
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Controlled Descent of an Overloaded
Quadcopter Using Vision

João Pedro Vieira Pinhal

FOR JURY EVALUATION

Mestrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Professor António Pedro Rodrigues Aguiar PhD

August 21, 2022

© João Pedro Vieira Pinhal, 2022

Resumo

No panorama atual, tem-se assistido a um crescimento no potencial e utilização de sistemas aéreos
não-tripulados, usualmente designados como drones, uma vez que estes se adequam a diversos
cenários e aplicações, tais como vigilância, fotografia, mapeamento, transporte de cargas, agricul-
tura, entre outros. Com o aumento da popularidade destes equipamentos e dadas as constantes
inovações nas áreas de inteligência artificial, IoT (Internet of Things) e sensores, novos métodos
de controlo são desenvolvidos a cada ano que passa visando tornar os drones mais eficientes e
viáveis para ainda mais casos de uso. Contudo, apesar dos inúmeros estudos realizados no âmbito
do controlo de drones, dada a sua natureza instável e não linear, estes sistemas continuam a ser um
problema complexo de controlo não-linear.

Com o rápido desenvolvimento de sistemas baseados em visão e algoritmos de reconhecimento
de imagem, a câmara começou a ser um equipamento de alta relevância quando emparelhada
com um drone, uma vez que possibilita obter imagens aéreas de um modo acessível e rápido,
que dependendo da situação podem ainda ser utilizadas para o condicionamento do controlo do
sistema.

Esta dissertação propõe um método de controlo baseado em visão para um sistema de entrega
utilizando um quadcopter com uma carga acima do seu peso limite de modo a atenuar duas das
falhas mais significativas deste tipo de veículos, sendo estas: os baixos tempos de voo e a baixa
capacidade de carga. Ao ser largado de uma aeronave maior (podendo esta ser tripulada ou não), o
quadcopter seria capaz de controlar a descida de uma carga útil sobre um marcador visual ArUco
posicionado no solo utilizando uma câmara externa para o detetar. Quando se encontrasse próx-
imo do solo, o veículo largaria então a sua carga e subiria até à nave-mãe. No cenário proposto, a
nave-mãe seria uma aeronave de elevadas proporções com manobrabilidade limitada mas de alta
autonomia que serviria como transportadora e estação de carga do quadcopter. O sistema combi-
nado poderia assim atingir potencialmente várias horas de voo, com a possibilidade de transportar
e entregar múltiplas cargas úteis num só voo. É importante notar que o trabalho apresentado neste
documento centra-se unicamente no sistema do quadcopter desde o ponto em que este desce da
nave-mãe até à queda da carga no solo. Para implementar e desenvolver os algoritmos necessários,
foi utilizado o firmware PX4-Autopilot, emparelhado com a framework Robotic Operating System
(ROS).

Foram então realizadas várias experiências no ambiente de simulação Gazebo para demonstrar
o conceito e a solução proposta. Os testes provaram que o conceito de controlo de um veículo
aéreo não-tripulado com uma carga útil acima do limite de peso é possível com uma precisão de
largada da carga razoável. Contudo, a gama de valores de massa onde este comportamento se
insere não é tão grande como seria de esperar, uma vez que nos testes realizados o quadcopter
foi capaz de elevar entre 150 a 500 g acima do seu limite. Contudo, este tipo de desempenho
só foi observado num ambiente de simulação, ambiente esse que provou ser pouco fiável para as
condições impostas. Assim, testes numa plataforma real seriam cruciais para avaliar a qualidade
dos resultados da simulação e do algoritmo de controlo.

i

ii

Abstract

These days, there has been a growth in the potential and use of unmanned aerial systems, usu-
ally referred to as drones, since they are suitable for various scenarios and applications, such as
surveillance, photography, mapping, cargo transportation, agriculture, among others. With the in-
creasing popularity of this equipment and given the constant innovations in the areas of artificial
intelligence, IoT (Internet of Things) and sensors, new control methods are developed with each
passing year aiming to make drones more efficient and viable for even more use cases. However,
despite numerous studies in drone control, given their unstable and nonlinear nature, these systems
remain a complex nonlinear control problem.

With the quick advancement of vision-based systems and image recognition algorithms, the
camera began to play a significant role in unmanned aerial systems. This is because this sensor
makes it possible to obtain aerial images in an accessible and fast way, which depending on the
situation can also be used for conditioning the control of the system.

This thesis proposes a vision-based control method for an overweighted quadcopter payload
delivery system as an effort to address two of the most significant flaws of Micro-Aerial Vehicles
(MAVs): flight times and load capacity. By being dropped from a bigger aircraft (also unmanned
or not), the quadcopter would able to control the descent of an overweight payload over a visual
ArUco marker positioned on the ground using an external camera. When in close proximity to the
ground, the vehicle would then drop its payload and ascend to its mother ship, making the system
a reusable and targeted way of delivering cargo whose weight exceeds the vehicle’s maximum
generated lift. In the proposed scenario, the mother ship would be a big aircraft with limited ma-
neuverability but high endurance that would serve as the carrier and charging station of the MAV,
making the combined system potentially achieve several hours of flight time and be capable of
carrying and delivering multiple payloads in the same flight. It is important to note that the work
presented in this document solely focuses on the MAV system from the point of drop from the
mother ship to the drop of the payload. To implement this system and develop the necessary algo-
rithms, the PX4-Autopilot firmware was used, paired with the Robotic Operating System (ROS)
framework.

A number of experiments were then carried out in the Gazebo simulation environment to
demonstrate the concept and proposed solution. The tests proved that the concept of controlling
a UAV carrying a payload over the weight limit is achievable with relatively good accuracy of
payload drops. However, the range of mass values where this behavior is inserted is not as large as
it would ideally be, since in the tests performed the quadcopter was capable of lifting only between
150 to 500 g over its limit.

This behavior was only observed in a simulation setting, which proved several times to not
work completely as expected in the conditions imposed. Therefore, further testing on a real plat-
form would be crucial to assess the quality of the simulation results.

iii

iv

Acknowledgments

In this section, I would like to direct my sincere appreciation for the people who also made this
work come to fruition:

- to Professor António Pedro Rodrigues Aguiar for the support and guidance throughout the
entire project;

- to Jorge Tavares, CTO of DRAGONPRAXIS and proponent of the theme of this thesis, for
the constant availability and willingness to help;

- to Anuj Regmi, introduced to me by Prof. Aguiar, was always available to discuss and give
his insight to my questions and concerns, but above all for being someone whom I can now call a
friend;

- to my parents, Teresa and Jorge, for helping me through all these years to become the man I
am today and for pushing me to go forward;

- to all of my friends that I had the pleasure to meet during my academic journey and to those
who have been in my life for longer;

- to all of my family members, highlighting my "cousin-almost-sister" Marta Rocha, whom I
know is always there for me as I will too;

- and finally, to Nives Heltai, who has become a particularly special person during this last
year, but that seems to have been in my life for much longer, even if only by video-chat cheering
me up in the bad moments or sharing the good ones.

João Pedro Vieira Pinhal

v

vi

“Life moves pretty fast.
If you don’t stop and look around once in a while, you could miss it.”

Ferris Bueller

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Contributions . 3
1.5 Document Structure . 4

2 State Of The Art 5
2.1 Brief History . 5
2.2 Classification of UAVs . 8

2.2.1 UAV Typologies . 11
2.2.2 Multicopter UAV Configurations . 12
2.2.3 Classification of UAVs according to Portugal’s regulations 13

2.3 Applications of UAVs . 15
2.4 Related Works . 18

2.4.1 UAV Controlled Descent . 18
2.4.2 UAV Vision-Based Control . 20

3 Flight Dynamics and System Model 23
3.1 Working Principles of a Quadcopter . 23
3.2 Modeling Assumptions . 25

3.2.1 Coordinate Frames . 25
3.2.2 System Variables . 25

3.3 Kinematics . 27
3.4 Physics . 28

3.4.1 Motors . 28
3.4.2 Translational Dynamics . 30
3.4.3 Rotational Dynamics [1] . 31
3.4.4 Complete System Model . 35

4 Project Design Components 37
4.1 Hardware . 37

4.1.1 Physical Quadcopter . 37
4.1.2 Pixhawk 4 Flight Controller . 40
4.1.3 Raspberry Pi 4 - Companion Computer 41
4.1.4 Camera . 42
4.1.5 Assembled Quadcopter . 45

4.2 Software . 46

ix

x CONTENTS

4.2.1 PX4-Autopilot . 46
4.2.2 Robotic Operating System (ROS) . 49
4.2.3 Gazebo Simulator . 51
4.2.4 ArUco Library [2][3] . 53

5 Implementation 57
5.1 Simulation Environment . 57

5.1.1 Quadcopter SDF Model . 57
5.1.2 Payload . 66
5.1.3 ArUco Model . 67
5.1.4 Simulation World . 68

5.2 System Architecture . 69
5.2.1 ROS Implementation . 70

5.3 Aruco Tracker . 73
5.3.1 Detection Algorithm and Pose Estimation 73
5.3.2 Coordinate Transformations . 73

5.4 Control Algorithm . 76

6 Simulation Results and Discussion 81
6.1 Experimental Methodology . 81

6.1.1 Aruco Tracker . 81
6.1.2 Control Algorithm . 82

6.2 Results and Discussion . 85
6.2.1 Aruco Tracker . 85
6.2.2 Control Algorithm . 90

7 Conclusions and Future Work 103
7.1 Conclusions . 103
7.2 Future Work . 104

A Control Algorithm - Performance Analysis Data 105
A.1 Test with initial position (-6, -6, 35) and dropZ = 7.0 m 105

References 109

List of Figures

2.1 William Eddy posing with its reconnaissance kite 6
2.2 The Kettering Aerial Torpedo . 6
2.3 Winston Churchill waiting for the launch of the DH.82B Queen Bee UAV 7
2.4 MQ-1 Predator . 8
2.5 The spectrum of drones from UAV to SD . 9
2.6 Full categorization system devised by M. Hassanalian and A. Abdelkefi 11
2.7 Multicopter configurations . 12
2.8 European Markings for Drones . 15
2.9 Graph showing the worldwide market growth for commercial drones (2019) . . . 16
2.10 Helicopter in normal flight vs autorotation and respective collective blade pitch . 19
2.11 Gun-launched MAV concept: Flight Phases . 19
2.12 Proposed markers by research studies . 21
2.13 Modified ArUco marker . 21
2.14 Payload release mechanism . 21

3.1 CFD diagram of a quadcopter . 24
3.2 Quadcopter representation showcasing propellers’ rotation direction 24
3.3 Body frame configurations . 26
3.4 Inertial (xGyGzG) and Body (xByBzB) Frames 26
3.5 Rotations of the different Euler Angles . 27
3.6 DC Motor Circuit . 29
3.7 Motor Number Assignment (Top View) . 32

4.1 Holybro S500 V2 Frame . 37
4.2 Pixhawk 4 Flight Controller . 41
4.3 Raspberry Pi 4 . 41
4.4 The correlation between the Camera Frame and the Image Plane Frame 43
4.5 Types of Radial Distortion (Source: [4]) . 44
4.6 Tangential Distortion (Source: [4]) . 44
4.7 Chessboard pattern used for the camera calibration process 45
4.8 Fully Assembled Quadcopter . 46
4.9 Simplified mass model of the quadcopter . 47
4.10 PX4 Flight Stack Diagram . 48
4.11 QGroundControl User Interface . 49
4.12 ROS Publisher/Subscriber model example . 50
4.13 Gazebo/ROS interface overview . 52
4.14 ArUco marker example (Id=4) from the Original ArUco Dictionary 53
4.15 Example of image segmentation and contour extraction steps 55

xi

xii LIST OF FIGURES

4.16 Example of decoding process of one of the markers from the Original ArUco library 56

5.1 Gazebo Quadcopter Model . 58
5.2 Gazebo Quadcopter SDF Model Hierarchy . 58
5.3 Static thrust and power coefficients for the T1045II propeller 64
5.4 Quadcopter with payload and camera attached 67
5.5 ArUco marker model (Id: 13) . 68
5.6 Simulation World in Gazebo . 68
5.7 SITL Architecture and Communication Diagram 69
5.8 UML Class Diagram . 71
5.9 ROS Node Architecture (direction of arrows represents the publishing direction) . 72
5.10 Coordinate Frames of Ground Reference (xGyGzG), UAV (xDyDzD), Camera (xCyCzC)

and Aruco (xAyAzA) . 74
5.11 Output of aruco/image topic shown in the rqt_image_viewer GUI 75
5.12 Control Algorithm Flow-Diagram (Simulation Environment) 79

6.1 Virtual camera view at a height of 1.5 m . 82
6.2 Pictorial representation of the test parameters 83
6.3 Gaussian distributions of the test parameters . 85
6.4 3D trajectory followed by the quadcopter during testing of the relation between

position estimate error and height . 86
6.5 Error of the ArUco X-Position estimate at different height levels 86
6.6 Error of the ArUco Y-Position estimate at different height levels 87
6.7 Virtual camera view at a height of 50 m . 87
6.8 Square-shaped trajectory followed by the quadcopter in the sensitivity and robust-

ness test . 88
6.9 ArUco X-Position estimate precision in the sensitivity and robustness test 89
6.10 ArUco Y-Position estimate precision in the sensitivity and robustness test 89
6.11 Quadcopter’s orientation measurements in the sensitivity and robustness test . . . 90
6.12 3D trajectories (Dark Blue -> Min. Mass Condition and Cyan -> Max. Mass

Condition) followed by the quadcopter in both minimum mass and maximum
mass conditions - Initial Position (0, 0, 35) . 91

6.13 X, Y, and Z position measurements - Initial Position (0, 0, 35) 91
6.14 Roll, Pitch, and Yaw angle measurements - Initial Position (0, 0, 35) 92
6.15 X, Y, and Z linear velocity measurements - Initial Position (0, 0, 35) 92
6.16 3D trajectories (Dark Blue -> Min. Mass Condition and Cyan -> Max. Mass

Condition) followed by the quadcopter in both minimum mass and maximum
mass conditions - Initial Position (4, 4, 35) . 93

6.17 X, Y, and Z position measurements - Initial Position (4, 4, 35) 94
6.18 Roll, Pitch, and Yaw angle measurements - Initial Position (4, 4, 35) 94
6.19 X, Y, and Z linear velocity measurements - Initial Position (4, 4, 35) 95
6.20 Positions of the payload’s landing points from the tests done for an initial quad-

copter position of (0, 0, 35) . 96
6.21 Positions of the payload’s landing points from the tests done for an initial quad-

copter position of (4, 4, 35) . 97
6.22 Positions of the payload’s landing points from the tests done for an initial quad-

copter position of (-6, -6, 35) . 97
6.23 Pictorial representation of the test parameter restrictions for a successful outcome 102

LIST OF FIGURES xiii

A.1 3D trajectories (Dark Blue -> Min. Mass Condition and Cyan -> Max. Mass
Condition) followed by the quadcopter in both minimum mass and maximum
mass conditions - Initial Position (-6, -6, 35) 105

A.2 X, Y, and Z position measurements - Initial Position (-6, -6, 35) 106
A.3 Roll, Pitch, and Yaw angle measurements - Initial Position (-6, -6, 35) 106
A.4 X, Y, and Z linear velocity measurements - Initial Position (-6, -6, 35) 107

xiv LIST OF FIGURES

List of Tables

4.1 AIR2216II BLDC motor specifications . 38
4.2 BLHeli S 20A ESC specifications . 39
4.3 T1045 propeller specifications . 39
4.4 Thunder Power 4S battery specifications . 40
4.5 Pixycam specifications . 42

5.1 Bench test data for the AIR2216II - KV920 motor and T1045II propeller 64

6.1 Mean distance from the center of marker and its standard deviation obtained from
the tests done for an initial quadcopter position of (0, 0, 35) 96

6.2 Mean distance from the center of marker and its standard deviation obtained from
the tests done for an initial quadcopter position of (4, 4, 35) 97

6.3 Mean distance from the center of marker and its standard deviation obtained from
the tests done for an initial quadcopter position of (-6, -6, 35) 97

6.4 Minimum and maximum payload masses for each set of test parameters 98
6.5 Mean of the minimum height and maximum drop velocity at which the quadcopter

reverses the movement in each successful test 100
6.6 Mean distances of payload drop positions from the center of the marker, along

with the standard deviation for the minimum and maximum mass scenario 101

xv

xvi LIST OF TABLES

Abbreviations and Symbols

API Application Programming Interface
CFD Computational Fluid Dynamics
CoG Center of Gravity
CSV Comma-Separated Values
DARPA Defense Advanced Research Projects Agency
DoF Degree(s) of Freedom
EMF Electromotive Force
ERP Emergency Response Plan
ESC Electronic Speed Controllers
eVTOL Electric Vertical Take-Off and Landing
FC Flight Controller
FMU Flight Management Unit
FPV First Person View
GPS Global Positioning System
HALE High Altitude Long Endurance
IMU Inertial Measuring Unit
IoT Internet of Things
MAV Micro or Miniature Air Vehicle
MTOW Maximum Take-Off Weight
NAV Nano Air Vehicle
NED North, East, Down (Coordinate System)
PAV Pico Air Vehicle
ROS Robot Operating System
RPM Rotations Per Minute
RPV Remotely Piloted Vehicle
SD Smart Dust
SDF Simulation Description Format
TCP Transmission Control Protocol
UAM Urban Air Mobility
UAS Unmanned Aerial/Aircraft System
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
URDF Unified Robotic Description Format
VLOS Visual Line of Sight
WWI World War I
XML Extensible Markup Language

xvii

Chapter 1

Introduction

The topic of study in this thesis is introduced in this chapter. Current unmanned aircraft tech-

nology is briefly discussed in Section 1.1, with a focus on the quadcopter system. Some of the

shortcomings that current multirotor platforms experience are listed in Section 1.2, which served

as motivation for the development of this work. The objectives of the research are outlined in

Section 1.3. After that, Section 1.4 is presented, which contains a description of the contributions.

Finally, Section 1.5 describes this document’s overall structure.

1.1 Context

Unmanned aerial vehicle (UAV) systems have proliferated in recent years all over the world, and

demand for this technology is only increasing as more capabilities are shown in both military and

civilian applications. To expand the functionality of these platforms, several sensors or actuators

are usually incorporated, such as cameras or payload compartments. With cameras becoming

smaller and more affordable while increasing in quality, fitting one of these sensors into a mobile

aerial system became the next step. By doing this, new applications and control possibilities

opened up and started gaining traction in UAV research.

Unlike fixed-wing platforms, rotorcraft UAVs or multicopters, are particularly advantageous

for a wide range of applications due to their key features: hovering and vertical flight. A runway is

not required with Vertical Take-Off and Landing (VTOL) capability, greatly expanding the range

of possible uses.

Quadcopters are inserted in a subcategory of UAVs namely, Micro Aerial Vehicles or MAVs,

and are a type of multicopter. These vehicles are currently the most popular type of UAV, often

being the aircraft people refer to when mentioning the term drone. Its popularity derives from its

affordability, given the low engine count (four) and higher control authority when compared to

even lower motor configurations, such as the bicopter or tricopter.

UAVs are currently one of the key study areas in aeronautics, as they possess certain advan-

tages over piloted vehicles. Unaffected by things like pilot tiredness and visibility, UAVs can

maintain precision flying for extended periods of time. UAV costs are also significantly lower than

1

2 Introduction

those of piloted aircraft. However, there is still a heavy reliance on trained human operators for

UAV control. This limitation severely restricts the deployment of these aircraft in complicated

operating scenarios that require constant micro-adjustments and split-second decisions. This kind

of activity unquestionably goes beyond what humans are capable of, highlighting the significance

and necessity of autonomous control systems.

Throughout this document, the term overloaded or overweighted quadcopter will be used sev-

eral times. This designation refers to a quadcopter carrying a payload, whose weight is above its

limit, i.e. if this weight is applied to the vehicle it is impossible for it to take off while only using

its motors and propellers.

UAV, RPV, Drone, and UAS: Definitions

The term UAV or Unmanned Aerial Vehicle represents a reusable aircraft that, as the name implies,

is not operated with a human on board. Since missiles and guided bombs are one-time use only,

this criterion results in their exclusion [5]. According to Merrian-Webster’s dictionary, a drone

is "an uncrewed aircraft or ship guided by remote control or onboard computers", and today, the

UAV developer and user community reserve that term for aircraft which are remotely piloted or

have pre-determined, monotonous flight-paths. These aerial vehicles can also be referred to as

RPVs, or remotely piloted vehicles. Purists use this name to further separate aircraft that can only

be remotely operated, from drone, which can have pre-programmed flight courses in addition to

remote navigation, as was previously described [6].

It is then possible to infer that both drones and RPVs classify as UAVs. However, the opposite

is not true since UAV refers not only to remotely operated aircraft but also to vehicles sub or fully

autonomous, capable of performing decisions in the air using its plethora of sensors and cameras.

These definitions are not very well-delineated, especially the differences between the words

UAV and drone, as most people still use them as synonyms [7] or take them as having interchanged

definitions [8], such that drone is the more general term that encompasses not only UAVs but also

any remotely-operated or autonomous vehicle, regardless of the environment (air, sea, and land)

and UAV only refers to air vehicles. Consequently, in the entirety of this document, the terms

drone and UAV will have the same meaning.

The Unmanned Aerial/Aircraft System, or UAS, is a collection of interconnected subsystems

that includes the aircraft or UAV, its payload(s), communication module, control station(s), and all

peripheral components (which are not necessary for the flight of the UAV but may be crucial for

mission success).

1.2 Motivation

Despite being a vital tool in many fields, multicopter platforms still possess two big flaws over

conventional aircraft that severely hinder its application potential, those being low flight times and

small carrying capacity. The current flying time for the majority of wingless vertically-launched

1.3 Objectives 3

MAV platforms is set between 10 and 60 minutes1 due to the fact that most quadcopters and

multicopters are powered by lithium-polymer batteries, which still have a very high weight-to-

energy-capacity ratio. As for the load capacity, it varies from some grams to 12 kilograms2.

On the other hand, most MAVs are cheaper and provide more precise control and better ma-

neuverability than traditional aircraft, which makes them suitable for payload delivery systems or

other applications where targeted control is required.

After researching the topic of control of overloaded aircraft, particularly VTOL UAVs, it was

found that most studies, if any, have not taken this condition into account. This fact, paired with

the possibility of mitigating the disadvantages of these systems described above made it important

to explore the limitations and dynamics of overloaded UAV systems.

1.3 Objectives

Following the context and motivations addressed in the previous Sections 1.1 and 1.2, the main

goals of this thesis are:

• Study current solutions for vision-based control algorithms;

• Study the flight dynamics of a quadcopter system;

• Study the conditions and constraints that an overloaded UAV imposes on the platform and

environment;

• Develop a vision-based control algorithm for a targeted payload delivery system;

• Setup a simulation environment based on a real system to test the developed methodology;

• Implement the methodology in a real environment using a built UAV platform;

• Validate the viability of the technology and control algorithms developed through testing

and analysis of the results.

1.4 Contributions

The work presented in this document aims to address a knowledge gap on the control of over-

loaded UAV platforms, a topic that hasn’t received much attention in literary papers or research

studies. Additionally, it provides a vision-based approach that can be employed in an overloaded

quadcopter scenario.

One of the most significant contributions made was done to the PX4-Autopilot community

whose firmware was used throughout this thesis. In order to facilitate its future use and lower

1Elizabeth Ciobanu (Drone Blog), 2022, "How Long Can a Drone Fly Without Recharging?". Available from:
https://www.droneblog.com/how-long-can-a-drone-fly-without-recharging/ [viewed 11 August 2022]

2Nicole Malczan (Drone Blog), 2022, "How Much Weight Can a Drone Carry? (lb & kg)". Available from:
https://www.droneblog.com/drone-payload/ [viewed 11 August 2022]

4 Introduction

the entry barrier, a document outlining the fundamental steps of developing a ROS package and

integrating it with the autopilot was created and published in the repository3. This was done in

light of the initial barriers that this software imposed during the development of this project.

1.5 Document Structure

This thesis is structured as follows:

• Chapter 2 [State of the Art] - Background on the current classification of UAVs and some

of its applications. Also presents a brief literature review;

• Chapter 3 [Flight Dynamics and System Model] - Mathematical description of the flight

dynamics and modeling of a quadcopter system;

• Chapter 4 [Project Design Components] - Presentation of the tools and UAV platform used

in the course of the research;

• Chapter 5 [Implementation] - Details the development process of the simulation environ-

ment and control algorithms;

• Chapter 6 [Simulation Results and Discussion] - Contains the results of the simulations

conducted to test the developed system;

• Chapter 7 [Conclusions and Future Work] - Presents the conclusions obtained from the

elaboration of this thesis, as well, as some future improvements that can be made to the

current work.

3The document can be accessed through the following link: https://docs.px4.io/main/en/ros/mavros_offboard_python.html

Chapter 2

State Of The Art

The state of the art in UAV technology is discussed in this chapter. Section 2.1 provides a brief

historical background of unmanned aerial systems. In Section 2.2, a variety of classification sys-

tems for UAVs are described. Next, the most common applications of this technology are covered

in Section 2.3. Finally, in Section 2.4 some of the recent literature related to the subjects of this

thesis is presented and compared with the proposed solution.

2.1 Brief History

It is unclear what could be considered the first UAV, so if the definition established in Section 1.1

is assumed, this would in turn exclude the Chinese rocket missiles from the thirteenth century.

However, the kite fits this description and, in some way, could be thought of as one of the first

renditions of a UAV [6].

In 1806, almost 100 years before the Wright Brother’s first sustained powered flight, it was

recorded the first real use of an aerial device when Lord Thomas Cochrane of the British Royal

Navy flew multiple kites from its frigate, in order to drop propaganda leaflets over France1.

By the 1880s, an English man named Douglas Archibald started experimenting with attaching

multiple sensors to kites and in 1887 he strapped a camera to one, taking the first UAV aerial

photographs. This technology then helped William Eddy (see Figure 2.1) to take hundreds of

photographs during the 1898 Spanish-American war, marking what is possible to be one of the

first applications of UAV’s in a military setting [6].

It was not until World War I that making a real aircraft fly with no human on board started

to delve into the realm of possibility due to a number of innovations that occurred during that

time. After the invention of a rudimentary gyroscopic autopilot by Lawrence Sperry in 1914, the

U.S. Navy and many other countries started adopting it and developing new systems on top of

it. At the start of WWI, the task of building a "flying machine" capable of hitting a target 64 km

away was put upon Charles Kettering, electrical engineer and founder of Delco, by the United

1Russel Naughton, Remote Piloted Aerial Vehicles: An Anthology [online] 2 Feb 2003. Available from:
https://www.ctie.monash.edu/hargrave/rpav_home.html#Beginnings [viewed 21 March 2022]

5

6 State Of The Art

States Army Signal Corps and he delivered by building the Kettering Aerial Torpedo (Figure 2.2),

which later became known as the Kettering Bug. This small and cheap aircraft could fly at up to

88 km/h and was capable of carrying around 80 kilos of high-impact explosives. Armed with an

ingenious pneumatic-electric system paired with an aneroid barometer and a gyrocompass inspired

by Sperry’s invention as an early automatic control system, the UAV was launched and, to ensure

it would hit the target, prior to the flight, engineers would calculate the exact number of engine

revolutions needed. At the preset count, the "Bug" would then shut off the engine and detach its

wings, basically turning into an air torpedo. Despite some successful test flights, it ended up not

being used in warfare, because the army feared it would crash on allied troops [6][9].

Figure 2.1: William Eddy posing with its
reconnaissance kite2 Figure 2.2: The Kettering Aerial Torpedo3

Another really important milestone in UAV’s history was achieved by the pioneer Archibald

Montgomery Low. He was known as the "Father of Radio-Guidance Systems" as he managed to

work out how to solve the interference problems with radio control caused by the UAV’s engines

and in 1924 he made the first successful radio-controlled flight.

In 1935, DH.82B Queen Bee (see Figure 2.3) was developed in the UK to be the first returnable

and reusable UAV. This vehicle was radio-controlled and was mostly used in the military as a

training target for the Royal Navy’s pilots. This aircraft also became known to be the origin of the

term "drone". Supposedly, a Lieutenant Commander from the U.S. Navy named Delmer Fahrney

used the name "drone" for the first time to describe a UAV, in order to pay homage to the Queen

Bee4 [10].

Despite proving to be a really useful platform in both reconnaissance and warfare, the UAV

did not see much use during both World Wars, perhaps due to its technological immaturity. It was

not until the beginning of the Vietnam War and in the Cold War that these vehicles started to see

real use, mostly in the field of air research.

3Encyclopedia of Astrobiology, Astronomy, and Space Flight: Kettering Bug, 2016. Available from:
http://www.daviddarling.info/encyclopedia/K/Kettering_Bug.html [viewed 23 March 2022]

4Drone is also a term that refers to "a stingless male bee that has the role of mating with the queen and does not
gather nectar or pollen", according to the Merrian-Webster dictionary

2.1 Brief History 7

Figure 2.3: Winston Churchill waiting for the launch of the DH.82B Queen Bee UAV5

During the 1940s, a called Ryan Aeronautical Company started producing UAV for the US

Air Force. Starting with the model Q-2 (also known as Firebee), a target-practice drone, soon it

became apparent the reconnaissance potential. And so in 1958, the model Q-2C was born, the first

Firebee to be altered for air research and photography. Since its function was limited and the US

had at its disposal the much more capable supersonic manned aircraft SR-71, it was never used for

its intended purpose. All of those problems were solved with the development of the Ryan 147A

Firefly by the same company [11].

Given the ever-increasing number of casualties in Vietnam War among air reconnaissance

pilots, the military started considering the unmanned aircraft solution. Thanks to its partnership

with the Ryan Aeronautical, several 147s were deployed with varying degrees of success. The

"Lightning Bug" (as it became known later) suffered a lot of modifications and went through

many iterations, proving in the end to be a very effective tool surpassing all expectations, even

with what would now be considered a very poor navigation system. In 1975, the Lightning Bug

program fell as the war came to an end [11].

Although the expectations for UAV advancements were extremely high after the Vietnam War,

it was only one decade later, after drones played a crucial part in the aerial victories of Israeli forces

over Syrian ones during 1984, that the armed forces really started investing in new systems.6

Through the 1980s and 1990s UAV development continued in many countries besides the

United States, such as in Iran, Iraq and USSR, especially in the miniature and micro vehicles

department.

It wasn’t until 1994 that one of the most famous and successful combat UAVs came to scene

with the appearance of the American-made vehicle named MQ-1 Predator seen in Figure 2.4. The

Predator was an RPV, originally developed for reconnaissance missions and later modified to be

5Captain Horton, War Office Second World War Official Collection, 6 June 1941. Available from:
https://www.iwm.org.uk/collections/item/object/205195356 [viewed 6 April 2022]

6draganfly.com, A Short History of Unmanned Aerial Vehicles (UAVs), Archived from the original on 23 September
2015. Available from: https://web.archive.org/web/20150923220258/http://www.draganfly.com/news/2009/03/04/a-
short-history-of-unmanned-aerial-vehicles-uavs/ [viewed 30 March 2022]

8 State Of The Art

able to fire two Hellfire missiles. It was used in combat in many wars fought by the USA, such as

the Afghanistan and Iraq ones, having also a crucial role in anti-terrorism operations and border

control. The Predator served the military until 2018, when it was replaced by the much more

advanced MQ-9 Reaper7.

Figure 2.4: MQ-1 Predator

As drone technology matured, many commercial entities started to see its potential use outside

of combat, and in 2006 the Federal Aviation Association issued the first commercial drone license.

The adoption, however, was slow up until the 2010s, when the miniaturization of silicon technol-

ogy and the breakthroughs in battery technology combined with the decrease in prices made the

drone a really appealing tool, not only for companies but for individuals trying to get the best

photos or simply have fun piloting the small aircraft8.

Today, the term drone is no longer associated with the military UAVs anymore, given that any-

one can get their own for a small price, capable of autonomous navigation and self-stabilization,

making the technology not only accessible to trained operators but also to the average individual.

2.2 Classification of UAVs

As technology advances, it opens up new doors for the development of a wider range of drones,

specialized in certain tasks or for the improvement of already existing platforms. It is then apparent

that a classification system must be present to distinguish the panoply of different drones, which

not only makes it easier to assess if one particular drone is suitable for a given task, but is also

of regulatory importance since it allows for the evaluation of risk from ground impact or midair

collision accidents [12].

7Vectorsite.net, Modern Endurance UAVs, Archived from the original on 10 November 2012. Available from:
https://web.archive.org/web/20121111153437/http://www.vectorsite.net/twuav_07.html#m2 [viewed 30 March 2022]

8Interesting Engineering, A Brief History of Drones: The Remote Controlled Unmanned Aerial Vehicles (UAVs),
29 June 2020. Available from: https://interestingengineering.com/a-brief-history-of-drones-the-remote-controlled-
unmanned-aerial-vehicles-uavs [viewed 30 March 2022]

2.2 Classification of UAVs 9

Given the extreme popularity of drones, many try to develop a classification system that en-

compasses the more relevant features and provides clear definitions and nomenclatures. To cate-

gorize UAVs, a lot of metrics can be used, such as mean take-off weight (MTOW), wingspan, wing

loading, range, maximum altitude, speed, endurance, production costs, and even engine types.

In an article from 2017 by M. Hassanalian and A. Abdelkefi [13], the researchers did a survey

on some of the proposed drone classification systems available at that time and tried to devise a

new technique that according to them "covers other types of classifications with better and more

comprehensive categorization".

The authors start by dividing the air vehicles into 6 main categories: UAV, µUAV, MAV, NAV,

PAV, and SD, according to their weight and wingspan as presented in Figure 2.5.

Figure 2.5: The spectrum of drones from UAV to SD (Source: [13])

SD (Smart Dust) Smart Dust refers to an old concept created by Kris Pister in 1992, where he

envisioned a network of millimeter/sub-millimeter autonomous computing and sensing plat-

forms. By 1998, DARPA gained interest in Pister’s idea and started funding its research.

However, due to the technological limitations at that time, the "tiny" prototype was about the

size of a matchbox [14]. Nowadays, with current innovations in the fields of nanotechnol-

ogy, wireless sensors, and micro-electro-mechanical systems (MEMS), Smart Dust seems to

be inching closer into the realm of possibility. These super-tiny vehicles have the advantage

of, for example, being moved by the wind or even remaining suspended in the air, with the

objective of monitoring weather conditions, air quality and other phenomena [15].

PAV (Pico Air Vehicle) The Pico Air Vehicle is inserted in a size and weight category that most

flying insects are also part of. Since at this scale, components like motors, bearings, and

gears become difficult to produce, researchers also look at these flying creatures for inspi-

ration. The development of this type of robot is being seen as advantageous, since they can

be made cheaply, due to their size and by not relying on complex propulsion technologies,

and in large quantities making them potentially disposable, making operating in a swarm a

very compelling option and possibly have benefits over larger complex individual vehicles.

Furthermore, the PAV’s main advantage is to be used as a tool in the study of the biology of

small flying beings and help to better understand the physics of their locomotion [16].

10 State Of The Art

NAV (Nano Air Vehicle) This type of air vehicle falls into a category just above the PAV, which

starts to allow for the use of more traditional propulsion methods such as motors and pro-

pellers. However, given the relatively small size, some configurations of NAVs can benefit

from more unconventional propulsion means, which results in a huge diversification within

this family of UAVs.

MAV (Micro or Miniature Air Vehicle) Probably the most popular type of drone since these

dimensions cover most commercial drones. The increased range and size allow for bigger

batteries and configurations that are harder to implement in the categories below, such as

fixed-wing aircraft. Besides that, this scale also enables more applications like package

delivery that simply don’t make sense at a smaller scale. The vehicle used for the project of

this thesis is inserted in this category, as it has a maximum length of 385 mm and an average

weight of 1380 g (see Section 4.1.1).

µUAV A µUAV is usually launched by hand, i.e. it can be carried by a single person, and it does

not need a runway to take off. Nonetheless, this type shares most of its applications with the

MAV, while the µUAV is used more in military and research environments.

UAV As it has been explained, the term "UAV" is used throughout this document as a synonym

for drone, however in this classification, what essentially distinguishes UAVs from smaller

drones such as MAVs and NAVs, is their operational purpose, the materials used in their

construction, and the complexity/cost of the control system. Due to the large costs and

regulations, this type of drones are usually reserved for military or government use.

These main categories then expand into more specific ones (see Figure 2.6), which mainly

focus on mission capabilities and body configurations. This results in an unconventional, but

very comprehensive classification system, that tries to involve every drone configuration available,

which also means that periodic revisions can be needed to accommodate new innovations in the

field.

2.2 Classification of UAVs 11

Figure 2.6: Full categorization system devised by M. Hassanalian and A. Abdelkefi (Source: [13])

2.2.1 UAV Typologies

Besides being classified by weight and wing span, UAVs can also be distinguished by their ty-

pology, i.e. the type of lift generation method that each drone relies on. Currently, there 4 main

typologies:

• Fixed-Wing Air Vehicles

• Rotary-Wing Air Vehicles

• Tilt-Wing Air Vehicles

• Flapping-Wing Air Vehicles

In fixed-wing aircraft, the lift is generated passively by the air passing through, as the name im-

plies, a fixed-wing. For these vehicles to achieve lift, constant forward speed is necessary, usually

provided by propellers or jet engines. This makes it virtually impossible to achieve hover flight

and restricts the environments where this type of vehicle can be deployed.

On the other hand, rotary-wing aircraft generate lift and thrust by rotating vertically-mounted

propellers, enabling the vehicle to hold a constant position in space and take off vertically, contrary

to fixed-wing UAVs. Another factor that significantly distinguishes these aircraft types is maneu-

verability since rotary-wing vehicles generally have a much lower turning radius when compared

12 State Of The Art

to fixed-wing ones. However, these advantages come with a few setbacks, such as bigger power

consumption and lower flight times [17].

Tilt-wing air vehicles were created to combine all the benefits of fixed and rotary-wings with-

out their drawbacks. They can take off and land vertically like rotary-wing vehicles, but also

change their thrust vector to behave like a fixed-wing aircraft, wasting less power on lift genera-

tion. Despite the significant improvements over the previously mentioned types, tilt-wing vehicles

come with much more complex systems, making them more expensive and difficult to maintain,

meaning that in most situations, their use is not justified.

Finally, flapping-wing aircraft are named that way since their lift generation method consists

of the displacement of air through the flapping of wings. This type of vehicle is often inserted

in the PAV category since they are inspired by the biology of flying beings. They are highly

maneuverable and capable of creating much stronger lift forces. However, the need for a very

lightweight structure creates a lot of complex aerodynamic challenges and that is why, currently,

there are only research-based prototypes and no operational vehicles [18].

2.2.2 Multicopter UAV Configurations

Rotary-wing aircraft can be divided into two sub-types: helicopters, which are rotorcraft with less

than three rotors, and multicopters, with more than three lift-generating rotors. Since this thesis

focuses primarily on the latter, only configurations from this sub-type will be discussed in this

Subsection.

Figure 2.7: Multicopter configurations

The most common multicopter configurations are quadcopters, hexacopters and octocopters

in Figure 2.7. There are many more possible propeller arrangements, including ones with an odd

number of blades, but these tend to be harder to control than even-numbered frames and are,

therefore, less popular.

2.2 Classification of UAVs 13

To clarify, it is important to distinguish frame from configuration. In the case of Figure 2.7,

it is possible to observe that the only thing that differentiates Quad + and Quad X is the way

forward direction is defined. This means that despite using the same frame Quad + and Quad X
are two completely different configurations.

In order to choose the right frame and configuration for a given application, one must assess

3 main factors: budget, maximum payload weight, and space. When talking about price, a drone

with more propellers and motors will be, of course, more expensive. However, with the added

propellers it generates more lifting force and, consequently, it is able to achieve a higher maximum

payload weight. In the same way, it is needed to evaluate the space occupied by the added number

of arms as, for instance, a front camera could be obstructed in an octocopter, given the smaller

angle between each arm.

2.2.3 Classification of UAVs according to Portugal’s regulations

Every country has the liberty, to a certain extent, of deliberating its laws and regulations on any

aspect that affects the security of its people. As UAVs come in all shapes and sizes, some of them

have the potential of causing great damage to an individual, either physical as, for example, with

the impact of a large aircraft or of private information, using reconnaissance vehicles.

Not long ago, only trained certified pilots were granted authorization for flying aircraft. Nowa-

days, any person can control a flying vehicle within unregulated space. This fast change meant

that regulations and policies needed to be imposed on this new paradigm as soon as possible, in

order to prevent misuse of the technology.

In Portugal, directives regarding unmanned air vehicles currently follow the Regulation of Ex-

ecution (EU) 2019/947 relative to the rules and procedures for the operation of unmanned aircraft

[19] created by the European Union Aviation Safety Agency (EASA) and enforced by the Na-

tional Authority of Civil Aviation (ANAC). This document establishes UAVs as belonging to 3

distinct risk categories that abide by different rules and procedures. To distinguish between these

classifications, the government uses weight and altitude as the main factors, attributing higher risk

as weight and altitude increase. It is also worthy of note that the pilot needs to be at least 16 years

old and go through specialized training for every category, unless the UAV is not homemade (pre-

assembled kits are not part of this distinction), has less than 250 g of mass and has a top speed

below 19 m/s.

• "Open" Category (Low Risk)

Drone operations in this category are considered to be mainly for recreation as an aircraft

that inserts itself in this class needs to have less than 25 kg and not fly more than 120 m

above ground level, and consequently is considered as being of low-risk. Additionally, the

pilot should guarantee that the drone does not fly above gatherings of people, near manned

aircraft, airports, or current emergency response operations while maintaining a VLOS at

all times (except if the "follow me" mode feature is active).

14 State Of The Art

In this family of UAVs there is a lot of variety in relation to weight and applications, thus

to in order to make sure that the rules fit the vehicle and application the best inside the

"Open" category, this one is subdivided into 3 subcategories, that still encompass every

aspect mentioned previously for the main one.

– Subcategory A1

Subcategory A1 involves all drones with markings of C0 and C1 classes or even the

homemade vehicles without European markings with less than 250 g and 19 m/s as

top speed. This class allows for UAVs of an MTOW of less than 900 g.

To fly this type of drone the pilot needs to have training on A1/A3 subcategories since

they are included in the same course. This course includes training, remote exams,

and a certificate issued by the right authority of the government, which in the case of

Portugal would be ANAC.

– Subcategory A2

Subcategory A2 includes all drones with markings of class C2 with less than 4 kg of

MTOW and restricts operation to be at least 30 m away from non-involved personnel

and to 50 m if the UAV used has no CE class markings.

To fly this type of drone the pilot not only needs to have training on A1/A3 subcate-

gories but also A2 theoretical online training and a practical course in an A3 scenario.

After that, an additional final exam must be held at the responsible authority’s facilities

(ANAC).

– Subcategory A3

Subcategory A3 includes all drones with markings of classes C3 and C4 with MTOW

inferior to 25 kg. Besides that, flights operated with vehicles that belong to this subcat-

egory can only be carried if they are within a reasonable distance from non-involved

personnel, which also implicates a minimum distance of 150 m from residential, recre-

ational, commercial, and industrial areas.

The training and certification requirements are the same as Subcategory A1.

• "Specific" Category (Medium Risk)

Every time an operation that does not comply with one or more of the "Open" category

specifications, either it being a vehicle with a mass above 25 kg or SWARM missions, it

is considered of being part of the "Specific" Category. Usually vehicles of the classes C5

and C6 are used for these operations, although the limits can be surpassed, being, of course,

contingent on the operation and necessary approvals by the competent authority.

For a pilot to fly a UAV in this class it is mandatory the elaboration of an operational manual

and an ERP (Emergency Response Plan), then, depending on the type of operation, the vehi-

cle can be flown under a declarative scenario or with a request paired with a risk assessment

analysis.

2.3 Applications of UAVs 15

In regard to training, A1/A3 subcategory course is necessary, while A2 training is optional.

However, like subcategory A2, theoretical and practical lessons instructed by ANAC or a

recognized formation entity are still needed, alongside what was mentioned in the previous

paragraph.

Figure 2.8: European Markings for Drones9

• "Certified" Category (High Risk)

The main differentiating aspect of the "Certified" category is that to fly it the pilot will need

manned aircraft training, since the vehicles inserted into this class have a length of 3 m

or more, can be used for transportation of people or dangerous materials and/or need to

be flown over large groups of people. These scenarios are obviously of high risk, which

means that obtaining a permit for these operations incurs a more complicated process than

the previous categories.

2.3 Applications of UAVs

It is undeniable the immense growth in popularity that UAVs, in particular small or commercial

drones, experienced during the past decade (evidenced in Figure 2.9). This rapid expansion is

due in part to the enormous number of applications that these vehicles provide, making them

an essential asset across multiple businesses. From capturing high-quality aerial photos, only

previously attainable using expensive cameras and a helicopter, to helping crops grow, drones

cover a wide range of civil and military applications.

The continuous shrinkage and democratization of high-quality sensors have also been a deter-

minant factor in the increase in the adoption of UAVs since it allows for cheaper systems.

9Alter Technology. Available from: https://www.dronescelab.com/class-label/ [viewed 16 May 2022]
10Tractica. Available from: https://www.statista.com/chart/17201/commecial-drones-projected-growth/ [viewed 7

June 2022]

16 State Of The Art

Figure 2.9: Graph showing the worldwide market growth for commercial drones (2019)10

There are more than 200 applications for drone systems, which can be classified according

to the type of missions (civil/military), flight areas (indoor/outdoor), and environments (air/s-

pace/water/ground) [13]. In this section, only some of the most popular UAV applications will

be presented.

1. Aerial Photography
Used in both military and civil scenarios, camera drone units can be used for aerial photog-

raphy, filming, site surveying, 3D mapping, and surveillance. They can be easily deployed

and with current camera technology, some drones are able to take clear pictures from incred-

ible distances, like the camera platform presented by DARPA in 2013 named ARGUS-IS,

which when attached to a HALE (High Altitude Long Endurance) drone is able to spot a

person from 6 km in the air [20].

2. Search and Rescue
As in search and rescue operations, every second is critical, easily deployable, and efficient

solutions are needed. While helicopters and planes require a long setup time, drones can be

thrown into action almost immediately and with significantly lower operating costs [13].

Certain UAVs designed for this type of missions can be equipped with thermal imaging

cameras to detect the body heat of lost/missing persons or with supplies/rescue gear, in

order to deliver them to more remote or inaccessible locations. The vehicles used for this

purpose improve not only the safety of those who may encounter themselves in perilous

situations but also the safety of the rescuers.

3. Shipping and Delivery
With an increasing number of drone units being developed to carry heavy loads, companies

2.3 Applications of UAVs 17

like Amazon11, Google12 and DHL13 have been working on implementing these platforms

into their delivery fleet. UAVs bring a lot of advantages compared to the traditional methods

of shipping and delivery, such as reducing human labor and enabling faster delivery times.

However, being limited by range, payload weight, and regulations, there is still a long way

before these vehicles become widely used in this sector.

4. Agriculture
Drones have become highly used in agriculture as they are able to effectively reduce oper-

ating costs while at the same time enhancing crop quality. The main tasks that these UAVs

perform are either passive, like monitoring growth or crop health, or active, carrying out

effective weed control and fertilizer dispersal [21].

5. Science and Research
Given the ease of use and versatility that drones provide, scientists and researchers consider

them a very useful tool. UAVs can fly in dangerous areas for humans and collect data for

posterior analysis or even map the entire topography of a zone. Besides that, since most

vehicles used are powered by electricity, it makes them quieter and less harmful to the

environment they are deployed in, which is also a big advantage for researchers.

Recently, in 2021, NASA successfully tested the pathfinder UAV "Ingenuity" on the sur-

face of Mars, making the first propeller-powered flight on another planet. This drone was

obviously specially designed for the thin atmosphere of Mars with two-counter-rotating pro-

pellers and faster rotation speeds, in order to generate enough lift14. As of April 29th, 2022,

Ingenuity has completed 28 successful flights.

6. Leisure and Sports
As well as being used as tools, drones can also be a source of fun and a way to demonstrate a

person’s control skills. This is why, a new type of sport of FPV drone racing was invented in

which people can demonstrate their precise drone control, doing fast-paced races with UAVs

(typically small quad-rotors) equipped with a frontal camera and wearing head-mounted

displays.

Since nowadays, these vehicles can achieve incredible velocities, even a small mistake in

the controls can be catastrophic for the drone.

11Patrick Austin (TIME), 2021, "Amazon Drone Delivery Was Supposed to Start By 2018. Here’s What Hap-
pened Instead". Available from: https://www.https://time.com/6093371/amazon-drone-delivery-service/ [viewed 10
June 2022]

12John Koetsier (Forbes), 2021, "Google Now Owns The ‘Largest Residential Drone Delivery Service In
The World’". Available from: https://www.https://https://www.forbes.com/sites/johnkoetsier/2021/08/25/google-now-
owns-the-largest-residential-drone-delivery-service-in-the-world/ [viewed 10 June 2022]

13DHL, 2021, "DHL’s Parcelcopter: Changing Shipping Forever". Available from:
https://www.dhl.com/discover/en-my/business/business-ethics/parcelcopter-drone-technology [viewed 10 June
2022]

14Robert Lee Hotz (The Wall Street Journal), 2021, "NASA’s Mars Helicopter Ingenuity Makes Historic First
Flight". Available from: https://www.wsj.com/articles/nasas-ingenuity-helicopter-successfully-makes-historic-first-
flight-on-mars-11618830461 [viewed 11 June 2022]

18 State Of The Art

7. Unconventional Applications
Some unconventional applications include the use of drones in order to immobilize or take-

out other UAVs. This is especially helpful against drones that violate restricted air spaces,

for instance around airports, where a misplaced vehicle can cause fatal disasters.

Another example of an unusual application is a drone runway or mother ship, i.e., a larger

UAV from where smaller drones can take off or are dropped, depending on the scenario15.

2.4 Related Works

2.4.1 UAV Controlled Descent

In this thesis context, a UAV’s controlled descent is defined as the active actuation on the control of

a vehicle’s body in order to produce a deceleration and/or adjustment of its trajectory while moving

through the air. The descent behavior of the UAV would, in turn, deviate from an uncontrolled fall.

While researching this topic, it was found that controlled descent algorithms were mostly

applied in emergency scenarios as it is the case of [22], where an emergency-guided recovery

system is designed to be implemented in Urban Air Mobility (UAM) eVTOL vehicles flying in

high-density population areas. In this recent paper, a guidable parachute with bleed-air control

is devised in order to allow for a safe landing and recovery of the vehicle. Although parachutes

have been proved to be a reliable and efficient way to slow down a falling object, they are usually

a one-time solution, requiring a reset after each use (often manual). Systems like this work in

emergency cases, as the only objective is to return the vehicle and its payload safely, but for an

autonomous system that involves a multiple-use scenario, a parachute is not a viable option.

Another concept that is heavily explored in the context of controlled descent systems, espe-

cially in helicopter-type vehicles, is autorotation.

Autorotation is a phenomenon that only occurs in variable-pitch propeller aircraft. When the

rotor is disengaged from the motor and the collective blade pitch is set to a minimum, the blades

are driven solely by the upward flow of air (see the helicopter example in Figure 2.10). The

lift generated by the blade rotation then slows down the vehicle’s rate of descent considerably

compared to a free-fall [23].

The most common manifestation of this phenomenon is in a helicopter emergency landing sce-

nario after the loss of one or both engines and the pilot is forced to take advantage of autorotation

to safely land the vehicle.

In [24], an emergency maneuvering technique for a quadcopter UAV suffering a total loss

of one motor is studied. The vehicle in question has a variable-pitch propeller system and uses

autorotation on the faulty rotor in order to achieve a controlled descent. To achieve a similar result

in the same scenario, Lippiello et al. [25] propose a back-stepping approach to the problem by

15Liu Xuanzun (Global Times), 2021, "China conducts test flight for airborne unmanned swarm carrier". Available
from: https://www.globaltimes.cn/page/202104/1220474.shtml [viewed 11 June 2022]

16ArduPilot, 2021. Available from: https://ardupilot.org/copter/docs/traditional-helicopter-autorotation-mode.html
[viewed 23 July 2022]

2.4 Related Works 19

Figure 2.10: Helicopter in normal flight vs autorotation and respective collective blade pitch16

turning off the opposing motor to the faulty one resulting in the control of a stable bi-rotor, limited

only in the yaw control.

Diverging from the emergency scenarios that the previous works focused on, an innovative

type of UAV was developed by Hunter et al. [26]. This vehicle features coaxial rotors with

foldable blades and can be launched by a 40 mm grenade launcher (see Figure 2.11). The most

important aspect of this paper for the problem presented in this thesis is the vehicle’s transition

from a descent stage to a hovering mode, where the UAV needs to provide enough thrust to brake

the fall and achieve stable hover without hitting the ground.

Figure 2.11: Gun-launched MAV concept: Flight Phases (Source: [26])

A very similar platform to the one presented above was demonstrated in [27] where Matveev

et al. developed a "model of an elongated body intended for a controlled, low-speed landing after

being released far above the ground". It features a gimbaled rotor and single propeller system

20 State Of The Art

ensuring a low-speed landing, which is suitable for more fragile payloads. It is important also to

mention that the developed model is rather simplistic and was only tested in a simulation setting.

In conclusion, it is evident that virtually no study presented here focuses on control algorithms

for overloaded vehicles as a means of payload delivery like the one proposed in this thesis. In fact,

all research documents mentioned in this section, besides [26], offer solutions for a controlled

descent and landing but not for an autonomous recovery of the system. Moreover, in the scenarios

considered the vehicle is already partially impaired before the landing or loses control authority

after touchdown.

2.4.2 UAV Vision-Based Control

As cameras became more accessible, vision-based control for UAVs gathered increasing popular-

ity since it allows for more accurate positioning and environmental awareness than other common

sensors like GPS and IMU. However, RGB cameras also present some disadvantages, such as

poor behavior under low-light scenarios and, depending on the system it is inserted in, the need

for stabilization in order to be useful.

The most common applications for vision-based control in UAVs include indoor settings,

where technologies like GPS do not have the required precision or do not work, and outdoor

targeted landings where sub-meter accuracy is mandatory.

In [28] Sani, Mohammad and Karimian, Ghader propose a method for autonomous navigation

and landing of an indoor quadcopter using an ArUco marker and inertial sensors. The vehicle in

question had one front-facing and one down-facing camera in order to detect the fiducial marker.

The UAV’s pose is estimated through the camera’s image when the marker is visible and by the

inertial sensor when vision data is unavailable. This results in a successful landing with reasonable

accuracy.

To avoid the low-light drawback that traditional RGB cameras suffer, an infrared beacon is

used as a landing target in [29], making it possible for the UAV to land both at night as well as

during the day.

During the research, it was found that many studies [30][31][32] attempt to develop a new

marker that better suits the application with a varying degree of success (see Figure 2.12). In [30]

the marker detection algorithm ended up not being efficient enough to work in real-time hindering

the UAV’s ability to land. On the other hand, the markers devised in [31] and [32] were found to be

suitable to ensure a precise landing, with the latter proposing a novel method of marker detection

dependent on the distance of the UAV to the marker.

In [33] Borowczyk, Alexandre et al. propose a high-speed ground vehicle target landing al-

gorithm for UAVs based on AprilTag markers and a gimbaled camera. However, it still relied on

IMU and GPS data from the moving vehicle, as the range of detection for the AprilTag markers is

less than 5 m.

ArUco markers have been proven to be an extremely accurate positioning method. Despite

that, a lot of research is still dedicated to further improving landing accuracy. In [34] Wubben,

Jami et al. were able to detect a 56x56 cm ArUco marker from up to 30 m in altitude and obtained

2.4 Related Works 21

(a) Smyczyński, Pawel et al.
(Source: [30])

(b) Sven, Lange et al.
(Source: [31])

(c) Yuan, Haiwen et al.
(Source: [32])

Figure 2.12: Proposed markers by research studies

an average offset from the target position of only 11 cm. During the same year Virtanen, Arno

presented a thesis [35] where he demonstrated promising results using ROS and the Gazebo simu-

lator, with a target detection error of only 2 cm. However, he was not able to reproduce the results

visualized in the simulation due to hardware integration problems.

To prevent the tracking loss of the ArUco marker when the UAV is in the final landing phase

(camera’s view frame does not see the whole marker) [36] a payload delivering system with a

modified ArUco marker and Ultra-Wide Band (UWB) target is presented. In this modified ArUco,

a smaller marker is positioned in the middle of a larger one (see Figure 2.13), making it possible

for the UAV to detect the target from far distances as well as when it is closer to the ground

(when the larger one is occluded). The UWB sensor data is also fused with the marker’s measured

position using an Extended Kalman Filter. Although the landing accuracy proved to be slightly

worse (19 cm from the center) than previous works discussed here, this system is still more robust

than only using the marker’s vision-based position. It is also worth noting that the payload release

mechanism (see Figure 2.14) uses a servo-motor and a 3D-printed bracket to secure it to the UAV.

Figure 2.13: Modified
ArUco marker (Source: [36]) Figure 2.14: Payload release mechanism (Source: [36])

In general, it seems that the ArUco markers provide a very reliable way of detecting a visual

target’s position and are suitable for the use case of this thesis. To avoid the low-light disad-

vantage of the purely visual detection method, other sensors like infrared or UWB can also be

implemented, turning the system more robust.

22 State Of The Art

Chapter 3

Flight Dynamics and System Model

The flight dynamics and quadcopter system models have been the subject of much previous re-

search (see [37],[38],[39]) and they will be presented in this chapter alongside some mathemati-

cal concepts used throughout this document. This segment is extremely important to understand

the control techniques and overall characteristics of a quadrotor vehicle’s non-linear and under-

actuated system.

Section 3.1 gives a brief description of the working principles of a quadcopter. Then, some

assumptions made for the system model can be seen in Section 3.2. Finally, the kinematics and

physics of the vehicle are presented in Sections 3.3 and 3.4, respectively, ultimately ending on the

complete system model.

3.1 Working Principles of a Quadcopter

Since, in this thesis, the multicopter used will be a quadcopter in an X-configuration, it is relevant

to understand the main working principles of this type of UAV.

The movement of the quadcopter works over two main physics principles:

• Newton’s Third Law of Motion - This law states that "Every action has an equal and

opposite reaction", which, when applied to a quadcopter, means that for it to experience a

force that counteracts gravity and makes it go up, the propellers need to push down the air

below so that the downwards force created by the air being pushed will be replicated on the

drone’s body, but in the opposite direction.

• Bernoulli’s Principle - This theorem, elaborated by physicist Daniel Bernoulli in 1738,

applies to every fluid and states that a decrease in pressure always accompanies an increase

in the speed of a fluid. Analyzing the CFD diagram in Figure 3.1, it is possible to observe

that as the propellers spin and push the air downwards, a high-pressure zone is created below

the quadcopter, leaving an area of low pressure above them. This, in turn, generates a lift

force that propels the UAV.

23

24 Flight Dynamics and System Model

Figure 3.1: CFD diagram of a quadcopter (Source: [40])

Another aspect of the propellers to consider is the creation of an opposing torque on the quad-

copter’s body. In this way, if all four propellers rotated in the same direction, the natural movement

of the UAV would be to also rotate, but in the opposite direction. That is why, to counteract this

inherent torque, the pair of propellers diagonally-opposed are made to rotate in the opposite direc-

tion of the other pair (see Figure 3.2). This, in turn, translates into a resulting torque equal to zero

and the quadcopter’s yaw motion null when standstill.

This passive nullification of torque is only possible in even-numbered propeller multicopters,

hence the previous mention in Section 2.2.2 that odd-numbered frames are harder to control and

less desirable.

Figure 3.2: Quadcopter representation showcasing propellers’ rotation direction

Regarding the hovering movement of a quadcopter, every motor must be kept at relatively

the same speed. In order to achieve a desired move, all motors’ speeds should be configured

accordingly, for example: to move up, all motors should increase their speed of rotation and, to

move down, the opposite must occur [17].

3.2 Modeling Assumptions 25

3.2 Modeling Assumptions

Since a computational model is a mere approximation of reality and some parameters acting on

the system have a negligible effect, it is necessary to make some assumptions in regard to the

conditions that the drone is subject to, which in turn simplifies the model and boosts its efficiency.

These assumptions are listed below:

• The quadcopter propellers are rigid, so aerodynamic effects such as blade flapping are not

considered;

• The structure of the vehicle is rigid;

• The vehicle is symmetrical and its center of mass is located in the geometrical center of its

body frame;

3.2.1 Coordinate Frames

In order to derive the drone kinematics, it is essential to establish the two coordinate frames in

which the system will operate. The first one is the inertial frame, denoted by the subscript G,

which serves as the ground reference and is fixed in place. Note that the Earth’s curvature is

ignored and, for that reason, the surface on which this frame sits is assumed to be flat. This

coordinate frame is usually set either as the center of the Earth or as the initial position of the UAV

on the ground.

The body frame, denoted by the subscript B, is fixed to the quadcopter with the coordinate

origin on the CoG of the vehicle. There are multiple ways to set this reference frame, but the most

well-known ones are the + and X-configurations, shown in Figure 3.3. For all calculations going

forward, the latter was chosen, given that X-configuration quadcopters are more popular since they

allow for higher maneuverability (two rotors involved in pitch and roll control instead of one) and

less obstruction of the forward field of view [38].

3.2.2 System Variables

To represent the attitude and orientation of a quadcopter six variables are used, three to describe

the linear position (x, y, z) of its center of mass, and three to characterize the Tait-Bryan angles1,

roll, pitch and yaw (φ , θ , ψ), of the rigid-body rotation in the reference coordinate system. So the

1Tait-Bryan angles, also called “Cardano angles”, are used to parameterize the rotation of a rigid body in space and
are extensively used in aerospace engineering where they are commonly called “Euler angles” (the "true" Euler Angles
are characterized as classic or proper Euler Angles) [41]

26 Flight Dynamics and System Model

(a) +-Configuration (b) X-Configuration

Figure 3.3: Body frame configurations

overall attitude and orientation, ξ G, can be defined as:

ξ
G =

[
X

Θ

]
=

x

y

z

φ

θ

ψ

(3.1)

In the case of the linear and angular velocities, it is important to note that ω ̸= Θ̇, since ω =

[p q r]T is the angular velocity vector pointing along the axis of rotation, in the body frame (see

Figure 3.4), while Θ̇ = [φ̇ θ̇ ψ̇]T corresponds to the time derivative of the Tait-Bryan angles in the

ground frame [42]. The relationship of Θ̇ and ω is demonstrated in Subsection 3.3.

Figure 3.4: Inertial (xGyGzG) and Body (xByBzB) Frames

3.3 Kinematics 27

The velocity vector (in the body frame) can then be determined by:

ξ̇ B =

[
V

ω

]
=

u

v

w

p

q

r

(3.2)

As it has been mentioned before, since the quadcopter has 6 DoF and only 4 inputs (motor

velocities/current), we observe that the number of actuators is less than the number of outputs, so

the system is said to be underactuated.

3.3 Kinematics

From this point forward, to facilitate the reading and interpretation, the trigonometric expressions

such as sin(x) and cos(x) are shortened to sx and cx, respectively.

According to Euler’s theorem, the rotation of a rigid body around one fixed point can be

described as the composition of several finite rotations around that same fixed point. This means

that the body frame (xByBzB) can be obtained from the rotation of the reference ground frame

(xGyGzG) through a series of three orthogonal operators in matrix form (R(φ), R(θ), R(ψ)), which

when combined, according to the ZYX order of sequence, result in the rotation matrix RG
B [43].

(a) Roll (φ) (b) Pitch (θ) (c) Yaw (ψ)

Figure 3.5: Rotations of the different Euler Angles

R(φ) =

1 0 0

0 cφ sφ

0 −sφ cφ

 R(θ) =

cθ 0 −sθ

0 1 0

sθ 0 cθ

 R(ψ) =

 cψ sψ 0

−sψ cψ 0

0 0 1

 (3.3)

RG
B = R(φ)R(θ)R(ψ) =

 cψcθ cθ sψ −sθ

cψsφ sθ − cφ sψ cψcφ + sφ sθ sψ sφ cθ

cψcφ sθ + sφ sψ cφ sθ sψ − cψsφ cφ cθ

 (3.4)

28 Flight Dynamics and System Model

It is then possible to obtain the angular velocity vector on the body frame ωB from the deriva-

tives of the Tait-Bryan angles using the following relation:

ω
B = I

φ̇

0

0

+R(φ)

0

θ̇

0

+R(φ)R(θ)

0

0

ψ̇

=

−sθ 0 1

cθ sφ cφ 0

cθ cφ −sφ 0

φ̇

θ̇

ψ̇

= W · Θ̇ (3.5)

It is worthy of note that, despite that the Tait-Bryan angles suffer from what is known as gimbal

lock2 when θ = ±π/2, in practice, this does not affect the quadcopter nor its control in normal

flight [41]. The advantage of using Tait-Bryan angles is that the interpretation and development of

control algorithms for the quadcopter are much simpler when compared to the use of quaternions3.

From here, it is now possible to obtain the full kinematic model, which expresses the linear

and angular velocities of the UAV according to the inertial frame:

˙ξ G =

ẋ

ẏ

ż

φ̇

θ̇

ψ̇

=

[
RG

B 03x3

03x3 W

]
ξ̇ B

=

cψcθ cθ sψ −sθ 0 0 0

cψsφ sθ − cφ sψ cψcφ + sφ sθ sψ sφ cθ 0 0 0

cψcφ sθ + sφ sψ cφ sθ sψ − cψsφ cφ cθ 0 0 0

0 0 0 −sθ 0 1

0 0 0 cθ sφ cφ 0

0 0 0 cθ cφ −sφ 0

u

v

w

p

q

r

(3.6)

3.4 Physics

3.4.1 Motors

Nowadays, brushless DC motors are the most common type of motor used in small quadcopters.

The primary distinction between brushless DC motors and conventional brushed DC motors is

that the former switches phases electronically by monitoring the rotor position, whilst the latter

switches phases using mechanical contacts (carbon brushes). Although brushless motors are often

2Gimbal lock is a phenomenon that occurs in a three-dimensional, three-gimbal mechanism when two of the three-
axis of rotation align, causing the loss of one DoF and therefore limiting the movement of the system or "locking" it in
a two-dimensional space (Jonathan Strickland, What is a gimbal - and what does it have to do with NASA? [online] 20
May 2008. HowStuffWorks.com. Available from: https://science.howstuffworks.com/gimbal.htm [viewed 14 March
2022]).

3For a quaternion-based approach see also [44] (p11-14)

3.4 Physics 29

more expensive and have more complicated controls than brushed ones, they offer many advan-

tages over brushed ones due to their higher efficiency, ability to reach higher speeds, need for less

maintenance, and less noise.

To start the physics analysis of the quadcopter, it is important to deeply understand the influ-

ence that these motors (or actuators) have on the system. It is assumed that all four motors of the

UAV are the same exact one, so the derivation will only be explained for a single motor.

The torque produced by each motor is defined by:

τm = Kτ(I − I0)

⇔ I =
τm + IoKτ

Kτ

(3.7)

where τm is the motor torque, I is the input current, I0 is the current with no load on the shaft

and Kτ is the torque proportionality constant that can be obtained for each motor through testing.

Figure 3.6: DC Motor Circuit

The voltage across the motor is given by the resistive loss (RmI), the voltage across the inductor

(L ∂ i
∂ t) and the sum of the back-EMF (Kvω). However, the inductive part of the equation can be

neglected, since most motors used in quadcopters show a very small inductance [45]:

V = RmI +KvΩ, L ≈ 0 (3.8)

where V is the voltage drop across the motor, Rm is the motor resistance, L the motor induc-

tance, Ω is the angular velocity of the motor and Kv is a constant that indicates back-EMF per RPM

and can also be obtained through testing. It is then possible to obtain an equation that describes

the power generated by the motor:

P =V I =
(τm +Kτ I0)(Kτ I0Rm + τmRm +KτKvΩ)

K2
τ

(3.9)

As a way to simplify the model, it is possible to ignore the motor resistance (Rm ≈ 0) and

the current under no load (I0 ≈ 0 =⇒ Kτ I0 ≪ τm), since these are usually very small values. In

reality, these approximations hold well enough and provide a much simpler equation of the power

consumed by the motor:

P ≈ Kv

Kτ

τmΩ (3.10)

30 Flight Dynamics and System Model

3.4.2 Translational Dynamics

By the law of energy conservation, it is possible to deduce that the energy that the motor uses in a

given period of time matches the force generated on the propeller multiplied by the distance that

the air displaced travels (Pdt = Fdx). This, in turn, is equivalent to saying that the power is equal

to the thrust (force) multiplied by the air velocity (P = F dx
dt):

P = T vhov (3.11)

In this equation, T characterizes the thrust of the motor and if the drone speed is assumed to

be low, vhov will represent the velocity of air while hovering and, within this assumption, the free

stream velocity (v∞) will be 0, i.e., the air surrounding the quadcopter is stationary relative to it.

Froude’s momentum theory presents the equation for hover velocity in function of thrust [46]:

vhov =

√
T

2ρAb
(3.12)

where ρ is the air density (approximately constant below 120 m), and Ab is the area cleaned

out by the rotor blades that can be calculated given the radius of the blades. Combining this with

the derived equation in 3.11, the power can be characterized by:

P = T vhov =
T

3
2

√
2ρAb

(3.13)

Considering that the motor torque is proportional to the thrust by a constant KT , i.e., τ = KT T ,

the equation 3.10 can also be made dependent on the thrust of the vehicle:

P ≈ Kv

Kτ

τmΩ =
KvKT

Kτ

T Ω (3.14)

By equalling 3.13 to 3.14 and solving for thrust:

T =

(
KvKT

√
2ρAb

Kτ

Ω

)2

=CT Ω
2 (3.15)

The thrust coefficient CT can be determined experimentally, which has the added advantage of

already incorporating the drag effect on the airframe induced by the rotor flow. Knowing that the

thrust acts on the negative direction of the z-axis when hovering, it is now possible to obtain the

total thrust that acts on the body of the quadcopter by summing over all motors (motors’ numbers

arbitrarily defined):

TB =
4

∑
i=1

Ti =−CT

 0

0

Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4

 (3.16)

Another force that needs to be introduced into the model for higher fidelity is the drag force.

3.4 Physics 31

This very simplified model of drag is defined on the inertial frame and can be adjusted with the

help of the drag coefficients (CDx,CDy,CDz) that determine the magnitude of this force acting on

each axis of the quadcopter:

FG
D =CD · Ẋ =

CDx 0 0

0 CDy 0

0 0 −CDz

ẋ

ẏ

ż

=

 CDxẋ

CDyẏ

−CDzż

 (3.17)

Finally, the only force component missing is the gravitational pull that the Earth exerts on the

vehicle, this force (P) is defined on the z-axis only, pointing down (or in the positive direction),

since we are considering a hovering drone:

P =

 0

0

mg

 (3.18)

with m being the total mass of the drone and g the gravity acceleration (g ≈ 9.81 m/s2).

Following the second Newton’s Law (F = m · a), it is now possible to obtain the equation of

motion that governs the translational movement of the quadcopter on the inertial frame:

FG
T = m · Ẍ = P+RB→GT B +FG

D (3.19)

⇔ Ẍ =

0

0

g

− CT

m

 cψcθ cθ sψ −sθ

cψsφ sθ − cφ sψ cψcφ + sφ sθ sψ sφ cθ

cψcφ sθ + sφ sψ cφ sθ sψ − cψsφ cφ cθ

 0

0

∑Ω2
i

+
1
m

 CDx · ẋ
CDy · ẏ
−CDz · ż

 (3.20)

⇔

ẍ

ÿ

z̈

=

0

0

g

− CT

m

−sθ ·∑Ω2
i

sφ cθ ·∑Ω2
i

cφ cθ ·∑Ω2
i

+
1
m

 CDx · ẋ
CDy · ẏ
−CDz · ż

 (3.21)

3.4.3 Rotational Dynamics [1]

As each motor rotates, there is torque produced that affects the movement of the UAV and can

also be used as a way to control it. This torque is generated in the body along the z-axis and it is

responsible for keeping each propeller spinning and, consequently, providing thrust. It also creates

instantaneous angular acceleration and overcomes frictional drag forces. This frictional drag force

can be described with the help of fluid dynamics, giving the following equation:

Ff =
1
2

ρK f Acsv2 (3.22)

where ρ is the surrounding air density, K f is a dimensionless constant, Acs is the area of

the propeller cross-section and v is the vehicle linear velocity. Torque is defined as r ×F and

although it is incorrectly assumed that all the force is applied at the tip of the propeller, it is the

32 Flight Dynamics and System Model

proportionality relation with the angular velocity that is essential to obtain the model:

τ f = R×Ff = R · 1
2

ρK f Acsv2
p = R · 1

2
ρK f Acs(ΩR)2 =C f Ω

2 (3.23)

where R is the radius of the propeller, Ω is the angular velocity of the propeller and C f is a

dimensionless constant that can be determined by static tests. In addition to the torque generated

to overcome the frictional drag of air, the inertia of the propellers also exerts some influence on

the total torque created. This influence is given by the moment of inertia (IM) multiplied by the

angular acceleration of the propeller (Ω̇), or IM · Ω̇, which is then added to the frictional torque.

However, since during hover the velocity of each propeller maintains a relatively constant speed,

its acceleration will approach zero (Ω̇ ≈ 0), so the overall inertial contribution to the total torque

can be considered insignificant.

As previously mentioned in the Subsection 3.1, in a quadcopter, each diagonally-opposing

motor rotates in a specific direction, while the others rotate in the reverse direction so as to nullify

the total torque acting on the body of the UAV while in idle mode. It is possible to then attribute

a number for each motor arbitrarily as a way to identify them and analyze the impact of each one,

in this case, the number assignment is explicit in Figure 3.7.

Figure 3.7: Motor Number Assignment (Top View)

In this way, it is possible to express the torque for each Tait-Bryant angle. Starting with the

yaw, it is observed the thrust has no effect on the yaw torque, since its vector is aligned with

the z-axis, the axis of rotation, however, torque can be achieved by making use of the inherently

produced torque on the propellers. Considering then the positive torque direction as clock-wise,

the yaw torque can be defined by:

τψ =C f ·
[
(Ω1)

2 − (Ω2)
2 +(Ω3)

2 − (Ω4)
2] (3.24)

3.4 Physics 33

For the pitch and roll torques, the approach is different since, in this case, the torque is generated

through the thrust combination of the multiple propellers. Keeping in mind the equation of thrust

derived in Equation 3.15 and the general equation of torque (τ = r×F), the remaining torques are

obtained:

τθ = L ·CT ·
[
(Ω3)

2 +(Ω4)
2 − (Ω1)

2 − (Ω2)
2] (3.25)

τφ = L ·CT ·
[
(Ω1)

2 − (Ω2)
2 − (Ω3)

2 +(Ω4)
2] (3.26)

where L corresponds to the distance from the center of any propeller to the center of the

quadcopter.

As in the thrust, to turn the model more complete without making it too complex, the aerody-

namic friction can also be characterized. Similar to the drag force defined in Equation 3.17, this

aerodynamic friction model can be adjusted through the friction coefficients (Caφ ,Caθ ,Caψ), one

for each Tait-Bryant angle. It is worthy of note, however, that this is still a very simplified model

of what happens in the real world. The torque that arises from the aerodynamic friction results in:

τa =Ca ·

φ̇ 2

θ̇ 2

ψ̇2

=

Caφ 0 0

0 Caθ 0

0 0 Caψ

φ̇ 2

θ̇ 2

ψ̇2

=

Caφ · φ̇ 2

Caθ · θ̇ 2

Caψ · ψ̇2

 (3.27)

Given that the quadcopter used in this thesis is of medium/large proportions, its propellers

have a mass that cannot be neglected. Therefore, these propellers cause gyroscopic effects that

affect the UAV’s motion. The gyroscopic effect corresponds to the tendency of a rotating body to

maintain a steady direction of its axis of rotation.

In the quadcopter case, this phenomenon depends on the propeller’s velocity and only occurs

in movements where the propeller’s axis of rotation is altered, i.e., in changes of pitch and/or roll.

These interactions are described using the following equation:

τg = JrΩr

 q

−p

0

=

 JrΩrq

−JrΩr p

0

 (3.28)

where Jr is the rotational inertia of the propeller and Ωr =
[
(Ω1)

2 − (Ω2)
2 +(Ω3)

2 − (Ω4)
2
]
.

It is interesting to observe that when there is an angular rate-of-change of pitch, the quadcopter

experiences a roll-inducing torque due to the gyroscopic effects of the 4 propellers and vice-versa

[47].

Combining each torque contribution, the total torque on the body of the UAV is obtained:

τ
B = τΘ − τa − τg =

τφ

τθ

τψ

−

Caφ · φ̇ 2

Caθ · θ̇ 2

Caψ · ψ̇2

−

 JrΩrq

−JrΩr p

0

=

τφ −Caφ · φ̇ 2 − JrΩrq

τθ −Caθ · θ̇ 2 + JrΩr p

τψ −Caψ · ψ̇2

 (3.29)

Finally, to derive the rotational equations of motion, Euler’s equation for rigid body dynamics is

34 Flight Dynamics and System Model

used. This equation is expressed in vector form and is written as:

τext = Iω̇
B +ω

B × (Iω
B) (3.30)

where τext is the vector of external torques, I is the inertia matrix and ωB is the angular velocity

vector. Rewriting the equation for the angular acceleration vector:

ω̇
B = I−1(τext −ω

B × (Iω
B)) (3.31)

To utilize this equation, it is first necessary to obtain the inertia matrix I. For any tridimensional

body, the inertia matrix is composed of 9 different coefficients, but for a quadcopter, taking the

assumptions made in Subsection 3.2, more specifically the one regarding the body symmetry of

the drone, the non-diagonal coefficients are eliminated:

Ixy = Ixz = Iyx = Iyz = Izx = Izy = 0 (3.32)

I =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

=

Ixx 0 0

0 Iyy 0

0 0 Izz

 (3.33)

Substituting everything in the Equation 3.31:

ω̇
B =

1

Ixx
0 0

0 1
Iyy

0

0 0 1
Izz

τφ −Caφ · φ̇ 2 − JrΩrq

τθ −Caθ · θ̇ 2 + JrΩr p

τψ −Caψ · ψ̇2

−

p

q

r

×

Ixx · p

Iyy ·q
Izz · r

 (3.34)

⇔ ω̇
B =

1

Ixx
0 0

0 1
Iyy

0

0 0 1
Izz

τφ −Caφ · φ̇ 2 − JrΩrq

τθ −Caθ · θ̇ 2 + JrΩr p

τψ −Caψ · ψ̇2

−

 (Izz − Iyy) · rq
(Ixx − Izz) · pr

(Iyy − Ixx) ·qp

 (3.35)

Note that although for the translational dynamics it is advantageous to express the linear equa-

tions in the inertial frame, for the rotational dynamics the equations are more helpful if defined

in the body frame since the rotation becomes clearer with its center in the CoG of the quadcopter

instead of its center of rotation being in the origin of the ground frame.

3.4 Physics 35

3.4.4 Complete System Model

After deriving the translational and rotational dynamics of the quadcopter, it is now possible to

infer the total system model:

ẍ =−CT
m

[
(sφ sψ − cφ cψsθ) ·∑Ω2

i
]
+ CDx·ẋ

m

ÿ =−CT
m

[
(cφ sψ + cψsφ sθ) ·∑Ω2

i
]
+

CDy·ẏ
m

z̈ = g− CT
m

[
(cψcθ) ·∑Ω2

i
]
− CDz·ż

m

ṗ = 1
Ixx

[
τφ −Caφ · φ̇ 2 − JrΩrq+(Iyy − Izz) · rq

]
q̇ = 1

Iyy

[
τθ −Caθ · θ̇ 2 + JrΩr p+(Izz − Ixx) · pr

]
ṙ = 1

Izz

[
τψ −Caψ · ψ̇2 +(Ixx − Iyy) ·qp

]

with

τφ = L ·CT ·
[
(Ω1)

2 − (Ω2)
2 − (Ω3)

2 +(Ω4)
2
]

τθ = L ·CT ·
[
(Ω3)

2 +(Ω4)
2 − (Ω1)

2 − (Ω2)
2
]

τψ =C f ·
[
(Ω1)

2 − (Ω2)
2 +(Ω3)

2 − (Ω4)
2
]

Ωr =
[
(Ω1)

2 − (Ω2)
2 +(Ω3)

2 − (Ω4)
2
]

(3.36)

36 Flight Dynamics and System Model

Chapter 4

Project Design Components

In this chapter, the main components are divided into two major sections: Hardware and Software.

The technical details and a brief description of each hardware component of the actual UAV plat-

form upon which the simulated quadcopter is based, are provided under Section 4.1. In Section 4.2

the many software tools used during the project are briefly described, along with the justifications

for their selection.

4.1 Hardware

4.1.1 Physical Quadcopter

Quadcopter Frame

The quadcopter frame chosen was the "Holybro S500 V2" (Figure 4.1). This is a relatively large

drone frame (480 mm motor-to-motor) with its arms at a slight inwards angle, which is beneficial

for the application in this research as these characteristics provide, in theory, a more stable flight.

Figure 4.1: Holybro S500 V2 Frame1

37

38 Project Design Components

Brushless DC Motors

As previously mentioned in Section 3.4.1, brushless DC (BLDC) motors are widely used in MAV

vehicles, as they provide many advantages over the brushed type. Within the BLDC motor family,

there are two different types of motors, inrunner and outrunner, where the rotor is located inside

or outside of the stator, respectively. Despite the higher efficiency and speed of an inrunner motor,

the outrunner is preferred for this application since it confers a higher torque and less maintenance

[48].

The motors used in the quadcopter are the AIR2216II BLDC motors, whose specifications are

shown in Table 4.1.

Table 4.1: AIR2216II BLDC motor specifications1

KV Rating 920 KV

Rated Voltage 4S (4.2 V) / 16 V

Idle Current (10 V) 0.8 A

Peak Current (180 s) 17 A

Internal Resistance 115 ± 10 mΩ

Weight (incl. Cables) 64 ± 2 g

Max. Power (180 s) 272 W

Electronic Speed Controllers (ESC)

The Electronic Speed Controller (ESC) is a vital component for any electrically powered multi-

copter as the control is dependent on the ability to individually and precisely control the speed of

each motor.

As the name implies, this device enables motor speed control using PWM signals provided by

the flight controller. It then directs the correct average voltage/current coming from the battery to

achieve the desired speed [48].

In order to select an appropriate ESC for the given motors, the most important specification to

check is the maximum current draw of the motor. Looking at the AIR2216II motor specifications

(Table 4.1), it can be seen that the peak current drawn is 17 A. Considering this, it can be concluded

that 20A ESCs meet the requirements and for this reason, the BLHeli S 20A ESCs were selected.

1Holybro, 2019, S500 V2 Kit. Available from: http://www.holybro.com/product/pixhawk4-s500-v2-kit/ [viewed
29 July 2022]

4.1 Hardware 39

Table 4.2: BLHeli S 20A ESC specifications1

Continuous Current 20 A

Peak Current (10 s) 30 A

Rated Voltage 7.4-14.8 V

Throttle Signal Freq. 50-600 Hz

Weight (incl. Cables) 21 g

Size 26x14x5 mm

Propellers

The propeller choice is another critical step when building a quadcopter, as different propellers

provide different amounts of thrust with a given motor RPM. This thrust is influenced by factors

such as the number of blades, blade diameter, blade pitch, and blade material.

As a good rule of thumb, a propeller that provides more than enough thrust to lift one-quarter

of the UAV’s mass inside the motor’s operating speed range is usually a good choice. However,

depending on the application and constraints, some characteristics can be more valued than others

[48].

For this project, the objective is to maximize thrust and maneuverability without having a big

concern for efficiency, since the quadcopter will not fly for extended periods of time. In this way,

the 10x4.5 inches (254x114 mm) propellers were selected, whose specifications can be seen in

Table 4.3.

Table 4.3: T1045 propeller specifications1

Diameter 10” (260 mm)

Pitch 4.5” (30 mm)

Material Nylon + Fiber Glass

Optimum RPM 6000-7000 RPM

Max. Thrust 1200 g

Weight 17 g

Battery

Nowadays, almost all electrically powered vehicles, multicopters or not, use lithium-polymer bat-

teries since they have a high discharge rate and energy density compared to other types of batter-

ies. These qualities, however, do not come without drawbacks, as this type of battery is extremely

40 Project Design Components

sensitive to overcharges and overdischarges and can easily burst into flames if not handled cor-

rectly. To minimize these risks, battery management systems are usually required, paired with

fire-protection bags around the cells [48].

To choose a suitable battery, the specifications of the motor and ESC’s need to be considered

(Tables 4.1 and 4.2). In this case, the Thunder Power 65C 5000mAh 4S Battery was chosen as

both the motors and ESC’s support it2.

To further confirm if the selected battery is suitable for this quadcopter, it is also possible to

calculate the maximum current draw that the battery is capable of. It is possible to obtain this

value by multiplying the C rating (describes how quickly the current can be delivered) by the

capacity. In this way, for a battery with a 65C rating and 5000 mAh (5 Ah) the maximum current

draw is 65 ∗ 5 = 325 A, which is considerably more current than the quadcopter’s motors draw

(17∗4 = 68 A). The full specifications of the battery can be seen in Table 4.4.

Table 4.4: Thunder Power 4S battery specifications3

Nr of Cells 4

C Rating 65

Capacity 5000 mAh

Voltage Range 14.8-16.8 V

Weight 525 g

4.1.2 Pixhawk 4 Flight Controller

The Pixhawk 4 is a real-time Flight Controller (FC) or Flight Management Unit (FMU) that is

capable of reading multiple embedded or external sensor data, commanding actuators, communi-

cating with the autopilot software, and running all the control logic.

Similar to the PX4-Autopilot (see Section 4.2.1), the Pixhawk 4 is a completely open-source

hardware platform based on the Pixhawk-project FMUv5 design developed by Holybro in collab-

oration with the PX4 team4 to ensure full compatibility with the autopilot software.

This FMU weighs 15.8 g and features 2 MBs of Flash memory and 512 KB of RAM, a step-up

from the previous iteration and more than suitable for the low-level control of the quadcopter. Be-

sides already incorporating high-performance, low-noise IMUs in its construction for stabilization

applications, it also allows for the connection of several external sensors [49].

2Note that the battery could have had a lower capacity, but it was more than suitable and readily available
3EspritTech, 2022, Thunder Power 5000mAh Magna 65C Li-Poly Battery Packs. Available from:

https://www.espritmodel.com/thunder-power-5000mah-magna-65c-li-poly-battery-packs.aspx [viewed 17 July 2022]
4Dronecode Foundation, 2022, PX4 User Guide. Available from: https://docs.px4.io [viewed 30 July 2022]

4.1 Hardware 41

Figure 4.2: Pixhawk 4 Flight Controller4

4.1.3 Raspberry Pi 4 - Companion Computer

The Raspberry Pi 4 (Figure 4.3) is a low-cost, small-sized, but powerful computer module capable

of running the Linux operating system while also providing a plethora of interfacing ports, such as

Serial, USB, and GPIO, allowing for the control of external electronic components5. This platform

also features Wi-Fi and Bluetooth connectivity out-of-the-box, providing a way of accessing the

PX4-Autopilot parameters and programs without having to physically connect the FC to a GCS

computer.

In the context of this thesis, the Raspberry Pi is utilized as a companion computer, communi-

cating with the PX4-Autopilot running on the Pixhawk FC through the MAVLink protocol.

Figure 4.3: Raspberry Pi 45

A companion computer is particularly important in this case, as it will be responsible for the

camera interface and all image processing used to control the quadcopter. It is for this reason

that the PX4-Autopilot will be running in "OFFBOARD" mode, which essentially means that

5Raspberry Pi, 2022, Raspberry Pi 4. Available from: https://www.raspberrypi.com/products/raspberry-pi-4-
model-b/ [viewed 30 July 2022]

42 Project Design Components

an offboard device, in this case the Raspberry Pi, will control the movements of the quadcopter

through a high-level interface. At the same time, the Pixhawk FC translates those controls to

low-level commands for the UAV4.

The Raspberry Pi 4 computer used in this project is the 2 GB version, which weighs 46 g and

is powerful enough to run all image-processing and ROS algorithms developed.

4.1.4 Camera

To detect the visual marker during the descent a camera had to be employed in the system. The

camera chosen for this task was the Pixycam as it is very easily integrated with the Raspberry Pi

4. This camera also provides an embedded processing unit capable of detecting multiple objects at

a rate of 50 Hz without putting the load of image processing on the computer or micro-controller.

However, since it uses a color-based filter and it has no ArUco detection system built in, only the

raw image will be taken from the camera’s sensor and no processing algorithms will be done by

the Pixycam.

Table 4.5: Pixycam specifications6

Resolution 1280x800

Frame Rate 50 Hz

Viewing Angle 47º

Voltage Range 6-10 V

Weight 27 g

Camera Parameters

The pose estimation of the ArUco marker is only possible if the intrinsic and extrinsic camera pa-

rameters are known. These parameters make up the camera matrix, which allows for the projection

of 3D points in space onto the camera sensor.

In mathematical terms, the camera matrix is given by C = K
[
R t

]
, where K includes the

intrinsic parameters and matrix
[
R t

]
includes the extrinsic parameters of the camera.

• Extrinsic Camera Parameters
The extrinsic camera parameters represent the location and orientation of the camera refer-

ence frame with respect to a known reference frame. In this way, they are represented by a

rotation matrix R and translation vector t, resulting in the
[
R t

]
matrix:

6Conrad, 2022, Pixycam. Available from: https://www.conrad.com/p/pixy-pixy-cam-cmos-colour-camera-unit-
compatible-with-development-kits-raspberry-pi-1364834 [viewed 8 August 2022]

4.1 Hardware 43

[
R t

]
=

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 (4.1)

• Intrinsic Camera Parameters
The intrinsic camera parameters map the image plane coordinates into pixel coordinates.

These parameters are represented by a 3x3 upper right triangular matrix K:

K =

 fx 0 cx

0 fy cy

0 0 1

 (4.2)

where fx and fy are the focal lengths in pixels the x and y axis, respectively, and (cx, cy) is

the principal point represented by (ox, oy) in Figure 4.4.

Another way to explain the effect of the intrinsic parameters on a given image plane point is

that the coordinates are first scaled by the focal length and then translated by the principal

point, resulting in the pixel coordinates of the image plane point [50].

Figure 4.4: The correlation between the Camera Frame and the Image Plane Frame7

By combining both intrinsic and extrinsic camera parameters, the final form of matrix C is

derived:

C =

 fx 0 cx

0 fy cy

0 0 1

r11 r12 r13 t1

r21 r22 r23 t2
r31 r32 r33 t3

 (4.3)

Another important aspect of calibration that can also be considered as part of the intrinsic

parameters of a camera is lens distortion. This phenomenon is not considered in the camera matrix,
7University of Nevada, 2004, Geometric Camera Parameters. Available from: https://www.cse.unr.edu/ be-

bis/CS791E/Notes/CameraParameters.pdf [viewed 8 August 2022]

44 Project Design Components

but it is present in virtually every camera. The two types of distortion that should be accounted for

are radial and tangential distortion, the first caused by the curvature of the lens (see Figure 4.5)

and the second by a nonalignment between the lens and camera sensor (see Figure 4.6).

Figure 4.5: Types of Radial Distortion (Source: [4])

Figure 4.6: Tangential Distortion (Source: [4])

A distorted image point can be corrected to its true position using the following formulas [4]:

xcorr = xdist · (1+ k1 · r2 + k2 · r4 + k3 · r6)+ [2t1 · xdist · ydist + t2 · (r2 +2xdist
2)] (4.4)

ycorr = ydist · (1+ k1 · r2 + k2 · r4 + k3 · r6)+ [2t2 · xdist · ydist + t1 · (r2 +2ydist
2)] (4.5)

where (xcorr, ycorr) is the corrected point position, (xdist , ydist) is the distorted point position,

r2 is equal to xdist
2 + ydist

2, k1, k2 and k3 are the radial distortion coefficients and t1, t2 are the

tangential distortion coefficients.

Camera Calibration

To estimate the intrinsic parameters of a camera lens and image sensor, a calibration process needs

to be performed. This process requires a set of 3D to 2D correspondences, often achieved with

4.1 Hardware 45

a square chessboard pattern like the one shown in Figure 4.7. Assuming every dimension of

the individual chessboard squares is known, by orientating the pattern in different positions and

taking multiple pictures from the camera, the parameters can be easily extracted from the images

using the OpenCV library. This was the method used to estimate the intrinsic parameters from the

Pixycam, specifically the matrix K and the distortion coefficients.

Figure 4.7: Chessboard pattern used for the camera calibration process

It is worthy of note that, although the distortion coefficients remain the same regardless of the

image resolution or zoom, this fact does not hold for the K matrix, and in the case that one of these

properties is changed, the calibration process needs to be performed under the new conditions.

Pixycam Intrinsic Parameters

After the calibration process of the Pixycam camera ended, the intrinsic parameters extracted were:

K =

1.13073839 ·103 0 5.91538464 ·102

0 1.12925311 ·103 2.61682681 ·102

0 0 1

 (4.6)

[
k1 k2 k3 t1 t2

]
=
[
0.04629369 −0.25189776 −0.02133036 −0.02179552 0.42514044

]
(4.7)

4.1.5 Assembled Quadcopter

Having the fully assembled quadcopter (see Figure 4.8), the next step would be to find its total

mass and moment of inertia as these values will be useful to model the physical properties of the

UAV in the simulation environment.

The total mass of the system can be easily obtained by weighing the fully assembled quad-

copter and amounts to 1378.8 g.

46 Project Design Components

Figure 4.8: Fully Assembled Quadcopter

On the other hand, the moments of inertia of the vehicle are more difficult to acquire since

the structure of the quadcopter is very complex. Despite this, some simplifications can be done to

calculate the needed values. Assuming the quadcopter to be a rigid and symmetric structure with

a dense spherical center with mass Msphere (all the electronics, battery, and frame mass resides

here) and radius r, and points of mass Mrotor (mass of motors) located at a distance of l from the

center of the sphere (see a model in Figure 4.9), the moments of inertia can be calculated using

the following equations [51]:

Ixx =
2
5
·Msphere · r2 +2 · l2 ·Mrotor

Iyy =
2
5
·Msphere · r2 +2 · l2 ·Mrotor

Izz =
2
5
·Msphere · r2 +4 · l2 ·Mrotor

(4.8)

For this quadcopter, Mrotor = 0.065 kg, Msphere = 1378.8 g−4 ·65 g = 1.1188 kg, r = 0.115 m

and l = 0.240 m, the moments of inertia result in Ixx = Iyy = 0.0134 kg m2 and Izz = 0.0209 kg m2.

4.2 Software

4.2.1 PX4-Autopilot

In 2009, Lorenz Meier established PX4, an open-source community-based autopilot platform,

with the original intent of controlling an UAV using computer vision. It was first referred to as the

"ETH Pixhawk project," but the name was later changed in 2011 to PX4 after the autopilot and

hardware were rethought and perfected8.

8Auterion, 2022, "The story of PX4 and Pixhawk". Available from: https://auterion.com/company/the-history-of-
pixhawk/ [viewed 20 July 2022]

4.2 Software 47

Figure 4.9: Simplified mass model of the quadcopter (Source: [51])

Nowadays, PX4 has become one of the most utilized autopilot platforms, attracting many

private companies due to the software being under the BSD 3-Clause License9. This permissive

open-source license allows for a company to use any part of the software and modify it without

being obligated to release these modifications to the public. By contrast, many other prominent

open-source autopilot frameworks, such as ArduPilot and Paparazzi, are regulated under GNU

GPL (General Public License) license which requires that all projects containing its software to

also be open-source. Furthermore, besides its commercial flexibility, PX4 is also widely used in

amateur and research contexts due to its vast documentation and continuous community support.

PX4 Firmware features the support of a variety of vehicle controllers, sensors, and vehicle

frames, not limited to UAVs as this platform can also be applied in the control of ground and

underwater vehicles10.

Although being at the core of the Dronecode Foundation ecosystem, this software is just part

of a broader platform that includes the QGroundControl ground station, MAVSDK (API to the

MAVLink Protocol), and the Pixhawk hardware10.

The PX4-Autopilot was chosen for the development of the control software of this project

since it provides the possibility of building programs for the UAV using either C/C++ or Python

and has out-of-the-box integration with ROS through the MAVROS library while also being regu-

lated under a more liberal license.

PX4 Architecture

The PX4-Autopilot is divided into two clear layers: the Flight Stack and the Middleware 10.

9Open Source Initiative, 2022, "The 3-Clause BSD License". Available from:
https://opensource.org/licenses/BSD-3-Clause [viewed 20 July 2022]

10Dronecode Foundation, 2022, PX4 User Guide. Available from: https://docs.px4.io [viewed 20 July 2022]

48 Project Design Components

The Flight Stack is responsible for the estimation and control of a UAV. It receives all input

data and, through sensor fusion algorithms like the Extended Kalman Filter, estimates the position

and attitude of the vehicle using IMU (Inertial Measuring Unit) and GPS (Global Positioning

System) measurements. With this data and a predefined setpoint, it then uses attitude and position

controllers, implemented using a combination of linear cascade controllers [52], in order to obtain

an attitude and thrust value as outputs. After this process, these values are sent through a mixer,

which translates them into individual motor commands, considering the physical hardware’s limits

and vehicle type. An overview of the complete flight stack can be seen in Figure 4.10.

Figure 4.10: PX4 Flight Stack Diagram10

The Middleware layer encompasses all drivers that enable the autopilot firmware to communi-

cate with the embedded sensors (GPS, IMU, External Magnetometer, etc.) and the external world

(GCS, companion computer, etc.). To do this PX4 uses an API named uORB, which adopts an

asynchronous publisher/subscriber model working in a similar way to the ROS communication

method. Most importantly, this layer allows for the flight code developed to be run to control a

computer-modeled vehicle in a simulation setting10.

MAVROS

MAVROS is a very complete ROS package that utilizes the MAVLink (Micro Aerial Vehicle Link)

communication protocol [53] and integrates it with the ROS architecture (see Section 4.2.2), in

order to send and receive messages from a MAVLink-enabled flight controller through ROS nodes.

The MAVLink protocol enables communication through UDP, TCP, or serial connection with the

flight control unit.

The various communication means on which MAVLink can operate are incredibly convenient

for UAV development. This flexibility allows for a near-seamless transition from SITL (Software-

In-The-Loop) simulation tests to HITL (Hardware-In-The-Loop), where both hardware and soft-

ware are tested [54].

QGroundControl

QGroundControl is a multi-platform application that serves as a GCS (Ground Control Station)

and enables full flight control and mission planning to any MAVLink compatible UAV. Although

4.2 Software 49

part of the Dronecode Foundation, its use is not limited to the PX4 since it can also function with

any autopilot that uses MAVLink, such as ArduPilot.

This application can be used to flash the autopilot onto the flight control hardware. It also

provides a user-friendly GUI (see Figure 4.11), displaying real-time data and telemetry of the

UAV, but also allowing the modification of internal parameters of the firmware10.

Figure 4.11: QGroundControl User Interface

4.2.2 Robotic Operating System (ROS)

The Robotic Operating System, more commonly named ROS, is a collection of open-source li-

braries and tools initially created in 2007 by the Open Source Robotics Foundation to simplify and

increase the speed of software development for robot platforms.

Developing a new robotics project from scratch requires considerable time and expertise in

various areas, such as trajectory planning, sensor fusion, autonomous navigation, and many others,

depending on the application. In the ROS framework, however, software libraries and packages

cover most of these tasks, even allowing any user to modify them to suit a specific need11.

On the other hand, ROS still has its limitations, one being that it does not operate in real-time,

although it is possible to integrate it with real-time code. To solve some of these problems, with

an emphasis on native real-time integration, multi-robot cooperation, and proper adaptation for

non-ideal networks, the Open Source Robotics Foundation released a new and improved version

of ROS in 2017, entitled ROS2. At the time of this thesis, ROS2 is in its adoption phase, with

11Open Source Robotics Foundation, 2021, "Why ROS?". Available from: https://www.ros.org/blog/why-ros/
[viewed 18 July 2022]

50 Project Design Components

more and more developers migrating to it. Nevertheless, ROS1 or just ROS still remains prevalent

due to a larger amount of packages and documentation available compared to ROS2.

ROS Components

A project built with ROS incorporates several different processes, occasionally running on mul-

tiple different hosts under a peer-to-peer topology. The core concepts of the ROS framework are

packages, nodes, messages, topics, services, and actions. Packages are the backbone of ROS, as

they facilitate not only organization but also collaborative development and shareability of soft-

ware. The definition of package is somewhat ambiguous as its purpose and structure depend

entirely on the developer’s needs. Nonetheless, a package is a directory that contains an XML file

describing it and where any dependencies used by the source code are declared [55].

This framework is highly modular, in part from the package structure but also by allowing

to segment computation tasks into multiple concurrent processes. In the context of ROS, these

processes are named nodes.

To interchange information, nodes employ the use of messages. A ROS message contains

strong-typed data structures and allows for nesting, further increasing the modularity of this archi-

tecture.

Topics work as a channel between two or more nodes. This function is achieved with the

use of the Publisher/Subscriber model (see Figure 4.12). In this way, if node A needs to send a

message to node B, it will first publish the given message in a topic that node B is subscribed to.

The main advantage of this model is that it allows for multiple subscriber nodes to have access to

the same data at the same time from one or multiple publisher nodes [56].

Figure 4.12: ROS Publisher/Subscriber model example (Source: [56])

While the "topic-based" Publisher/Subscriber model allows for greater communication flexi-

bility, its broadcast nature makes it unfit for synchronous transmissions [55]. This is the main rea-

son for the conception of the ROS service, which is based on a client/server synchronous model,

i.e., when a service is called, the program waits until it returns a result.

By contrast, despite also following a client/server model, a ROS action is asynchronous, which

in practical terms is equivalent as launching a new thread. This way, when an action is called, it

4.2 Software 51

can run in the background while the main program performs other tasks and returns a result after

reaching its goal.

4.2.3 Gazebo Simulator

“Simulation software represents a simple and more economical alternative to validate complex

systems, platforms or prototypes.” [57]

UAVs have intricate dynamics and are often built using expensive materials and sensors. In

this way, the development of new technologies and control algorithms for these platforms in a real

setting can quickly increase the cost of a project or even delay it. In addition, while prototyping,

the needs of a project tend to vary along its evolution, which can also be detrimental to its progress

when the resources needed are not readily available. This is why tools like 3D simulation software

are so valuable since they offer a low-risk, low-cost, and faster development environment, which

in turn avoids accidents and potential mistakes. 3D simulation can be advantageous not only for

UAV development but also for other industries, such as automotive, civil, biomedical, robotics,

and much more [57].

Gazebo is an open-source 3D robotic simulator created by the company Open Robotics that can

accurately and efficiently simulate robot systems in both indoor and outdoor contexts. Although

comparable to a game engine, this platform offers a considerably greater level of physics fidelity,

with a collection of sensors and interfaces for users and programs12. On this last feature, it is

worthy of note its complete integration with ROS (refer to Section 4.2.2) developed by the same

company, which according to the research done in [57] attracts a lot of robotics research to both

software. With the open-source nature of Gazebo and its wide use, the documentation available is

extensive, making it adaptable for most projects.

As well as allowing for development in multiple programming languages such as C/C++,

Python and Ruby, Gazebo also offers access to a variety of high-performance engines, including

Open Dynamics Engine (ODE), Bullet, Simbody, and DART and an extensive library of models,

environments and sensors12.

URDF and SDF Models

The Unified Robotic Description Format (URDF) comprises one or multiple XML files used to

describe a robot’s kinematic and dynamic properties so that ROS can interpret it. This format only

specifies the robot mechanics and does not natively support the model’s description in a simulation

environment like Gazebo13.

In contrast, despite the Simulation Description Format (SDF) being also composed of XML

files and having a structure similar to URDF, it is able to define not only the kinematics and

dynamic properties of a robot but also the whole simulation environment it is inserted in. Another

12Open Source Robotics Foundation, 2014, Gazebo Documentation. Available from: https://classic.gazebosim.org
[viewed 17 July 2022]

13Open Source Robotics Foundation, 2013, ROS URDF Documentation. Available from: http://wiki.ros.org/urdf
[viewed 17 July 2022]

52 Project Design Components

Figure 4.13: Gazebo/ROS interface overview12

advantage of SDF over URDF is that not only robots can be specified but also other environmental

elements, such as lights, heightmaps, etc14. Since SDF was explicitly created for use with ROS

and Gazebo, it is preferable when working with the simulation software and was therefore chosen

for this project.

As previously mentioned, both URDF and SDF are highly similar in structure (where they

overlap), with the main elements of the robot description being the Links and Joints. The link

element specifies a rigid body with inertial, visual, and collision features, while the joint element

describes the kinematics, dynamics, and limits of a joint composed of two links.

Gazebo-ROS Plugins

In order to allow for the interaction between URDF/SDF models and the Gazebo simulator, as

well as tie in ROS functionalities such as sensor output or motor input to said models, Gazebo

plugins become indispensable tools for any ROS simulation project.

As a means to speed up and facilitate development, Gazebo comes with a wide range of ready-

to-use plugins or even pre-built models that include all the needed plugins.

14Open Source Robotics Foundation, 2020, SDFormat Specification. Available from: http://sdformat.org/spec
[viewed 17 July 2022]

4.2 Software 53

The simulator supports many types of plugins15, and all of them can be linked to ROS. Despite

this, only a handful of these types are available to be referenced in a model’s URDF/SDF file:

• ModelPlugins Plugins that allows the manipulation of a model’s kinematic or physical prop-

erties during runtime. These include, for example, a plugin that calculates the thrust of a

propeller and applies this force on a simulated UAV.

• SensorPlugins Plugins that present a way of simulating the behavior of a given sensor. An

example would be a plugin that emulates a camera or LIDAR sensor.

• VisualPlugins Plugins that may alter visual elements of the simulation. These types of plu-

gins are the less used out of the three. However, they are especially useful when simulating

vision-based systems, as they provide a way of validating a platform’s reaction to a specific

visual stimulus.

4.2.4 ArUco Library [2][3]

Originally created and developed by Aplicaciones de la Visión Artificial (AVA) from the Univer-

sity of Córdoba, the ArUco library is an open-source library built on top of the OpenCV library,

and it is designed for the detection of square fiducial markers like the ones show on Figure 4.14.

After calibrating the camera, these markers allow for the pose estimation of the camera, which is

particularly useful in vision-based object tracking.

Many types of markers were developed over the years, each belonging to a different dictionary.

The different dictionaries mainly vary in the bit capacity of their markers and, depending on that,

provide a larger or smaller number of unique tags. A dictionary also defines a set of rules used to

calculate the marker identifier, validate it and apply error correction.

Figure 4.14: ArUco marker example (Id=4) from the Original ArUco Dictionary

The ArUco Marker

To understand how the ArUco library functions, it is important to understand what makes the

ArUco markers suitable for camera pose estimation and vision-based systems.

15Open Source Robotics Foundation, 2014, Gazebo plugins in ROS. Available from:
https://classic.gazebosim.org/tutorials?tut=ros_gzplugins [viewed 17 July 2022]

54 Project Design Components

An ArUco marker is composed of an external black border and an inner region where the bi-

nary pattern is encoded. It is this binary pattern that allows for the generation of unique markers.

Generally speaking, the more bits in a dictionary, the smaller the possibility of misidentification.

However, more bits can also be disadvantageous in situations where the camera resolution is lim-

ited.

Note that, although the white border usually seen around the marker is technically not part of

the marker, its existence is crucial for the detection algorithm. So, a white border of at least two

squares of width must be added for proper detection.

Marker Detection Process

• Image Segmentation and Contour Extraction

The process of image segmentation aims to produce a simplified representation of an image

to facilitate its posterior analysis and/or to extract desired features. In other words, image

segmentation is the method used to label each pixel in an image, such that pixels that share

the same label have common properties.

In the ArUco marker detection algorithm, each image frame received from the camera is

pre-processed by turning it into grayscale and applying a small amount of gaussian blur

(which helps with contour extraction). After the pre-processing, the image is segmented

using a method entitled Adaptive Mean Thresholding (Figure 4.15b). To be more precise,

this method divides an image into smaller subimages whose size can be altered according to

the needs. Then a mean intensity value mi of the pixels inside each subimage is calculated (i

represents the subimage id). If the intensity value of a pixel inside the subregion i is below

(mi − c) then the pixel is set to 1; otherwise, it is set to 0, where c is a constant value.

The next step consists in finding the image’s contours using the resulting segmentation from

the previous step. However, after this process, it is possible that contours of irrelevant el-

ements are detected along with the borders of real markers (Figure 4.15c). To combat this

issue, a filtering process is carried out, with the most critical step being the polygonal ap-

proximation of the contours. More specifically, only the polygons with exactly four corners

are kept since the markers to be detected are square-shaped (Figure 4.15d). Finally, a final

filtering process removes square-shaped contours that can be detected inside the marker it-

self. This segmentation and contour extraction process then return all possible candidates

for a real marker, and the next step (Marker Decoding) ensues.

• Marker Decoding

After detecting all possible candidates to be an ArUco marker, the decoding phase begins

to determine if the candidate is rejected and, if not, to retrieve the identification number of

said candidate marker accurately.

In Figure 4.16 the process of finding the signature matrix of the marker can be seen. As an

example, the Figure 4.16a represents a marker candidate obtained from the camera image.

4.2 Software 55

(a) (b)

(c) (d) (e)

Figure 4.15: Example of image segmentation and contour extraction steps (Source: [2])

The first step would be to remove the camera projection perspective using image transfor-

mations to obtain a frontal view of the rectangle figure (Figure 4.15e). In addition, another

thresholding operation is performed on the resulting image, this time using the Otsu method.

After that, a possible marker candidate can finally go through the decoding process. As a

means of exemplification, Figure 4.16b is a potential marker candidate that has been through

all previous operations. As the external black border is not needed for the decoding process,

the first step is to remove it and divide the remaining picture into 25 equal squares since the

dictionary used in this example is the Original ArUco, and its markers are 5x5. Note that

for a successful detection, the dictionary of the markers to detect has to be known. This is

crucial because, as it was said previously, the ArUco dictionary contains all the rules for

marker identification.

With the picture divided into 25 equal parts, it is now possible to obtain the marker’s sig-

nature matrix (see Figure 4.16c), with a black square representing a 0 bit and a white one

representing a 1 bit. Since, in this example, the Original ArUco dictionary was used, it is

known that the identification marker is encoded using only the second and fourth columns

of the matrix, as the rest of the columns store error correction and parity bits. Reading the

binary number from left to right provided by these two columns in Figure 4.16c, a binary

number appears: 0010010001, which converted to decimal results in the number 145. It is

then possible to conclude that the marker candidate captured by the camera is indeed valid

and has the identification number of 145. As a simplification the example marker was shown

in its correct orientation, but in a real setting this might not be the case, so the signature ma-

trix is rotated 4 times to check for a valid marker. This is also the reason that explains the

56 Project Design Components

need for non-symmetrical ArUco markers.

(a) ArUco Marker (Id=145)
from the Original ArUco Dic-
tionary

(b) Marker without black border
and divided into different cells

(c) Signature matrix of the
marker

Figure 4.16: Example of decoding process of one of the markers from the Original ArUco library

• Marker Pose Estimation

Besides identifying ArUco markers in an image or video, this library can also estimate the

pose of a given marker in relation to the camera frame. This process is achieved through

the use of the function estimatePoseSingleMarkers(), which, based on each corner position

of the detected marker, the marker size, and the camera intrinsic parameters returns the

translation and rotation vectors of said marker.

As previously said, the ArUco library is able to provide the pose of a marker in relation to

the camera. With this information, it is then possible to apply the desired transformations

to obtain the camera’s pose or even the marker’s pose in relation to the reference frame, as

will be explained further in the implementation chapter.

Chapter 5

Implementation

In this chapter, the development of the simulation environment and control algorithms is addressed,

as well as the overall architecture of the implemented system. In Section 5.1, the process of devel-

oping a simulation environment that represents the physical platform shown in 4.1 is presented.

Then an overview of the system architecture is given in Section 5.2, including the implementation

using the ROS framework. Finally, a more in-depth view of the fiducial marker tracking process

and control software is introduced in Sections 5.3 and 5.4, respectively.

5.1 Simulation Environment

In order to properly test the control algorithms developed before applying them in a real quad-

copter, a simulation environment was created in Gazebo (see Subsection 4.2.3), which tries to

approximate the behavior of a real system, complete with simulated sensors and physics.

Although, in a perfect scenario, the simulated quadcopter performance would correspond to

the real one, that is not what usually happens, especially with vehicles with complex mechanics

and aerodynamic interactions like the quadcopter. It is then necessary to have extra caution when

switching to a real test case, even after several successful simulation attempts.

5.1.1 Quadcopter SDF Model

To develop a simulation model of the real quadcopter discussed in the previous chapter (see Section

4.1) an adapted SDF file of the 3DR Iris quadcopter1 (default PX4 quadcopter for Gazebo) was

created. The main modifications of the original file were performed on the frame model (adapted

from the S500 model2 designed by user Velimir of the GrabCAD community), physical properties,

the motors’ performance, and the addition of a simulated camera link.

As seen earlier (Subsection 4.2.3), SDF models have a hierarchical structure, mainly composed

of Links and Joints. In this quadcopter SDF model, there exists a "Base Link" to where the motor

1Credit goes to Fadri Furrer, Michael Burri, Mina Kamel, Janosch Nikolic, Markus Achtelik and John Hsu, creators
and maintainers of the 3DR Iris quadcopter model.

2Velimir, 2020, S500 Frame CAD model. Available from: https://grabcad.com/library/s500-frame-1 [viewed 31
July 2022]

57

58 Implementation

Figure 5.1: Gazebo Quadcopter Model

links and sensors are attached. Each link contains a plugin that allows the Gazebo simulator to

interact with the given model. Besides the motors and sensors’ plugins, there are also more general

plugins affecting the whole system and not a specific link, e.g. the MAVLink interface plugin. A

more detailed overview of the model’s structure can be seen in Figure 5.2.

Figure 5.2: Gazebo Quadcopter SDF Model Hierarchy

5.1 Simulation Environment 59

Inertial Properties

After having already derived the total mass and moments of inertia in Section 4.1, the values can

be inputted on the SDF file under the base link and inertial configuration as shown in the following

XML excerpt:

basicstylebasicstyle basicstyle<?xml version="1.0" encoding="utf−8"?>

basicstylebasicstyle basicstyle<sdf version=’1.6’>

basicstylebasicstyle basicstyle<model name=’s500_v2’>

basicstylebasicstyle basicstyle...

basicstylebasicstyle basicstyle<link name=’base_link’>

basicstylebasicstyle basicstyle...

basicstylebasicstyle basicstyle<inertial>

basicstylebasicstyle basicstyle<pose>0 0 0 0 0 0</pose>

basicstylebasicstyle basicstyle<mass>1.3788</mass>

basicstylebasicstyle basicstyle<inertia>

basicstylebasicstyle basicstyle<ixx>0.0134</ixx>

basicstylebasicstyle basicstyle<ixy>0</ixy>

basicstylebasicstyle basicstyle<ixz>0</ixz>

basicstylebasicstyle basicstyle<iyy>0.0134</iyy>

basicstylebasicstyle basicstyle<iyz>0</iyz>

basicstylebasicstyle basicstyle<izz>0.0209</izz>

basicstylebasicstyle basicstyle</inertia>

basicstylebasicstyle basicstyle</inertial>

basicstylebasicstyle basicstyle...

basicstylebasicstyle basicstyle</link>

basicstylebasicstyle basicstyle...

basicstylebasicstyle basicstyle</model>

basicstylebasicstyle basicstyle</sdf>

Motors

The Gazebo Simulator uses the Motor Model Plugin to model the propeller and motor dynamics.

This plugin is defined in the gazebo_motor_model.cpp file3 from the PX4-Autopilot software

and allows to configure multiple parameters, in order to obtain a motor and propeller performance

as close to the real ones as possible. The first problem encountered was that the documentation for

this plugin was practically non-existent, with the authors only providing one research paper [58]

as a means of reference for some physics equations. This meant that some properties’ functions

3Available on the main PX4 repository: https://github.com/PX4/PX4-SITL_gazebo [viewed 31 July 2022]

60 Implementation

needed to be deciphered from the plugin definition file, for which the notes of Matthew Vernacchia,

MIT4 became instrumental.

The properties defined in the plugin that seem to directly affect the behavior of the simulated

rotor are listed below:

• Turning Direction - Can be either clockwise or counter-clockwise;

• Time Constant Up - Describes the acceleration time constant of the motor (to be used in a

first-order filter);

• Time Constant Down - Describes the deceleration time constant of the motor (to be used in

a first-order filter);

• Maximum Rotation Velocity - Maximum rotation velocity the motor-propeller system can

achieve in rad/s;

• Motor Constant - Constant used in the applied force calculation;

• Moment Constant - Constant used in the applied torque calculation;

• Rotor Drag Coefficient - Constant used in the air drag force calculation;

• Rolling Moment Coefficient - Constant used in the rolling moment calculation.

Before delving into the plugin’s source code, to understand how some of these parameters were

calculated it is necessary to grasp a few concepts from propeller theory (for a deeper analysis, refer

to [59]).

In order to simulate the forces and moments applied on a quadcopter, the relation of thrust

and torque with the rotation rate of the propeller needs to be known so that the simulator can

predict its effects. To accomplish this, four dimensionless parameters are used: the advance ratio

λ , thrust coefficient CT , torque coefficient CQ, and power coefficient CP that can be obtained by

the following equations [60]:

λ =
v

n ·D
(5.1)

CT =
T

ρ ·n2 ·D4 (5.2)

CQ =
Q

ρ ·n2 ·D5 (5.3)

CP =
P

ρ ·n3 ·D5 (5.4)

4Matthew Vernacchia, 2019, Gazebo Motor & Propeller Model Notes. Available from:
https://github.com/mvernacc/gazebo_motor_model_docs/blob/master/notes.pdf [viewed 31 July 2022]

5.1 Simulation Environment 61

Where v is the translation air speed of the propeller along its rotation axis (units: m/s), n is the

rotation rate of the propeller (units: rot/s), D is the diameter of the propeller (units: m), T is thrust

force (units: N), ρ is the air density (units: kg m−3), Q is the generated torque (units: N m), and P

is the power required to drive the propeller (units: W).

These coefficients mainly depend on the advance ratio λ and the propeller’s design [59].

Therefore, to estimate the thrust and torque it is first necessary to look up the CT (λ) and CQ(λ)

for the propeller and then use:

T =CT (λ) ·ρ ·n2 ·D4 (5.5)

Q =CQ(λ) ·ρ ·n2 ·D5 (5.6)

It is also possible to relate the power and torque coefficients for all propellers, since P =

Q ·ω = Q · (2π ·n). Substituting it in equation 5.3:

CQ =
Q

ρ ·n2 ·D5

(n
n

)
=

P
2π ·ρ ·n3 ·D5 =

CP

2π
(5.7)

As Matthew Vernacchia points out5, it is important to note that this model was developed for

fixed-wing aircraft, which assumes that the air velocity is parallel with the rotation axis of the

propeller. However, in quadcopters, a significant perpendicular component of the air velocity is

also present. This force, perpendicular to the thrust, is commonly named H-Force and several

models attempt to predict it.

Finally, in the source code (gazebo_motor_model.cpp file6), it is possible to see how the

thrust force is calculated in the PX4 Gazebo SITL motor/propeller model that uses a different

notation than of that which has been applied in the previous model. On line 201, it reads:

force = real_motor_velocity * real_motor_velocity *

motor_constant_;

The variable real_motor_velocity represents the propeller’s angular speed ω in rad/s.

In this way, this code formula converted to the standard model notation results in:

T = ω
2 · (motor_constant_) = (2π ·n) · (motor_constant_) (5.8)

Combining this equation with the one shown in 5.5, the formula for the simulator variable

motor_constant_ is reached:

motor_constant_=
CT (0) ·ρ ·D4

(2π)2 (5.9)

5Matthew Vernacchia, 2019, Gazebo Motor & Propeller Model Notes. Available from:
https://github.com/mvernacc/gazebo_motor_model_docs/blob/master/notes.pdf [viewed 31 July 2022]

6Available on the main PX4 repository: https://github.com/PX4/PX4-SITL_gazebo [viewed 31 July 2022]

62 Implementation

As it can be noted, the thrust coefficient to be inserted in the equation should be the one

measured when the advance ratio is zero (air velocity is null). This is commonly referred to as the

static thrust coefficient.

To compensate for the decreasing thrust at high air velocities, the plugin scales the force using

a very simple scaling parameter clamped to the [0,1] range. Although capturing the general trend

of decreasing thrust, this model is far from an accurate implementation as even the authors of the

plugin commented on the source code that a better model had to be put in place.

This code snippet was retrieved (and adapted for readability) from line 221 (vel represents

the air velocity parallel to the axis of rotation of the propeller):

scalar = 1 - vel / 25.0; // at 25 m/s the rotor will not produce

any force anymore

scalar = clamp(scalar, 0.0, 1.0);

// Apply a force to the link.

link->ApplyRelativeForce(Vector3D(0, 0, force * scalar));

The previously mentioned H-force due to the perpendicular air velocity is also modeled in the

motor plugin, using a formula taken from [58]:

H =−ω ·λ1 · v⊥ (5.10)

where H is the H-Force (units: N), ω is the angular speed of the propeller (units: rad/s), v⊥ is

the perpendicular air velocity (units: m/s) and λ1 is the rotor drag coefficient parameter that should

have units of kilograms. Translated to code, this is what was devised (adapted for readability from

line 231):

air_drag = -abs(real_motor_velocity) * rotor_drag_coefficient_ *

velocity_perpendicular_to_rotor_axis;

There is, however, no way of knowing how to obtain the value of the rotor_drag_coefficient_

parameter, as this nomenclature is not standardized and in [58], λ1 is just referred to as a "positive

constant".

Continuing scouring the source code of the Gazebo motor plugin, it is found that the moment

constant parameter is used to compute the rotor torque magnitude (adapted from line 243):

Vector3D drag_torque(0, 0, -turning_direction_ * force *

moment_constant_);

Ignoring the turning_direction_ variable that only changes the signal of the torque

value, the following equation is derived:

moment_constant_=
Q
T

(5.11)

Substituting with equations 5.5 and 5.6:

5.1 Simulation Environment 63

moment_constant_=
CQ(0) ·ρ ·n2 ·D5

CT (0) ·ρ ·n2 ·D4 =
CQ(0)
CT (0)

D (5.12)

Once more, both thrust and torque coefficients are measured at zero advance ratio, or static

conditions.

The rolling moment coefficient parameter is derived from the same paper [58] as the rotor drag

coefficient, resulting in the following formula:

Mroll =−ω ·µ1 · v⊥ (5.13)

where Mroll is the rolling moment (units: Nm), ω is the angular speed of the propeller (units:

rad/s), v⊥ is the perpendicular air velocity (units: m/s) and µ1 is the rolling moment coefficient

parameter that should have units of kg m. In code, this is what was devised by the plugin authors

(adapted for readability from line 250):

rolling_moment = -abs(real_motor_velocity) * turning_direction_

* rolling_moment_coefficient_ *

velocity_perpendicular_to_rotor_axis;

However, similar to the rotor drag coefficient, no way of obtaining this parameter is shown in

the source code or research paper it was based on, where it is also just referred to as a "positive

constant".

Finally, after understanding what each plugin parameter function is and how to calculate the

motor constant and moment constant, it is possible to model the custom motor-propeller con-

figuration. As there were no means of testing the propeller in order to find the CT (0) and CQ(0), a

table containing the bench test results from the manufacturer employing the exact same propeller

and motor was used (see Table 5.1).

After acquiring the data from the bench test and using the equations 5.2 and 5.4, it was possible

to build the graphs for the static coefficients in function of the speed of the propeller shown in

Figure 5.3.

Analyzing the graphs and data from the bench test the average values for the coefficients

amount to CT (0) = 0.0858 and CP(0) = 0.04375. With equation 5.7, the value of CQ(0) = 0.00696

is easily obtained.

From equation 5.9 and using ρ = 1.22kgm−3, the motor constant results in:

motor_constant_=
CT (0) ·ρ ·D4

(2π)2 =
0.0858 ·1.22 · (0.260)4

(2π)2 = 12.1166 · 10−6 kg m (5.14)

From equation 5.12, the moment constant results in:

7Holybro, 2019, S500 V2 Kit. Available from: http://www.holybro.com/product/pixhawk4-s500-v2-kit/ [viewed 1
August 2022]

64 Implementation

Table 5.1: Bench test data for the AIR2216II - KV920 motor and T1045II propeller7

Throttle (%) Voltage (V) Thrust (g) Torque (N · m) Curr. (A) RPM Power (W) Effic. (g/W)
30 16 210 0.03 1.44 4042 23 9.12
35 16 259 0.04 1.87 4469 30 8.67
40 16 309 0.05 2.29 4855 37 8.45
45 16 373 0.05 2.86 5301 46 8.15
50 16 447 0.06 3.6 5780 58 7.76
55 16 536 0.08 4.53 6298 72 7.39
60 16 628 0.09 5.61 6800 90 7.01
65 16 729 0.1 6.78 7281 108 6.73
70 16 814 0.11 7.92 7679 126 6.44
75 16 906 0.12 9.2 8096 147 6.18
80 16 993 0.14 10.59 8468 169 5.88
85 16 1087 0.15 12.11 8867 193 5.65
90 16 1191 0.16 13.81 9257 219 5.43
95 16 1289 0.18 15.68 9675 249 5.18
100 16 1332 0.18 16.37 9857 260 5.13

(a) Static coefficient of thrust over different pro-
peller speeds

(b) Static coefficient of power over different pro-
peller speeds

Figure 5.3: Static thrust and power coefficients for the T1045II propeller

moment_constant_=
CQ(0)
CT (0)

D =
0.00696
0.0858

·0.260 = 0.0211 m (5.15)

The maximum rotation velocity was retrieved from the same table from where CT (0) and

CQ(0) (Table 5.1) were derived and came in as 9857 RPM. Since this parameter is in RPM and the

input to the plugin is in rad/s a simple conversion needed to be made:

Maximum Rotation Velocity =
9857

60
·2π ≈ 1032 rad/s (5.16)

For the time constants, rotor drag coefficient, and rolling moment coefficient the default

values for the 3DR Iris quadcopter were used since no reference is given on how to calculate these

values.

Having all the needed parameters to model the motor-propeller pair, it is possible to input them

5.1 Simulation Environment 65

into the plugin inside the quadcopter model SDF file. As an example, the next XML excerpt lists

all the parameters of the front right motor or motor number 0, in this case. Note that the other

parameters present, different from the ones talked about in this section relate to Gazebo and do

not affect the motor model physics.

basicstylebasicstyle basicstyle<plugin name=’front_right_motor_model’ filename=’libgazebo_motor_model.so’>

basicstylebasicstyle basicstyle<robotNamespace/>

basicstylebasicstyle basicstyle<jointName>rotor_0_joint</jointName>

basicstylebasicstyle basicstyle<linkName>rotor_0</linkName>

basicstylebasicstyle basicstyle<turningDirection>ccw</turningDirection>

basicstylebasicstyle basicstyle<timeConstantUp>0.0125</timeConstantUp>

basicstylebasicstyle basicstyle<timeConstantDown>0.025</timeConstantDown>

basicstylebasicstyle basicstyle<maxRotVelocity>1032</maxRotVelocity> <!−−rad/s−−>

basicstylebasicstyle basicstyle<motorConstant>12.1166e−06</motorConstant>

basicstylebasicstyle basicstyle<momentConstant>0.0211</momentConstant>

basicstylebasicstyle basicstyle<commandSubTopic>/gazebo/command/motor_speed</commandSubTopic>

basicstylebasicstyle basicstyle<motorNumber>0</motorNumber>

basicstylebasicstyle basicstyle<rotorDragCoefficient>0.000175</rotorDragCoefficient>

basicstylebasicstyle basicstyle<rollingMomentCoefficient>1e−06</rollingMomentCoefficient>

basicstylebasicstyle basicstyle<motorSpeedPubTopic>/motor_speed/0</motorSpeedPubTopic>

basicstylebasicstyle basicstyle<rotorVelocitySlowdownSim>10</rotorVelocitySlowdownSim>

basicstylebasicstyle basicstyle</plugin>

Camera

To simulate the camera chosen for this thesis (see Subsection 4.1.4), a built-in Gazebo plugin

was used, which allows for the modification of the camera’s intrinsic parameters along with other

properties, such as the field of view, resolution, framerate, etc. This plugin also has integration

with ROS, publishing the simulated camera frames to a topic (in the case of this thesis the topic

name chosen was drone/camera/image_raw) accessible by other ROS nodes.

With the intrinsic parameters from the camera calibration process and the properties of the

Pixycam provided by the manufacturer, an accurate description of the sensor could be reproduced

inside the quadcopter SDF file:

basicstylebasicstyle basicstyle<sensor name=’camera1’ type=’camera’>

basicstylebasicstyle basicstyle<camera name="head">

basicstylebasicstyle basicstyle<horizontal_fov>0.8203047</horizontal_fov> <!−−rad/s −> 47 −−>

basicstylebasicstyle basicstyle

basicstylebasicstyle basicstyle<clip>

basicstylebasicstyle basicstyle<near>0.02</near>

basicstylebasicstyle basicstyle<far>300</far>

basicstylebasicstyle basicstyle</clip>

basicstylebasicstyle basicstyle</camera>

basicstylebasicstyle basicstyle<always_on>1</always_on>

basicstylebasicstyle basicstyle<visualize>1</visualize>

basicstylebasicstyle basicstyle<plugin name="camera_controller" filename="libgazebo_ros_camera.so">

basicstylebasicstyle basicstyle<alwaysOn>true</alwaysOn>

basicstylebasicstyle basicstyle<updateRate>50.0</updateRate>

basicstylebasicstyle basicstyle<cameraName>drone/camera</cameraName>

basicstylebasicstyle basicstyle<imageTopicName>image_raw</imageTopicName>

basicstylebasicstyle basicstyle<cameraInfoTopicName>camera_info</cameraInfoTopicName>

basicstylebasicstyle basicstyle<frameName>base_link</frameName>

basicstylebasicstyle basicstyle<Cx>5.91538464e+02</Cx>

basicstylebasicstyle basicstyle<Cy>2.61682681e+02</Cy>

basicstylebasicstyle basicstyle<focal_length>1.13073839e+03</focal_length>

basicstylebasicstyle basicstyle<hackBaseline>0.07</hackBaseline>

basicstylebasicstyle basicstyle<distortionK1>0.04629369</distortionK1>

basicstylebasicstyle basicstyle<distortionK2>−0.25189776</distortionK2>

basicstylebasicstyle basicstyle<distortionK3>−0.02133036</distortionK3>

basicstylebasicstyle basicstyle<distortionT1>−0.02179552</distortionT1>

basicstylebasicstyle basicstyle<distortionT2>0.42514044</distortionT2>

basicstylebasicstyle basicstyle</plugin>

basicstylebasicstyle basicstyle</sensor>

5.1.2 Payload

The payload is one of the integral parts of the study of this thesis since it is a cargo over the weight

limit that provokes the forced descent of the quadcopter. To simulate the payload, a 10x10x10

cm cube is attached to the bottom of the quadcopter, whose mass and moments of inertia can be

altered before each test is performed.

5.1 Simulation Environment 67

Figure 5.4: Quadcopter with payload and camera attached

Link Detacher Plugin

To simulate the detachment of the payload, a ROS package8 created by PAL Robotics (Sam Pfeif-

fer) was used. This package named gazebo_ros_link_attacher allows for the control of fixed links

between two Gazebo models, creating (attachment) or eliminating (detachment) them.

Interacting with this package is fairly straightforward since the ROS architecture allows for

that simplicity. To attach two Gazebo models together, the link_attacher_plugin/attach

ROS service can be called using the Attach service message, this message receives both model

names and links and returns a boolean variable indicating if the procedure was a success or

failure. For the detachment, the process is analogous, changing only the ROS service called to

link_attacher_plugin/detach.

At the start of each simulation, both models of the quadcopter and payload are spawned in their

exact locations and the link_attacher_plugin/attach service is called, which creates a

fixed link between them. When it is time to drop the payload the link_attacher_plugin/detach

service is called.

Note that this process only works for the simulation environment. In a real setting, this pack-

age would not be needed, as the MAVROS library accounts for peripherals connected to the Pix-

hawk Flight Controller and allows for its control through the mavros/actuator_control

ROS node. As it will later be seen, this is covered in the system architecture.

5.1.3 ArUco Model

In the case of this project, since the camera must detect the marker as far away as possible, the

4x4_509 dictionary was used, as it allows for camera detection at further distances while not being

too simple, such so as not to impair a proper classification.

8Sam Pfeiffer, 2022, gazebo_ros_link_attacher Repository. Available from: https://github.com/pal-
robotics/gazebo_ros_link_attacher [viewed 2 August 2022]

94x4 relates to the bit pattern described by the white "pixels" in the marker, i.e. the bit pattern is defined in a 4 by
4 square; 50 relates to the number of unique markers in the dictionary, this is useful to speed up detection

68 Implementation

For the choice of the size of the marker, several tests were conducted to find a size that allowed

for the least detection error possible from 15 m in the air while falling straight on top of the target,

and it was found that a marker size of 1 m was adequate for most drop heights.

While performing tests with the camera and ArUco markers on the simulation world, it was

found that one of the most important features that the model needed to possess in order to improve

the detection was a considerable white border around the marker, which confirmed the research

done in Subsection 4.2.4.

The final model used in the Gazebo world uses the 4x4 ArUco marker of id 13 on a 1x1 m

square with a 0.25 m white border around the whole perimeter as can be seen in Figure 5.5.

Figure 5.5: ArUco marker model (Id: 13)

5.1.4 Simulation World

Finally, combining all elements discussed previously, the world was built. This test world has the

ArUco marker model fixed on the origin, while the UAV is dropped from a platform suspended in

the air that would simulate the drop of the UAV, e.g. from another vehicle, already overloaded.

During the tests, the vehicle can be dropped from any position in the simulated world and the

mass of the payload can be set to any value. To ensure that the simulation runs without displaying

any strange behaviors of the quadcopter it is also crucial that the inertial parameters of the payload

are changed according to the mass inputted.

Figure 5.6: Simulation World in Gazebo

5.2 System Architecture 69

5.2 System Architecture

Figure 5.7: SITL Architecture and Communication Diagram

The overall system architecture of the simulation implementation can be seen in Figure 5.7.

This architecture is often named Software-In-The-Loop (SITL), and in this configuration, both the

environment, flight controller, and offboard computer of the quadcopter are simulated in the same

machine.

The PX4-Autopilot is responsible for the control software, implemented using ROS, and for

simulating the offboard computer. It continuously communicates with the QGroundControl ap-

plication using MAVLink and the Gazebo Simulator through a UDP connection. The Gazebo

simulator then returns its simulated sensor data to the PX4, which uses this data to estimate the ve-

hicle’s position and attitude. Other sensor data, such as the simulated camera’s image, are directly

sent through the ROS framework via the Gazebo-ROS camera plugin.

70 Implementation

5.2.1 ROS Implementation

The ROS framework was used to develop the control software for the UAV’s simulation tests. The

control software was developed according to an object-oriented approach to take advantage of the

modularity and flexibility it provides, which is useful because the same control algorithm tested in

the simulator can be quickly integrated into the real system with little modification of the existing

code.

The main classes are listed below, paired with a brief description of their function. In addition,

a UML class diagram is presented in Figure 5.8 to better understand the interactions between all

class objects.

• ControlAlgorithm is responsible for connecting all the main class objects and where the

test parameters are applied.

• UAV serves as an interface with the vehicle gathering all current data and allowing its con-

trol.

• Detacher is an inheritable class that interfaces with the control of the load detachment

system.

• ArucoTracker is responsible for the image processing, ArUco detection algorithm, and

subsequent pose estimation.

• Camera is also an inheritable class used by the ArucoTracker class and stores all intrinsic

parameters of the camera employed (either real or simulated).

• RecordOdomActionServer is a helper class responsible for the capture of the vehicle’s

odometry or other useful data to be posteriorly analyzed.

• GazeboHelper is another helper class used only in simulation testing to interface with the

Gazebo simulator.

As explained in Subsection 4.2.2, the Robotic Operating System uses a publisher-subscriber

model, where ROS nodes communicate with each other by using topics. In the implementa-

tion of this thesis, two major ROS nodes were created, a node for processing the camera’s out-

put and the detection of the ArUco marker and a main node responsible for the control algo-

rithm and communication with the vehicle. Additionally, a supplementary node was created with

the objective of aiding in the test data collection and it can be seen in Figure 5.9 designated as

record_odom_action_node.

The rqt_image_viewer_node node is part of a package available in the ROS framework that

allows for the analysis of the performance of the image processing algorithm, showing the view

of the camera and highlighting the detected ArUco marker if present in the frame.

All nodes mentioned before are started using a ROS launch script, that not only stores the

simulation test parameters but also enables data flow between the different software components.

5.2 System Architecture 71

Figure 5.8: UML Class Diagram

72 Implementation

Figure 5.9: ROS Node Architecture (direction of arrows represents the publishing direction)

5.3 Aruco Tracker 73

5.3 Aruco Tracker

The Aruco Tracker consists of a script that runs on the aruco_tracker_node ROS node and was

created with the purpose of processing the image frames from either a real or simulated camera in

order to detect one or more ArUco markers and estimate their pose.

5.3.1 Detection Algorithm and Pose Estimation

Using the OpenCV ArUco library showcased in 4.2.4, a raw image frame is converted to gray-

scale and passed through a gaussian blur filter with a 3x3 kernel, which improves the performance

of the edge detection algorithm.

After the initial pre-processing, the image is then run through the OpenCV detectMarkers()

function that takes the ArUco dictionary used (4x4_50_DICTIONARY) and the camera’s intrinsic

parameters as arguments. If a valid marker is present in a given image, this function returns both

the bounding box using pixel coordinates, the id of the marker, and rejected candidates from the

segmentation process. A verification is then made to ensure that the marker id detected corre-

sponds to the targeted one.

In the case of an id confirmation, another OpenCV function is used to estimate the pose of the

ArUco marker in relation to the camera reference frame. The function entitled estimatePoseSin-

gleMarkers() takes as arguments the bounding box detected before, the marker size, and again the

intrinsic parameters of the camera. The marker size consists of the length in meters of one side of

the fiducial marker, which as explained in Subsection 5.1.3 was chosen to be 1 m.

5.3.2 Coordinate Transformations

The control of the UAV, as it will later be seen, is done through position set-points in the ground

reference frame. Since the coordinates of the detected marker are given in relation to the camera

reference system, the output of the pose estimation of the ArUco is not enough to achieve position

control. It is then needed to obtain the position of the fiducial marker with respect to the ground

reference frame.

Essentially, the problem consists in obtaining the extrinsic parameters of the camera. This can

be done through the use of the transformation matrix. A transformation matrix represents both

a rotation and translation between two coordinate frames and is composed of a rotation matrix R

and a translation vector tv, as shown in the following equation:

T =

[
R tv
0 1

]
=

r11 r12 r13 tvx

r21 r22 r23 tvy

r31 r32 r33 tvz

0 0 0 1

 (5.17)

As the name implies, the transformation matrix allows for the direct transformation of a point

coordinate from one reference system to another. However, given the inherent shape of the matrix,

74 Implementation

a normal 3D point needs to be first converted into a homogeneous (or projective) coordinate. To

represent, in this case, a 3D point (x,y,z) in homogeneous form, an extra dimension is added. This

dimension w is a non-zero real number that is multiplied by all other dimensions resulting in a new

4D point (wx, wy, wz, w). Different homogeneous coordinates can represent the same cartesian

3D coordinate, e.g. the homogeneous coordinates (-1, 4, 5, 1) and (-2, 8, 10, 2) represent the same

3D point (-1, 4, 5).

The projective coordinate system is particularly useful in the field of computer graphics as

the extra dimension can represent the viewing projection of a point in space. Additionally, in this

field, transformation matrix operations are extremely prevalent, further justifying its use over the

cartesian system.

As in this context, the viewing projection of points is not the focus, the conversion from the

cartesian system to a homogeneous one is as simple as using w = 1.
X

Y

Z

1

=

r11 r12 r13 tvx

r21 r22 r23 tvy

r31 r32 r33 tvz

0 0 0 1

x

y

z

1

 (5.18)

Coming back to the problem at hand, the objective is to calculate the transformation matrix of

the camera in relation to the ground reference frame, T G
C . As a means of reference, a representation

of the various coordinate systems discussed in this section can be seen in Figure 5.10

Figure 5.10: Coordinate Frames of Ground Reference (xGyGzG), UAV (xDyDzD), Camera (xCyCzC)
and Aruco (xAyAzA)

The transformation matrix T G
C cannot be directly obtained since no direct data from the sensors

5.3 Aruco Tracker 75

establishes a relation between the ground frame and the camera. However, both the position tvD
C

and rotation RD
C of the camera in relation to the UAV are known, as well as the position tvG

D and

rotation RG
D (from equation 3.4) of the UAV in relation to the ground coordinate system (from

GPS and IMU sensors). Both tvD
C and RD

C are static and can be measured, which is not the case

for the translation vector tvG
D and rotation matrix RG

D, since the quadcopter’s position and rotation

constantly change during flight.

tvD
C =

 0.0

−0.08

−0.18

 , RD
C =

 0 −1 0

−1 0 0

0 0 −1

 (5.19)

tvG
D =

x

y

z

 , RG
D =

 cψcθ cθ sψ −sθ

cψsφ sθ − cφ sψ cψcφ + sφ sθ sψ sφ cθ

cψcφ sθ + sφ sψ cφ sθ sψ − cψsφ cφ cθ

 (5.20)

With this data, two transformation matrices can be derived, T D
C and T G

D . A point from the

camera coordinate frame can be first converted into the UAV’s frame using T D
C and then converted

to the ground reference frame with the help of T G
D , finally obtaining the ArUco marker’s position in

relation to the ground reference frame. This process can be summarized by the following equation:

PG = T D
C ·T G

D ·PC (5.21)

In order to obtain the necessary position and rotation data from the UAV to calculate T G
D , the

Aruco Tracker ROS node is subscribed to the mavros/local_position/pose topic.

Figure 5.11: Output of aruco/image topic shown in the rqt_image_viewer GUI (Note the green
border on the detected ArUco marker)

76 Implementation

After the pose estimation of the marker is done, the Aruco Tracker node publishes it to the

aruco/pose topic so the information can be used by other nodes. In addition, a modified image of

the camera with the estimated contours of the detected marker drawn is published to the aruco/im-

age topic, so it can be subscribed by the rqt_image_viewer_node and shown in a graphical view

(see Figure 5.11).

5.4 Control Algorithm

After devising an ArUco detection and pose estimation method, the main control algorithm could

be implemented and tested. First, it was studied how the UAV could be controlled with the PX4-

Autopilot firmware using an external computing unit or offboard controller that would in a real

setting be the Raspberry Pi 4 connected to the Pixhawk Flight Controller.

The PX4-Autopilot possesses an Offboard Mode, which when activated, allows the vehicle

to receive position, velocity, or attitude commands provided over MAVLink10. This allows for

the Offboard controller unit to interface with the autopilot firmware and to supply the control

commands through the MAVROS API library.

Some of the main constraints of Offboard Mode are that the vehicle must be in an armed

state and be receiving a stream of target setpoints with a cadence greater than 2 Hz, prior to the

activation of this mode. On top of that, radio control is disabled while in offboard mode, except to

change it, which means that a great deal of care must be employed when testing platforms in this

configuration to ensure that neither people nor the vehicle suffers any damage. With that said, the

PX4-Autopilot has a multitude of fail-safes that can be activated if a malfunction is detected.

In order to control the UAV while in Offboard Mode, position set-points are published to the

topic mavros/setpoint_position/local. This topic receives PoseStamped ROS messages, converts

them to MAVLink commands and sends them to the Flight Controller that controls the motor’s

speed in order to achieve the target position and orientation provided.

The PoseStamped.msg is part of the geometry_msgs ROS package and its structure can be

viewed below. It is composed of a Header and Pose structures. The Header that contains ROS pa-

rameters like the time stamp, sequence number and frame_id. The Pose structure contains a Point

that stores the position in the local NED frame and the orientation represented by a Quaternion.

---- geometry_msgs/PoseStamped.msg ----

std_msgs/Header header

uint32 seq

time stamp

string frame_id

geometry_msgs/Pose pose

geometry_msgs/Point position

10PX4-Autopilot, 2022, Offboard Mode. Available from: http://docs.px4.io/main/en/flight_modes/offboard.html
[viewed 4 August 2022]

5.4 Control Algorithm 77

float64 x

float64 y

float64 z

geometry_msgs/Quaternion orientation

float64 x

float64 y

float64 z

float64 w

Given the high inaccuracy of the ArUco position estimates from a height greater than 15 m,

the system could not be guided entirely by the camera when the height was greater than this

distance. It was then decided that an initial marker position estimate should be introduced into the

control algorithm either by manual input or from a mothership carrying the UAV equipped with

much more sophisticated vision apparel capable of adequately detecting the marker’s position.

This estimate is passed to the vehicle via GPS coordinates and it is created taking into account

the inaccuracy of current GPS systems of about 2 m as the UAV will be capable of correcting

the estimate in the final moments of the approach through its own camera and ArUco detection

algorithm.

To receive odometry information from the UAV, such as position, orientation, and velocity

data, the mavros/local_position/odom topic is subscribed to. As the topic name implies, the posi-

tion information is given in the local frame. In the PX4-Autopilot the local frame origin is defined

as the position of the UAV at which the vehicle is when the firmware is started. This frame is

useful if the UAV starts from the ground level, however, this is not the case as the UAV is to be

dropped from a random height.

Bringing the local frame to the ground level meant that a translation would have to occur.

Since the approximate ArUco position is assumed to be given, it made sense to define the position

of the ArUco as the origin of the new local frame. The problem then consisted in assessing the

marker’s position in relation to the local frame origin of the UAV.

The GPS coordinates of the local frame origin of the UAV could be easily obtained by sub-

scribing to the mavros/global_position/global topic and getting the latitude, longitude, and altitude

of the vehicle when starting up. Having now both the GPS coordinates of the local frame origin

and of the ArUco marker, it was possible to convert them to local coordinates using the follow-

ing formulas derived from the studies of Nathaniel Bowditch [61] that relate both latitude lat and

longitude lng to length values (in meters):

M = 111132.92−559.82 · cos(2.0 · lat)+1.175 · cos(4.0 · lat)−0.0023 · cos(6.0 · lat) (5.22)

P = 111412.84 · cos(lng)−93.5 · cos(3.0 · lng)+0.118 · cos(5.0 · lng) (5.23)

78 Implementation

with M being the length (in meters) of 1º of the meridian (latitude) and P corresponding to the

length (in meters) of 1º of the parallel (longitude).

The local coordinates can now be obtained from the two GPS ones, considering the origin to

be the ArUco marker’s center:

PA
S =

xA
S

yA
S

zA
S

=

(lngS − lngA) ·P
(latS − latA) ·M

altS −altA

 (5.24)

with PA
S representing the point in the local frame of the UAV’s start position in relation to the

marker’s center and (latS, lngS, altS), (latA, lngA, altA) being the respective GPS coordinates.

It is important to note that this new local frame is used purely for a more intuitive control and

analysis of the data since that for the PX4-Autopilot firmware, the local frame origin is still located

at the start position of the vehicle and, for this reason, the position set-points still need to be given

relative to that local frame.

Next, the control algorithm of the UAV was implemented. A flowchart depicting the sequence

of control events can be seen in Figure 5.12. As the vehicle is starting and the first GPS position is

published to the mavros/global_position/global topic, the new local frame is calculated and stored

for the posterior conversion of the control commands and odometry.

After the initialization of the autopilot software and making sure that the odometry data is

being published to the respective ROS topics, the vehicle is ready to be armed. In order to arm the

UAV, MAVROS provides a ROS service named mavros/cmd/arming that, when called, changes

the state of the vehicle, which can then be confirmed by subscribing to the mavros/state topic.

With the quadcopter armed, the Offboard Mode can be activated. However, as previously

shown, a stream of position set-points (>2 Hz) needs to be sent first. To activate this mode the

mavros/set_mode ROS service must be called, which returns a boolean value confirming or not a

successful activation. In normal conditions, the UAV would now be able to take off and fly, but

given the excess weight, it cannot do so.

At this point, position set-point commands are sent with the initial estimate of the ArUco’s x

and y position but with a z value fixed as the height of the drop, which forces the controller to gen-

erate the maximum thrust possible in the vehicle while falling. The UAV is then finally dropped,

which in the simulation environment translates to deleting the platform beneath the vehicle.

5.4 Control Algorithm 79

Figure 5.12: Control Algorithm Flow-Diagram (Simulation Environment)

After being dropped, the PX4-Autopilot and the simulated FC take control of the UAV to guide

it to the desired position. When it reaches a height of 15 m (ArucoLim), the position set-points

are acquired through the output of the Aruco Tracker node. Shortly after, the UAV reaches the

drop height (dropZ) and the load is released.

Recall that two different processes occur depending if it is a real scenario or a simulated one.

In the case of the simulated one the link_attacher_node/detach service is called, while in a real

setting a message is published in mavros/actuator_control topic to activate a servo connected to

the Pixhawk Flight Controller.

Although in the final control algorithm, only position commands are sent to the Flight Con-

troller it was initially tested the idea of also controlling the orientation sparked while researching

the differences between the plus and cross quadcopter configurations for Chapter 3.

80 Implementation

In [62], Robert Niemiec and Feny Gandhi mention that in the X-configuration, since two rotors

are used for the roll and pitch control instead of one, as in the +-configuration, more moment can

be produced, providing more maneuverability along these axes. Keeping this in mind, it was

proposed that in order to ensure maximum maneuverability for the system, aligning the UAV in

such a way that the (x,y) position of the ArUco estimate is colinear to either the roll or pitch axes

would be beneficial. However, this was not the case, as changing the vehicle’s orientation caused

the controller to slow down two of its motors (see Section 3.1), hindering the thrust output of the

system and further increasing its fall velocity. Therefore, it was decided that only the position

would be changed when sending the set-points.

An improvement needed to increase the radius at which the vehicle could be dropped and

improve the control performance was done by modifying some parameters of the Flight Controller,

particularly for the Roll and Pitch control. The tuning was done by adjusting the MC_ROLL_P and

MC_PITCH_P parameters from the QGroundControl application GUI from 6.50 (default) to 3.25.

Additionally, the quadcopter’s maximum tilt was lowered from 45º to 30º (MPC_TILTMAX_AIR

parameter).

By doing this, the response of the UAV became slower, however, by slowing the pitch and roll

response and limiting the tilt angle, it meant that the motors would not have to decelerate as much

to turn and that the quadcopter would be maintained in a relatively horizontal orientation. This is a

particularly important factor because by staying as horizontal as possible, the thrust vector vertical

component contributes the most to the reduction of the Z-velocity of the system.

Chapter 6

Simulation Results and Discussion

In this chapter, the results from the various simulation tests performed are exposed and discussed.

Section 6.1 starts with a description of the methodology used when setting up the testing scenarios.

Section 6.2 is divided into two parts, in the first one, the Aruco Tracker algorithm is evaluated in

terms of performance and precision. The second part relates to the main control algorithm where

an in-depth analysis of the quadcopter’s behavior is done, followed by a sensitivity and robustness

study.

6.1 Experimental Methodology

The simulations presented in this chapter were performed using the Gazebo 3D simulator, whose

functioning is briefly described in Subsection 4.2.3. Additionally, the setup for these experiments

can be seen in Figure 5.6. In this setup, the ArUco marker’s position is fixed in the simulation’s

(0, 0, 0) XYZ world coordinates, while both the platform and quadcopter can be inserted into any

XYZ position within the 3D space.

All of the data from every simulation test was obtained through the RecordOdomActionServer

running on a separate ROS node that subscribed to the odometry measurements from the EKF of

the PX4-Autopilot firmware, the ArUco position estimates (output of the Aruco Tracker algorithm)

and the ground truth position of the payload object, provided by the Gazebo simulator. This script

collected the data being published and logged it into separate CSV (Comma-Separated Values)

files.

6.1.1 Aruco Tracker

Two different types of tests were conducted to gauge how well the Aruco Tracker output estima-

tions performed. These experiments were not carried out with the quadcopter in an overloaded

state since only the reliability of the ArUco measurements was being tested.

In the first scenario, the quadcopter started at a height of 50 m in the (0, 0) XY position and

slowly descended over the (0, 0) point until it reached a height of around 1.5 m above the ground.

At this point, the camera can no longer detect the ArUco marker since it is so close to it, blocking

81

82 Simulation Results and Discussion

the view of the whole tag and making it unidentifiable (see Figure 6.1). This test consists of a

low disturbance case in order to evaluate the accuracy of the Aruco Tracker estimates at various

altitudes.

Figure 6.1: Virtual camera view at a height of 1.5 m

To assess the robustness and performance of the marker’s tracking algorithm a second sce-

nario was devised, where the simulated UAV would follow a square-pattern trajectory with abrupt

changes in direction and orientation. To employ this, a waypoint control algorithm was built that

would make the quadcopter take off from the (0, 0) position and follow a list of pre-programmed

position waypoints. In the case of this test, the waypoints were defined to be [(2, 2, 15), (2, -2,

15), (-2, -2, 15), (-2, 2, 15)] in the order displayed, defining a 4x4 m square centered on the ArUco

marker’s location. Furthermore, the height of the waypoints was set as 15 m, due to this being

the altitude at which the Aruco Tracker’s position estimates are used to control the vehicle in the

following tests (the ArucoLim).

6.1.2 Control Algorithm

A number of tests were carried out to assess the effectiveness of the main control algorithm in

conjunction with the Aruco Tracker integration and to illustrate the control behavior of the PX4-

Autopilot simulated Flight Controller adjusted for an overloaded operation. With these experi-

ments it was possible to assess the following points:

• The behavior and trajectory of the quadcopter in overloaded circumstances;

• The range of weight the system would allow to carry over the limit (in normal operation);

• The accuracy of the system, when dropping the cargo over the ArUco target;

• The minimum height that the payload can be dropped from.

As previously mentioned in the preceding Chapter, more specifically in Section 5.4, the tests

for the analysis of the Control Algorithm start with the simulated quadcopter on top of a removable

6.1 Experimental Methodology 83

platform, which simulates the drop of the vehicle (already overloaded). After reaching a pre-

defined height (dropZ) in the descent, the payload is detached from the simulated UAV, followed

by the quadcopter then braking its fall at full thrust, and, in the case of it not crashing, staying at

hover at a height of 5 m above the marker.

The testing parameters that can be changed are listed below (pictorial representation in Figure

6.2):

• Initial position of the quadcopter and platform system, (((xxx000,,,yyy000,,,zzz000)));

• The height at which the Aruco Tracker position estimates are used for the UAV control,

ArucoLim;

• The height at which the load is dropped, dropZ;

• The mass of the payload, mmmppp.

(a) Side View (b) Top View

Figure 6.2: Pictorial representation of the test parameters

Although the ArucoLim could be changed from test to test since its performance is already

analyzed in the next Section 6.2, to avoid introducing more complexity to the testing procedure, it

was decided to fix its value at 15 m. The precise rationale behind the decision to use this particular

value will be discussed later.

Before delving into the testing methodology it is essential to specify what distinguishes a

successful test from a failed one. In this context, a successful test is defined by a scenario where

the quadcopter never touches the ground and the cargo dropped from the vehicle lands within a

2x2 m square area around the center of the ArUco marker. Every test that does not adhere to these

limitations is deemed unsuccessful.

84 Simulation Results and Discussion

Performance Analysis

In order to analyze comprehensively the different aspects of an overloaded quadcopter controlled

descent, such as the odometry, payload drop accuracy, and carrying-mass limits six different test

scenarios were devised. These six controlled descents correspond to three pairs of test conditions

where only the payload’s mass and initial position are altered. In each pair of test scenarios, the

initial position remains the same, as well as the height of the payload drop. The mass of the

cargo, however, varies between the two test settings; the first utilizes the least payload mass value

that causes the vehicle to descend, whilst the second uses the largest payload mass value that the

vehicle can carry while still achieving a successful outcome.

For this analysis, three different initial quadcopter positions were introduced as test parame-

ters, corresponding to the three pairs of test scenarios. These positions correspond to (0, 0, 35), (4,

4, 35), (-6, -6, 35) and are relative to the simulated world origin (which is also the position of the

ArUco marker). At the same time, the payload drop height (dropZ) was set at 7 m. The selection

of these values was done taking into consideration the limitations of the system, gathered from

various practice tests.

Sensitivity and Robustness Tests

Similar to the analysis done for the Aruco Tracker Algorithm, several tests were conducted to

gauge the sensitivity and robustness of the Control Algorithm.

In order to obtain the test parameters in an unbiased and random way, gaussian distributions

were employed for each coordinate of the initial position and payload drop height values. The

mean and standard deviations of these distributions were chosen taking into account observations

of previous tests. In this way, the X and Y coordinate distribution, seen in Figure 6.3a, was

centered on a mean value of 0 m with a standard deviation of 4 m. For the Z coordinate of the

initial position a different distribution was used, presented in Figure 6.3b, with a mean value of

35 m and a standard deviation of 10 m. Lastly, for the payload drop height test values a gaussian

distribution of mean value of 7 m and standard deviation of 2 m was applied. This distribution

graph can be seen in Figure 6.3c.

It is important to highlight the fact that the payload mass still remains a test variable that is

changed for each experiment, although not in the same way as the previous ones. In fact, for each

sampled set of parameters obtained from the gaussian distributions, the payload mass is changed

to assess what is the maximum possible value that ensures a successful test as well as the minimum

value that induces a fall on the quadcopter. This gives a sense of which test scenarios provide the

best efficiency for the algorithm and what restrictions need to be imposed when employing the

system.

6.2 Results and Discussion 85

(a) Gaussian distribution for the X and Y coordinate
values of the initial position (µ = 0 m, σ = 4 m)

(b) Gaussian distribution for the Z coordinate values
of the initial position (µ = 35 m, σ = 10 m)

(c) Gaussian distribution for the payload drop height
values (µ = 7 m, σ = 2 m)

Figure 6.3: Gaussian distributions of the test parameters

6.2 Results and Discussion

6.2.1 Aruco Tracker

Precision-Height Test

In this first test, the quadcopter follows a linear and vertical trajectory described in Figure 6.4,

starting from the position (0, 0, 50) of the simulated world and ending in the position (0, 0, 15).

Through this experiment, it was possible to evaluate the precision of the ArUco position estimates

in relation to the distance between the camera and the marker.

The height of 50 m was chosen since as it will be seen later (see Subsection 6.1.2), it is around

this altitude that the quadcopter cannot avoid crashing with any payload’s mass above its nominal

limits.

After obtaining the ArUco Tracker position estimates and the quadcopter’s odometry data,

each coordinate X and Y of the estimated position was plotted along with the respective coordi-

nates of the quadcopter’s position. Furthermore, the height of the UAV was also plotted on the

same graph in order to observe its effect on the estimation. Recall that the position estimated by

the Aruco Tracker algorithm is not the position of the quadcopter in relation to the marker, but the

position of the marker in relation to the simulated world origin, i.e. ideally, the estimates would

return the (0, 0) point. Only because of the trajectory, this estimated position roughly coincides

with the position of the quadcopter. The only reason to present the UAV’s position measurements

is that the trajectory taken does not perfectly follow the trajectory planned, although it didn’t seem

to have a considerable impact on the Aruco Tracker’s output precision.

By observing Figures 6.5 and 6.6, it is possible to detect a substantial error present in the

ArUco Tracker’s estimates, being particularly pronounced in the X-Position estimation. At a

86 Simulation Results and Discussion

Figure 6.4: 3D trajectory followed by the quadcopter during testing of the relation between posi-
tion estimate error and height

Figure 6.5: Error of the ArUco X-Position estimate at different height levels

height of 49.6 m, the maximum absolute error is reached (1.235 m) almost double the maxi-

mum absolute error of the Y-Position estimation (0.680 m). The reason for this, almost linear,

increase in error as the height increases mainly relates to the fact that it is harder to distinguish

little perspective differences from afar, since the area of pixels occupied by the marker decreases,

decreasing the amount of information available for the pose estimation process (see simulated

camera’s view of the marker at a height of 50 m in Figure 6.7). A possible solution for this prob-

lem would be to increase the resolution of the camera, therefore increasing the number of pixels

6.2 Results and Discussion 87

Figure 6.6: Error of the ArUco Y-Position estimate at different height levels

in the same area as before. However, an increase in resolution would also increase the data size,

making the algorithm slower, and consequently worsening the performance.

To ensure that the quadcopter has the time to react to the position control based on the Aruco

Tracker’s output without sacrificing the accuracy too much, it was decided that a height of 15
m would be chosen for the control switch from the initial GPS estimate to the ArUco position

estimates. At this altitude, the absolute error for the X-Position estimate is approximately 0.322

m, while for the Y-Position this value is about 0.140 m.

As a side note, the Z-Position estimates were not analyzed, since they are not used by the

vision-based control algorithm.

Figure 6.7: Virtual camera view at a height of 50 m

88 Simulation Results and Discussion

Sensitivity and Robustness Test

To assess the sensitivity and robustness of the Aruco Tracker algorithm outputs, a test was devised

where the quadcopter followed a square-shaped trajectory defined by four waypoints, which can

be seen in Figure 6.8.

Figure 6.8: Square-shaped trajectory followed by the quadcopter in the sensitivity and robustness
test

The estimated ArUco marker position was plotted next, along with the corresponding coor-

dinates of the quadcopter’s measured position. The sole purpose of these latter ones is to give a

sense of the trajectory phase at each time instant. Moreover, the orientation measurements of the

UAV were also plotted separately, in order to relate the data with the quality of the estimates.

From the X and Y position graphs presented in Figures 6.9 and 6.10 and the orientation mea-

surements displayed in Figure 6.11, it is possible to immediately notice the effect that the sudden

rotations in the roll and pitch axis cause in the X and Y position estimates, respectively.

Once again, a discernible difference in precision can be noticed between the X and Y position

estimates, with the latter having a more stable behavior, although presenting a consistent steady-

state error of around 0.240 m possibly caused by the height at which the measurements were

taken.

Looking at the graphs of position, the absolute deviations caused by the rapid rotation of

the quadcopter when changing direction for the next waypoint have a scale of approximately 1

m for both coordinates. On the other hand, it is also crucial to keep in mind that this test was

performed under normal (unloaded) conditions, which makes the quadcopter much more agile

when compared to its behavior when overloaded. This means, that these deviations will be much

less noticeable in the last scenario.

6.2 Results and Discussion 89

Figure 6.9: ArUco X-Position estimate precision in the sensitivity and robustness test

Figure 6.10: ArUco Y-Position estimate precision in the sensitivity and robustness test

Lastly, a substantial delay starting from t = 0 sec time instant until the very first ArUco po-

sition estimate data point is recorded can be seen. However, this can very easily be explained

by observing the trajectory of the UAV shown in Figure 6.8. As the vehicle takes off it quickly

turns to the first waypoint X, Y position. By doing this, and since the camera’s pose is fixed in

relation to the quadcopter, the ArUco marker is either too close or out of view for the camera as

the quadcopter orientation changes. It is only when it stabilizes and is within the viewing angle of

the camera that the marker is then detected at t = 6.5 sec. Although no major issue was detected

because of a similar event, this situation highlights one of the problems caused by the employment

of a cheaper fixed camera system over a gimbaled one.

90 Simulation Results and Discussion

Figure 6.11: Quadcopter’s orientation measurements in the sensitivity and robustness test

6.2.2 Control Algorithm

Performance Analysis

Two scenarios were looked at in order to assess the effectiveness and performance of the control

algorithm and thoroughly examine every impact it has on the quadcopter and on the accuracy

of the payload release system. For each scenario, ten tests were performed, five for the minimum

mass to induce a drop (hereby referred to as just "minimum mass") and five for the maximum mass

the quadcopter can carry (hereby referred to as just "maximum mass") in a successful experiment.

However, for each scenario only one of the tests is used for the analysis, with the exception of the

payload drop accuracy evaluation, where all ten test data was needed.

In the first test setting, the quadcopter was dropped from the initial position (0, 0, 35), right on

top of the ArUco marker’s center. In this case, the minimum mass was 3.65 kg and the maximum

mass had the value of 3.71 kg, a 60 g increase. The trajectories followed by the quadcopter in both

mass conditions are represented in Figure 6.12.

In Figure 6.13 the X, Y and Z position measurement data of the quadcopter can be seen. The

plot of the Z-Position is particularly important to analyze since it is possible to observe at what

time instant the load is released (t = 19.4 sec), knowing that the dropZ = 7.0 m. It is also pertinent

to point out that the lowest height that the quadcopter with the minimum payload experiences is

2.622 m, while for the maximum mass the value is 0.767 m. Other important data to retrieve from

this plot are the times at which the control is changed from the initial GPS position estimation to

the estimates coming from the Aruco Tracker’s output. For the maximum mass situation, the time

instant at which this occurs is t = 13.67 sec and for the minimum, t = 18.43 sec. By observing

the behavior of the X and Y position measurements in subfigures 6.13a and 6.13b at these time

instants, an immediate change is noticed, which corresponds to the quadcopter reacting to the new

position estimates from the Aruco Tracker.

6.2 Results and Discussion 91

Figure 6.12: 3D trajectories (Dark Blue -> Min. Mass Condition and Cyan -> Max. Mass
Condition) followed by the quadcopter in both minimum mass and maximum mass conditions -
Initial Position (0, 0, 35)

(a) X-Position (b) Y-Position

(c) Z-Position

Figure 6.13: X, Y, and Z position measurements - Initial Position (0, 0, 35)

92 Simulation Results and Discussion

(a) Roll (φ) (b) Pitch (θ)

(c) Yaw (ψ)

Figure 6.14: Roll, Pitch, and Yaw angle measurements - Initial Position (0, 0, 35)

(a) X-Linear Velocity (b) Y-Linear Velocity

(c) Z-Linear Velocity

Figure 6.15: X, Y, and Z linear velocity measurements - Initial Position (0, 0, 35)

6.2 Results and Discussion 93

In Figure 6.14 the roll, pitch and yaw angle measurements are plotted over time. Since no

commands that affect the yaw of the vehicle are sent, only the roll and pitch data will be ana-

lyzed. As it is observed, these values sit between the range of -15º and 15º, which implies that

the control on these axes does not suffer any large angle variations. Recall that both the roll and

pitch proportional gains were halved to produce a slower and stabler control, which can be seen

in these plots. By doing this, big position overshoots occur more often, but the benefits for the

UAV’s performance can be noticed.

The last odometry data to be examined is the linear velocity measured at each coordinate. The

plots for this data can be viewed in Figure 6.15.

Once again focusing on the Z component of the linear velocity plots, it can be noticed (as one

would expect) that the maximum absolute velocity of the descent is higher in the maximum mass

test than in the minimum (11.628 m/s over 10.132 m/s, respectively).

Moving on to the second scenario, the initial quadcopter’s position was set at (4, 4, 35) in

relation to the simulated world’s origin. For this experiment, the minimum mass value recorded

was 3.49 kg and the maximum mass was 3.57 kg, totaling an increase of 110 g. As before, the

trajectories of the UAV in the two different mass conditions are represented in Figure 6.16.

Figure 6.16: 3D trajectories (Dark Blue -> Min. Mass Condition and Cyan -> Max. Mass
Condition) followed by the quadcopter in both minimum mass and maximum mass conditions -
Initial Position (4, 4, 35)

94 Simulation Results and Discussion

(a) X-Position (b) Y-Position

(c) Z-Position

Figure 6.17: X, Y, and Z position measurements - Initial Position (4, 4, 35)

(a) Roll (φ) (b) Pitch (θ)

(c) Yaw (ψ)

Figure 6.18: Roll, Pitch, and Yaw angle measurements - Initial Position (4, 4, 35)

6.2 Results and Discussion 95

The X, Y and Z position coordinates plots can be viewed in Figure 6.17. Following the same

rationale as before, the time instant at which the quadcopter releases the payload is t = 13.3 sec

for the maximum mass and t = 16.867 sec for the minimum mass. The lowest height that the

quadcopter encounters in the minimum payload mass scenario is 4.148 m, much larger than the

0.575 m for the maximum payload mass test (possibly from the larger payload mass difference).

Continuing on the Z position plot, it is also possible to extract the time instants at which the

change in the position control inputs occurs (from the initial estimate for the Aruco Tracker’s

estimates). These time instants obviously occur at a height of 15 m (ArucoLim), which translates

to t = 12.5 sec for the maximum mass and t = 15.736 sec for the minimum load. In the plots of

the X and Y position measurements, it can be observed that at these time instants, a change in

behavior is registered, it being the reaction of the quadcopter to the new position estimates input.

As in the previous scenario, the test with the maximum mass still finishes earlier than the

minimum counterpart, by 3.703 seconds.

In Figure 6.18, the roll, pitch, and yaw angle measurements are plotted. As it was previously

mentioned, no pose commands sent affect the yaw angle directly, and because of that, a focus on

the roll and pitch angles will be given. With the start position not above the ArUco marker like

in the previous test, the UAV will be somewhat more aggressive with its positioning until an XY

position close to the objective is reached. For this reason, a bigger range of angles can be observed

with both roll and pitch varying between -20º and +20º, compared with the first test.

(a) X-Linear Velocity (b) Y-Linear Velocity

(c) Z-Linear Velocity

Figure 6.19: X, Y, and Z linear velocity measurements - Initial Position (4, 4, 35)

96 Simulation Results and Discussion

Another plot that is relevant to the analysis is presented in Figure 6.19, more specifically, the

linear Z-Velocity plot. Here, it is possible to notice that the maximum absolute velocity in this

axis for the maximum mass test is approximately 11.447 m/s and for the minimum mass test, it is

lower, at around 8.457 m/s.

Lastly, the measurements of the payload’s landing position from the tests performed are pre-

sented in Figures 6.20, 6.21 and 6.22. Notice that the data from Figure 6.22 and Table 6.3 belongs

to the third scenario mentioned in Subsection 6.1.2 whose tests’ odometry was not examined. This

is because the relevant data of the quadcopter’s measurements was very similar to the second test

setting analyzed (this data can, however, be seen in Appendix A). In this third scenario, the UAV

is initially dropped from the (-6, -6, 35) position and it has a minimum mass of 3.45 kg and a

maximum mass of 3.53 kg (also very similar to scenario two). However, a huge difference was

found when analyzing the accuracy of the payload release, since as can be seen in Tables 6.2 and

6.3, there is a substantial discrepancy between the accuracy of the second and third test scenarios.

Besides the expected decrease in accuracy as the quadcopter is dropped further from the ArUco’s

marker center, it was interesting to observe that in each one of the three test cases, the pattern

produced by the measured data was extremely similar for both mass scenarios, the only glaring

difference being the mean position of the two data clusters.

Figure 6.20: Positions of the payload’s landing points
from the tests done for an initial quadcopter position of
(0, 0, 35)

Table 6.1: Mean distance from the cen-
ter of marker and its standard deviation
obtained from the tests done for an ini-
tial quadcopter position of (0, 0, 35)

Mean
Dist. (m)

St. Dev.
(m)

Min.
Mass

0.372 0.073

Max.
Mass

0.545 0.176

6.2 Results and Discussion 97

Figure 6.21: Positions of the payload’s landing points
from the tests done for an initial quadcopter position of
(4, 4, 35)

Table 6.2: Mean distance from the cen-
ter of marker and its standard deviation
obtained from the tests done for an ini-
tial quadcopter position of (4, 4, 35)

Mean
Dist. (m)

St. Dev.
(m)

Min.
Mass

0.472 0.318

Max.
Mass

0.722 0.188

Figure 6.22: Positions of the payload’s landing points
from the tests done for an initial quadcopter position of
(-6, -6, 35)

Table 6.3: Mean distance from the cen-
ter of marker and its standard deviation
obtained from the tests done for an ini-
tial quadcopter position of (-6, -6, 35)

Mean
Dist. (m)

St. Dev.
(m)

Min.
Mass

0.880 0.204

Max.
Mass

0.768 0.251

98 Simulation Results and Discussion

Sensitivity and Robustness Tests

Following what has been previously stated in Subsection 6.1.2, twenty test scenarios were obtained

through the sampling of the gaussian distributions. For each scenario, it was then found what was

the minimum payload mass that induced a fall and, in the same way, the maximum payload mass

that could be attached to the quadcopter that still ensured mission success. However, as it is clear

in Table 6.4, some of the tests were deemed a failure regardless of the payload mass values. In

these cases, only the minimum mass value was recorded.

After obtaining the mass values, ten tests were performed for each one of them. From these

tests, the mean of the minimum distance from the ground reached by the quadcopter and the

maximum velocity acquired by the vehicle was then taken, whose data can be seen in Table 6.5.

Moreover, the average distance from the payload drop position to the center of the ArUco marker

was also obtained, as well as its standard deviation values. These results are presented in Table

6.6.

Table 6.4: Minimum and maximum payload masses for each set of test parameters

Test
Case
Nr.

xxx000

(m)
yyy000

(m)
zzz000

(m)
dropZ

(m)
Result

Min.
Mass
(kg)

Max.
Mass
(kg)

Mass
Diff.
(kg)

Max. Mass
Outside

(kg)
1 2.700 -4.770 31.710 7.670 SUCCESS* 3.520 3.580 0.060 -

2 -2.130 0.650 38.860 6.710 SUCCESS* 3.620 3.620 0.000 -

3 -0.860 1.270 15.170 5.040 SUCCESS 3.590 4.100 0.510 -

4 7.000 2.990 25.080 1.740 FAIL 3.520 - - -

5 -3.860 -5.110 41.880 8.600 SUCCESS* 3.500 3.520 0.020 -

6 0.770 -6.150 28.150 7.050 SUCCESS 3.520 3.650 0.130 3.900

7 2.440 -1.430 50.360 3.850 FAIL 3.530 - - -

8 0.790 1.320 36.820 9.040 SUCCESS* 3.600 3.670 0.070 -

9 6.380 7.360 38.540 8.680 FAIL 3.450 - - -

10 2.380 -5.030 53.210 3.970 FAIL 3.500 - - -

11 0.940 -3.530 36.090 10.650 SUCCESS 3.550 3.750 0.200 4.050

12 0.320 -4.850 41.530 6.790 SUCCESS* 3.500 3.520 0.020 -

13 -4.990 6.130 16.830 7.010 FAIL 3.500 - - -

14 4.770 0.280 27.540 6.570 SUCCESS 3.480 3.710 0.230 3.950

15 2.380 -5.630 23.500 8.430 SUCCESS 3.510 3.660 0.150 4.030

16 -7.710 1.390 27.870 7.320 SUCCESS 3.500 3.650 0.150 4.020

17 1.610 0.290 36.980 4.170 FAIL 3.590 - - -

18 5.980 2.160 42.410 10.900 SUCCESS* 3.480 3.520 0.040 -

19 -5.350 -5.440 30.300 7.240 SUCCESS* 3.480 3.620 0.140 -

20 -4.930 1.820 31.930 4.310 SUCCESS* 3.520 3.560 0.040 -

6.2 Results and Discussion 99

In Table 6.4, it is possible to observe that, despite a larger number of successful test cases

in comparison with the number of failed ones, many of the successful experiments were close to

the limit of failure, in the sense that, the difference between the minimum and maximum mass

is practically negligible. In fact, it was noticed that the minimum mass that induces a fall in the

simulated quadcopter is not the same for each case and it varies from 3.450 kg to 3.620 kg, ac-

cording to this test sample. The hypothesis for what causes this variation is that as the distance

from the initial quadcopter’s XY position in relation to the ArUco’s marker center increases, the

vehicle’s roll and pitch also initially increase to correct for the bigger error. By doing so, the ver-

tical thrust component diminishes, which in turn increases the resultant downward force, meaning

that less mass is necessary to make the quadcopter fall. In this way, to better distinguish the clear

successful experiments from the ones that could have been potentially caused by this variation, the

successful test cases where the maximum mass was less than or equal to 3.620 kg (maximum of

"Minimum Mass") or the mass difference was equal or inferior to 100 g (negligible improvement)

were marked with an asterisk ("*"). Note that, although the maximum value of the minimum mass

needed to induce a fall was detected in the first Performance Analysis’ test to be 3.650 kg, none of

the tests from this set achieved a minimum mass close to that value.

Five of the clear successful test cases (numbered 6, 11, 14, 15, and 16) stand out by having the

column "Max. Mass Outside" filled. This column represents the maximum payload mass that the

quadcopter was able to deliver without crashing into the ground; however, for the masses between

the defined "Max. Mass" and "Max. Mass Outside" the cargo did not fall within the 2x2 m square

area around the ArUco marker for these mass values to be considered as part of the successful

range. This implies that given a less restrictive payload landing area, the effective mass range

could be increased in these tests.

Additionally, continuing with the successful test cases, the one that allowed for a greater mass

range was test case 3, with 510 g of mass difference between the minimum and maximum val-

ues. The initial parameters of this test provide a very favorable scenario since both x0 and y0 are

close to the marker’s XY position (0, 0), and the initial height is low (15.170 m), indicating that

the quadcopter does not acquire a very high velocity before releasing the payload at 5.040 m of

altitude.

On another note, it is also essential to analyze the test cases that led to a failure. Similarly to

the successful cases, the failed ones can also be divided into two groups. The first group includes

the test cases where although the quadcopter could recover from the fall without crashing, it was

not accurate enough for the payload to be dropped inside the intended drop zone. This group only

includes test case 13, where given the large initial XY distance to the marker’s center, the vehicle

could not correct its course within the 16.830 m of altitude. The second group is composed of the

remaining failed test cases, where the quadcopter ended up crashing into the ground in every single

test. For this last group, the circumstances that caused a crash were a low dropZ (below 4.3 m), a

high initial altitude z0 (above approximately 43 m), a large initial XY distance from the marker’s

center (both x0 and y0 above -5 m and below 5 m, approximately) or a combination of two or three

of these factors, e.g. test case 10 where both a high z0 as well as a low dropZ produced a failure

100 Simulation Results and Discussion

scenario.

Table 6.5: Mean of the minimum height and maximum drop velocity at which the quadcopter
reverses the movement in each successful test

Test
Case
Nr.

Res.
Min. Z Distance

(Min. Mass)
(m)

Min. Z Distance
(Max. Mass)

(m)

Max. Z Velocity
(Min. Mass)

(m/s)

Max. Z Velocity
(Max. Mass)

(m/s)
1 S* 4.542 2.949 -8.906 -10.186

2 S* 0.650 - -11.233 -

3 S 2.907 1.849 -7.715 -8.789

4 F - - -9.907 -

5 S* 1.994 0.413 -11.610 -12.528

6 S 4.694 3.120 -7.439 -11.236

7 F - - -13.294 -

8 S* 5.063 3.214 -9.267 -11.230

9 F - - -11.935 -

10 F - - -17.206 -

11 S 5.368 3.545 -8.520 -11.455

12 S* 2.041 0.508 -10.210 -11.501

13 F - - -4.262 -

14 S 4.891 0.472 -6.284 -11.106

15 S 5.213 5.056 -5.385 -8.431

16 S 4.692 3.721 -7.576 -11.600

17 F - - -10.789 -

18 S* 3.912 2.371 -12.018 -12.644

19 S* 4.463 2.223 -8.252 -10.459

20 S* 1.212 0.451 -9.020 -9.851

Focusing on Table 6.5, it is observed that, as one would expect, the minimum height reached

by the quadcopter decreases with a larger payload mass in all test cases. In a similar sense, as

expected, the maximum vertical velocity acquired by the vehicle is higher for the maximum mass

scenario since the higher weight causes an increase in the downwards resultant force (thrust values

remain constant) and, consequently a higher acceleration.

Another expected result shown in Table 6.5, is tied with the fact that in the "non-clear" suc-

cessful test cases (marked with an asterisk) the variation between the vertical velocities in both

mass scenarios is rather small, excluding the test cases 1, 8 and 19, which correspond with the test

cases of this group where the mass difference is the largest (60 g, 70 g, and 140 g, respectively).

One of the test case results that stands out from the remaining ones is test case 15, that despite

having initial parameters comparable with test cases 6 and 16 (which display relatively similar re-

sults compared with each other), both the minimum height distance and maximum vertical velocity

6.2 Results and Discussion 101

results show a very different behavior. In fact, the minimum height achieved by the quadcopter in

the maximum mass scenario (5.213 m) practically does not change when compared to the mini-

mum mass scenario (5.056 m), for a reason that remains unknown. On the other hand, looking at

the maximum vertical velocity of the vehicle in this test case, it is apparent that (excluding failed

tests) it shows the lowest value in both mass scenarios. Although seemingly incongruent with the

rest of the test sample, these values are still plausible given the high dropZ of 8.430 m and the

velocity in the minimum mass setting, which is still higher than the one of the failed test case 13,

with a z0 of 16.830 m (lower than the z0 of test case 15).

Table 6.6: Mean distances of payload drop positions from the center of the marker, along with the
standard deviation for the minimum and maximum mass scenario

Test
Case
Nr.

Res.
Mean Distance

(Min. Mass)
(m)

Mean Distance
(Max. Mass)

(m)

St. Deviation
(Min. Mass)

(m)

St. Deviation
(Max. Mass)

(m)
1 S* 0.842 0.537 0.125 0.129

2 S* 0.550 - 0.262 -

3 S 0.577 0.756 0.134 0.104

4 F - - - -

5 S* 0.479 0.690 0.164 0.193

6 S 0.794 0.739 0.101 0.202

7 F - - - -

8 S* 0.490 0.960 0.104 0.084

9 F - - - -

10 F - - - -

11 S 0.409 0.708 0.274 0.438

12 S* 0.235 0.733 0.093 0.169

13 F - - - -

14 S 0.494 0.997 0.236 0.140

15 S 0.600 0.430 0.212 0.089

16 S 0.286 0.687 0.189 0.212

17 F - - - -

18 S* 0.376 0.804 0.351 0.146

19 S* 0.613 0.843 0.283 0.217

20 S* 0.205 0.519 0.150 0.112

In test case 3, a relatively small increase in maximum vertical velocity (≈ 1 m/s) was detected,

although this test case was the one with the largest mass range out of all twenty samples. This

phenomenon relates to the same reason that allowed this larger mass difference, the low initial

altitude (z0). Starting from a height of 15.170 m and dropping the cargo at the 5.040 m mark, the

quadcopter only has the chance to accelerate in a 10 m gap. This, paired with the initial potential

102 Simulation Results and Discussion

energy being the smallest out of all test cases, results in a large increase in mass that does not

translate to a significant increase in maximum vertical velocity.

Similarly to the single test analysis previously discussed, the accuracy of the payload drop

was analyzed for each test case and the results can be found in Table 6.6. It is possible to observe

that, in general, the mean distance of the payload drop position to the center of the marker in the

maximum mass case is higher, as someone would expect, since the higher mass will, in theory,

make the control of the quadcopter harder. However, some notable exceptions were noticed in

test cases 1, 6 (negligible), and 15, where the opposite of what would be expected occurred. In

these cases, it is possible that the added weight might have contradictorily helped the control of

the quadcopter by attenuating what in the minimum mass scenario could have caused an overshoot

of the target area.

As it was seen during the analysis of the payload drop positions from the Figures 6.20, 6.21,

6.22 and Tables 6.1, 6.2, 6.3, although the mean distance from the center of the marker was

different for the minimum and maximum mass scenario, the pattern made by the measurements

was extremely similar and would be reflected in the standard deviation. Knowing this, it would

be assumed that the same phenomenon would occur for these test samples, which in general was

what happened, with the standard deviation differing only around 0.150 in the extreme test cases

(numbered 11 and 18), coincident with what was observed before in the Performance Analysis of

the Control Algorithm.

To conclude this analysis, it was seen that controlling a quadcopter to deliver an overweight

payload is possible within certain limits and with varied effective mass ranges. Given the high

number of input parameters and the limited dataset from the simulation results, some very restric-

tive successful test boundaries can be defined. Starting with the initial position, the quadcopter

should be placed anywhere inside an inverted cone centered on the ArUco marker’s center with

its base of radius
√

52 +52 ≈ 7.07 m set at a 30 m height and its vertice at the dropZ height that

should have a value larger than 7.5 m. Additionally, the overweight payload mass, for this simu-

lated quadcopter, should be set between 3.490 kg and 3.610 kg. These parameter restrictions can

be better visualized in Figure 6.23 and will ensure, from the data that has been gathered through

these tests, a guaranteed successful mission.

Figure 6.23: Pictorial representation of the test parameter restrictions for a successful outcome

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis explored the possibility of controlling an overweight quadcopter by making use of

a vision-based approach with the intent of applying the system in a payload delivery scenario.

Since this topic is not highly discussed in the literature, several problems arising from operating a

quadcopter in abnormal conditions had to be accounted for.

First, research was carried out in order to understand the current state of the art in UAV tech-

nology, exploring at the same time previous studies related to the subject at hand. Next, a crucial

mathematical analysis of the intricate dynamics of the quadcopter platform was performed, which

also allowed for the elaboration of a complete model of the system.

After having the proper background knowledge to tackle the problem, the choice of hardware

and software tools was made, justifying each selection. Studying the hardware available allowed

to establish a physical basis from which the simulated UAV could pull the necessary informa-

tion. Following that, the actual control algorithm was implemented in a simulated scenario. Thus

providing a means to obtain data and assess the viability of the system.

Starting with the Aruco Tracker algorithm, it was found that the system performed adequately

for the problem it was inserted in. However, the integration made with the OpenCV ArUco li-

brary still lacked several improvements, with two of the most important ones being an increase in

the accuracy of the measurements, and the processing speed, which still considerably limits the

performance.

As for the tests of the main control algorithm and simulator setup, some interesting results

were found. The most impressive one was the relatively narrow range of overload mass that the

UAV could operate without crashing, as for many tests, it did not surpass 150 g, while in other

tests, it would only carry 20 g above its limit, which seems to be an improbable scenario in a

real-world setting. However, it was also found that within certain conditions, the system was able

to successfully control payloads with a mass over 500 g larger than its limit. Another interesting

finding was that the minimum mass necessary to induce a fall of the quadcopter system varied

103

104 Conclusions and Future Work

depending on the initial test conditions, with the most significant factor being the XY distance to

the target.

During the simulation tests, some chaotic behavior was occasionally noted, which may have

been due to the Gazebo Motor Model plugin’s inadequacies for these unusual circumstances or

merely to its simplistic implementation of complicated aerodynamic processes as described in

Chapter 5.

On the other hand, despite the small mass ranges of operation, the concept of controlling a

quadcopter with a payload over the weight limit with relatively good accuracy was successfully

proven within certain conditions. Nevertheless, this does not rule out the need to test the algorithm

on a real platform, especially after the questions that the simulated behavior gave rise to.

7.2 Future Work

The existing work certainly has a lot of room for improvements or further development, as was

noted in the preceding Section. However, due to hardware and time restrictions, this was not

achievable in this thesis. Some of the possible future developments are listed below.

• As previously mentioned, one of the most important improvements to be made would be to

implement and test the algorithm in a real UAV platform, preferably the one discussed in

this document;

• Experiment with wind perturbations in order to further test the robustness of the control;

• Implement a better fiducial tracker algorithm, specifically suited to operate in these unstable

conditions;

• Introducing a gimbaled camera system, which would also help with the previous point;

• Develop a more accurate Gazebo Motor Model plugin, without sacrificing the computational

efficiency as this could possibly hinder the performance of the quadcopter system;

• Develop a UAV system specifically designed for these operation conditions, possibly using

some kind of drag-inducing active or passive mechanism or even taking advantage of the

autorotation phenomena;

• Experiment with other tracking sensors, such as thermal or infrared cameras, which would

not only broaden the application spectrum of this technology but would also allow for better

performance under low-light scenarios.

Appendix A

Control Algorithm - Performance
Analysis Data

A.1 Test with initial position (-6, -6, 35) and dropZ = 7.0 m

Figure A.1: 3D trajectories (Dark Blue -> Min. Mass Condition and Cyan -> Max. Mass
Condition) followed by the quadcopter in both minimum mass and maximum mass conditions -
Initial Position (-6, -6, 35)

105

106 Control Algorithm - Performance Analysis Data

(a) X-Position (b) Y-Position

(c) Z-Position

Figure A.2: X, Y, and Z position measurements - Initial Position (-6, -6, 35)

(a) Roll (φ) (b) Pitch (θ)

(c) Yaw (ψ)

Figure A.3: Roll, Pitch, and Yaw angle measurements - Initial Position (-6, -6, 35)

A.1 Test with initial position (-6, -6, 35) and dropZ = 7.0 m 107

(a) X-Linear Velocity (b) Y-Linear Velocity

(c) Z-Linear Velocity

Figure A.4: X, Y, and Z linear velocity measurements - Initial Position (-6, -6, 35)

108 Control Algorithm - Performance Analysis Data

References

[1] César R., Carlos Morales, Juan Ospina, Joaquin F Sanchez, Claudia Caro-Ruiz, Víctor
Grisales, Paola Ariza, Emiro De la Hoz, and Ramon Gonzalez. Mathematical Mod-
elling and Identification of a Quadrotor, pages 261–275. 10 2020. doi:10.1007/
978-3-030-58799-4_19.

[2] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco Madrid-Cuevas, and Rafael
Medina-Carnicer. Generation of fiducial marker dictionaries using mixed integer linear pro-
gramming. Pattern Recognition, 51, 10 2015. doi:10.1016/j.patcog.2015.09.023.

[3] Francisco Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-Carnicer. Speeded
up detection of squared fiducial markers. Image and Vision Computing, 76, 06 2018. doi:
10.1016/j.imavis.2018.05.004.

[4] Geoffrey Chiou. Reducing the variance of intrisic camera calibration results in the ros cam-
era_calibration package. Master’s thesis, Graduate Faculty of The University of Texas at San
Antonio, 2017.

[5] Haiyang Chao, Yongcan Cao, and YangQuan Chen. Autopilots for small unmanned aerial
vehicles: A survey. International Journal of Control Automation and Systems, 8:36–44, 02
2010. doi:10.1007/s12555-010-0105-z.

[6] Paul Fahlstrom. Introduction to UAV Systems, Fourth Edition. John Wiley and Sons, Ltd,
2012. doi:https://doi.org/10.1002/9781118396780.fmatter.

[7] Anthony Cummings, Arlo McKee, Keyur Kulkarni, and Nakul Markandey. The rise of
uavs. Photogrammetric Engineering Remote Sensing, 83:318, Apr 2017. doi:10.14358/
PERS.83.4.317.

[8] Stefan Poikonen and James Campbell. Future directions in drone routing research. Networks,
77, Sept 2020. doi:10.1002/net.21982.

[9] Diana G. Cornelisse. Splendid Vision, Unswerving Purpose: Developing Air Power for
the United States Air Force During the First Century of Powered Flight. U.S. Air Force
Publications, 2003.

[10] Bishane A. Whitmore. Evolution of unmanned aerial warfare: A historical look at remote
airpower, 2016.

[11] John David Blom. Unmanned Aerial Systems: A Historical Perspective. CreateSpace Inde-
pendent Publishing Platform, 2010.

109

http://dx.doi.org/10.1007/978-3-030-58799-4_19
http://dx.doi.org/10.1007/978-3-030-58799-4_19
http://dx.doi.org/10.1016/j.patcog.2015.09.023
http://dx.doi.org/10.1016/j.imavis.2018.05.004
http://dx.doi.org/10.1016/j.imavis.2018.05.004
http://dx.doi.org/10.1007/s12555-010-0105-z
http://dx.doi.org/https://doi.org/10.1002/9781118396780.fmatter
http://dx.doi.org/10.14358/PERS.83.4.317
http://dx.doi.org/10.14358/PERS.83.4.317
http://dx.doi.org/10.1002/net.21982

110 REFERENCES

[12] Dalamagkidis K. Classification of uavs. In Handbook of Unmanned Aerial Vehi-
cles, pages 83–91. Springer, Dordrecht, 2015. doi:https://doi.org/10.1007/
978-90-481-9707-1_94.

[13] Mostafa Hassanalian and Abdessattar Abdelkefi. Classifications, applications, and design
challenges of drones: A review. Progress in Aerospace Sciences, 91, 05 2017. doi:10.
1016/j.paerosci.2017.04.003.

[14] Pam Frost Gorder. Sizing up smart dust. Computing in Science Engineering, 5:6 – 9, 12
2003. doi:10.1109/MCISE.2003.1238697.

[15] Kay Römer. Tracking real-world phenomena with smart dust. volume 2920, pages 28–43,
01 2004. doi:10.1007/978-3-540-24606-0_3.

[16] Rj Wood, B Finio, Michael Karpelson, Kevin Ma, Nestor Perez-Arancibia, Ps Sreetharan,
H Tanaka, and Jp Whitney. Progress on ’pico’ air vehicles. International Journal of Robotics
Research, 31:1292–1302, 09 2012. doi:10.1177/0278364912455073.

[17] João Costa. Drone flock: Formation control of multi-drones. Master’s thesis, Faculdade de
Engenharia da Universidade do Porto, October 2019.

[18] Thomas A. Ward, Christopher J. Fearday, Erfan Salami, and Norhayati Binti Soin. A biblio-
metric review of progress in micro air vehicle research. International Journal of Micro Air
Vehicles, 9(2):146–165, June 2017. doi:10.1177/1756829316670671.

[19] Comissão Europeia. Regulamento de execução (ue) 2019/947 da comissão relativo às re-
gras e aos procedimentos para a operação de aeronaves não tripuladas. Official European
Union Journal, May 2019. URL: https://eur-lex.europa.eu/legal-content/
PT/TXT/PDF/?uri=CELEX:32019R0947&from=DE.

[20] Brian Leininger, Jonathan Edwards, John Antoniades, David Chester, Dan Haas, Eric Liu,
Mark Stevens, Charlie Gershfield, Mike Braun, James Targove, Steve Wein, and Paul Brewer.
Autonomous real-time ground ubiquitous surveillance - imaging system (argus-is) - art. no.
69810h. Proceedings of SPIE - The International Society for Optical Engineering, 6981, 05
2008. doi:10.1117/12.784724.

[21] Alena Otto, Niels Agatz, James Campbell, Bruce Golden, and Erwin Pesch. Optimization
approaches for civil applications of unmanned aerial vehicles (uavs) or aerial drones: A
survey. Networks, 72, 03 2018. doi:10.1002/net.21818.

[22] Jacob Wachlin, Michael Ward, Benjamin Leon, Mark Costello, Andrew Leonard, and
Jonathan Rogers. Egres: An emergency guided recovery system for unmanned aerial sys-
tems. 05 2022. doi:10.2514/6.2022-2741.

[23] SS Houston and RE Brown. Rotor-wake modeling for simulation of helicopter flight me-
chanics in autorotation. Journal of Aircraft, 40, 09 2003. doi:10.2514/2.6870.

[24] Kohei Yamaguchi, Yosuke Maeda, Shun Watanabe, Kota Shibata, Shigeru Sunada, Yasutada
Tanabe, Koichi Yonezawa, and Hiroshi Tokutake. Study on emergency landing method for a
collective pitch controllable quadrotor uav suffering a loss of one motor. 10 2018.

[25] Vincenzo Lippiello, Fabio Ruggiero, and Diana Serra. Emergency landing for a quadrotor
in case of a propeller failure: A backstepping approach. In 2014 IEEE/RSJ International

http://dx.doi.org/https://doi.org/10.1007/978-90-481-9707-1_94
http://dx.doi.org/https://doi.org/10.1007/978-90-481-9707-1_94
http://dx.doi.org/10.1016/j.paerosci.2017.04.003
http://dx.doi.org/10.1016/j.paerosci.2017.04.003
http://dx.doi.org/10.1109/MCISE.2003.1238697
http://dx.doi.org/10.1007/978-3-540-24606-0_3
http://dx.doi.org/10.1177/0278364912455073
http://dx.doi.org/10.1177/1756829316670671
https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32019R0947&from=DE
https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32019R0947&from=DE
http://dx.doi.org/10.1117/12.784724
http://dx.doi.org/10.1002/net.21818
http://dx.doi.org/10.2514/6.2022-2741
http://dx.doi.org/10.2514/2.6870

REFERENCES 111

Conference on Intelligent Robots and Systems, pages 4782–4788, 2014. doi:10.1109/
IROS.2014.6943242.

[26] Hunter Denton, Moble Benedict, Hao Kang, and Vikram Hrrishikenshavan. Design, devel-
opment and flight testing of a gun-launched rotary-wing micro air vehicle. In Vertical Flight
Society’s 76th Annual Forum, 2020.

[27] Konstantin Matveev, John Swensen, and Matthew Taylor. Modeling of decelerated descent
of an elongated body with vectored thrust. 07 2018. doi:10.1115/FEDSM2018-83171.

[28] Mohammad Fattahi Sani and Ghader Karimian. Automatic navigation and landing of an
indoor ar. drone quadrotor using aruco marker and inertial sensors. In 2017 International
Conference on Computer and Drone Applications (IConDA), pages 102–107, 2017. doi:
10.1109/ICONDA.2017.8270408.

[29] Ephraim Nowak, Kashish Gupta, and Homayoun Najjaran. Development of a plug-and-play
infrared landing system for multirotor unmanned aerial vehicles. In 2017 14th Conference on
Computer and Robot Vision (CRV), pages 256–260, 2017. doi:10.1109/CRV.2017.23.

[30] Paweł Smyczyński, Łukasz Starzec, and Grzegorz Granosik. Autonomous drone control sys-
tem for object tracking: Flexible system design with implementation example. In 2017 22nd
International Conference on Methods and Models in Automation and Robotics (MMAR),
pages 734–738, 2017. doi:10.1109/MMAR.2017.8046919.

[31] Sven Lange, Niko Sünderhauf, and Peter Protzel. Autonomous landing for a multirotor uav
using vision. In Workshop Proceedings of SIMPAR 2008 Intl. Conf. on Simulation, Modeling
and Programming for Autonomous Robots, 01 2008.

[32] Yuan Haiwen, Changshi Xiao, Supu Xiu, Wenqiang Zhan, Zhenyi Ye, Fan Zhang, Chunhui
Zhou, Yuanqiao Wen, and Qiliang Li. A hierarchical vision-based localization of rotor un-
manned aerial vehicles for autonomous landing. International Journal of Distributed Sensor
Networks, 14:155014771880065, 09 2018. doi:10.1177/1550147718800655.

[33] Alexandre Borowczyk, Nguyen Tien, Andre Nguyen, Dang Nguyen, David Saussie, and
Jerome Le Ny. Autonomous landing of a quadcopter on a high-speed ground vehicle. Journal
of Guidance, Control, and Dynamics, 40:1–8, 04 2017. doi:10.2514/1.G002703.

[34] Jamie Wubben, Francisco Fabra, Carlos Calafate, Tomasz Krzeszowski, Johann Marquez-
Barja, Juan-Carlos Cano, and Pietro Manzoni. Accurate landing of unmanned aerial
vehicles using ground pattern recognition. 8:1532, 12 2019. doi:10.3390/
electronics8121532.

[35] Arno Virtanen. Machine vision based landing zone recognition. Master’s thesis, Faculty of
Information Technology and Communication Sciences of Tampere University, 2019.

[36] Victor Miranda, Adriano Rezende, Thiago Rocha, Héctor Azpúrua, Luciano Pimenta, and
Gustavo Freitas. Autonomous navigation system for a delivery drone. 06 2021.

[37] Luukkonen Teppo. Modelling and control of quadcopter. 01 2011.

[38] Quan Quan. Introduction to Multicopter Design and Control. Springer, Singapore, First
edition, 2017. doi:https://doi.org/10.1007/978-981-10-3382-7.

http://dx.doi.org/10.1109/IROS.2014.6943242
http://dx.doi.org/10.1109/IROS.2014.6943242
http://dx.doi.org/10.1115/FEDSM2018-83171
http://dx.doi.org/10.1109/ICONDA.2017.8270408
http://dx.doi.org/10.1109/ICONDA.2017.8270408
http://dx.doi.org/10.1109/CRV.2017.23
http://dx.doi.org/10.1109/MMAR.2017.8046919
http://dx.doi.org/10.1177/1550147718800655
http://dx.doi.org/10.2514/1.G002703
http://dx.doi.org/10.3390/electronics8121532
http://dx.doi.org/10.3390/electronics8121532
http://dx.doi.org/https://doi.org/10.1007/978-981-10-3382-7

112 REFERENCES

[39] Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor aerial vehicles: Modeling, esti-
mation, and control of quadrotor. IEEE Robotics Automation Magazine, 19(3):20–32, 2012.
doi:10.1109/MRA.2012.2206474.

[40] Karena McKinney, Daniel Wang, Jianhuai Ye, Jean-Baptiste de Fouchier, Patrícia
Guimarães, Carla Batista, Rodrigo Souza, Eliane Alves, Dasa Gu, Alex Guenther, and
Scot Martin. A sampler for atmospheric volatile organic compounds by copter unmanned
aerial vehicles. Atmospheric Measurement Techniques, 12:3123–3135, 06 2019. doi:
10.5194/amt-12-3123-2019.

[41] A. Noth, Samir Bouabdallah, and Roland Y. Siegwart. Dynamic modeling of fixed-wing
uavs. pages 0–11, 2006.

[42] Andrew Gibiansky. Quadcopter dynamics and simulation, Nov 2012. URL: https://
andrew.gibiansky.com/blog/physics/quadcopter-dynamics/.

[43] Bob Palais and Richard Palais. Euler’s fixed point theorem: The axis of a rotation. Journal
of Fixed Point Theory and Applications, 2:215–220, 2007.

[44] Marcus Greiff. Modelling and Control of the Crazyflie Quadrotor for Aggressive and Au-
tonomous Flight by Optical Flow Driven State Estimation, 2017. Student Paper.

[45] ILKER ŞAHIN. Measurement of brushless dc motor characteristics and parameters and
brushless dc motor design. Master’s thesis, The Graduate School of Natural and Applied
Sciences of Middle East Technical University, 2010.

[46] G.C. Gessow, A. Myers. Aerodynamics of the Helicopter. F. Ungar Publishing Company,
8th edition, 1985.

[47] Peng-jie Shao, Wen-han Dong, Xiu-xia Sun, Tuan-jie Ding, and Quan Zou. Dynamic sur-
face control to correct for gyroscopic effect of propellers on quadrotor. In 2015 IEEE In-
ternational Conference on Information and Automation, pages 2971–2976, 2015. doi:
10.1109/ICInfA.2015.7279797.

[48] Vasilis Tzivaras. Building a Quadcopter with Arduino. Packt Publishing, 2016.

[49] Pixhawk. Pixhawk 4 Technical Datasheet, 08 2018.

[50] Ioannis Badakis. Detecting and approaching points of interest with drones using visual mark-
ers. Master’s thesis, University of Thessaly, 2018.

[51] Armando Sanca, Pablo Alsina, and Jes Cerqueira. Dynamic modelling of a quadrotor aerial
vehicle with nonlinear inputs. Latin American Robotics Symposium and Intelligent Robotics
Meeting, 0:143–148, 10 2008. doi:10.1109/LARS.2008.17.

[52] Ankit Goel, Juan Paredes, Harshil Dadhaniya, Syed Islam, Abdulazeez Mohammed, Sai
Ravela, and Dennis Bernstein. Experimental implementation of an adaptive digital autopilot.
pages 3737–3742, 05 2021. doi:10.23919/ACC50511.2021.9483005.

[53] Anis Koubâa, Azza Allouch, Maram Alajlan, Yasir Javed, Abdelfettah Belghith, and Mo-
hamed Khalgui. Micro air vehicle link (mavlink) in a nutshell: A survey. IEEE Access,
7:87658–87680, 2019. doi:10.1109/ACCESS.2019.2924410.

http://dx.doi.org/10.1109/MRA.2012.2206474
http://dx.doi.org/10.5194/amt-12-3123-2019
http://dx.doi.org/10.5194/amt-12-3123-2019
https://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/
https://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/
http://dx.doi.org/10.1109/ICInfA.2015.7279797
http://dx.doi.org/10.1109/ICInfA.2015.7279797
http://dx.doi.org/10.1109/LARS.2008.17
http://dx.doi.org/10.23919/ACC50511.2021.9483005
http://dx.doi.org/10.1109/ACCESS.2019.2924410

REFERENCES 113

[54] Anthony Lamping, Justin Ouwerkerk, Nicklas Stockton, Kelly Cohen, Manish Kumar, and
David Casbeer. Flymaster: Multi-uav control and supervision with ros. 06 2018. doi:
10.2514/6.2018-4245.

[55] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Ng. Ros: an open-source robot operating system. volume 3, 01 2009.

[56] Kazushi Yamashina, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota. Proposal of
ros-compliant fpga component for low-power robotic systems. 08 2015.

[57] Mirella Santos Pessoa de Melo, José Gomes da Silva Neto, Pedro Jorge Lima da Silva,
João Marcelo Xavier Natario Teixeira, and Veronica Teichrieb. Analysis and comparison of
robotics 3d simulators. In 2019 21st Symposium on Virtual and Augmented Reality (SVR),
pages 242–251, 2019. doi:10.1109/SVR.2019.00049.

[58] Philippe Martin and Erwan Salaün. The true role of accelerometer feedback in quadrotor
control. In 2010 IEEE International Conference on Robotics and Automation, pages 1623–
1629, 2010. doi:10.1109/ROBOT.2010.5509980.

[59] Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics. Wiley, 2 edition,
1994.

[60] Song Xiang, Yuan qiang Liu, Gang Tong, Wei ping Zhao, Sheng xi Tong, and Ya dong
Li. An improved propeller design method for the electric aircraft. Aerospace Science and
Technology, 78:488–493, 2018. doi:https://doi.org/10.1016/j.ast.2018.05.
008.

[61] Nathaniel Bowditch. The American Practical Navigator. National Imagery and Mapping
Agency, 2002.

[62] Robert Niemiec and Feny Gandhi. A comparison between quadrotor flight configurations.
09 2016.

http://dx.doi.org/10.2514/6.2018-4245
http://dx.doi.org/10.2514/6.2018-4245
http://dx.doi.org/10.1109/SVR.2019.00049
http://dx.doi.org/10.1109/ROBOT.2010.5509980
http://dx.doi.org/https://doi.org/10.1016/j.ast.2018.05.008
http://dx.doi.org/https://doi.org/10.1016/j.ast.2018.05.008

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Document Structure

	2 State Of The Art
	2.1 Brief History
	2.2 Classification of UAVs
	2.2.1 UAV Typologies
	2.2.2 Multicopter UAV Configurations
	2.2.3 Classification of UAVs according to Portugal's regulations

	2.3 Applications of UAVs
	2.4 Related Works
	2.4.1 UAV Controlled Descent
	2.4.2 UAV Vision-Based Control

	3 Flight Dynamics and System Model
	3.1 Working Principles of a Quadcopter
	3.2 Modeling Assumptions
	3.2.1 Coordinate Frames
	3.2.2 System Variables

	3.3 Kinematics
	3.4 Physics
	3.4.1 Motors
	3.4.2 Translational Dynamics
	3.4.3 Rotational Dynamics art:cardenas
	3.4.4 Complete System Model

	4 Project Design Components
	4.1 Hardware
	4.1.1 Physical Quadcopter
	4.1.2 Pixhawk 4 Flight Controller
	4.1.3 Raspberry Pi 4 - Companion Computer
	4.1.4 Camera
	4.1.5 Assembled Quadcopter

	4.2 Software
	4.2.1 PX4-Autopilot
	4.2.2 Robotic Operating System (ROS)
	4.2.3 Gazebo Simulator
	4.2.4 ArUco Library art:garridoart:romero

	5 Implementation
	5.1 Simulation Environment
	5.1.1 Quadcopter SDF Model
	5.1.2 Payload
	5.1.3 ArUco Model
	5.1.4 Simulation World

	5.2 System Architecture
	5.2.1 ROS Implementation

	5.3 Aruco Tracker
	5.3.1 Detection Algorithm and Pose Estimation
	5.3.2 Coordinate Transformations

	5.4 Control Algorithm

	6 Simulation Results and Discussion
	6.1 Experimental Methodology
	6.1.1 Aruco Tracker
	6.1.2 Control Algorithm

	6.2 Results and Discussion
	6.2.1 Aruco Tracker
	6.2.2 Control Algorithm

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	A Control Algorithm - Performance Analysis Data
	A.1 Test with initial position (-6, -6, 35) and dropZ = 7.0 m

	References

