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Resumo

Este trabalho estuda diferentes métodos e técnicas de resolução do complexo problema de con-
dução autónoma focando-se principalmente em aprendizagem por reforço, um método que con-
segue criar um agente com uma condução mais eficiente e segura. Isto é em contraste a aprendiza-
gem por imitação muito usada em condução autónoma que traz desvantagens como a necessidade
de grandes quantidades de dados. Com a análise de diferentes métodos feita propõe-se um novo
método de aprendizagem, baseado em aprendizagem por reforço, mas com a adição de um com-
ponente de aprendizagem distribuída e outro de troca de mensagens que permite cooperação entre
agentes. Com esta abordagem os agentes conseguem melhor desempenho que os métodos anteri-
ores quando testados com uma bateria de testes. Todos os resultados são validados no simulador
de condução autónoma chamado Carla.

i



ii



Abstract

Autonomous driving is the next revolution in transportation, promising to make road transporta-
tion safer and more efficient. Recently it has seen a big increase in research and development, this
is partly due to the rise in processing power and advances in machine learning and deep learning.
Typically a large part of self-driving is done using supervised learning or behaviour cloning, re-
quiring massive datasets containing expert driving experiences. Reinforcement Learning provides
a different approach to creating an autonomous driving agent, it still doesn’t require the explicit
programming of driving rules or law and due to its nature it doesn’t require labelled expert data.
Different methods of reinforcement learning and different configurations are studied and a final ar-
chitecture is proposed and analysed. It consists of a ResNet encoder and a variant of a model-free
algorithm, SAC (Soft-Actor-Critic). This approach additionally leverages a multi-agent architec-
ture, adding the advantages of cooperation, faster sample collection and the ability to better utilize
computational resources. The final agent is put through a battery of driving tests and also it is heav-
ily scrutinized, by observing what parts of the input causes its action. The results are validated in
a simulator called Carla.
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Chapter 1

Introduction

1.1 Context and Motivation

During the last decades there has been a massive increase in computing power, closely related

to the expansion of AI and machine learning techniques, past problems deemed impossible or

extremely hard to work on are slowly being resolved. One of those problems is autonomous

driving, specially in complex urban scenarios. Specifically, a complex problem to solve for an

autonomous agent is to be able to process high dimensionality inputs, such as, RGB cameras or in-

vehicle sensors (e.g. LIDAR or Radar) in a real time environment and follow all the driving laws,

while being efficient with respect to energy consumption and time to destination. For context, the

Driver and Vehicle Standards Agency (DVSA) indicates that the average person takes on average

65+ hours of practising to learn how to drive [81].

According to the Coalition for Future Mobility [35] autonomous vehicles have a wide range

of benefits, they could save lives, change the lives of people with disabilities and increase pro-

ductivity and reduce fuel use and carbon emissions. They are slated to be the next revolution in

transportation [37].

In the last decade a number of self-driving startups have been founded. Although there exists

little public information, the conventional approach to train an agent is to resort to behaviour

cloning or supervised learning 2.8. Although this approach has its merits, it requires massive

amounts of pre-labelled driving data from human drivers (which is costly) and might not perform

well in specific scenarios with little or no available data. Reinforcement Learning (RL) is another

approach to create an agent capable of driving. RL is an area of machine learning that recently has

seen a lot of advances, mainly due to the advances in Deep Learning and interest by companies

like OpenAI, developing agents that quickly can achieve superhuman performance in a variety

of games and challenges [3]. Its one of the three basic machine learning paradigms along side

supervised learning and unsupervised learning, it is concerned with creating an agent that chooses

actions in order to maximize a reward and it doesn’t need labelled data. Reinforcement learning

has the big disadvantage of needing an advanced simulator (one that mimics real life challenges

encountered by a car), or an environment where it isn’t possible for the agent to do any harm.

1



2 Introduction

Additional benefits related to more efficient transportation are possible when an agent is

trained in conjunction with others, as a multi-agent system, where behaviours could emerge from

the cooperation by the fleet of agents.

1.2 Objectives

The goals of this work is to develop an agent with the following characteristics:

• Capable of following basic driving laws.

• Trained with reinforcement learning and distributed.

• Validated and tested with real-life scenario examples.

1.3 Document Structure

First in chapter 2 the foundations required to create an autonomous vehicle are studied, starting

with the definition of autonomous driving, the concepts around it and related work, then the build-

ing blocks for creating a reinforcement learning agent, Machine Learning, then Deep Learning
and finally Reinforcement Learning, in the end of this chapter we analyze implementations that

are currently being used by companies. In chapter 3 details of the framework, environment and the

different implementations of each RL agent are presented and towards the end a novel architecture

is showcased, results of each agent’s performance are shown and discussed. In chapter 4 a novel

algorithm for multi-agent reinforcement Learning is presented and analysed. In the last chapter

chapter 5 conclusions and future work are presented.



Chapter 2

Literature Review

2.1 Autonomous Driving

Autonomous Driving is concerned with creating a vehicle capable of driving without any human

supervision. The agent is required to sense the environment and safely reach a destination. His-

torically, many experiments since the beginning of the 20th century have been devised to assist an

human driver to control a vehicle but only after the 1960’s huge milestones have been achieved

in order to properly and autonomously control a vehicle, [74]. More recently, in the last decade,

with advances in machine learning, control theory and computation capability [42] the field of

Autonomous Driving has exploded, with many startups appearing (e.g. Waymo, Zoox, Cruise,

Embark), big investments by car autos such as Porsche, Tesla and also a increasing interest in this

research area.

Automated transportation is not something new, Lille had Europe’s first autonomous metro

system in 1983 [101], they provide its users with better and more efficient commutes. Examples

include the Sydney metro system, that became automated since 2019 and is already proving its

advantages over having a human operator [73], such as lower costs and higher availability. By

replacing the human with a computer, there is a big potential in making roads safer and automobile

transport more efficient.

We need to differentiate between similar terms related to self driving and discuss the terminol-

ogy adopted for this document.

Self-driving vs Autonomous vs Driverless. According to the Union of Concerned Scientists [123]

self-driving cars are defined as:

Self-driving vehicles are cars or trucks in which human drivers are never required to

take control to safely operate the vehicle. Also known as autonomous or “driverless”

cars, they combine sensors and software to control, navigate, and drive the vehicle.

Autonomous vs Automated Autonomous is defined as being self-governing and the difference

between it and automated is the level of human independence required. While according to many

3



4 Literature Review

authors these two terms may appear different or at least not the same, according to the Regulation

(EU) 2019/2144 of the European Parliament and of the Council of 27 November 2019 theses two

terms are defined based on the autonomous capacity.

(21) ‘automated vehicle’ means a motor vehicle designed and constructed to move

autonomously for certain periods of time without continuous driver supervision but

in respect of which driver intervention is still expected or required;

(22) ‘fully automated vehicle’ means a motor vehicle that has been designed and

constructed to move autonomously without any driver supervision;

For the rest of this document the terminology adopted is that autonomous is completely in-

dependent of any human interaction, i.e. fully automated. Also the distinction between fully

automated and automated come in different levels, defined by the Society of automotive Engi-

neers (SAE) [96] are the following:

• Level 0 (No automation): all driving aspects are executed by a human, systems may mo-

mentarily intervene.

• Level 1 (Driver assistance): both a human an a automated system control the vehicle, ex-

amples include Cruise Control (CC) and Parking Assistance.

• Level 2 (Partial automation): the automated system is able to take control of steering, brak-

ing and accelerating but the human driver must be prepared to intervene promptly if the

system requests it [ "hands off"]

• Level 3 (Conditional Automation): the automated system can control the vehicle without the

full attention of the driver but it has to be able to intervene within a limited amount of time,

the driver becomes a sort of co-driver [ "eyes off" ].

• Level 4 (High Automation): no driver attention is needed for the system to be safely oper-

ated, the driver can even sleep, but the system is limited to only some areas, "geofenced",

outside of these areas the system stops working in a orderly fashion ["mind off"].

• Level 5 (Full Automation): The system is able to control the vehicle in all roads, areas and

conditions, all year around, absolutely no human interaction is needed.

For the purpose of this work the objective of the final agent is to achieve fully autonomous

vehicle, (i.e. Level 4 or Level 5) meaning that at any time no human intervention is required for

the vehicle to operate safely. Next, the techniques and the fields required to build a self-driving

vehicle are analyzed, followed by the description of historical and current approaches that have

been taken to develop an autonomous driving agent.
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2.2 Preliminaries

The review of previous works related to this field will follow a structure of first looking at machine

learning, then some of its sub fields, then geometric deep learning and finally at reinforcement

learning.

2.2.1 Machine Learning approaches

Machine Learning (ML) is a subarea of AI that focuses on algorithms that learn from data. Good-

fellow et al. [39] describe ML as a form of applied statistics, to use a computer to estimate compli-

cated functions and to make predictions. According to [88] the definition of learning is as follow:

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E.”

Machine learning approaches fit into three main areas, namely supervised learning, unsuper-

vised learning and reinforcement learning, which are briefly detailed in the following. This thesis

will focus on reinforcement learning approaches for autonomous driving.

Supervised Learning. Training a computer program involves presenting it with labelled training

data. The program will learn to map an input to an output based on that data. It will learn inference

based on observations. The final quality/performance of the program is mainly dependent on the

quality of data, any biases present on it will also show up in the final trained program. Typically,

it involves performing the following tasks:

1. Collect a training dataset, ensure that it includes in similar amount all of the desired types

of outputs. Ex: In recognition of handwritten digits, collect samples with similar amounts

of 0’s, 1’s, 2’s, ...

2. Select the input feature representation, features from the inputs have to be selected in order

to accurately describe the object but to leave out unnecessary information. In the previous

example it might be converting the images to black and white since the color of the image

isn’t important.

3. Select the learning algorithm, examples include support vector machines, decision trees or

neural networks.

4. Run the algorithm on the training dataset, extracting the learned function.

5. Evaluate the accuracy of the resulting algorithm, on data not previously seen by the program

and if it is unsatisfactory repeat training changing parameters or the algorithm or even the

dataset.
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Supervised learning is used regularly in autonomous driving, feeding systems massive amounts

of driving experiences conducted by humans and having the program learn how to drive, this is

the primary method used by companies such as Tesla and Waymo, the latter has even made part of

its data publicly available [130].

Unsupervised learning. Unsupervised learning works with unlabelled and unclassified data.

This method tries to infer a function that can describe a hidden structure of the data. The main

methods used in unsupervised learning are principal component and cluster analysis. An example

of such problem might be identifying best friends in graph representing social media connections.

After training these algorithms can be used to make predictions on new data.

Reinforcement learning. Reinforcement Learning is about controlling an agent thorough an

environment, receiving reward signals and having to maximize the cumulative reward. It is studied

in greater detail in 2.4

2.2.2 Deep Learning with Artificial Neural Networks

2.2.2.1 Artificial Neural Networks

One important topic related to machine learning that in recent years has seen massive develop-

ments is artificial neural networks. They serve as important tools and are inspired in biology, more

specifically how a human brain works. Composed of a collection of neurons in layers, they se-

quentially process the input given to it and pass it to the next layers until the output layer, finding

complex patterns and making it possible to solve problems that would be otherwise very difficult.

The reason that neural networks learn is that each node has a set of weights and biases, these

are applied on the input and produce the output. The most common way to obtain a trained neu-

ral network is by training them using backpropagation (genetic algorithms are another way, such

as NEAT [115]), where the error of each training step adjusts the connections (weights) of the

network.

An example of a neural network can be seen in figure 2.1, it consists of an input layer, followed

by two hidden layers and a output layer. Data is fed into the input layer, here it consists of a 16

dimensional vector, then passed to the neurons on the second layer, according to the weights and

biases (in the picture its the lines), transforming into lower dimension (in the case of the image,

16 to 12 then 10 the finally 3), after each layer a required component is applying a non-linear

function, the final output vector can be used for classifying or regression.

To train a neural network with backpropagation, a loss or error function needs to be defined,

in the form E(y,y′), that takes the output of the network y and the target label y′, the network

is initiated with the weights randomly (there are works where the weights might be initialized



2.2 Preliminaries 7

Figure 2.1: Example of a Deep Neural Network. From [5]

differently [87], [72]) and at each step the data is feedforwared through the network explained by

Equation 2.1 and Equation 2.2

a j(l +1) = ∑
i

oi(l)wi j +bi j (2.1)

o j(l) = G(a j(l)) (2.2)

where:

• a j(l): activation of the neuron a j in layer l

• wi j: weights of the connection from neuron i to j

• G: non-linear activation function

• o j: output of neuron j

After obtaining the output the loss or error is computed (E), then training with backprogation

can start. Starting from the output until the input the partial derivatives of the loss with respect to
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the weights (w) are computed, generically for each layer and weight using Equation 2.3.

∂E
∂wk

i j
= δ

k
j ok−1

i = G′
(

ak
j

)
ok−1

i

rk+1

∑
l=1

wk+1
jl δ

k+1
l (2.3)

The error of the weights w at layer k, δ k
l depends on the errors of next layer k+1, δ

k+1
l . For

the last layer m, the partial derivative of error becomes

δ
m
i = G′ (am

i )(E) (2.4)

Finally updating the weights becomes:

wk
i j←− wk

i j−α
∂E(y,y′)

∂wk
i j

(2.5)

where α is the learning rate.

Usually training neural networks is abstracted from all of the mathematics involved by using

libraries/programs that make use of automatic differentiation, it becomes as simple as writing only

the feedforward part of the network (how the output is computed) and then the loss, a program

keeps track of what the operations are done to the input and their adjoin w̄ = δE
δw

in respect to

the loss/error and when it comes to training, the program computes the change for the weights

automatically. This is how popular machine learning libraries such as Pytorch [100], function.

Neural networks have been widely used today and have proven to be production ready, from

performing translation to drawing realistic landscapes from 2d drawing [95]. Much of the ongoing

research into machine learning involve neural networks and many approaches to autonomous driv-

ing have in their architectures one or more neural networks, they are important since they serve as

a components capable of learning how to drive.

Generally, training a neural network involves choosing many hyperparameters such as:

• Neural network architecture (number of layers, neurons per layer and even the type of NN,

such as CNN, RESNET): this is an extremely important step and the differences in accuracy

between similar architectures can be massive. Most architectures are choose by experience

or there are specific types that favour one type of task over other.

• Learning Rate: specifies how much the weights of the nets change at each training step, if

chosen to high it could lead to not learning anything and having continuous increasing loss,

if its too small then it takes a long time to converge. Typically its a value between 1e-3 and

1e-4 [45], [49].

• Non linear activation function: when passing outputs between neurons from a layer to a

higher one a non linear activation function has to be used, otherwise the entire network

would be equivalent to a single layer. There are many functions to choose, regularly RELU,

leakyRELU, tanh and softmax, each useful in their own task.
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• Optimization algorithm: there are some choices here, like simple stochastic gradient descent

[16], RMSProp, AdaGrad but the most used and usually most effective is ADAM [64].

Choosing the correct hyperparameters is critical and although there is an entire field dedi-

cated to automatically optimizing them, Automated machine learning and also Neural architecture

search (NAS)[31], most hypeparameters are chosen by the programmers experience. This coupled

with the fact that neural networks are in the end, black boxes, just pools of weights, that can’t

explain why they choose a particular output given an input leads to a reputability crisis [138].

Another important drawback of artificial neural networks is that they aren’t exact, they can

produce completely unexpected outputs and with confidence. This can be a problem for critical

tasks like autonomous driving. There are variations and different neural network architectures that

address this problem [14]. Nevertheless, neural networks are a very important component that is

present in architectures used in researching autonomous vehicles.

2.2.2.2 Deep Learning with Convolution Neural Networks

Deep Learning is an area part of machine learning, the "deep" part refers to the use of neural

networks or variations of it, that use of many "hidden" layers, between the input and output. Due

to advances in computing power current architectures that leverage neural network use many and

many hidden layers, with up to hundred of thousands of neurons, for example one of the best

language models (able to perform tasks like translation, question-answering, and close tasks and

tasks that require on-the-fly reasoning) has 175 billion parameters (parameters in general are the

weights) [17].

The standard architecture of a artificial neural network when applied to the task of computer

vision doens’t work well, an image needs to be flatten and will lead to the first layer (the input

one) having millions of neurons and it won’t be able to capture many patterns specific to 2D data,

that’s where a variation of neural networks named Convolution Neural Networks (CNN) is used.

While some variations exist to a regular CNN, this work is focused on ones applied to 2D Images.

Convolution Neural Networks are an extension to the simple neural network architecture, it adds

convolution layers between a simple neural network and its inputs. These new layers make it

possible (or at the very least more feasible) to work with higher dimension structured data (e.g.

images). These layers apply convolution to the inputs with a kernel, generating a representation

with a different dimension (usually smaller), then pooling can also be used to further decrease the

input dimension, after all the convolution and pooling layers transform the data (i.e. feature extrac-

tion), the output is then feed to linear layers (can be a deep neural network) which subsequently

yield the output vector, exemplified in Figure 2.4. CNNs are an important for computer vision

(they were even inspired by an animal’s visual cortex) and have successfully been applied to many

problems involving images and pattern recognition, in fields like medicine [82] to autonomous

driving [139].

In the most basic form CNNs layers do two types of operations, namely convolution and

pooling. Convolution works by havinng a nxn filter (typically 3x3, 5x5 or 7x7) "slide" through
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the input data computing the value using the filter’s weights and the input data, example 2.2. The

weights of the filters are trainable.

Figure 2.2: CNN’s convolution filter (middle matrix) computing its output (yellow matrix), filter
slides through input data (blue matrix), first by the left image then right. From [127]

Pooling layers serve to perform non-linear downsample to its input. There are several types of

non-linear but the most commonly used is max-pooling. This method first partitions the image into

kxk blocks and for each partition it outputs its maximum as depicted in Figure 2.3.Pooling reduces

the amount of memory required to work with the inputs, it also helps to prevent over-fitting.

Figure 2.3: CNN’s pooling layer, in this example we can see max pooling with a 2x2 filter and
stride of 2. From [114]

For each one of these layers/filters the following hypeparemeters exist:

• Kernel size: this is the size nxn of the kernel, "window". Typically 2x2, 3x3, 5x5, 7x7,

higher sizes are faster to compute but loose granularity, ability to detect small details.

• Stride: number of elements jumped between consecutive passes of the filter. Typically 1,2

or 3, higher amounts reduce the amount of memory needed.

• Non-linear activation function: same hyperparameter as regular neural networks. Typically

ReLU or tanh are used.

ResNet. As deep neural network models become more complex, with more layers, to attempt

to solve more complex tasks, problems start to arise, namely vanishing gradients. When training

these type of neural networks with backpropagation since the change in weights is proportional to

the partial derivative of the the error with activation of the layer in front (see Equation 2.3), the
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Figure 2.4: Diagram of a CNN with an image input. From [70]

gradient can become increasingly small until the weights no longer train and the networks fails

to train further. ResNet [49] are a new architectural paradigm that use skip connections, in some

layers the output simply skips one or more layers forward, with non-linear functions between

the skips. During training layers can "opt" to skip or ignore previous layers until latter stages of

training. ResNet models are able to be more "deep" than simple neural networks and achieve better

accuracy. Another way to visualize the power of this architecture is by analyzing the loss function

for a ResNet architecture with and without skip connections [77]. Training a network with skip

connections becomes less prone to be stuck in local minimums, "valleys" in the loss function, and

to train faster 2.5.

Figure 2.5: The loss surfaces of ResNet-56 with and without skip connections working with the
CIFAR-10 dataset. From [77]

2.2.3 Batch Normalization and Dropout

Other ways to improve training, either making it faster or more stable, is to use Batch Normaliza-

tion and/or Dropout. Batch Normalization (BN) [60] is transformation applied to data at each layer

input. Normally training a neural network is done in batches, since the entire training dataset usu-

ally doesn’t fit entirely into memory, for each batch its mean µ and variance σ2 is calculated and
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then each training input xi is re-centered and finally scaled and shifted with two pairs of trainable

parameters, γ and β along each of the inputs dimensions, according to Equation 2.6.

µB← 1
m ∑

m
i=1 xi

σ2
B← 1

m ∑
m
i=1 (xi−µB)

2

x̂i← xi−µB√
σ2

B+ε

yi← γ x̂i +β ≡ BNγ,β (xi)

(2.6)

Since all of these operations are trainable, backpropagation can still be used for training. Al-

though having a big performance impact, there still does not exist a consensus on the reasons for

the improved performance. Some researchers say that its improvements come from smoothing the

objective function [103].

Dropout [53] is a regularization another technique to increase a neural network performance,

reducing overfitting. It works by randomly omitting the outputs of some neurons during training

and thus preventing complex co-adaptions between neurons or group of neurons. Each neuron

learns to detect a feature that is helpful for improving the performance of the neural network.

2.2.4 CNN Visualizations

A disadvantage of using CNNs and NNs in general is their inherent black-box nature, i.e. no

explanations to their output are produced, or no uncertainty over training data (works like Bayesian

Neural Networks [14] attempt to address this) is given. This can be a problem for self-driving

where at least some indication that the model isn’t over-fitting is desirable and that it is correctly

assessing its inputs. Several works exist to address this problem like [107], [111] and they revolve

on creating an activation map that when overlayed on top of the input image. These techniques can

be used for better assessment of a model’s behaviour and its capabilities. For example, if a model

decides to turn right and looking at where the activations for the model shows the sky, it must

likely means that the model is overfitted and incorrectly trained. If on the other hand it decides to

brake and activation maps show it was because it spotted object on the road it is a good indication

that it is behaving like it should. One of the simplest techniques is integrated gradients they work

by propagating the activations all the way to the input tensors, example of this technique 2.6.

2.2.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class/architecture of neural networks that use internal

states, memory, this allows them to better process input data is a sequence, like time-series data or

Natural Language Processing (NLP). They can be seen as a network where an internal state vector

(hidden unit) is passed throughout the processing of a sequence to itself 2.7. They can process

arbitrary length sequences, although long sequences see the problem of vanishing gradients, where

activations from the processing of the initial inputs from a sequence have less effect on the output

for latter inputs.
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Figure 2.6: CNN’s visualization, the network predicted the correct class and the right image shows
where it "looked". From [97].

The most used and better performing RNNs architecture is Long Short Term Memory (LSTM)

[54], it tries to mitigate some of the disadvantages of RNNs by the using multiple switch gates and

units that are similar to ResNet skip connections.

Another similar RNNs architecture is Gated Recurrent Unit (GRU) [23], the only difference is

that GRU’s exposes the memory without having a separate update and forget gate, having fewer

parameters and being computationally faster.

It should be noted that for tasks like Natural Language Processing, recurrent neural networks

are considered outdated, being replaced by the Transformer [126], [29], but for other tasks they

are still state of the art like lossless compression [9].

2.2.6 Autoencoder

Autoencoder (AE) is a type of artificial neural network, their usefulness comes from the fact that

they can compress data to a much smaller dimension, learning a representation of the data 2.8.

Training an autoencoder is done in a unsupervised manner, the output of one is a reconstruction

of the input data and in a middle hidden layer (called a botleneck) lies a "code" that can accurately

reconstruct the input.

They are typically used in dimensionality reduction and many variations exist, some can be

used for denoising or reconstructing images images or even as a generative model.

In general autoencoders have a loss function that includes the reconstruction loss and also a

regularizer term (that can be ommited) that prevents overfitting 2.7.

J = L(x, x̂)+Regularizer (2.7)

An advantage of using autoencoders in a autonomous driving agent is that unlike regular CNNs

training the encoding part of the agent is decoupled from training the policy part and can lead to

improvements in performance.
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Figure 2.7: Diagram of a unfolded recurrent neural network. From [136]

Also using an autoencoder means that when the agent’s policy is training, it doesn’t have to

process the input and with satisfactory performance it could be implemented by an Application-

specific integrated circuit (ASIC) [94] granting efficiency gains and has the benefit that it could be

reused for different training algorithms.

A big problem with this approach is that not only the autoencoder has to be trained to accu-

rately reconstruct the images but the latent space (bottleneck) has to be somewhat interpretable,

for example two very similar inputs inputs must have small distance between the their encoded

representations (this is related to the regularizer term), this is addressed with a variant of the au-

toencoder, the Variational Auto Encoder (VAE).

2.2.6.1 Variational Auto Encoder (VAE)

As a way to keep the latent space interpretable VAE’s introduce two variations to the regular au-

toencoder, one as a form of a regularizer term and other as its main architecture 2.9. It has different

mathematical roots, namely variational bayesian. They are directed probabilistic graphical mod-

els (DPGM) that have a posterior approximated by a neural network. VAEs are also generative
models, they model how the data generated and can even generate new data points [65].

The idea behind VAE is to encode input data x not into a fixed vector but to a distribution. It

assumes the input data was generated by pθ (x|h) which is what the decoder will try to approximate,

and the encoder part qφ (h|x) is learning an approximation the posterior pθ (h|x), φ and θ are

parameters of the encoder and the decoder, which paramatrized by neural networks it will be their

weights. The prior of the latent variables is assumed to follow a multivariate Gaussian distribution

pθ (z) = N (0,I). The reason for a Gaussian is that its easy to work with. Other works have

worked with different distributions [27].

The loss function is presented in 2.8 is similar to 2.7, it has a reconstruction loss and a regular-

izer term that will penalize for encodings that don’t follow the Gaussian, this will in term make the

reconstructions diverse and the latent space meaningful and interpertable, new samples can also

be easily created.

L (φ ,θ ,x) = DKL
(
qφ (z | x)‖pθ (z)

)
−Eqφ (z|x) (log pθ (x | z)) (2.8)
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Figure 2.8: Diagram of a autoencoder. From [133]

One example of this meaningful latent space is for example training an autoencoder to recon-

struct human faces, the latent space could be something like a 20 dimensional vector and the first

dimension x1 could be the eye width and by adjusting this value we practically customize to our

liking the reconstructed face. A more in depth study of the ability of VAEs to capture semantic

information of face expression is explored in this work [57]. If a VAE is trained correctly and

achieves a reasonable loss its latent space encoding could be used for the inputs of an reinforce-

ment learning agent, close encodings (small distance) would be similar images and the agent could

even learn what each dimension in the encoding vector could mean, all of these while providing a

small observation space, which would make training an agent much faster and simpler.

As mentioned previously in 2.2.2.1 to train a neural network all operations from the input data

to the calculation of the loss function need to differentiable but in order to output a reconstruction

we need to sample from a Gaussian distribution, something that isn’t differentiable, to overcome

this the reparameterization trick [66] needs to be used 2.11.

Note that while looking at diagram 2.10 we might say that the regularizer term off the loss

function should be DKL
(
qφ (z | x)‖pθ (z | x)

)
and would be correct but the posterior pθ (z | x) is

intractable and directly calculating the KL divergence between the two would take exponential

time. The proof that minimizing 2.8 leads to the same result is in Appendix A.1.

2.2.7 Geometric Deep Learning

Geometric Deep Learning is a subarea of deep learning that studies how neural networks can be

applied to data that doesn’t follow a well defined structure like an image but instead graphs. Over

the last two decades many algorithms have been proposed, but they have been shown to be similar

and in the work [38], they were unified. They normally start by having nodes pass information

between each other, such as messages, then each node computes a aggregation function and passes

it to a differential function such as a neural network.
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Figure 2.9: Diagram of a Variational Auto Encoder. From [62]

In general algorithms use the concept of message passing 2.9, from [33], where each node

passes between each other messages (arrays of floats) and a aggregating function such as mean or

max is used on all the messages a node receives.

x(k)i = γ
(k)
(

x(k−1)
i ,� j∈N (i) φ

(k)
(

x(k−1)
i ,x(k−1)

j ,e j,i

))
(2.9)

Algorithms like the Message Passing Algorithm have been applied with great success in areas

like quantum chemistry.

In the context of Multi-agent Reinforcement Learning a message passing can be used for the

information passed between the agents, for better cooperation. Messages are passed between the

agents and their content changes as the agents are trained. The agents can form a complete graph

if they are always communicating with each other or disjoint graphs for vehicles in range inferior

to a certain amount.

2.3 End-to-End Training

A really important and studied work that combines machine learning and self-driving and that

serves as a good starting point for creating an agent is a work done by Nvidia[15]. Its architecture

consist of a neural network that is fed labelled data itself composed of expert driving experiences,

it is reminiscing of training a neural network to recognize hand written digits but it is instead

trained with driving data. Nvidia engineers collected data from driving near their work place, they

used multiple cameras and a large part of the work is describing the setup and the hardware used

as for the time (2013) it was computational expensive to not only gather this amount of data but to

train NNs with images.
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Figure 2.10: Diagram of the graphical model involve in VAE from [133].

It concludes the following, having multiple cameras in the bonnet of the car provide better results,

making the agent better at driving at the center lanes and the final neural network does "look" at

necessary features (like lanes) of the images when taking decisions of the output (such as turning

left or right). This is very important because compared to traditional ways of attempting to create

a self-driving agent, such as explicit programming all the rules to the agent and compiling all the

rules and cases, neural networks are seen as unpredictable, prone to over-fitting and that don’t

really capture the rules of driving. While this work doesn’t prove that they aren’t, it also shows

that NNs are likely to learn how to drive by looking at features that we humans look at too, such

as lanes, signs and other cars.

Related to the work presented is the topic of deep learning called End-to-End Training.

Combining different components, namely architectures and neural networks can introduce

stages where parts of its final architecture needs or must be hand tuned, for example if we had a

self-driving pipeline that included a CNN for vision and a controller that takes as input the CNN’s

final layer and output a command which is the direction to travel, but doens’t directly control the

vehicle then it isn’t end-to-end.

End-to-End training refers to approach where an architecture is trained to directly learn the

solution, it omits any hand-crafted intermediary components.

Looking at 2.12 the architecture itself has many components but it goes from sensor input to

driving output, meaning its end-to-end.

This approach to training is important has it leads to less hyperparameters, less "guessing" and

streamlines the training process.

2.4 (Deep) Reinforcement Learning

Reinforcement Learning (RL) is a machine learning area concerned with creating an agent that

senses an environment and it takes actions in order to maximize a reward (given by the environ-

ment). Sutton in his book [117] depicts three threads in the history of reinforcement learning,

going back to the 1960’s and multiple researchers working in parallel on works and theory that

would be eventually joined into the a field called Reinforcement Learning.
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Figure 2.11: Reparameterization trick.

In order to study the algorithms and the architecture used for this work we first need to create

a mathematical framework (Markov Decision Process) for our problem from which we can derive

mathematical proofs and theorems that will show that in theory the algorithms will lead to an agent

capable of controlling a vehicle.

2.4.1 Markov Decision Processes

Markov Decision Processes (MDP) serve a formalization for sequential decision making, it and

captures how the agent moves and interacts with the environment. The general diagram of one in

2.4.1.

Reinforcement Leaning is modelled by MDP and it has the following characteristics:
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Figure 2.12: End-to-end training. From [15]

• A environment with states, S.

• A set of action that a agent can take, A.

• Model of the transitions of the environment, Pa(s,s′) = Pr(st+1 = s′ | st = s,at = a), the

probability of at time t transitioning from state s to state s′ taking action a.

• A reward function R(s,s′,a) that is the immediate reward from going to state s′ from s by

taking action a.

In reinforcement learning, an agent interacts with the environment in discrete time step, t

= t0, t1, t2, t3 ... receiving (at each time step t) the state of the environment st , the agent

then chooses an action at and the environment moves to a new state st+1 with a probability

given by Pr(st+1 | st ,at), the agent then receives the new state, st+1 and a new reward rt+1. An

episode or trajectory τ is composed of a set of transitions starting from the beginning state s0,

until the end state sn, (s0,a0,r0,s1,a1,r1, ...,sn,an,rn). The goal of the agent is to learn a pol-
icy π : A×S→ [0,1],π(a,s) = Pr(at = a | st = s) that maximizes the expected cumulative reward

Rt0 = ∑
∞
t=t0 γ t−t0rt , where γ is the discount factor.

In simpler terms the objective of reinforcement learning is to create a function (policy) that

accepts a state st an outputs an action at maximizing the objective quantity, the cumulative reward

Rt . The reason why it isn’t just the immediate reward rt is because what matters is all of the future

rewards.

2.4.2 Partial Observability

In the last section MDP were introduced but one assumption was taken into consideration, the full

observability of the environment at each step, this isn’t the case with many environments or tasks,
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in some cases the agent can only observe part of the environment states, it can only "see" part of

what makes the environment function and transition. In this case the problem is formulated as a

Partial Observable Markov Decision Process (POMDP) 2.13

Figure 2.13: Diagram of a Partial Observable Markov Decision Process.

When working with POMDPs instead of the agent’s policy taking as input a state s it takes an

observation o and the set of action the agent can take can be restricted.

2.4.2.1 Stationary Distribution

A relevant concept for MDPs but more related to simple Markov Chains is the stationary dis-
tribution, its a row vector π , with the probability over all states that remains unchanged in the

Markov Chain as time progresses. It indicates the probability of ending in one state after many

transitions and is even independent from the starting state.

π = πP (2.10)

If the Markov Chain is ergodic that it is, it is expected to return to each state in a certain amount

of steps and it is also aperiodic then it has a unique stationary distribution.

2.4.3 Policy and value function.

An agent’s policy is a mapping of states to probabilities of actions. Reinforcement learning al-

gorithms involve training the policy to maximize the discounted cumulative reward Rt , with this

objective in mind we can obtain a function that gives a value of how good a given policy is starting

from a state st , the value function vπ(s), 2.11, it gives the expected value of the cumulative reward

if the agent follows π policy starting from state s.

Related to the value function is the q-function or action-value function qπ(s,a) 2.12 it is the

expected cumulative reward if an agent follows policy π and at state s picks action a.

vπ(s) = Eπ [Rt ] = Eπ

[
∞

∑
t=0

γ
trt | st = s

]
(2.11)
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qπ(s,a) = Eπ [Rt ] = Eπ

[
∞

∑
t=0

γ
trt | st = s | at = a

]
(2.12)

An important property of the value function is the following equality 2.13

vπ(s) = Eπ [Rt ] = Eπ

[
∞

∑
t=0

γ
trt | st = s

]

= Eπ [rt+1 + γ ∑
∞
t=0 γ trt+1 | st = s+1]

= Eπ [rt+1]+ γEπ [Rt+1]

= Eπ [rt+1]+ γ ∑s+1 P(s+1 | s,π(s))vπ(s+1)
(2.13)

This recursion of expected rewards is the Bellman Equation for vπ , it tells us how to find the

value of a state and that its has a recursive dependency with the value of the next state. Bellman

proved that the optimal value of a state must equal the action that give us the maximum expected

immediate reward plus the maximum discounted long-term reward for the following state [12].

The action-value equation can also be described by the value function and vice-versa. 2.14

qπ(s,a) = Eπ [rt+1 + γ vπ(st+1)|st = s, at = t]

vπ(s) = ∑a π(a|s) qπ(s,a)
(2.14)

This leads to the optimal policy, one that achieves the maximum value of the cumulative

reward, v∗(s) = m
π

ax vπ(s) and reinforcement learning algorithms attempt to converge the agent’s

policy to the optimal one.

Given an optimal policy π∗ the agent can act optimally by at each step choosing the action

with the highest value from the optimal q-function qπ .

The optimal policy can also be expressed through the Bellman optimality equation 2.15

v∗(s) = ∑
s′

Pa
ss′
(
r(s,a)+ γv∗

(
s′
))

(2.15)

These equations 2.15, 2.13 are these basis for optimization method known as dynamic pro-
gramming. It works by breaking down a complicated problem into smaller ones and solving them

recursively. If a problem can be solved optimally by this recursive dividing it into sub-problems

and then solving those in a optimal manner that it is said to have optimal substructure.

If for a given task the complete knowledge of the MDP is known (subsequently the transition

function) dynamic programming (DP) techniques can be used to obtain a optimal policy and two

algorithms that can obtain it are value iteration and policy iteration. These algorithms and DP

techniques also serve as an important foundation for more complex ones (even for ones without

complete knowledge of the MDP).
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2.4.4 Value Iteration and Policy Iteration

These two algorithms are very similar, starting with policy iteration, it has two steps, policy eval-

uation and policy improvement. First starting with a randomly initialized policy π(s) and value

function vπ(s), the value function for the policy is evaluated 2.16 for each step s∈ S and repeatably

until the value function converges (from one iteration to another has a small change).

v(s)←∑
s′

p
(
s′ | s,π(s)

)[
r
(
s,π(s),s′

)
+ γv

(
s′
)]

(2.16)

After computing the value function vπ(s) we know which states are better, in a given step s we

change the policy to take an action at that leads with higher probability to more valuable states s′,

at each step s ∈ S we update the policy according to 2.17.

π(s)← argmax
a ∑

s′
p
(
s′ | s,a

)[
r
(
s,a,s′

)
+ γv

(
s′
)]

(2.17)

Value iteration has a similar first step but instead of finding the value of the policy it attempts

to find the optimal value policy, the difference is subtle, between 2.16 and 2.18.

v(s)←max
a ∑

s′
p
(
s′ | s,a

)[
r
(
s,a,s′

)
+ γv

(
s′
)]

(2.18)

when the value function converges we extract the policy, in only one step 2.19.

π(s) = argmax
a ∑

s′
p
(
s′ | s,a

)[
r
(
s,a,s′

)
+ γv

(
s′
)]

(2.19)

Both algorithms find the optimal policy, π∗, but according to [117] policy iteration converges

faster.

Also both of these techniques can be seen under a more general method, Generalized Policy
Iteration.

2.4.4.1 Monte Carlo Methods

The previous methods required knowledge of the transition function P(s′|s,a) but if that’s not the

case than Monte Carlo (MC) techniques can be used to estimate the value function (and subse-

quently derive a better policy). MC techniques are widely used in statistics that rely on random

sampling to obtain results.

Deriving the value of a state V (s) following a policy π starts with roll outs of episodes follow-

ing the policy and at the end of each episode computing the average of the returns following visits

to s 1. MC algorithm is a unbiased estimator and converges to the value of the policy with error

that has a standard deviation of 1/
√

n with n as the number of returns averaged.

While it may seem that since we have evaluated the policy we can use policy iteration or value

iteration since we don’t have the transition function those algorithms can’t be applied, to improve

and converge to an optimal policy we need to estimate action-values q(s,a). To estimate action
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Algorithm 1 Every Visit Monte Carlo policy estimation

1: Inputs: policy vπ

2: Initialize: V (s), returns(s), history(s,a,r, t), N(s) for all s ∈ S, a ∈ A, r ∈ R
3: for each episode do
4: for each timestep in episode do
5: Following policy vπ step through environment envstep(a)
6: Append experience history← s,a,r, t
7: end for
8: R = 0
9: for each timestep in history, t=T-1, T-2, ....., 0 do

10: R← γR+ rt+1
11: returns(st)← returns(st)+R
12: N(st)← N(st)+1
13: end for
14: V (s)← returns(s)

N(s)
15: end for

values under a policy π, qπ(s,a) we follow a similar method as 1 but instead of working with

evaluations of a state we instead evaluate a state-action pair. One problem that is encountered

is that if the policy is deterministic there are state-actions pairs that might never be visited (the

estimation is biased) and the estimates will not improve with more samples. To overcome this

problem we can either add exploration to the algorithm (in the form of choosing a random action

either at start or with a certain chance) or we can choose to only work with policies that don’t

give zero probability to an action. This is referred to on-policy and off-policy training. On-policy

training improve and evaluate the policy that is used to generate samples or the trajectory and

off-policy training improves a policy with data generated from a different one.

After having estimated the qπ(s,a) then the policy can be improved by going adding more

probability to the most valuable action, 2 shows the changes required to make to 1 to estimate

state-action pairs and to improve a policy.

Algorithm 2 MC changes for state-action values

1: q(st ,at)← average(returns(st ,at))
2: a← argmaxa q(st,a)
3: for action a ∈ A(sT ) do
4: if a 6= a then
5: π(a | st)← ε/|A(sT )| . ε is a hyperparameter and a constant probability
6: else
7: π(a | st)← 1− ε + ε/|A(sT )|
8: end if
9: end for
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2.5 Off-policy and On-policy

In off-policy training there is a target policy, π and a behaviour policy, b, the behaviour policy

is used to generate samples and the target policy will improve from those samples. On-policy

learning can be seen as a special case where the target and behaviour policy are the same. There

are some complications and some requirements for off-policy training, for example to estimate the

value of a target policy from a behaviour policy there is the requirement for coverage, namely that

π(a|s)> 0→ b(a|s)> 0 this means that each action taken by π must be taken (even with a much

smaller chance) by b. Training off-policy has several techniques such importance sampling which

has the following form 2.20

ρt:T−1
.
=

∏
T−1
k=t π (ak | sk) p(sk+1 | sk,ak)

∏
T−1
k=t b(ak | sk) p(sk+1 | sk,ak)

=
T−1

∏
k=t

π (ak | sk)

b(ak | sk)
(2.20)

ρt:T−1 is a ratio which adjust the expected return of the behaviour policy b and allows for the

estimation of the value of the off-policy π .

E [ρt:T−1rt | st = s] = vπ(s), following policy b (2.21)

Similar to techniques presented in the last sections, to improve a policy we need to estimate

action-values, so as extension to improve a policy, for each episode we need to calculate the

importance sampling ratio and the resulting algorithm will be close to the ones 2 and 1.

2.5.0.1 Exploration vs Exploitation

Exploration is another important topic in reinforcement learning. In order to improve a policy we

must make sure we know the each action-state but if following a behaviour policy that doesn’t

visit them we can be sure if their provide a better value than the ones currently been selected.

On the other hand if the policy spends a lot of time exploring new state-actions it won’t optimize

their current decisions based on existing information (exploitation). There is a tradeoff balancing

reward maximization based on what it already knows vs trying new actions to further increase its

knowledge, exploration vs exploitation.

This problem is present in Reinforcement learning and there are many techniques to balance

this, one of the most basic is ε greedy, where the agent has a certain chance of just picking a

random action, a probability for exploring instead of just exploiting. Several works attempt to

tackle this issue [18] [26].

Using off-policy methods one could have the behaviour exploring policy, ε greedy, and the

target policy deterministic.

2.5.0.2 Temporal Difference

Temporal Difference (TD) combines Dynamic Programming methods and Monte Carlo ones, it

doesn’t need knowledge of the transition function (model-free) and it can learn from experience.



2.5 Off-policy and On-policy 25

A key concept around TD is bootstrapping, which is a method where we will update our estimates

to match later and more accurate predictions. We start with random estimates of, say the value

function or action-state values, and then later update them to become more accurate. This is

different than using MC techniques, with MC no initial estimation is done and we only adjust our

estimates when the episode is over.

The update for a vπ(st) using all visit MC can be seen in the form 2.22

vπ(st)← vπ(st)+ stepsize[Rt − vπ(st)] (2.22)

Rt can only be known after stepping through the entire episode (it is the expect reward starting

from t, see 2.11), in TD the update for vπ(st) it is in the form 2.23

vπ(st)← vπ(st)+ stepsize[rt + γvπ(st+1)− vπ(st)] (2.23)

In order to update vπ(t) we need to be one step ahead, in t +1, uppon transition we can update

the value. Looking at the general expression for updating a estimate 2.24

NewEstimate← OldEstimate+ stepsize[Target−OldEstimate] (2.24)

rt + γvπ(st+1)−vπ(st) is know as TD error and is important for studying reinforcement learn-

ing algorithms. Also the estimate update presented 2.23 is know as the simplest form of TD and

since it only needs to be one step ahead to update it is known as TD(0). TD(0) is proven to con-

verge to vπ and has several advantages when compared to MC methods, namely that it can be

implemented in a online and incremental fashion and while it has not been mathematical proven

to be faster than MC in practise it does [116].

2.5.0.3 n-step Bootstrapping

By allowing bootstrap to be done not on a single step like in TD(0) but for n-steps it allows for the

update of an estimate to take into account more steps and to better perform credit assignment, that

is to understand how each state influenced the reward, for example if we have an agent playing a

football game with the reward given being the score of the game, many actions will get an imme-

diate reward of 0 although they will have an influence on the final result, with n-step bootstrapping

(and choosing a reasonable n) this problem is better addressed.

The general form of n-step bootstrapping applied to TD prediction is know as n-step TD.

Basically the update for time step t, weather it is a value prediction of action-value prediction,

can only be done at step t +n, with the form 2.25.

vt+n (st) = vt+n−1 (st)+α [Rt:t+n− vt+n−1 (st)] , 0≤ t < T (2.25)

Note that vt+n(st) is the value estimate at t +n iterations.

If the number of steps chosen to bootstrap is infinite (until episode ends) then it becomes

Monte Carlo methods, as shown in figure 2.14.
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Figure 2.14: Diagram of n-step methods, ranging from TD methods to MC ones. From [117]

With all these concepts in mind a well known and used algorithm can be understood, it serves

as a base for more complex ones, its called Q-learning [129] and its an off-policy, model-free

temporal difference algorithm and the way it works is it updates the action-state function with the

following relation

qnew(st ,at)← q(st ,at)+ stepsize
(

rt + γ max
a

q(st+1,a)−q(st ,at)
)

(2.26)

In other notation stepsize can be α or the learning rate.

The reason why Q-learning is off-policy is because the behaviour policy b has a random ex-

ploration factor, ε , where it will choose a random action, while the target policy

The code for the final algorithm will be close to 3.

Q-learning even in its regular form has many practical applications, from finances [92], [75], to

transportation [108] to playing games [19], to economics [63]. Its a robust algorithm, furthermore

many variations of it exist, such as dobule Q-learning [47], Baysean Q-learning [28] and Nash

Q-learning [59].

2.5.1 Deep Reinforcement Learning

The methods presented above are in tabular form, meaning that for every state or state-action

pair we have a entry in a table, this works well in simple small cases and is easy to prove that it

converges, but when the the state and action dimension increase it starts to require a lot of memory,

this is known as curse of dimensionality and it was coined by Bellman in [13]. To overcome this
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Algorithm 3 Off policy Q-learning

1: Inputs: policy vπ

2: Parameters: stepsize ∈ (0,1],ε ∈ (0,1)
3: Initialize: q(s,a),st for all s ∈ S, a ∈ A, r ∈ R
4: for each episode do
5: for each step in episode do
6: if random() < ε then
7: at ← random(A)
8: else
9: at ← max

a
Q(st ,a)

10: end if
11: st+1,rt ← env.step(at |st)

12: qnew(st ,at)← q(st ,at)+ stepsize
(

rt + γ max
a

q(st+1,a)−q(st ,at)
)

13: st ← st+1
14: end for
15: end for

problem and to be able to work in high dimension state/observations artificial neural networks can

be used in conjunction with reinforcement learning. They will serve as function approximators for

both the policy vπ and qπ(s,a). The next assortment of algorithms are going to be presented with

the intention of being used with NNs or are made from the ground up with them.

2.5.2 DQN

DQN [90] is a variant of Q-learning coupled with CNNs, it is able to sense raw pixel data and

learn how to play Atari 2600 games, one of the first successful deep learning models that can work

with such high dimension data.

A deep CNN is used to approximate the q-function and to train the loss for the weights of net,

θ is the TD error, explained in 2.5.0.2.

Li (θi)=Est ,at∼b(·),st+1∼env

(
rt + γ max

a
q(st+1,a : θi−1)−q(st ,at ;θi)

)2
, b is the behaviour policy

(2.27)

The behaviour policy b is an ε−greedy, selecting a random action with a ε probability. After

the error has been calculated it is propagated using backpropragaition 2.5.

DQN when it was released was a breakthrough in terms of performance 2.15, beating other

reinforcement learning algorithms and even beating humans at the games. It also suffered from

a variety of problems which were addressed in many works presenting variations on this simple

algorithm, such as Double Deep Q-learning [125] that addresses the problem of overestimation

of action-values, especially in noisy environments, extending DQN to continuous actions with an

algorithm called DDPG [80], or soft Q-learning [44].
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B. Rider Breakout Enduro Pong Q *bert Seaquest S. Invaders
Random 354 1.2 0 -20.4 157 110 179
Sarsa [10] 996 5.2 129 -19 614 665 271
Contingency [11] 1743 6 159 -17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 28010 3690
HNeat Best [48] 3616 52 106 19 1800 920 1720
HNeat Pixel [48] 1332 4 91 -16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Figure 2.15: Atari 2600 used to benchmark DQN and their performance comparison. From [90]

2.5.3 Policy Gradients

With Q-learning and value based methods we get as an output the value of state-action pairs from

then we have a deterministic policy which just selects the max action in a given state. Some-

times its useful to have a stochastic policy and also to handle continuous actions unlike simple

Q-learning. Policy Gradients is a class of algorithms that acts on the policy itself, searching di-

rectly in the policy space and constantly improving it.

A parameterized policy is used and training consists of adjusting the policy parameter vector,

θ . It doesn’t need to know the state-action values. The policy is defined as π(a|s,θ)→ P(a|s,θ),
the probability of selecting action a in state s with the parameters θ , one requirement for the policy

is that it needs to be differentiable with respect to its parameters.

To train the policy a quantity dependent on the parameters θ needs to be defined (this is the

loss function or the opposite of it) J(θ). Defining it as the state values by following the policy we

can then use gradient ascend to maximize the expected reward following the policy 2.28, 2.29.

J(θt) = vπθt (s0) = Eπθ≈ [v0], s0 is the starting state (2.28)

θt+1 = θt +α ∇θ J(θt) (2.29)

Following the relation of 2.14 we can define the loss as 2.30.

J(θt) = Eπθ≈ [v0] = ∑
s∈S

µπθ
(s)

[
∑
a∈A

πθ (a|s) qπθ
(s,a)

]
(2.30)

µ is the stationary distribution for πθ

To compute the gradient of 2.30 it is required to compute the derivative of the stationary

distribution with respect to θ this is typically impossible since the model of the environment is
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unknown, fortunately the policy gradient theorem by [117] proves that 2.31.

∇θ J(θt) = ∇θ ∑
s∈S

µπθ
(s)

[
∑
a∈A

πθ (a|s) qπθ
(s,a)

]
∝ ∑

s∈S
µπθ

(s)

[
∑
a∈A

∇θ πθ (a|s) qπθ
(s,a)

]
(2.31)

With some tricks detailed here A.1 we can express the gradient of the loss as

∇θ J(θt) = Eπθ
[∇ lnπθ (a|s) qπθ

(s,a)] (2.32)

And in [105] the authors go a step forward and define a general relation that policy gradient

methods follow:

∇J(θ) = E

[
∞

∑
t=0

Ψt∇θ logπθ (at | st)

]
(2.33)

where Ψt may be one of the following:

1. ∑
∞
t=0 rt : total reward of the trajectory.

4. qπ (st ,at) : state-action value function.

2. ∑
∞

t ′=t rt ′ : reward following action at

5. Aπ (st ,at) : advantage function.

3. ∑
∞

t ′=t rt ′−b(st) : baselined version of previous formula.

6. rt + vπ (st+1)− vπ (st) : TD residual. The latter formulas use the definitions

Aπ (st ,at) := qπ (st ,at)− vπ (st) , (Advantage function) (2.34)

2.5.3.1 Reinforce

With the mathematical foundations set a widely used and relative simple policy gradient algo-

rithm can be introduced, REINFORCE [137]. The parameters of the policy are updated with the

following relation 2.35

θ t+1 = θ t +αRt∇θ lnπθ (at |st) (2.35)

The pseudocode of the algorithm becomes 4

REINFORCE works by adjusting the parameters of the policy to give higher probabilities to

actions that have higher future cumulative returns.

One problem with simple REINFORCE and other Policy gradients is having high variance,

for example in one episode the policy can take a very similar actions and receive vastly different

rewards or just one of the actions yields a very negative reward, all of this makes training harder

so introducing a baseline helps training converge. Baseline "calibrate" the rewards to the average

action that could be taken in a given state 2.16, 2.33.

The baseline has to be unbiased and not dependent on the policy parameters, a simple one

and commonly used and simple baseline is a estimate of the value function of a state, v̂(st ,w),
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Algorithm 4 REINFORCE
1: Inputs: Differential policy πθ

2: Initialize: history(s,a,r, t), for all s ∈ S, a ∈ A, r ∈ R
3: for each episode do
4: for each timestep in episode do
5: Following policy π step through environment envstep(a)
6: Append experience history← s,a,r, t
7: end for
8: for each timestep in history, t=0, 1, 2, ....., T - 1 do
9: R← ∑

T
k=t+1 γk−t−1 rk

10: θ ← θ +αγ t R ∇ lnπθ (at |st)
11: end for
12: end for

where w are the are learnable parameters for this estimate value function, this estimate would

be subtracted from the action-value function and form the advantage function, seen here 2.33,

A(s,a) = q(s,a)− v(s)

2.5.4 Actor-Critic methods

Actor-Critic methods are related to policy gradients, it involves learning the policy and also learn-

ing the value function, the value function helps updating the policy. Just like the policy function,

the value function approximator needs to be a differentiable. The previous algorithm works in a

Monte-Carlo fashion but Actor-Critic methods can be used with Temporal-Difference (TD). An

example algorthim is presented in In general Actor-Critic work similar to 5, from [109].

Algorithm 5 Actor-Critic TD
1: Inputs: Differential policy πθ and Differential value function v̂φ

2: for each step do
3: st+1,rt ← env.step(at |st)
4: φ ← αθ ∇[v̂φ (st)− (rt + v̂φ (st+1))]

2

5: Aπ = rt + v̂φ (st+1)− v̂φ (st))
6: θ ← θ +αγ t Aπ∇ lnπθ (at |st)
7: end for

2.5.5 DDPG

Deep Deterministic Policy Gradients [80] is an off-policy algorithm similar to DQN but that is

only used for continuous action spaced environments.

DDPG uses four differential neural networks, one for the Q network qφ , one as the target qφ ′ ,

a policy network πθ and its target network πθ ′ . The target networks are used to stabilize training,

so that at a given step the parameters of a network aren’t been updated with the result from its

output.
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Figure 2.16: Effects of the baseline, first is updating with regular rewards and the next are different
baselines with the third being the better one.

A network and its target are updated with the following rule:

Target← τ Network+(1− τ) Target (2.36)

It uses a replay buffer D that stores experiences or samples, D← (s,a,r,s′,d) where d is if the

state is terminal or not (1 for true, 0 otherwise).

Like DQN it’s loss is related to the TD error 2.27, but since its in continuous actions it isn’t

possible to compute the max of the action, to do this a we use the stochastic policy target network

2.37.

L(φ) = E
(s,a,r,s′,d)∼D

[(
qφ (s,a)−

(
r+ γ(1−d)qφ ′

(
s′,πθ ′

(
s′
))))2

]
(2.37)

When collecting samples to improve exploration the output given by the policy network is

added with some noise from a Normal distribution.

at = clip(πθ (st)+ ε ∼N ,amin, amax), action for sample collection (2.38)

The policy parameters θ are updated with the following rule:

θ ← α ∇θ qφ (st ,µθ (st)) (2.39)

2.5.6 PPO

Proximal Policy Gradients [106] builds uppon existing policy gradients algorithms but by simpli-

fying on the way the policy is updated, doing it in a conservatively way. Algorithms like PPO

and Trust Region Policy Optimization (TRPO) [104] restrict updates on policy by making sure the

new policy isn’t as different as the old one but PPO has the advantage of being simpler.

Starting with 2.35, as pointed by the authors of PPO it would be beneficial if with only one

trajectory worth of samples it was feasible to optimize the policy many times, but this leads to
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large policy updates that end up destroying it. TRPO adresses this by proposing minimizing 2.40

maximize
θ

Êt

[
πθ (at |st)

πθold (at |st)
Ât

]
subject to Et [KL [πθold (· | st) ,πθ (· | st)]]≤ δ

(2.40)

where θold the last updated policy. This has the problem of being computationally expensive

and PPO proposes an improvement, minimizing instead 2.41.

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε) Ât

)]
(2.41)

where rt(θ) =
πθ (at |st)

πθold (at |st)
and ε is a hyperparameter.

Minimizing this objective with a clipped term means that the updated policy doens’t move too

far from the old policy.

PPO at the time of its release was consistently one of the best performing model-free RL

algorithms and was extensible used.

2.5.7 SAC

Soft-actor Critic [45] is currently one of the state of art reinforcement learning algorithms. Its an

actor-critic, off-policy and based on the policy iteration [58]. It first defines soft-policy iteration,

like in regular policy iteration it starts with a policy evaluation step which computes the value

of a policy based on a maximum entropy objective. This leads to the modified Bellman backup

operator Tπ that computes the soft Q-value 2.42. The value function is defined by 2.43

T πq(st ,at)
∆
= r (st ,at)+ γEst+1∼p [V (st+1)] (2.42)

V (st) = Eat∼π [q(st ,at)−α logπ (at | st)] (2.43)

In the paper it is proven that repeatedly applying the modified Bellman backup operator will

converge and obtain the soft Q-function of for any policy.

In the policy improvement step the policy first is made to be tractable and is restricted a Gaus-

sian, it then gets updated towards the exponential of the new soft Q-function, it is also proven that

this leads always to an improved policy. Al tough the soft Q-function needs to be normalized, since

the output of the policy for each state is a probability, the partition function would be impossible

to compute and isn’t required for computing the gradients. Kullback-Leibler is used to measure

how the policy function differs from the soft Q-function.

The soft Bellman residual defined in 2.44 is used to train the critics parameters.

JQ(θ) = E(st ,at)∼D

[
1
2
(
qθ (st ,at)−

(
r (st ,at)+ γEst+1∼p [Vθ̄ (st+1)]

))2
]

(2.44)
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Due to the nature of the policy network, being a neural network with differential parameters

an outputting a Gaussian the loss function for it parameters becomes 2.45

Jπ(φ) = Est∼D ,εt∼N

[
α logπφ

(
fφ (εt ;st) | st

)
−qθ

(
st , fφ (εt ;st)

)]
(2.45)

In simple terms SAC has the two steps in the same fashion as policy iteration, for the policy

evaluation step it uses a modified operator that takes into account the entropy of the policy. For

the policy improvement, the policy function is projected to the soft Q-function. Looking in more

of a graphic representation, in 2.17 there is a random soft Q-function and its exponential plotted,

SAC attempts to project the policy network into the exponential (the orange line), by doing it, the

policy will output low probability on actions that have low soft Q-values.

SAC has proven to be good enough to train robots to navigate an environment and has shown

to have better performance in a variety of environment and tasks compared to other reinforcement

learning algorithms.

Figure 2.17: Intuition about SAC, policy network is projected to the orange function.

2.5.8 Curriculum Learning

In deep learning an optimization technique that improves its performance is having the algorithm

solve similar but simpler tasks, introducing harder tasks as time goes by and as the algorithm

converges on a solution on the simpler ones.
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This approach has been used extensible with reinforcement learning with the example of [84],

where it was used to make an agent solve mazes in Minecraft.

Curriculum learning takes inspiration from how humans learn and it can be easily integrated

into autonomous driving, in the same way as humans when learning to drive first start with the

basics, like how to accelerate, brake, park and then go for harder tasks, like driving in highways.

One problem with this type of approach is that if the tasks are too different, share too lite in

common, due to neural networks being prone to Catastrophic Interference as explained by [85],

in this work it was found that a neural networks trained with backpropagation to add numbers with

one digit would forget how to do it after learning how to add with two digits.

A procedure to mitigate this affect is to find tasks that require the same skills but are simpler,

such as learning to drive in smaller chunks of a city, rather than for example to learn to drive in an

empty plot and then move to a populated city.

2.5.9 Transfer Learning and Domain Adaptation

To improve learning and to be able to reuse training from other tasks, models can have their

knowledge transferred from one task to another different but related . There is some disagreement

and inconsistently between Transfer learning and Domain adaption, according to [78]

The notion of domain adaptation is closely related to transfer learning. Transfer learn-

ing is a general term that refers to a class of machine learning problems that involve

different tasks or domains. In the literature, there isn’t yet a standard definition of

transfer learning. In some papers it’s interchangeable with domain adaptation.

In the work [98] a more detailed explanation of the different concepts involved in transfer

learning and domain adaption is provided, it is summed in 2.18.

Transfer learning is used heavily in reinforcement learning, it allows to use neural networks

trained in related (and even unrelated tasks) and improve tune them for the RL task.

2.6 Multi Agent Reinforcement Learning

The past algorithms presented were only applicable to a single agent or intended to. One of the

most successful works in presenting a multi agent deep reinforcement learning method, it is

scalable and easy to extend its multi-agent framework to other algorithms.

2.6.1 A3C

Asynchronous Advantage Actor-Critic [89] is a policy gradient algorithm that is focused on dis-

tributed training. It consists of multiple actor-critic agents, many workers interacting with their

own environment, collecting samples and themselves training their actor and critic networks, then

after a certain amount of time or steps a worker synchronizes their model with a global model, by

pushing the gradients accumulated in training and by pulling the network weights 2.19.
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Figure 2.18: Diagram and table related to transfer learning. From [98]

2.7 Self-Driving Cars

Currently there are many companies working on creating a completely autonomous vehicle, level

4 or 5, the most well known are Waymo (a spin-off of Google), Tesla, GM Cruise, from Generals

Motors, Argo AI (from Ford), Uber, Zoox, Autox, Nuro.

Most of these companies have a proprietary architecture whose details are either unknown to

the public or scarce. Nevertheless companies like Waymo regularly publish articles or research

works with details of their vehicles inner workings and others like Tesla post job openings and

also with interviews where it is possible to gather some insights.

It should also be noted that currently there isn’t a commercially avaiable autonomous vehicle,

the closest one is probably Tesla, it even claims that level 4 or 5 autonomy will be avaiable this

year (2020) as an update to current Tesla vehicles with no additional hardware [8].

2.7.1 Typical vehicle

With all of the information a typically autonomous research vehicle and how it is trained can be

estimated (this will also be a prediction off how the first autonomous driving vehicle will look

like).

2.7.1.1 Hardware and Sensors

Most testing vehicles seen on the road are modified pre-existing ones, like Uber uses modified

Volvo SUVs [122], Waymo uses vehicles like Toyotas, Lexus but they also have a custom built
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Figure 2.19: Diagram of A3C.

prototype called "Firefly" [132], its safe to assume that modifiyng a commercial avaiable non

autonomous vehicle is a pratical solution and things like sensors, computers and controllers (like

servos for the steering wheel and pedals) can be bolted onto them.

For sensors most use the following GPS, LIDAR, RADAR and RGBs Cameras, although there

is a debate especially with Tesla and LIDAR, while many say that Lidar is crucial for self driving,

Elon Musk (CEO of Tesla) declares that Lidar is unnecessary [76], and so a Tesla vehicle ships

with radar, sonar and cameras. It should also be noted that Tesla also designs their processors,

using ARM licensed CPU cores and custom designed Neural Processing Units, Tesla claims that

this custom design chip is capable of 21x improvement in frame rate compared to older hardware

used (previously it was running Nvidia GPUs) while consuming 25% more power [135].

Uber also uses a hardware stack similar to Waymo, with RGB cameras, LIDAR [112].

So with all of this information, the vehicle will have LIDAR, RADAR, 360o degree RGB

Cameras (or at least many RGB cameras facing different directions) and also antennas for GPS,

for processing a costum designed chips are used for processing or even a custom Application-

specific integrated circuit (ASIC) for better efficiency.
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2.7.2 Training

For any self-driving vehicle the entire driving architecture is complex with many components, but

most of the self-driving companies use Machine learning, Deep Learning and Neural Networks.

Waymo, Tesla [119] and Uber seem to use many different neural networks models to process

each frame of the input and also to create a world from the inputs and consequently optimizes

and predicts the agent’s next move 2.20. Waymo [6] in particular discloses more details about

its development. One example of a model’s architecture that they developed is ChauffeurNet and

from what can be gathered from it shares some paradigms with others. The first one is the use

of supervised learning or more specifically behaviour cloning or Imitation learning. This can

be seen by for example Waymo open-sourcing its training dataset [130] or Tesla talking about

its advantage [93]. Tesla in particular has their regular vehicles with human drivers constantly

recording so that it can create a massive expert driving dataset which will in turn use supervised

learning to train the autopilot AI. Tesla has stated in their job listings that they were interested in

researchers with knowledge in reinforcement learning [120]. Although works like [67] highlight

advantages of the use of RL, it seems like supervised learning is the preferred paradigm to train

an agent.

Another important aspect common to the works presented is to forgo end-to-end learning, that

is a supervised learning that gets its input from the sensors and outputs directly driving commands,

the usual approach taken is to instead leverage mid-level input and output representations. In the

more specific case of Waymo’s ChauffeurNet, it has a model (a convolutions neural network)

digest the sensors input, produce a intermediate representation that consists of a bird-eye view

with vehicles as 2D boxes which then gets "fed" to another model (a recurrent neural network)

that outputs driving trajectories which in turn are consumed by a driving controller.

Looking at Uber and Tesla descriptions on their website it seems that this pipeline of using

deep learning models to process the input and then outputs a world view subsequently using an-

other deep learning model to process it, is used, and it makes sense, it allows the agent to achieve

higher sample efficiency by not having to have to implicitly learn to create an intermediate world

representation (readily avaiable models for lane detection or depth estimation can be used for this

effect).

2.8 Related Work

In this section a variety of works are presented, from RL, to autonomous driving and also ones

related to the driving simulators.

Staring with self driving [128] presents a simple actor-critic framework with DDPG. The prob-

lems faced with autonomous driving are explained (mainly the complex observation space) and

also their differences compared to challenges like Atari games, tasks where RL can easily achieve

superhuman performance. The effectiveness of this framework and the final model trained is

shown in a simulator called The Open Racing Car Simulator (TORCS).
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Figure 2.20: Example of Tesla’s input processing (top image) and its latent encoding (the repre-
sentation of the world). From [119]

The previous framework explained and also the RL algorithms studied in the last chapter

are model-free and as such they don’t do explicit planning or learn the environment dynamics

but using a framework that uses concepts like [110] where the model is given can lead to much

improved sample-efficiency. In [55] the authors create such model and apply it with good results

in a scenario of highway merging and it serves as a work that successfully applies model-based

techniques to autonomous driving.

An example of deep RL achieving superhuman performance is [36] where the authors train

using multiple agents in the video game Gran Turismo Sport in a parallel fashion. Using 80 agents

at once, all collecting samples and storing it in a replay buffer, another computer using SAC trains

using this buffer and the final policy network is then pushed to the agents. The final network took

about 73 hours of training and in the end it was able to lap a given racetrack faster than human
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players. While it does achieve really good performance one aspect that needs to be mentioned is

the agent’s input, in this case it used simple "rays" that measure distance until the edge of the track

2.21, this means that the observation space is much simpler than using RGB cameras and other

"real life" sensors.

Figure 2.21: Diagram for the agent’s input used in [36].

One of the first works in autonomous driving on Carla environment is presented by Codevilla

et al. [24] where a range of Imitation learning methods are considered. The approach consisted

of expert images derived from a front facing camera, a Modular Pipeline, that featured a PID for

low level control, a planner that functions as a state machine and generates way-points that will

coordinate the PID controller and a semantic segmentation network that segments each pixel into

categories such as road, sidewalk, static or dynamic object and Reinforcement Learning (A3C),

their results showed that RL had the worst results, it failed to avoid collision with cars and other

static objects, the other two methods provided much better results but overall they all failed the

task of driving on a straight empty road. The authors attempt to explain the poor performance of

A3C with the following:

Why does RL underperform, despite strong results on tasks such as Atari games [91],

and maze navigation [89] [69]? One reason is that RL is known to be brittle [50],

and it is common to perform extensive task-specific hyperparameter search, such as

50 trials per environment as reported by Mnih et al. [89]. When using a realistic

simulator, such extensive hyperparameter search becomes infeasible. We selected

hyperparameters based on evidence from the literature and exploratory experiments

with maze navigation. Another explanation is that urban driving is more difficult than

most tasks previously addressed with RL. For instance, compared to maze navigation,

in a driving scenario the agent has to deal with vehicle dynamics and more complex

visual perception in a cluttered dynamic environment.
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Challenges with training a reinforcement learning algorithm in Carla are studied in [113],

where the authors note that training a DQN model to drive a vehicle is not only very resource

intensive but yields poor generalization, instead it recommends behaviour cloning approaches

noting their lightweight final models and their need for less computing resources.

In [25] an in depth study of behaviour cloning is conducted and a dataset called CARLA100

is presented, consisting of hundreds of hours of driving experiences done by an AI that leverages

privileged information (Carla API calls that don’t have a translation to real life). It demonstrated

good performance in a variety of scenarios.

A work that gets good better performance with a RL algorithm is [79], it acknowledges that

conventional end-to-end reinforcement learning while it has benefits such as long-term decision

making it spends a lot of time doing meaningless exploration and therefore takes a long time to

converge, to address this the training of an agent is divided into two parts one where standard

Imitation learning occurs with a deep neural network, then this network (or more specifically its

weights) are transferred into a reinforcement learning (DDPG) agent, this is similar to transfer

learning. This algorithm named Controllable Imitative Reinforcement Learning (CIRL) achieves

the best performance when compared to others like the ones in [30] 2.22.

Figure 2.22: CIRL performance compared to other algorithms. From [79]

Another work that achieves good performance is End-to-end Autonomous Driving Perception

with Sequential Latent Representation Learning [22], its a end-to-end approach to autonomous

driving that while attempts to have a similar architecture to approaches to real life, like using

a perception or decision making system but it does away with many human engineering fea-

tures/heuristics or tuning of these features, since training is end-to-end. The agent learns a se-

quential latent representation model 2.23 and from the sensors outputs and their previous outputs

it provides information about neighbouring vehicles and a semantic mask of the road. After train-

ing this latent architecture reinforcement learning algorithms can subsequently trained with it as

an input. This method has both an advantage it terms of both performance and also one for provid-

ing interpretability on how the agent encodes the world. Its a complex architecture but it provides

good results.

Another successful reinforcement learning work [121] uses an encoder (ResNet) first trained

in a supervised manner and then the encoder is used with reinforcement learning. This architecture

achieves goods results 2.24 compared to the ones in [30].

The best performing algorithm on Carla’s leaderboard 2.25 is [21], its a imitation learning

agent that trains in two stages, one where a privileged agent gets access to a map with all the
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Figure 2.23: Sequential latent representation model diagram from [22]

information about traffic lights, vehicles, pedestrians, an unrealistic observation (its even called

learning by cheating) and is trained with supervised learning with expert data. After this agent is

done training another agent is trained to imitate the privileged agent, this time its input instead of

a map is a RGB image from a front facing camera.

All of the works previously presented trained an agent in Carla and the resulting policy would

be validated and only used in it. The authors of [61] attempt to transfer the resulting policy, trained

by a RL algorithm in a simulator into a real life scaled model. The task attempted to solve was

traversing a roundabout with other vehicles presented and the transfer from simulator to real life

proved to yield good results and it shows that policies trained in simulators like Carla (although

this wasn’t the simulator used) could be used to, or at the very least help, train an agent capable of

self-driving in real life.

A different approach to the problem of training an agent in a simulator and applying it to

real life was studied in [99] where a Generative Adversarial Network (GAN) architecture learns

to convert a synthetic image rendered by a simulator into a image close to a real life one, which

subsequently is fed to a reinforcement learning agent. This method allows the use of any simulator

and any RL algorithm and for the policy network it thinks that it is training in a real life scenario.
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Figure 2.24: Diagram of the architecture (top image) and results (bottom image) of [121].

Figure 2.25: Carla’s Leaderboard (cropped) in September 2020. Leader is [21]



Chapter 3

Agent Framework

The main goal of this section is to present Carla, the simulator that is going to be used to develop

the autonomous agent, to showcase the modifications done to Carla in order to run a reinforcement

learning agent and also to benchmark approaches to training an autonomous driving agent.

The objective of this chapter is to see how well the algorithms and methods presented in

the last chapter work to train a realistic autonomous driving agent (meaning using sensors and

observations that have a real life counterpart).

3.1 Proposed Framework

The proposed architecture consists of two main modules, namely the CARLA simulator and the

OpenAiGym toolkit, as presented in Figure 3.1. These modules communicate with each other

and make it possible to easily code a RL agent. In the following, we briefly describe each of this

modules.

3.1.1 CARLA simulator

CARLA is a open-source simulator for autonomous driving research. The simulator was built on

top of one of the most popular game developing software (Unreal Engine 4). It serves as a realistic

dynamic world for developing and validating autonomous driving systems. It is designed as a

Figure 3.1: Diagram of the extensions done to Carla.

43
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Figure 3.2: Carla Simulator. From [20].

server-client system where the server (built on C++) runs the simulation and a Python API serves

as the client.

The client first sets up the simulation, it has a wide choice of settings, from the many maps/towns

avaiable (some imitating US towns other European ones), to the agent’s vehicle configuration

(it’s type and model and also sensors attached to it, like cameras or even RADAR), pedestrians

behaviour, weather patterns. During the simulation the client controls the vehicles throttle and

steering and it receives from the server the sensor’s output.

The server is the environment from where all the RL agents implementations will be developed

and tested. Although Carla is built for this purpose it still needs to be modified in order to provide

the correct functionality for the RL agents.

During the configuration of the server, one of the most important settings for Carla is the simu-

lation speed and synchronous or asynchronous mode. Each configuration has its advantages and

disadvantages, the following table describes them.

Fixed time-step Variable time-step
Synchronous Mode Client has control over the simulation and its information. Risk of non reliable simulations.

Asynchronous Mode Good time references for information. Server runs as fast as possible. Non easily repeatable simulations.

As per the Carla documentation for most cases the best option is to use Synchronous Mode

and a fixed time step. The choice of time step is 0.1 seconds as it is the biggest without breaking

the physics, also because the system used is has enough computing power the wall time and the

simulation differ, meaning that when an amount of seconds pass in real life about 5 times that

pass in the simulation, this is important as it shows that as computing power improves more and

more samples can be obtained per time and potentially agents can achieve better performance.

Note that because of frame skipping the agents see the environment 0.2 seconds forward in time

every step. This time-step was chosen as in manual testing it was seen as a good trade-off between

responsiveness, the time that the agent has to react to the environment and time spent processing,

as decreasing it would mean less samples per second.
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Sensors. Carla has a variety of sensors that can serve as input for the agent, such as LIDAR, RGB

Camera, RADAR, GPS sensor, collision sensors.

As mentioned before the sensors chosen have to have a real life counter-part and will be similar

to the ones used by works described in 2.8. The agent’s real life equivalent would look close to

3.3.

Figure 3.3: Overview of a self driving car by Waymo. From [131]

3.1.2 Open AI Gym

OpenAI Gym [4] is the simplest and most used platform/interface for developing and testing

reinforcement learning tasks. It is extensively used by researchers and other works and allows

different implementations to be rapidly tested and compared. It serves as a simple realization of

the Markov Decision Process.

Its used for testing and comparing different RL implementations, on their official website

many environments, from Atari games, to text adventures are avaiable for rapid testing.

An OpenAI Gym conforming environment needs to implement the following functions:

• reset() : sets up the environment for another episode.

• step(action) : given an action it does a simulation step of the environment. Returns the

observation, reward and if the episode is done.

• render() : displays a frame of the environment.

• sample() : returns a random action.

For the final framework of the environment a Wrapper for Carla is developed that interfaces

between the RL agent and the Carla API.
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3.1.3 Main New Functionalities

Implementing Carla as a OpenAIgym environment required writing a wrapper for Carla’s API, on

top of that functionally, the following new improvements were added:

• Multiple Agent support: Locking with a mutex is added to the world tick as otherwise if

two agents ticked at almost the same time Carla would crash.

• 2D Mini-map: The mini-map function from Carla’s Scenario Runner is modified and is

provided as a image tensor.

• Sensor fusion: Multiple sensor types such as RGB cameras and LIDAR can be combined

in a single image tensor and also GPS coordinates and velocity.

• Automatic weather: at every 100 steps the weather changes to a new one. This is required

so that the agent doens’t become overfitted or only knows how to act in a single weather

pattern.

• Route Indication: To better help the agents navigate, arrows are drawn to indicate where it

has to go, indications are also supplied in the additional observation.

In the following the two main new functionalities are described in more detail.

Sensor Fusion. The input of each RL agent will be composed of two RGB cameras (front facing

and back facing), a LIDAR sensor, a speedometer, and the GPS coordinates. In order to simplify

the processing of different sensors and dimensions (RGB Cameras output 2D data and LIDAR

3D), the data from the LIDAR is put through a 2d orthogonal projection, collapsing the Z axis, see

3.5. This allows the LIDAR and Camera to be fused together into a single image. If the LIDAR

data was kept in 3D this would increase by a lot the complexity of the agents encoder as it would

need not only to do 2D convolution but also 3D convolution, unless a completely different method

of image processing was used (different from CNNs).

Route Indication. Treated as a regular sensor but as a way for the agent to have a simple plan-

ner and a navigation system a route is calculated using Carla’s API (which in turn uses an A*

algorithm), this route is conveyed through the additional observation vector, as a one-hot encoded

vector with 6 positions, they mean [Left, Right , Straight, Lane Follow, Change lane left, Change

lane right]. Also when the agent gets to one of the waypoints indicated it gets a additional positive

reward.

3.2 Training a RL Agent

To completely train a reinforcement learning agent a number of methods/architectures were ex-

plored and compared and ultimately one chosen. The first way of training an agent was by using
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Figure 3.4: View of the LIDAR data on Meshlab. From [20].

a Variational auto encoder (VAE) 2.2.6.1, using it to reconstruct images from the sensors. The

VAE is used is to decrease the dimensions of the inputs, going from an image (300x900x3) to a

flat list of floats (in this case 412 floats). As previously mentioned, this provides two advantages:

i) decouples the encoder from each RL agent and ii) allows the encoder to train in a supervised

manner, to ensure that it can compress its input into the bottleneck. The VAE is trained with about

50k images of 300x900x3, and its bottleneck is 400 floats. All choice of hyper-parameters are

explained in this section 3.5.1. After the VAE is trained each of the only RL agents looks at the

bottleneck of the VAE.

Reward Function. When training RL agents one important aspect is having a proper reward

function. Setting a reward function is a complicated task despite usually being done manually. A

reward function for this environment was developed and tweaked over the course of 500+ simula-

tions mostly using a human agent (i.e. by controlling the car using the keyboard) and seeing if the

positive rewards correspond to the agent progressing towards its target goal (i.e. the coordinate

(0,0,0) that corresponds to a roundabout in the center of the map) or negative rewards if the agent

is doing poorly. Special attention was also given to situations where an agent performs "reward

hacks". This occurs when an agent finds a set of actions that it shouldn’t be doing but it gets a

positive reward (e.g. the reward function needs to take into account the agent turning in circles

and if does, penalize it).

Reward = αVelocity+βDistanceToOb jective−σTimeSpent

+ρFollowingGPSRoute− γCollisionImpulse− τLane+φSuccess
(3.1)

• Velocity: this value is negative if the agent is travelling at a speed below 5 km/h and
speed in km/h
cruise velocity where the cruise velocity is 40 km/h, if the agent is travelling at more than

50 km/h it gets a negative reward and also if it has a big angular velocity (to stop it from

pulling really tight corners).
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Figure 3.5: Final fused image of the cameras and LIDAR, from left to right, RGB front, RGB
Back, LIDAR Projection. Note the text on the left corner is not part of the input.

• Distance To Objective: it’s destination is the point (0,0,0) and it gets a positive reward

if since the start of the episode it approaches that position lastdistance to destination−
new distance to destination, if on the other hand it gets further away from it, it gets a

negative reward.

• Time Spent: this is a simple negative reward of -0.1 at every step, this is so the agent looks

for positive rewards.

• Following GPS Route: as mentioned a route (set of waypoints) is calculated from its starting

location until the destination, every time the agent reaches a waypoint it gets a positive

reward, +10.

• Collision Impulse: a vector that quantifies the force applied to the vehicle by a collision, if

it has a magnitude greater than a predefined value (300) or the agent breaks a basic driving

law he gets a massive negative reward and the episode ends and it gets a negative reward of

-100.

• Success: if the agent gets to the destination, it gets +200.

This reward function is used for the main part of training the agent. It runs for about 24 hours

and the networks are saved and used for the next stage of the training. In the second stage of

learning the agents is put through a set of scenarios and ran, its performance in the scenario is then

used for as a sparse reward for the agent (see 3.4). While it trains while running the scenarios, it

takes a long time to run through a scenario so it won’t update much of its networks from scenario

runs.

3.3 Method

As previously mentioned two architectures for the encoder were used, one with a VAE and then

one consisting of a ResNet encoder.
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Both types of encoder (VAE and ResNet) use Convolution neural Networks (studied here

2.2.2.2), they are designed to work with images, but images aren’t the entire agent’s input, there

is a special vector that contains information such as the speed, GPS coordinates and also the route

indication, this is called the additional observation and it needs to skip the processing done by the

convolution layers and filters and straight into the policy network.

Also since the environment is a partial observable Markov decision process, recurrent neural

networks are used in the policy’s and critic’s network.

Figure 3.6 describes the entire pipeline and how the additional observation vector is used for

training.

Figure 3.6: Overview of training RL Agent with the 2 types of encoders.

3.4 Evaluation framework

For evaluating the performance of each RL agent, after training the agent was put in a scenario

called "simple benchmark" where it had to control a vehicle 100m in a straight line, on top of that

it also was bench marked in the following scenarios provided by Carla’s team.

3.4.1 Carla Scenarios

• Control Loss: Measures the ability of the agent to retain the control of the vehicle. In its

lane there are patches or bumps that when driven over make the vehicle loose its grip.
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• Following Leading Vehicle: Measures the ability of the agent to following another vehicle

through an urban environment.

• Cut in: Measures the if the agent can correctly handle when a vehicle is gets in front of him

in the highway.

• Traffic Light: Measures the ability of the agent to correctly pass an intersection with a traffic

light with another vehicle.

Screenshots of these scenarios can be seen in A.3.

3.4.2 Implementation

Implementation of the different reinforcement learning algorithm followed their respective orig-

inal works without major modifications. The same encoders architectures were used for all the

algorithms.

When it came for the amount of steps ran, they weren’t the same for all, instead what was the

same was the wall time, this way its possible to compare just how better more complex methods

are.

When it come to policy gradients and actor-critic methods two separate networks were used

for the value estimation and the policy.

With SAC and PPO a total of 5 networks were needed, 2 for the critics, 2 for their targets and

a policy network.

Looking at works like SAC [45] the size of the memory buffer is in the range of millions, this

can’t naively be applied to the inputs of the agent. The ones in the SAC work are small, consisting

of a low dimension vector of floats and could be stored easily in RAM. Initially the same approach

was used but this limited the max size of the memory buffer to below 100.

The solution developed to address this problem was to develop a buffer that in a transparent

would automatically compress a observation sample (composed of the sensor data, the hidden

vector and additional observation in a step), store it in disk and when training the neural networks

load it, decompress it and send it to the GPU. This adds overhead compared to a regular imple-

mentation and makes the amount of samples obtainable per second lower and also more dependent

on hardware like storage speed, PCI Express speed and also CPU speed but theses disadvantages

are necessary to obtain a reasonable memory buffer size.

In the future this implementation could benefit from technologies like GPUDirect [1].

All the algorithms are also TD(0).

3.4.3 Hardware Used

Training the different agents was done in GPULab https://doc.ilabt.imec.be/ilabt/

gpulab/, a distributed system for running GPU-enabled docker instances, the hardware used

consisted of 8 CPU threads, 10 GB of RAM and a Nvidia Tesla V100 32 GB.

https://doc.ilabt.imec.be/ilabt/gpulab/
https://doc.ilabt.imec.be/ilabt/gpulab/
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3.4.4 VAE

To train a complete reinforcement learning agent first a Variational auto encoder (VAE) is trained.

The VAE is trained to reconstruct images from the sensors. The reason why a VAE is used is to

decrease the dimensions of the inputs, going from an image (300x900x3) to a flat list of floats (in

this case 412 floats), the VAE also decouples the encoding of the sensor data from the Reinforce-

ment Learning agent, meaning that it can be reused between different RL algorithms. Due to the

loss function of VAEs the encoded vector is interpretable unlike regular autoencoders.

The VAE is trained with 50k images of 300x900x3, and its bottleneck is 400 variables, all

hyper-parameters are in subsection 3.5.1.

After the VAE is trained each of the only RL agents looks at the bottleneck of the VAE.

Figure 3.7: Overview of training VAE

To train a RL agent its observation consists of the bottleneck of the VAE (array of 400 floats)

and an additional array of 12 floats consisting of more sensors (such as speed, GPS coordinates

and route planning info), the CARLA environment also supplies the reward and if the episode is

done.

All the different RL algorithms trained in this work will output a Neural Network that will be

policy.

Figure 3.8: Overview of training RL Agent with VAE.

The training occurs in different stages, first a "free-roam" stage, the agent is spawned (ran-

domly from a different set of possible points) into a town in the CARLA simulator, with no other
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vehicles (unless the algorithm works distributively, like A3C). In this stage the agent doesn’t know

nothing about controlling the vehicle and it is meant to learn the basics about driving, such as learn-

ing not to crash and to obey to basic driving rules (traffic lights, driving between lanes). It has a

simple objective of reaching the center of the map from its spawn point.

Additional details of training each of the Reinforcement learning algorithms are as follow:

• DQN: Similar to the way [90] trained, one deep neural network was used as the approxima-

tion of the value function, no additional target network was used.

• A3C: multiple agents (3 in this case) were trained simultaneous and the networks were

synced at the end of the episode.

• PPO and SAC: These algorithms used in total 5 networks, 2 for the critics, 2 for the critics

target and 1 for the policy network.

3.5 Results

3.5.1 Hyperparameter Tuning

Both the Carla environment itself and each RL algorithm had a set of tunable hyperparameters,

like the amount of frames to skip or the size of the CNNs kernel filters. Techniques like automated

machine learning [32] were studied and pondered (more specifically this library [86]) but due to the

fact that they were still in early stages and also not easily incorporated to a reinforcement learning

environment they weren’t used, instead they were tuned in a manual manner. In total about 200

simulation runs were executed just for tuning hyperparameters, most of which were for the reward

function weights. All runs and the different hyperparameters tested can be seen here https://

app.wandb.ai/gonvas/gpulab and https://app.wandb.ai/gonvas/carlaFinal.

The list with all hypeparameters can be seen here A.5.

3.5.2 VAE

The VAE was trained for approximately 24 hours, it sole purpose as mentioned was to encode

images into a botleneck that could not only make training faster for RL algorithms but also to

decouple training the encoder part to training the policy network.

As seen by image 3.9 the trained VAE is not capable of generating images with much detail,

it can be seen that it can only generate shapes of buildings and a road, no markings, no signs

and a very blurry image overall. Training RL algorithms using the VAE as a encoder becomes

impossible, different observations that would require completely different action by the agent

would have near identical botleneck encoding as for the agent would essentially be the same

image. This also the case when trying with different hyperparameters, such as the bottleneck size

(trained from 50-400 size), different filters sizes (for the convolution layers), different network

architectures (number of layers and total parameters) and other hyperparameters (such as learning

rate and activation functions). A total of about 20 different trained networks were tested and

https://app.wandb.ai/gonvas/gpulab
https://app.wandb.ai/gonvas/gpulab
https://app.wandb.ai/gonvas/carlaFinal
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almost all produced similar results, although some didn’t even manage to train as the loss started

increasing exponential and the resulting reconstructions were noise.

Other works that use VAEs and Carla produce better results, but one major difference is the

input/sensors used, in this work a realistic approach to how an agent can sense the world was taken

while in those works the sensor used is a 2D "Cartoon" mini map drawn using Carla’s API which

doesn’t have a real life counterpart.

Still the advantages for having a VAE are clear, it leads to much faster training and could even

be used for model base reinforcement learning [43]. Several approaches could be used to improve

performance for the VAE, such as using improved architectures/variants of a regular VAE [51]

[41] [102] [124]

Figure 3.9: Results from VAE, input is the top image, reconstruction is the bottom image, recon-
structions are blurry and unusable.
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3.5.3 RL algorithms

Due to the failure of the VAE the architecture of the reinforcement learning agents was switched

to a ResNet Encoder coupled with a recurrent neural network, depicted here 4.3. The sensors used

were still the same.

From analysing the resulting policy network the best performing algorithm was SAC (although

they all had similarly bad performance.) and it is the agent whose results are going to be analyzed

1, the other RL algorithms are presented here A.3.
1

The agent was trained for about 400k steps on a GPULab instance (Tesla V100) and looking at

the cumulative episode reward 3.10 it is clear that while the agent improved in the first 20k steps

it stagnated and it still couldn’t learn a policy that could achieve positive rewards.

Figure 3.10: SAC episode cumulative reward.

Looking at the network losses it’s clear the model couldn’t generalize and learn, as training

goes on the loss doens’t decrease and converges at a high value 3.11. The fact that the critics have a

high loss might be the reason why the policy has one too, since in SAC the policy is approximated

to the action-value function (critics).

Benchmarking the agent through Carla’s scenarios yields bad results 3.1 . The agent isn’t able

to finish a single one with success. The observation given to the agent is of very high dimension

so the agent might have difficulty attributing a value. The problem might be to complex and

the agent can’t map what it sees to a representative value and subsequently can’t learn a policy,

it keeps getting negative rewards, outputting distance wrong action-state values resulting in big

losses that are propagated through the networks but still those networks can’t decide what parts of

the input too look at to determine the action-state value. Another reason that learning might not be

happening is that the networks are either too complex (making it stuck on a local minima 2.5) or

too simple, the choice of encoder architecture is discussed in A.2 and other simpler architectures

1The training run for SAC, with the code and trained models, can be seen here https://app.wandb.ai/
gonvas/gpulab/runs/2a27ikz7.

https://app.wandb.ai/gonvas/gpulab/runs/2a27ikz7
https://app.wandb.ai/gonvas/gpulab/runs/2a27ikz7
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were also tested but they still result in this type of behaviour (see runs under the same project as

1). It is apparent why other works (discussed here 2.8) either don’t use end-to-end RL (building

intermediate representations) or use different simpler inputs (like Carla’s 2D cartoon minimap),

the input space might be to large.

Analysing the saliency maps also shows a agent not looking at anywhere relevant like lanes,

signs or marking, an indication that it fails "understand" its input 3.12.

Figure 3.12: Example of SAC agent input, output action (top image) and corresponding integrated
gradients.

On the top figure the first image is the output of the agent, in the case of SAC since it is

continuous control, it outputs a mean an deviation from which a multivariate Gaussian distribution

is created and a action is sampled from, in the case of this input, it outputted [1.4, 1.7] and the

bottom image show what parts of the input mattered for the output (this is excluding the additional

observation vector and memory vector).

Looking at the integrated gradients its apparent the agent gives a lot of importance to the LI-

DAR sensor, also there seems to be artifacts of tiny squares, but ultimately the agent isn’t focused

on more important features like the road and the lane. The images shown correspond to an episode

where the agent spawned and quickly accelerated and stepped on a solid white line (it can be seen

on the lower left part of the first image) which ended the episode with a very negative reward.

For comparison figure 4.6 the agent seems to actually take lanes into account (an outline of a lane

marking can be seen in the integrated gradients).
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Scenario Criteria Result Actual Value Expect Value Observations

Check Collision Failure 1.00 0.00
Simple Benchmark

Distance Objective
(m)

Failure 4.5 93.2

After taking command
of the vehicle it went
outside its lane.

Check Collision Failure 0.00 0.00
Control Loss

Duration (s) Failure 60.04 60.00
Got to the first bump but
stepped outside its lane.

Check Collision Failure 1.00 0.00Signal Junction
(Turn Right) Duration Failure 80.04 80.00

Collided with the other
vehicle in the junction.

Check Collision Failure 1.00 0.00
Follow Lead

Duration (s) Failure 60.03 60.00
Stepped outside its lane.

Check Collision Failure 1.00 0.00
Cut In

Duration (s) Success 7.7 600.00
Stepped outside its lane.

Table 3.1: Results of SAC RL agent. Best result from 5 runs through each scenario.
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Figure 3.11: SAC losses for all the networks.
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Chapter 4

Proposed Architecture

In the following chapter a final Multi-Agent Reinforcement Learning architecture is proposed, an-

alyzed and tested. It leverages concepts and algorithms from the chapters previously presented and

its the main contribution of this work. In the next chapters details about its choices of architectures,

inputs and algorithms are detailed.

4.1 Overview

Training is divided into two phases, first a policy network is trained with behaviour cloning using

data collected from a human driver and then a reinforcement learning algorithm, SAC, is used in

conjunction with multiple agents, all cooperating with each other.

4.2 Distributed Reinforcement Learning

In order to leverage more computing resources and to make sure the final driving agent is able

to navigate an environment there are multiple agents training at once, all working together to

improve a shared model. The final training algorithm is similar to A3C and uses its distributed

training concepts but the base algorithm is SAC. It works with a shared model and the trainer

agents periodically pull from it, when training the agents send their gradients to the shared model,

all of this is done asynchronous. The advantages of being distributed is that multiple agents are on

the environment interacting with it, making possible use of multiple CPUs/GPUs, obtaining more

samples and allowing for agents to cooperate. Figure 4.1 depicts the architecture.

More complex approaches to multi-agent reinforcement learning could be used like the ones

in COMMA [34] where a centralized critic is used, but for this work an extension to SAC inspired

by A3C was used. It creates multiple agent each with a policy network and two critic networks (as

a normal SAC agent) that train in their own environment collecting samples and learning. When

they update their networks the gradients are accumulated and subsequently applied to a shared

model. This shared model is synced with each of the agents policy at certain intervals, similiar to

A3C.

59
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4.2.1 Message Parsing

Treating each agent as a node in a complete graph, before the agents networks process the inputs

and return an action, messages are passed between agents asynchronous and stored in a shared

buffer. Each message consists of a vector of 32 floats with the first part of the vector is hard coded

with the agent speed and GPS indication. The contents of the vector are the result of a neural

network layer and are trainable. The approach taken is similar to the work on Message Parsing

Networks and explained in 2. The advantages of this approach is the combination of both a fixed

amount of information on each message that will help the agents achieve better performance but

also with a trainable component.

Each of the agents message is computed by a linear layer in the policy network after the

processing of the inputs by the RES-NET blocks. At each time step an aggregate function (average

in this case) is performed on all messages from the other vehicles.

Figure 4.1: Overview of Distributed RL.

4.3 Two-phase Multi-agent RL Pipeline

4.3.1 Phase I - Behaviour Cloning

Results from many attempts with different algorithms, architectures, sensors one thing was clear,

while using reinforcement learning has its advantages, in the initial parts of training the agent

behaves poorly, completely randomly. This is normal has the agent initially starts with a random

policy and needs to collect samples to train and obtain a better policy. The biggest problem was the

speed that it was converging, usually very slowly. This can be improved, by using a more "gradual"

reward function, i.e one that gives positive rewards for closing the distance to the objective, or for

following the GPS route, but as Sutton says, the reward function specifies the objective not how it
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is done. This can lead to reward hacking. Another way to improve this convergence is by using

curriculum learning, but ultimately it takes a long time for the initially random agent to obtain

positive and to converge. A better solution and already used [79] is to use expert samples as a

primer for the agent (both the policy and the critic networks).

For the behaviour cloning the loss function has two components, a MSE (Mean Squared Error)

4.2 and one to keep the agent with a good amount of exploration 4.3. The final action of and agent

is sampled from a Gaussian. The policy outputs a mean and deviation from which a Gaussian is

constructed and sampled 4.1. If after the behaviour cloning part the policy network outputs small

deviations then the agent won’t explore as much, to fix this the loss function penalizes deviations

not near 0.2.

Actiont ∼N (Policy1
t , Policy2

t ) . (4.1)

Jmse =
1
N

BatchSize

∑
i=0

(experti−Policy2
i )

2 (4.2)

Jexp =
1
N

BatchSize

∑
i=0

(|0.2−Policy2
i |) (4.3)

where:

Policy1
t First component of the output from policy network at time step t used as mean

Policy1
t Second component of the output from policy network at time step t, used as deviation

4.3.2 Phase II - Reinforcement Learning

Once we have a policy network and a critic capable of basic navigation and control of a vehicle,

a reinforcement learning phase is executed. If the initial behaviour cloning wasn’t performed the

agents would be acting randomly for a long time and not collecting samples that would allow them

to converge, 3.

As mentioned learning is done with a modified hybrid SAC + A3C algorithm with an added

message parsing step to ensure agents communicate to each other, they are all running in the same

town and using the same car, sensors and networks structure.

To ensure correct learning from the agents throughout the training previous unseen expert

samples are added to the sample buffer of the agents, this type of approach is part of the sub-field,

in RL, offline reinforcement learning. SAC is an off-policy learning algorithm so it can learn from

samples from different policies. As Sutton states in his book,

Off-policy methods also have a variety of additional uses in applications. For exam-

ple, they can often be applied to learn from data generated by a conventional non-

learning controller,or from a human expert.

SAC is not the best approach for learning only from offline data but its use is going to be a

mixture of data derived from its policy and expert data. This concept is similar to one taken from
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curriculum learning [83] where at certain times samples from when the policy had learnt to do a

task, in this case it is expert data.

The reasons for adding these modifications to SAC is that from our testing the RL algorithms

(DQN, REINFORCE, A3C, PPO, SAC) tested none where able to train an agent to perform basic

tasks like driving in a straight line and between lanes.

4.3.2.1 Offline Reinforcement Learning

SAC is the RL algorithm used, being an off-policy algorithm is able to learn from samples not

taken by its current policy, such as expert data. The sub field of reinforcement learning that covers

this type of learning is covered here 2. To help the agent achieve better performance, in the initial

part of RL training its sample buffer is going to have some expert data samples. Note that this

is only in the beginning, as SAC is not a good performing fully offline reinforcement learning

algorithm, although for it can benefit from some expert samples, [71].

4.4 Implementation of Phase I - Behaviour Cloning

The following sections describe how different aspects of behaviour cloning were implemented and

done. The pseudcode for the algorithm is presented in 6.

Algorithm 6 Behaviour Cloning

Inputs: expert data samples buffer D̂
Initialize policy network φ

Initialize critic network θ

for each epoch do
for training step do

ôt , ât , r̂t ∼ D̂ . Sample from expert buffer
µt ,σt ∼ πφ (at ,ot) . Sample mean and deviation from policy
at ∼N (µt ,σ

2
t ) . Construct Gaussian and sample action

Jπ(φ) = MSE(at , ât)+ |σ2
t −0.2| . Compute MSE error

φ ← φ −λπ ∆̂φ Jπ(φ) . Update policy network
θi← θ −λQ ∆̂θ JQ(θ) . Update critic network

end for
end for
Outputs: φ ,θ

4.4.1 Data Collection

First the agent will be trained using supervised learning on expert data, collected from a human

driver. It consists of driving experiences in Carla each is a vector with the following components:

Samplet = [Obst ,Actiont ,Rewardt ,Donet ] (4.4)



4.5 Implementation Phase II - Multi Agent Reinforcement Learning 63

The reward used is the same as the one explained in 3.

Note that the Reward and Done boolean are needed to train the critic network.

The data was collected in the Town01 and many other vehicles (using CARLA’s built in AI)

and pedestrians were spawned in. The weather was also randomly changed every 100 samples.

In total about 3 hours of driving were collected totalling 17.5k samples, they were subsequently

compressed using DEFLATE compression format and they take 30GB of space. 1

4.5 Implementation Phase II - Multi Agent Reinforcement Learning

Each step in the environment is divided into two sub steps, one for processing and aggregating the

messages sent by the vehicles and a another one that has the agent stepping through the environ-

ment and training its policy and critic networks. This two step method is illustrated in 4.2.

4.5.1 Message Parsing

Due to the nature of the agents they are all running asynchronous so while one might be running

its training another might have finished and is requesting the environment to step. The way that

the messages are passed between each other is using a shared message buffer, when an agent is

finished and ready to output its message it simply puts in its last message in its corresponding

index on the buffer. When its time to process the input it gathers all the messages and computes

an average. It is possible for the agent to read the same message twice (an old message), it has to

learn in training that the communications aren’t always 100% reliable.

The final message that each agent processes is explained in 4.5 and the final implementation

can be seen in 7

MsgIn = γ(
N

∑
k=0

Msgk

N
) (4.5)

where:

γ = differential linear layer in a neural network

N = number of agents

4.5.2 Training Environment

During training the max quality settings for Carla were used and the training environment of the

agents consists of driving freely through Town03. Similar to curriculum learning, where harder to

solve tasks are introduced in later stages of training, three different tasks are introduced in latter

parts of training, pedestrians, other uncontrollable vehicles and penalties by driving trough red

lights, this is to ensure that the vehicle focuses on learning the basics first (such as maintaining the

vehicle between lanes).

1The data used in behaviour cloning is available at the URL https://drive.google.com/file/d/
1ShBVqCqrBnezCjl6ZKEEzpAkhPkl-caq/.

https://drive.google.com/file/d/1ShBVqCqrBnezCjl6ZKEEzpAkhPkl-caq/
https://drive.google.com/file/d/1ShBVqCqrBnezCjl6ZKEEzpAkhPkl-caq/
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Algorithm 7 Asynchronous SAC with message parsing for each agent process.

Inputs: policy network φ , critic networks θ1, θ2, shared message buffer MsgBu f and sample
Buffer D̂ with some expert samples, shared model Π

Initialize target networks θ1, θ2 ← θ1, θ2
Initialize network gradients dΘ

for each episode do
for each environment step do

Msgt =
1
N ∑

N
k=0

Msgk
N . Compute message from neighbour agents

at ∼ πφ (at ,ot ∪Msgt) . Sample action from policy
st+1 ∼ p(st+1|st ,at) . Sample transition from environment
D̂← D̂∪{ot ∪Msgt ,at ,rt ,donet} . Store transition in experiences buffer

end for
for each gradient step do

θi← θi−λQ ∆̂θi JQ(θi) for i ∈ {1,2} . Update critics networks
dΘ← dΘ+λπ ∆̂φ Jπ(φ) . Store Policy gradients
φ ← φ −λπ ∆̂φ Jπ(φ) . Update local Policy network
α ← α−λ ∆̂α Jα(α) . Update temperature (for auto entropy adjustment)
θi← τθi +(1− τ)θi for i ∈ {1,2} . Update target critics networks
if step mod SyncUpdate then

Π←Π+dΘ . Update shared model
dΘ← 0

end if
end for

end for
Outputs: φ1,φ2
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Figure 4.2: Diagram of the two step RL algorithm.

4.6 Experimental Setup and deployment

4.6.1 Scenarios

Similar to last chapter’s testing, the list of scenarios used for testing and evaluating the perfor-

mance of the agents are the ones designed by the CARLA team. They are traffic situations are

based on the NHTSA (National Highway Traffic Safety Administration) typology.

The list are:

• Simple Lane Follow: The ego vehicle has to travel about 100 meters in a straight one way

road.

• Control Loss: The ego vehicle has to travel a road that has a patch on it that makes the

vehicle loose grip.

• Follow Lead Vehicle: The ego vehicle must follow another vehicle that goes along a prede-

fined path.

• Junction without signal and with signals: The ego vehicle has to successfully navigate a

junction with lights and another vehicle also approaching the junction.

• Cut In: The ego vehicle has to keep moving forward in a highway while another vehicle

cuts in.

The performance metrics are given by CARLA’s Scenario Runner, it indicates if the ego vehi-

cle was successful and how much time it took.

More details about the scenarios is available in A.3.

4.6.2 Inputs

For the inputs a realistic approach was taken, so the 2D cartoon bird eye camera and the top down

RGB Camera were excluded and instead the inputs consist of two RGB cameras 300x300x3 each,

one front facing and other back facing. LIDAR is also used, creating an orthogonal projection
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on the Z axis, leaving a black and white 2D image. Additionally GPS indications and speed are

passed to the agent. It uses the same input as described in 3 and looks like 3.5.

4.6.3 Encoder

Due to the poor performance of VAEs, the encoder architecture used to process the images is

based around ResNet, figure 4.3 is diagram of the encoder and policy network, further details and

characteristics are in A.2.

Figure 4.3: Diagram of the encoder and policy network for the agent.

4.7 Results

4.7.1 Deployment

To train the agents an instance from GPUlab was used, 3 agents in total were trained and the

hardware used was a Tesla V100 with 32GB of VRAM, 64GB of RAM and 8 CPU threads. In total

training took 5 days, used about 1TB of NVME storage and 80-90% of the hardware requested.

As expected training takes a lot of RAM, VRAM and storage, it should be noted that fast storage
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is almost a requirement for training as a large amount of data is loaded straight from storage to the

GPU.

4.7.2 Hyperparameter Tuning

Almost all hyperparameters of this algorithm were the same as the ones in SAC and they were

either tuned or just copied from the last chapter 3.5.1. Some hyperparameters are introduced

by the multi-agent addition to the SAC, like the number of agents and how many steps to sync

the shared model. For the number of agents three were used since it was already using a lot of

hardware (64+GB of RAM) and for syncing the shared model it was done at the end of each

agent’s episode.

4.7.3 Behaviour Cloning

Figure 4.4: Training Loss for behaviour cloning

While training the policy network to on expert data it managed to converge 4.4, looking at the

results it seems to have captured the "jumpiness" of keyboard controls, quickly changing from not

accelerating to accelerating, it manages to keep the vehicle inside the lanes, it managed after many

tries to complete the simple scenario of driving, consisting of driving about 30 meters, but it fails

on all other scenarios. This is expected as it is only a first phase of training and the final policy

outputs a high deviation so the agent still explores in the reinforcement learning phase. 4.5
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Figure 4.5: Simple scenario screenshot, agent (blue car) has to travel to the roundabout. SAC+A3C
agent wasn’t able to reach its destination.

Figure 4.6: Example of Behaviour Cloning agent input, output action (top image) and correspond-
ing integrated gradients. The bottom image is the multiplication of the top ones.
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4.7.4 Multi Agent RL

Looking at the final reward it looks like the agent once again wasn’t able to learn, even with a

decreased learning rate the policy and critics loss exploded after the 40k steps 4.7

Figure 4.7: Final reward (top image) receive by one of the agents in multi RL up to 20k steps and
policy loss (bottom image).

Due to the loss increase in the next result only the policy network trained for 45k steps was

used. But looking at its performance on control loss scenario, it wasn’t all a failure, it managed to

move forward in the lane without colliding, it achieved the best result in this scenario.

The results for the scenarios were captured by running the agent on them for 5 times and

analyzing the best run. The table 4.1 sums up all the results.

For most scenarios the agent didn’t do so well, except for Control Loss where it managed

to move forward pass a couple of bumps where the agent would loose grip, it didn’t collide with

anything but ultimately it wasn’t able to reach the end of the road in time so it got a partial success.

The most surprising result was the highway one, the Cut In scenario, in one of the runs it was

able to do it perfectly, move forward on the highway and not loose control when the other vehicle

got in front of it. On the other runs, it didn’t move in a straight line for long enough and crashed
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Scenario Criteria Result Actual Value Expect Value Observations

Check Collision Failure 1.00 0.00
Simple Benchmark

Distance Objective
(m)

Failure 15.3 93.2

Traveled about 15m but stepped
into its right yellow lane marking.

Check Collision Sucess 0.00 0.00
Control Loss

Duration (s) Failure 60.04 60.00
Got through some bumps but
didn’t make it to the end in time.

Check Collision Sucess 0.00 0.00Signal Junction
(Turn Right) Duration Failure 80.04 80.00

Didn’t collide with anything but
dind’t get through the junction.

Check Collision Failure 1.00 0.00
Follow Lead

Duration (s) Failure 60.03 60.00
Travelled for a bit but then it
crashed into a pole.

Check Collision Sucess 0.00 0.00
Cut In

Duration (s) Sucess 22.23 600.00
Vehicle kept in its lane without
been disturbed by the other vehicle.

Table 4.1: Results from the different scenarios tested with SAC+A3C.

onto the other barriers. In general in this scenarios (the only one in a highway) the agent managed

to move better in a straight line compared to urban ones. One possible reason might be that a

highway has a "simpler" observation meaning it has less visual clutter, no buildings, no signs, no

lights, no junctions just roads.



Chapter 5

Conclusions and Satisfaction of the
objectives

In this work various reinforcement learning algorithms (including multi-agent one) were studied

and tested also related techniques to autonomous driving such as using a VAE. In the end a novel

multi-agent reinforcement learning algorithm is presented, consisting of a combination of two

methods of training a autonomous driving agent, imitation learning and model-free reinforcement

learning. A innovation is also introduced in the form of using an idea from Geometric Deep

Learning, which involves treating the different vehicles as a graph and applying a Message Passing

algorithm. The novel algorithm presented was used in a setting where only realistic inputs could

be used, such as the RGB cameras and LIDAR, this makes the observation space really complex

and it most likely contributes to its poor performance. While some works managed to obtain

acceptable performance using RL some used inputs that do not have translation to real life, like

Carla’s 2D minimap. The massive observation space, the complex environment dynamics and the

sensitivity of the many hyperparameters involved (topic mentioned here 2.8) are most likely the

reasons why it doens’t perform well, when compared to the same algorithms in settings like Atari

games.

While end-to-end learning has managed to obtain good performance, better than hand-crafted

feature engineering and extraction, in areas such as image classification while reducing the need

for expert domain expertise, autonomous driving is a completely different challenge, a much more

complex one. Its evident from looking at related work section 2.8 that a complex architecture

built with features designed by human and even building an entire perception model that explicitly

condenses the information of the sensors is required. From the results presented in chapter 3

chapter 4 a naive architecture consisting of a neural network with an encoder and another for

the policy is only capable of guiding a vehicle through a straight line in between lanes and not

much more, it can’t and won’t solve the challenge of self-driving but it does serve as a starting

architecture for architecture that might.
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5.1 Future Work

The algorithms presented are all model-free, in recent years model-based deep reinforcement

learning has been making lots of progress and it could be a massive improvement, works like

[46] have an agent construct a model of the world and enable it to plan ahead and predict. This

planning and encoding of the world allows it to not only achieve excellent sample efficiency but

also to enable some interpretability to its policy.

When it comes to the VAE that was tested it didn’t achieve acceptable performance and maybe

if more advanced methods (mentioned here 3.5.2) it could have been used with reinforcement

learning.

As mentioned, a major component of an agent is his encoder and a big improvement compared

to the work presented here would be better encoding architecture, a VAE was tried but something

more complex would probably yield much better results, like building a perception system like the

one used in [22]. In the end a CNN architecture was used, more specifically a ResNet one, but

even this could be improvement by using more state of the art architectures like EfficientNet [118].

This encoder performance could also be improved with self supervised learning, using techniques

like the ones in explored in [134] could make the entire agent more sample efficient. Memory is

used so that the agent can tackle the problem of partial visibility better, it was done using GRU

neural networks and while they are still used in state of the art architectures (even in the context

of autonomous driving) other methods like attention [126], Hopfield networks [56], Boltzmann

machines [52] or even Neural Turing Machines [40] could be studied.

Still on the topic of the encoder, one method explored but ultimately abandoned (this is due to

the severe lack of VRAM on the local machine), it would involve using pre-trained models readily

avaiable for tasks like lane-detection (this work was analysed [68] A.4) that would process the

sensor’s output and then send it to the encoder.

Hierarchical reinforcement learning [7] could also lead to an improvement in performance,

although probably not as much as the other methods proposed.

The LIDAR system used gets projected into a 2D black and white image, while this is common

among other works 2.8 and makes it simple to be fused with the RGB cameras, the better way of

handling this input would be using 3D convolution networks.

Also more tweaking to the hyperparameters could be made (although this is true for every

problem in machine learning).

A big problem with any Reinforcement learning environment and especially this one is creat-

ing a good reward function, one that makes it impossible for the agent to reward hack but gradually

gives good rewards when it starts solving the final objective, its generally done manually and there

isn’t a heuristic (although there are tips and tricks) or algorithm to create one except inverse rein-

forcement learning [2] and its an area that could be explored that could possibly extract a better

reward function.

One final topic that could be investigated would be using an agent trained in Carla and then

study how it performs when used in a real life, either in a scaled down environment (maybe with
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RC cars) or even in a real-life vehicle.
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Appendix

The following sections are supplementary material for the main thesis.

A.1 Loss function for VAE

Proof for the loss function in the VAE.

DKL
(
qφ (z | x)‖pθ (z | x)

)
=
∫

qφ (z | x) log qφ (z|x)
pθ (z|x)dz

=
∫

qφ (z | x) log qφ (z|x)pθ (x)
pθ (z,x)

dz

=
∫

qφ (z | x)
(

log pθ (x)+ log qφ (z|x)
pθ (z,x)

)
dz

= log pθ (x)+
∫

qφ (z | x) log qφ (z|x)
pθ (z,x)

dz

= log pθ (x)+
∫

qφ (z | x) log qφ (z|x)
pθ (x|z)pθ (z)

dz

= log pθ (x)+Ez∼qφ (z|x)

[
log qφ (z|x)

pθ (z)
− log pθ (x | z)

]
= log pθ (x)+DKL

(
qφ (z | x)‖pθ (z)

)
−Ez∼qφ (z|x) log pθ (x | z)

(A.1)

A.2 Neural Network Parameters

The complete architecture from encoder to policy network is shown in table A.1 and it has the

following parameters and characteristics:

• Total params: 170,625,316

• Input size (MB): 3.09

• Forward/backward pass size (MB): 163.84

• Params size (MB): 650.88

• Estimated Total Size (MB): 817.81

The table A.2 has a comparison of the size (with number of parameters) of known models.
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Layer (type) Output Shape # Param
Conv2d-1 [-1, 32, 150, 450] 4,704
BatchNorm2d-2 [-1, 32, 150, 450] 64
ReLU-3 [-1, 32, 150, 450] 0
MaxPool2d-4 [-1, 32, 75, 225] 0
Conv2dAuto-5 [-1, 32, 75, 225] 9,216
BatchNorm2d-6 [-1, 32, 75, 225] 64
ReLU-7 [-1, 32, 75, 225] 0
Conv2dAuto-8 [-1, 32, 75, 225] 9,216
BatchNorm2d-9 [-1, 32, 75, 225] 64
ResNetBasicBlock-10 [-1, 32, 75, 225] 0
Conv2dAuto-11 [-1, 32, 75, 225] 9,216
BatchNorm2d-12 [-1, 32, 75, 225] 64
ReLU-13 [-1, 32, 75, 225] 0
Conv2dAuto-14 [-1, 32, 75, 225] 9,216
BatchNorm2d-15 [-1, 32, 75, 225] 64
ResNetBasicBlock-16 [-1, 32, 75, 225] 0
ResNetLayer-17 [-1, 32, 75, 225] 0
Conv2d-18 [-1, 64, 38, 113] 2,048
BatchNorm2d-19 [-1, 64, 38, 113] 128
Conv2dAuto-20 [-1, 64, 38, 113] 18,432
BatchNorm2d-21 [-1, 64, 38, 113] 128
ReLU-22 [-1, 64, 38, 113] 0
Conv2dAuto-23 [-1, 64, 38, 113] 36,864
BatchNorm2d-24 [-1, 64, 38, 113] 128
ResNetBasicBlock-25 [-1, 64, 38, 113] 0
Conv2dAuto-26 [-1, 64, 38, 113] 36,864
BatchNorm2d-27 [-1, 64, 38, 113] 128
ReLU-28 [-1, 64, 38, 113] 0
Conv2dAuto-29 [-1, 64, 38, 113] 36,864
BatchNorm2d-30 [-1, 64, 38, 113] 128
ResNetBasicBlock-31 [-1, 64, 38, 113] 0
ResNetLayer-32 [-1, 64, 38, 113] 0
Conv2d-33 [-1, 128, 19, 57] 8,192
BatchNorm2d-34 [-1, 128, 19, 57] 256
Conv2dAuto-35 [-1, 128, 19, 57] 73,728
BatchNorm2d-36 [-1, 128, 19, 57] 256
ReLU-37 [-1, 128, 19, 57] 0
Conv2dAuto-38 [-1, 128, 19, 57] 147,456
BatchNorm2d-39 [-1, 128, 19, 57] 256
ResNetBasicBlock-40 [-1, 128, 19, 57] 0
Conv2dAuto-41 [-1, 128, 19, 57] 147,456
BatchNorm2d-42 [-1, 128, 19, 57] 256
ReLU-43 [-1, 128, 19, 57] 0
Conv2dAuto-44 [-1, 128, 19, 57] 147,456
BatchNorm2d-45 [-1, 128, 19, 57] 256
ResNetBasicBlock-46 [-1, 128, 19, 57] 0
ResNetLayer-47 [-1, 128, 19, 57] 0
Conv2d-48 [-1, 256, 10, 29] 32,768
BatchNorm2d-49 [-1, 256, 10, 29] 512
Conv2dAuto-50 [-1, 256, 10, 29] 294,912
BatchNorm2d-51 [-1, 256, 10, 29] 512
ReLU-52 [-1, 256, 10, 29] 0
Conv2dAuto-53 [-1, 256, 10, 29] 589,824
BatchNorm2d-54 [-1, 256, 10, 29] 512
ResNetBasicBlock-55 [-1, 256, 10, 29] 0
Conv2dAuto-56 [-1, 256, 10, 29] 589,824
BatchNorm2d-57 [-1, 256, 10, 29] 512
ReLU-58 [-1, 256, 10, 29] 0
Conv2dAuto-59 [-1, 256, 10, 29] 589,824
BatchNorm2d-60 [-1, 256, 10, 29] 512
ResNetBasicBlock-61 [-1, 256, 10, 29] 0
ResNetLayer-62 [-1, 256, 10, 29] 0
ResNetEncoder-63 [-1, 256, 10, 29] 0
AdaptiveAvgPool2d-64 [-1, 256, 10, 16] 0
Linear-65 [-1, 4096] 167,825,408
GRUCell-66 [-1, 256] 0
Linear-67 [-1, 2] 514
Linear-68 [-1, 2] 514

Table A.1: Design of encoder and policy network.
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Name # Param Details
Inception-V3 24M 2017, for image classification, ResNet\Inception
AlexNet 60M 2017, for image classification, CNN
GPT-1 110M 2018, for NLP, Transformer
VGG-19 143M 2018, for image classification, ResNet
MyModel 170M 2020, Model presented above A.1
Bert-large 340M 2018, for NLP, Transformer
GPT-2 1.5B 2019, for NLP, Transformer
GPT-3 175B 2020, for NLP, Transformer

Table A.2: Comparison of size between models.

A.3 RL Algorithms Results

Here the results of the training of the other RL algorithms are presented here. None of them

managed complete Carla’s scenarios, or the resulting policy was significantly differently from

each other.

The positive spikes on the graphs happen when the car gets to a speed above 10 km/h and are

all below 0.5.

A.3.1 PPO

Figure A.1: PPO rewards in each step.
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A.3.2 DQN

Figure A.2: DQN rewards in each step.

A.3.3 Reinforce

Figure A.3: Reinforce rewards in each step.

To better understand the scenarios ran in the next subsection are some screenshots of the agents

running through Carla’s scenarios.
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A.3.4 Scenarios

Figure A.4: PPO agent in Control Loss. The patches on the road are where the vehicle losses grip.

Figure A.5: SAC agent in Cut In scenario. The right most vehicle is the agent and he has to keep
in his lane while another vehicle (in the left most lane) cuts in front of him.

Figure A.6: SAC agent in the Turn Right Scenario. The vehicle on the upper left part of the image
is the agent and he has to drive through the junction.
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Figure A.7: SAC agent in the Turn Right Scenario. The vehicle on the upper left part of the image
is the agent and he has to drive through the junction.

A.4 Sensor processing

While not used in the end, an addition to the encoder that could provide more performance would

be to have pre-trained models for useful tasks like lane detection which then would be added to

the encoder’s input A.8, in theory the agent’s policy or even the encoder should be able to detect

lanes, but with pre-trained ones, it could boost its sample efficiency. It was dropped due to the

lack of VRAM available on local testing (4GB avaiable and 1.5GB are already used for Carla and

almost the rest are for the policy and critic networks).

Figure A.8: Example of a initial proposed architecture.
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A.5 Hyperparameters

As mentioned before all hyperparameters were tuned manually over many different simulation

runs, the following table list all of the best hyperparameters found and consequently used:

Hypeparameter Value
Actor learning rate 3e-4

Critic learning rate 3e-4

Action Scale 2.5

Action Bias [1, 0]

Size of Hidden vector 256

Tau 0.005

Gamma 0.99

Alpha 0.1

Epsilon 1e-6

Log Std Max 0.1

Log Std Min 0.01

Memory Start Threshold 0.1

Max Secs per episode 30

Updates per Step 1

Bootstrapping steps 1

Table A.3: Comparison of size between models.

The batch size depended on the algorithm and the amount of networks used, but it generally it

would be an amount that would use 80-90% of the GPU’s (Tesla V100 32GB) VRAM.

The memory buffer size was done in a way that would use up to 1 TB of storage per agent.

Usually in the range of 100k.
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Reinforcement learning approach for train rescheduling on a single-track railway. Trans-
portation Research Part B: Methodological, 86:250–267, 2016.

https://www.applicoinc.com/blog/teslas-1-3-billion-mile-advantage/ 
https://www.applicoinc.com/blog/teslas-1-3-billion-mile-advantage/ 
http://nvidia-research-mingyuliu.com/gaugan/
http://nvidia-research-mingyuliu.com/gaugan/
 https://www.sae.org/standards/content/j3016_201806/
 https://www.sae.org/standards/content/j3016_201806/
https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/utkuozbulak/pytorch-cnn-visualizations
 https://www.citymetric.com/transport/lille-had-europe-s-first-fully-automated-metro-system-it-opened-1983-3856
 https://www.citymetric.com/transport/lille-had-europe-s-first-fully-automated-metro-system-it-opened-1983-3856


90 REFERENCES

[109] Sergey. Actor-critic algorithms, 2017.

[110] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm, 2017.

[111] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional net-
works: Visualising image classification models and saliency maps, 2013.

[112] Danielle Muoio Skye Gould, Yu Han. Here’s the tech that lets uber’s self-driving cars see the
world, September 2020. Details about Uber’s self driving vehicles. Available at https://
www.businessinsider.com/how-ubers-driverless-cars-work-2016-9.

[113] Bharathwaj Krishnaswami Sreedhar and Nagarajan Shunmugam. Deep learning for
hardware-constrained driverless cars. In 2020 IEEE 44th Annual Computers, Software,
and Applications Conference (COMPSAC), pages 26–29. IEEE, 2020.

[114] Stanford Stanford. Cs231n: Convolutional neural networks for visual recognition.

[115] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[116] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9–44, 1988.

[117] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[118] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional
neural networks, 2020.

[119] Tesla. Autopilot, September 2020. Tesla’s technologies. Available at https://www.
tesla.com/pt_PT/autopilotAI.

[120] Tesla. Autopilot internship/co-op (summer 2019), September 2020. Tesla’s
reinforcement learning internship. Available here https://web.archive.
org/web/20190209090339/https://www.tesla.com/careers/job/
autopilot-internship-co-opsummer2019-37950?redirect=no.

[121] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-free reinforce-
ment learning for urban driving using implicit affordances. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7153–7162, 2020.

[122] Uber. We believe in the power of technology, September 2020. Website of UBER https:
//www.uber.com/us/en/atg/technology/.

[123] ucsusa. Self-driving cars explained, February 2018. Article by Union of Con-
cerned Scientists. Available in https://www.ucsusa.org/resources/
self-driving-cars-101.

[124] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In
Advances in Neural Information Processing Systems, pages 6306–6315, 2017.

https://www.businessinsider.com/how-ubers-driverless-cars-work-2016-9
https://www.businessinsider.com/how-ubers-driverless-cars-work-2016-9
https://www.tesla.com/pt_PT/autopilotAI
https://www.tesla.com/pt_PT/autopilotAI
https://web.archive.org/web/20190209090339/https://www.tesla.com/careers/job/autopilot-internship-co-opsummer2019-37950?redirect=no
https://web.archive.org/web/20190209090339/https://www.tesla.com/careers/job/autopilot-internship-co-opsummer2019-37950?redirect=no
https://web.archive.org/web/20190209090339/https://www.tesla.com/careers/job/autopilot-internship-co-opsummer2019-37950?redirect=no
https://www.uber.com/us/en/atg/technology/
https://www.uber.com/us/en/atg/technology/
https://www.ucsusa.org/resources/self-driving-cars-101
https://www.ucsusa.org/resources/self-driving-cars-101


REFERENCES 91

[125] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning, 2015.

[126] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[127] Rijul Vohra, Sep 2019.

[128] Sen Wang, Daoyuan Jia, and Xinshuo Weng. Deep reinforcement learning for autonomous
driving, 2019.

[129] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[130] Waymo. Waymo training data, May 2014. Training data available here https://waymo.
com/open/.

[131] Waymo. Introducing the 5th-generation waymo driver: Informed by experi-
ence, designed for scale, engineered to tackle more environments, September
2020. Article by Waymo. Available in https://blog.waymo.com/2020/03/
introducing-5th-generation-waymo-driver.html.

[132] Waymo. Waymo’s faq, September 2020. Waymo’s details about its vehicels https://
waymo.com/faq/.

[133] Lilian Weng. From autoencoder to beta-vae. lilianweng.github.io/lil-log, 2018.

[134] Lilian Weng. Self-supervised representation learning. lilianweng.github.io/lil-log, 2019.

[135] WikiChip. Fsd chip - tesla, September 2020. Custom designed and built Tesla hardware, in-
formation avaiable in https://en.wikichip.org/wiki/tesla_(car_company)
/fsd_chip.

[136] Wikipedia contributors. Recurrent neural network — Wikipedia, the free encyclopedia,
2020. [Online; accessed 18-September-2020].

[137] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

[138] Wired. Artificial intelligence confronts a ’reproducibility’ crisis, July
2020. Article by Wired. Available in https://www.wired.com/story/
artificial-intelligence-confronts-reproducibility-crisis/.

[139] Qin Zou, Hanwen Jiang, Qiyu Dai, Yuanhao Yue, Long Chen, and Qian Wang. Robust lane
detection from continuous driving scenes using deep neural networks. IEEE Transactions
on Vehicular Technology, 69(1):41–54, Jan 2020.

https://waymo.com/open/ 
https://waymo.com/open/ 
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://waymo.com/faq/
https://waymo.com/faq/
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://www.wired.com/story/artificial-intelligence-confronts-reproducibility-crisis/
https://www.wired.com/story/artificial-intelligence-confronts-reproducibility-crisis/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Document Structure

	2 Literature Review
	2.1 Autonomous Driving
	2.2 Preliminaries
	2.2.1 Machine Learning approaches
	2.2.2 Deep Learning with Artificial Neural Networks
	2.2.3 Batch Normalization and Dropout
	2.2.4 CNN Visualizations
	2.2.5 Recurrent Neural Networks
	2.2.6 Autoencoder
	2.2.7 Geometric Deep Learning

	2.3 End-to-End Training
	2.4  (Deep) Reinforcement Learning
	2.4.1 Markov Decision Processes
	2.4.2 Partial Observability
	2.4.3 Policy and value function.
	2.4.4 Value Iteration and Policy Iteration

	2.5 Off-policy and On-policy
	2.5.1 Deep Reinforcement Learning
	2.5.2 DQN
	2.5.3 Policy Gradients
	2.5.4 Actor-Critic methods
	2.5.5 DDPG
	2.5.6 PPO
	2.5.7 SAC
	2.5.8 Curriculum Learning
	2.5.9 Transfer Learning and Domain Adaptation

	2.6 Multi Agent Reinforcement Learning
	2.6.1 A3C

	2.7 Self-Driving Cars
	2.7.1 Typical vehicle
	2.7.2 Training

	2.8 Related Work

	3 Agent Framework
	3.1 Proposed Framework
	3.1.1 CARLA simulator
	3.1.2 Open AI Gym
	3.1.3 Main New Functionalities

	3.2 Training a RL Agent
	3.3 Method
	3.4 Evaluation framework
	3.4.1 Carla Scenarios
	3.4.2 Implementation
	3.4.3 Hardware Used
	3.4.4 VAE

	3.5 Results
	3.5.1 Hyperparameter Tuning
	3.5.2 VAE
	3.5.3 RL algorithms


	4 Proposed Architecture
	4.1 Overview
	4.2 Distributed Reinforcement Learning
	4.2.1 Message Parsing

	4.3 Two-phase Multi-agent RL Pipeline
	4.3.1 Phase I - Behaviour Cloning
	4.3.2 Phase II - Reinforcement Learning

	4.4 Implementation of Phase I - Behaviour Cloning
	4.4.1 Data Collection

	4.5 Implementation Phase II - Multi Agent Reinforcement Learning
	4.5.1 Message Parsing
	4.5.2 Training Environment

	4.6 Experimental Setup and deployment
	4.6.1 Scenarios
	4.6.2 Inputs
	4.6.3 Encoder

	4.7 Results
	4.7.1 Deployment
	4.7.2 Hyperparameter Tuning
	4.7.3 Behaviour Cloning
	4.7.4 Multi Agent RL


	5 Conclusions and Satisfaction of the objectives
	5.1 Future Work

	A Appendix
	A.1 Loss function for VAE
	A.2 Neural Network Parameters
	A.3 RL Algorithms Results
	A.3.1 PPO
	A.3.2 DQN
	A.3.3 Reinforce
	A.3.4 Scenarios

	A.4 Sensor processing
	A.5 Hyperparameters

	References

