of
CompCert with a new integer type corresponding to 128-bit integers; in turn this implies
introducing matching changes to the various intermediate languages and compiler passes to
deal with 128-bit registers and memory operations (e.g., a new set of alignment constraints;
calling conventions; etc.). The new built-ins associated with intrinsics are similar to other
CompCert builtins, apart from the fact that they will be recognized by their name, and they
may carry immediate arguments (i.e., constant arguments that must be known at compile-
time, and are mapped directly to the generated assembly code). These extended built-in
operations are propagated down to assembly level, and are replaced with the corresponding
assembly instructions at the pretty-printing pass. All changes were made so as to be, as
much as possible, intrinsics-agnostic, which means that new instruction extensions can be
added simply by modifying the configuration file. Overall, the development modified/added
approx. 6.3k lines of Coq and ML, spread among 87 files from the CompCert distribution.
We now present our modifications to CompCert in more detail.

Modifications to the CompCert front-end Modifications at the compiler front-end
are generally dedicated to making sure that the use of intrinsics in the source file are
recognized and adequately mapped into the CompCertC abstract syntax tree, and that
they are subsequently propagated down to the Cminor level. This includes modifications
and extension to the C parser to recognize the gcc-style syntax extensions for simd vector
types (e.g., the vector_size attribute), as well as adapted versions of intrinsics header files
giving a reasonable support for source-level compatibility between both compilers. These
header files trigger the generation of the added builtins, whose specification is included on
the configuration file. For each new builtin, the following data is specified:

1http://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
2http://ref.x86asm.net

http://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
http://ref.x86asm.net
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• the function identifier that is used to recognize the intrinsic by name;

• the signature of the intrinsic, i.e., the types of the input parameters and return type;

• an instruction class identifier that is used to group different intrinsics into different sets
that can be activated/deactivated for recognition in different platforms (this is linked
to a set of command-line option switches);

• the assembly instruction(s) that should be used when pretty-printing an assembly file
in which that particular built-in operation appears;

• a Boolean value indicating whether the associated assembly instruction is two-address,
which is relevant for register allocation later on.

Translation into CompCertC maps all vector types/values into a new 128-bit scalar type.
Subsequent transformations were extended to support this data type.

Modifications to the CompCert backend The most intrusive modifications to Comp-
Cert were done at the back-end level, most prominently in the register allocation stage.
CompCert uses a non-verified graph-coloring algorithm to compute a candidate register
allocation, whose output is then checked within Coq for correctness. We added the eight
128-bit xmm register-bank to the machine description, taking into account that floating
point operations in CompCert were already using 64-bit half of these registers. This im-
plied extending the notion of interference used during register allocation and adapting the
corresponding proof of correctness. During the constructions of the stack-frame layout, the
calling convention for vector parameters/return-values was implemented supporting up to 4
parameters and the return-value passed on registers. The final component of our extensions
was the addition to the assembly pretty-printer, supporting a flexible specification of the
code to be produced by each built-in.

Consequences for semantics preservation Our new version of CompCert comes with
an extended semantics preservation theorem that has essentially the same statement as the
original one. The difference resides in the fact that the machine model now explicily allows
built-in functions to manipulate 128-bit values. Note that, although we did not add a detailed
formalization of the semantics of all instruction extensions, this is not a limitation when it
comes to the correctness of the compiler itself: indeed, our theorem says that, whatever
semantics are associated by a machine architecture to a particular extended instruction,
these will have precisely the same meaning at source level. This is a powerful statement, since
it allows us to deal with arbitrary instruction extensions in a uniform way. Such detailed
semantics would be important if one wished to reason about the meaning of a program at
source level, e.g., to prove that it computes a particular function. In these cases a formal
semantics can be given just for the relevant instructions.
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3.2 Evaluating CompCert on SUPERCOP

This section studies how the developed CompCert extension performs in SUPERCOP. Other
compilers are included in this study for comparison.

3.2.1 Coverage

The SUPERCOP release we considered contained 2153 such implementations for 593 prim-
itives. In Table 3.1 we present a more detailed summary of these counts, focusing on some
interesting categories for this work. In particular, we detail the following successive refine-
ments of the original implementation set: 1) the number of implementations that target the
x86-32 architecture (x86), which we identified by excluding all implementations that explicitly
indicate a different target architecture; 2) how many of the above implementations remain
(x86-C) if we exclude those that are given (even partially) in languages other than C, such as
assembly; and 3) how many of these use instruction extensions (x86-ext). Additionally, we
give an implementation count that extends the x86 one by including also implementations
that explicitly target 64-bit architectures (amd64); this gives an idea of how much coverage
is lost by restricting attention to 32-bit architectures.

operations x86 x86-C x86-ext amd64
aead 644 548 118 660

auth 19 19 6 19

box 2 2 0 2

core 25 25 0 29

dh 123 17 11 185

encrypt 13 11 4 13

hash 550 464 144 664

hashblocks 16 15 5 21

onetimeauth 9 2 0 11

scalarmult 7 5 0 14

secretbox 2 2 0 2

sign 62 47 11 65

stream 168 95 31 228

verify 3 3 0 3

total count 1643 1255 330 1916

Table 3.1: SUPERCOP implementation histogram.

One can see that 330 implementations resorting to x86 instruction extensions can be found
in supercop, corresponding to 168 primitives — out of a total of 576 primitives that come
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equipped with a x86 implementation. This set of primitives represents the universe over
which the new formal verification tools that we put forth in this work will provide benefits
over pre-existing tools.

Before moving to this detailed analysis, we conclude this subsection with a high-level view of
the data we collected in SUPERCOP that permits comparing certified compilers to general-
purpose compilers. This statistic is a byproduct of our work and we believe it may be of
independent interest, as it gives us an indication of what the state-of-the-art in certified
compilation implies for cryptography. Table 3.2 gives coverage statistics, i.e., how many
implementations each compiler was able to successfully convert into executable code accepted
by SUPERCOP in the machine we used for benchmarking. This machine has the following
characteristics: Intel Core i7-4600U processor, clocked at 2.1 GHz, with 8 GB of RAM,
running Ubuntu version 16.04. We note that SUPERCOP exhaustively tries many possible
compilation strategies for each compiler in a given machine. The baseline here corresponds
to implementations in the set tagged as x86-C in Table 3.1 that were successfully compiled
with gcc version 5.4.0 or clang version 3.8.0.

architecture x86-32 amd64
operations baseline ccomp-2.2 ccomp-ext ccomp-3.0 baseline ccomp-3.0
aead 343 258 290 178 506 269

auth 16 10 10 8 19 10

box 2 2 2 2 2 2

core 21 25 25 25 29 25

dh 2 2 2 2 7 3

encrypt 4 5 1 5 5 6

hash 471 323 356 239 562 380

hashblocks 12 8 8 8 16 11

onetimeauth 5 5 5 6 7 7

scalarmult 6 6 6 6 13 9

secretbox 2 2 2 2 2 2

sign 12 0 0 2 18 3

stream 121 91 114 91 152 19

verify 3 3 3 3 3 3

total count 1020 740 824 577 1341 749

Table 3.2: SUPERCOP coverage statistics for various compilers.

The apparent discrepancy (1020 versus 1643) to the number of possible x86 implementations
indicated in Table 3.1 is justified by the fact that some implementations omit the target
architecture and incompatibility with x86 is detected only at compile-time.3 In the table,

3The degenerate red value in the table is caused by implementations that use macros to detect intrinsic
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ccomp refers to CompCert and ccomp-ext refers to the CompCert extension we developed.
One important conclusion we draw from this table is that, at the moment, the version of
CompCert we present in this paper has the highest coverage out of all certified compiler
versions, due to its support for intrinsics. Nevertheless, we still do not have full coverage
of all intrinsics, which justifies the coverage gap to the baseline. In particular, we do not
support the _m64 mmx type nor avx operations.Furthermore, we do not use any form of
syntactic sugar to hide the use of intrinsics, e.g., allowing xor operations (̂ ) over 128-bit
values, which is assumed by some implementations fine-tuned for specific compilers.

3.2.2 Methodology for Performance Evaluation

We will be measuring and comparing performance penalties incurred by using a particular
compiler. These penalties originate in two types of limitations: 1) the compiler does not
cover the most efficient implementations, i.e., it simply does not compile them; or 2) intrinsic
limitations in the optimization capabilities of the compiler. In particular, we will evaluate
the trade-off between assurance and performance when compiling cryptographic code written
in C for different versions of CompCert. Our metric will be based on average timing ratios
with respect to a baseline measurement. In all cases, the timing ratio is always reported
to the fastest implementation overall, often given in assembly, as compiled by a non-verified
optimizing compiler in the best possible configuration selected by SUPERCOP. We now detail
how we compute our metrics.

Performance Metrics We consider each SUPERCOP operation separately, so let us fix an
arbitrary one called o ∈ O, where O is the set of all operations in SUPERCOP. Let C be the
set of compilation tools activated in SUPERCOP and P (o) a set of primitives that realize o.
Denote I(p) as the set of all implementations provided for primitive p ∈ P (o). Let also tpC
denote the fastest timing value reported by SUPERCOP over all implementations i ∈ I(p),
for primitive p ∈ P (o), when compiled with all of the compilers in C. Note that, if such a
value tpC has been reported by supercop, then this means that at least one implementation
i ∈ I(p) was correctly compiled by at least one of the configured compilers in C. Furthermore,
tpC corresponds to the target code that runs faster over all the implementations given for p,
and over all compilation options that were exhaustively attempted over C.

To establish a baseline, we run SUPERCOP with gcc version 5.4.0 and clang version 3.8.0
and collected measurements for all primitives. Let us denote this set of compilers by C∗.
We then independently configured and executed SUPERCOP with different singleton sets of
compilers corresponding to different versions of CompCert. Let us designate these by C2.2,
C3.0 and C2.2-ext, where the last one corresponds to our extension to CompCert described in
section 3.1. Again we collected information for all primitives in supercop.

support; ccomp-ext activates these macros, but then launches an error in a gcc-specific cast.
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For a given operation o ∈ O we assess a compiler configuration C by computing average
ratio:

Ro
C =

1

|P |
·
∑
p∈P

tpC
tpC∗

,

where we impose that tpC and tpC∗ have both been reported by SUPERCOP, i.e., that at least
one implementation in I(p) was successfully compiled via C and one (possibly different)
implementation in I(p) was successfully compiled by C∗.

When we compare two compiler configurations C1 and C2 we simply compute independently
Ro

C1
and Ro

C2
. However, in this case we first filter out any primitives for which either C1 or

C2 did not successfully compile any implementations. The same principle is applied when
more than two compiler configurations are compared; hence, as we include more compiler
versions, the number of primitives considered in the rations tends to decrease. In all tables
we report the number of primitives |P | considered in the reported ratios.

Finally, since we are evaluating the penalty for using certified compilers, we introduced an
extra restriction on the set of selected primitives: we want to consider only the performance
of implementations covered by the correctness theorems. Our approach was heuristic here:
if SUPERCOP reports that the most efficient implementation compiled by a CompCert
version (including our new one) includes assembly snippets, we treat this primitive as if no
implementation was successfully compiled.

3.2.3 Performance Boost from Certified Instrinsics-aware Compilation

In this section we measure the performance improvements achieved by our new version of
CompCert supporting instruction extensions. Table 3.3 shows two views of the collected
results: the top table compares three versions of CompCert, whereas the bottom table
compares only the vanilla version of CompCert 2.2 with our extended version of it. In
the bottom table we list only the lines where the set of considered primitives differs from the
top table. The results speak for themselves: for operations where a significant number of
primitives come equipped with an intrinsics-relying implementation, the performance penalty
falls by a factor of 5 when comparing to CompCert 2.2, and a factor above 3 when comparing
to CompCert 3.0.

In Table 3.3 we are including primitives for which no implementation relying on instruction
extensions is given. In that case our new version of CompCert does not give an advantage,
and so the performance gain is diluted. To give a better idea of the impact for primitives
where instruction extensions are considered, we present in Table 3.4 the average ratios that
result from restricting the analysis to primitives where instruction extensions are used. These
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operation |P | ccomp-2.2 ccomp-3.0 ccomp-ext
aead.decrypt 120 24.78 18.75 5.23

aead.encrypt 120 28.04 20.85 5.32

auth 5 3.50 1.76 3.58

box.afternm 2 1.90 1.52 1.83

box.open 2 1.80 1.50 1.84

dh 2 5.59 4.67 5.81

dh.keypair 2 4.65 3.93 4.65

encrypt 6 3.09 2.68 3.23

encrypt.open 6 5.04 4.08 5.09

hash 25 7.55 6.27 3.51

scalarmult.base 2 5.29 4.29 5.16

scalarmult 2 5.72 4.66 5.79

secretbox 2 2.24 1.74 2.09

secretbox.open 2 2.09 1.64 2.03

sign 25 4.87 3.64 4.55

sign.open 25 3.73 2.87 3.55

stream 10 1.91 1.42 1.93

stream.xor 10 1.62 1.35 1.66

global 494 21.00 15.83 4.79

operation |P | ccomp-2.2 ccomp-ext
aead.decrypt 166 22.03 5.39

aead.encrypt 166 24.70 5.49

hash 32 8.13 5.01

global 639 20.00 5.08

Table 3.3: Performance ratios aggregated by instantiated operation.

results show that, as would be expected, intrinsics-based implementations allow a huge speed-
up when compared to implementations in plain C. The most significant improvements are
visible in the aead operations, where one important contributing factor is the enormous
speed boost that comes with relying on an aes hardware implementation, rather than a
software one.

The work presented in this chapter initiates a systematic study of the coverage of formal
methods tools for cryptographic implementations. The statistics are encouraging, but there
is significant room for improving coverage and performance. The development is available
at https://github.com/haslab/ccomp-simd. We are currently porting our work to version
3.7 of CompCert, which will allow us to benefit from the new features that have been added
since. Most notably, support to 64 bit architectures (in particular amd64), which by itself

https://github.com/haslab/ccomp-simd
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operation |P | ccomp-2.2 ccomp-3.0 ccomp-ext
aead.decrypt 50 56.60 42.84 7.89

aead.encrypt 50 64.29 47.77 7.94

auth 2 4.23 3.88 4.06

hash 43 6.63 5.42 4.21

stream 3 1.43 1.05 1.34

stream.xor 3 1.31 1.19 1.25

global 201 48.08 36.25 6.92

operation |P | ccomp-2.2 ccomp-ext
aead.decrypt 60 55.10 7.51

aead.encrypt 60 62.18 7.56

hash 46 6.40 4.14

global 234 48.63 6.70

Table 3.4: Performance ratios aggregated by instantiated operation, restricted to primitives
including at least one implementation relying on instruction extensions.

widens the applicability of the tool, and opens the way to support intrinsics for new vector
extensions such as avx, avx2 and avx-512. Finally, we are also updating our benchmarking
set-up to the most recent versions of supercop, GCC and clang. We do not expect the main
conclusions to change, but the number of assessed implementations will grow significantly.

Although the work presented during this chapter is certainly interesting from a research point
of view and, to some extent, provides enough evidence that the support for vectorization is
a key feature for this domain, there are still some significant challenges that need to be
addressed. For instance, formally verifying a compiler that produces machine code that
performs as fast (or with an almost negligible performance overhead) as machine code from
unverified compilers is perhaps the major one. More concretely, proving the correctness of
several optimizations’ heuristics that can be used within this context can be very challenging
tasks by themselves and which, most probably, require a massive investment at several levels.

In order to provide a solution for this problem, which is essentially finding a way of having
some guarantees that a given piece of machine code performs as expected and, if it is compiled,
the compilation process is guaranteed to yield code semantically equivalent to the source
code, one possible approach is to leave optimization to the developer. This often comes
with an assurance penalty, and so the following chapters focus on a new approach that
aims to provide the best of both worlds: maximum developer control and formal verification
capabilities rivaling those available for high-level languages.
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Chapter 4

Jasmin

Jasmin is a low-level programming framework that enables the development of highly effi-
cient, high-assurance cryptographic implementations [ABB+17a, ABB+20a]. This framework
includes the Jasmin programming language, to write cryptographic implementations, and the
Jasmin compiler, to compile Jasmin code into AMD64 assembly. Additionally, the Jasmin
compiler allows to extract EasyCrypt modules from Jasmin implementations. These modules
can be used within the EasyCrypt framework to prove the functional correctness or check the
constant-time property of a given implementation. The Jasmin compiler is, itself, formally
verified for functional correctness in the Coq proof assistant, meaning that all compilation
steps preserve the semantics of the original Jasmin program.

The Jasmin programming language enables to write highly efficient implementations due to
the level of control that it provides to the developer: most Jasmin statements map into one
assembly instruction or, in the case of control-flow structures for instance, a predefined set
of instructions. To provide this level of control, where the compiler does not automatically
insert instructions of any kind, it is the developer’s responsibility to choose which variables
should be in registers or in the stack frame during the program’s execution. Intuitively, the
Jasmin programming language can be seen as lying in between qhasm and C. It provides
the same level of control of qhasm, in the sense that the compilation output is entirely
predictable and no unexpected instructions are introduced during compilation. On the other
hand, Jasmin includes high-level features that simplify the development of cryptographic
routines. Examples of this are the support for functions, C-like control-flow structures, and
intuitive syntax for non-standard data types.

To verify the functional correctness of a given Jasmin program, the compiler allows to extract
an EasyCrypt module that is semantically equivalent to the original program. Then, a high-
level specification, also in the form of a module with a set of procedures, or a set of operators,
can be written and proven equivalent to the extracted implementation using the EasyCrypt
proof assistant. Depending on the complexity of the specification and corresponding im-

37
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plementation, the proof can be separated into several logical steps, usually referred to as
hops. For instance, an (EasyCrypt) specification can be a representation of an RFC or a
mathematical description of a given algorithm: if a specification is written according to an
RFC, and the corresponding Jasmin implementation is somehow similar to the specification,
the equivalence proof between the specification and extracted implementation will be simple,
and it will, most probably, require just one hop; if we consider a mathematical description
as specification and a corresponding vectorized Jasmin implementation, the equivalence
proof between these two can, and should, be separated into several logical steps, mostly
for convenience and improved legibility. Regarding the verification of the constant-time
property, it is possible to extract an EasyCrypt module specifically designed to achieve this
purpose and, generally speaking, checking this property is a simple task.

This chapter’s main goal is to present the Jasmin programming language from a user point of
view. As an overview of the most important features, Jasmin supports three different types
of functions: inline; local; and export. An inline function is fully inlined at the caller site,
with no jumps or stack-setup instructions being generated in the resulting assembly code.
These functions are particularly useful in contexts where one does not want to incur in the
overhead associated with a function call but wants to logically isolate the code being called.
Local functions may be used to reduce the size of the compiled assembly, since the same code
is shared by all caller sites. Export functions can be called from external implementations
where the System V AMD64 calling convention is supported. In the context of control-
flow structures, Jasmin supports if statements and two kinds of loops: one specifically
designed to unroll the loop body; and another that preserves the loop structure in the
resulting assembly. Jasmin also supports the data types defined by the AVX and AVX2
extensions or, more specifically, 128-bit and 256-bit variables. These extensions define a set
of registers and corresponding instructions that, intuitively and somehow informally, allow
for the computation of multiple values during the execution of single instruction. Whenever
possible, the syntax to use those instructions in Jasmin is improved, when compared to the
approach used in the C programming language.

The discussion in this chapter includes language features that are currently available in
the main branch of the Jasmin repository1 which, in addition to the supported AMD64
instructions and AVX/AVX2 extensions, also supports the declaration of global constant
arrays, a useful feature in many cryptographic implementations. If such branch happens to
be no longer available at the time of this reading, it was, most probably, merged into the
main branch of the repository. Floating types are not supported and ARM architecture is
planned to be supported in the near future2. The following paragraphs describe how this
chapter’s organization.

1https://github.com/jasmin-lang/jasmin/tree/main
2https://github.com/jasmin-lang/jasmin/tree/arm

https://github.com/jasmin-lang/jasmin/tree/main
https://github.com/jasmin-lang/jasmin/tree/arm
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Section 4.1 starts by presenting the available storage classes and types which can be used to
declare variables. It then discusses how arrays of different storage classes can be declared and
used, how global variables can be declared and initialized, and how to use memory pointers.

Section 4.2 presents the available operators/instructions which always map into a predefined
set of assembly instructions. Some instructions can be called using an intuitive syntax, such
as “+=”, while others must be accessed using their name.

Section 4.3 presents the available control-flow structures. It starts by presenting the available
test conditions to use in the context of control-flow statements. It follows by discussing the
available control-flow structures: if ; for ; and while.

Section 4.4 presents the available functions’ types. It first presents inline functions, which are
fully inlined at the caller site, then export functions, which implement the System V calling
convention, and, to conclude, local functions, whose code is shared by all caller sites.

Section 4.5 focuses on the embedding of the Jasmin programming language in EasyCrypt,
which allows to verify the functional correctness of a given implementation and to verify the
constant-time property. It provides an overview of the typical proof infrastructure.

4.1 Variables

In Jasmin, a variable declaration starts with the specification of its storage class and is
followed by the corresponding type and variable name — or set of names separated by a
space if more than one variable with the same type is necessary. This section presents: the
supported storage classes in §4.1.1; basic types in §4.1.2; declaration of arrays in §4.1.3; global
variables in §4.1.4; memory pointers in §4.1.5; and a section’s overview in §4.1.6.

4.1.1 Storage Classes

There are four storage classes in Jasmin: stack, reg, inline, and global. The following
paragraphs describe each storage class.

stack A stack variable is allocated in the program’s stack frame, and the compiler controls
its relative address to the stack pointer, rsp, which is aligned according to the variables’
types being used. Since most instructions in the AMD64 architecture allow one operand to
be in memory, stack variables are not exclusively used to manage the number of live registers.
Generally speaking, a live variable is a variable whose value can still be read by an expression
or instruction that can be reached from the current context. The developer also does not need
to be highly cautious when declaring stack variables, to save stack frame space for instance,
given that the compiler analyses theirs’ life span and merges them if possible. Merging in this
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context means that the same memory space may be used for any stack variables that are not
live at the same moment. It is impossible to access stack variables using pointer arithmetic.

reg A reg variable is allocated in a register chosen by the compiler’s register allocator.
In no circumstances a variable declared as reg will be automatically stored or loaded from
the program’s stack frame or any other memory region. That means that the compilation
of a semantically valid Jasmin program may fail, for instance, if there are more live reg
variables at any given line-of-code than there are registers. In this case, it is the developer’s
responsibility to choose which reg variables should be stored in the stack frame to free the
necessary number of registers and, eventually, restore them with a load operation. The store
and load from the stack frame can be performed by copying the reg variable into a stack
variable and vice-versa. The assurance that a reg variable is placed in a register is necessary
in the context of developing high-speed code, as it enables to write code that frequently
outperforms the best C implementations.

inline and global An inline variable is always initialized with a statically known value.
This value can be represented by a constant, expression, or even by the result of a statically
known computation. As such, it can be used where an immediate value is expected. The
global storage class specifies a variable whose value is also statically known and will be placed
in the .data section of the resulting assembly file. Global variables are discussed in more detail
in §4.1.4.

4.1.2 Basic Types

Jasmin’s basic types can be grouped into three categories: words, booleans, and integers. The
following subsections describe each category and how they relate with the available storage
classes.

Words

The available types for representing words are u8, u16, u32, u64, u128, and u256. For instance,
a variable declared with type u8 can hold 8 bits, and an u16 variable holds 16 bits. The u
stands for unsigned, and there are no signed types, only operators or instructions which are
discussed in more detail during 4.2. Word types can be used in combination with all storage
classes.

As a first example, a reg 64-bit variable a can be declared as “reg u64 a;”. Table 4.1, presented
in the context of this section’s overview, details which registers are used for each word type. It
is important to highlight that some registers do overlap: if the previously declared variable a
is allocated into rax in a given compiled program, it means that another reg variable declared
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as u8, u16, or u32, and which is live at the same moment, cannot be allocated into al, ax or eax,
since these correspond to slices of rax. Hence, the maximum number of live register variables
for the word types u8, u16, u32, and u64 is 15. In total, there are 16 available registers in
the AMD64 architecture, but in the context of Jasmin programming rsp is reserved for stack
frame management. The remaining types, u128 and u256, also map in registers that overlap.
All 16 xmm/ymm registers can be used.

Regarding word variables declared as stack: it was previously mentioned that the stack
pointer is aligned according to the types being used. In this context, a local variable declared
as “stack u256 a;” requires 32 bytes of memory space and the variable’s memory address is
guaranteed to be aligned at 32. The same applies to the remaining word types. There can
be as many stack word variables as one wishes as long as the memory space that is required
is compatible with the target environment, for instance, the operative system configuration
can set a maximum size for the stack frame.

Regarding inline word variables: these are resolved during compilation. For instance, if we
declare c as “ inline u64 c;”, and initialize it with the statement “c = ((1«27)-1);”, which
defines a value where only the first 26 bits are set, we can then copy this value into a variable
x, declared as “reg u64 x;”, with the statement “x = c;”. The previous statement would be
compiled as “movq $67108863, %rax” where 67108863 is the decimal representation of the
expression ((1«27)-1), which corresponds to 0x3FFFFFF in hexadecimal. The destination
register, in this case rax, depends upon the source code being compiled.

Booleans

The Boolean type is supported in Jasmin to provide an intuitive mechanism for handling the
arithmetic flags or, more concretely, the carry, parity, zero, sign, and overflow flags. Flags are
supported by the rflags register which, generally speaking, cannot be directly manipulated
and whose values are set according to the result of arithmetic instructions. To access flags
values in Jasmin, it is necessary to use reg bool variables. For instance, the statement “reg
bool of cf sf pf zf;” declares five bool variables, one for each available flag.

It is common to name, for instance, the zero flag as zf, but any variable name can be
used. Hence, the position of a bool variable in a given statement determines which flag it
corresponds to. Boolean variables are different from other variables mainly because each flag
is associated with a specific bit in the rflags register, which, to some extent, can be thought
of as a global and shared variable. This means that, if we have two bool variables declared
as “reg bool cf1 cf2;”, and add four u64 variables x0, x1, y0 and y1 in the following way, “cf1,
x0 += y0; cf2, x1 += y1;”, where cf1 and cf2 hold the resulting carry of each addition, cf1
cannot be read after “cf2, x1 += y1;” is executed, because its value was overwritten. To
propagate cf1 into the next addition, the previous statements could be updated to “cf1, x0
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+= y0; cf2, x1 += y1 + cf1;”. The previous example could also be written using a single
bool variable, cf for instance. There could be cases where it is advantageous to use different
names for the same logic bool value, for instance, to self-document the code in some particular
case. Overall, flags are mostly used to manage control-flow, carry propagation in addition or
subtraction chains, or also in the context of conditional moves.

Integers

To represent integers, the type int is available. This type specifies an unbounded integer
that should be statically known. When used in the context of Jasmin functions, it should
be declared as inline. When declared in the global scope, outside of any function context,
the param keyword should precede the int type. Variables declared as int are mostly used for
array indexing and in some loop structures. int variables can also be casted into words. For
instance, if we declare an inline int variable i and a reg u32 variable x, and initialize i with
the value 233 − 1, which requires 33 bits to be encoded and corresponds to the hexadecimal
0x1FFFFFFFF, then the statement “x = i;” compiles into the assembly instruction “movl $-1,
%eax”, where $-1, in this context, corresponds to the value 0xFFFFFFFF. When copying this
inline int variable, whose value is unbounded, into the 32-bit variable x, only the first 32 bits
are considered and the remaining bits are discarded. Generically, for any n-bit variable x and
inline int variable i, statements such as “x = i;” correspond to x = i mod 2n.

4.1.3 Arrays

Jasmin supports the declaration of reg and stack arrays, for all word types. The array size
must be statically known and specified in between square brackets, right after the type.
Indexing starts at 0.

As an example, the statement “reg u64[2] x y;” allows to declare two register arrays with two
u64 elements each. When accessing reg arrays, the index should be statically known as it
does not exist a way of encoding a run-time index to access the available registers in AMD64.
An element of a register array can be used whenever a register is expected, and, as such,
the previously presented example to compute an addition with carry propagation could be
rewritten to “cf, x[0] += y[0]; cf, x[1] += y[1] + cf;”.

As a curiosity, it is possible to declare and use register arrays with more elements than
the registers that are available, as long as not all elements are live at the same moment.
In the context being discussed, u64 variables, it would be possible to declare x as having,
for instance, 20 elements, using the statement “reg u64[20] x;”, and throughout the Jasmin
implementation up to 15 elements of such array could be live at any given line of code —
this number, 15, depends on the existence of other live variables which are mapped into the
same set of registers.
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In the context of accessing stack arrays, the index can be a statically known value, or a
run-time value placed in a reg u64 variable. For instance, “stack u64[25] state;” declares a
stack array with 25 64-bit elements. If index is a reg u64 variable initialized with the value 8,
then “state[8]” returns the same value as “state[(int) index]”. In Jasmin, indexes are treated
as integers and, as such, the cast “(int)” is necessary.

Stack arrays can also be accessed as if they have a different type. For instance, by slightly
changing the previous statement “state[(int) index]” to “state[u8 (int) index]”, it is possible
to access the ninth byte of the state array. This feature is particularly useful, but not
exclusively, to implement cryptographic primitives that read inputs and write outputs with
arbitrary lengths.

Overall, arrays are considered regular values and can be used as function arguments and
return values. This topic will be discussed in more detail during section 4.4.

4.1.4 Global Variables and Initialization

Jasmin allows the declaration of global values and arrays of values. These are usually declared
in the global scope of a Jasmin program but can also be declared and initialized inside
a function’s body. The following paragraphs describe the declaration and initialization of
scalars and arrays in the global scope. The initialization considerations presented in this
subsection also apply to non-global variables, if the corresponding mov instruction is available
for the types and values used in the initialization.

Global Scalars The declaration of a global variable is similar to the variables’ declarations
being discussed so far. The main differences are: the usage of the global keyword, which
specifies its storage class, is not necessary when such variables are declared in the global scope;
only word types are supported; only one variable can be declared for each statement; and
each global variable must be initialized. For instance, the statement “u8 p = 0x5C;” declares
a global variable p that contains the value 0x5C. The initialization value can be written
as a decimal, hexadecimal, simple expressions which may include additions, subtractions or
multiplications, and also as an array: the previous example could be rewritten as “u8 p =
(8u1)[0,1,0,1,1,1,0,0];” which corresponds to the binary representation of 0x5C. Alternative
ways of defining the same value are: “(4u2)[1,1,3,0]”; “(2u4)[5,11+1];”; “(2u4)[6-1,0x6*2];”.
Any word variable, global or not, can be initialized by an array whose total size corresponds
to the size of the variable being initialized.

Global Arrays The declaration and initialization of a global array is similar to the dec-
laration and initialization of a global scalar. To declare a global array, the size and all
values of the array must be specified. As an example, “u8[2] p2 = {0x5C,0x5C};” declares
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an array with name p2 with two u8 elements, both initialized as 0x5C. Each individual
value of the array can be initialized as it was previously discussed, for instance, “u8[2] p2 =
{(2u4)[5,12],(2u4)[5,12]};”.

.data section All global variables, declared in a function or global scope, are placed in the

.data section, which is aligned at 32 bytes with the .p2align 5 directive. The order in which
variables are declared and initialized in Jasmin does not influence their final position in the
.data section: the compiler sorts the variables by their type, from the largest to the smallest
(from u256 to u8), and then it prints all values. This means that, if there is an u256 global
variable, it is guaranteed to be aligned at 32 bytes, an u128 variable can be aligned at least
at 16 bytes or 32 bytes, depending if there are u256 global variables or not. The same applies
to all types.

Global Parameters In addition to the global variables that are placed in .data section, it
is possible to declare global parameters using the unbounded integer type int. For instance,
the statement “param int ROUNDS = 10;” declares the constant ROUNDS, which can be used
in any expression where an int is expected. This feature is particularly interesting in the
context of writing generic implementations.

4.1.5 Memory Pointers

Jasmin is a programming language designed to implement cryptographic primitives. As
such, the implemented routines can be called from other programming languages that adopt
the same calling convention. The API for cryptographic primitives often includes memory
pointers in its specification. For instance, and for C APIs, function arguments declared
as “unsigned char *in” for inputs, and “unsigned char *out” for outputs, with an additional
argument that specifies the length of the inputs and outputs, are quite common. Since
it is not possible to call externally defined functions in Jasmin programs, calling memory
allocation routines such as malloc is not an option. Considering this, we can classify the
memory that is used in Jasmin programs in two different types: external memory, which
is managed by the caller function; and internal memory, that is controlled by the Jasmin
compiler which corresponds to stack and global variables. These are discussed next.

External Memory

There is not a dedicated type in Jasmin to represent pointers. Although this distinction
cannot be made through the available types, there are cases where it is advantageous to
make this clear through the variable name, for instance, by using a prefix or suffix in the
variable name when considered appropriate. The previously discussed function argument
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“unsigned char *in” can be declared in Jasmin as “reg u64 in;”. The u64 in the declaration is
not related with the data that is pointed by in but, instead, it corresponds to the number
of bits that are necessary to hold a pointer in 64-bit code. Considering this, all external
pointers must be declared as u64. As an analogy, the equivalent type in C is the void*.

Since in points to a memory region and it can be seen as an array, an array-like notation is
available. By default, accesses are made in 64-bit words. For instance, “[in]” allows to access
the first u64 value that is pointed by in, and “[in + 8]” the second. To read or write the
second byte, the following expression can be used: “(u8)[in + 1]”. Memory accesses can be
performed for any word type and the access type, in the previous expression “(u8)”, must
be specified for any type that is different from u64. For instance, the expression “(u256)[in]”
allows to access the first u256 value that is pointed by in. The offset for this type of memory
access (8 and 1 in the previous examples) is always specified in bytes. More details on how
the offset can be built are provided during the next section, in §4.2.1.

Although it may be tempting to use external memory for other tasks than reading inputs
and writing outputs, instead of using stack arrays, it is recommended to limit the usage of
external memory in Jasmin programs as much as possible. The first reason for this is that,
since stack variables accesses are done through the rsp register, which is already reserved,
there is no need to occupy other registers to hold additional pointers. The second reason is
that stack arrays allow for the same set of operations to be performed when compared with
external pointers, if we exclude pointer’s arithmetic, which can be avoided in most cases.

There could be, however, some cases where it is not feasible to use stack arrays at all. Given
that the size of all Jasmin arrays should be statically known, in a scenario that requires the
allocation of a stack whose size depends on a run-time value, and where it is not viable to
declare such stack array with a fixed amounted of elements that covers all expected cases, an
external memory pointer should be given to the Jasmin program by its caller.

Overall, and whenever possible, the programmer should take advantage of the Jasmin seman-
tics, in which arrays are treated as regular values, to write much more readable code when
compared to an equivalent implementation that only uses external memory. Readability
plays an import role in the context of formally verifying the functional correctness of the
developed Jasmin code.

Internal Memory

In the context of memory that is managed by the Jasmin compiler, more concretely, memory
corresponding to stack arrays or global (read-only) arrays, there is an additional type that
was not introduced so far: ptr. The purpose of this type is, currently, twofold: 1) reading
global arrays elements using a run-time index; 2) provide the necessary infrastructure for
local (non-inlined) Jasmin functions to receive stack arrays as arguments. The following two
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paragraphs describe in more detail the ptr type for each context.

Global Arrays As previously discussed, global arrays are placed in the .data section. More
concretely, all global variables and global arrays are placed under a common label, glob_data,
sequentially, and according to their type. For instance, if we declare the following two global
arrays, “u8[4] g8 = {1,2,3,4};” and “u64[4] g64 = {1,2,3,4};”, the first array to appear in the
.data section is g64 and the second g8. If we also declare, in a function’s context, two u8
variables “reg u8 a b;”, and read the first position of g8 into a with “a = g8[0];”, the following
assembly instruction is generated: “movb glob_data + 32(%rip), %al”.

To access g8 using a run-time offset, the base address of g8 needs to be in a register. To
achieve this, it is possible to declare a local variable “reg ptr u8[4] g8p;”, and copy the array
with “g8p = g8;”. According to the Jasmin’s semantic, and since all arrays are treated as
values, a full copy of the array is performed. In practice, only a copy of the base address of
g8 is made: “ leaq glob_data + 32(%rip), %rcx”. Given a variable declared as “reg u64 i;”, the
assignment “b = g8p[(int)i];” generates the follow instruction: “movb (%rcx,%rdi), %cl”. In the
previous assembly instruction the variable i corresponds to the register rdi. Figure 4.1 shows
a small Jasmin program containing the presented example and corresponding assembly code.
It is important to notice that a reg ptr variable requires one register. If, for some reason, the
register that holds a reg ptr variable is needed for some other computation, a corresponding
stack variable can be declared to store the address in the stack frame. In the context of this
example, a variable “stack ptr u8[4] g8ps;” could be declared and g8p could be copied into it:
“g8ps = g8p;”.

u8[4] g8 = {1,2,3,4};
u64[4] g64 = {1,2,3,4};

export fn example1(reg u64 i) → reg u8
{
reg ptr u8[4] g8p;
reg u8 a b;

a = g8[0];
g8p = g8;
b = g8p[(int)i];
a += b;
return a;

}

# ...
example1:

movb glob_data + 32(%rip), %al
leaq glob_data + 32(%rip), %rcx
movb (%rcx,%rdi), %cl
addb %cl, %al
ret
.data

# ...
_glob_data:
glob_data:

.byte 1

.byte 0
# ...

Figure 4.1: Jasmin global arrays and the ptr type.
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Stack Arrays In comparison to global arrays, stack arrays are held in the stack frame and
the stack frame’s base address is already in a register, rsp. Hence, to calculate the address
of a given element of a stack array, rsp can be added with a constant offset if the index
is statically known, or added with a register if the index is a run-time value. As such, the
previous discussion regarding the relationship between global arrays and the ptr type does not
apply to stack arrays. Instead, a stack array address needs to be copied into a corresponding
reg ptr variable to allow for local functions to receive stack arrays as arguments. Given that
local functions, as well as many other Jasmin features, are yet to be presented, the following
discussion will be kept at a high level of abstraction.

Consider a case where there are two stack arrays x and y which are declared and used in a
given function f1: “stack u64[25] x y;”. At a certain point, function f1 needs to call function f2
two times, to perform the same computation on both arrays: “x = f2(x); y = f2(y);”. Given
that arrays are considered regular values, they need to be returned for the update to happen.
In this case, and assuming that the generated assembly code of f2 is being shared by these
two calls, f2 needs to have access to one of the following: 1) the offset of the array in relation
to the rsp register; 2) or the memory address itself. Both options would require one register.
Option 2) was chosen to allow for an uniform treatment of global and stack arrays.

In this context, two reg ptr variables could be declared, “reg ptr u64[25] xp yp;”, and initialized
with the corresponding addresses before the call happens. For instance, the code for the
first call could be: “xp = x; xp = f2(xp);”. Finally, to conclude this first call to f2, it is
necessary to perform an additional copy, since that, according to Jasmin’s semantic, xp and
x are different arrays: “x = xp;”. It is important to highlight that this last copy does not
produce any assembly instruction. The complete Jasmin code for the two calls would then be:
“xp=x; xp=f2(xp); x=xp; yp=y; yp=f2(yp); y=yp;”. Since the presented example constitutes a
common scenario, the compiler can handle all those moves automatically, and the code could
be rewritten as: “x=f2(x); y=f2(y);”. Nonetheless, it is important to be aware about which
instructions are being generated when taking advantage of such features.

4.1.6 Overview

Table 4.1 presents an overview of the variables that can be declared in the context of Jasmin
programs. Word variables declared with the reg storage class are mapped into the registers
that are presented on the rightmost column of this table. In this context, reg variables
declared with types u8, u16, u32, u64, and ptr, share the same physical space and, as such,
no more than 15 variables with the mentioned types should be live at each moment or the
compilation to assembly will fail. To recall, a variable is live if it contains a value that can
still be read by any instruction that is reachable from the given context. reg u64 variables
can also be used to hold external memory pointers.
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Storage Type Scalar Arrays Indexing Notes
reg u8 3 3 S al bl cl dl sil dil bpl r8b-r15b

u16 3 3 S ax bx cx dx si di bp r8w-r15w
u16 3 3 S eax ebx ecx edx esi edi ebp r8d-r15d
u64 3 3 S rax rbx rcx rdx rsi rdi rbp r8-r15
u128 3 3 S xmm0-xmm15
u256 3 3 S ymm0-ymm15
bool 3 7 - flags: CF, PF, ZF, SF, OF
ptr u8-u256 7 3 S/D rax rbx rcx rdx rsi rdi rbp r8-r15

stack u8-u256 3 3 S/D stack frame; 1-32 bytes alignment; rsp;
ptr u8-u256 7 3 - 8 bytes in the stack frame;

global u8-u256 3 3 S .data section; 1-32 bytes alignment;
inline int 3 7 - statically known;

u8-u256 3 7 -

In Type column, u8-u256 denotes all word types.
Indexing column refers to the supported indexes for accessing arrays. ’S’ denotes statically-known
indexes, and ’D’ dynamic or run-time indexes.

Table 4.1: Jasmin variables declaration overview.

In the context of reg variables with types u128 and u256, up to 16 variables can be in a
live state at any given moment. Register arrays can be declared with all word types and
indexes should be statically known – denoted in column Indexing from table 4.1 as ’S’. It is
not possible to declare reg arrays of bool’s. reg ptr variables are used to reference Jasmin’s
internal memory (stack and global arrays) and the index can be a statically known value, or a
run-time value placed in a reg u64 variable. Although it is not currently implemented, there
are plans to extend the ptr type to support external memory pointers since it can benefit the
formal verification process of the developed cryptographic primitives.

Regarding the stack storage class, all stack variables are placed in the stack frame. Similarly
to the reg storage class, it is possible to declare scalar or arrays for any word type. Indexes
can be statically known or run-time values. The stack ptr type allows to store a memory
address from a reg ptr variable in the stack. It is not possible to access the elements of a
given array using an stack ptr variable: the address needs to be in a register and, as such,
it must be loaded into a corresponding reg ptr variable first. A stack ptr requires the same
space as a stack u64 variable.

It is possible to declare global scalars or arrays for any word type. These are placed in
the .data section of the produced assembly and, in the case of arrays, only statically known
indexes are supported. To access a global array using a run-time index the array must be
copied into a corresponding reg ptr variable. The copy is only logical and only a load of the
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corresponding address is performed. Data is guaranteed to be aligned by the corresponding
size. For instance, a u256 scalar or array is aligned at 32 bytes, u128 at 16 bytes, and so
forth.

The inline storage class can be used to declare variables that are initialized with statically
known values. The int type should be used to declare a variable containing an unbounded
integer. Word types can also be used in combination with this storage class. Currently, the
inline storage class does not allow for the declaration of arrays.

4.2 Operators and Instructions

In Jasmin, each statement corresponds to a predefined, and thus predictable, set of assembly
instructions. Each operator is usually mapped in just one assembly instruction and operands
must be declared with storage classes and types that are compatible with the corresponding
assembly instruction. For instance, in the AMD64 architecture, most instructions require the
destination operand to be a register. In those cases, the destination operand in Jasmin must
be declared using the reg storage class. As a first example, if there are two reg u64 variables
a and b, the statements “a += b;” and “a -= b;” correspond to addq and subq assembly
instructions, respectively.

Operators provide an intuitive syntax to access a given assembly instruction. There are,
however, some specific instructions whose behavior cannot be easily captured by an intu-
itive syntax such as “+=” or “-=”. For that reason, Jasmin also supports direct calls to
instructions. This feature is mostly useful in the context of AVX and AVX2 extensions.
As an example, consider the instruction vperm2i128, which allows to combine two source
operands depending on how an 8-bit immediate value is set, with the result being written
in the destination operand. If a, b, and c are declared as reg u256 variables, then the
Jasmin statement “c = #VPERM2I128(a, b, 0x20);” corresponds to the assembly instruction
vperm2i128, with the 8-bit value being set as 0x20.

This approach is similar to the one used in C programming, where such instructions can
be accessed via intrinsics. Intuitively, intrinsics are functions that are specially handled by
the compiler, with those corresponding to a specific assembly instruction or, less often, a
sequence of instructions. For instance, vperm2i128 can be used in C by performing a call
to the function _mm256_permute2x128_si256. It is worth mentioning that, even though
very specific machine instructions can be accessed through this mechanism in C, it is still
the C compiler’s responsibility to select whose variables are placed in registers or memory.
Most C compilers also take advantage of the semantics of such instructions to optimize the
resulting assembly code. This means that the instruction could change, or be replaced, during
compilation. As an example of this behavior, consider a scenario where a given C compiler
decides that a should be kept in memory and b in a register. Since vperm2i128 allows the
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second source operand to be a memory operand, the position of a and b in the instruction
could be swapped, and the immediate value changed from 0x20 to 0x02. The instruction
would still compute the same result.

In Jasmin, optimizations of such kind are not performed, with the instruction being included
in the produced assembly code exactly as it was written by the Jasmin programmer. As such,
when performing direct calls to instructions in Jasmin, it is also necessary to declare operands
with storage classes that are compatible with the target assembly instruction. Overall, it is
the Jasmin programmer responsibility to be aware of such restrictions, and the architecture
documentation should be consulted when necessary.

This section is organized as follows. Memory operands are presented in §4.2.1, as there are
details regarding this type of operands that are worth discussing in more detail. Register
and immediate operands do not have their own dedicated subsection as their usage is quite
intuitive. The assignment operator is independently discussed in §4.2.2, as its behavior
depends on the operands’ types being used. Then, in §4.2.3, the remaining operators are
presented, first for the types u8, u16, u32, and u64, and then for u128, and u256. To conclude
the section, an overview of instructions that can be directly called is presented in §4.2.4.

4.2.1 Memory Operands

In section 4.1, some insights on how memory can be accessed in a Jasmin program were
provided. For instance, given a reg u64 variable in that contains a valid pointer to external
memory, the expression “[in]” allows to access the first u64 element pointed by in. It was
also stated that, given a stack array declared as “stack u64[25] state;” and a variable index
declared as reg u64 and initialized with 8, the expressions “state[8]” and “state[(int) index]”
allow to access the same element in the array. Finally, to access global arrays using run-time
indexes, it is necessary to load its address into a reg ptr variable with an equivalent type.
Each or the previous expressions can be used as an operand of an operator, or in a direct call
to an instruction, where a memory operand is allowed. This subsection details how memory
operands can be written in more detail.

In the context of the AMD64 architecture, memory addresses can be computed as b+(i∗s)+d,
where b is a register that contains the base address, i is a register that contains an index, s
is the scale factor which can be 2, 4 or 8, and d is the displacement, which can be an 8, 16,
or 32-bit value. In Jasmin, only b is mandatory.

When dereferencing a pointer using the square bracket notation, [ ], all displacements are in
bytes and, by default, 64-bits of data are accessed. For different word sizes, the corresponding
word type should precede the expression. As an example, the expression “(u256)[in + 32]”
allows to access the second u256 element that is pointed by in. In this example, only the
base address, in, and displacement, 32, are used.
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Some examples on how the index i and the scale factor s can be used are shown in figure 4.2.
On the left side, several Jasmin expressions that allow to access the data that is pointed by
in are shown. The preceding type, for example “(u256)” or “(u8)”, is not shown in any of the
examples as it is only relevant in the context of a complete statement. On the right side, the
corresponding assembly operand is shown. In this figure, in corresponds to register rsi, and
index to rdx. The displacement d is set to 16 for demonstration purposes.

[in]
[in + 16]
[in + index]
[in + index∗2]
[in + index∗4]
[in + index∗8]
[in + index + 16]
[in + index∗8 + 16]

(%rsi)
16(%rsi)
(%rsi,%rdx)
(%rsi,%rdx,2)
(%rsi,%rdx,4)
(%rsi,%rdx,8)
16(%rsi,%rdx)
16(%rsi,%rdx,8)

Figure 4.2: Jasmin addressing examples for memory pointers.

While for memory pointers dereferenced through the square bracket notation the offset is
always specified in bytes, the index, when accessing stack arrays (or global arrays using a
statically known value or through a reg ptr variable using a run-time index), refers to the
position of the element in the array. This means that the Jasmin compiler uses the scale
factor to perform typed accesses. For instance, the previous expression “state[(int) index]”
corresponds to the assembly operand (%rsp,%rdx,8) where rsp contains the stack pointer, rdx
corresponds to the index variable, and, since state is an array of u64’s, the scale factor is
8. The displacement is not shown in this example, but, if more than one stack variable, or
array, is used throughout a given Jasmin program, it is used by the compiler to specify the
variable’s position in the stack frame.

It was also previously mentioned that stack arrays can be accessed using a different type.
The expression “state[u8 (int) index]” corresponds to the assembly operand (%rsp,%rdx), which
means that no scale factor is applied, because for this case it would be 1 and, as such, it can
be omitted. For u16 and u32 accesses, the assembly operands would be (%rsp,%rdx,2) and
(%rsp,%rdx,4), respectively. The scale factor is only necessary when accessing arrays using
run-time known indexes, because (almost3) any statically known index can be included in the
displacement. Considering this, and also that the scale factor is only available for the values
2, 4, and 8, it is not possible to access u128 and u256 elements within stack arrays and using
run-time indexes. Such types would require the scale factor to be 16, or 32, depending on
the type. To circumvent this architecture limitation, an additional notation was introduced.
If we consider that index contains the value 32, then the expression “state.[u256 (int) index]”

3Acordingly to Intel’s documentation, the displacement can be an 8-bit, 16-bit, or 32-bit value.
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state[0]
state[8]
state.[8]
state[(int) index]
state.[(int) index∗8]
state[(int) index + 16]
state.[(int) index∗8 + 16]
state.[u256 (int) index]
state.[u256 (int) index + 32]

(%rsp)
64(%rsp)
8(%rsp)
(%rsp,%rdx,8)
(%rsp,%rdx,8)
128(%rsp,%rdx,8)
16(%rsp,%rdx,8)
(%rsp,%rdx)
32(%rsp,%rdx)

Figure 4.3: Jasmin addressing examples for stack.

allows to access the second u256 element in the stack array state. When a dot, “.”, is included
in between the array name and the first square bracket, the compiler does not use the scale
factor, and the corresponding assembly operand is just (%rsp,%rdx). The dot notation can
be used when accessing stack arrays or with reg ptr variables, for any word type. The offset
in these cases is always specified in bytes.

Figure 4.3 shows some examples of the available notations for comparison. The corresponding
assembly for each expression is also shown. As an example, and since state is an array of
u64’s, with each element requiring 8 bytes of stack space, the expression state[8], which refers
to the ninth element of state, corresponds to 64(%rsp) in assembly. When using the standard
notation, without the dot, all displacements are multiplied by the elements’ size. That can
also be observed in the expression “state[(int) index + 16]”, where the value 16 corresponds
to 128 in assembly.

4.2.2 Assignment Operator

The assignment operator, “=”, expects two operands and allows to copy one variable, which
can be a scalar or an array, into another variable with a compatible type. This operator
usually maps into a predictable number of move instructions and, if one of the variables is a
reg ptr, it can correspond to a leaq instruction or no instruction at all.

As a first example, if two reg u64 variables a and b are declared, the statement “a = b;”
compiles into one movq instruction. If those variables were declared with the u8 or u256
types, the corresponding instructions would be movb and vmovdqu, respectively.

In the context of converting between different types, it is also possible to access the movsx
and movzx instructions using the assignment operator. The first instruction, movsx, allows
to copy the source operand into the destination operand while performing a sign-extension.
The movzx instruction performs a zero-extend copy instead. These instructions can be used
for the types u8, u16, u32, and u64, where the source operand is smaller than the destination
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operand. For instance, if the source operand is an u8 variable, then the destination operand
can be an u16, u32, or u64 variable.

As an example, if c is an u8, u16, or u32 variable, and a an u64 variable, then the statement
“a = (64s) c;” compiles into one of the following instructions: movsbq, movswq, or movslq.
Other casts can be performed depending on the type of the destination operand, (32s) or
(16s). The cast expression allows to distinguish between the sign-extend and the zero-extend
move. To perform a copy of the variable using the zero-extend move, the previous statement
could be changed to “a = (64u) c;”, which would compile to the assembly instruction movzbq,
assuming that c is an u8 variable (informally, cast operations have their ’u’ swapped into the
end).

Another interesting feature of the assignment operator is that it allows to copy arrays.
Consider, for instance, the case where there are two register arrays x and y, declared as
“reg u256[4] x y;”, and x is copied to y with the statement “x = y;”. This statement usually
compiles into four vmovdqu instructions.

There is, however, a special case where mov instructions can be removed by the Jasmin
compiler. Considering the last example, if y is not live after the assignment is performed,
there is no need to perform the copy given that x can be allocated in the registers that
previously belonged to y. This feature is useful, for instance, to perform a variable renaming.
This works for any two variables, including arrays, with compatible storage classes and types.
It is worth to note that this feature is not exclusive of the assignment operator.

In the context of stack arrays, if xs and ys are declared with the same type and size of x and
y, “stack u256[4] xs ys;”, the statements “xs = x; ys = y;” can correspond to eight vmovdqu
instructions, from register to memory. Move instructions expect two operands and they
support at most one memory operand. This means that, to perform a copy from memory to
memory, each value should be copied into a register first, and only then into the destination
memory address. As such, statements such as “xs = ys;” are not supported.

Regarding the usage of the vmovdqu instruction, instead of vmovdqa which assumes that the
given address is aligned at the corresponding size: the Jasmin compiler can be updated to use
this instruction whenever it is possible to ensure that the final address is aligned; nonetheless,
since Jasmin memory variables with types u128 and u256 are already aligned by their size,
no significant performance penalty is introduced by this missing feature.

In assignments where there is a reg ptr involved, there are two different scenarios, as it
was mentioned during subsection 4.1.5, where this type was first presented. Consider, for
instance, a scenario where there is a need to declare a reg ptr variable yp, to hold a reference
of the previously declared ys stack array. Such variable could be declared as “reg ptr u256[4]
yp;” and its initialization, “yp = ys;”, could correspond to the assembly instruction “ leaq
128(%rsp), %rcx”. The actual registers, in this case rcx, and displacement, 128, depend upon
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the complete source code being compiled. Since arrays are treated as regular values, if any
element of an array is updated using yp, and if, at a later stage in the Jasmin implementation
one wishes to continue to use ys because the reg ptr is no longer necessary, then the assignment
“ys = yp;” should be performed before using ys again. This assignment, “ys = yp;”, does not
correspond to any assembly instruction. To conclude, if a reg ptr is on the left side of “=”,
the statement corresponds to a leaq instruction and, if it is on the right side, no assembly
instruction is generated.

4.2.3 Operators

Operators for u8, u16, u32, and u64 types

Jasmin arithmetic operators corresponding to the addition, subtraction, multiplication, and
division, for the types u8, u16, u32, and u64, are presented in table 4.2. The rightmost
column of the mentioned table shows how Jasmin statements can be written, and, for each
statement, the corresponding assembly instruction followed by a small description is also
shown. The presented assembly includes the Jasmin variables, using the GAS syntax, to
provide an intuition on how each statement is compiled. Each operand must be compatible
with the corresponding assembly instruction.

Jasmin Assembly Notes
a += 1; inc a Addition by 1 is compiled into inc.
a += b; add b, a Addition.
cf, a += b; add b, a Same as previous, but carry flag can be used.
cf, a += b + cf; adc b, a Addition with carry.
a = -a; neg a Two’s complement negation.
a -= b; sub b, a Subtraction.
cf, a -= b; sub b, a Same as previous, but carry flag can be used.
cf, a -= b - cf; sbb b, a Subtraction with borrow.
a = b + c + d; lea d(b, c), a Addition using lea. Displacement d can be 0.
a = b*s + c + d; lea d(b, c, s), a Same as previous. scale factor can be 2, 4, or 8.
a = b*s + d; lea d(, b, s), a Same as previous. But c is omitted.
h, a = a * b; mul b Unsigned multiply. a allocated in rax. h in rdx.
a *= b; imul b, a Signed multiply.
a = b * i; imul i, b, a Signed multiply. i is an immediate value.
a = a / b; div b Unsigned division. a in rax. rdx is 0.

Table 4.2: Jasmin arithmetic operators overview for u8, u16, u32, and u64.

Depending on the types being used, each assembly instruction will have a different suffix
when compiled. Although this was left implicit in the previous section, the same applies for
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mov instructions. For instance, the first statement in the table, “a += 1;”, corresponds to
the assembly instruction “ inc a”, which increments by 1 its operand. If a is an u8 variable,
then the corresponding assembly instruction is “ incb a”. For the types u16, u32, and u64, the
suffixes are w, l, and q, respectively. All presented instructions can be used with all types,
with the exception of lea (load effective address), which is not defined for u8’s.

Operands can have different storage classes, depending on the corresponding assembly in-
struction. For instance, inc, allows its operand to be a register or a memory operand. As
such, any reg variable with the mentioned types can be used. If x is a reg u64 variable then
the statement “x += 1;” can be compiled into “ incq %rdi”, if %rdi is the register chosen by
the compiler’s register allocator to hold x. Array elements can also be used as operands and,
if x was declared as “reg u64[4] x;” instead, then “x[0] += 1;” could be used to increment its
first element. Memory operands, as discussed in subsection 4.2.1, can also be used, and the
statement “[in + index] += 1;” compiles to “ incq (%rdi,%rsi)”, and “(u8)[in + index] += 1;”
to “ incb (%rdi,%rsi)”, for in allocated in rdi, and index in rsi. Variable and arrays declared as
stack can also be used.

Some Jasmin statements presented in table 4.2 contain operands that are not shown in the
corresponding assembly. The statements “cf, a += b;” and “h, a = a * b;”, which correspond
to the assembly instructions “add b, a” and “mul b”, respectively, are examples where this
happens. The operand cf is used in this context to represent the carry flag, and it should
be declared as reg bool. Even though the flags are always implicitly set according to the
result of an arithmetic instruction, with the exception of lea that does not affect any flags,
it is necessary to have the flag explicitly present in the statement for its value to be used
by subsequent Jasmin statements. As an example, the statement “a += b;” corresponds to
the add instruction, which implicitly modifies the arithmetic flags according to the computed
result, but, since the carry flag is not explicitly read into a Jasmin variable in this statement,
it cannot be used by later expressions.

Regarding mul, which performs an unsigned multiplication, this instruction expects a to be
in register rax, if used to perform a 64-bit multiplication, and b can be any register or a
memory operand. Although this instruction can be used for other types, such as u32, the
following discussion will continue, for convenience, in the context of 64-bit multiplications.

The result of multiplying two 64-bit values is an 128-bit value, which this instruction allows
to compute. The most significant 64-bits of the result are placed in register rdx and the lower
bits in rax. This means that the only variant in this instruction is b. Hence, b is the only
operand that is explicitly stated in assembly. Although the statement is presented as “h, a =
a * b;”, to highlight the fact that the lower bits of the multiplication are placed in the same
register, it could be rewritten as “h, l = a * b;”. This does not mean that the original value of
a will be preserved. In fact, after this alternative statement is executed, the previous value
of a cannot be used anymore. Given that mul imposes several restrictions to the register
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allocation, the Jasmin programmer should be specially cautious when using this instruction
repeatedly, as some loads and stores are required in between them to allow for the input
operand a to be allocated in rax, and also to keep register rdx free.

Jasmin Assembly Notes
a ^= b; xor b, a Logical exclusive OR.
a |= b; or b, a Logical inclusive OR.
a &= b; and b, a Logical AND.
a = !a; not a One’s complement negation.
a = !b & c; andn c, b, a Logical AND NOT.
a <<= i; shl i, a Shift logical left.
a >>= i; shr i, a Shift logical right.
a >>s= i; sar i, a Shift arithmetic right.

Table 4.3: Jasmin bitwise operators for u8, u16, u32, and u64.

Table 4.3 presents more operators in the context of bitwise and shift instructions, also for
the types u8, u16, u32, and u64. With the exceptions of the andn instruction, from the BMI1
extension, and the not instruction, all remaining instructions require two operands. The first
statement from this table allows to compute an exclusive or, “a ^= b;”. The corresponding
instruction, xor, is frequently used in low-level programming languages and by C compilers to
zero out variables. In the context of Jasmin programming, a variable cannot be read if it is
not initialized. This means that the statement “a ^= a;” causes the compilation to abort if a
is an undefined value. To initialize a variable with zero using this approach, the programmer
should perform a direct call to the set0 primitive, “a = #set0();”, which is compiled to “xor
a, a”. The remaining bitwise operands are the logical inclusive OR, logical AND, the one’s
complement negation, also denoted as NOT, and the Logical AND NOT, that performs a
logical AND between the second source operand and the negated first source operand, with
the result being written in a third operand.

Regarding the presented shifts operators, the first two, the logical shift right and left, allow to
shift the bits of a given variable to the right or left, with the bits from the corresponding side
being discarded and the opposite side being filled with zeros. The last discarded bit is held
the in carry flag, which cannot be accessed using this syntax. The next subsection, §4.2.4,
details how the carry flag can be accessed by performing a direct call to the instruction. The
arithmetic shift right, sometimes referred to as a signed shift right, is distinguished by the
“s” in the middle of the operator. The main difference between the shr and sar instructions is
that the introduced bits on the left side will contain the sign of the original value. As such,
for positive values 0’s are introduced, and for negative values 1’s. The arithmetic shift left
performs the same operation as the logical shift left and, for that reason, only the latter is
supported. The shift count, presented in the table as “ i”, indicates how many bits a variable
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should be shifted. It can be a statically known value, from 0 to 63 for u64 variables, for
instance, or a run-time value that must be allocated in register cl, which is a sub-register
of rcx that corresponds to the first 8 bits of it. Hence, to perform a shift using a run-time
value, the shift count can be placed in a reg u8 variable which the Jasmin compiler will try
to allocate in the mentioned register.

The syntax to access some of the operands from tables 4.2 and 4.3, is not mandatory: the
presented statements that correspond to two operand assembly instructions, for instance “a
&= b;” or “a += b;”, can be written using a three operand syntax, for instance, “c = a &
b;” and “c = a + b;”, respectively. These statements still compile into the same assembly
instructions but, in these cases, the variable c is merged with a as those instructions only
support two operands.

Operators for u128 and u256 types

The available operators for the u128 and u256 types are presented in table 4.4. All assembly
instructions presented in this next table are three-operand instructions and, as such, all
Jasmin statements are written accordingly. Nonetheless, it is also possible to use the pre-
sented Jasmin operands with just two operands and, in those cases, the resulting assembly
instruction will have the destination operand equal to one of the source operands.

Jasmin Assembly Notes
c = a +type b; vpadd b, a, c Addition.
c = a -type b; vpsub b, a, c Subtraction.
c = a *type b; vpmull b, a, c Multiplication.
c = a ^= b; vpxor b, a, c Logical exclusive OR.
c = a | b; vpor b, a, c Logical inclusive OR.
c = a & b; vpand b, a, c Logical AND.
c = !a & b; vpandn b, a, c Logical AND NOT.
c = a <<type i; vpsll i, a, c Shift logical left.
c = a >>type i; vpsrl i, a, c Shift logical right.
c = a >>type i; vpsra i, a, c Shift arithmetic right.

Table 4.4: Jasmin operators for u128 and u256.

When compared with the previously presented tables, 4.2 and 4.3, some operands now
include the empathized word type. A scalar variable with type u128 or u256 can be treated
as an array of words with a smaller size. For instance, if a and b are u256 variables, they can
be considered by some of the instructions as arrays of four 64-bit words, eight 32-bit words,
sixteen 16-bit words, or even thirty two 32-bit words. In these cases, type can be replaced
by 4u64, 8u32, 16u16, or 32u8. For u128 variables, type can be replaced by 2u64, 4u32, 8u16,
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or 16u8. Not all instructions support all types.

As an example, and considering that a, b, and c are reg u256 variables, the Jasmin statement
“c = a +4u64 b;” corresponds to the assembly instruction vpaddq. If we also consider that a
is composed by four 64-bit values, a0, a1, a2, and a3, and its internal state can be interpreted
as {a0,a1,a2,a3}, with the same happening for b, then the resulting value c can also be
interpreted as {a0+b0, a1+b1, a2+b2, a3+b3}, with each of the additions being performed
modulo 264.

In the case being discussed, vpadd was suffixed with q to denote that the operation is
performed over 64-bit words. The different suffixes for the remaining types, 8u32, 16u16,
and 32u8, are d, w, and b. The addition and subtraction operators support all the men-
tioned types. The presented multiplication operator, currently supports the type 8u32 which
corresponds to the instruction vpmulld.

In the context of bitwise operators, such as the logical inclusive or exclusive OR, and
also the AND and AND NOT, and considering that these computations can be performed
independently of its sub-types, the type is not mandatory. The left and right shift operators
currently support statically known shift counts for the types 4u64, 8u32 and 16u16 for u256
variables and 2u64, 4u32 and 8u16 for u128 variables. The arithmetic shift right is also
available, and it is only necessary to replace the u by an s in the previously mentioned types.
For instance, the statement “c = a >>4s64 32;” performs an arithmetic shift right (where
the sign is preserved) by 32 in each of the four 64-bit elements of a.

4.2.4 Instructions

Instructions for u8, u16, u32, and u64 types

Figure 4.4 presents all instructions that can be directly called for the types u8, u16, u32,
and u64. Some of the instructions in this figure can be accessed using the corresponding
operator, such as MOV or ADD which correspond to the previously discussed “=” and “+”,
while others, such as BSWAP or ROL can only be used by performing a direct call. At the
beginning of this section, some basic intuition on how to directly call such instructions was
provided: the presented instructions must be prefixed with the symbol “#” and suffixed with
a size, indicating the types of the inputs.

ADC, ADCX, ADD, ADOX, AND, ANDN, BSWAP, BT, CMOVcc, CMP, CQO, DEC, DIV, IDIV,
IMUL, IMULr, IMULri, INC, LEA, MOV, MOVD, MOVSX, MOVZX, MUL, MULX, NEG, NOT,
OR, RCL, RCR, ROL, ROR, SAL, SAR, SBB, SETcc, SHL, SHLD, SHR, SHRD, SUB, TEST, XOR

Figure 4.4: Jasmin instructions for u8, u16, u32, and u64.
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For instance, the assembly instruction bswap allows to reverse the order of the bytes of a
32 or 64-bit register, and it only expects one operand, which is simultaneously source and
destination operand. This means that BSWAP can be called with a reg u32 or u64 variable.
For two variables a and b, with a being a reg u32 and b a reg u64, the following Jasmin
statements allow to reverse the byte order of these two variables: “a = #BSWAP_32(a);”
and “b = #BSWAP_64(b);”. This instruction, bswap, does not affect any arithmetic flags.

On the other hand, the execution of the previously mentioned rotate left instruction, ROL,
can affect the overflow and carry flags, depending on the count value. The remaining flags
are unchanged. In Jasmin, each direct call to an instruction returns the computed values and
also the updated flags. As an example, to rotate the previously mentioned reg u64 variable
b by 1, and read the corresponding flag values into two reg bool variables of and cf, the
following statement can be used: “of, cf, b = #ROL_64(b, 1);”.

It is worth to mention that it is not mandatory that the return values are read into a
variable. For instance, if one does not want to consider the values of such flags, and it is
only interested in performing the rotate operation, the previous statement can be updated
to “_, _, b = #ROL_64(b, 1);”, where “_” denotes a variable that can be discarded. This
feature is not limited to the context of arithmetic flags and it is also possible to only consider
the updated flag values: “of, cf, _ = #ROL_64(b, 1);”. If all return values are ignored, “_,
_, _ = #ROL_64(b, 1);”, the instruction is automatically removed by the compiler. This
feature can also be used in any context where one or more values are returned, including
in the context of function calls, which are discussed in section 4.4. Additionally, and for
convenience, any left return values except one can be completely omitted. For instance, the
statement “b = #ROL_64(b, 1);” is equivalent to the one where the flags are not considered.
In this case, the compiler emits a warning to let the developer know that left return values
are being introduced, as “_”, during compilation.

Some instructions affect all supported arithmetic flags, which is the case for the SHL and
SHR, that correspond to the operators “<<” and “>>”, respectively. As an example, the
statement “of, cf, sf, pf, zf, b = #SHL_64(b, 1);”, allows to perform a left shift to b by one
bit, and also store all flags for subsequent usage. In this particular case, the sign, parity, and
zero flag, denoted in the example as sf, pf, and zf, are set according to the resulting value
that is stored in b. The overflow flag behavior is only defined for one bit shifts, and the carry
flag contains the last discarded bit.

The order in which flags are presented for this instruction is common to other instructions
that affect the same set of flags. It is worth to recall that, although the presented discussion
always uses what can be considered intuitive names for the flags being discussed, the chosen
names are not mandatory and also not related with the flag that it represents: if, by mistake,
the developer swaps the position of cf and sf in the previous statement, then cf will correspond
to the sign flag and sf to the carry flag.
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The CMOVcc instruction allows to perform a conditional move depending on a given condi-
tion. Consider, for instance, that there are two reg u64 variables b and c, and that c should be
copied to b if the overflow flag, of, is set. The statement “b = #CMOVcc_64(of, c, b);” allows
to achieve this and it would be compiled to “cmovo %rcx, %rax”, for c allocated in register
rcx and b in rax. The first argument of CMOVcc can be any condition that corresponds to
a valid instantiation of the cmov assembly instruction. As an example of this, if we also
consider that the carry and zero flag are also declared and initialized, the Jasmin statement
“b = #CMOVcc_64(cf || zf, c, b);” compiles to “cmovbe %rcx, %rax”, which corresponds to a
conditional move if below or equal instruction. This instruction can also be accessed using a
more intuitive syntax which is presented during the next section, more precisely in §4.3.2.

The SETcc instruction allows to set an u8 variable to zero or one depending on an input
condition. It supports the same set of conditions as the CMOVcc instruction and, since it
always returns an u8 value, the size suffix is not necessary for this instruction. As an example,
the Jasmin statement “d = #SETcc(cf || zf);” compiles into “setbe %al”, with d declared as a
reg u8 variable and being allocated into al, a sub-register of rax.

To conclude, there are three Jasmin instructions, presented in figure 4.4, that map into the
same assembly instruction, imul, which allows to compute a signed multiplication: IMUL,
IMULr, and IMULri. Briefly, imul can be encoded with one, two, or three operands, with
each encoding having different restrictions and, for that reason, each form corresponds to
a different Jasmin instruction. The first Jasmin instruction, IMUL, allows to use the one
operand form of imul, where one of the inputs is expected in rax, or a sub-register of it
depending on the size of the operands. The computed result is written in registers rdx and
rax, or sub-registers of them, making it similar to theMUL instruction. The two operand form
of imul can be accessed with IMULr, and it allows to compute the truncated multiplication of
two source operands, with the computed result being written in one of the source operands,
which can be any register. The three operand form can be accessed using IMULri, which
is similar to the previous one given that the multiplication result is also truncated. When
compared to IMULr, IMULri expects an immediate value as one of its source operands and
the destination operand is used exclusively for that purpose. All multiplication instructions
discussed in this paragraph return the all the available arithmetic flags, in the order that was
discussed for SHL instruction, for instance.

Instructions for u128 and u256 types

Figure 4.5 presents the instructions that can be directly called with variables with types u128
and u256. Similarly to what was discussed previously, some of these instructions can also be
accessed through the corresponding operator. VPADD is one example of this case, where, for
any three variables a, b, and c, declared as reg u256, the Jasmin statement “a = b +4u64 c;”
is equivalent to “a = #VPADD_4u64(b, c); ”.
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AESDEC, AESDECLAST, AESENC, AESENCLAST, AESIMC, AESKEYGENASSIST,
VAESDEC, VAESDECLAST, VAESENC, VAESENCLAST, VAESIMC, VAESKEYGENASSIST,
VBROADCASTI128, VEXTRACTI128, VINSERTI128, VMOVDQU, VMOVSHDUP,
VMOVSLDUP, VPACKSS, VPACKUS, VPADD, VPALIGNR, VPAND, VPANDN,
VPBLEND, VPBROADCAST, VPERM2I128, VPERMQ, VPEXTR, VPINSR, VPMOVSX,
VPMOVZX, VPMULH, VPMULHRS, VPMULHU, VPMULL, VPMULU, VPOR,
VPSHUFB, VPSHUFD, VPSHUFHW, VPSHUFLW, VPSLL, VPSLLDQ, VPSLLV, VPSRA,
VPSRL, VPSRLDQ, VPSRLV, VPSUB, VPUNPCKH, VPUNPCKL, VPXOR, VSHUFPS

Figure 4.5: Jasmin instructions for u128 and u256.

The statement “a = b *8u32 c;”, which allows to compute the 32-bit truncated multiplication
between the eight 32-bit elements from b and c, produces the same result as the statement
“c = #VPMULL_8u32(a, b);”. VPMULL can also be used with the _16u16 suffix to get the
lower 16-bits of the multiplication between each corresponding 16-bit element from the source
operands. In this case, and before the multiplication is performed, each 16-bit element is
sign-extended to 32-bits. The corresponding assembly instruction is vpmullw. To avoid the
sign-extension, instruction VPMULHU is available.

Not all instructions operate on multiple sizes that correspond to vectors and, in some cases,
the suffix indicating the size of the operation is not necessary. Instructions VPERM2I128
and VEXTRACTI128, which allow to shuffle two u256 variables or to extract an u128 value
from an u256 variable, respectively, are only defined for the mentioned types and, as such,
no suffix is required.

In some cases, the suffix allows to distinguish between u128 and u256 variables. For instance,
and for the previously defined reg u256 variables a, b, and c, the suffix _256 in the statement
“a = #VPMULU_256(b, c);”, which allows to multiply the low 32-bit integers from each
64-bit element, indicates that VPMULU is being called in the context of u256 variables. In
the event that these variables were declared as u128, the statement “a = #VPMULU_128(b,
c);” could be used.

VPSRLDQ and VPSLLDQ instructions allow to perform a right and left shift, respectively,
over 128-bit lanes. An u256 variable has two 128-bit lanes and an u128 has one. The suffixes
that can be used in these cases are also _256 and _128. For instance, the statement “a =
#VPSRLDQ_256( b, 2); ” allows to right shift each lane of b by 16 bits and store the result
in a. The shift count in both instructions is specified in bytes.
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4.3 Control-Flow

Jasmin supports the following control-flow structures: if; for; and while statements. The
difference between the for and while statements is that the former is used to unroll the loop
where the latter preserves the loop structure. This section starts by detailing the conditions
that can be used in if and while statements and that depend on run-time values, §4.3.1. for
loops do not use mentioned conditions because, since they are unrolled, all parameters must
be statically known. The remaining subsections describe the if §4.3.2, for §4.3.3, and while
§4.3.4 control-flow structures.

4.3.1 Conditions

This subsection presents the conditions that can be used to dynamically control the execution
path of a given Jasmin program. Conditions that depend on run-time values can be grouped
in two types: boolean conditions; and word conditions.

Bool Conditions

The bool type enables the Jasmin programmer to use arithmetic flags defined in the AMD64
architecture and, in this type of conditions, all operands must have the type “reg bool”. For
instance, if a given flag is available from a previous operation, such as the zero flag, “_, cf,
_, _, zf, a = #SUB_64(a, 1);”, with a being a reg u64 variable, then the conditions “( zf
)” or “( !zf )” can be used to test, correspondingly, if a is zero, or not. The corresponding
assembly instructions generated by the compiler, when these are used in the context of an if
structure, are je and jne. Flags can also be combined if there exists a corresponding assembly
instruction. For instance, the conditions “( cf || zf )” and “( !cf && !zf )” map into the
assembly instructions jbe and jnbe, respectively.

Word Conditions

This type of condition requires the two operands to have the same word type, which must
be one of the following: u8, u16, u32, or u64. The first operand must be a run-time value,
and the second can be a run-time or statically known value. Table 4.5 presents the available
comparison operators. For instance, if two variables are declared as “reg u64 a b;”, the
condition “(a > b)” allows to test if a is greater than b. By default, all comparison operators
consider operands as unsigned values and, to perform a signed comparison, the corresponding
operator must be suffixed with an s. For instance, if the previously declared variable a is used
in the condition “(a > 0)”, the unsigned value of a is considered, with this test being true if
any bit in a is set to one. To consider a as a signed value, and include the value 0 in the test,
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which may be useful if a is being decremented inside a while loop, then the condition (a >=s
0) can be used.

Unsigned Signed
Greater > >s
Less < <s
Greater or Equal >= >=s
Less or Equal <= <=s
Equal == ==
Not Equal != !=

Table 4.5: Jasmin comparison operators overview.

All word conditions map into the cmp assembly instruction and, as such, operands must have
types that are compatible with the ones expected by this instruction. Table 4.6 presents an
overview of the expected types for each operand: the first operand should always be a run-
time value, meaning that it must be a reg or a memory operand (stack or external memory);
if the first operand is a memory operand then the second operand must be a reg variable or
an immediate value (either written directly in the condition or as an inline variable) as this
instruction does not support two memory operands simultaneously; if the first operand is an
u64 and the second operand is a statically known value (immediate or inline), the maximum
value of for an unsigned second operand is 231 − 1 given that it is sign-extended from 32 to
64 bits; if a reg variable is used as the first operand, the second operand can then be a reg,
stack, memory, or an inline value.

First operand Second operand
(reg | stack | mem1) u8 (inline2 | reg) u8

u16 u16
u32 u32
u64 inline u323

u64 reg u64

reg u8 (reg | stack | mem) u8
u16 u16
u32 u32
u64 u64

1mem designates a memory access instruction such as “(u8)[in + 8]”.
2the immediate value can also be written directly, “a >= 255”.
3in this case, the u32 constant is sign-extended to 64 bits.

Table 4.6: Jasmin comparison operands types.
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4.3.2 if

Jasmin supports if statements with or without the else clause. An if statement with an else
clause can be written as follows:

if ( condition ){ then_block } else { else_block }

condition can be a boolean, word, or any other condition that can be statically resolved.
For conditions that can be statically resolved, the Jasmin compiler removes the unused
branch during compilation. For run-time conditions, the then_block contains the code that
is executed if the condition evaluates to true and the else_block contains the code to be
executed if the condition evaluates to false. For all types of conditions, both the then_block
and else_block can contain other if statements, for and while loops, or calls to inline or
local functions. The else clause is not mandatory. Given the way that the cmov instruction
operates, an additional if syntax to specifically use this instruction is available:

v1 = v2 if ( condition );

Figure 4.6 presents an example where an if statement is used to initialize a stack u64 variable
r with the value 1 or 0 depending if a variable a (declared as reg u64 and whose initialization
is not shown) is different from 0 or not. The presented assembly code shows that, after
comparing a with 0 using the cmpq instruction, a jump is performed if the zero flag is 0 (jne
or jump not equal). If the jump does not happen (zero flag is 1), the else code is executed
instead. The positions of the Jasmin code corresponding to the then_block and else_block
clauses have their positions swapped when compiled to assembly.

reg u64 a;
stack u64 r;
//...
if(a != 0)
{ r = 1; }
else
{ r = 0; }

cmpq $0, %rdi # a != 0
jne Lt0$1
movq $0, (%rsp) # r = 0
jmp Lt0$2

Lt0$1:
movq $1, (%rsp) # r = 1

Lt0$2:

Figure 4.6: Jasmin if statement with an else clause.

The else clause is not mandatory and it can be omitted. Figure 4.7 presents an alternative
implementation of the figure’s 4.6 example: variable r is always set to 0 and, if a is different
from 0, r is set to 1. In this second example, the je instruction is used (instead of jne). As a
side-note, it is possible to observe that variable r corresponds to (%rsp): the displacement is
not used in this example because r is the only variable declared as stack.
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reg u64 a;
stack u64 r;
//...
r = 0;
if(a != 0)
{ r = 1; }

movq $0, (%rsp)
cmpq $0, %rdi
je Lt1$1
movq $1, (%rsp)

Lt1$1:

Figure 4.7: Jasmin if statement without an else clause.

The cmov instruction allows to perform a conditional copy depending on how arithmetic flags
are set, and it can be invoked directly or by using the if notation. This instruction requires
the destination operand to be a register and the source operand to be a register or a memory
operand. Figure 4.8 presents an alternative implementation of the previous examples, from
figures 4.6 and 4.7.

To abide with the cmov requirements, the storage class of the variable r was changed
from stack to reg and, since this instruction does not allow for immediate values in its
source operand, a global variable named one was declared and initialized with the value
1. Alternatively, this variable could be declared as “reg u64 one;”. The conditional copy can
then be performed with the expression “r = one if(a != 0);”, which maps into the assembly
instructions “cmpq $0, %rdi” and “cmovne glob_data + 0(%rip), %rax”.

reg u64 a r;
global u64 one;
//...
r = 0;
one = 1;
r = one if(a != 0);

movq $0, %rax
cmpq $0, %rdi
cmovne glob_data + 0(%rip), %rax

# ...
glob_data:

.byte 1

.byte 0
# ...

Figure 4.8: Jasmin if statement and the cmov instruction.

The condition of the if statement remains the same as the previous examples, “(a != 0)”.
Since this syntax is reserved for the cmov instruction, no brackets or semicolon are allowed to
enclose the assignment “r = one” given than no more that one copy can be performed in this
type of if. In the event that multiple conditional copies are needed, with all copies being based
on the same condition, for instance, “r0 = one if(a != 0);” and “r1 = one if(a != 0);”, then
it is advantageous to compute the comparison explicitly, “zf = #CMP_64(a,0);” (remaining
flags are omitted), and perform the conditional copies with the following statements: “r0 =
one if(!zf);” and “r1 = one if(!zf);”. This way, only one cmpq instruction is generated.

The examples presented so far were focused on if statements that depend on run-time values
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but, if the condition of a given if statement can be resolved during compilation, meaning
that all values from these conditions are known to the compiler, then the unused branch is
removed. Consider the example presented in figure 4.9, where a global parameter i is declared
and initialized with the value 5.

// declared in the global scope
param int i = 5;
// code from a function’s scope
inline int v;
reg u64 r;
v = 1; r = 0;
if((i∗2) % 3 == v)
{ r += 1; }
else
{ r += 2; }

movq $0, %rax
incq %rax

Figure 4.9: Jasmin if statement resolved during compiling time.

Also consider, for the sake of this example, that the goal of defining such global parameter is
to write generic Jasmin code: just by changing the initialization value of the param int i the
produced assembly can be different. In the presented example, the condition ((i*2) % 3 ==
v) can be statically resolved by the compiler given that i and v are known. In this case, since
the previous expression evaluates to 1, the branch corresponding to “r += 2;” is removed.

4.3.3 for

The for statement allows to specify loops that are completely unrolled during compilation.
Conditions that depend on run-time values are not allowed in this construct. It is mostly
used to process register arrays, whose indexes must be statically known, or to inline the same
code as many times as necessary. The discussing will follow by first presenting the two types
of for loops. It then follows by discussing a more complex example, where two for loops are
used together with an if statement. A for loop can be written as:

for it=initial_value ( to | downto ) end_value { loop_block }

it is an inline int variable called the iterator, initial_value specifies the first value for the
iterator. The keyword to, or downto, is used to indicate if the iterator is incremented, or
decremented, in each loop iteration. The end_value specifies the last value for the iterator
+1, or -1, depending if it is an upwards or downwards loop, respectively.

Figure 4.10 presents an example that uses two different types of for loops that allow to
initialize two register arrays, x and y declared as “reg u64[4] x y;”, with the same set of values.
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The initialization of both arrays happens in a different order to demonstrate the differences
between the to and the downto keywords. The first array to be initialized is x. The statement
“for i=0 to 4” specifies a loop that iterates four times with i assuming the following values
during execution: {0,1,2,3}. To initialize y, the inverted version of the previous for was used,
“for i=3 downto -1”, and i it iterated through the following set of values: {3,2,1,0}.

reg u64[4] x y;
inline int i;

for i=0 to 4
{ x[i] = (64u) i; }

for i=3 downto -1
{ y[i] = (64u) i; }

movq $0, %rax
movq $1, %rcx
movq $2, %rdx
movq $3, %r8
movq $3, %r9
movq $2, %r10
movq $1, %r11
movq $0, %rbp

Figure 4.10: Jasmin for loops.

Although not strictly necessary, the initialization of the register array elements in the shown
example, for instance, “x[i] = (64u) i;”, includes a cast to change the type of the iterator i
from the unbounded int type into a bounded type with 64 bits. If an inline int variable b is
initialized with the value 264 + 1 and copied into a u64 variable then the u64 variable would
be initialized with the value 1.

The assembly code of this example shows that both for’s were completely unrolled. The
immediate values from the source operand of the movq instructions unveil the order in which
they were unrolled. As a side-note, the last register to be allocated into the declared arrays
was rbp, for the fourth position of y array, which is also available to use in Jasmin as the stack
frame is managed using only rsp. The compiler includes the necessary instructions (store and
load from the stack) to preserve nonvolatile registers in the generated assembly code.

Any control-flow structure can be used inside for loops, including other for loops. Consider
the example shown in figure 4.11 where a register array “reg u64[9] x;” is used to represent 3x3
matrix. This array could also be declared as “reg u64[3*3] x;” if more convenient. To initialize
all leading diagonal elements with 0 and the remaining elements with 1, two nested for loops
containing an if statement can be used. The outer loop iterates i, for the values {0,1,2}, and
the inner loop iterates j, also for {0,1,2}. In the nested loop block, the expression “3*i + j”
can be used as index to access the array element from the current iteration. Additionally, if
an element belongs to the leading diagonal then i is equal to j. An if can be used to check
for this case and, since such condition depends only on statically known values, the if is
resolved by the compiler. As an additional note, it would be possible to take advantage of
global parameters to make the presented code more generic. For instance, let’s consider that
a global parameter M was declared in the global scope as “param int M = 3;”. The x array
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reg u64[9] x;
inline int i j;

for i=0 to 3
{ for j=0 to 3
{ if(i==j)
{ x[3∗i + j] = 0; }
else
{ x[3∗i + j] = 1; }

}
}

movq $0, %rax
movq $1, %rcx
movq $1, %rdx
movq $1, %rsi
movq $0, %r8
movq $1, %r9
movq $1, %r10
movq $1, %r11
movq $0, %rbp

Figure 4.11: Jasmin nested for loops with an if.

could then be declared as “reg u64[M*M] x;” and the for loops as “for i=0 to M” and “for j=0
to M”. The indexing “3*i + j” could also be replaced with “M*i + j”. Also in this context, if
one would like to access the secondary diagonal instead, the if condition could be updated
to “((M-i-1)==j)”.

4.3.4 while

This subsection presents the while loop, which can be used to specify two different kinds of
loops that are, in their essence, equivalent to the while and do-while loops that can be found
in other programming languages such as C. while loops are preserved during compilation and
are never unrolled or partially unrolled. They are mainly used in contexts where unrolling
does not bring any specific advantages, to process inputs or outputs with arbitrary length,
or to reduce the resulting assembly size. A while loop can be written as follows:

while ( condition ){ loop_block }

Similarly to the if statement, the condition section can contain any condition that depends
on run-time values, which were previously discussed in subsection 4.3.1. Conditions that can
be statically resolved are not useful in this context. Such conditions would either correspond
to a “while(true){” or a “while(false){” statement. For the “while(true){” case, and considering
that Jasmin does not support break statements, which would allow to terminate the execution
of a given loop under certain conditions, and also that the return statement should be the
last statement of any Jasmin function, such use case does not currently has any practical
applications. The loop_block section can contain any Jasmin code, including nested control-
flow structures.

A loop that implements the do-while behavior can be written as follows:
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while { loop_block }( condition ){ it_block }

The loop_block is executed at least once. The condition is evaluated at the end of each
loop_block execution and, if it is true, then the it_block is executed once before the next
execution of the loop_block. When the condition evaluates to false, the it_block is not
executed.

Figure 4.12 presents an example where a while is used to copy up to 16 bytes from external
memory, referenced from a pointer in, to a “stack u64[2] s;” array. This is the first example
presented within a complete Jasmin function. The length of in, in bytes, is also provided as
a function argument and, for the sake of this example, we can assume that 0 <= len <= 16.

export fn load_bytes1(reg u64 out in len) {
stack u64[2] s;
reg u64 i;
reg u8 v;

s[0] = 0;
s[1] = 0;
i = #set0();

while(i < len) {
v = (u8)[in + i];
s[u8 (int)i] = v;
i += 1;

}
//...

}

load_bytes1:
#stack setup is omitted
movq $0, (%rsp)
movq $0, 8(%rsp)
xorq %rax, %rax
jmp Lload_bytes1$1

Lload_bytes1$2:
movb (%rsi,%rax), %cl
movb %cl, (%rsp,%rax)
incq %rax

Lload_bytes1$1:
cmpq %rdx, %rax
jb Lload_bytes1$2

Figure 4.12: Jasmin while loop.

After both positions of the stack array s are initialized with 0, meaning that all 16 bytes
corresponding to this array are zeroed out, the assignment “ i = #set0();” is used to initialize
i with 0 with an xor instruction. A while loop is then used to perform a copy, byte by byte,
from the memory pointed by in to the stack array s. The condition of this loop is (i < len)
and i is incremented at every loop iteration by the statement “ i += 1;”.

In the while loop_block, the copy is performed by first loading the value pointed by “ in +
i” into a reg u8 v variable with the expression “v = (u8)[in + i];” and then copying v into
s with the expression “s[u8 (int)i] = v;”. Since the mov instruction does not allow for two
memory operands, it is necessary to load the value into a register first. As a side-note, the
expression “s[u8 (int)i] = (u8)[in + i];” is currently accepted by the compiler, but the same
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two mov instructions would be generated, one to copy from memory to a register that is
automatically chosen by the compiler, and another to copy from a register to memory.

Regarding how the code from figure 4.12 is translated into assembly, right after variable i
(register rax) is zeroed with the xorq instruction, an unconditional jump is performed to the
end of the loop_block, where the loop condition is evaluated. If the condition is true, meaning
that i < len, then a jump into the beginning of the loop is performed.

An alternative implementation for the function load_bytes1 is presented in figure 4.13. This
alternative function, load_bytes2, uses a loop written using the do-while notation and the
loop_block is executed at least once. This means that there should be at least one byte to
copy, changing the previous prerequisite into 1 <= len <= 16.

export fn load_bytes2(reg u64 out in len) {
stack u64[2] s;
reg u64 i;
reg u8 v;
s[0] = 0;
s[1] = 0;
i = #set0();

while {
v = (u8)[in];
s[u8 (int)i] = v;
i += 1;

} (i < len)
{ in += 1; }
//...

}

load_bytes2:
#stack setup is omitted
movq $0, (%rsp)
movq $0, 8(%rsp)
xorq %rax, %rax
jmp Lload_bytes2$1

Lload_bytes2$2:
incq %rsi

Lload_bytes2$1:
movb (%rsi), %cl
movb %cl, (%rsp,%rax)
incq %rax
cmpq %rdx, %rax
jb Lload_bytes2$2

Figure 4.13: Jasmin do-while loop.

Regarding how this second example is compiled, it_block is printed in first place and loop_block
in second place. The it_block corresponds to the expression “ in += 1;” in Jasmin and “ incq
%rsi”, and it is incrementing the pointer in. Given that it_block should only be executed after
the condition is evaluated to be true, an unconditional jump is introduced in the assembly
to avoid this section in the first loop iteration. In this particular example not much is saved
by using the optional it_block, given that one jump is introduced to avoid one execution of
“ incq %rsi”.
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4.4 Functions

One of the most interesting features in Jasmin is the support for functions. Three types
of functions are available: inline; local; and export. As a brief overview, inline functions are
inlined at the caller site and can be intuitively seen as an extended macro mechanism. The
second type, local, allows to write functions whose code is shared. Local functions do not
require any specific keyword to be declared. The third type, export, allows to write functions
that (partially) implement the System V calling convention and can be called from external
code. The following subsections describe the available function types in the following order:
inline functions in §4.4.1; export functions in §4.4.2; and local functions in §4.4.3.

4.4.1 Inline Functions

An inline function can be written as follows:

inline fn function_name ( arguments ) → return_types { function_body }

A valid function_name starts with an underscore or a letter and, afterwards, it can contain
letters, numbers, or underscores. Function inputs are declared in arguments. Inputs can have
the following storage classes: stack; reg; and inline. Any type can be used, including arrays.
An empty list of inputs is also allowed, which can be useful to define functions that return
constant values. As an example, “(reg u64[4] a b, stack u64 s, inline int k)” is a valid argument
list, with a and b being declared as register arrays of equal length and type, s as a stack
variable, and k as an unbounded integer.

Output types are specified in return_types. This is an optional section and it may be omitted
(including the arrow) if the function does not return anything. Multiple return types are
allowed and should be separated by commas. For instance, if a given function returns two
register variables with types u8 and u32, and also an integer, the following return type can
be used: “→ reg u8, reg u32, inline int”.

All local variables should be declared at the beginning of function_block. After that, any
Jasmin code can be used, including control-flow structures and function calls to other inline
or local functions. It is not possible, however, to define a function within a function. The
last statement in function_block is the return statement (if return_types is defined).

Figure 4.14 presents an example of an inline function, This function, __add4, receives two
register arrays, a and b, and it returns the addition (with carry propagation) of these two in
a different register array named r. For this example, we can assume that a and b represent
two 255-bit integers that can be reconstructed with the following expression, 2192 · x[3] +
2128 · x[2] + 264 · x[1] + 20 · x[0], by replacing x by a or b. Given that each number is less or
equal to 2255 − 1, the last carry is guaranteed to be zero.
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We also want to consider that a and b are read-only arrays in the sense that, if these arrays
are used after __add4 is called, the original values are still preserved. Currently, there is no
mechanism to explicitly state this, such as the keyword const which is frequently used in C
programming language. To achieve this, and given that the assembly instructions that are
used to perform this computation (add and adc) are two operand instructions, a needs to be
copied into r first (it could also be b). To perform this copy, only one statement is required:
“r = a;”.

In Jasmin, it is not possible to generate assembly code solely from inline functions: these
functions need to be called within the scope of an export function. Given that the code that
is shown on the right side of figure 4.14 was generated from a context where a is no longer
used after it was copied to r, a and r were merged by the compiler. As such, the four mov
instructions are not included in the resulting assembly code. If __add4 was called from a
context where a was still live, the mov instructions would be included.

inline fn __add4(reg u64[4] a b) → reg u64[4]
{
inline int i;
reg bool cf;
reg u64[4] r;

r = a;
cf, r[0] += b[0];
for i=1 to 4
{ cf, r[i] += b[i] + cf; }

return r;
}

addq %r10, %rax
adcq %r11, %rcx
adcq %rbp, %r8
adcq %rdx, %r9

Figure 4.14: Jasmin inline function.

Consider, for instance, that the presented function is used in two different situations, to
compute a = a + b and r = a + b. In a hypothetical scenario where the compiler does
not merge variables, and where performance is a matter of concern, two different addition
functions would have to be written, one for in-place additions and another for non in-place
additions. In the current state of the Jasmin compiler, only one version of the function is
needed and unnecessary mov instructions are removed during compilation.

Jasmin inline functions can receive and return inline variables. These variables are no more
than statically known variables that are usually initialized with an immediate value or
expression. In this context, we can revisit a previous example (§4.3.3, figure 4.11) in which a
register array with 9 positions that was being used to represent a 3x3 matrix was initialized.
Two nested for loops, iterating i and j, were used to perform the initialization, and the index
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was calculated using the expression “3*i + j”. The index computation can be encapsulated by
an inline function, that receives i and j and returns an inline int that corresponds to the index
computation. Figure 4.16 presents an implementation for this function. The introduction of
this additional function did not cause any change in the produced assembly code.

inline fn __m3x3() → reg u64[9] {
reg u64[3∗3] x;
inline int i j k;

for i=0 to 3 {
for j=0 to 3 {
k = index(i, j);
if(i == j)
{ x[k] = 0; }
else
{ x[k] = 1; }

}
}
return x;

}

inline fn index(inline int i j) → inline int {
inline int r;
r = (3∗i + j);
return r;

}

Figure 4.15: Jasmin inline function with an inline return type.

Another interesting use case for inline functions that return inline variables is related to
one of the permutations of Keccak, more concretely, the ρ permutation [BDPVA09]. For
convenience, the permutation’s pseudocode is presented in Algorithm 1. The general intuition
for the ρ permutation is that, given an initial state a, a new state A is built by rotating each
element of a, with the exception of one element, which is just copied. When Keccak-f
is instantiated with a width of 1600 bits, Keccak-f [1600], and implemented in a 64-bit
architecture, then a can be seen as a 5x5 matrix of u64 values (5 · 5 · 64 = 1600).

Algorithm 1 Keccak-f ρ permutation
A[0, 0] = a[0, 0](
x

y

)
=

(
1

0

)
for t = 0 to 23 do
A[x, y] = ROT(a[x, y], (t+ 1)(t+ 2)/2)(
x

y

)
=

(
0 1

2 3

)(
x

y

)
end for

To implement Algorithm 1 in Jasmin it is possible to follow two different approaches. The
first is to implement the algorithm exactly as it is shown, using a function that receives a
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stack array a with 25 elements and uses a for loop to iterate t and rotate the elements of
a. Assuming that a[x, y], from Algorithm 1, corresponds to a[x + y*5] in Jasmin, such loop
would access the array a in the following order: {1,10,7,11,17,...}. To access the elements of a
sequentially, it is possible to follow a slightly different approach and separate the computation
of the rotation counts from the rotation itself.

Figure 4.16 presents an implementation of Algorithm 1 using this second approach. The
function presented on the left side, rotates, receives two indexes, _x and _y and returns the
corresponding rotation count for that particular position. To achieve this, it is necessary to
first initialize a variable r with 0 to cover the case where _x and _y are equal to 0. The for
loop performs the specified computation and, if _x and _y are equal to the local x and y,
the rotation count is stored in the returning variable r. Since Jasmin only supports return
statements as the last statement of a function, the execution cannot be terminated inside
the for loop body and it continues. However, this is not an issue: given that rotates is an
inline function that returns an inline variable, and only uses statements that can be statically
resolved during compilation, the compiler replaces the call to rotates by the corresponding
value.

inline fn rotates(inline int _x _y) → inline int {
inline int r x y z t;

r = 0; x = 1; y = 0;
for t=0 to 24 {
if( _x == x && _y == y)
{ r = ((t + 1) ∗ (t + 2) / 2) % 64; }
z = (2∗x + 3∗y) % 5;
x = y;
y = z;

}
return r;

}

inline fn rho(stack u64[25] a) → stack u64[25] {
inline int r x y;

for y = 0 to 5 {
for x = 0 to 5 {
r = rotates(x, y);
if(r != 0)
{ _, _, a[x+y∗5] = #ROL_64(a[x+y∗5], r); }

}
}
return a;

}

Figure 4.16: Jasmin implementation of Keccak ρ permutation.

The second function, rho, is presented on the right side of figure 4.16. It receives an array
declared as “stack u64[25] a” and returns the updated state. To perform this permutation, two
for loops are used, with the outer one iterating y. This way, all accesses happen sequentially.
Whenever called, this function causes 24 rol assembly instructions to be generated. rol
requires two operands, the first can be a register or memory address, and the second must
be an immediate value that specifies the rotation count. The instruction performs a rotation
to the left and the first operand is simultaneously the source and destination operand. The
rotation by 0 is avoided by using an if statement that can be statically resolved.



4.4. FUNCTIONS 75

4.4.2 Export Functions

export functions can be called from external code if the System V calling convention is
supported. The declaration of export functions is similar to the declaration of inline functions,
and only the preceding keyword changes:

export fn function_name ( arguments ) → return_types { function_block }

Functions declared as export can receive up to 6 register arguments with types u8, u16,
u32 and u64. Each argument map into registers rdi, rsi, rdx, rcx, r8 and r9 (or sub-parts
or them depending on the types) in accordance to their order in the argument list. Stack
arguments are not supported. In addition to these, export functions can also can receive up
to 8 register arguments with types u128 or u256. Each of these arguments map into registers
xmm0-xmm7/ymm0-ymm7, depending on the used types.

Only one reg variable can be returned and, as such, the return_types section must contain
only one type. If the return type belongs to the set {u8,u16,u32,u64}, then register rax (or
a sub-part of it) is used. If the function returns an u128 or u256 variable, then the register
xmm0 or ymm0 is used.

Similarly to the inline functions, function_block contains all local variables declarations first,
and then any Jasmin code can be used. It is not possible, however, to call other export
functions or define functions within functions. The Jasmin compiler handles the stack setup
and also saves caller registers (rbx, rbp, r12, r13, r14, and r15) depending on how many
registers are necessary to successfully compile the program.

Figure 4.17 presents an example of an export function, add4, that creates an interface for
external code to use the previously defined inline function __add4, from figure 4.14. The
presented function receives two arguments, ap and bp, which are variables that contain
pointers to two external arrays with 8*4 bytes each. add4 does not have a return type. Since
ap is declared first, it is allocated in register rdi and bp in rsi. Although not strictly necessary
for this example, given that this program would only use up to 10 registers, a stack variable
aps was declared to store the value of ap in the local stack. This way, the instructions that
are related with the stack setup can be observed and discussed. Two additional functions,
__load4 and __store4, to load and store register arrays are also presented. The first
assembly instruction that is executed in the assembly version of add4 is “movq %rsp, %r11”.
The old value of the stack pointer must be saved to be restored before the function returns.
Since there are free registers in this example, the compiler selected register r11 to hold a
copy of this value. When there are no available registers, the old stack pointer is saved in
the stack. The next instruction, leaq, subtracts 8 to the stack pointer to allocate space for
the aps local stack variable. The following instruction, andq, aligns the stack pointer to 8
bytes. In this particular case, it is not necessary to perform such alignment if we assume
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inline fn __load4(reg u64 ap) → reg u64[4] {
inline int i;
reg u64[4] a;
for i=0 to 4
{ a[i] = [ap + 8∗i]; }
return a;

}

inline fn __store4(reg u64 ap, reg u64[4] a) {
inline int i;
for i=0 to 4
{ [ap + 8∗i] = a[i]; }

}

export fn add4(reg u64 ap bp) {
reg u64[4] a b;
stack u64 aps;
aps = ap;
a = __load4(ap);
b = __load4(bp);
a = __add4(a,b);
ap = aps;
__store4(ap, a);

}

add4:
movq %rsp, %r11
leaq -8(%rsp), %rsp
andq $-8, %rsp
movq %rdi, (%rsp) # aps = ap
movq (%rdi), %rax # a = __load4(ap);
movq 8(%rdi), %rcx
movq 16(%rdi), %rdx
movq 24(%rdi), %rdi
movq (%rsi), %r8 # b = __load4(bp);
movq 8(%rsi), %r9
movq 16(%rsi), %r10
movq 24(%rsi), %rsi
addq %r8, %rax # a = __add4(a,b);
adcq %r9, %rcx
adcq %r10, %rdx
adcq %rsi, %rdi
movq (%rsp), %rsi # ap = aps;
movq %rax, (%rsi) # __store4(ap, a);
movq %rcx, 8(%rsi)
movq %rdx, 16(%rsi)
movq %rdi, 24(%rsi)
movq %r11, %rsp
ret

Figure 4.17: Jasmin export function.

that the initial value of the stack pointer was already aligned at 8 or 16 bytes. However, if
there was a local variable declared as stack u8, then leaq would be used to subtract 9 to rsp
and, in this case, the alignment would be necessary. If stack u256 variables were used in the
implementation, then the stack would be aligned at 32.

After the local stack frame setup is done, the ap pointer is stored in the stack, and two register
arrays with four positions each are loaded from memory, using the auxiliary function__load4.
If, for instance, function__load4 was frequently used two times in row, an additional function
__load4x2 could be implemented: it would call __load4 two times and would return both
arrays. Such hypothetical call to __load4x2, “a, b = __load4x2(ap,bp)”, would yield exactly
the same assembly code that is shown by figure 4.17. Jasmin programming language is
designed to promote reusability.

After both arrays are loaded into registers, the addition is performed, the pointer ap is
restored, and the result of the addition is stored in ap. Before returning, the function restores
rsp. No caller registers were necessary in this example but, if they were, they would be saved
into the stack at the beginning of the function’s execution and restored at the end of the
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function, more precisely, right before rsp is restored. The Jasmin compiler generates the
epilogue and prologue of external functions automatically.

4.4.3 Local Functions

The declaration of local functions is similar to other functions’ declarations, but a specific
keyword, similar to inline or export, is not necessary:

#[returnaddress="stack"]
fn function_name ( arguments ) → return_types { function_block }

There is, however, an optional annotation that allows to specify if the return address of the
function is to be placed in the stack. If the annotation is not present, the function uses
one register to hold the return address and the compilation fails if there are no registers
available. In contexts where registers are scarce and where freeing up one register translates
in a performance penalty, this annotation should be used.

arguments should only contain reg variables. These can have any word type, such as u8 or
u256, but arrays of those are not supported yet. It is also possible for the arguments to
have the bool or ptr types. A ptr variable can be used, for instance, to provide a memory
reference to a stack array defined in the caller’s function scope. stack and inline variables are
not allowed to be declared in the argument list.

The return_types section can contain any type that is also allowed in the arguments list.
As restrictions, it is possible to return a reg ptr reference as long as the returned variable is
also in the argument list. This means that it is not possible to return a reference (reg ptr)
of a locally defined stack array. Regarding the function_block, any Jasmin code is allowed,
including calls to other inline or local functions.

Local functions do not follow any calling convention and the compiler does not introduce any
unexpected memory spill. This means that it is the programmer’s responsibility to store any
live reg variables in the stack frame (if there are not enough registers to hold all live variables)
before the call to a local function happens. A call to a local function consists in an execution
of a jmp instruction to a code section where some inputs are expected in certain registers,
and the return address is placed in the stack frame or in a register. If the local function uses
locally defined stack variables, including arrays, the caller decrements the stack pointer, rsp,
before the call, to allocate the necessary amount of space. After the local function returns, it
is also the caller that resets the stack pointer. Since local functions do not follow any calling
convention, its compilation depends on how they are used.

Consider a scenario where there is an export function e1 that expects two reg u64 arguments,
a and b, which contain memory pointers. Given that export functions follow the System V
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calling convention, a and b are expected to be in registers rdi and rsi, respectively. Also
consider that there is an additional local function f1 which expects one reg u64 as argument,
containing a memory pointer, and that it performs some computation with the pointed values.
If function e1 performs the following two calls to f1, “f1(a); f1(b);”, the compilation fails. The
first call to f1 imposes the restriction that f1 should be compiled expecting its argument
in register rdi and the second in rsi. Both restrictions cannot be satisfied simultaneously.
There are different solutions for this problem depending on how the function e1 is expected
to perform: if we assume that the complete function_block of e1 is composed by just those
two calls to f1, then it can be changed to “f1(a); a = b; f1(a);”. This way, function f1 expects
its argument to be in register rdi and, since b is copied into a, the second call is compatible
with the first. Another possible solution would be to declare a local reg variable and use it
in both calls, “r=a; f1(r); r=b; f1(r);”.

Figure 4.18 presents an example of a local function, _add4, that receives two memory pointers
ap and bp, loads them into register arrays with __load4x2, performs the addition of those
using the previously presented inline function __add4, from figure 4.14, and stores the result
using __store4, from figure 4.17. The implementation of __load4x2 is not shown, but it
was discussed in the final paragraph of subsection 4.4.2, and it consists in two subsequent
calls to __load4, also from figure 4.17.

The presented example also includes an export function, add4, that receives four memory
pointers, ap, bp, cp and dp, and performs two calls to _add4, the first with ap and bp,
and the second with cp and dp. According to what was previously discussed regarding the
restrictions when using local functions, the approach of introducing additional variables to
hold copies of the local’s function inputs is used. A short version of the assembly code is also
presented. Lines that contain the comment “#...” are omitted code sections, which are not
included for brevity.

At first sight, add4 seems to require 15 registers to be compiled, 4 for the arguments, 2 for
the rp and sp variables, which are used to hold copies of _add4’s arguments, 1 for the return
address of _add4, and 8 for the register arrays a and b. However, if we consider the fact that
ap and bp are no longer live after being copied to rp and sp, the compiler is able to merge
them, and only 13 registers are effectively used.

Since reserved registers are necessary, the compiler first decrements the stack pointer rsp and
saves registers rax, rbx, rbp and r14 in the stack. These instructions are not shown. Registers
r12 and r15 are not used. The return address is loaded in register r14 and the jmp to the label
that indicates the starting point of _add4 is performed. Since rp and sp were merged into ap
and bp, _add4 expects its arguments to be in registers rdi and rsi. After _add4 returns, cp
and dp are copied into registers rdi and rsi. The second call is performed and, after returning,
the top level function add4 restores all caller registers and resets the stack pointer.
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fn _add4(reg u64 ap bp)
{
reg u64[4] a b;

a, b = __load4x2(ap, bp);
a = __add4(a,b);
__store4(ap, a);

}

export fn add4(reg u64 ap bp cp dp)
{
reg u64 rp sp;

rp = ap; sp = bp;
_add4(rp, sp);

rp = cp; sp = dp;
_add4(rp, sp);

}

add4:
# ...
# ...
leaq Ladd4$2(%rip), %r14
jmp L_add4$1

Ladd4$2:
movq %rdx, %rdi
movq %rcx, %rsi
leaq Ladd4$1(%rip), %r14
jmp L_add4$1

Ladd4$1:
# ...
ret

L_add4$1:
movq (%rdi), %rax
# ...
addq %r11, %rax
# ...
movq %rax, (%rdi)
# ...
jmp ∗%r14

# stack setup and...
# ...save caller registers
# return address in r14
# first call to _add4

# rp = cp
# sp = dp
# return address in r14
# second call to _add4

# restore caller registers

# a, b = __load4x2(ap, bp);

# a = __add4(a,b);

# __store4(ap, a);

# return to caller

Figure 4.18: Jasmin local function.

For this particular case, 11 instructions related with the stack setup and saving/restoring
caller registers were necessary. A different approach to remove those instructions could be:
instead of loading the values pointed by bp into array b, rewrite function __add4 to directly
use pointer bp to access its elements to perform the addition. For instance, “cf, r[i] += [bp +
8*i] + cf;”. This approach only requires 9 registers and no caller registers are necessary. This
alternative version would require less 15 instructions when compared to the one presented:
11 related with stack operations and an additional 4 moves from the loading of bp into b.

4.5 Jasmin and Easycrypt

This section describes the embedding of Jasmin in EasyCrypt. The embedding is used
to prove the correctness of reference implementations, equivalence between reference and
optimized (often vectorized) implementations, and check the constant-time property.
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4.5.1 Overview of EasyCrypt

EasyCrypt [BDG+13] is a general-purpose proof assistant for proving properties of proba-
bilistic computations with adversarial code. It has been used for proving security of several
primitives and protocols [BGLB11, BGHB11, BCLS15, ABB+17b].

EasyCrypt implements program logics for proving properties of imperative programs. In
contrast to common practices (which use shallow or deep embeddings), the language and
program logics are hard-coded in EasyCrypt — and thus belong to the Trusted Computing
Base. The main program logics of EasyCrypt are Hoare logic, and relational Hoare logics —
both operate on probabilistic programs but we only used their deterministic fragments. The
relational Hoare logic allows to relate two programs, possibly with very different control flow.
In particular, the rule for loops allows to relate loops that do not do the same number of
iterations. This is essential for proving correctness of optimizations based on vectorization,
or when the optimization depends on the input message length.

The program logics are embedded in a higher-order logic which can be used to formalize
and reason about mathematical objects used in cryptographic schemes and also to carry
meta-reasoning about statements of the program logic. Automation of the ambient logic is
achieved using multiple tools, including custom tactics (e.g. to reason about polynomial
equalities) and back-end to SMT solvers. We have found it convenient to add support for
proof by computation. This tool allows users to perform proofs simply by (automatically)
rewriting expressions into canonical forms.

4.5.2 Design Choices and Issues

Rather than building a verified verification infrastructure on top of the Coq formalization of
the language (a la VST [App14]), we opt for embedding Jasmin into EasyCrypt. We choose
this route for pragmatic reasons: EasyCrypt already provides infrastructure for functional
correctness and relational proofs, and achieves reasonable levels of automation. On the other
hand, embedding Jasmin in EasyCrypt leads to duplicate work, since we must define an
embedding of the Jasmin language into EasyCrypt.

Although we already have an encoding of Jasmin into Coq, we cannot reuse this encoding for
two reasons: first, we intend to exploit maximally the verification infrastructure of EasyCrypt,
so the encoding should be fine-tuned to achieve this goal. Second, the Coq encoding uses
dependent types, which are not available in EasyCrypt. However, these are relatively simple
issues to resolve, and the amount of duplicate work is largely compensated by the gains of
using EasyCrypt for program verification.

Hacspec is a specification language for cryptographic primitives [BKS18, MKB21]. It is
designed to be easily integrated with other formal specification languages such as EasyCrypt,
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Coq, and F*. In this context, there is ongoing work to build a formally verified embedding of
Hacspec in Coq for optimized implementations [HLMS22]. This new approach can be used
to extend the formal verification infrastructure of Jasmin.

4.5.3 Embedding Jasmin in EasyCrypt

The native language of EasyCrypt provides control-flow structures that perfectly match those
in Jasmin, including if, while and call commands. This leaves us with two issues: 1) to encode
the semantics of all AMD64 instructions (including SIMD) in EasyCrypt; and 2) to encode
the memory model of Jasmin in EasyCrypt.

Instruction Semantics

Our formalization of AMD64 instructions aims at being both readable and amenable to
building a library of reusable properties over the defined operations, in particular over SIMD
instructions. The first step is to define a generic theory for words of size k, with the usual
arithmetic and bit-wise operations. The semantics of arithmetic operations are based on
two injections (signed and unsigned) into integers and arithmetic modulo 2k. For bit-wise
operations, we rely on an injection to Boolean arrays of size k. Naturally a link between both
representations (int and Boolean array) is also created, which allows proving for example that
shifting a word n� i is the same as multiplying it by to_uint 2i.

Scalar AMD64 operations are formalized using the theory for words, and useful lemmas about
the semantics of these instructions are also proved as auxiliary lemmas. For example, the
formalizations of shl and shr permit proving lemmas like shl x i ⊕ shr x (k − i) = rol x i,
under appropriate conditions on i.

The semantics of SIMD instructions rely on the theories for 128/256 bit words, but the
semantics must be further refined to enable viewing words as arrays of sub-words, which
may be nested (e.g., instruction vpshufd sees 256-bit words as two 128-bit words, each of
them viewed as an array of sub-words). To ease this kind of definition, we have defined a
bijection between words and arrays of (sub-)words of various sizes. Then vector instructions
are defined in terms of arrays of words.

Memory Model

EasyCrypt does not provide the notion of pointer natively. We rely on the concept of a global
variable in EasyCrypt, which can be modified by side effects of procedures, to emulate the
global memory of Jasmin and the concept of pointer to this memory. A dedicated EasyCrypt
library defines abstract type global_mem_t equipped with two basic operations for load mem[p]

and store mem[p ← x] of one byte, as follows:
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type address = int.
type global_mem_t.
op "_[_]" : global_mem_t → address → W8.t.
op "_[_←_]" : global_mem_t → address → W8.t → global_mem_t.
axiom get_setE m x y w : m[x ← w][y] = if y = x then w else m[y].

From this basic axiom we build the semantics of load and store instructions for various
word sizes. The Jasmin memory library then defines a single global variable Glob.mem of
type global_mem_t, which is accessible to other EasyCrypt modules and is used to express
pre-conditions and post-conditions on memory states.

Soundness

The embedding of a Jasmin program into EasyCrypt is sound, provided the program is safe.
This is because the axiomatic model of Jasmin in EasyCrypt is intended to be verification-
friendly, and assuming safety yields much simpler verification conditions and considerably
alleviates verification of functional and equivalence properties. This assumption is perfectly
fine, since Jasmin programs are automatically checked for safety before being compiled and
embedded into EasyCrypt.

As potential future work, it would be interesting to make our safety checker certifying, in the
sense that it automatically produces a proof of equivalence between the Coq and EasyCrypt
semantics of Jasmin programs — technically, this would be achieved by formalizing in Coq
a simpler semantics for safe programs, and proving automatically that the two semantics
coincide for safe programs. The coincidence between the simpler semantics in Coq and the
Jasmin semantics would still need to be argued informally.

Reusable EasyCrypt libraries

In the course of writing correctness proofs for our use cases we have created a few EasyCrypt
libraries that will be useful for future projects. Significant effort was put into enriching the
theories of words in order to facilitate proofs of computations over multi-precision represen-
tations. Concretely, a theory was created that permits tight control over the number of used
bits within a word (a form of range analysis), which is crucial for dealing with delayed carry
operations and establishing algebraic correctness via the absence of overflows.

The central part of this library is generic with respect to the number of limbs, so that opera-
tions like addition and school-book multiplication can be handled in a fully generic way (here
we rely heavily on the powerful ring theory in EasyCrypt). When dealing with constructions
such as Poly1305, base on primes which are very close to a power of 2, this means that
only the prime-specific modular reduction algorithm needs special treatment. Moreover, this
theory was fine-tuned to interact well with SMT provers, enabling the automatic discharge
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of otherwise tedious to prove intermediate results.

4.5.4 Verification of Timing Attack Mitigations

The EasyCrypt embedding of Jasmin programs is instrumented with leakage traces that
include all branching conditions plus all accessed memory addresses (this also includes array
indexes since an access in a stack array will generate a memory access at the assembly level).
It is then possible to check that the secret inputs do not interfere with this leakage trace
in the classical sense that, for all public-equivalent input states x1 ≡pub x2, the program
will give rise to identical leakages `1 = `2. Figure 4.19 shows an example of the generated
instrumented EasyCrypt code.

inline fn store2(
reg u64 p,
reg u64[2] x)

{
[p + 0] = x[0];
[p + 8] = x[1];

}

proc store2 (p:u64, x:u64 array2) : unit = {
var aux: u64;
leakages ← LeakAddr [0] :: leakages;
aux ← x[0];
leakages ← LeakAddr [to_uint (p + 0)] :: leakages;
Glob.mem ← storeW64 Glob.mem (to_uint (p + 0)) aux;
leakages ← LeakAddr [1] :: leakages;
aux ← x[1];
leakages ← LeakAddr [to_uint (p + 8)] :: leakages;
Glob.mem ← storeW64 Glob.mem (to_uint (p + 8)) aux;

}

Figure 4.19: EasyCrypt code (right) instrumented for constant-time verification of a Jasmin
program (left).

Pleasingly, EasyCrypt tactics developed to deal with information flow-like properties handle
the particular equivalence relation associated with so-called constant-time security extremely
effectively. In particular, EasyCrypt provides the sim tactics which is specialized on proving
equivalence of programs sharing the same control flow (which is the case here, as we are
reasoning about two executions of the same program). The tactic is based on dependency
analysis and also proved very useful in justifying simple optimizations like spilling, which do
not affect the control flow. In the case of constant-time verification there is a very interesting
side-effect to the dependency analysis performed by this tactic: it is able to infer sufficient
conditions (equality of input variables) that guarantee equality of output variables. When
applied to constant-time verification this means that, when this tactic is successful (which
was the case for our use-cases) the user just needs to check if the inferred set of variables
are all public. We note that performing this kind of analysis at the assembly level is usually
hard. We take advantage of the fact that Jasmin provides a high-level semantics that makes
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it suitable for verification; in particular, the clear separation between memory, stack variables
and stack arrays at source level greatly simplifies the problem.



Chapter 5

Verified Jasmin Implementations

During the previous chapter, the Jasmin programming language was extensively discussed,
mainly from a practical point of view, to fulfill two goals. The first is to share the program-
ming experience that the author of this thesis acquired over the last few years while using and
contributing to the development and improvement of the Jasmin framework: it introduces
the available types and features and their impact on the produced assembly code. It is the
first extended tutorial of the Jasmin programming language, primarily designed for anyone
interested in becoming a Jasmin programmer. The second goal is to provide the background
material for the current chapter.

Some of the cryptographic implementations developed and formally verified using the Jasmin
framework are presented throughout this chapter. The implementations included in this
chapter are: ChaCha20 and Poly1305 [ABB+20a], and Curve25519. Regarding Curve25519,
several implementations were proposed during the first Jasmin publication [ABB+17a], back
in 2017. This publication included the performance results for three different Curve25519
Jasmin implementations. Two of these were obtained by automatically translating existing
qhasm code into Jasmin code. The performance of the corresponding qhasm and Jasmin
implementations was comparable, ranging between 147k and 149k CPU cycles depending
on how many limbs were used to represent field elements. The third Curve25519 Jasmin
implementation was optimized (by taking advantage of the Jasmin features), and it took
roughly 144k cycles. All measurements were taken from an Intel Skylake. This chapter
focuses on new Curve25519 implementations, with better performance when compared to
the previous ones.

Regarding this chapter’s structure, each primitive has its section. Each section provides
an overview of the corresponding primitive, then describes how the implementations were
designed and optimized, and compares the developed implementations with formally-verified
and non-verified alternative implementations. For Curve25519, an overview of the proof is
presented.

85
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5.1 ChaCha20

ChaCha is a family of stream ciphers based on the Salsa20 family of 256-bit stream ci-
phers [B+08, Ber08]. Instances of the Salsa20 family are usually prefixed with the number
of performed rounds, for instance, Salsa20/20 performs 20 rounds, Salsa20/12 performs
12 rounds, and Salsa20/8 performs 8 rounds. The corresponding ChaCha instances are
ChaCha20, ChaCha12, and ChaCha8. As a general intuition, the main differences between
Salsa20 and ChaCha are some rearrangements in the order on how some operations are
performed during the round computation, to improve security, and also a rearrangement in
the internal state, to improve the performance of SIMD implementations. In this section, we
discuss the 20-round instance of the ChaCha family, ChaCha20, as specified in TLS 1.3.

5.1.1 Algorithm Overview

ChaCha20 defines an algorithm that expands a 256-bit key into 296 key streams (each
stream is associated with a 96-bit nonce) each consisting of 232 blocks (each 64-byte block
is associated with a counter value). Intuitively, it defines a procedure to transform an initial
state into a key stream block. The initial state is constructed using a 256-bit key k (seen
as eight 32-bit words), a 96-bit nonce n (seen as three 32-bit words), a 32-bit counter b and
four 32-bit constants c. The initial state can be seen as the following matrix, where on the
left-hand side we show the arrangement of 32-bit words and on the right-hand side we show
the matrix entry numbering.

c c c c

k k k k

k k k k

b n n n

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

The state transformation is based on the following operation, QuarterRound, that acts upon
four 32-bit words at a time, here designated as a, b, c, and d, and where + means addition
modulo 232, ⊕ means the exclusive or operation, and rol corresponds to the rotate left
operation by the number of bits specified by the second operand:

QuarterRound(a, b, c, d):

a← a+ b;

c← c+ d;

a← a+ b;

c← c+ d;

d← d⊕ a;
b← b⊕ c;
d← d⊕ a;
b← b⊕ c;

d← rol d 16;

b← rol b 12;
d← rol d 8;

b← rol b 7;
Return (a, b, c, d)
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ChaCha20’s state transformation is frequently implemented as a loop of 10 double rounds,
totaling 20 rounds. A double round is composed by a column round and a diagonal round.
Each round is composed by 4 quarter rounds. Given a state s, where, for instance, s0 and
s15 represent the elements 0 and 15 of the above state matrix, DoubleRound could be defined
as follows:

DoubleRound(s):

(s0, s4, s8, s12)← QuarterRound(s0, s4, s8, s12);

(s1, s5, s9, s13)← QuarterRound(s1, s5, s9, s13);

(s2, s6, s10, s14)← QuarterRound(s2, s6, s10, s14);

(s3, s7, s11, s15)← QuarterRound(s3, s7, s11, s15);

(s0, s5, s10, s15)← QuarterRound(s0, s5, s10, s15);

(s1, s6, s11, s12)← QuarterRound(s1, s6, s11, s12);

(s2, s7, s8, s13)← QuarterRound(s2, s7, s8, s13);

(s3, s4, s9, s14)← QuarterRound(s3, s4, s9, s14);

Return (s)

To produce a 64-byte keystream block, each 32-bit element of the initial state is added,
modulo 232, with the transformed state (after 10 iterations of DoubleRound). For subsequent
blocks, the counter is incremented.

5.1.2 ChaCha20 Implementations

Three Jasmin implementations of ChaCha20 were developed, one relying only on scalar
operations (no vectorization), and two others that rely on the AVX and AVX2 extensions.
All three Jasmin implementations implement the same interface:

export fn chacha20(
reg u64 output plain,
reg u32 len,
reg u64 key nonce,
reg u32 counter)
{ // ...
}

The first argument, output, provides a pointer to a memory region where the ciphertext is
written; plain is a pointer to the plaintext; len is the length in bytes of both the output
and plain and it is limited to 4GiB of data; key and nonce are also pointers for the 256-bit
secret-key and 96-bit nonce, respectively; counter contains the initial counter. Given that
the developed implementations were tested and measured using the SUPERCOP framework,
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which assumes that the nonce for this primitive has 8 bytes instead of the 12 bytes that
are specified by TLS 1.3, a wrapper, written in C code, was developed to circumvent this
incompatibility. As such, the presented performance data in this section includes a small
overhead related to one call to the memset function, to set 4 (12-8) bytes as zero, and one
call to memcpy to copy 8 bytes from the nonce into a local array. In practice, this overhead
is negligible and can be ignored.

ChaCha20 Scalar

The scalar implementation of ChaCha20 relies on standard AMD64 registers. The most
adequate data type to represent the state is u32 given that additions and rotations are
performed modulo 232. Ideally, all 16 32-bit variables from the state would be in register
variables. Since this is not possible, as there are only 15 registers available in this context (rsp
is reserved), some memory spills are necessary during the state transformation. Nonetheless,
it is possible to represent the state as a register array with 16 positions, as long as not all of
its elements are live simultaneously.

QuarterRound performs 4 executions of the same pattern of operations: an addition, an
exclusive or, and a rotation. This pattern can be implemented as follows:

inline fn line(reg u32[16] s, inline int a b c r) → reg u32[16] {
s[a] += s[b];
s[c] ^= s[a];
_, _, s[c] = #ROL_32(s[c], r);
return s;

}

The presented function, line, receives a register array s and, considering that each line
operation only uses 3 variables, 3 additional indexes are also provided to this function, a, b,
and c, to indicate which elements should be read or updated. The last argument, an inline
int variable r, holds the number of bits to rotate s[c]. As such, QuarterRound procedure can
be implemented as follows:

inline fn quarter_round(reg u32[16] s, inline int a b c d) → reg u32[16] {
s = line(s, a, b, d, 16);
s = line(s, c, d, b, 12);
s = line(s, a, b, d, 8);
s = line(s, c, d, b, 7);
return s;

}

This implementation of quarter_round receives and returns the state array s and, considering
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that quarter_round implicitly uses 4 variables at a time, s[a], s[b], s[c], and s[d], it is necessary
to guarantee that these variables are live whenever this function is called. Both line and
quarter_round are defined as inline functions and, as such, whenever this function is called
the corresponding assembly instructions (of line) are inlined.

The next function is the previously discussed DoubleRound. This function performs two
rounds at a time, corresponding to 8 quarter_round calls, and it will be called in the context
of a while loop that iterates a local variable, from 0 to 10, for instance. As a side note, using a
for loop to call DoubleRound is not a viable solution since the resulting assembly code would
not be very cache friendly given that for loops are fully unrolled. If we assume the loop
counter to be in a stack variable during the execution of DoubleRound, there are 15 registers
available to implement this function. Since all of the 16 variables from the state are updated
during a DoubleRound, it is necessary to spill at least one variable from the state into the
stack.

A good candidate to be stored in the stack is s15, or s[15] in the Jasmin implementation. For
simplicity, the next two descriptions of DoubleRound were stripped down to be as succinct
as possible for the purpose of the next discussion.

DoubleRound− Step 0 :

QuarterRound(s0, s4, s8, s12);

QuarterRound(s1, s5, s9, s13);

QuarterRound(s2, s6, s10, s14);

Swap(14, 15)

QuarterRound(s3, s7, s11, s15);

QuarterRound(s0, s5, s10, s15);

Swap(15, 14)

QuarterRound(s1, s6, s11, s12);

QuarterRound(s2, s7, s8, s13);

QuarterRound(s3, s4, s9, s14);

DoubleRound− Step 1 :

QuarterRound(s0, s4, s8, s12);

QuarterRound(s2, s6, s10, s14);

Swap(14, 15)

QuarterRound(s1, s5, s9, s13);

QuarterRound(s3, s7, s11, s15);

QuarterRound(s1, s6, s11, s12);

QuarterRound(s0, s5, s10, s15);

Swap(15, 14)

QuarterRound(s2, s7, s8, s13);

QuarterRound(s3, s4, s9, s14);

Step 0: If we consider that s15 is in stack at the beginning of DoubleRound’s execution,
then we can Swap it with s14, or, more precisely, copy s14 into the stack and load s15 into a
register variable. Then, two quarter-rounds later to be precise, s15 can be copied again into
the stack and s14 loaded into a register variable. Since s15 is held in the stack at the start
and end of this function’s execution, an invariant is established, and given that this function
is going to be used inside a while loop, in a context where there are no free registers, this
linearity in the function’s behavior increases the chances of a successful compilation from
Jasmin to assembly1.

1The compilation of a semantically valid Jasmin program may fail if the register allocator is not able to
find a valid register allocation, §4.1.1.
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Step 1: There are, however, two aspects that can be improved in the previous approach.
First, it is possible to change the order of the QuarterRound calls to increase the distance
from the first load of s15 until the time it is first used: s15 is loaded from the stack; and then
QuarterRound(s3, s7, s11, s15) is executed; after the addition of s3 with s7, s15 is xor-ed
with s3. While performing this rearrangement it would also be nice to always have a pair
number of subsequent QuarterRound calls, to introduce the HalfRound function, which can
perform two calls to QuarterRound. Such rearrangement can be obtained by swapping the
second call of QuarterRound with the third, and the sixth with the seventh. The Swaps occur
after the second and sixth call.

Step 2: The next step to optimize this implementation’s performance is to merge the
executions of two QuarterRounds: the line function first performs an addition; the result
of the previous addition is an input of the next exclusive or; and, finally, this last result
is rotated in-place. Two of these instructions depend on the previous instruction’s output
and are limited by the previous instruction’s latency; to reduce this effect, it is possible to
rearrange the code to perform two line operations at a time, one from each QuarterRound.
Such function can be called double_line:

inline fn double_round(reg u32[16] s, stack u32 s15) → reg u32[16], stack u32 {
stack u32 s14;
s = half_round(s, 0, 4, 8, 12, 2, 6, 10, 14);
s14 = s[14]; s[15] = s15;
s = half_round(s, 1, 5, 9, 13, 3, 7, 11, 15);
s = half_round(s, 1, 6, 11, 12, 0, 5, 10, 15);
s15 = s[15]; s[14] = s14;
s = half_round(s, 2, 7, 8, 13, 3, 4, 9, 14);
return s, s15;

}

double_round implements the optimizations discussed in Step 1 and it can also be used for
Step 2, if the implementation of half_round internally uses double_line. Given that s[15] is
not live at the start of this function’s execution, a separate variable that contains this missing
element, declared as stack u32 s15, is provided as an argument. Both arguments, the state s
and the auxiliary variable s15, must be returned at the end of this function’s executions for
the corresponding values to be updated in the context of the caller function. In practice, no
assembly instructions are generated as a consequence of using the return statement. A local
stack variable s14 is also declared to hold the corresponding element of the state. By using
this strategy, only 4 instructions that interact with memory addresses are executed for each
DoubleRound.

The remaining functions of this scalar implementation of ChaCha20, such as functions that
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read the plaintext, or write the ciphertext, from, and into, the corresponding memory regions,
are not discussed in this document. Regarding the performance analysis of the discussed
implementations, figure 5.1 presents a comparison between the discussed approaches: Step0,
Step1, and Step2. All data presented in this figure was acquired using the same complete
implementation of ChaCha20, and only the double_round function was swapped in between
different measurement runs. This was possible since that all three implementations of
double_round share the same API and require the same set of registers. The plot includes
the number of CPU cycles per encrypted byte and the implementations were measured for
lengths in between 128 and 16384 bytes.
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Figure 5.1: ChaCha20: performance comparison for scalar implementations.

In figure 5.1 it is possible to observe a small performance difference between Step 0 and Step
1. For 16KiB, Step 0 takes 6.33 cycles per byte (cpb) and Step 1 6.29 cpb. The average
difference for these two steps is 0.04 cpb, with a standard deviation of 0.0055.

This difference, however, cannot be directly associated with the exact position of the Swaps
between register and stack variables: some alternative implementations of Step 1, with load-
s/stores being performed at different locations while preserving the QuarterRound’s calling
order, were measured; the performance of these alternative implementations is consistent
with the Step 1 implementation’s performance, which makes sense given that these imple-
mentations were benchmarked in an out-of-order CPU that internally rearranges instructions
before executing them. The most probable cause for this small but consistent difference, is
the reordering of the QuarterRounds calls.

The fastest implementation in this set is Step 2, taking 5.99 cpb for 16KiB plaintexts. When
compared with Step 1, this implementation is 0.3 cpb, or roughly 5%, faster. An interesting
idea in this context would be to explore how different permutations of QuarterRound calls, and
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corresponding memory spills, impact the performance and, perhaps even more interestingly,
to study how the Jasmin compiler could rearrange the code automatically.

ChaCha20 AVX and AVX2

The AVX and AVX2 implementations use the data types u128 and u256, respectively, which
can be used to perform computations over 4 and 8 32-bits words, also respectively. To
represent the state matrix in these implementations, two different internal representations
are used: horizontal and vertical. The horizontal representation [GG13], is used by Jasmin
implementions to compute small inputs: in AVX for inputs from 1 to 128 bytes; in AVX2
from 1 to 256 bytes. The vertical representation, implemented in OpenSSL, is used for the
remaining input lengths. The discussion will follow by first describing each representation in
the context of AVX and how it can be extended for AVX2.

Consider the following description of the ChaCha’s state matrix. In comparison to what was
presented in §5.1.1, “Algorithm Overview”, in this description some commas and curly braces
are used to highlight the fact that each matrix line corresponds to an array of 4 elements
that can be loaded into a u128 register.

{c1, c2, c3, c4}
{k1, k2, k3, k4}
{k5, k6, k7, k8}
{b, n1, n2, n3}

{c1, c2, c3, c4}
{k1, k2, k3, k4}
{k5, k6, k7, k8}
{b+ 1, n1, n2, n3}

In the AVX implementation, if the input length is less or equal to 64 bytes, then only 4 u128
registers are necessary (left). For inputs lengths from 65 to 128 bytes, 4 additional u128
registers are required (right). The general idea for the AVX2 implementation is exactly the
same but the previous intervals are multiplied by 2: 4 u256 registers to process inputs from
1 to 128 bytes (left and right lines loaded in one u256 register); 8 u256 registers for inputs
from 129 to 256 bytes, with the counters with b+ 2 and b+ 3.

Regarding how to compute a DoubleRound with the horizontal representation: the first 4
quarter rounds, corresponding to the column round, can be easily computed in parallel
because all operations are performed over columns; for the diagonal round this is not true,
and the state must be rearranged upon entry and exit of the diagonal round code.

Consider the case where, in the context of AVX and to produce a 64-byte block, we have
the state loaded into an array “reg u128[4] s”. s[1] is initially loaded with {k1, k2, k3, k4},
s[2] with {k5, k6, k7, k8}, and s[3] with {b + 1, n1, n2, n3}. After the first column round is
performed — and if we continue to use the same set of names (kn,nn,...) for convenience —
before the diagonal round can be executed we need to rotate s[1] to {k2, k3, k4, k1}, s[2] to



5.1. CHACHA20 93

{k7, k8, k5, k6}, and s[3] to {n3, b+1, n1, n2}. This can be done with the vpshufd instruction.
After the diagonal round is computed, these elements should be rotated to the original
position.

An implementation of the linex4 and round functions, in the context of AVX and to process
inputs with up to 64 bytes, is presented next. Each linex4 function performs the equivalent
to 4 line calls from the scalar implementation, one from each QuarterRound.

Since there are four different rotations that can be performed during the execution of a round
(by 16, 12, 8, and 7), this behavior is encapsulated by an inline function rotate, which is called
by linex4. The rotation by 16 and 8 can be performed using a single instruction, vpshufb,
while the rotation for 12 and 7 is implemented using 2 shifts, one to the left (by r) and
another to the right (by 32-r), and an additional instruction, which can be an exclusive-or,
to combine these intermediate values. rotate is implemented using a sequence of ifs (that are
resolved during compilation) to decide which approach is used depending on the value of r.
The round function is the same for the column and diagonal round given that the state is
rearranged in between rounds.

inline fn linex4(reg u128[4] s,
inline int a b c r) → reg u128[4] {
s[a] +4u32= s[b];
s[c] ^= s[a];
s = rotate(s, c, r);
return s;

}

inline fn round(reg u128[4] s) → reg u128[4] {
s = linex4(s, 0, 1, 3, 16);
s = linex4(s, 2, 3, 1, 12);
s = linex4(s, 0, 1, 3, 8);
s = linex4(s, 2, 3, 1, 7);
return s;

}

The discussion so far was focused on scenarios where just 4 (AVX) registers are used. For
AVX2, the corresponding linex4 function is called linex8 and the implementation is very
similar: for instance, +8u32= is used instead of +4u32=. When 8 registers are required,
double_linex4 and double_linex8 functions can be implemented, following the same idea that
was previously discussed for the scalar implementation. The complete implementation of the
rounds function is presented next. It uses a reg u64 variable to hold the loop counter and, in
between the column and diagonal rounds, the state is shuffled.

inline fn rounds(reg u128[4] s) → reg u128[4] {
reg u64 c;
c = 0;
while(c < 10)
{ s = round(s);
s = shuffle(s);
s = round(s);
s = reverse_shuffle(s);
c += 1;
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}
return s;

}

The layout of the vertical representation (larger inputs) is presented next in the context of
AVX. For AVX2, 8 blocks, instead of just 4, can be computed simultaneously. Each element
is replicated in each line except for the counter b, which is incremented according to the
corresponding block. Given that bellow matrix has 16 lines, 16 variables are required to hold
the state. Ideally, all state would be allocated in register variables during the execution of
the 20 rounds and, since there are 16 registers available in this context (xmm/ymm depending
on the implementation), and not just 15 as in the scalar implementation of ChaCha20, it
seems reasonable to assume that it should be possible.

{c1, c1, c1, c1}
{c2, c2, c2, c2}
{c3, c3, c3, c3}
{c4, c4, c4, c4}
{k1, k1, k1, k1}
{k2, k2, k2, k2}
{..., ..., ..., ...}
{k8, k8, k8, k8}
{b+ 3, b+ 2, b+ 1, b}
{n1, n1, n1, n1}
{n2, n2, n2, n2}
{n3, n3, n3, n3}

There is, however, a small detail which makes such approach unfeasible: to perform a rotation
by 12 and 7, which is implemented using two shifts and an exclusive-or, a temporary register
variable to hold an intermediate value of this computation is necessary. For this reason, the
same approach that was taken in the scalar implementation regarding the spill of s15 is also
taken for the AVX and AVX2 implementations.

An advantage of the vertical representation, when compared to the horizontal representation,
is that it is not necessary to shuffle the state between the column and diagonal rounds.
Regarding the disadvantages: after the blocks’ processing is completed, which includes the
execution of the 20 rounds and the addition with the initial state, the contents of the state
should be xor-ed with the plaintext; given that all sequences of 64 bytes corresponding to the
different blocks are distributed across 16 different variables, the state must be transformed
into a horizontal representation before the final xor can happen. The transformation of the
state from the vertical to the horizontal representation can be done using a sequence of the
vpnpck and vperm instructions. An alternative solution, but not as efficient, would be to store
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the state in memory, and then access the corresponding 32-bits to perform the xor. Overall,
the benefits of using this representation for larger messages out-weights the disadvantages.

In total, there are 3 possible approaches for each vectorized implementation: using 4 registers
to hold the state in a horizontal representation to calculate 1 (AVX) or 2 (AVX2) blocks at
a time; using 8 registers in a horizontal representation to calculate 2 (AVX) or 4 (AVX2)
blocks at a time by following a double line approach; using all available registers in a vertical
representation to compute 4 (AVX) or 8 (AVX2) blocks at a time.

With the goal of analyzing, individually, how each approach performs for different input
lengths, figures 5.2 (AVX) and 5.3 (AVX2) are presented. Earlier in this subsection, it was
already unveiled in which input lengths intervals each approach is used, and these plots
present a justification for the chosen intervals. The scalar implementation is also included
for comparison purposes in a light gray line given that the next discussion is mainly focused
on vectorized implementations.
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Figure 5.2: ChaCha20: comparison of different vectorization approaches (AVX).

Figure 5.2 shows that the fastest approach for input lengths up to 64 bytes is the one which
uses 4 registers and the horizontal representation (4.80 cpb / 16KiB). From 65 to 128 bytes,
using 8 registers and the horizontal representation is the best option (3.23 cpb / 16KiB).
From 128 bytes onwards, the vertical implementation performs better, although it is very
similar to the 8 register version from 256 to 384 bytes (2.34 cpb / 16KiB).

For comparison, the best scalar implementation executes at 5.99 cpb for 16KiB. Overall,
vectorized implementations are faster when compared to the scalar implementation (in bench-
marking/optimal conditions), which is only competitive in this scenario for inputs up to 64
bytes. As such, the final AVX implementation of ChaCha20 contains three different code
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paths, for three different input lengths intervals. These intervals can be easily changed if
necessary.

Regarding the performance analysis for different approaches in the context of an AVX2
implementation, the lines from figure 5.3 exhibit a very similar pattern (which is expected)
when compared to the corresponding ones from figure 5.2. The overall performance is
better: for inputs of 16KiB, the 4, 8, and 15 register approaches take 2.45, 1.60, and
1.20 cpb, respectively. When compared to the corresponding AVX implementations, AVX2
implementations are roughly twice as fast, which is also expected if we consider that twice
as many blocks are being produced using roughly the same number of CPU instructions.
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Figure 5.3: ChaCha20: comparison of different vectorization approaches (AVX2).

As a side-note, an additional experiment (related to the discussion from 4.2.2) was done: all
movdqu instructions from “AVX2 - 8 blocks” implementation that do not interact with external
memory regions were manually replaced in the generated assembly file by movdqa instructions
(since the SUPERCOP API does not enforce that the input and output pointers should be
aligned); in total, there were 4 movdqu inside the rounds function (executed 10 times for each
set of 8 blocks, or 512 bytes), and 21 movdqu related to the transformation from the vertical
to the horizontal representation (executed once every 8 blocks); for 16 KiB, the best reported
CPU cycle count (best median of three different runs) was 19662 for movdqu code and 19660
for the movdqa version; this difference is negligible and it is most probably noise-related.
Nonetheless, it would be interesting to conduct a series of experiments, including different
micro-architectures, to measure the impact of different alignment setups in this context. For
instance, what would be the performance penalty of having non-aligned addresses and exactly
in what circumstances is movdqa advantageous in this context.

To conclude, the final AVX2 implementation of ChaCha20 also includes three different code
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paths. The code path that is executed depends on the input length, which can also be easily
adjusted to satisfy the requirements of different environments.

5.1.3 Performance Evaluation

In this section we compare the ChaCha20 Jasmin implementations with other open-source
implementations, formally verified at source-level and non-verified. Figure 5.4 compares
the performance of the previously described Jasmin implementations, Scalar, AVX, and
AVX2, with three different implementations from the HACL* project [ZBPB17, PBP+20]:
Hacl_ChaCha20, which is comparable to the Jasmin Scalar implementation of ChaCha20;
Hacl_ChaCha20_Vec128 which corresponds to a vectorized implementation that uses AVX;
and Hacl_ChaCha20_Vec256 for the AVX2 version. The evaluated HACL* code was ob-
tained from the project’s GitHub repository2 and the considered distribution was gcc64-only,
compiled using gcc version 9.3.03.

The comparison with HACL* compiled with CompCert is not included in this section for two
main reasons: first, in the HACL* project under the dist directory, a distribution targeting
CompCert cannot be found and, although the Makefile from c89-compatible distribution
could most probably be adapted to make the compilation with CompCert possible, following
such an approach would yield non-efficient code since CompCert is not (yet) suited for this
context4; second, HACL* AVX and AVX2 implementations would be excluded from this
analysis given that (currently) there is no version of this compiler that supports AVX/AVX2
instructions.

Overall, and for 16KiB inputs, the performance of Jasmin and HACL* implementations is
similar: the non-vectorized implementations execute in 6.21 (HACL*) and 5.99 (Jasmin) cpb;
vectorized implementations execute at 2.39/1.26 cpb (HACL*) and 2.34/1.20 cpb (Jasmin),
for AVX/AVX2, respectively. For inputs whose lengths are less than, for instance, 512
bytes, the difference between implementations’ performance is more noticeable, with Jasmin
implementations being slightly faster.

If we observe the line that corresponds to the HACL* AVX2 implementation, for instance, it
is possible to notice some similarities with one of the lines from figures 5.2 and 5.3 (where the
performance impact of different representations was studied): the vertical representation is,
most probably, the only representation that is used by HACL* AVX/AVX2 implementations
for all input lengths. This, however, should not be interpreted as a problem of any kind given
that such an approach also has its advantages: implementing just one code path implies that

2https://github.com/project-everest/hacl-star/tree/a50b659d11953dadd8d84ec5df25203cec1a746b
3CFLAGS set as -Ofast -march=native -mtune=native -m64 -fwrapv -fomit-frame-pointer -funroll-loops
4In [ABB+20a], a plot containing the performance of HACL* ChaCha20’s implementation, compiled with

CompCert 3.4, can be found. That implementation, at that point in time, took roughly 13 cpb, for 16KiB
inputs.

https://github.com/project-everest/hacl-star/tree/a50b659d11953dadd8d84ec5df25203cec1a746b
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Figure 5.4: ChaCha20: comparison of Jasmin and HACL* implementations.

the resulting assembly code will be smaller and thus, more cache-friendly. For small messages,
the scalar implementation can always be used. On the other hand, the advantage of using
different strategies to improve the performance in specific input length intervals is that it
can benefit the overall performance of systems where the length of the encrypted messages
is small on average.

Figure 5.5 compares the developed Jasmin implementations with OpenSSL5. OpenSSL con-
tains four different implementations of ChaCha20: an implementation in C, which can be
accessed using the no-asm option during configuration; an implementation written in assembly
that uses the standard x86_64 registers and that is comparable to the scalar implementation
in Jasmin; an AVX implementation written in assembly; and an AVX2 implementation
also written in assembly. Two static libraries were compiled, using the provided Makefiles
without any modifications: one for a non-assembly library; and another that included the
mentioned assembly implementations. To access the different assembly implementations, the
environment variable OPENSSL_ia32cap was set according to the benchmark being run.

Regarding the performance for 16KiB inputs: 6.30/5.99/2.38/1.21 cpb for OpenSSL im-
plementations; and 5.99/2.34/1.20 for Jasmin implementations. The plot line regarding
the ChaCha20 C implementation of OpenSSL (6.30 cpb) was not included in this figure
for simplicity. Regarding Jasmin and OpenSSL scalar implementations (5.99 cpb), which
perform at roughly the same speeds for all (measured) input lengths, the main difference
between these implementations is that OpenSSL implementation requires 4 mov instructions
that read/write from/to the stack frame every round (or 8 moves for a double round) while
the Jasmin implementation performs just 4 mov instructions during a double round, at the

5https://github.com/openssl/openssl/tree/bc8c36272067f8443f875164831ce3a5a739df3f

https://github.com/openssl/openssl/tree/bc8c36272067f8443f875164831ce3a5a739df3f
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Figure 5.5: ChaCha20: comparison of Jasmin and OpenSSL implementations.

expense of having the loop counter in a stack variable. This type of difference, which in some
scenarios can be observed for small inputs, easily become diluted/negligible as the inputs
lengths grow due to the way that modern processors work.

In the context of vectorized implementations, AVX and AVX2, it can be observed that
OpenSSL implementations were also optimized for small inputs: the difference in performance
for Jasmin vs OpenSSL implementations is notoriously smaller when compared with Jasmin
vs HACL*. The gap between these implementations is slightly bigger for inputs in the range
of 64 to 128 bytes. The OpenSSL lines corresponding to the AVX and AVX2 only diverge
for messages larger than 256 bytes which indicates that, most probably, the same code path
is being shared until then. The major conclusion from this analysis is that the Jasmin
programming language allows to write code that is comparable with the best performing
implementations which, more frequently than not, can be found in OpenSSL, without having
to write the code directly or very close to assembly.

Figure 5.6 compares the AVX2 Jasmin implementation with other open-source AVX2 im-
plementations. This figure includes measurements from the Usuba project6 [MD19], which
has several C implementations of ChaCha20: the reported measurements are for the fastest
implementation. It also includes measurements from libsodium7, which was compiled using
the provided Makefile without any modifications to it. The AVX2 implementation used by
libsodium can also be found in SUPERCOP toolkit dolbeau/avx2. Another implementation
from SUPERCOP included in this figure is moon/avx2/64.

Overall, and for inputs with 16KiB, the performance is very similar: 1.35/1.29/1.26/1.20 cpb

6https://github.com/DadaIsCrazy/usuba/tree/5ecbf056d7d8bd77462d29309c85f897f36d0f49
7https://github.com/jedisct1/libsodium/tree/a016aea61214668827e18c6278ac25b0bbc98ca5

https://github.com/DadaIsCrazy/usuba/tree/5ecbf056d7d8bd77462d29309c85f897f36d0f49
https://github.com/jedisct1/libsodium/tree/a016aea61214668827e18c6278ac25b0bbc98ca5
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Figure 5.6: ChaCha20: comparison of AVX2 implementations.

for Usuba/libsodium/moon/avx2/64/Jasmin. The Jasmin implementation is slightly faster
for inputs lengths between 64 and 256 bytes. Additionally, libsodium can be easily compiled
with CompCert (version 3.9): 15.17 cpb for 16KiB inputs.

5.2 Poly1305

Poly1305 [Ber05b] is a message authentication code that is used together with ChaCha20
as one of the two ciphersuites recommended in the TLS 1.3 RFC. Poly1305 is a one-time
authenticator (the key should be used once) that allows the sender to attach a cryptographic
tag t to a transmitted message m. The receiver of the message should be able to derive the
same session key k autonomously, and recompute the tag on the received message. If the
tags match, the receiver is assured that only the sender could have transmitted it, provided
k is secret and authentic.

5.2.1 Algorithm Overview

Poly1305 takes a 32-byte one-time key k and a message m and it produces a 16-byte tag t.
The key k is seen as a pair (r, s), in which each component is treated as a 16-octet little-
endian number, with the following format restrictions: octets r[3], r[7], r[11] and r[15] should
have their top 4 bits cleared, whereas octets r[4], r[8] and r[12] are required to have their
two lower bits cleared. For the purpose of this section we assume that k = (r, s) is generated
as a pseudorandom 256-bit string, after which r is clamped to its correct format.

To authenticate a message m, it is split into 16-byte blocks mi, for i ∈ [1, 2, . . . ]. Each
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block mi is then converted into a 129-bit number bi by reading it as a 16-byte little-endian
value and then setting the 129-th bit to one. The authenticator t is computed by sequentially
accumulating each such number into an initial state a0 = 0 according to the following formula:
ai = (ai−1 + bi) × r (mod p), for i ∈ [1, 2, . . . ] and where p = 2130 − 5 is prime. Finally,
the secret key s is added to the accumulator (over the integers) and the tag t is simply
the lowest 128 bits of the result serialized in little-endian order. The choice of p is crucial
for optimization, as it is close to a power of 2: modular reduction can be performed by first
reducing modulo 2130 and then adjusting the result using a simple computation that depends
on the offset 5.

5.2.2 Poly1305 Implementations

Three Jasmin implementations of Poly1305 were developed, one relying only on scalar oper-
ations and two others for the AVX and AVX2 extensions. All three Jasmin implementations
implement the same interface:

export fn poly1305(reg u64 out in _inlen _k)
{ // ...
}

Regarding the function arguments: out specifies a pointer to write the computed tag t (16
bytes); in is a pointer to the input data with length_inlen; and_k points to the 256-bit secret-
key. Given that _inlen and _k are allocated in registers rdx and rcx, respectively, and these
registers are required by the multiplication and some shift instructions, also respectively, in
the context of the scalar implementation (which is also used by vectorized implementations
for small inputs as it will be discussed next) the following assignments must be performed at
the beginning of this function’s execution in order for those values to be allocated in different
registers:

export fn poly1305_ref3(reg u64 out in _inlen _k)
{ reg u64 inlen k;
inlen = _inlen;
k = _k;
// ...

In the context of integrating the Jasmin implementations in SUPERCOP, and given that
the presented Jasmin interface is compatible with the API that is specified by it, it was
not necessary to write a C wrapper, in contrast to what was required for the ChaCha20
implementations.
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Poly1305 Scalar

This implementation of Poly1305 uses 64-bit variables. From the algorithm’s overview: we
need to compute ai = (ai−1 + bi) × r (mod p) where a corresponds to the accumulator, b
corresponds to the message block (16 bytes) being consumed with the upper (129th) bit set
to one, and r corresponds to the first 16 bytes (clamped) of the secret key k.

r requires two 64-bit variables and h, which initially corresponds to the expression (a0 + b1),
requires three 64-bit variables. The third 64-bit variable of h is initially set to one. Given
this, the expression h× r (mod p) is equivalent to (h[0] + 264h[1] + 2128h[2]) · (r[0] + 264r[1])

(mod p). This multiplication can be unrolled as follows:

20 · (h[0] · r[0]) +

264 · (h[0] · r[1] + h[1] · r[0]) +

2128 · (h[1] · r[1] + h[2] · r[0]) +

2192 · (h[2] · r[1]) (mod p)

Given that p is a prime close to a power of two, it is possible to take advantage of the fact
that a ·2130+ b (mod 2130−5) is congruent with a ·5+ b (mod 2130−5). Additionally, given
that the first two bits of r[1] are set to zero due to clamping, making it a multiple of 4, for
some multiplications that involve r[1] we take advantage of the fact that, for these cases,
a · 2130 · 2−2 + b (mod 2130 − 5) is congruent with a · 5/4 + b (mod 2130 − 5). The previous
expression, to compute h ∗ r, can be rearranged as follows:

20 · (h[0] · r[0] + h[1] · r[1] · 5/4) +

264 · (h[0] · r[1] + h[1] · r[0] + h[2] · r[1] · 5/4) +

2128 · (h[2] · r[0]) (mod p)

Considering that (r[1] · 5/4) is frequently used (twice for each 16-byte block of the input)
this value can be precomputed.

The implementation of clamp, which initializes r and precomputes (r[1] · 5/4) is presented
next. This function receives a pointer k and returns a register array r with 3 elements. It starts
by loading 16 bytes from memory into the first two positions of r, and then the corresponding
bits are cleared. It then initializes r[2] with r[1] >> 2 + r[1], which corresponds to r[1] · 5/4
given that the first two bits of r[1] are zero.

inline fn clamp(reg u64 k) → reg u64[3] {
reg u64[3] r;
r[0] = [k + 0];
r[1] = [k + 8];
r[0] &= 0x0ffffffc0fffffff;
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r[1] &= 0x0ffffffc0ffffffc;
r[2] = r[1];
r[2] �= 2;
r[2] += r[1];
return r;

}

Figure 5.7 presents the Jasmin implementation of the mulmod function which allows to
efficiently compute h ∗ r. It receives two register arrays as arguments: h, which contains the
accumulator (ai−1+ bi); and r, which is initialized by the clamp function. The multiplication
result is returned in h.

To perform this computation some auxiliary variables are used: t0, t1, and t2 to hold 64-bit
intermediate values corresponding to the 20, 264, and 2128 positions, respectively; and rax
and rdx for holding the multiplication result between two 64-bit values. As a note, although
the underlying multiplication instruction uses registers with the same name (rax and rdx),
such variable names do not interfere in any way with the compiler’s register allocation.

The order in which multiplications are performed is: (h[2] · r[1] ·5/4); (h[2] · r[0]); (h[0] · r[0]);
(h[1] · r[0]); (h[1] · r[1] ·5/4); and (h[0] · r[1]). The first two multiplications from this sequence
(which involve h[2]) can be performed using the imulq instruction, given that the result fits
in a 64-bit register variable without loss of precision. The remaining multiplications require
the 128-bit multiplication, mulq, which reads its inputs from rax and an arbitrary register,
and write the result into rax and rdx for the lower and upper part of the result, respectively.
The presented multiplication order was chosen to minimize the number of additions. By
using this approach, the multiplication can be performed with: 2 imulq; 4 mulq; 9 movq; 3
addq; and 3 adcq assembly instructions. In comparison, the approach taken by OpenSSL,
which implements this multiplication routine using a different order ((h[0] · r[1]); (h[0] · r[0]);
(h[1] · r[0]); (h[1] · r[1] · 5/4); (h[2] · r[1] · 5/4); (h[2] · r[0])), requires one more addq and also
one more adcq instruction.

After the multiplication is completed, with the results being held by t0, t1, and h[2], it is
necessary to reduce the result modulo 2130. The first step is to take the upper 62 bits of h[2],
multiply this value by 5 and add it to the first limb, t0. To achieve this, a mask with the first
two bits as zero is placed in h[0] and then h[0] is and-ed with h[2]. Effectively, h[0] contains
the value of the upper 62 bits of h[2] multiplied by 4. After this, it is only necessary to add
the value corresponding to the upper 62 bits of h[2] to h[0] to complete the multiplication by
5. Overall, the multiplication instruction is expensive and should be avoided if possible. The
upper bits of h[2] are cleared and, at this point, h[2] contains at most the value 3, given that
only the first two bits can be set. After the last carry-chain addition is performed to include
the values from t0 and t1 in the computation, h[2] is at most 4. When compared to OpenSSL,
the reducing method is exactly the same, and it is only differentiated by the position of the
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mask initialization which, in OpenSSL, happens some instructions before when compared to
Jasmin (which can also be replicated in Jasmin if necessary).

inline fn mulmod(reg u64[3] h r) → reg u64[3] {
reg bool cf;
reg u64 t0 t1 t2;
reg u64 rax rdx;

t2 = r[2];
t2 ∗= h[2]; // (h[2] ∗ r[1] ∗ 5/4)
h[2] ∗= r[0]; // (h[2] ∗ r[0])

rax = r[0];
rdx, rax = rax ∗ h[0];
t0 = rax; t1 = rdx; // (h[0] ∗ r[0])

rax = r[0];
rdx, rax = rax ∗ h[1]; // (h[1] ∗ r[0])

cf, t1 += rax;
_ , h[2] += rdx + cf;

rax = r[2];
rdx, rax = rax ∗ h[1]; // (h[1] ∗ r[1] ∗ 5/4)

h[1] = rdx;
h[1] += t2;
t2 = rax;

rax = r[1];
rdx, rax = rax ∗ h[0]; // (h[0] ∗ r[1])

cf, t0 += t2; // 2∗∗0
cf, t1 += rax + cf; // 2∗∗64
_ , h[2] += rdx + cf; // 2∗∗128

// reduce
h[0] = 0xfffffffffffffffc;
t2 = h[2];
t2 �= 2;

h[0] &= h[2];
h[0] += t2; // h[0] = (h[2] / 4) ∗ 5
// <=> (h[2] / 4) ∗ 4 + (h[2] / 4)

h[2] &= 0x03; // 2 bits left in h[2]

cf, h[0] += t0;
cf, h[1] += t1 + cf;
_ , h[2] += 0 + cf; // 0 <= h[2] <= 4

return h;
}

Figure 5.7: Poly1305: mulmod function in Jasmin.

After all the input message blocks are consumed by sequentially calling mulmod, a final
reduction needs to happen to ensure that the final result is reduced modulo 2130 − 5. From
mulmod, it can be assumed (and proved) that h[2] is at most 4 and that h[0] and h[1] can be
any value up to 264−1. h needs to be reduced if it is greater of equal to 2130−5. Given that
at most one bit after the 130th position can be set in h, we can start by calculating h+ 1 · 5
and check if this value has its 131st bit set. If it has, then h + 5 (mod 2130) is the reduced
value, if it does not, h is already in bounds.

The presented description of the scalar implementation of Poly1305 synthesizes the most
relevant aspects of it and it is mostly focused on how the polynomials are represented
and how the multiplication routine of Poly1305 can be implemented efficiently. To better
understand what are the gains related to the proposed mulmod implementation, in which the
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multiplications are performed using a different order when compared to the best alternative
implementations, figure 5.8 shows the performance of two (complete) Jasmin implementations
of Poly1305 that only differ onmulmod: the top line corresponds to an Jasmin implementation
that uses a version of mulmod that exactly matches the code run by OpenSSL; the bottom
line corresponds to an Jasmin implementation that includes mulmod from figure 5.7. For
16KiB inputs, these implementations take 1.17 and 1.04 cpb. The difference between the
discussed approaches can also be observed during subsection 5.2.3, which includes a broader
performance comparison.
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Figure 5.8: Poly1305: comparison of different mulmod implementations.

Poly1305 AVX and AVX2

The main idea for vectorizing Poly1305 is somehow similar to the one that was described
for ChaCha20: multiple blocks can be computed at once. For this scenario, however, it is
necessary to take into consideration that the computation of the next accumulator depends
on the previous one: the accumulator ai can be computed as (ai−1 + bi)× r (mod p), where
bi corresponds to the message block being processed with the upper bit set to one. As an
example, consider a case where there are exactly 8 message blocks (128 bytes) to process.
The previous formula can be unrolled as:

b1 · r8 + b2 · r7 + b3 · r6 + b4 · r5 +

b5 · r4 + b6 · r3 + b7 · r2 + b8 · r (mod p)

Depending on the chosen strategy to compute multiple blocks at once, this formula can be
written differently. For instance, consider the case where we would like to rearrange this
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formula to process 2 message blocks simultaneously, which is useful for an AVX implemen-
tation:

((((b1 · r2 + b3) · r2 + b5) · r2) + b7) · r2 +

((((b2 · r2 + b4) · r2 + b6) · r2) + b8) · r (mod p)

Intuitively, if H1 represents an array with two polynomials and it is initialized with the first
two blocks of the message {b1, b2} (to avoid an initial multiplication by zero), then, to process
inputs whose lengths are multiple of 16·2, it is possible to define a (vectorized) procedure that
computesHn = Hn−1 ·R2+Bn, where R2 is defined as {r2, r2} and Bn contains the next set of
two blocks {b2n−1, b2n}. Generically, such procedure can be iteratively called to consume the
input message. To finish the computation, Hn should be multiplied by {r2, r}. The previous
formula can be slightly adjusted to optimize the performance of the AVX implementation:

((0 · r4 + b1 · r2 + b3) · r4 + b5 · r2 + b7) · r2 +

((0 · r4 + b2 · r2 + b4) · r4 + b6 · r2 + b8) · r (mod p)

This formula allows to process four blocks at once. The multiplication of r4 by zero is included
to make the pattern more clear and it can be easily avoided in the implementation. Using
the previous notation, the computation can be described as Hn = Hn−1 ·R4+{b4n−3, b4n−2}·
R2 + {b4n−1, b4n}, where R4 is defined as {r4, r4}.

Similarly to what was first discussed in the context of processing two blocks simultaneously,
the same pattern can be used for an AVX2 context, to enable the computation of four blocks
without unrolling:

(b1 · r4 + b5) · r4 +

(b2 · r4 + b6) · r3 +

(b3 · r4 + b7) · r2 +

(b4 · r4 + b8) · r (mod p)

In this case, the computation is Hn = Hn−1 ·R4 +Bn, where R4 is defined as {r4, r4, r4, r4}
and with Bn corresponding to {b4n−3, b4n−2, b4n−1, b4n}. H1 can also be initialized with the
first set of four blocks and a final multiplication by {r4, r3, r2, r} must occur.

So far the discussion was focused on how to process a number of blocks that is multiple
of two, for AVX, and four, for AVX2. For messages with different lengths, the remaining
blocks, or partial blocks, can be consumed by the previously discussed scalar implementation.
For this to be possible, after the multiplication by {r2, r} or {r4, r3, r2, r} is done, the
polynomials contained in H are added and reduced to a representation that is compatible
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with the previously discussed scalar implementation. The execution continues using the
scalar implementation.

Regarding the multiplication of polynomials, the Jasmin instructions available for this context
are #VPMULU and #VPMULU_256, for AVX and AVX2, respectively, which correspond
to vpmuludq in assembly. This instruction allows to multiply the low 32-bit integers from
each 64-bit element. For instance, given two reg u128 variables a and b initialized with
(4u32){0,a1,0,a2} and (4u32){0,b1,0,b2}, the statement “c = #VPMULU(a, b)”, where c is
also a reg u128 variable, allows to compute (2u64){a1*b1,a2*b2}. As such, it is not possible
to use 64-bit limbs as in the scalar implementation. Both vectorized implementations of
Poly1305 use 26-bit limbs and five limbs are required to represent 130-bit words. Using four
limbs is not an option given that the maximum limb size for this context would be 32-bits if
there was an efficient way of performing carry-chain additions using AVX/AVX2 instructions.
Using six limbs would also not provide any significant advantage considering that the result
of multiplying two 26-bit words can be represented within 52-bits, which already provides
some leeway (64-52 bits) to perform a significant number of additions before reaching a point
where an overflow can occur. Additionally, using five 26-bit limbs has the advantage that
130 is a multiple of the limb size and, as such, the reduction is simplified. For any two
polynomials a and b, represented with five 26-bit limbs, the multiplication a× b (mod p) can
be unrolled as follows:

20 · (a[0] · b[0] + a[1] · b[4] · 5+ a[2] · b[3] · 5+ a[3] · b[2] · 5+ a[4] · b[1] · 5) +

226 · (a[0] · b[1] + a[1] · b[0] + a[2] · b[4] · 5+ a[3] · b[3] · 5+ a[4] · b[2] · 5) +

252 · (a[0] · b[2] + a[1] · b[1] + a[2] · b[0] + a[3] · b[4] · 5+ a[4] · b[3] · 5) +

278 · (a[0] · b[3] + a[1] · b[2] + a[2] · b[1] + a[3] · b[0] + a[4] · b[4] · 5) +

2104 · (a[0] · b[4] + a[1] · b[3] + a[2] · b[2] + a[3] · b[1] + a[4] · b[0]) (mod p)

In the context of AVX two multiplications (a× b (mod p)) can be computed simultaneously
and, in AVX2, four. For instance, the previously discussed H is declared as a reg u128[5]
in the AVX implementation and as reg u256[5] in AVX2. Hence, each set of five 26-limbs
is vertically disposed. In the previous unrolled multiplication, it is possible to observe that
b[0] is never multiplied by 5. Intuitively b can be seen as a placeholder for r4, r3, r2, and
r1. As such, it is not necessary to precompute the multiplication between the first limb
of these polynomials and 5: the corresponding arrays can be declared, for instance, as reg
u128[4]. The declaration of mulmod for the AVX2 implementation is shown next. It expects
a register array h which represents the accumulator, a register array b which is already
initialized with the four message blocks (64 bytes). It also receives r which, in this case,
corresponds to four copies of r4 or {r4, r3, r2, r} and rx5, which corresponds to four copies
of r4 · 5 or {r4 · 5, r3 · 5, r2 · 5, r · 5}, minus the first element which is not necessary. This
function computes (h + b) * r, which is a small reordering in comparison to the generic
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formula previously presented, to avoid the first multiplication by zero.

inline fn add_mulmod_avx2(
reg u256[5] h b,
stack u256[5] r,
stack u256[4] rx5) → reg u256[5]

{ //...
}

Figure 5.9 compares the vectorized approaches being discussed so far. The optimized version
of the scalar implementation is also included for completeness. The y-axis of the plot was
purposely truncated at 5 cpb to improve the plot analysis. The scalar implementation is the
one that performs the best for small inputs, up until 256 bytes, and it takes 1.04 cpb for
16KiB inputs. For messages with more than 256 bytes, the AVX2 implementation, which
internally uses the scalar implementation for the remaining blocks, is the fastest, taking 0.53
cpb for 16KiB.
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Figure 5.9: Poly1305: comparison of Jasmin implementations.

To avoid the initial multiplication by zero, the AVX2 implementation requires at least 8
blocks (or 128 bytes) of input and, after that, it consumes four blocks in each iteration.
Because of this, the presented performance data for this AVX2 experimental implementation
corresponding from roughly 30 bytes up until 126 bytes are essentially the overhead of
precomputing and initializing the required variables for the AVX2 implementation, which are
not used because there are not enough blocks. It is also possible to observe a change in the
line pattern due to this. The unrolled approach for the AVX implementation performs better
than the first discussed approach: 1.19 vs 0.93 cpb / 16KiB. The final AVX implementation
only uses vectorization for inputs that are greater than 1024 bytes (for short messages scalar
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is used) and the threshold for the AVX2 implementation was set at 256 bytes. Similarly to
the presented ChaCha20 implementations, these values can be easily updated if required.

5.2.3 Performance Evaluation

In this section we compare the Poly1305 implementations with other open-source implemen-
tations, formally verified and non-verified. Figure 5.10 compares the performance of the
previously described Jasmin implementations, Scalar, AVX, and AVX2, with one implemen-
tation from ValeCrypt [BHK+17] project and two others from HACL* [ZBPB17, PBP+20]:
Poly1305_Vale, which is comparable to the Jasmin Scalar implementation of Poly1305;
Hacl_Poly1305_Vec128 which corresponds to a vectorized implementation that uses AVX;
and Hacl_Poly1305_Vec256 for the AVX2 version. The code was downloaded from the
project’s GitHub repository8 and the considered distribution was gcc64-only, compiled using
gcc version 9.3.09. Regarding the HACL* and CompCert combination, the same remark
from 5.1.3 applies in this context.
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Figure 5.10: Poly1305: comparison of Jasmin and HACL* implementations.

For 16KiB inputs, the performance is: 1.04/1.17 cpb for Jasmin Scalar and ValeCrypt;
0.93/1.28 cpb for AVX implementations; and 0.53/0.64 cpb for AVX2 implementations. For
short inputs, all three Jasmin implementations exhibit good cycles per byte performance,
mainly because of the usage of a mixed approach, where the AVX and AVX2 implementations
avoid the corresponding internal state initialization by checking the input length beforehand.
Also worth highlighting that the ValeCrypt implementation is proven correct at the assembly
level, similarly to the proposed Jasmin implementations.

8https://github.com/project-everest/hacl-star/tree/a50b659d11953dadd8d84ec5df25203cec1a746b
9CFLAGS set as -Ofast -march=native -mtune=native -m64 -fwrapv -fomit-frame-pointer -funroll-loops

https://github.com/project-everest/hacl-star/tree/a50b659d11953dadd8d84ec5df25203cec1a746b
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Figure 5.11 compares the developed Jasmin implementations with OpenSSL10. This figure
contains the data collected for four Poly1305 OpenSSL implementations, one written in C
and the others written in assembly. The same observations that were made for ChaCha20,
regarding the compilation of multiple libraries and testing procedure, also apply in this
context. The line corresponding to OpenSSL’s C implementation is also not included in this
figure.
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Figure 5.11: Poly1305: comparison of Jasmin and OpenSSL implementations.

Regarding the performance for 16KiB inputs: 1.97/1.18/0.99/0.54 cpb for OpenSSL imple-
mentations; and 1.04/0.93/0.53 for Jasmin implementations. For the sake of a fair compar-
ison, and regarding the small difference between 0.54 cpb and 0.53 cpb, the best reported
median values for these implementations and for the aforementioned input length were 8800
and 8744 CPU cycles for the OpenSSL and Jasmin AVX2 implementations, respectively. A
more approximate cycle per byte count for these two would be 0.5371 and 0.5336 cpb, which
is effectively the same. All Poly1305 implementations were benchmarked five times and the
five reported medians for these were (in the order that they were collected): 8800, 8808, 8808,
8812, and 8810 CPU cycles for OpenSSL AVX2; and 8746, 8746, 8748, 8744, and 8744 for
Jasmin AVX2. It can be considered that the benchmarking setup is stable. This difference of
roughly 50 CPU cycles is (most probably) related to the OpenSSL API for calling Poly1305,
which requires three functions calls: Init; Update; and Finish. It is also possible to observe in
figure 5.11 that OpenSSL is also sharing the same code for all implementations represented
in the plot up until 128 bytes. For inputs slightly greater than 128 bytes the performance
slightly deteriorates when compared to the scalar implementation. Overall, ValeCrypt and
OpenSSL share the same code, and the small difference between these two is related to the
used API. As for future work, the Jasmin implementations of Poly1305 will also be updated

10https://github.com/openssl/openssl/tree/bc8c36272067f8443f875164831ce3a5a739df3f

https://github.com/openssl/openssl/tree/bc8c36272067f8443f875164831ce3a5a739df3f


5.3. CURVE25519 111

to also support non one-shot calls: the inputs can be iteratively consumed with calls to update
functions.

Figure 5.12 compares the AVX2 Jasmin implementation with other open-source implemen-
tations. It includes measurements from libsodium11, which was compiled using the provided
Makefile without any modifications to it. The implementation included in libsodium is not
an AVX2 implementation and it is written in C. For reference, two other implementations
from SUPERCOP are included, amd64 and moon/avx2/64. The cycles per byte for the
implementations included in this figure and for 16KiB inputs are: 2.71 cpb for amd64; 1.17
cpb for libsodium; 0.61 cpb for moon/avx2/64; and 0.53 cpb for Jasmin AVX2.
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Figure 5.12: Poly1305: comparison between open-source implementations.

5.3 Curve25519

Curve25519 is an elliptic-curve Diffie-Hellman key exchange protocol proposed by Bern-
stein [Ber06b]. It is based on the custom-designed curve Curve25519 defined as E : y2 =

x3 + 486662x2 + x over the field F2255−19. This curve was chosen to provide cryptographic
security, but design choices also took into consideration the need for speed. As a result of
these choices, Curve25519 has been adopted for widespread use in various contexts, including
the TLS and the Signal protocols.

11https://github.com/jedisct1/libsodium/tree/a016aea61214668827e18c6278ac25b0bbc98ca5

https://github.com/jedisct1/libsodium/tree/a016aea61214668827e18c6278ac25b0bbc98ca5
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5.3.1 Algorithm Overview

Elliptic curve cryptography [HMV04] relies on hardness assumptions on algebraic groups
formed by the points of carefully chosen elliptic curves over finite fields. Let Fq be the finite
field of prime order q. An elliptic curve is defined by the set of points (x, y) ∈ Fq × Fq that
satisfy an equation of the form E : y2+ a1xy+ a3y = x3+ a2x

2+ a4x+ a6, for a1, a2, a3, a4,
a6 ∈ Fq (with certain restrictions on these parameters). This set of points, together with a
“point at infinity”, form a group of size l ≈ q. The group law has a geometric interpretation,
which is not relevant for the purpose of this discussion; what is important is that the group
law can be computed very efficiently — particularly when compared to the computations
underlying other algebraic structures used in public-key cryptography — using only a few
operations in Fq. Similarly, scalar multiplication,12 which is the core operation for elliptic
curve cryptography, can also be computed very efficiently.

Scalar multiplication in Curve25519 is usually implemented using Montgomery’s differential-
addition chain — also known as Montgomery ladder — which permits performing the com-
putation directly over the x-coordinate of elliptic curve points. This algorithm is shown in
Algorithm 2. It is ideal for high-security and high-speed implementation for two reasons.
First, it is much simpler than the generic algorithm for elliptic curves, so its overall efficiency
essentially only depends on the cost of the underlying field operations, which can be computed
very fast in modern architectures. Second, it is highly regular and can be implemented in
constant-time by executing exactly the same code for each scalar bit (called a ladder step),
making sure that the appropriate inputs are fed to this code via (constant-time) swapping
of (X2, Z2) with (X3, Z3).

Algorithm 2 Montgomery Ladder
Input: A scalar k and the x-coordinate xP of a point P on E.
Output: (XkP , ZkP ) fulfilling xkP = XkP /ZkP

t← dlog2 k + 1e
X1 ← xP ; X2 ← 1; Z2 ← 0; X3 ← xP ; Z3 ← 1

for i← t− 1 downto 0 do
if bit i of k is 1 then
(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return (X2, Z2)

12Given a curve point P and a scalar k ∈ Z, scalar multiplication computes the point Q = k · P =

P + . . .+ P︸ ︷︷ ︸
k times

.
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The computations of each step in the ladder, all over Fq, are shown in Algorithm 3. Typical
implementations of the scalar multiplication operation implement the Montgomery ladder
step in fully inlined hand-optimized assembly, and also include field multiplication and
inversion as hand-optimized assembly routines (these are needed to recover the final x-
coordinate of the result once the ladder is computed). The main difference between various
implementations lies in the representation of F2255−19 field elements and their handling in the
hand-crafted assembly code, as the optimal choice varies from one architecture to another due
to word size and available machine operations, and their relative efficiency. The higher-level
functions that call the assembly routines for the various ladder steps and finalize the results
are usually implemented in C. This is inconvenient when formal verification is the goal, since
the relevant routines are now split between two programming languages with very different
characteristics.

Algorithm 3 One step of the Curve25519 Montgomery Ladder
function ladderstep(X1, X2, Z2, X3, Z3)

A← X2 + Z2

AA← A2

B ← X2 − Z2

BB ← B2

E ← AA−BB
C ← X3 + Z3

D ← X3 − Z3

DA← D ·A
CB ← C ·B
X3 ← (DA+ CB)2

Z3 ← X1 · (DA− CB)2

X2 ← AA ·BB
Z2 ← E · (AA+ 121665 · E) or Z2 ← E · (BB + 121666 · E)

return (X2, Z2, X3, Z3)

end function

5.3.2 Curve25519 Implementations

Three implementations of the Curve25519 scalar multiplication were developed in Jasmin:
ref4, ref5, and mulx. ref4 and mulx implementations use four 64-bit limbs to represent field
elements while ref5 uses five 51-bit limbs. ref4 and ref5 use the mulq assembly instruction
to perform the multiplications, which modifies the arithmetic flags, while mulx uses the mulx
assembly instruction, which does not affect the arithmetic flags. mulx is defined in BMI2 (Bit
Manipulation Instruction set), and it is useful in contexts where is it advantageous to perform
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multiple carry-chain additions: since the arithmetic flags are not changed by the execution
of this instruction, it can be used together with the addition instructions from the Intel ADX
extension, adcx and adox, which only affect the carry and overflow flag, respectively. All
implementations share the same interface:

export fn curve25519(reg u64 rp kp up)
{ // ...
}

All arguments in this function are memory pointers. When compared with the SUPERCOP
API, rp, kp, and up, from the Jasmin interface, correspond to u8 *q, cu8 *n, and cu8 *p,
respectively. The chosen argument names are aligned with RFC7748 [LHT16].

In this section, the scalar multiplication with the base point 9 is not discussed. When
the point is known, the computation can be optimized [OLH+17]. There is a preliminary
Jasmin implementation available13 that implements the optimizations described in [OLH+17],
but it is not formally verified yet. This constitutes future work. Also future work is
the formal verification of a vectorized Jasmin implementation (AVX2) that implements the
optimizations described in [FHLD19a]. In an ideal scenario, the proofs of these two additional
implementations can leverage the verification effort taken to verify the implementations
presented in this section. Regarding this section’s structure, first, we discuss the field
element’s basic arithmetic operations for each considered number of limbs, four and five.
The discussion follows by presenting the optimization steps that were taken to optimize one
step of the Montgomery Ladder algorithm. To conclude, an overview of the complete Jasmin
implementation of the Curve25519 is presented.

Field Arithmetic

There are four basic arithmetic operations that must be implemented for this primitive: ad-
dition; subtraction; multiplication; and squaring. Multiplication and squaring are essentially
the same, given that squaring an element is the same as multiplying the element by itself,
but the actual implementation can take advantage of that to improve performance. Given
that the size of these field elements can fit in 255 bits (but 256 bits may be required for
performance reasons), these can be represented by arrays of four or five u64 variables. The
value contained in a four-limb array a can be reconstructed with the following expression:
20 · a[0] + 264 · a[1] + 2128 · a[2] + 2192 · a[3]. If the reconstructed value is greater or equal
than 2255 − 19, an additional (mod 2255 − 19) is required. This step must be performed in
constant-time. The previous expression can be easily extended for a 5-limb representation.

13https://github.com/tfaoliveira/libjc/

https://github.com/tfaoliveira/libjc/blob/2cebaa7c6f448105304cab981b959ea2e3b68b74/src/crypto_scalarmult/curve25519/mulx/x25519_scalarmult_base2.jazz
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Addition and Subtraction

The addition and subtraction algorithms for the ref4 and mulx implementations are the same
given that, in both implementations, the same 4-limbs representation is used. Figure 5.13
presents two inline functions, to perform an addition (left) and a subtraction (right). The
presented functions expect as first argument a register array f and a stack array gs, and
return, in a register array, the result of computing f + gs and f - gs, respectively.

inline fn add4_rrs(reg u64[4] f, stack u64[4] g)
→ reg u64[4]

{
inline int i; reg bool cf;
reg u64[4] h;
reg u64 z;

_,_,_,_,_,z = #set0();
h = f;

cf, h[0] += gs[0];
for i=1 to 4
{ cf, h[i] += gs[i] + cf; }

_, z -= z - cf;
z &= 38;

cf, h[0] += z;
for i=1 to 4
{ cf, h[i] += 0 + cf; }

_, z -= z - cf;
z &= 38;
h[0] += z;

return h;
}

inline fn sub4_rrs(reg u64[4] f, stack u64[4] gs)
→ reg u64[4]

{
inline int i; reg bool cf;
reg u64[4] h;
reg u64 z;

_,_,_,_,_,z = #set0();
h = f;

cf, h[0] -= gs[0];
for i=1 to 4
{ cf, h[i] -= gs[i] - cf; }

_, z -= z - cf;
z &= 38;

cf, h[0] -= z;
for i=1 to 4
{ cf, h[i] -= 0 - cf; }

_, z -= z - cf;
z &= 38;
h[0] -= z;

return h;
}

Figure 5.13: Curve25519: add and sub functions for 4-limbs in Jasmin.

Both function names are suffixed with the return and arguments types: rrs. Depending on
the requirements of the top-level code (the code that calls these leaf functions), it may be
practical to have multiple functions definitions that perform the same arithmetic operation
but, in some cases, are optimized for their argument type. For instance, a function add_rsr,
which would receive as first argument a stack array and as second argument a register array,
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may be easily implemented as a call to the presented function add_rsr where the arguments
are swapped given that addition is commutative.

As another example, the definition of functions such as add_sss, that operate only with stack
arrays, can be implemented as a load for the first argument to a register array, followed by
a call to the presented function add_rrs, followed by a store of the result for subsequent
return. This programming pattern improves the readability of the complete implementation
and eases the optimization process of code such as the one presented in Algorithm 3.

Regarding the computation that is being performed by add4_rrs and sub4_rrs, after setting
a variable z with the value 0 and copying all elements from the first argument into another
register array14, a carry chain addition, or subtraction with borrow, is performed. If the carry
flag is set after the first loop, then the value needs to be reduced. To avoid any side-channel
leakage, the reduction is always performed. Variable z is then set to 0 or 38 depending if the
carry flag is set or not. This is equivalent to multiply the last carry, or borrow, bit by 2×19.
After adding, or subtracting, z to the array to perform the reduction, the same procedure
is used again since the carry flag can be set after the addition, or subtraction. This second
time, however, the first limb can accommodate an addition, or subtraction, by 38 without
the carry flag being set15. The resulting value is then less than 2256, but it can be greater
than 2255 − 19. The implementations described in this paragraph are standard, in the sense
that other cryptographic libraries implement the same algorithm using the same sequence of
instructions, for instance, in qhasm or directly in assembly.

The code that implements the addition and subtraction in the ref5 implementation, which
uses five 51-bit limbs, is not shown but it is described next. The main motivation for
using a 51-bit limb representation is to reduce the usage of the adc instruction in micro-
architectures where this instruction has a low throughput and big latency. For instance,
in Intel Nehalem CPUs, adc and sbb instructions, which allow to perform an addition with
carry and a subtraction with borrow, respectively, have a latency and a throughput of 2
cycles, when both operands are registers. On the other hand, add and sub have a latency
and throughput of 1 and 0.33, respectively. For comparison, the Skylake micro-architecture
has a latency and a throughput of 1 for adc and sbb, and a latency of 1 and a throughput
of 0.25 for add and sub. Given this non-negligible difference in latency and throughput in
Nehalem, implementations that use a limb size that is less than the total amount of available
bits, in this case 64 bits, perform faster than the alternative approach that uses four 64-bit
limbs [BDL+12b]. The main reason for this is that, by using 51-bit limbs, one can perform a
field element addition, or subtraction, without fully propagating the carry (use add instead
of adc) and without performing a reduction (which can be done when multiplications are

14The addition and subtraction is not performed inplace for these functions, although the compiler could
actually remove this copy if the return value is attributed to the first argument, given that the variables
would, most probably, be merged.

15As an intuition, this property needs to be explicitly proven in EasyCrypt.
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done, for instance). An additional step (when compared to 64-bit limbs implementations)
that is performed when doing the subtraction, is to first add 2 × p, with p being 2255 − 19,
to the element being subtracted, before the subtraction happens. The result is congruent
modulo 2255 − 19. This implies extra reasoning when doing the proving the correctness of
the algorithms.

Multiplication and Squaring

The multiplication between two field elements f and g, each represented with four 64-bit
limbs, corresponds to the following expression:

(20 · f [0] + 264 · f [1] + 2128 · f [2] + 2192 · f [3]) ×
(20 · g[0] + 264 · g[1] + 2128 · g[2] + 2192 · g[3])

The previous multiplication can be expanded as follows:

20 · (f [0] · g[0]) +

264 · (f [0] · g[1] + f [1] · g[0]) +

2128 · (f [0] · g[2] + f [1] · g[1] + f [2] · g[0]) +

2192 · (f [0] · g[3] + f [1] · g[2] + f [2] · g[1] + f [3] · g[0]) +

2256 · (f [1] · g[3] + f [2] · g[2] + f [3] · g[1]) +

2320 · (f [2] · g[3] + f [3] · g[2]) +

2384 · (f [3] · g[3])

A register array h, with eight u64 elements, can hold the result of the previous expression,
which can be later reduced modulo the prime being used. It is also possible to observe that if f
and g are the same, which means that a square is being done, then several multiplications can
be replaced by a couple of additions, which need to be performed in any case. For instance,
f [0] · g[1] is effectively the same value as f [1] · g[0] and, as such, the second multiplication
does not need to happen, and this value can be added to itself.

The mulx assembly instruction allows to multiply rdx by another 64-bit register (or memory
operand) and the result, a 128-bit number, is written in two registers: one contains the lower
64 bits; and the other contains the higher 64 bits. The output of mulx can be written in any
two registers. In comparison, mulq always writes the results in rdx and rax. In this context,
where one of the inputs must be loaded to a specific register, one of the field elements can be
a stack array and the other a register array. For instance, if f is a stack array, then it would
favor performance if every sequence of multiplications that uses a given limb is performed
sequentially: when f [0] is loaded into a register, then f [0] · g[0], f [0] · g[1], f [0] · g[2], and
f [0] · g[3] can occur. This pattern (operand scanning) can be seen by shifting the previously
presented multiplication:
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20 · (f [0] · g[0] ) +

264 · (f [0] · g[1] + f [1] · g[0] ) +

2128 · (f [0] · g[2] + f [1] · g[1] + f [2] · g[0] ) +

2192 · (f [0] · g[3] + f [1] · g[2] + f [2] · g[1] + f [3] · g[0]) +

2256 · ( f [1] · g[3] + f [2] · g[2] + f [3] · g[1]) +

2320 · ( f [2] · g[3] + f [3] · g[2]) +

2384 · ( f [3] · g[3])

The result of the first multiplication of the first column, f [0] ·g[0], is written in h[0] and h[1].
The lower part of the second multiplication, f [0] · g[1], needs to be added to h[1], and the
higher part is written to h[2]. The carry resulting from adding the lower part of f [0] · g[1]
to h[1] is added to h[2] after the third multiplication, f [0] · g[2]. The same applies to the
remaining limbs. At the end of this column, the carry is added to h[4]. Only the carry flag
and the corresponding adcx instruction are used until this point.

For the remaining columns, the overflow and carry flags (and corresponding adox and adcx
instructions) are used to perform the additions between each multiplication result (low and
high) and the corresponding limb. For instance, after f [1] is loaded into a register and
multiplied by g[0], the lower part must be added to h[1]. From this addition results a carry,
which is placed in the overflow flag (adox). The upper part of this multiplication must be
added to h[2] which will also result in a carry, but this time it is placed in the carry flag
(adcx). The flags are propagated while adding the results of subsequent additions. Similarly
to the finalization procedure from the first column, the carry and overflow flags are added
to h[5]. While it is intuitive that a given carry can be added to the upper part of a given
multiplication without unexpectedly overflowing, it is not as intuitive when two 1-bit values
are added to the same element. This is addressed by the correctness proof.

After the multiplication is performed, the result needs to be reduced. To perform the
reduction, h[4], h[5], h[6], and h[7] are multiplied by 38, and added to the corresponding
limb. The reduction is similar to the one described in the context of addition. The reduction
implementation also takes advantage of mulx features. The discussed algorithm is equivalent
to the corresponding OpenSSL implementation (the one that does use the mulx instruction),
minus one copy from register to stack that OpenSSL uses to free one register.

The discussion was focused on the multiplication routine for the case where four 64-bit limbs
are used in a context where mulx, adox and adcx are available. The intuition for the remaining
multiplication implementations is the same but, for implementations that usemulq to perform
the multiplication of field elements, both arguments need to be in stack.
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Optimizing one step of Montgomery Ladder

All three implementations share, in its essence, the same top-level code, with only the
leaf functions (for instance, the ones that are used to multiply and perform additions and
subtractions between field elements) being different. It is stated as ‘in its essence’ because,
since there are 4 and 5-limb implementations, which require arrays of different sizes, the top-
level functions’ declarations and corresponding local variables must be differently declared:
in ref4 and mulx implementations these elements can be declared as ‘reg u64[4]’; and in ref5
as ‘reg u64[5]’. However, it would be interesting to explore how the support in Jasmin for the
definition of new data types, which could be used to encapsulate the instantiated type until
fixing it during compilation time, could benefit code modularity. In practice, it is possible
to replicate such a feature by using a preprocessor and corresponding #define directives, for
instance. The problem with following this approach is that some of the proofs would need
to be replicated as there would be different extractions for the same program.

During a scalar multiplication, roughly 90% of the CPU time is spent on Algorithm 2.
The remaining 10% corresponds to a modular inversion computed after the Montgomery
ladder. These are round percentages based on the Jasmin implementations of this primitive.
Additionally, the optimized modular inversion proposed in [BY19] is not yet implemented
in Jasmin. It is estimated that using this faster modular inversion algorithm (and based
on the data provided by the authors of the work) the overall performance, and for mulx
implementation, should be improved by 2% or 3%. This is future work.

The key for achieving a highly efficient implementation of Curve25519 scalar multiplication
relies, first, on a careful implementation of the ladderstep function (shown in Algorithm 3),
given that it is called 255 times and also that it uses most of the CPU time in this primitive,
and, second, the functions that perform the addition, subtraction, multiplication, and square,
with the latter being a specialization of the multiplication algorithm. We start by discussing
alternative ways of unrolling ladderstep into a sequence of single calls to the available leaf
functions (+,−, ·,2) and study the performance impact of the resulting assembly code.

Figure 5.14 presents a low-level implementation of Algorithm 3. The presented ladderstep0

implementation can be found in a SUPERCOP’s implementation, amd64-6416, a qhasm
implementation where the ladderstep function is fully inlined. In this case, fully inlined
means that there are no function calls to the leaf operations, for instance, multiplication or
addition. As such, this sequence of operations is not directly observable from the source file
referred on the previous footnote. As mentioned during Algorithm Overview, § 5.3.1, some
implementations use two different programming languages: in this case, amd64-64 has the
higher-level functions written in C and the ladderstep, for instance, written in qhasm, which
can be independently compiled to assembly using the qhasm compiler. amd64-64, which

16The complete path is: crypto_scalarmult/curve25519/amd64-64/ladderstep.S; Related paper [BDL+12b].
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ladderstep0(X1s, X2s, Z2s, X3s, Z3s)

T1 ← X2s

T2 ← T1

T1 ← T1 + Z2s

T2 ← T2 − Z2s

T1s ← T1

T2s ← T2

T7 ← T 2
2s

T7s ← T7

T6 ← T 2
1s

T6s ← T6

T5 ← T6

T5 ← T5 − T7s
T5s ← T5

T3 ← X3s

T4 ← T3

T3 ← T3 + Z3s

T4 ← T4 − Z3s

T3s ← T3

T4s ← T4

T9 ← T2s · T3s

T9s ← T9

T8 ← T1s · T4s
ZQ ← T8

ZQ ← ZQ − T9s
T8 ← T8 + T9s

X3s ← T8

Z3s ← ZQ

XQ ← X2
3s

X3s ← XQ

ZQ ← Z2
3s

Z3s ← ZQ

ZQ ← X1s · Z3s

Z3s ← ZQ

XP ← T7s · T6s
X2s ← XP

ZP ← T5s · 121666
ZP ← ZP + T7s

Z2s ← ZP

ZP ← T5s · Z2s

Z2s ← ZP

return (X2s, Z2s, X3s, Z3s)

Figure 5.14: Curve25519: ladderstep version 0.

implements the ladderstep0 as shown, takes roughly 147.4K CPU cycles to execute on an
Intel Skylake (i7-6500U).

The algorithm presented in figure 5.14 considers register allocation restrictions: each variable
is an array that represents a field element and variables suffixed with an s, for instance, X1s

or T1s, correspond to stack arrays while the remaining variables are register arrays. As
additional notes, all additions and subtractions are performed inplace (where the output is
written to the first argument, which is a register array) and multiplication and squaring
operations expect all arguments in stack arrays and return the computed result in registers.

The optimized Curve25519 implementation presented in the first Jasmin paper [ABB+17a],
implements ladderstep0 as shown in figure 5.14 but with some changes to improve perfor-
mance: instead of receiving and returning X2s as a stack array, X2 is placed in registers
upon entry and exiting this function. To achieve this, the first line of the previous algorithm
(T1 ← X2s) is removed and every subsequent usage of T1 is replaced by X2. Next, to
guarantee (with minimal cost) that the value corresponding to X2 is loaded into registers
before the return happens, the multiplication of T7s with T6s (which is copied into X2s) can



5.3. CURVE25519 121

be moved to the end of ladderstep0. Also inside the loop of Montgomery Ladder, shown
in Algorithm 2, is the constant-time swap operation between (X2, Z2) with (X3, Z3). This
function can also be implemented to take advantage of the fact that X2 is a register array.

The Jasmin implementation of Curve25519 included in [ABB+17a], which includes the im-
proved ladderstep, takes 143.4K CPU cycles to execute on the same Intel Skylake (i7-6500U)
and under the same conditions of the previous benchmark for amd64-64. It is then 4K
CPU cycles faster than amd64-64. To better understand the performance impact of the
optimization described in the last paragraph, a different Jasmin implementation containing
ladderstep0 without the described optimizations (and also a constant-time swap that operates
on stack arrays) was developed. This intermediate implementation takes 146K CPU cycles
to execute. Hence, writing the implementation using Jasmin and, consequently, avoiding
function calls from C to assembly, causes a performance improvement of 1.4K CPU cycles.
The remaining 2.6K CPU cycles can be attributed to the described optimization. Since the
loop body of Montgomery Ladder is executed 255 times for Curve25519, the loop body takes
roughly less 10 cycles to execute.

It is important to highlight at this point that a similar performance improvement can
be achieved using qhasm: the described optimizations can be integrated in amd64-64 by
implementing the while loop in qhasm, instead of C, which would avoid the corresponding
calls to ladderstep and the constant-time swapping functions, and, additionally, would also
allow for X2 to be in registers. In fact, this statement is true for all implementations: any
efficient Jasmin function can be encoded in qhasm, and also the opposite. Given the features
of the Jasmin programming language and its compiler, it may be, however, more convenient
to implement and test different optimization strategies using Jasmin.

Considering that the computation of each step of the Montgomery Ladder is the most speed-
critical part in the complete Curve25519 computation, further research was done on how
to take advantage of the characteristics of the Jasmin programming language while using
different arrangements for the ladderstep function. Figure 5.15 shows three different imple-
mentations to compute one step of the Montgomery Ladder. This set of implementations are
higher-level when compared to the one presented in figure 5.14: for these, one can assume
that the basic operations arithmetic operations for the field elements are defined for both
register and stack inputs and outputs, inplace or non-inplace in the case of additions and
subtractions. In contrast to the algorithm shown in figure 5.14, all elements are stack arrays,
except those suffixed with an r which are placed in registers.

The leftmost implementation, ladderstep1, can be found in some Curve25519 implementa-
tions, for instance, in OpenSSL17. Depending on how Algorithm 3 is unrolled, the multiplica-
tion of a field element by the constant 121666, or 121665, occurs. All the presented alterna-
tives are equivalent in the sense that they perform the same computation. RFC7748 [LHT16],

17https://github.com/openssl/openssl/

https://github.com/openssl/openssl/blob/76eb12aa278cb30a495bcee3fdc176d0a6c35052/crypto/ec/curve25519.c#L226
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ladderstep1(X1, X2, Z2, X3, Z3)

T0 ← X3 − Z3

T1 ← X2 − Z2

X2 ← X2 + Z2

Z2 ← X3 + Z3

Z3 ← X2 · T0

Z2 ← Z2 · T1

T0 ← T 2
1

T1 ← X2
2

X3 ← Z3 + Z2

Z2 ← Z3 − Z2

X2 ← T1 · T0

T1 ← T1 − T0

Z2 ← Z2
2

Z3 ← T1 · 121666
X3 ← X2

3

T0 ← T0 + Z3

Z3 ← X1 · Z2

Z2 ← T1 · T0

ladderstep2(X1, X2, Z2, X3, Z3)

T0 ← X3 − Z3

T1 ← X2 − Z2

X2 ← X2 + Z2

Z2 ← X3 + Z3

Z3 ← X2 · T0

Z2 ← Z2 · T1

T0 ← T 2
1

T1 ← X2
2

X3 ← Z3 + Z2

Z2 ← Z3 − Z2

X2 ← T1 · T0

T2 ← T1 − T0

Z2 ← Z2
2

Z3 ← T2 · 121665
X3 ← X2

3

T0 ← T1 + Z3

Z3 ← X1 · Z2

Z2 ← T2 · T0

ladderstep3(X1, X2, Z2r, X3, Z3)

T0 ← X2 − Z2r

X2 ← X2 + Z2r

T1 ← X3 − Z3

Z2 ← X3 + Z3

Z3 ← X2 · T1

Z2 ← Z2 · T0

T2 ← X2
2

T1 ← T 2
0

X3 ← Z3 + Z2

Z2 ← Z3 − Z2

X2 ← T2 · T1

T0 ← T2 − T1

Z2 ← Z2
2

Z3 ← T0 · 121665
X3 ← X2

3

T2 ← T2 + Z3

Z3 ← X1 · Z2

Z2r ← T2 · T0

Figure 5.15: Curve25519: ladderstep version 1.

specifies 121665 as the constant to be used. The implementation shown in the middle of
figure 5.15, ladderstep2, is included as an intermediate implementation between ladderstep1

and ladderstep3, to make clear what are the necessary changes for the implementation to use
the multiplication with 121665: an additional temporary array T2 is necessary to hold the
result of subtracting T0 from T1, instead of overwriting T1, to preserve this value for a later
addition with Z3. Hence, ladderstep2 requires more stack space than ladderstep1. Depending
on deployment restrictions, this may be a concern. In the considered scenario, where the code
is targeted to the AMD64 architecture and very likely to be run in very capable environment,
this additional need for memory can be ignored.

Similarly to the ladderstep0, ladderstep3 implements some rearrangements in the way that
computations are performed when compared to ladderstep2: to minimize the amount of
memory loads and stores, Z2 is chosen to be placed in registers instead of stack. The
implementation of ladderstep3 moves the operations that are dependent of Z2r to the top of
the function to take advantage of this fact. The last multiplication, Z2r ← T2 ·T0, also leaves
the result in registers. Similarly to the optimization previously described, one field element
is always placed in registers during the Montgomery Ladder loop and the implementation
of the constant-time swap algorithm also takes advantage of this. The previous Jasmin
implementation that previously took 143.4K CPU cycles to execute, when equipped with the
ladderstep3 implementation, now takes 129.4K CPU cycles on an Intel Skylake (i7-6500U).
This is a performance improvement of 14K CPU cycles.
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The discussion so far was focused on how different implementation strategies for the ladderstep
function can be used to improve the performance of Curve25519. The discussion took as a
base example the amd64-64, an implementation available in SUPERCOP, and iterated from
there. The presented performance data corresponds to the ref4 Jasmin implementation, which
uses four 64-bit limbs and the mulq instruction. As previously mentioned, the multiplication
function of this implementation reads both arguments from stack.

The intuition for this is that, given that two arrays with four limbs each are being multiplied,
eight registers are required to hold the intermediate multiplication result. In addition to this,
two specific registers are used by the mulq instruction (rdx and rax), one more to load the
second input of the multiplication instruction if one wants to avoid the usage of a memory
operand (the first input is already considered: rax), and another register as a temporary
variable. For implementations that use a 4-limbs representation, this corresponds to 12
registers. As such, there are only 3 left registers. It is possible however, to implement a
version of the multiplication algorithm that receives the first argument as a register array, as
long as this first argument is not live after the multiplication function returns.

With such multiplication function, it is possible to change the squaring of T0 to return a
register array instead: T1r ← T 2

0 . Given that the following addition and subtraction do not
require many registers, T1r can be live during the execution of these. The next step is to swap
the following two operations, X2 ← T2 · T1 and T0 ← T2− T1, in order for the subtraction to
happen before the multiplication. The multiplication can then be updated to X2 ← T1r · T2
considering that it is commutative. With this optimization, the complete implementation
takes 127.7K CPU cycles to execute, making it 1.8K CPU cycles faster than the Jasmin
version that implements ladderstep3 as presented in figure 5.15.

It is important to state that the performance gains obtained by using the presented optimiza-
tions are not exclusively related with the avoidance of memory loads and stores. For instance,
if we change the ladderstep3 to perform X3 ← X2

3 right after X3 is set by X3 ← Z3+Z2, the
CPU cycle count increases from 129.4K to 132.6K CPU cycles. As such, data dependencies
must also be considered. It would be interesting to further explore how to automatically
improve the performance (by extending the Jasmin compiler) of such algorithms. The mulx
implementation also benefits from the described optimizations, with the fastest version taking
102.8K CPU cycles to execute on an Intel Skylake (i7-6500U).

Implementation Overview

Figure 5.16 shows the top-level code of the Curve25519 implementation in Jasmin: the
left-side of the figure shows the curve25519_scalarmult function, which is used by the two
existent four limbs implementations, ref4 and mulx; the right-side of the figure shows an
implementation of the montgomery_ladder. The implementations for the five limb version of
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the code is similar: only the length of the arrays that represent field elements change.

As an overview of the presented algorithms, curve25519_scalarmult starts by storing the
output pointer in a stack variable, to free the associated register for later usage, given
that this pointer is only needed at the end of the function’s execution. The scalar in
k is loaded into a byte array using function decode_scalar_25519 (not shown) according
to the algorithm’s specification, which includes setting some bits to zero and one bit to
one. A load is also performed for the u-coordinate using the function decode_u_coordinate.
curve25519_scalarmult then calls montgomery_ladder to perform the scalar multiplication.
The result is given to function encode_point, which computes X2 ∗ Z−12r (mod 2255 − 19).
The naming of variables and functions presented here follow the corresponding RFC as close
as possible.

The montgomery_ladder function, shown on the right-side of figure 5.16, performs the com-
putation described by Algorithm 2. Given the register array u, it initializes the corresponding
points and loops over the bits of the scalar k. The main difference between the shown im-
plementation of montgomery_ladder and Algorithm 2 is that the access of the corresponding
scalar bit and constant-time swapping are placed inside function montgomery_ladderstep.
Stack variable s indicates if the state, (x2, z2r, x3, z3), is swapped or not.

export fn curve25519_scalarmult(
reg u64 rp kp up)
{
inline int i;
stack u8[32] k;
stack u64[4] x2;
reg u64[4] u z2r r;
stack u64 rps;

rps = rp;
k = decode_scalar_25519(kp);
u = decode_u_coordinate(up);
(x2,z2r) = montgomery_ladder(u, k);
r = encode_point(x2,z2r);

rp = rps;
for i=0 to 4
{ [rp + 8∗i] = r[i]; }

}

inline fn montgomery_ladder(
reg u64[4] u, stack u8[32] k) →
stack u64[4], reg u64[4]
{
stack u64[4] us x2 x3 z3;
reg u64[4] z2r;
stack u64 ctrs s;
reg u64 ctr;

(x2,z2r,x3,z3) = init_points(u); us = u;
ctr = 255; s = 0;
while {
ctr -= 1; ctrs = ctr;
(x2, z2r, x3, z3, s) =
montgomery_ladderstep(
k, us, x2, z2r, x3, z3, s, ctr);

ctr = ctrs;
} (ctr > 0)
return x2, z2r;

}

Figure 5.16: Curve25519: scalarmult implementation in Jasmin.
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5.3.3 Performance Evaluation

In this section we compare the performance of different Curve25519 implementations. Dif-
ferently from what was done for other primitives, in this section measurements are pre-
sented using tables. Although the multiplication with the base point was not discussed
(crypto_scalarmult_base), preliminary results are included for completeness: the correspond-
ing Jasmin implementations still need to be optimized and formally verified.

scalarmult scalarmult_base

Jasmin ref4 128932 87520
ref5 142760 -
mulx 102784 67886

Everest Vale 119904 -
HACL* 141874 -

BoringSSL Fiat-Crypto 163972 60066

fld-ecc-vec amd64 117210 35284
avx2 102212

OpenSSL fe64 123102 116360
fe51 148538
no-asm 160426

SUPERCOP amd64-51 147276 -
amd64-64 147370 -
donna 267984 -
donna-c64 151384 -
sandy2x 141092 -

Table 5.1: Curve25519: performance comparison on an Intel Skylake (i7-6500U).

Table 5.1 presents the benchmark results for several Curve25519 implementations on an Intel
Skylake CPU. On the top of the table, the measurements for the Jasmin implementations
can be found. mulx is the fastest Jasmin implementation, taking 102.8K CPU cycles to
executed, followed by ref4 and ref5, which take 129K and 142.8K CPU cycles, respectively.
The small discrepancy between the reported value of 129K CPU cycles in table 5.1 and the
aforementioned 129.4K CPU cycles (during the discussion on how to optimize one step of the
Montgomery Ladder), is due to different implementations being used: the previous discussion
took as a base example the Jasmin implementation that was developed for [ABB+17a] and
iterated from there, while the value reported in this table relates to a slightly improved
implementation, which is closer to RFC7748, that is partially shown in figure 5.16.

In the context of project Everest [BBDL+17], two implementations from Evercrypt [PPF+20]18

18https://github.com/project-everest/hacl-star/tree/a50b659d11953dadd8d84ec5df25203cec1a746b

https://github.com/project-everest/hacl-star/tree/a50b659d11953dadd8d84ec5df25203cec1a746b


126 CHAPTER 5. VERIFIED JASMIN IMPLEMENTATIONS

cryptographic library are included in table 5.1: the first implementation, developed in Vale,
takes 119.9K CPU cycles to compute, is platform dependent, and it is comparable (given that
it uses mulx, adox, and adcx instructions) to the Jasmin mulx implementation; the second
implementation, from HACL*, which is portable, takes 141.9K CPU cycles to execute. The
cycle count for scalarmult_base is roughly the same for these implementations which indicates
that the scalarmult_base is implemented as a call to scalarmult and, as such, the corresponding
values are omitted (-). For these measurements, the library was compiled using the same
compiler and flags19 that were previously used for ChaCha20 and Poly1305 performance
evaluations, during § 5.1.3 and § 5.2.3, respectively.

BoringSSL20, which includes code from Fiat-Crypto [EPG+19a] for the Curve25519 com-
putation, takes 164K CPU cycles to execute for the scalarmult computation and 60K CPU
cycles for the scalarmult_base, which is the second best value from in table 5.1.

The implementations proposed by [FHLD19b], fld-ecc-vec21 in the table, are fastest non-
Jasmin implementations available in this context, taking 117.2K and 102.2K CPU cycles
for the amd64 implementation (uses mulx instruction) and avx2 versions, respectively. The
scalarmult_base, which takes 35.3K CPU cycles, is the same for both versions. The code
was compiled with Clang, version 10.0.0. A preliminary Jasmin vectorized implementation,
comparable to the fld-ecc-vec/avx2, already exists, but it takes roughly 115K CPU cycles to
execute and, as such, it still needs to be optimized.

OpenSSL22 provides three implementations that can be executed on a Skylake, here de-
signed by: fe64, an assembly implementation which uses four 64-bit limbs and the mulx
instruction; fe51, another assembly implementation that uses five 51-bit limbs; and no-asm,
which corresponds to the C implementation that can be used when OpenSSL is compiled
with the -no-asm flag. These implementations take 123.1K, 148.5K, and 160.4K CPU cycles,
respectively, to execute. The implementation (and performance) of scalarmult_base is the
same for all considered setups (it is written in C), and it takes 116.4K CPU cycles to execute.

In addition to the previously discussed implementations, some implementations from the
SUPERCOP toolkit are included in the same table, to establish a common point for com-
parison, given that its performance can be easily, and independently, checked by anyone who
is familiar with this toolkit. The fastest implementation in this set is sandy2x, which takes
141.1K CPU cycles.

Overall, and in the evaluated micro-architecture, the proposed Jasmin mulx is competitive
with all alternatives, with the avx2 version, from fld-ecc-vec, being the only one that performs
slightly faster than this one.

19gcc version 9.3.0; CFLAGS set as -Ofast -march=native -mtune=native -m64 -fwrapv -fomit-frame-pointer
-funroll-loops

20https://github.com/google/boringssl/tree/d7936c23cb9f3c4058d9cf6e3f503285d8024156
21https://github.com/armfazh/fld-ecc-vec/tree/7d8984d01b6c4e81a7b9680e981442f31fdc26e2
22https://github.com/openssl/openssl/tree/bc8c36272067f8443f875164831ce3a5a739df3f

https://github.com/google/boringssl/tree/d7936c23cb9f3c4058d9cf6e3f503285d8024156
https://github.com/armfazh/fld-ecc-vec/tree/7d8984d01b6c4e81a7b9680e981442f31fdc26e2
https://github.com/openssl/openssl/tree/bc8c36272067f8443f875164831ce3a5a739df3f
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Table 5.2 presents four evaluations for a limited set of Curve25519 implementations, namely
Jasmin’s ref4 and ref5, and SUPERCOP’s amd64-64 and amd64-51. This performance anal-
ysis was carried on an Intel Westmere CPU, where five limbs implementations are faster due
to the low latency and throughput of adc instructions. It is possible to observe that both
Jasmin implementations perform slightly faster than the corresponding qhasm ones.

Notes scalarmult

Jasmin ref4 256232
ref5 222532

SUPERCOP amd64-64 267028
amd64-51 229360

Table 5.2: Curve25519: performance comparison on an Intel Westmere (i5-650).

5.3.4 Formally Verifying Curve25519

Figure 5.17 presents an EasyCrypt specification of Curve25519. This specification is close
to RFC7748 [LHT16]. The entry point for this cryptographic operation is the operator
scalarmult, which expects as inputs two 256-bit arrays, with k and u representing the scalar
and an u-coordinate, respectively.

scalarmult starts by invoking the operator decodeScalar25519 to clear the specified bits on k.
The operator decodeUCoordinate is then used to load the contents of u into a zp variable. zp
consists of an element of the finite field Fq (for q prime). Although it is not shown in the
corresponding figure, zp is defined as an instantiation of ZModP.ZModField, with the prime
set to 2255 − 19. ZModP theories are included in the standard distribution of EasyCrypt.
The scalarmult operation continues by invoking montgomery_ladder and the final result is
given to encodePoint, which encodes the result of “x_2 * (z_2ˆ(p - 2))” (as in RFC7748) in
a 256-bit array.

montgomery_ladder is defined as a foldl operation. In this case, foldl is a high-order operator
that successively appliesmontgomery_ladder_step to the initial state, ((Zp.one, Zp.zero), (init,
Zp.one)), as many times as the length of the list given by the expression (rev (iota_ 0 255)),
where iota_ 0 255 represents a list containing the values from 0 to 254 and rev reverses this list.
This corresponds to the order in which the bits of k are accessed. The described computation
corresponds to one do-while (or while) loop in an imperative programming context.

The montgomery_ladder_step operator explicitly branches over the corresponding bit of k,
corresponding to k.[ctr], where ctr corresponds to the current index, and, depending on
whether the corresponding bit is set, the state, a pair of points, is swapped. Given that k
is secret, the actual implementation is constant-time and does not perform any branch to
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op decodeScalar25519 (k : W256.t) =
let k = k[0 ← false] in
let k = k[1 ← false] in
let k = k[2 ← false] in
let k = k[255 ← false] in
let k = k[254 ← true ] in

k.

op decodeUCoordinate (u : W256.t)
= inzp (to_uint u).

op add_and_double
(qx : zp)
(nqs : (zp ∗ zp) ∗ (zp ∗ zp)) =
let x1 = qx in
let (x2, z2) = nqs.`1 in
let (x3, z3) = nqs.`2 in
let a = x2 + z2 in
let aa = a ∗ a in
let b = x2 + (− z2) in
let bb = b∗b in
let e = aa + (− bb) in
let c = x3 + z3 in
let d = x3 + (− z3) in
let da = d ∗ a in
let cb = c ∗ b in
let x3 = (da + cb)∗(da + cb) in
let z3 = x1 ∗ ((da + (− cb))∗(da + (− cb))) in
let x2 = aa ∗ bb in
let z2 = e ∗ (aa + (inzp 121665 ∗ e)) in

((x2, z2), (x3, z3)).

op swap_pair (t : ('a ∗ 'a) ∗ ('a ∗ 'a))
= (t.`2, t.`1).

op ith_bit (k : W256.t) (i : int) = k[i].

op montgomery_ladder_step
(k : W256.t)
(init : zp)
(nqs : (zp ∗ zp) ∗ (zp ∗ zp))
(ctr : int) =
if ith_bit k ctr
then swap_pair (add_and_double init

(swap_pair (nqs)))
else add_and_double init nqs.

op montgomery_ladder(init : zp, k : W256.t) =
foldl (montgomery_ladder_step k init)

((Zp.one, Zp.zero), (init, Zp.one))
(rev (iota_ 0 255)).

op encodePoint (q : zp ∗ zp) =
let q = q.`1 ∗ (ZModpRing.exp q.`2 (P − 2)) in

W256.of_int (asint q).

op scalarmult (k : W256.t) (u : W256.t) =
let k = decodeScalar25519 k in
let u = decodeUCoordinate u in
let r = montgomery_ladder u k in

encodePoint (r.`1).

Figure 5.17: Curve25519: Specification in EasyCrypt.

perform the swap. The specification was written as presented to keep it as human-readable
as possible (but it increases the proof complexity). The state, swapped or not, is given to
the add_and_double operator, also written as close as possible to the corresponding RFC.

The correctness proof for Curve25519 is organized in four hops. Each hop is used to
approximate the specification to the concrete implementation. The first hop aims to prove
the equivalence between the discussed specification, which abstracts many implementation
details, and a different representation of the primitive closer to the corresponding imple-
mentation. This second encoding of the algorithm is still written using operators (i.e.,
functionally and not yet imperatively by using procedures). Several transformation steps
are considered in this hop. The inversion, in the specification represented by the expression
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op invert0(z1 : zp) : zp =
let z2 = exp z1 2 in
let z8 = exp z2 (2∗2) in
let z9 = z1 ∗ z8 in
let z11 = z2 ∗ z9 in
let z22 = exp z11 2 in
let z_5_0 = z9 ∗ z22 in
let z_10_5 = exp z_5_0 (2^5) in
let z_10_0 = z_10_5 ∗ z_5_0 in
let z_20_10 = exp z_10_0 (2^10) in
let z_20_0 = z_20_10 ∗ z_10_0 in
let z_40_20 = exp z_20_0 (2^20) in
let z_40_0 = z_40_20 ∗ z_20_0 in
let z_50_10 = exp z_40_0 (2^10) in
let z_50_0 = z_50_10 ∗ z_10_0 in
let z_100_50 = exp z_50_0 (2^50) in
let z_100_0 = z_100_50 ∗ z_50_0 in
let z_200_100 = exp z_100_0 (2^100) in
let z_200_0 = z_200_100 ∗ z_100_0 in
let z_250_50 = exp z_200_0 (2^50) in
let z_250_0 = z_250_50 ∗ z_50_0 in
let z_255_5 = exp z_250_0 (2^5) in
let z_255_21 = z_255_5 ∗ z11 in
z_255_21 axiomatized by invert0E.

lemma eq_invert0 (z1 : zp) :
invert0 z1 = invert_p z1.

proof.
rewrite invert0E invert_pE /invert_p_p1

/invert_p_p2 /invert_p_p3 //.
qed.

lemma eq_invert0p (z1 : zp) :
invert0 z1 = exp z1 (P − 2).

proof.
rewrite eq_invert0 eq_invert_p //.

qed.

Figure 5.18: Curve25519: Hop 1: Intermediate step to prove the inversion in EasyCrypt.

(ZModpRing.exp q.‘2 (P - 2)), is implemented as a series of squares and multiplications using
several temporary values. The first step to address such transformation is to decompose
the previous expression in a series of exponentiation and multiplications and prove them
equivalent. Given that the intermediate proof goals rapidly grew to unsustainable sizes
(where the CPU time required to verify the proof was not compatible with an interactive
proof environment), the unrolled inversion operation was first split into three operators, and
intermediate correctness properties were proven on these. These intermediate properties were
then used to prove the equivalence between ZModpRing.exp q.‘2 (P - 2) and invert0, as shown
in figure 5.18. The next step (not shown) was to replace the exponentiations from invert0
by sequences of calls to squares, to approximate, even more, the functional implementation
from the low-level implementation.

Another interesting transformation performed in this first hop is how the state is swapped
during the execution of the montgomery_ladder_step. In the specification, it is possible to ob-
serve that if k.[ctr] is 1 (true) the input pair is swapped before and after add_and_double. As
such, the pair is kept in its original format at each entry and exit of montgomery_ladder_step.
The low-level implementation only performs one swap for each montgomery_ladder_step
execution (to save CPU time). If the pair is kept as it is after add_and_double is called,
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and in the case that the pair is already in a swapped state in the next iteration, then the
swap only occurs if the bit is 0 (false). The low-level implementation can achieve this by
computing an xor between the current bit and the previous bit, and the constant-time swap
can be implemented using a series of xors and masks based on this bit.

To replicate this behavior in this first hop, the state was extended with an additional boolean
value to contain the pair’s current status (becoming a triple), which states if it the first two
elements are swapped. Some intermediate steps were necessary to prove the equivalence be-
tween the operator presented in figure 5.19 and the one previously discussed, from figure 5.17.
As a small note, cswap is still encoded using an explicit if statement. The transformation
from a non-constant time implementation into a constant-time swap is addressed in the
fourth hop, which imports the EasyCrypt representation of the Jasmin implementation. The
presented cswap operator is the specification for the concrete implementation. The operator
select_triple_12 returns the first two elements of the state.

op select_triple_12 (t : ('a ∗ 'a) ∗ ('a ∗ 'a) ∗ γ ) = (t.`1, t.`2).

op cswap( t : ('a ∗ 'a) ∗ ('a ∗ 'a), b : bool ) =
if b
then swap_pair t
else t.

op montgomery_ladder3_step(k : W256.t, init : zp, nqs : (zp ∗ zp) ∗ (zp ∗ zp) ∗ bool, ctr : int) =
let nqs = cswap (select_triple_12 nqs) (nqs.`3 ^^ (ith_bit k ctr)) in
let nqs = add_and_double1 init nqs in
(nqs.`1, nqs.`2, (ith_bit k ctr)).

Figure 5.19: Curve25519: Hop 1: Montgomery ladder step.

One of the aspects that were necessary to consider was how the state is initialized by
montgomery_ladder (not swapped) and how it is returned when the computation is completed
(also not swapped). This is true (the state is in a non-swapped state after foldl terminates)
when the first bit of k is set to 0 (false), which can be ensured in this context given that
decodeScalar25519 is used.

The operand montgomery_ladder3_step has an additional input compared to the original
definition, a boolean indicating if the points are swapped. Because of this, it was necessary
to create a new lemma to reason about the properties of the foldl (for the montgomery_ladder
proof), by establishing a relational invariant between the two versions of the state. The first
step to tackle this is to prove that the extended state (triple) can always be reconstructed
into the original state by swapping the points if necessary. The second step is to argue that,
given that k.[0] is false, it is not necessary to perform any swap at the end. By approaching
small problems at each step, the proof complexity is reduced.
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The second hop in this proof implements a series of procedures to be proven equivalent to the
previously discussed operators. Essentially, this hop transforms the functional specification
into an imperative one. Many details are still abstracted in this EasyCrypt implementation of
Curve25519. For instance, the swap operation is still not implemented following the constant-
time discipline. Additionally, all arithmetic operations over zp elements are encapsulated.
For instance, statements such as a ← b * c, where a, b, and c have type zp, are replaced by
a ← mul (b, c). At this stage, these arithmetic procedures are simply defined as calls to the
native operation—in the shown example, mul just contains a local variable declaration, for
instance a, and the statement a ← b * c, followed by a return of a—but it prepares for the
subsequent stages of the proof, where these simple procedure calls will eventually be replaced
by a call to the real code. Figure 5.20 shows the montgomery_ladder procedure that is proven
equivalent to the corresponding operator from the specification (implemented using a foldl).

proc montgomery_ladder (init' : zp, k' : W256.t) : zp ∗ zp ∗ zp ∗ zp = {
var x2 : zp;
var z2 : zp;
var x3 : zp;
var z3 : zp;
var ctr : int;
var swapped : bool;
x2 ← witness;
x3 ← witness;
z2 ← witness;
z3 ← witness;
(x2, z2, x3, z3) ← init_points (init');
ctr ← 254;
swapped ← false;
while (0 ≤ ctr)
{ (x2, z2, x3, z3, swapped) ← montgomery_ladder_step (k', init', x2, z2, x3, z3, swapped, ctr);
ctr ← ctr − 1;

}
return (x2, z2, x3, z3);

}

Figure 5.20: Curve25519: Hop 2: Montgomery ladder.

To relate the behavior of procedures with the corresponding operators we use Hoare logic.
Figure 5.21 shows the lemma that states that proc montgomery_ladder performs the same
computation as the op montgomery_ladder3. In this lemma, the statement k.[0] = false is
included in the preconditions to make it clear that the final swap is unnecessary. This second
hop concludes with the lemma eq_h2_scalarmult, also defined using Hoare logic, where it
is proved that the procedure version of the scalarmult operation is the same as the operator
scalarmult from the specification.
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lemma eq_h2_montgomery_ladder (init : zp) (k : W256.t) :
hoare [MHop2.montgomery_ladder : init' = init ∧ k[0] = false ∧ k' = k

V ((res.`1, res.`2),(res.`3,res.`4)) = select_tuple_12 (montgomery_ladder3 init k)].
proof.

Figure 5.21: Curve25519: Hop 2: Lemma Montgomery ladder.

The third and fourth hops of this proof are intrinsically related but exist as separate units to
isolate the contents of each one. All procedures implemented in the second hop are verified
for termination during the third hop. Figure 5.22 shows the lemma ill_montgomery_ladder,
and corresponding proof, which states that MHop2.montgomery_ladder is lossless (terminates
with probability one).

For most procedures, this can be trivially proven given the absence of control-flow instruc-
tions, and, in those cases, the proof consists of just one call to one EasyCrypt tactic.
Nonetheless, a lemma for this property exists for all existing procedures (which should be
used in favor of simply proving the property in place whenever needed). By following this
approach, if the underlying implementation changes and the proof for the termination is no
longer trivial, only one lemma needs to be updated, and the remaining parts of the proof
which rely on it continue to work. Also, in the context of the third hop, it is proved (using
probabilistic Hoare logic) that with probability one, the procedures compute the same results
as the corresponding operators.

lemma ill_decode_scalar_25519 : islossless MHop2.decode_scalar_25519.
proof. islossless. qed.

lemma eq_h3_decode_scalar_25519 k:
phoare [ MHop2.decode_scalar_25519 : k' = k V res = decodeScalar25519 k] = 1%r.

proof. by conseq ill_decode_scalar_25519 (eq_h2_decode_scalar_25519 k). qed.

lemma ill_montgomery_ladder : islossless MHop2.montgomery_ladder.
proof.
islossless. while true (ctr+1). move ⇒ ?. wp. simplify.
call(_:true V true). islossless. skip; smt().
skip; smt().

qed.

lemma eq_h3_montgomery_ladder (init : zp) (k : W256.t) :
phoare [MHop2.montgomery_ladder : init' = init ∧ k[0] = false ∧ k' = k

V ((res.`1, res.`2),(res.`3,res.`4)) =
select_tuple_12 (montgomery_ladder3 init k)] = 1%r.

proof. by conseq ill_montgomery_ladder (eq_h2_montgomery_ladder init k). qed.

Figure 5.22: Curve25519: Hop 2: Lemma Montgomery ladder.
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The fourth hop aims at proving the equivalence between the EasyCrypt modules extracted
from the Jasmin implementation and the implementation from hop 2. Once this is done,
the extracted code can be proven correct against the specification. Some of the equivalence
proofs in this hop are work-in-progress. The proofs related to the arithmetic operations,
namely, the multiplication, squaring, addition, and subtraction, are included in this set. The
general intuition for proving the correctness of the arithmetic operations is that for some
operations, such as the addition and subtraction, they produce results that are not equal to
the corresponding zp operation, but the value is congruent modulo the prime being used.
Given that the addition and subtraction outputs are used as inputs to the multiplication
and squaring, this must also be accounted for. At the end of the scalarmult execution, a full
reduction is performed to ensure that the returned value is actually the same and, as such,
during the proof, this also needs to be accounted for. Other parts of the proof are already
done, some of them by assuming that these operations behave as expected, such as it is the
case of the add_and_double. The constant-time version of the swapping algorithm is also
proven correct.

One of the reasons that justify the presented design for the proof, where the proof between
a specification and an extracted implementation is organized in several hops that address
different types of transformations, is maintainability. Although it is technically possible to
prove the equivalence between a high-level specification (such as the one that was shown)
and concrete implementations in an (almost) single step, any minor update in the Jasmin
implementation could significantly increase the difficulty of updating the proof, given that the
different stages would not be logically isolated. As an intuition, the constant time-swap can
be implemented differently depending on the available instructions. If we consider a scenario
where a second Curve25519 implementation is developed, and this second implementation
only differs in the way that the swap is performed, it should be trivial to extend the previously
existing proof to the new implementation. The same observation can be made for how internal
variables are represented, as different implementations may require a different number of
limbs.
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Chapter 6

Conclusions and Future Work

There are several approaches to the implementation of high-speed cryptographic software.
The best-performing implementations are developed using programming languages or tools
that provide almost negligible abstraction. A carefully designed implementation developed
using such tools or techniques can usually outperform the machine code automatically gen-
erated from high-level programming languages. The available C compilers that produce the
best performing machine code are not formally verified, and this may represent a liability
given that there are no guarantees about the produced machine code. The task of formally
verifying such C compilers for functional correctness and preservation of the constant-time
property is (more certainly than not) not happening any time soon. At the lowest level of
abstraction and highest control is pure assembly programming. It is challenging to write,
audit, and maintain the code at this level. As the level of abstraction lowers, the potential for
producing implementations that outperform code generated by the best C compilers increases,
but the probability of a developer, no matter the experience, inadvertently inserting subtle
bugs also increases.

The sweet spot for producing high-speed implementations while keeping a very reasonable
level of abstraction is implemented by the Jasmin programming language and its compiler.
It allows having almost complete control of the generated assembly code while using a syntax
similar to C. In some cases, due to the increased level of abstraction that is provided when
compared to assembly programming, it enables performance improvements that are much
more difficult to achieve in other contexts, as shown during chapter 5, for instance, in
§ 5.3.2. The correctness proof of the compiler and the sound connection to a verification
framework, via an embedding of the Jasmin in EasyCrypt which is, essentially, a one-
to-one map, addresses the problem of connecting the machine code that is executed with
high-level specifications and security proofs. Other relevant properties addressed by Jasmin
are memory safety, constant-time policy, and, soon, supporting counter-measures against
misspeculation-based attacks with minimal cost. The work performed in the context of this

135
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thesis significantly contributed to defining the current shape of the Jasmin programming
language and its compiler and thus, completely fulfilled the original goal of this thesis:

“bridging the gap between high-assurance and high-speed

cryptographic implementations”

In an ideal world, high-level specifications of any algorithm could be given to a formally
verified compiler to generate architecture-dependent code that runs as fast as physically
possible for any given CPU. This is not the case, nor will it be over the following decades.
Perhaps during the subsequent decades, there will not even be a practical justification for
all the spent resources on optimizing code, and all of this work will be replaced by low-
cost machines that print microchips. However, while those times do not come, we can
continue with the development of an entirely formally verified cryptographic library. The
implementations and corresponding proofs developed in the context of this thesis are publicly
available in libjc1, a GitHub repository.

During the last couple of years, this project grew, and, as a result, the Formosa project was
created (roughly) at the beginning of 2022. Formosa’s2 primary goal is to bring together the
expertise required to improve the existing tools and methodologies and implement a high-
speed and high-assurance cryptographic library. libjc will no longer be actively maintained.
libjade3 is the successor of libjc, and it is a high-speed high-assurance cryptographic library
designed to fulfill the requirements of its potential users: support for multiple architectures,
formally verified high-speed cryptographic implementations including state-of-the-art coun-
termeasures against timing attacks.

One of the aspects that significantly contribute to the success of an open-source project is
to have a community that benefits if the project continues to succeed. Because of this, we
need to promote Jasmin. First, we need to increase the number of Jasmin developers by
extending the available documentation and organizing Jasmin-related events. Second, we
need to understand the requirements we must fulfill for our solutions to get adopted. Both
parts are already work in progress, with promising results.

From a technical point of view, and to improve state of the art in this area, several features can
be added to the Jasmin programming language. Supporting register arrays as arguments for
local functions could be useful, for instance, to reduce the resulting code size of Curve25519
implementations with almost negligible overhead. Passing the arguments through pointers
to the stack (reg ptr) or transforming register arrays into individual registers are the current
possibilities to reduce the code size. However, by following this approach, some overhead
and complexity are introduced, which can be avoided by the proposed feature. Nonetheless,

1https://github.com/tfaoliveira/libjc
2https://formosa-crypto.org/
3https://github.com/formosa-crypto/libjade/

https://github.com/tfaoliveira/libjc
https://formosa-crypto.org/
https://github.com/formosa-crypto/libjade/
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code size will be reduced when migrating Curve25519 implementations from libjc to libjade.
As an intuition, the current inversion algorithm currently represents 70% of the code size
and just 10% of the time taken by the complete computation (which can also be improved,
independently, using the algorithm as described in [BY19]), and the remaining code has
roughly the same size qhasm implementations of Curve25519.

Currently, Jasmin exported functions are only allowed to receive inputs variables declared as
registers. To pass a memory pointer to a Jasmin exported function, we use the type “reg u64”
(AMD64). It would be interesting to extend the language for the exported functions to receive
as inputs “reg ptr” variables, that point to arrays whose length could be statically known,
or defined by another input, for instance, “(reg ptr u8[inlen] in, reg u64 inlen)”. The need
for this feature is particularly evident while implementing hash functions and cryptographic
constructions that use hash functions. For instance, in an HMAC-SHA256 implementation
from libjc4, the function must receive an additional pointer to an external memory region
(variable hkpadded) to avoid code duplication. If such an argument is not provided, two
versions of the _sha256_blocks would need to be implemented, one for handling external
memory and another for internal stack arrays (to compute the last blocks or to hash data
from stack memory). Another solution would be to always copy the input data from external
memory to internal memory and perform the computation on internal memory (at the expense
of non-negligible CPU time). With such a feature, code duplication could be avoided and,
for instance, function _sha256_blocks could take as input a given reg ptr that could point
to external or internal memory. This feature is not easy to implement, as some assumptions
on input pointers need to be considered, and many changes are required on the compiler
and corresponding proofs, but it would reduce the complexity of Jasmin implementations
and correctness proofs. Also related to this context, extending the language to support stack
arguments could be useful, especially for the context of ABIs that do not specify as many
register arguments as the System V AMD64.

In the author’s opinion, the last two features are the ones that can benefit the most (short
term) the development and maintainability of a formally-verified Jasmin library. Many other
features and improvements are currently being discussed, and several of these have one
aspect in common: they aim to increase the level of abstraction of the Jasmin programming
language. Jasmin is, and always will be, a framework where the developer has control over
the produced assembly code. However, in non-performance-critical contexts, some of this
control may not be necessary, and Jasmin can be improved in many different ways (via new
language constructions, additional compilation passes, new EasyCrypt theories) to reduce
development time.

4https://github.com/tfaoliveira/libjc/blob/glob_array3/src/crypto_hash/sha256/common/
sha256.jazz
https://github.com/tfaoliveira/libjc/blob/glob_array3/src/crypto_auth/hmacsha256/common/
hmacsha256.jazz

https://github.com/tfaoliveira/libjc/blob/glob_array3/src/crypto_hash/sha256/common/sha256.jazz
https://github.com/tfaoliveira/libjc/blob/glob_array3/src/crypto_hash/sha256/common/sha256.jazz
https://github.com/tfaoliveira/libjc/blob/glob_array3/src/crypto_auth/hmacsha256/common/hmacsha256.jazz
https://github.com/tfaoliveira/libjc/blob/glob_array3/src/crypto_auth/hmacsha256/common/hmacsha256.jazz
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Appendix A

The Role of Standards in
Cryptography

A.1 An overview of the Data Encryption Standard

The origin of the Data Encryption Standard (DES) can be traced back to 1968 when the
National Bureau of Standards (NBS), currently known as the National Institute of Standards
and Technology (NIST), initiated a study to understand computer security needs in the US
Government, its companies and citizens [IBM21]. Thereafter, in May of 1973, NBS published
the first solicitation of proposals for an algorithm that could be standardized and used to
protect computer data in transmission or storage, mainly motivated by the increasing amount
of digital communication [oS73] — later in 1977, Ruth Davis, director of the Institute for
Computer Sciences and Technology from NBS, confirmed that this first solicitation did not
had the desired outcome: several proposals to develop new cryptographic algorithms were
submitted, but none of them would constitute a viable solution that could go through the
process of standardization [Dav78]. It is also mentioned in the cited report that the best
solution, from a theoretical point of view, required the usage of two infinite tapes filled
with random characters that could be added and subtracted to a given message in order to
encrypt and decrypt it. Unfortunately, suppliers of infinite tapes were not available at the
time, making this solution unviable.

One year later, in August of 1974, the solicitation was reopened “in order to ensure that
a full opportunity to submit algorithms for consideration is accorded to all parties” [oS74].
NBS received many proposals, but most of them were considered too specific or ineffective
for standardization1. The candidate that stood out was Lucifer [Dav78], developed by IBM
Research Center in the late ’60s and early ’70s and, at the time of this second solicitation,
already being used by the Lloyds Bank in its cash-dispensing machines. A description of

1To the best of my knowledge, the complete list of submissions is not available.
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Lucifer can be found in a technical report signed by J. L. Smith from IBM that dates to April
1971 [Smi71]. This document was declassified in February of 1972. Lucifer, as presented in the
report, was a cryptographic device that allowed the encryption and decryption of messages,
which were internally split into 16-byte blocks, using a 128-bit secret key. The cited report
contains the device’s physical description and Lucifer’s encryption and decryption algorithms’
specification. As a curiosity, this machine would take 200 microseconds to encrypt a 16-byte
message.

The National Security Agency (NSA) conducted a technical analysis of the candidate at the
request of NBS to conclude that “no shortcuts or secret solutions were found ”, confirming its
suitability to be used in the upcoming standard [oS81]. In March of 1975, the proposed DES
algorithm was published in the Federal Register [oS75a] along with a request for comments
that could be submitted until mid-May 1975. In August of that same year, the previously
published algorithm was proposed to be a standard [oS75b]. Comments were also requested in
this second announcement and should be sent within 90 days. Many cryptographers exposed
their concerns regarding the security of the algorithm. One of these concerns was related to
the insufficient key length and the corresponding security implications: the original design
of the proposal, Lucifer, used (at least in one of its versions) 128-bit keys and the algorithm
proposed to become a standard used 56-bit keys.

Interestingly, the proposal explicitly mentioned a 64-bit key: “Introduction. The algorithm
is designed to encipher and decipher blocks of data consisting of 64 bits under control of a
64-bit key.”; and also, “(...) a different block K of key bits is chosen from the 64-bit key
designated by KEY ” [oS75a]. The main issue is that, since 8 of the 64 bits may be used
for error control, the number of possible keys was actually 256. Although there is a mention
of this fact in the proposal’s appendix, “One bit in each eight-bit byte of the KEY may be
utilized for error detection in key generation, distribution, and storage. Bits 8, 16,..., 64 are
for use in assuring that each byte is of odd parity.”, Robert Morris et al. argued that this
was misleading, since an inattentive reading of the technical documentation could leave the
impression that there were 264 possible keys [MSW77]. It was also reported by [MSW77]
that Dennis Branstad from NBS,wrote a paper describing DES where it also states that the
key had 64 bits [Bra75].

Whitfield Diffie and Martin Hellman also had strong objections regarding the chosen key
length, stating that its size was carefully chosen such that only the NSA, and no one else, could
break it. They claimed that, at the time of the standard’s publication, it would be possible to
build a specially purposed machine for $20 million2 to break the proposed algorithm in just
12 hours (known-plaintext attack). They predicted that a specially-purposed chip, to test if
the encryption of a known-plaintext produces the expected ciphertext, could be built at a
reasonable cost. They argued that such a chip could be designed to only take 1 microsecond

2Equivalent to roughly $87 millions in 2021.
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per tested key, given that there were almost no input-output operations involved — which
were very expensive at the time and, as a matter of fact, still are.

Such chip could be loaded, for instance, at the beginning of the day, with the plaintext, the
corresponding ciphertext, and an initial secret key that would be iterated. If a matching
ciphertext is found, it would stop the search and write the candidate key to some output
mechanism. If 1 million of those chips were put in parallel and each one of them was initially
loaded with different keys to cover different key spaces, then this machine would be able to
test 109 keys per second or roughly 256.26 over 24 hours and, thus, being able to break a key
every 12 hours, on average. They estimate that each chip would cost $10 to produce on such
scale, and a factor of 2 was considered for design and deployment costs. IBM studied this
possibility and concluded that it could build such machine and have it delivered by 1981, for
$200 million [MSW77, DH77].

The other main concern was related to the unavailable documentation regarding the math-
ematical foundations of the substitution boxes. In a preliminary study, conducted by M.
Hellman et al. [HMS+76] and developed in just one month, it was stated that a suspicious
structure was found in the S-boxes and it could be due to: accidental weakness; intentionally
inserted trap-door; or there could be no weakness at all. Later in that report, more precisely
in section V, “DES’s Structure”, the following statement can be found:

“Despite an initial division of opinion, our group is now convinced that the

DES S-Boxes were carefully chosen with certain structures in mind.”

In order to address these concerns, NBS organized two workshops in late August and Septem-
ber of 1976. The reports of these workshops are available in [Mei76] and [BGK76]. The first
workshop, “Estimation of Significant Advances in Computer Technology”, was mainly focused
on discussing future advances in technology that could impact the security of DES. Part of
the discussion that happened in the workshop, and transcribed in [Mei76], can be defined
by the following question: Would, when, at what cost, and with what probability, will it be
possible to build a specially purposed machine designed to perform an exhaustive key search
that allows to compromise DES? Several scenarios were studied, but only two would allow
for a key exhaustion time close to what W. Diffie and M. Hellman had predicted: 24 hours
for key exhaustion time, an estimated cost between $50 and 72 million, success probability
between 10% and 20%, depending on technological advances, and could only be delivered
roughly fourteen years later, in 1990. The $200 million machine from IBM was not included
for discussion as this information was shared outside of the workshop [MSW77, DH77]. It is
also stated in [DH77] that IBM had withdrawn the study and that the workshop’s conclusions
should be accepted. W. Diffie and M. Hellman maintained their original position, which is
thoroughly discussed in [DH77].

The second workshop, “Cryptography in Support of Computer Security”, was attended by
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42 people from the Federal Government, industry, and universities, and it was organized
to collect expert opinions about the mathematical and statistical characteristics of DES
algorithm. The problems related to the insufficient length of the 56-bit key were discussed.
During the introductory session, [BGK76], M. Hellman claimed that he had information that,
while IBM was responsible for the algorithm’s design, the key length was set by NSA. W.
Tuchman, from IBM, replied that the algorithm was published as submitted. There was
an evident concern regarding the secret key length and its implications: from the industry
reports of a client that would only update the secret key one time each month or some others
that would be introducing the key via a terminal, using visible characters, which would
result in 48 bits of entropy, unanimously considered insecure. In response to these cases, one
attendee suggested that users should be educated, and if, after they get their education, they
still use their wife’s name as a secret key, it is their fault.

Another topic that also dominated discussions in this second workshop was the non-random
substitution boxes, with W. Tuchman confirming that the S-Boxes were indeed not random
to improve security. However, the details were classified and could not be revealed: he
stated that while getting approval to export the algorithm, IBM discovered that classified
design principles were used when requested by NSA not to make these details public. Other
operational aspects, such as key distribution, were discussed during the workshop.

Despite all the controversy, the Data Encryption Standard was published in 1977, reaffirmed
in 1983 with no changes, reaffirmed again in 1988 with minor changes [oS88, pg. 4, item 18],
updated in 1993 to allow for software implementations [oST93, pg. 3, item 12] with the last
revision happening in 1999 to only allow Single DES for legacy purposes and to introduce
Triple-DES (TDEA) as a FIPS-approved algorithm [oST99a, pg.4 item 12]. FIPS 46-3 was
withdrawn in 2005 [oST05] but TDEA was still approved by NIST and planned to co-exist
with AES until 2030 [Bar04, BB12]. After the Sweet32 attack was published in 2016 [BL16]
efforts were made to restrict the keying options and the maximum number of blocks that
could be encrypted with the same key bundle. Three-key TDEA encryption is currently
disallowed after 2023 [BR19].

As final remarks for this first part of the introduction, in 1991 E. Biham and A. Shamir
published a paper on differential cryptanalysis [BS91] claiming that the DES algorithm
combined with random S-boxes is easier to break, and even small changes in one of the S-
Boxes can significantly reduce the attack complexity. This indicates that both IBM and NSA
were aware of such attacks, which was later confirmed by D. Coopersmith in 1994 [Cop94].
Also according to [Cop94], the public releasing of information about differential cryptanalysis,
at the time of the standardization process, could be used to attack many ciphers from that
period and, in general, to weaken the US advantage in the field of cryptography. Nonetheless,
I would like to highlight the following quote from [HMS+76]:

“(...) it is poor security practice to trust a system whose design and
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certification will not be described.”

The downfall of the Data Encryption Standard

In the early 90’s, several papers on cryptanalysis were published, with many of them targeting
DES. As previously mentioned, differential cryptanalysis was made public [BS91, BS92] and
also a linear cryptanalysis method was published in 1993 by M. Matsui [Mat93] which enabled
to break the 16-round DES with 247 known plaintexts. Other works were also published
during this period and, although these attacks could not be considered very practical due
to the non-negligible amount of plaintexts or ciphertexts required, they presented significant
improvements when compared to brute-force attacks [DM95, BB94]. Nevertheless, exhaustive
key searches were becoming more feasible. In late January of 1997, at the RSA Conference
held in San Francisco, California, RSA Security launched a series of challenges to draw
attention to the lack of security of the Data Encryption Standard: a ciphertext was published
and the first person or group to discover the original plaintext would win the $10000 prize.
The first challenge was solved in 96 days. The second and third challenges, which happened
in 1998, took 39 days and 56 hours, respectively, to be solved. The fourth and last one,
launched in January of 1999, was concluded in roughly 23 hours. The recovered plaintext
was:

“See you in Rome (second AES Conference, March 22-23, 1999)”

A.2 An overview of the Advanced Encryption Standard

Right before the start of the previously mentioned series of challenges, on the 2nd of January
of 1997, an announcement from NIST was published in the Federal Register to announce
the beginning of a process to develop the Advanced Encryption Standard (AES) [oST97a].
This new standard would replace the 20-year-old DES by providing a new algorithm to
protect sensitive government data into the next century. A multi-year transition period
was expected since, in NIST’s view, the security level provided by DES was still considered
adequate for many applications. This process was initiated with a request for comments from
the public and organizations to understand their needs. The announcement also included an
initial set of requirements, mainly to guide future candidates as proposals were not accepted
at that time: 1) AES should be a publicly defined symmetric block cipher whose design
allows for increasing the key length as necessary; 2) hardware and software implementations
would be considered; 3) candidates would be evaluated under several criteria, being security,
computational efficiency, and design simplicity some of them.

After receiving comments until early April 1997, with some exposing concerns about the
International Traffic in Arms Regulations and non-US experts’ participation on the AES
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contest [oST97c], the “Submission Requirements Workshop” was held on the 15th of the
same month to discuss the evaluation requirements and procedure. The call for proposals
was later published on the 12th of September of 1997 [oST97b], soliciting submissions until
the 15th of April of the following year, 1998. These would be subject to a preliminary
review, performed by NIST, to check for the submissions’ completeness: the feedback would
be given until the 15th of May, with a final deadline on the 15th of June. The evaluation
criteria were now detailed and organized in three sections: Security, Cost, and Algorithm and
Implementations Characteristics.

Regarding security, the most important property for any cryptographic component, several
factors would be taken into consideration: level of security of the algorithm when compared
to other proposals; resistance against known attacks; the mathematical soundness of the
construction; and also any factor submitted by experts during the review process that could
impact the security claims of the submitters. In the cost section, computational efficiency
or, in other words, the speed at which the algorithm would be able to perform, usually
measured in CPU cycles or, in some cases, throughput per second, would be evaluated
by NIST. Memory requirements would also be evaluated, and, as a general rule, the less
required memory, the better. The contest would have two different evaluation rounds, with
the first one being mainly focused on software implementations and characteristics such as
code size and random access memory (RAM) requirements. The second round would focus
on hardware implementations, with the evaluation being guided by the number of gates
necessary to implement the proposal. As for algorithms and implementations characteristics:
a flexible algorithm that could accommodate different key and block lengths, yield efficient
implementations across different platforms, and, in general, with a simple design. It is
also noted in the call that more than one candidate algorithm can be standardized if some
proposals can complement each other in different scenarios.

The candidates’ complete list was announced at the first AES candidate conference in mid-
August of 1998 [RD99]. From the 21 submitted packages, six were considered incomplete,
and the remaining 15 were successfully validated. The list corresponding to the six rejected
candidates was announced at the conference and published on NIST’s website. In total,
submitters from 12 different countries were involved: USA had five submissions; Canada had
two; and the remaining countries were involved with at least one. Some of the submitters’
claims were considered very promising: some candidates claimed to be more secure than
Triple-DES while performing faster than Single DES. A request for comments was made at
the conference and later officiated by [oST98]. NIST was seeking the assistance of the public,
researchers, and several others to select the best five candidates or, depending on the point
of view, to exclude at least ten submissions for the second evaluation round. Comments
could be submitted until the 15th of April of 1999. In between these dates, the second AES
conference was held, as previously noted, in Rome on March 22-23, 1999.
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The second AES conference report [Dwo99] presents a general overview of the conference’s
events, from the surveys’ presentations to the cryptanalysis efforts that were made to study
the candidates. In total, 28 papers were submitted and 21 were presented. The performance
evaluation was also discussed during the conference. The first survey, presented by James Foti
from NIST, concluded that the fastest algorithms for a 32-bit processor, C implementations,
and 128-bit keys were the following: CRYPTON; MARS; RC6; Rijndael and Twofish. Further
evaluation from NIST for 8 and 64-bit platforms was reported to be required and it would be
performed during Round 2. In the following survey presentation, Bruce Schneier, one of the
submitters of Twofish, alerted to the impact that larger keys could have on performance and
also suggested that comparisons should be using optimized assembly implementations since
that, in environments where speed is a critical factor, low-level implementations would be
used. B. Schneier also reported the following algorithms to perform better in a DEC Alpha,
a 64-bit RISC processor: DFC, Rijndael, Twofish, and HPC.

In another survey, Eli Biham, one of the designers of Serpent, spoke in favor of a “fair
speed/security” evaluation method: Serpent was designed to have a considerable security
margin with the authors claiming that, although the submitted candidate performed 32
rounds, 16 rounds would be enough to provide the desired security level. By using its
proposed evaluation method, the top candidates regarding speed would be, in order, the
following: Twofish, Serpent, MARS, Rijndael, and CRYPTON. When compared with the
conclusions from the study performed by James Foti from NIST, RC6 would be removed from
the top five candidates, and Serpent would be included. In general, performance evaluation
of cryptographic algorithms has always been a topic of concern and debate, as it can be
observed next.

After the second AES conference, comments were still being received and were later published
for public consultation [oST99b]. During this period, many noteworthy comments were made,
being one of them the recommendation for the Round 1 finalists sent by the IBM’s AES Team:
MARS, RC6, Twofish, Serpent, and Rijndael. They also recommended that only one final
winner should be chosen, alerting that the increased complexity of a multi-winner scenario
would not necessarily compensate the benefits. Later that year, the AES Round 1 report was
published [NBD+99], to summarize Round 1 results and announce the five finalists: MARS,
RC6, Rijndael, Serpent, and Twofish. Regarding the ten excluded candidates and the security
analysis conclusions: major attacks were found in five candidates, and lesser attacks in the
other five. Coincidentally, the candidates that suffered major attacks were also the slowest
ones [NBD+99].

Regarding the performance analysis discussed in Round 1 report [NBD+99]: in the call for
proposals for the AES contest [oST97b], NIST announced that the benchmarking platform
would be an IBM-compatible PC equipped with an Intel Pentium Pro Processor clocked
at 200MHz, 64MB of RAM, Borland C++ 5.0 compiler and running Windows 95. As a
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curiosity, it had an L1 8KB data cache, 8KB instruction cache, and, according to the Intel
ARK website, it was available with three different L2 cache sizes throughout its life cycle:
256KB, 512KB, and 1MB. The announced specifications did not include the L2 cache size
in the description. According to [BD97], the mentioned CPU model has a 14 stage pipeline,
implements an out-of-order execution model and speculative execution.

In the AES Round 1 report, in the appendix section, several tables summarizing the perfor-
mance of the 15 candidates can be found. These tables contain the data collected by several
authors across different platforms and environments. The data collected by NIST using the
aforementioned platform, and presented during the second AES conference [NIS99], was not
included in these tables and cannot be found in the report. We are now going to compare
and discuss some measurements from NIST’s presentation, which were not included in the
final report, with measurements collected by B. Schneier et al. [SKW+99], included in Table
1 of AES Round 1 report. The full specifications of the benchmarking environment for the
Schneier’s et al. results cannot be found in the original paper, but the CPU is reported
to be the same. NIST’s measurements are presented first, followed by a slash, followed by
Schneier’s et al. measurements. To encrypt one block of data, 16 bytes, with a 128-bit key,
using 32-bit C implementations, the reported speed in clock cycles for the finalists were:
807/390 cycles for MARS; 636/260 cycles for RC6; 809/440 cycles for Rijndael; 1629/1030
cycles for Serpent and 973/400 cycles for Twofish.

There are significant differences between the measurements: for instance, the ratio between
NIST’s and Schneier’s et al. measurements for Rijndael is 1.84 and the maximum and
minimum ratios that can be found for this set are 2.45 (RC6) and 1.58 (Serpent), with a
total average of 2.07. A small part of these differences could be related to the NIST’s API: in a
comment sent to NIST on the 15th of April 1999 [AOK99], Kazumaro Aoki, one of the authors
of an AES candidate, exposed its concerns about the performance evaluation methodology,
noting that there were some discrepancies between the presented measurements.

To continue the discussion on this subject, we will use Rijndael as our example: in slide
16 of [NIS99], NIST reported that it takes 809 cycles to encrypt one block of data, roughly
corresponding to 50 cycles per byte (cpb). In the same slide, it is mentioned that the function
that corresponds to the NIST’s API, when called with a NULL cipher, takes 41 cycles which,
if we assume this to be the overhead, it corresponds to approximately 2.7 cpb for this context.
Slide 21 of this same presentation reports that Rijndael has a throughput of 22942 Kb/s when
1MB of data is encrypted, which, in a CPU clocked at 200MHz, corresponds to something
in the range of 68-70 cpb depending if we consider one Kb to be 1000 or 1024 bits.

The discrepancy between reported CPU cycles for one block and throughput also exists for
other candidates: from the total of 15, 11 performed worse when comparing single block
encryption with 1MB encryption, with all differences ranging from -67% (penalty) until 35%
(improvement), with a total average of -18.5%. For Rijndael, the performance difference is
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-38%. This effect could be related to some cache effects, as suggested by Aoki. An increasing
number of cache misses, as plaintext data increases, can be considered the most likely cause
to justify these differences but, since penalties were not similar across all implementations or
seem to show any pattern, it is difficult to withdraw any conclusions on the subject.

Regarding the 809/440 cycles, or 50/27 cpb reported by NIST and Schneier et al. for Rijndael:
the estimated 2.7 cpb overhead from the NIST’s API does not seem to be the only plausible
cause to justify a 23 cpb difference; possible causes for this discrepancy may include differences
in compilers or compiler versions, CPU model or caches sizes, slightly different implemen-
tations or benchmarking methodologies. Overall, measuring and comparing software is an
intricate task, sometimes seen as a reasonably simple one, whose results are often affected
by minor or overlooked details. The comparison complexity increases significantly when
evaluation must be done on multiple platforms and using different environments.

The second round of the AES contest officially began on the 15th of September 1999 [oST99c].
Comments were to be submitted until the 15th of May 2000. The third AES conference was
also announced, and it would be held in New York in mid-April 2000. The third conference
report [Dwo00] provides an overview of the topics that were discussed. As previously stated,
hardware implementations were the central focus of this round. There were two sessions
dedicated to this topic during the conference: “Field-Programmable Gate Array (FPGA)
Evaluations” and “Application-specific Integrated Circuit (ASIC) Evaluations”.

In the context of the former, Adam Elbirt presented the results of implementing the en-
cryption operation of four finalists in an FPGA device (MARS was not considered in this
study due to timing constraints) [EYCP01]: when considering implementations optimized
for throughput, not area, Serpent exhibited the best performance results in the feedback and
non-feedback modes, achieving, for instance, a throughput of 444.2 Mbit/s in feedback mode.
The second-best candidate, Rijndael, performed at 300.1 Mbit/s, Twofish at 127.7 Mbit/s,
and RC6 at 126.5 Mbit/s. Rijndael needed less area to be implemented and achieved the
best ratio between throughput and used space for feedback mode of operation, but in non-
feedback mode, Serpent was also the best candidate according to this metric of evaluation.
The device used to produce the reported values was a Xilinx Virtex XCV1000BG560-4.

Regarding ASIC evaluations and feedback mode of operation, Tetsuya Ichikawa reported
that Rijndael could achieve 1.95 Gbit/s and was followed by Serpent, which performed at
931 Mbit/s. Twofish had a throughput of 394 Mbit/s, and MARS and RC6 had roughly the
same performance, 226 Mbit/s and 204 Mbit/s, respectively. Under the same conditions,
DES and Triple-DES had a throughput of 1.16 Gbit/s and 407 Mbit/s [IKM00].

In a different session, “Platform-specific evaluations”, Aoki reported that Rijndael was the
candidate that benefited the most with the MMX instruction set: its design allowed for
parallelism, which contributed to an implementation that would perform 28% faster when
compared to the best-known implementation of this cipher. Other candidates are reported to
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not benefit as much as Rijndael [AL00]. In “Cryptographic Properties and Analysis” session,
attacks on reduced rounds versions of some candidates were presented and discussed, but no
major or significant breakthroughs were made.

In the final session of the conference, “Algorithm Submitter Presentations”, submitters were
invited to give a presentation and then answer questions from the audience. All submitters
highlighted the strengths of their ciphers and also design motivations. For instance, Ross
Anderson, one of Serpent’s designers, emphasized that the proposed algorithm was designed
with security in mind and thus being able to provide security well into the next century,
as stated in the AES first announcement [oST97a]. Serpent also provided satisfactory
performance when compared to Triple-DES across different platforms. When submitters were
asked which proposal they would select as the winner of the AES contest, other than their
own, Vicent Rijmen, submitter of Rijndael, indicated RC6 as his option and the remaining
four indicated Rijndael, if extended to 18 or more rounds — Rijndael performed 10, 12 or 14
rounds for 128, 192 and 256-bit keys.

At the end of the conference, NIST distributed a feedback form to all attendees, with a total
of 246 excluding NIST personnel, and received back 167. For the question “Which algorithms
definitely SHOULD be selected for the standard ”, there were 86 answers indicating Rijndael,
and 59, 31, 23, and 13, for Serpent, Twofish, RC6, and MARS, respectively [oST00a]. The
total sum being 212 means that a non-negligible number of people considered more than
one algorithm to be a good option. After the Round’s 2 comments were received and
published [oST00b], the final report was made available on the 2nd of October of 2000
and later included in NIST’s journal [NBB+01]. It announced that the Rijndael would be
proposed as the Advanced Encryption Standard. In the final remarks of the mentioned
report, it is stated that “none of the finalists is outstandingly superior to the rest”. After
due process, in 2001, FIPS 197 was published [oST01]. The design details of Rijndael are
thoroughly discussed in the book “The design of Rijndael: AES — the Advanced Encryption
Standard ” written by the authors of the cipher, Joan Daemen and Vincent Rijmen [DR02].


