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Abstract

Nowadays, using technology to automate repetitive tasks previously made by humans is more
relevant than ever. On that premise, there is still work that has not been made easier by technology,
as is the case of fire detection planning, which we will explore in full detail.

In this thesis, we briefly explore the work of fire designers and identify some of its manual
processes that could be automated. We also present the Safe Cities - Fire Planning project, which
this work is part of and aims to automate those processes, and analyze the interaction between our
program and the rest of its larger environment.

The goal of this project was to make the work of the fire designers easier. To accomplish this,
we explored some state-of-the-art Wireless Sensor Networks (WSN) coverage algorithms, which
is an equivalent problem to the distribution of fire sensors. With that knowledge, we focused on
making a program that receives a 2D environment with obstacles and can run WSN distribution
algorithms. After implementing the previous works’ algorithms, we focused on creating modifi-
cations to improve those solutions. Our program’s final objective was also to be able to create new
algorithms as easily as possible, so we also focused on the modularity of our program for future
works to be done on top.

In this work, we also evaluate our solutions, comparing them to the state-of-the-art solutions
using metrics like the number of sensors used and coverage area. Our results show improvements
in our modified algorithms compared to the original ones, namely improving from a coverage per-
centage of 68.2% to 96.5%, and from 86.3% and 79.7% to 100%. From our results and work, we
believe this thesis contributes well to the WSN distribution topic and the fire equipment distribu-
tion subject.

Keywords: Distribution, Automation, Fire Safety
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“Time you enjoy wasting
is not wasted time.”

Marthe Troly-Curtin
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Chapter 1

Introduction

In the past years, with the advancement of technologies, there has been a big focus on automating

tasks previously done manually [Acemoglu and Restrepo, 2018]. By automating some processes,

sometimes it is possible to achieve a better result with fewer errors, as well as allow people to

make better use of their time [Haight and Kecojevic, 2005].

1.1 Context and Motivation

Automation is lacking in many areas, and particularly one of them is in the fire designers’ work

[Mohammad, 2016]. Fire designers are responsible for planning the fire systems when plans for a

building are being made. Fire systems can contain multiple types of equipment in order to be able

to detect fires as early as possible and consistently [Spatar et al., 2017]. The equipment used can

consist of traditional fire detectors, such as automatic fire detectors and notification appliances,

special detectors, like linear heat detectors and aspirating smoke systems, and fire alarm panels to

connect all gears. During the work of a fire designer, they also have to consider multiple rules and

legislations that are in vigor in a building’s respective country and zone relative to the distribution

and arrangement of the different types of fire equipment [Beeby and Narayanan, 2005]. A fire

designer’s work’s main file types are the Computer-aided Design CAD or Building Information

Modeling BIM files, which are solutions to creating and managing 3D information. With these

file types, the designers can get the main structure of the building they are designing for and add

multiple pieces of equipment to the building plans. However, to the best of our knowledge, this

is still a manual job, where the worker creates and assigns multiple types of equipment to the

building and connects them one by one. Since this manual task takes much time to have all the

equipment set up, there exists an interest in its automation, especially because of the possible

increase in productivity.

1



2 Introduction

1.2 Objectives

All project goals focus on making the work of the fire designers easier, specifically by making

some of their work processes automated.

The project’s main goal consists of creating a program that can distribute different types of

equipment through a building plan always under the defined legislation rules. This program would

input the 3D building plans and the specified rules and return as output the 3D building plans with

all fire equipment placed and connected optimally.

In order to achieve this, we will be creating a program that is a component of a bigger project,

Safe-Cities, that has that objective, as seen in section 3. Our component will be responsible for

distributing the sensors in an environment.

Since our fire sensor distribution problem is equivalent to the Wireless Sensor Network WSN

coverage problem, we will focus on multiple already implemented solutions to compare their

results. After, we will focus on the question: Is it possible to implement modifications to the

previous algorithms which improve their performances?

We will also focus on making the program modular so that it is easier for future work to be

done on top of ours. So in terms of modularity, we will emphasize the question: Is it possible to

create a WSN distribution program in which new algorithms, metrics, and scenarios can be added

to run and see their performances?

1.3 Methodology and Main Contributions

To evaluate the quality of the work developed during the project, we had to focus on specific

metrics related to multiple domains of the work done.

Relative to the efficient placement of the equipment through the environment, we focused

primarily on the percentage of coverage of the area of interest, meaning the ratio between the

area covered by the fire detectors and the total area of interest. We also considered the number of

equipment necessary to have a good coverage percentage, being a better result a lower number of

the equipment used for a given percentage. Also, a critical aspect of the distribution solutions is

the time it takes to achieve them, which was also our focus.

In order to have and implement a good sensor distribution algorithm, we first focused on re-

searching previous solutions already implemented. After considering their results, we determined

which algorithms best suited our needs. Since the algorithms did not compare in the same envi-

ronment and with the same test cases, we decided to implement a framework on which it would

be possible to implement and run distribution algorithms. Since we wanted to test in the same sce-

narios and with the same metrics, we implemented both types in the framework and made it easy

to add new ones. With the framework complete, we implemented the most relevant algorithms

from our state-of-the-art to test them. Comparing the algorithms’ results in the same test cases

made comparing them more accessible and accurate. Afterward, we focused on improving the

results of the previous works’ algorithms by creating modified versions in the framework. With
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the modifications, it was possible to compare all the results and see if there is, in fact, a metric

performance improvement.

From all our work developed during this project, we believe that it has some good contribu-

tions. On a more technical level, it contributes with a framework of comparison of sensor distribu-

tion algorithms, which also already contains multiple implementations of some studied algorithms

and some newly implemented variants. The framework also contains some implemented metrics

and scenarios for comparison and analysis. On a more scientific level, this work contains the iden-

tified and implemented improved modifications of some state-of-the-art algorithms that showed

the best results. Another good contribution is the developed application’s potential in practical,

real-life work, like fire designers.

1.4 Document Structure

In chapter 2, the state-of-the-art research is shown, where projects that try to solve problems

similar to the ones we have to solve are analyzed in-depth and compared. Chapter 3 presents

some context to our work and the solution architecture. Chapter 4 contains the description of

the implementation work made at a high level and a low level with a description of the multiple

smaller components. Chapter 5 shows the results obtained from our work and some analysis. In

chapter 6, we conclude the presentation of our work by summarizing, explaining the conclusions

we have reached and mentioning the future works to be done.
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Chapter 2

Related Work

Since our problem consisted of distributing fire sensors in an area in order for the sensors to cover

it fully, we tried to research that topic. However, from our search, we have not found previous

works that focused on the distribution of fire sensors, so we had to broaden our search space. In

that research, we found a problem in a different area that seemed to focus on a similar problem

as ours, the maximum coverage in Wireless Sensor Networks. So to better understand the current

state of the already available solutions for that problem, we researched a bit more on some aspects

of wireless sensor networks.

2.1 WSN Coverage algorithms

Since the main logic of covering all the divisions with fire detection equipment is very similar

to the well-known problem of maximum coverage in Wireless Sensor Networks, it is essential to

explore some of its more recent and better-performing solutions.

When translating our problem to WSN coverage problems, we identified that the best co-

related problem was the Full Coverage problem. The Full Coverage problem focuses on having

100% coverage of all the relevant areas while at least one node covers all points [Mohamed et al.,

2017].

There are several techniques used to solve the full coverage problem, as shown in Fig. 2.1 and

detailed in [Mohamed et al., 2017]. We will explore some of those solutions’ categories in the

following subsections.

2.1.1 Virtual Force Solutions

Virtual Force solutions are based on the behavior of electromagnetic particles. The sensor nodes

create a repelling or attractive force between each other or with objects depending on their distance

[Mohamed et al., 2017].

The Obstacle Avoidance Virtual Force Algorithm (OAVFA) is a proposed solution for the

coverage problem in [Rout and Roy, 2016]. Initially, the nodes are randomly deployed on the

relevant area, and then during multiple iterations, numerous forces interact with them. The force

5
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Figure 2.1: Summary of full coverage approaches (extracted from [Mohamed et al., 2017] )

between two nodes is majorly affected by their distance: if they are below a threshold (in the paper√
3 of nodes’ radius), they are repulsive; otherwise, if above, they are attractive. The nodes also

interact with objects, creating repulsive forces between them below a defined threshold. The final

solution is achieved when all the sensors come to an equilibrium. In Fig. 2.2 an initial and final

state of the proposed solution is shown.

The results achieved by OAVFA were promising. Their tests achieved an average 96.2% cover-

age rate when using 40 nodes, a bump compared to other solutions of the same type like Improved

VFA (IVFA) and Exponential VFA (EVFA) [Chen et al., 2007], which achieved 91.8% and 90.7%

coverage, respectively.

Virtual Force solutions seem to have good results, especially when the coverage area is ample

and its obstacles are convex. The worst results appeared when the obstacles were very concave,

possibly by some constrain on the movement of the nodes because of the obstacles walls. One

limitation to notice is the possibility of using much time to achieve the final solution. Since the

algorithm only stops when the nodes reach a stable position, in some cases, it can take many

iterations to achieve it and take more time than expected.

2.1.2 Computational Geometry Solutions

Computation Geometry solutions mainly use Voronoi diagrams (Fig. 2.3a) or Delaunay triangula-

tions to solve the problem.

A Voronoi diagram solution is found on [Eledlebi et al., 2020] to achieve maximum coverage

in WSNs. It consists of iteratively adding nodes to the bottom-left corner if unexplored space exists

in the region of interest. During each iteration, the current nodes move to the center of gravity of

their sensed Voronoi region, which is calculated by using the intersection of their perpendicular

bisectors and the node’s sensing range. The end condition is being checked for each iteration,
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Figure 2.2: Begin and end of OAVFA solution (extracted from [Rout and Roy, 2016])

checking if the current nodes have not shifted more than a certain threshold. Fig. 2.3b shows

multiple steps of the proposed solution.

This solution made it possible to achieve 99.3% area coverage with 16 nodes in 20 seconds

for an empty room with a 100 meters side. For this same room, the Node Spreading Voronoi

Algorithm (NSVA) [Zou et al., 2012] algorithm achieved 93.4% of coverage with 40 nodes in 150

seconds, and the Node Spreading Voronoi Genetic Algorithm (NSVGA) [Zou et al., 2012] attained

98.04% coverage with 40 nodes in 150 seconds. These results make it possible to conclude that the

solution is a top performer in empty spaces. The Voronoi solution reached around 92% coverage

in obstacle-rich rooms, and in environments with crevices (narrow margins), it got around 70%

coverage.

(a) Voronoi regions
(b) Voronoi solution at multiple stages (extracted
from [Eledlebi et al., 2020] )

Figure 2.3: Voronoi regions and solution
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A Delaunay triangulations solution can also be found on [Dai and Wang, 2015] to obtain

complete coverage in an area with obstacles. Their solution is an iterative process that, at the start

with some initial seed nodes, tries to find the Delaunay triangle with the largest coverage hole

to place a node. To find this triangle, it searches all valid triangles for the one with the largest

circumcircle. This process repeats until all the triangles are covered. Fig. 2.4 shows the finding of

the triangle with the largest coverage hole in two steps of this Delaunay solution.

This triangulation solution achieved coverage of 100% on the six tests run, which all consisted

of a room with one or two irregular obstacles inside. Making it a better performer than the can-

didate location based greedy algorithm (CLBGA) [Zhu and Wang, 2014] tested against, that only

got around 98%. Also, one key advantage of this algorithm is the time to reach its final solution,

which was around 4 seconds—much faster than CLBGA, which took around 600 seconds.

Figure 2.4: First and second step of Delaunay triangulation solution (extracted from [Dai and
Wang, 2015])

Computational Geometry Solutions achieve great results while using a low amount of time to

reach their final solution. Even when tested against rooms with irregular objects and obstacle-rich

rooms, they presented solutions with high coverage. One possible disadvantage of using these

methods is that the number of sensors used in their final solutions might be bigger than other

solutions, like Geometrical Patterns Solutions, in some cases.

2.1.3 Geometrical Patterns Solutions

Geometrical Patterns solutions base themselves on inherently good patterns, like triangles and

hexagons, for the regular deployment of the nodes in the region of interest.

In [Chang et al., 2009], a solution is presented, consisting of an algorithm that distributes

nodes in a hexagon grid on the area of interest which can contain obstacles. The algorithm is

planned to be run on a robot that deploys the nodes, consisting of simple ordered possible steps as

can be seen in Fig. 2.5a. However, with obstacles, some additional rules had to be made to ensure

complete coverage in some edge cases when the planned nodes land on obstacles or outside the
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area of interest. These rules assure full coverage by adding nodes to the edges of the obstacles

obstructing the predicted placement. A final solution is presented in Fig. 2.5b.

This robot solution on the six tests made, each consisting of a room with one regular obstacle,

scored 100% coverage. Its scores were better than the Coverage, Exploration and Deployment

(CED) [Batalin and Sukhatme, 2004] and Least Recently Visited (LRV) [Batalin and Sukhatme,

2007] algorithms tested against, which both had coverage of around 90%. One good remark was

also that this solution achieved these results with fewer nodes, around 165, while the CED used

around 220 and LRV around 190. One limitation identified is its use with irregular objects, which

the algorithm might not work as intended. This could happen because, with irregular objects, the

algorithm might not detect hidden areas that are not in the path of the possible moves, leading to

uncovered areas.

(a) Possible robot move steps (b) Final deployment solution

Figure 2.5: Possible robot move steps and final deployment solution (extracted from [Chang et al.,
2009])

Geometrical Patterns solutions are able to achieve good results using a low quantity of sensors

for their solutions. However, when there exists the presence of irregular objects in the area of

interest, these algorithms do not have such good results, making them not achieve full coverage.

2.1.4 Optimization Solutions

Optimization solutions can use Genetic Algorithms or Swarm Intelligence techniques to improve

a setup to an optimized solution.

A Genetic Algorithm (GA) solution can be found on [Yoon and Kim, 2013]. The chosen rep-

resentation for each possible solution is an array with 2D coordinates of the proposed WSN nodes’

positions. Initially, N/2 randomly created pairs create N/2 offspring, originating from crossover

and mutation. In this solution, the crossover is generated by randomly choosing values for the

offspring from an interval that considers the maximum and minimum values of the same position

in both parents. Moreover, the mutation occurs to genes, which are modified by a random Gaus-

sian number, modifying a node’s coordinate position. All the individuals (parents and offspring)
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are ranked based on the node’s coverage area and chosen for the next generation of size N. The

process of creating a new population from the best individuals of generated offspring and current

population repeats itself until a fixed number of generations is reached.

In this genetic solution, the tests were on a 100mx100m space with a different subset of nodes

with different coverage radii. The results presented were better in all test cases than the Multi-start

VFA [Yoon and Kim, 2013] and Stable Marriage Crossover Genetic Algorithm (SMCGA) [Seo

et al., 2008] tested against. However, since the test cases do not guarantee that it is possible to

have 100% coverage, their results are a bit inconclusive aside from comparison with the other two

solutions.

A Particle Swarm Optimization (PSO) solution, which is inspired by the habits of a flock of

animals, can also be found on [Huynh et al., 2019]. The main difference between PSO and GA is

that the individuals update themselves using the one-way information from the particles with the

best results in the PSO solution. In this PSO proposal, the representation for each possible solution

is an array with 2D coordinates of the proposed WSN nodes’ positions. The initial population is

iteratively updated in this solution by considering the current best solution for a sub-group and the

current general best solution. These rankings of solutions are determined considering the area of

interest covered by the WSN nodes. The process of updating an element is shown in Fig. 2.6.

In this solution, the test cases consisted of a 100mx100m space with various objects and three

types of nodes with different radii. This solution achieves around 90% coverage from the overall

results, better than the Improved Cuckoo Search (ICS) and Chaotic Flower Pollination Algorithm

(CFPA) [Binh et al., 2016] counterparts, which reach around 80% and 85% coverage. One limita-

tion of the proposed solution is that all the objects in the test cases are regular.

Figure 2.6: Update of a population element (extracted from [Huynh et al., 2019])

Optimization Solutions can reach relatively good results of around 90% coverage. However,

these results are primarily obtained in test cases with few objects or only regular obstacles. This
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type of algorithm can be inefficient to solve a problem more complex with irregular objects, mak-

ing it a possible limitation.

2.2 Environment Representation

One important aspect to note about all the previous works done is their representation of the en-

vironment. All the presented scenarios contain obligatory components, such as space dimensions

and sensors, and some optative components like obstacles. Even though there is not so much

variety in represented components, there is an essential distinction on how those components are

represented in code format. From all the papers researched, two different ways of that representa-

tion were noticeable, which will be further explored next.

The first representation is probably the one more rudimentary and less precise. It consists

of representing the environment as a 2D array, where each element represents a position in the

2D space. Each 2D array element can contain an identification number that represents if in that

position there exists an obstacle or a sensor. This solution can represent the real space to a certain

predefined precision since the number of rows and columns on the 2D array must be defined

priorly. The advantages of this solution consist of the easiness of implementation and performance

when using lower precision.

The other representation is a bit more robust and complex. It consists of representing the

components with decimal values. Each component can be defined as points, as is the case for

obstacles, or with circles, as is the case for the sensors. In the case of obstacles, they can be

represented as a list of points with x and y coordinates defining their bounds. For the sensors,

they can be defined as a point with x and y coordinates as their center and a radius dimension.

The advantage of this solution is the increase in precision since decimal values are used. Another

important remark is that converting this format to the 2D array one is relatively easy.

In Table 2.1 it can be seen which representation was implemented on some of the papers

researched.

Table 2.1: Environment representation table

Paper Approach Representation

[Dahmane et al., 2020] Optimization 2D Array

[Rout and Roy, 2016] Virtual Force Decimal

[Eledlebi et al., 2020] Computational Geometry Decimal

[Dai and Wang, 2015] Computational Geometry Decimal

[Chang et al., 2009] Geometrical Patterns Decimal

[Yoon and Kim, 2013] Optimization Decimal

[Huynh et al., 2019] Optimization Decimal

Even though almost all algorithms have similar code representations for the Environments, it

is possible to see from the papers that all the implementations of the environment, its logic, the
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sensors and the sensors distribution are all ad-hoc solutions that the writer of the paper created.

This makes it more difficult to create a project related to this subject, because before being able to

create and test some sensor distribution algorithm it is necessary to create the whole infrastructure

behind all the environment and sensors interaction. This is a big point that our work tries to touch

on, trying to create a program that can be used as a start point for someone to develop a sensor

distribution algorithm. Having an equal base point as other implementations makes it easier to test

and compare solutions with each other.

2.3 WSN simulation software

Another important part of WSNs and their initial setup is testing to see the performance of their

nodes and how they behave in a real-world scenario. Since it is costly to make these tests in the

real scenario, WSN simulators try to mimic the real-world scenario with all its properties to test it

before advancing to the real implementation [Nayyar and Singh, 2015].

In this section, we will briefly review some already implemented simulators. Our search con-

sisted of finding the most used and conceived simulators that can be used in the area of Wireless

Sensor Networks. Our research was done primarily by searching for papers that reviewed this type

of simulator and then further searching individually for each one.

The Network Simulator Version 2 NS-2 1 focuses more on the communication aspect of the

network. It provides support for multiple protocols like TCP 2, HTTP 3, and UDP 4. From this

simulator, it is possible to simulate network scenarios and analyze its outcomes based on various

network factors like packet loss, delay, error, and intrusion [Downard, 2004]. However, it is

impossible to run a distribution algorithm and see its performance in terms of coverage area and

sensor efficiency.

The Network Simulator Version 3 NS-3 5, like NS-2, is also regarded as a discrete-event sim-

ulator but is not considered an extension of NS-2 since it is an entirely new simulator [Campanile

et al., 2020]. The objective behind its development was to enhance research in communication

networks [Nayyar and Singh, 2015]. Like the NS-2, its focus is on the simulation of network

scenarios, making it impossible to simulate a WSN distribution and see its coverage and efficiency

performance.

The OMNet++ 6 is an object-oriented discrete-event network simulator for WSNs. The moti-

vation for developing OMNeT++ was to produce a powerful open-source discrete event simulation

tool for the simulation of computer networks and distributed or parallel systems [Varga and Hornig,

1NS-2 Wiki available on http://nsnam.sourceforge.net/wiki
2Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. TCP is connection-

oriented, and a connection between client and server is established before data can be sent
3The Hypertext Transfer Protocol (HTTP) is an application layer protocol in the Internet protocol suite model for

distributed, collaborative, hypermedia information systems.
4User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite. With UDP, computer

applications can send messages, in this case, referred to as datagrams, to other hosts on an Internet Protocol (IP)
network.

5NS-3 Official website available on https://www.nsnam.org/
6OMNeT++ official website: https://omnetpp.org/
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2008]. OMNeT can also provide a framework and tools for writing simulation [Priyadarshi et al.,

2020]. OMNet++ focuses on the sensors’ network communication aspect and cannot simulate a

distribution of WSN sensors and calculate the area coverage or efficiency of the placement of the

sensors.

The Castalia Simulator 7 is an open-source simulator for wireless sensor networks, and body

area networks, which is widely used in the academic and research community [Pediaditakis et al.,

2010]. This simulator is optimized for testing distributed algorithms and protocols and features

an accurate channel/radio model, radio behavior, and other aspects of communication [Engmann

et al., 2018]. Even though Castalia focuses on WSNs, its functionalities do not permit testing an

algorithm that tries to distribute sensors in an environment and calculate its performance metrics

like coverage %.

J-Sim 8 is considered a general-purpose simulator, which also is platform-neutral, extensible,

and reusable [Sobeih et al., 2005]. It is built in Java and has a Script Interface, making it easier to

run script-based languages like Perl or Python. J-Sim has been used to implement three protocols

of WSNs: Localization, Geographic Routing, and Directed Diffusion. It also is a good simulator

when using a large number of sensors like 1000 [Nayyar and Singh, 2015]. Even though J-Sim

can use localization features and calculate some metrics like coverage, the simulator cannot run a

sensors distribution algorithm to determine which sensors to use and where.

From our overall research to the best of our acknowledgment, we have not identified a WSN

simulator that was able to run sensor distribution algorithms with the finality of having a sensor

set up in an environment and display relevant metrics like coverage % or sensors efficiency from

that distribution. These results are not that surprising since, from the research of WSN distribution

algorithms in all the papers observed, all had created their ad-hoc solutions to have their environ-

ments and algorithms running. With this, it is possible to conclude that a framework that focuses

on the sensor distribution aspect could be beneficial to exist.

2.4 Conclusion

From the state-of-the-art, it was possible to see some solutions relative to the distribution of sensors

that show good results in terms of coverage and the number of sensors used for that coverage.

However, it was also possible to see that some solutions performed poorly compared to other types

of solutions. With the results from the solutions, it was possible to determine which distribution

algorithms were more relevant to try to test in our work.

With the analysis of the simulators of WSNs, we also identified that there does not seem

to exist a platform that focuses on the placement and distribution of the sensors as much as we

wanted. The lack of this kind of platform made it clear that a platform for testing the placement

and benchmarking the various algorithms in distribution was missing, which led us to focus a bit

more on this topic and create such a program.

7Castalia Official repository available on https://github.com/boulis/Castalia
8J-Sim website: https://sites.google.com/site/jsimofficial/
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Chapter 3

Problem Description and Proposal

In this chapter, we will explore more about the fire designers’ work and how it contributes to

the grand scheme of creating a building. We will also dive deep into the context into which our

project is inserted, namely the Safe Cities ecosystem. After, we will present the architecture of

our solution.

3.1 Fire Designers contribution

Fire designers’ contribution to planning a building consists of designing and planning the neces-

sary fire safety systems. Usually, the main portion of their work is focused on after the architect

makes the building’s basic plans, which contain the floor plans. For their work, they use tools

that can manipulate CAD or BIM files containing the building structure to add all the necessary

equipment for the fire systems.

The fire systems contain a portion of equipment focused on fire detection, which will be our

focus. The fire detection equipment is composed of fire detectors, which detect the presence of

fire in the area near them, fire panels, which can control what happens in the system by sounding

the alarms or calling the responsible operator, and manual call points, which can be used to fire

the alarms manually. In order to communicate, all the fire detectors and manual call points are

connected via wiring in "loops" to a fire panel. A loop consists of multiple fire detectors and

manual call points connected linearly, which form a circle. Every loop must be connected to a

single fire panel, but a fire panel can contain multiple loops.

During a fire designer’s work, multiple problems must be addressed to have a good fire detec-

tion system. Firstly, the fire designer must know the specific rules and legislation related to fire

safety for where the building will be constructed, which can contain restrictions like the maximum

area that a fire detector can cover, and the minimum space between a fire detector and a wall, and

more. Secondly, they must place all the detection equipment so that the detectors completely cover

all the rooms and follow the legislation as seen in the guidelines of the European Committee for

15
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Standardization [CEN, 2018]. In this step, it is also essential to be as efficient as possible, planning

with as few detectors as possible while always covering all areas. Finally, the fire designers must

connect the equipment in loops to communicate between them. In this step, optimizing the loops

to use as little wiring as possible while keeping all the equipment connected is cost beneficial.

3.2 Safe Cities - Fire Planning ecosystem

Safe Cities is a project that focuses on building urban safety, of which fire safety planning is a

part. There have been works previously developed for this project which constitute the ecosystem.

These programs are essential because, in our project, it will be necessary to use them in some parts

of it to do additional processing.

One of the programs from this ecosystem is the one that can detect rooms given the floor

plans of the building in question. This program takes as input a Drawing DWG file1 with the 3D

structure of the building. Then it uses an up view to create a 2D image of the upper view of the

building and returns the positions of the mapped rooms according to the pixels in the image. The

solution for this processing consists of using classical computer vision methods like Canny [Ding

and Goshtasby, 2001] for the edge detection and Hough Transform [Illingworth and Kittler, 1988]

for the line detection on the image derived from the DWG file.

Another ecosystem program focuses on determining the constitution of the fire detection loops.

Fire loops are constituted of a fire panel that connects itself to several detection equipments of

multiple types, forming a circle. This program makes it possible to determine the number of the

different types of detection equipment that should be used in each fire loop. With the help of

Google OR-Tools2 technology, this solution uses constraint programming to achieve its results.

With the addition of this project to the Safe Cities - Fire Panning ecosystem, it will be one

step closer to having all the components integrated and communicate with each other, making it

possible to achieve its intended purpose.

3.3 Ecosystem Architecture

A solution architecture can help understand how the components of our solution interact with each

other in the big scheme of things. A solution diagram is presented in Fig. 3.1.

Our Fire Equipment Distribution Program is part of a more extensive ecosystem, Safe Cities,

where multiple programs process information and exchange it with each other.

The process begins with the information provided by the user, which consists of one CAD/BIM

file with the building structure.

1DWG is a compact binary format that stores and describes the content of 2D and 3D design data and metadata.
Format maintained by AutoDesk https://www.autodesk.com/

2Google OR-Tools is an open source software suite for optimization, tuned for tackling the world’s toughest
problems in vehicle routing, flows, integer and linear programming, and constraint programming. From Google
https://developers.google.com/optimization
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Figure 3.1: Solution architecture

The building structure information is fed to the "Filtering and room categorization program,"

which processes the structure, filters it to return more relevant information, and categorizes the

multiple rooms present in the building.

The outcome of the categorization program is then given as input to the 2D environment con-

verter. Here, a conversion is made to represent the environment with all its obstacles and dimen-

sions in 2D.

Then the previous 2D environment output serves as input for the equipment distribution pro-

gram, which is the focus of this thesis. In this component, a spatial equipment distribution is

achieved that tries to maximize the coverage area of the fire detectors in the multiple rooms using

as few pieces of equipment as possible.

After distributing the equipment in the environment, it proceeds to the fire areas component.

This component defines how many fire areas will be necessary for the scene and where they will

be located.

The process goes to the equipment loop balancer component with the previous information.

Here, it is processed and returned the information relative to the number of each type of equipment

in each loop.

Then with the information relative to the sensors, the fire areas, and the number of equipment

per fire area, the wiring component can do its work. This component tries to achieve a solution

of connectivity that connects all the equipment in multiple loops in each fire area while trying to

minimize the wire usage required.

Finally, the information is converted back to the CAD/BIM format in the final converter. As a

final result, a CAD/BIM file with the building structure and the placement of all the fire equipment

and its respective wiring connections is output.
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3.4 Solution Architecture

On a high level, we wanted to create a program that could distribute fire/wireless sensors in a

specified environment and show statistics for its distribution results. To achieve this, our solution

consists of four main components: processor, scenarios, metrics, and algorithms.

In Fig. 3.2 it is possible to see the general structure of our implemented solution.

Processor  
Component 

Algorithms 
Component 

Metrics 
Component 

Scenarios 
Component 

User Interface

Figure 3.2: General program structure

The user interface is the main way that the user can interact with our program, and it can

choose which algorithms to test with what scenarios and analyze the performance with the chosen

metrics.

The processor component consists of the portion with all the base code, helper functions for

the other components, and connects all the different parts of the program.

The algorithms component is where the logic of the multiple distribution algorithms is con-

tained. Aside from the already implemented algorithms, the user can also implement new ones in

our framework for testing.

The metrics component is responsible to show the performance results from the algorithms

with multiple types of metrics. We provide already some metrics, but the user can add new ones

to measure what is relevant to its case.

The scenarios component contains all the scenarios used to test the distribution algorithms.

The user can add new scenarios to test in an environment that best correlates to its needs.



Chapter 4

Implementation

This chapter presents how our framework is structured and its functionalities and gives a detailed

view of each implemented component.

4.1 Wireless Sensor Network Environment Framework

Before implementing the WSN component, we had asked authors from several related papers in

the state-of-the-art section for their implementations. Since we did not get significant responses,

we had to create our implementation from scratch.

In our framework implementation there exist four main components: processor, scenarios,

metrics, and algorithms.

4.1.1 Processor Component

The processor component includes all the classes and code that make running and processing all

scenarios, metrics and algorithms possible. This component is also the bridge to make all the other

components connect among themselves.

One of the core logic implemented in this component is the representation of the obstacles and

their helper functions related to them. Since two types of obstacles exist, polygons and circular,

all functionalities are implemented for both types. This component is responsible for: determining

if a given point is inside the obstacle or outside of it; determining if a segment between two points

intersects one of the obstacles; giving a list of distances and points closer from a given point to

all the segments of one polygon; giving a list of angles and vertexes positions of all the outside

corners of an obstacle.

Another core aspect of this component is the geometric functions implemented that can help

do some more complex operations. Almost all logic related to obstacles and the environment uses

these geometric helper functions as building blocks for their operations. These utility functions

are responsible for: normalizing a vector to have a unitary length; giving the Euclidean distance
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between two points; giving the minimum distance between a point and a line segment; identifying

if two line segments intersect, taking into account collinearity; identifying the orientation of three

points which can have a clock, counter-clock, or collinear orientation; identify if a point is between

two other given points.

This component also works as a bridge between the sensor distribution algorithms logic and

the scenarios. To make this work, a GUI was implemented for easier control over which algorithm,

scenarios, and metrics to use. In Fig. 4.1, it is possible to see the initial GUI. This user interface

allows one to choose where the results are stored, which algorithm to use, which scenario to run,

which metrics to calculate, and which sensor radius to use. It is also possible to run all scenarios

with a specific algorithm or run all algorithms for all scenarios with a button click. In order to get

all the available scenarios the program tries to find the Scenarios folder and, in that, searches for

sub-folders that, in turn, can contain multiple scenarios. In order to get the distribution algorithms

and metrics, the program tries to find classes that are available in the compiled Assembly from

the namespace SensorDistribution and SensorMetric respectively. This way of detecting scenar-

ios and algorithms makes adding new scenarios, metrics, or distribution algorithms easy without

modifying existing code.

Figure 4.1: Initial GUI

4.1.2 Scenarios Component

The scenarios component is the part that contains all the scenario groups and specific scenarios.

All the scenarios are located in the Scenarios folder at the project’s root. This folder contains sub-

folders that represent each group of scenarios that contain inside individual scenarios, like if it was

a tree where the scene files are on the second and last level. In Fig. 4.2 it can be seen an example

scenarios structure. In order to add new scenarios, either a new scenario file can be added to one

of the already existing folder groups, or a new group needs to be created, and only posteriorly a

new scenario file can be added to it.
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Figure 4.2: Scenarios example folder structure

All the scenarios are stored in text file format, and they can represent multiple types of spaces

in the real world, like indoor/outdoor spaces, a floor of a building, or simply a room. In the sce-

nario environment, the positions are represented by an X coordinate which indicates the horizontal

position, and a Y coordinate, which indicates the vertical position, being the starting position (0,0)

in the top left corner of the environment. Each scenario contains a width and a height for its di-

mensions, followed by the number of obstacles present and then a description of each obstacle.

In the scenarios, two types of obstacles can be present, linear and circular. Linear obstacles are

represented by the character L and a list of succeeding X and Y coordinates denoting the ordered

vertices that constitute the obstacle assuming that the last point connects to the first one. Circular

objects are represented by the character C, their X and Y center point coordinates, and the radius

dimension. Fig. 4.3 shows a scenario representation in text and graphical form.

500.0 500.0
2
L 200.0 185.0 200.0

350.0 300.0 350.0
300.0 185.0 400.0
185.0 400.0 100.0
100.0 100.0 100.0
185.0

C 400.0 400.0 50.0

Figure 4.3: Text and graphical representation of a scenario
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The main reason for this type of representation with decimal values is because it is more

precise than the 2D array counterpart, as previously mentioned in Section 2.2. Also, one advantage

of this representation is that it is possible to define a wider environment in a smaller space, using

fractions of a unit to keep the same ratios between obstacles, sensors detection radius, and the

limits of the scenario. Even though we use decimal representation for all parts of the scenario, one

limitation is that when calculating the coverage area, we use a 2D grid to define if all of its points

are covered by nearby sensors, which can lead to some loss in precision.

It is important to note that the implemented representation addresses the environment in a 2D

way, not being able to address objects and environments in a 3D representation. This limitation

makes it impossible to take into account any possible interactions between floors of a building,

making the sensors on a floor unable to interact with equipment on another. However, it is still

possible to address sensors’ distribution in a multi-level building, but the floors need to be treated

individually as a scenario each.

4.1.3 Metrics Component

The metrics component is the one that measures the performance of a specific algorithm. Each

metric can provide specific information about a solution to a scene, like the number of sensors

used and coverage area percentage. It also shows the aggregated results of a specific group of

scenes, or in general, for the bigger picture.

We have implemented some metrics by default to be used, some inspired by previous papers

on the subject like [Singh and Sharma, 2015], but the user can add more to their liking.

All the metrics implemented inherit the Metric abstract class, from which we can access the

Coverage Processor, which is the class that processes the coverage of a scene solution, as well

as the environment for further more specific information. To implement a new metric class it

is necessary that the class is from the "SensorMetric" namespace and that it overrides the three

functions from the abstract class processMetric, printInformationOneScenario and printInforma-

tionAccumulated. The function processMetric is supposed to process all the information and store

the metric results for later. The function printInformationOneScenario is designed to write the

metrics statistics for a specific test case, while the printInformationAccumulated is suppose to dis-

play the statistics of a group or general (group of groups). So to create a new metric, it is necessary

to create a new class with the previous requirements in the Metrics folder, and it will be available

in the GUI. In Listing 4.1, it is possible to see an example of a metric that displays the number of

sensors used in a solution.

4.1.4 Algorithms Component

The algorithms component provides the logic to optimize the placement of the sensors to a respec-

tive scenario. With the help of the processor component, this component can define the number of

sensors to use and their respective locations in the environment. These algorithms can be as simple
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Listing 4.1: Number of sensors used metric class

namespace SensorMetric {
public class MetricNumberSensors : Metric {

public int numberSensors;

public MetricNumberSensors(CoverageProcessor
coverageProcessor) : base(coverageProcessor) { }

public override void processMetric () {
numberSensors = environment.getSensors ().Count;

}

public override void
printInformationOneScenario(StreamWriter st) {
st.WriteLine("Sensors used: " + numberSensors);

}

public override void
printInformationAccumulated(StreamWriter st,
List <Metric > metrics) {
double numberSensorsAccumulated = 0.0;

foreach (MetricNumberSensors metric in metrics) {
numberSensorsAccumulated +=

metric.numberSensors;
}

numberSensorsAccumulated /= metrics.Count;

st.WriteLine("Mean sensors used: " +
numberSensorsAccumulated.ToString("#.##"));

}
}

}

as randomly deploying sensors in the scenario or more complex, like using Voronoi diagrams or

force-based approaches.

All the distribution algorithms implemented inherit the SensorDistributionAlgorithm abstract

class from which can access the env variable that contains the environment properties. To im-

plement a new class, it is necessary that the class is from the "SensorDistribution" namespace

and that it overrides the optimizeSensorDistribution function, which sets the sensor nodes in the

environment. So to create a new algorithm, it is necessary to create a new class with the previ-

ous requirements in the SensorDistributionAlgorithms folder, and it will be available in the GUI.

In Listing 4.2, it is possible to see an example distribution algorithm that inserts a sensor in the
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position with coordinates (100,100) of the environment.

Listing 4.2: Example WSN distribution algorithm class

namespace SensorDistribution {
public class SensorDistributionExample :

SensorDistributionAlgorithm {

public SensorDistributionExample(Environment
environment) : base(environment) { }

public override void optimizeSensorDistribution () {
env.removeSensors ();

env.addSensor(new Sensor(new Point (100, 100),
Sensor.DEFAULT_RADIUS));

}
}

}

4.2 Scenarios

In order to test different kinds of situations during our research, we had to create multiple types of

scenarios to run our algorithms. Our scenarios are grouped into five groups and contain multiple

environments with different dimensions, quantities, and types of obstacles. The Empty group

contains environments with no obstacles inside, with different dimensions. The One Obstacle

group contains environments with only one obstacle, ranging from regular polygons to irregular

and circular ones. Like the previous group, the Multiple Obstacles group contains a variety of

types of obstacles, but instead of existing only one obstacle, there are multiple of them. The

Multiple Rooms group contains environments where its obstacles form multiple empty spaces,

which is an excellent approximation to, for example, a house structure. The Tight Corridors group

contains environments where narrow obstacles form corridors. We will be exploring in more detail

each group next.

The Empty group contains five scenarios, all with different dimensions without containing any

obstacles. It contains environments with the following measures 150x500, 500x150, 300x300,

900x900 and 1200x800. This group can be a good way to test if a distribution algorithm can

spread its sensors evenly without much overlap when not having many constraints.

The One Obstacle group contains six scenarios, all with the same dimensions but with a dif-

ferent obstacle each. It contains environments with obstacles in the form of a Circle, an Irregular

form, and regular obstacles whose shape is similar to the letters C, H, T, and Pi. This group can be

a good indicator of the performance of a distribution algorithm behavior when it encounters simple
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obstacles that do not take much space from the whole environment. In Fig. 4.4 two environments

can be seen in the test cases with the Circle and Irregular obstacles.

Figure 4.4: Sensor distribution in one obstacle scenarios with the Circle and Irregular obstacles

The Multiple Obstacles group contains five scenarios with the same dimensions but different

forms and numbers of obstacles. It contains environments with five squares, twenty squares, five

circles, two arrows, and two irregulars. This group can be a good indicator of the performance of a

distribution algorithm behavior when it encounters many obstacles that can take much space from

the whole environment and create many constraints. In Fig. 4.5 two scenarios can be seen in the

test cases with 5 Circles and 20 Squares obstacles.

Figure 4.5: Sensor distribution in multiple obstacle scenarios with 5 Circles and 20 Squares

The Multiple Rooms group contains four scenarios, all with different dimensions and struc-

tures of rooms. It contains environments with three regular rooms, six rooms and a hall, irregular
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rooms, and a house blueprint. This group can be a good indicator of the performance of a distri-

bution algorithm behavior when it encounters a real-life building structure or a layout with empty

spaces connected in some form. In Fig. 4.6 two scenes can be seen in the test cases with six rooms

and a hall, and a house blueprint.

Figure 4.6: Sensor distribution in multiple rooms scenarios with 6 rooms and 1 hall, and a house
blueprint

The Tight Corridors group contains six scenarios, all with different types and widths of cor-

ridors. It contains four scenarios with the same structure but widths of 150, 100, 50, and 25 for

the corridors. It also contains an environment where the corridor does a zigzag shape and another

where the width of the corridor decreases. This group can be a good indicator of the performance

of a distribution algorithm behavior when it encounters small tight spaces that can sometimes be

smaller than the radius of the sensor. In Fig. 4.7 two environments can be seen in the test cases

with 25 units of corridor width and a decreasing width corridor.

4.3 Metrics

In order to better benchmark the performances of our algorithms, we had to implement relevant

metrics so that we could compare results. These metrics can be used by default, some inspired

by papers like [Singh and Sharma, 2015]. In this section, we will explore all the implemented

metrics.
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Figure 4.7: Sensor distribution in tight corridors scenarios with 25 units of corridor width and a
decreasing width corridor

The first and most simple metric implemented was already shown, and it is the MetricNum-

berSensors. When used on a single environment test case, this metric displays the number of

sensors placed. Furthermore, it displays the mean number of sensors used in a group of scenes

when it is run. This metric is an important one to consider because it can show how expensive it

would be to make this distribution. It can also be a good tiebreaker metric when the other metrics

are similar, being the better one the one that uses fewer sensors.

In Listing 4.3, it is possible to see the metric results in both single and group settings.

Listing 4.3: Number of sensors used metric in single and group settings

Sensors used: 15

Mean sensors used: 17.19

Another metric implemented is the MetricCoverageRateOne. This metric displays the per-

centage of area covered by at least one sensor in a single environment setting. In a group setting, it

displays the mean result from all composing test cases. This metric information is crucial because

the covered area is one of the most important aspects of WSNs and our problem, in which much

research is done to improve this metric results [Singh and Sharma, 2015]. In order to have full

coverage of all relevant positions in the environment, at least one sensor has to cover every point,

which correlates to having 100% coverage.

In Listing 4.4, it is possible to see the metric results in both single and group settings.

The next metric MetricCoverageRateAll is very similar to the previous one but displays a bit

more information about the coverage. It displays the coverage percentage of multiple redundancy

levels up to 10. This means that if a distribution has a 2-Coverage of 50%, half the points on the
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Listing 4.4: Percentage of area covered by at least one sensor metric in single and group settings

Covered area: 74.57%

Mean covered area: 67.37%

scenario are covered by at least two sensors. In a group setting, it displays the same information

but the average of the scenarios. This metric is the most important when there is a need to have

more than one sensor covering each of the points, providing more robustness when a sensor is

turned off. It can also be a good indicator if there is a lot of overlap between the sensors in the

case no redundancy is needed.

In Listing 4.5, it is possible to see the metric results in both single and group settings.

Listing 4.5: Percentage of area covered by multiple number of sensors metric in single and group
settings

1-Coverage: 75.22%
2-Coverage: 43.48%
3-Coverage: 20.15%
4-Coverage: 7.48%
5-Coverage: 1.47%
6-Coverage: 0.17%
7-Coverage: 0.00%
8-Coverage: 0.00%
9-Coverage: 0.00%
10-Coverage: 0.00%

Mean 1-Coverage: 64.50%
Mean 2-Coverage: 30.81%
Mean 3-Coverage: 10.61%
Mean 4-Coverage: 1.99%
Mean 5-Coverage: 0.22%
Mean 6-Coverage: 0.02%
Mean 7-Coverage: 0.00%
Mean 8-Coverage: 0.00%
Mean 9-Coverage: 0.00%
Mean 10-Coverage: 0.00%

Another more complex metric is MetricSensorEfficiency. This metric shows the percentage

ratio of the area covered against the full potential from all sensors. This means that if, for example,

only one sensor is deployed and it is on the edge of the environment, the efficiency will be near

50% since almost half the coverage potential is wasted against the environment boundary. Also,

the efficiency will be lower if there is much overlap between the sensors. When the metric deals

with test groups, it displays their mean efficiency. This is an important metric because it shows
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how the available resources (sensors) are being used. It also can be a good tiebreaker metric

between two results, for example, when the coverage percentage is the same.

In Listing 4.6, it is possible to see the metric results in both single and group settings.

Listing 4.6: Sensors efficiency metric in single and group settings

Sensors efficiency: 43.51%

Mean sensors efficiency: 35.01%

One another important metric is MetricProcessingTime. This metric shows the time it took

to distribute all the sensors in the specific environment in milliseconds. When the metric deals

with test groups, it displays their accumulated processing time. This is a relevant metric because it

makes it possible to see which distribution algorithms are more suited for specific usages depend-

ing on the time it takes to achieve a solution.

In Listing 4.7, it is possible to see the metric results in both single and group settings.

Listing 4.7: Processing time in single and group settings

Processing time: 1068ms

Accumulated processing time: 30817ms

The final and most complex metric implemented is the MetricMinimumCoverageOneSensor-

Loss. This metric shows the minimum coverage possible if one of the sensors gets shut down.

When the metric is run in a group, it shows the mean minimum coverage of all cases. This could

be an important metric to test the robustness and redundancy of a sensor distribution.

In Listing 4.8 it is possible to see the metrics results in both single and group settings.

Listing 4.8: Coverage when a sensor is loss metric in single and group settings

Minimum coverage with a sensor loss: 91.58%

Mean minimum coverage with a sensor loss: 57.37%

4.4 Algorithms

One of the most critical parts of the whole program is the algorithms. In this component, most

research is made, mainly because it is here that the most complex logic is concentrated. During

the project, many WSN distribution algorithms were implemented, the majority being inspired by

the state-of-the-art and some with small or big modifications from their respective papers. In this

section, we will explore all the implemented algorithms in detail. However, it is essential to note
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that some publications did not provide enough detail on the algorithms’ implementation, which

prevented reproducibility. Also, we assume that the communication distance of the sensors is big

enough not to be a limitation to better focus on the area coverage of the setup.

The Random algorithm is the simplest of all implemented algorithms. It has an initial fixed

number of sensors that will deploy. This number is calculated by dividing the area of the en-

vironment by a fraction of the coverage area of one sensor, in this case, 6/10, since it is a good

approximation of the optimal coverage ratio considering the optimal overlap of sensors. After hav-

ing the number of sensors, a random position inside the environment is assigned for each sensor.

If a sensor’s assigned random position is inside an obstacle, no new position is defined, and the

sensor does not contribute to the coverage of the area. In Fig 4.8 the results from this algorithm

in two scenarios, the 1200x800 empty one, and the house blueprint, can be seen. It is possible to

see that the algorithm is inefficient and inconsistent, having in some portions many sensors and in

others none.

Figure 4.8: Random algorithm in two scenarios

4.4.1 Geometrical Patterns Algorithms

The ORRD algorithm is based on the solution developed in [Chang et al., 2009]. Since it was

impossible to access the source code of their implementation, we tried to reproduce it to the best

of our abilities. The algorithm consists of starting the deployment in a point of the environment,

in this case, the top left, and from there, always making successive predefined moves. There are

six possible moves to make, and there is an order to check if each move is possible. Fig. 2.5a

shows the possible moves to make. When a move is impossible, the algorithm first tries to make a

shorter move, but with a minimum length, in case of a collision with an obstacle or environment

boundary. Fig. 4.9 shows some of those shorter moves being made because of the collision with

an obstacle. If it is impossible to make either the normal move or the shorter one, it will try to
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make the next move in order. The algorithm terminates when it is impossible to make more moves

from none of the currently placed sensors.

Figure 4.9: Shorter movements made in the ORRD solution

In Fig 4.10 the results from this algorithm in two scenarios can be seen. It is possible to see

that the algorithm’s performance is very efficient and with full coverage in the test case without

any obstacles. In the House test case, the performance is lacking in coverage, possibly because

certain regions exist where the algorithm could not distribute any sensor.

Figure 4.10: ORRD algorithm in two scenarios

To validate our implementation of the ORRD algorithm, we tested it in our framework in a

similar environment to the original paper. The original paper was tested in an empty scenario with

400mx400m dimensions and the sensors had a radius of 20m, and it achieved complete coverage

with 174 nodes. Our implementation in the same scenario also achieved 100% coverage but with

176 sensors, which is close enough to the original results to be considered a good approximation

of the implementation.

The ORRD Modified - ORRD M is similar to the previous algorithm, also based on [Chang

et al., 2009] but with a slight modification. Since, in some cases with small narrow spaces, the
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algorithm is unable to progress further, as can be seen in Fig. 4.10, we modified it to try to solve

this problem. Since the regular movements made in this algorithm form a grid of sensors in the

environment with no obstacles, we opted to modify it to use all of those points as initial points.

This modification makes it so that all the sensors do not need to be connected originating from the

predefined movements.

In Fig 4.11 the results from this algorithm in two scenarios can be seen. We can see that

the performance in the empty scenario is the same. In the House scenario, some regions with

no sensors in the unmodified version are now covered. However, it is possible to see that some

smaller zones are still without sensors.

Figure 4.11: ORRD Modified algorithm in two scenarios

4.4.2 Virtual Force Algorithms

The OAVFA algorithm is based on the solution developed in [Rout and Roy, 2016]. Since it was

impossible to access the source code of their implementation, we tried to reproduce it to the best

of our abilities. The algorithm consists of starting with a specific number of sensors distributed

randomly in the beginning and then modifying their positions iteratively using forces until they

reach their final positions. The beginning and end of this process can be seen in Fig. 2.2. During

the forces iterations, three types of forces are applied to the sensors. The first one is related to

the environment boundaries, where a repulsive gradual force is applied to the sensor, depending

on distance, if it is closer than a certain threshold to the boundaries. The second force is with the

obstacles, where a repulsive gradual force is applied to the sensors when they are closer than a

threshold, similar to the previous force. The third and final force is between the sensors them-

selves. This force is proportional and can be repulsive or attractive, depending on the distance

between sensors. If the distance between two sensors is less than a threshold, the force is repul-

sive. Otherwise, if it is greater, the force is attractive. All of these forces are accumulated in an
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iteration, and the sensor moves in their direction. If the sum of the forces is near zero, a stable

counter is incremented, and when this counter reaches a certain number, the sensor is considered

stable and in its final position. The algorithm terminates when all the sensors are stable or after a

certain number of iterations.

In Fig 4.12 the results from this algorithm in two scenarios can be seen. From both test cases, it

is seen that they are not fully covered. However, its efficiency seems good. In the empty scenario,

it is possible to see that the sensors do not show much overlap, which is suitable for efficiency.

In the House case, some parts are fully uncovered, but the covered ones seem to be spreading the

sensors evenly.

Figure 4.12: OAVFA algorithm in two scenarios

To validate our solution and implementation of the state-of-the-art OAVFA algorithm, we ran it

in a similar environment to one in its paper. The environment consisted of an area of 100mx100m

with an obstacle in the form of a T in the middle, and the sensor’s radius was 10m. The paper

solution with 40 sensors achieved a coverage rate of 98.29%, and our implementation with the

same number of sensors achieved 97.07% of coverage, which is a close number to consider a good

approximation to the original algorithm.

The OAVFA Targeted - OAVFA T is similar to the previous algorithm, also based on [Rout and

Roy, 2016] with some modifications. The initial phase of the algorithm is the same as the original,

where a predefined number of sensors is placed randomly on the scene. The iterations to move the

sensors’ locations are the same as the original. However, a new higher-level iteration exists where

sensors are added in the case of existing uncovered areas in the scenario. This modification makes

the algorithm add a sensor if the ones used are not enough, then proceeds to do some iterations of

moving the sensors. If there are still uncovered areas, this process is repeated until the area is fully

covered. In Fig 4.13 the results from this algorithm in two scenarios can be seen. Both scenarios

show a 100% coverage area and appear to have a good efficiency since there does not seem to have

much sensors’ overlap.
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Figure 4.13: OAVFA Targeted algorithm in two scenarios

The OAVFA Corner Targeted - OAVFA CT is a modification of the OAVFA T algorithm, which

is based on [Rout and Roy, 2016]. The difference between this algorithm and the previous is that it

creates an attractive force between obstacles and the sensors in some scenarios. This new attractive

force is created when a sensor is closer than a certain threshold to an inner corner of an obstacle,

in this case, any corner that makes less than 180º degrees outside. This force also considers the

degree of the corner, this being inverted proportional to the degrees of the corner. If the degree is

more acute, the force is stronger, and if it is more obtuse, it is less noticeable. This force tries to

fight against the normal repelling force from the obstacles, making it easier for sensors to move

into narrow corners of the environment.

In Fig 4.14 the results from the parent algorithm OAVFA T and the OAVFA CT algorithm in the

Decreasing Width scenario can be seen respectively. From the shown distribution, it is possible

to see that the Corner modification is more efficient, possibly because of the existence of such

an acute angle that pushes the sensors away from it on the unmodified version. Since the Corner

version also has an attractive force from the inner angles, this pushing effect is better neutralized.

The OAVFA ORRD Targeted - OAVFA OT is a modification of the OAVFA T algorithm, which

is based on [Rout and Roy, 2016], with a modification inspired by [Chang et al., 2009]. The

algorithm is equal to OAVFA T in all aspects except in the initial distribution of sensors. Instead

of using a random distribution as the original, in this modification, we try to place the nodes in the

clear places that are part of the grid, as can be seen in Fig. 2.5b. Since the grid from the ORRD

solution is almost optimal in avoiding overlapping zones, it could be a good starting point for the

algorithm. In Fig 4.15 the results from this algorithm in two scenarios can be seen, which don’t

seem to be very different from the parent algorithm.
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Figure 4.14: Distribution of the OAVFA T and OAVFA CT algorithms in the decreasing width
scenario

Figure 4.15: OAVFA ORRD Targeted algorithm in two scenarios

4.4.3 Computational Geometry Algorithms

The Voronoi algorithm is based on the solution developed in [Eledlebi et al., 2020]. In this al-

gorithm, there exists an injection point, in this case, bottom left, where it adds new sensors if

there is no sensor covering that point or there is a sensor that is disconnected from all other nodes.

During each iteration, the placed sensors also move themselves taking into account their Voronoi

regions between each other and the collisions with obstacles. To calculate a sensor’s next position

it is necessary to use the center point of the intersection between the Voronoi regions, the sensor’s

range, and the obstacles. The algorithm iteratively moves the sensors and adds new ones while

there is an amount of movement from the sensors above a certain threshold or when the number
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of iterations is less than a counter. The iteration counter is reset every time a new max coverage

rate is accomplished, making sure the algorithm is only stopped when it does not achieve better

results.

In Fig 4.16 the results from this algorithm in two scenarios can be seen. It is possible to see

that the algorithm has a good coverage performance in the empty scenario. However, it struggles

with obstacles in the environment, leaving many areas uncovered.

Figure 4.16: Voronoi algorithm in two scenarios

We tested using the same scenario to ensure our implementation had close results to the one in

the Voronoi original paper, which used a 100mx100m scenario with a sensor radius of 16m. The

original implementation achieved a 99.3% coverage in 20 seconds with 16 nodes. Our implemen-

tation achieved 98.49% coverage in 14 seconds with 17 nodes, which are similar results making it

a good approximation of the original algorithm.

The Voronoi Random - Voronoi R is similar to the previous algorithm, also based on [Eledlebi

et al., 2020] with some modifications. The big modification from the original algorithm is that the

injection point is randomly assigned as a random point in the environment each iteration instead

of always being the same bottom-left point. This modification could make the sensors reach some

difficult points and make it easier for the sensors to spread through the environment.

In Fig 4.17 the results from this algorithm in two scenarios can be seen. The coverage in the

empty scenario seems a bit better but is still not fully covered. In the house scenario, we can see a

big improvement in the coverage, covering some small areas left without sensors in the unmodified

version.

The Voronoi Targeted - Voronoi T is also based on [Eledlebi et al., 2020] with some modifica-

tions relative to the way of inserting nodes. In this algorithm, the way the sensors move is the same

as the original. However, during the iterations, sensors are added differently. In this case, when a

new sensor is to be added because the whole area is still not covered, the algorithm searches for
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Figure 4.17: Voronoi Random algorithm in two scenarios

a non-covered point and adds a sensor there. This modification was expected to guarantee 100%

coverage of all areas by the sensors.

In Fig 4.18 the results from this algorithm in two scenarios can be seen. It is possible to see

that both scenarios show a distribution with full coverage. It is also noticeable that in the empty

scenario, the efficiency of the sensors seems high without much overlap. However, we see much

overlap in the scenario with obstacles, which diminishes efficiency.

Figure 4.18: Voronoi Targeted algorithm in two scenarios

The Voronoi Targeted Unlimited - Voronoi TU is a modification of the algorithm Voronoi T,

also based on [Eledlebi et al., 2020]. The difference between this algorithm and the parent and

original one is that when calculating the next position of a sensor, it does not consider the sensor’s

range. This modification ensures that the sensor’s next position is the centroid of the area created
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by the intersection of the sensor’s Voronoi region with the area without obstacles. This modifica-

tion aims to make a more evenly spread of the sensors through all the scene areas and use fewer

sensors while having 100% coverage. In Fig 4.19 the results from this algorithm in two scenarios

can be seen, which don’t seem to be very different from the parent algorithm.

Figure 4.19: Voronoi Targeted Unlimited algorithm in two scenarios

The Voronoi Mix - Voronoi M is a modification that mixes the algorithms Voronoi T and

Voronoi R, all based on [Eledlebi et al., 2020]. In this algorithm, the beginning is run based on the

Random variant, where in each iteration, a new random point is assigned as the injection point. If

no sensor covers that point, a new sensor is added at that position. When the algorithm achieves

99% area coverage by all sensors, it switches to the Targeted variant. In the Targeted variant, after

several iterations, the algorithm does a linear search of the environment to check for uncovered

points and add sensors to it. This algorithm came to life because the Random variant had relatively

fewer sensors with almost 100% coverage but not reaching it, so it tries to take advantage of its

seemingly good performance but with 100% coverage.

In Fig 4.20 the results from this algorithm in two scenarios can be seen. The efficiency perfor-

mance in the empty scenario seems almost the same as the parent algorithm. However, the house

scenario seems less efficient, having more overlap in the sensors and some even being redundant.

The Voronoi ORRD Targeted - Voronoi OT is a modification of the algorithm Voronoi T based

on [Eledlebi et al., 2020] with a modification inspired by [Chang et al., 2009]. The algorithm is

equal to Voronoi T in all aspects except in the initial distribution of sensors. Instead of starting

without any sensor in the beginning iterations, in this modification, we try to place the nodes in

the clear places that are part of the grid, as can be seen in Fig. 2.5b. Since the grid from the ORRD

solution is almost optimal in avoiding overlapping zones, it could be a good starting point for the

algorithm. In Fig 4.21 we can see the performance of this algorithm in two scenarios.

The Voronoi ORRD Targeted Unlimited - Voronoi OTU is a modification of the algorithm

Voronoi OT and Voronoi TU based on [Eledlebi et al., 2020] with a modification inspired by
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Figure 4.20: Voronoi Mix algorithm in two scenarios

Figure 4.21: Voronoi ORRD Targeted algorithm in two scenarios

[Chang et al., 2009]. The algorithm is equal to Voronoi OT in all aspects, except when calculating

the next position of a sensor because it does not take into account the sensor’s range, as is the case

in the Voronoi TU algorithm. In Fig 4.22 two sensor distributions from this algorithm can be seen.

The Voronoi ORRD Targeted Delete - Voronoi OTD is a modification of the algorithm Voronoi

OT based on [Eledlebi et al., 2020] with a modification inspired by [Chang et al., 2009]. The

algorithm is equal to Voronoi OT in all aspects except that in the end, after the coverage is 100%,

it tries to remove sensors while trying to keep the coverage. This modification could delete some

redundant sensors, which would make the algorithm more efficient. In Fig 4.23 we can see how

this algorithm performs in two scenarios.

The Voronoi Random OAVFA - Voronoi RF is a combination of the algorithms Voronoi R based
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Figure 4.22: Voronoi ORRD Targeted Unlimited algorithm in two scenarios

Figure 4.23: Voronoi ORRD Targeted Delete algorithm in two scenarios

on [Eledlebi et al., 2020] and the OAVFA OT based on [Rout and Roy, 2016]. The algorithm first

runs the Voronoi R algorithm unmodified, which usually reaches close to 100% coverage. When

this ends, it runs the OAVFA OT algorithm with the previous setup of sensors. This algorithm tries

to take the good results but not perfect from the first algorithm and complement them with the

second one. In Fig 4.24 the results from this algorithm in two scenarios can be seen. It is possible

to see that the efficiency performance is good in the empty scenario, but it has a bad performance

in the scenario with obstacles.
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Figure 4.24: Voronoi Random OAVFA algorithm in two scenarios
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Chapter 5

Results

Since we have implemented a good amount of algorithms and variations we provide Tables 5.1,

5.2, and 5.3 which summarize the statistics for all algorithms when using different radius sizes of

sensors (100, 300, 600) in the different groups and in general with the aggregated results for ease

of comparison. We will also analyze the algorithms’ results and compare them with each other.

5.1 Miscellaneous Algorithms

The results from the Random algorithm are expected. It is possible to see its best results when

there are little or no environmental obstacles, possibly because the algorithm does not take them

into account. The statistics also show that the overall coverage performance worsens with the

increase of the radius, possibly because with a bigger radius, fewer sensors are used, making it

more essential to place the few sensors in good positions, which might not happen.

5.2 Geometrical Patterns Algorithms

For the ORRD algorithm, we can see that it works best in empty environments or more simple

environments without narrow paths. These results make sense because if a narrow path occurs

and the algorithm cannot pass it to get to the rest of the environment, a portion of the scene is not

covered. One of these cases can be seen in Fig. 4.10 where the algorithm cannot advance to a

part of the scenario. It is also possible to see that with the increase in the radius of the sensor, the

algorithm performance gets worse in terms of coverage, possibly because it makes the paths more

narrow in comparison, making the algorithm unable to go to more zones.

Relative to the ORRD M, it is possible to see a significant improvement in coverage compared

to the original ORRD, especially in the groups where it struggled. However, the algorithm still

works best in simple scenarios where there are not a lot of obstacles or small spaces, possibly

making it less viable for the remaining types of scenarios. Similar to the original algorithm, the

43
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coverage % is worse with a bigger radius, possibly because more uncovered areas appear because

of the smaller obstacles in comparison.

All the Geometrical Patterns algorithms show a good coverage % performance in the empty

and with one obstacle scenarios, having the prior 100% coverage with the radius of 100. Since

these algorithms require a lot less computing time than the majority of the other types of solutions,

they could be taken as a good initial solution and, in case of poor performance in coverage, be

replaced by some more intensive solutions.

5.3 Virtual Force Algorithms

The OAVFA algorithm shows relatively good and stable results in terms of coverage in all test

groups, especially when using a smaller radius. Its performance might not be as good because there

might not be enough nodes to cover the whole area, especially in more complex environments.

When using a bigger radius, this effect increases, and the results decline.

The results from the OAVFA T algorithm are excellent compared to the original algorithm

OAVFA. This algorithm can achieve the 100% coverage percentage in all the scenarios with all the

tested sensor radii, which makes sense since the nodes are added to the uncovered areas detected

during its iterations. It is possible to see that its performance in terms of efficiency seems better

when the radius is bigger compared to the other algorithms in general. Also, it is a fast algorithm

to run, which can be an important point compared to, for example, the Voronoi OTD algorithm.

Relative to the results of the OAVFA CT algorithm, they are a bit lacking compared to the

original algorithm OAVFA T. In some cases, it has better efficiency performance, but it is coun-

terproductive to have this modification in general. This performance also does not change with

different radii, possibly indicating that the forces between sensors and obstacles were already in

good balance in the original algorithm.

For the OAVFA OT algorithm, it is possible to see that its results are very similar to the original

OAVFA T. However, in the case of using a smaller radius, this algorithm is better in terms of

efficiency than its counterpart but loses its advantage with the bigger radius. These results could

indicate that the initial deployment is more beneficial when using a smaller radius and prejudicing

otherwise.

The Virtual Force algorithms seem consistent algorithms that show promising results in terms

of coverage % having a lot of them 100% on all test cases. Its efficiency is best when using a bigger

sensor radius of 300 or 600 when compared to the other types of algorithm families. In terms of

processing time, it is much worse than the Geometric Patterns counterpart, but it is similar to the

Computational Geometry family. So, in conclusion, this family of algorithms should be used when

the sensor radius is big in proportion to the environment since it has the best average results of all

the families in terms of sensor coverage and efficiency.
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5.4 Computational Geometry Algorithms

The Voronoi algorithm shows promising results in some groups, but none stand out that much. One

aspect worth noting is that the algorithm’s efficiency is high even when there are a lot of sensors

and high coverage, making it possibly have significant potential to have good results. However,

adding new sensors to the scenarios seems complicated, especially when using a bigger radius,

which could be a limitation.

When it comes to the Voronoi R algorithm, it is possible to see that the results have significantly

improved from the original, having high coverage and a good efficiency score for all groups. This

increase is more noticeable in the smaller radius cases, where all the groups have 95+% coverage

than in the bigger ones. However, even though the results are good, it cannot guarantee full area

coverage.

The results from the Voronoi T algorithm are excellent compared to the original Voronoi algo-

rithm. As expected, it achieves 100% coverage in all test cases with all radii since it adds sensors

to unmonitored zones. This algorithm, in terms of efficiency, has better results when using smaller

sensor radii, and it falls a bit behind when using bigger ones compared to similar algorithms.

Relative to the results from Voronoi TU, it is possible to see that the results are almost the same

as the original algorithm Voronoi T. It also achieves full coverage, and the number of sensors used

and its efficiency is very similar. These results could indicate that the change to not taking into

account the radius of the sensor in the movement phase does not affect the results significantly.

For the Voronoi M algorithm, its results are almost equal and, in some cases, a bit worse in

terms of efficiency than one of the parent’s algorithms Voronoi T. Even though the algorithm tried

to get better results using the Random variant from the Voronoi R, it did not have any improvement

from it. So, in the end, this modification was not that successful since it has the same distribution

results as its original algorithm, with the disadvantage that it is now much slower in processing

time.

The Voronoi OT algorithm shows a bit of efficiency improvement when using a smaller sensor

radius than the parent algorithm Voronoi T. However, when used in situations with a bigger sensor

radius, its improvement is diminished, possibly because its initial placement is not as good, as seen

in the OAVFA OT algorithm. These variations indicate that the initial setup influences the obtained

results and that having a good initial placement is crucial.

When it comes to the Voronoi OTU algorithm, it is possible to see across the tables that the

algorithm has a bit worst performance than its parent algorithms Voronoi OT and Voronoi TU in

terms of efficiency. We can conclude that the mix between the two algorithms does not improve

any tested cases with the tested sensors’ radii.

The results from the Voronoi OTD algorithm are the best achieved in all algorithms when

taking coverage percentage, the number of sensors used, and efficiency into account. These results

are also great, considering that its performance is good across all the sensor radii. These stats make

sense since the algorithm, in the end, tries to remove sensors that might be redundant, which can



46 Results

increase efficiency. One disadvantage of this algorithm is the time it takes to distribute the sensors,

which can be almost 30 times slower than the parent algorithm Voronoi OT.

Finally, it is possible to see that the Voronoi RF algorithm has mixed results. When using small

radii, the algorithm has worst results in terms of efficiency and processing time than, for example,

its Voronoi T counterpart. However, when using bigger radii has improved the efficiency metric

performance. These results might make sense since this algorithm also uses forces, and the results

of the OAVFA force algorithm show better results with a big radius. When using the smaller radius,

the force algorithm part might bottleneck the results of this algorithm.

From all the Computational Geometry algorithms, it is possible to see that they have incredible

results in terms of coverage % and efficiency. Most of the algorithms achieve 100% coverage in all

scenarios with all sizes of sensors and are more efficient than the rest of the families when using a

small sensor radius. Their processing times are a bit more dispersed but, on average, are similar to

the Virtual Force ones. So this family of distribution algorithms should be used when the sensor’s

radius is small in comparison to the scene since they are the ones that have the best efficiency in

those types of situations.

Table 5.1: All algorithms statistics with sensor radius 100. The mean results followed by the
standard deviation of five runs are presented in each cell. The results are categorized by the
algorithms and the different groups run. The groups are Empty, Multiple Obstacles, Multiple
Rooms, One Obstacle, and Tight Corridors. The General column shows the aggregated results of
all the groups.

Algorithm Metric Empty M. Obst. M. Rooms 1 Obst. T. Corr. General

Random

Cov%

Num.S.

Eff%

T(s)

67.9 | 3.5

15.8 | 0.0

53.4 | 2.7

0.0 | 0

60.6 | 3.0

8.8 | 0.0

43.0 | 2.2

0.0 | 0

57.0 | 4.6

11.5 | 0.0

40.7 | 3.1

0.0 | 0

57.0 | 4.0

10.0 | 0.0

38.8 | 2.7

0.0 | 0

57.1 | 3.9

9.0 | 0.0

30.4 | 1.9

0.0 | 0

59.8 | 0.6

10.9 | 0.0

40.8 | 0.6

0.0 | 0

ORRD

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

23.4 | 0.0

42.7 | 0.0

0.0 | 0

70.1 | 0.0

12.2 | 0.0

29.2 | 0.0

0.0 | 0

36.0 | 0.0

10.8 | 0.0

26.8 | 0.0

0.0 | 0

98.4 | 0.0

21.2 | 0.0

32.0 | 0.0

0.0 | 0

31.7 | 0.0

6.0 | 0.0

7.6 | 0.0

0.0 | 0

68.2 | 0.0

14.8 | 0.0

27.1 | 0.0

0.0 | 0

ORRD

M

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

23.6 | 0.0

42.5 | 0.0

0.0 | 0

95.9 | 0.0

19.0 | 0.0

32.3 | 0.0

0.0 | 0

94.8 | 0.0

26.5 | 0.0

29.4 | 0.0

0.0 | 0

99.6 | 0.0

22.2 | 0.0

31.1 | 0.0

0.0 | 0

92.1 | 0.0

13.5 | 0.0

33.0 | 0.0

0.0 | 0

96.5 | 0.0

20.5 | 0.0

33.7 | 0.0

0.1 | 0

OAVFA

Cov%

Num.S.

Eff%

T(s)

97.0 | 0.2

15.8 | 0.0

76.4 | 0.1

0.2 | 0

80.7 | 1.8

8.8 | 0.0

57.3 | 1.2

1.9 | 0

78.6 | 1.0

11.5 | 0.0

56.0 | 0.9

2.6 | 0

90.8 | 1.8

10.0 | 0.0

61.7 | 1.2

0.7 | 0

82.8 | 3.3

9.0 | 0.0

42.9 | 1.8

0.3 | 0

86.3 | 1.1

10.9 | 0.0

58.5 | 0.7

5.7 | 1
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OAVFA

T

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

22.5 | 0.1

50.8 | 0.1

23.9 | 4

100 | 0.0

18.9 | 0.2

36.5 | 0.5

21.0 | 3

100 | 0.0

26.8 | 0.7

30.9 | 0.7

72.7 | 10

100 | 0.0

15.8 | 0.1

43.3 | 0.3

17.0 | 1

100 | 0.0

17.3 | 0.4

26.9 | 0.9

9.7 | 1

100 | 0.0

19.7 | 0.1

37.7 | 0.3

144 | 10

OAVFA

CT

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

22.5 | 0.1

50.9 | 0.1

21.9 | 3

100 | 0.0

18.6 | 0.2

36.8 | 0.8

21.7 | 4

100 | 0.0

26.6 | 1.1

31.4 | 1.2

76.2 | 10

100 | 0.0

15.8 | 0.3

43.3 | 0.7

16.9 | 1

100 | 0.0

18.1 | 0.8

25.9 | 2.1

11.8 | 2

100 | 0.0

19.8 | 0.1

37.7 | 0.3

149 | 12

OAVFA

OT

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

22.5 | 0.1

50.8 | 0.1

24.0 | 3

100 | 0.0

19.4 | 0.5

34.9 | 1.1

19.4 | 2

100 | 0.0

24.9 | 1.5

33.5 | 2.1

52.2 | 3

100 | 0.0

16.7 | 0.5

41.9 | 0.9

16.6 | 2

100 | 0.0

19.5 | 0.9

24.5 | 1.3

12.4 | 1

100 | 0.0

20.2 | 0.3

37.0 | 0.5

125 | 8

Voronoi

Cov%

Num.S.

Eff%

T(s)

99.7 | 0.0

19.0 | 0.0

62.8 | 0.0

138 | 10

71.0 | 0.0

7.0 | 0.0

62.3 | 0.0

38.5 | 3

51.9 | 0.0

6.8 | 0.0

63.5 | 0.0

78.1 | 9

92.2 | 0.0

10.2 | 0.0

61.7 | 0.0

72.1 | 9

76.2 | 0.0

5.2 | 0.0

68.1 | 0.0

45.8 | 13

79.7 | 0.0

9.6 | 0.0

63.8 | 0.0

372 | 15

Voronoi

R

Cov%

Num.S.

Eff%

T(s)

99.9 | 0.0

19.6 | 0.4

60.3 | 1.9

85.0 | 16

99.4 | 0.1

12.3 | 0.3

50.8 | 1.1

108 | 19

96.2 | 0.9

16.4 | 0.7

48.2 | 1.8

314 | 79

99.9 | 0.0

12.9 | 0.3

52.6 | 1.0

136 | 30

99.8 | 0.1

9.6 | 0.2

47.8 | 0.8

58.1 | 7

99.2 | 0.2

13.8 | 0.2

52.0 | 0.5

701 | 60

Voronoi

T

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

22.8 | 0.3

54.8 | 0.3

36.0 | 6

100 | 0.0

15.2 | 0.2

43.4 | 0.6

17.8 | 1

100 | 0.0

23.8 | 0.0

36.0 | 0.0

48.1 | 4

100 | 0.0

15.2 | 0.0

45.5 | 0.0

15.5 | 1

100 | 0.0

12.2 | 0.0

38.4 | 0.0

9.8 | 2

100 | 0.0

17.3 | 0.1

43.8 | 0.1

127 | 7

Voronoi

TU

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

23.4 | 0.0

54.2 | 0.0

20.7 | 4

100 | 0.0

15.1 | 0.1

43.2 | 0.3

11.1 | 1

100 | 0.0

25.2 | 0.0

33.6 | 0.0

45.0 | 5

100 | 0.0

15.2 | 0.0

45.5 | 0.0

13.3 | 4

100 | 0.0

11.7 | 0.0

39.4 | 0.0

6.6 | 1

100 | 0.0

17.5 | 0.0

43.5 | 0.1

96.6 | 12

Voronoi

M

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

22.8 | 0.1

54.4 | 1.0

36.4 | 5

100 | 0.0

15.9 | 1.3

42.4 | 1.2

36.1 | 25

100 | 0.0

24.2 | 0.5

35.5 | 0.5

68.9 | 10

100 | 0.0

15.1 | 0.1

45.4 | 0.4

20.6 | 2

100 | 0.0

11.6 | 0.5

40.0 | 1.1

13.1 | 4

100 | 0.0

17.3 | 0.2

43.8 | 0.3

175 | 32

Voronoi

OT

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

22.8 | 0.0

54.8 | 0.0

33.9 | 7

100 | 0.0

17.8 | 0.2

41.7 | 0.3

41.3 | 6

100 | 0.0

24.0 | 0.0

35.7 | 0.0

49.9 | 8

100 | 0.0

15.3 | 0.0

44.9 | 0.0

19.7 | 2

100 | 0.0

11.7 | 0.0

39.5 | 0.0

10.7 | 3

100 | 0.0

17.7 | 0.0

43.5 | 0.1

156 | 7
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Voronoi

OTU

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

23.0 | 0.0

54.6 | 0.0

19.1 | 4

100 | 0.0

17.6 | 0.7

41.0 | 0.4

27.9 | 4

100 | 0.0

24.5 | 0.0

34.3 | 0.0

51.5 | 7

100 | 0.0

15.2 | 0.0

45.5 | 0.0

15.4 | 2

100 | 0.0

11.3 | 0.0

40.5 | 0.0

6.8 | 1

100 | 0.0

17.7 | 0.1

43.5 | 0.1

121 | 15

Voronoi

OTD

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

22.8 | 0.0

54.8 | 0.0

932 | 13

100 | 0.0

15.5 | 0.2

43.3 | 0.2

1424 | 268

100 | 0.0

23.5 | 0.0

36.2 | 0.0

1734 | 15

100 | 0.0

15.0 | 0.0

45.9 | 0.0

302 | 30

100 | 0.0

11.5 | 0.0

40.2 | 0.0

87.2 | 13

100 | 0.0

17.1 | 0.0

44.3 | 0.0

4480 | 295

Voronoi

RF

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

22.6 | 0.2

50.8 | 0.2

137 | 28

100 | 0.0

20.4 | 0.7

34.5 | 0.9

97.1 | 17

100 | 0.0

29.0 | 1.4

30.2 | 1.7

360 | 58

100 | 0.0

16.0 | 0.4

43.0 | 0.7

139 | 10

100 | 0.0

18.6 | 1.4

25.1 | 1.9

64.0 | 6

100 | 0.0

20.7 | 0.3

36.8 | 0.4

797 | 48

Table 5.2: All algorithms statistics with sensor radius 300. The mean results followed by the
standard deviation of five runs are presented in each cell. The results are categorized by the
algorithms and the different groups run. The groups are Empty, Multiple Obstacles, Multiple
Rooms, One Obstacle, and Tight Corridors. The General column shows the aggregated results of
all the groups.

Algorithm Metric Empty M. Obst. M. Rooms 1 Obst. T. Corr. General

Random

Cov%

Num.S.

Eff%

T(s)

76.8 | 4.4

2.4 | 0.0

32.6 | 2.9

0.0 | 0

55.5 | 3.6

1.6 | 0.0

25.6 | 1.4

0.0 | 0

42.3 | 7.1

2.0 | 0.0

19.6 | 3.0

0.0 | 0

51.9 | 3.8

2.0 | 0.0

19.6 | 1.4

0.0 | 0

51.0 | 7.7

1.7 | 0.0

16.7 | 1.8

0.0 | 0

55.7 | 2.4

1.9 | 0.0

22.6 | 1.0

0.0 | 0

ORRD

Cov%

Num.S.

Eff%

T(s)

84.3 | 0.0

4.6 | 0.0

21.3 | 0.0

0.0 | 0

73.5 | 0.0

2.8 | 0.0

14.3 | 0.0

0.0 | 0

36.7 | 0.0

2.2 | 0.0

15.7 | 0.0

0.0 | 0

78.9 | 0.0

3.7 | 0.0

17.3 | 0.0

0.0 | 0

28.8 | 0.0

1.0 | 0.0

4.6 | 0.0

0.0 | 0

60.9 | 0.0

2.9 | 0.0

14.3 | 0.0

0.0 | 0

ORRD

M

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

5.8 | 0.0

18.6 | 0.0

0.0 | 0

86.7 | 0.0

3.8 | 0.0

15.5 | 0.0

0.0 | 0

75.9 | 0.0

6.5 | 0.0

10.6 | 0.0

0.0 | 0

92.7 | 0.0

4.7 | 0.0

15.6 | 0.0

0.0 | 0

84.2 | 0.0

3.3 | 0.0

12.9 | 0.0

0.0 | 0

88.4 | 0.0

4.7 | 0.0

14.8 | 0.0

0.0 | 0

OAVFA

Cov%

Num.S.

Eff%

T(s)

85.3 | 3.3

2.4 | 0.0

36.4 | 1.7

0.0 | 0

64.5 | 1.1

1.6 | 0.0

29.2 | 0.5

0.1 | 0

46.2 | 5.1

2.0 | 0.0

21.6 | 2.0

0.1 | 0

65.6 | 5.4

2.0 | 0.0

24.8 | 2.0

0.1 | 0

61.4 | 3.7

1.7 | 0.0

19.0 | 1.2

0.0 | 0

65.2 | 1.2

1.9 | 0.0

26.0 | 0.4

0.3 | 0
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OAVFA

T

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

5.0 | 0.2

24.3 | 0.5

2.7 | 1

100 | 0.0

9.1 | 0.6

9.9 | 0.4

9.0 | 2

100 | 0.0

7.7 | 0.3

13.0 | 0.9

14.4 | 3

100 | 0.0

5.7 | 0.3

13.8 | 0.9

6.6 | 0

100 | 0.0

5.3 | 0.3

9.8 | 0.5

3.6 | 1

100 | 0.0

6.4 | 0.2

14.0 | 0.3

36.4 | 2

OAVFA

CT

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

5.3 | 0.2

22.9 | 1.2

3.4 | 1

100 | 0.0

9.3 | 0.3

10.0 | 0.6

11.2 | 2

100 | 0.0

8.3 | 0.2

11.7 | 0.3

24.3 | 3

100 | 0.0

5.5 | 0.2

14.2 | 0.6

8.4 | 1

100 | 0.0

5.3 | 0.2

9.8 | 0.3

3.7 | 0

100 | 0.0

6.6 | 0.1

13.7 | 0.2

51.0 | 3

OAVFA

OT

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

4.4 | 0.1

26.8 | 1.3

2.6 | 0

100 | 0.0

9.1 | 0.7

9.8 | 0.5

8.1 | 2

100 | 0.0

8.3 | 0.5

11.5 | 0.7

18.1 | 2

100 | 0.0

5.6 | 0.3

13.9 | 0.7

9.0 | 2

100 | 0.0

4.9 | 0.1

11.8 | 0.6

2.9 | 0

100 | 0.0

6.3 | 0.2

14.7 | 0.4

40.8 | 5

Voronoi

Cov%

Num.S.

Eff%

T(s)

99.5 | 0.0

2.6 | 0.0

41.7 | 0.0

8.3 | 2

68.0 | 0.0

1.4 | 0.0

33.7 | 0.0

21.6 | 4

56.1 | 0.0

2.0 | 0.0

24.8 | 0.0

35.2 | 4

43.3 | 0.0

1.2 | 0.0

28.4 | 0.0

29.8 | 4

66.1 | 0.0

1.3 | 0.0

25.2 | 0.0

22.3 | 1

66.1 | 0.0

1.6 | 0.0

30.7 | 0.0

117 | 6

Voronoi

R

Cov%

Num.S.

Eff%

T(s)

100.0 | 0.0

3.0 | 0.1

37.7 | 1.6

10.2 | 3

76.9 | 1.7

2.0 | 0.1

29.8 | 1.1

27.1 | 5

66.5 | 3.0

2.6 | 0.2

24.0 | 1.5

66.7 | 18

82.6 | 2.9

2.5 | 0.1

26.4 | 0.7

38.2 | 5

76.1 | 8.8

2.0 | 0.1

18.9 | 1.6

25.0 | 7

80.9 | 2.5

2.4 | 0.1

27.1 | 0.6

167 | 24

Voronoi

T

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

3.2 | 0.0

36.5 | 0.0

1.6 | 0

100 | 0.0

12.6 | 0.8

6.7 | 0.1

17.8 | 5

100 | 0.0

10.2 | 0.1

12.8 | 0.0

21.3 | 2

100 | 0.0

5.7 | 0.0

13.8 | 0.0

5.7 | 1

100 | 0.0

5.0 | 0.0

13.5 | 0.0

3.6 | 0

100 | 0.0

7.1 | 0.2

16.5 | 0.0

50.0 | 7

Voronoi

TU

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

3.2 | 0.0

36.5 | 0.0

1.4 | 0

100 | 0.0

11.6 | 0.3

6.8 | 0.1

11.3 | 1

100 | 0.0

10.1 | 0.1

12.8 | 0.0

18.9 | 3

100 | 0.0

5.5 | 0.0

14.2 | 0.0

4.5 | 0

100 | 0.0

5.0 | 0.0

13.5 | 0.0

2.5 | 0

100 | 0.0

6.8 | 0.0

16.7 | 0.0

38.6 | 4

Voronoi

M

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

3.2 | 0.1

36.8 | 0.6

2.2 | 0

100 | 0.0

12.1 | 0.4

6.8 | 0.1

50.4 | 13

100 | 0.0

10.2 | 0.0

12.8 | 0.0

225 | 31

100 | 0.0

5.6 | 0.2

14.0 | 0.5

33.1 | 11

100 | 0.0

5.9 | 0.2

10.4 | 1.5

22.9 | 7

100 | 0.0

7.2 | 0.1

16.0 | 0.5

333 | 30

Voronoi

OT

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

3.2 | 0.0

36.5 | 0.0

1.7 | 0

100 | 0.0

12.4 | 0.5

6.8 | 0.1

15.5 | 2

100 | 0.0

10.1 | 0.1

12.8 | 0.0

23.1 | 3

100 | 0.0

5.7 | 0.0

13.8 | 0.0

5.9 | 1

100 | 0.0

5.0 | 0.0

13.5 | 0.0

3.6 | 0

100 | 0.0

7.0 | 0.1

16.6 | 0.0

49.8 | 5
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Voronoi

OTU

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

3.2 | 0.0

36.5 | 0.0

1.5 | 0

100 | 0.0

11.4 | 0.5

6.9 | 0.1

12.0 | 1

100 | 0.0

10.2 | 0.1

12.8 | 0.0

17.4 | 2

100 | 0.0

5.5 | 0.0

14.2 | 0.0

5.0 | 0

100 | 0.0

5.0 | 0.0

13.5 | 0.0

2.9 | 0

100 | 0.0

6.8 | 0.1

16.7 | 0.0

38.8 | 2

Voronoi

OTD

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

3.2 | 0.0

36.5 | 0.0

16.7 | 0

100 | 0.0

7.4 | 0.1

10.9 | 0.1

384 | 10

100 | 0.0

6.5 | 0.0

16.0 | 0.0

629 | 11

100 | 0.0

5.0 | 0.0

15.5 | 0.0

65.3 | 1

100 | 0.0

4.0 | 0.0

14.9 | 0.0

38.5 | 0

100 | 0.0

5.1 | 0.0

18.6 | 0.0

1133 | 18

Voronoi

RF

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

3.6 | 0.5

34.8 | 1.9

10.7 | 1

100 | 0.0

8.8 | 0.5

10.2 | 0.3

34.4 | 7

100 | 0.0

8.2 | 0.8

13.2 | 1.9

85.3 | 23

100 | 0.0

5.0 | 0.3

15.6 | 0.9

47.9 | 6

100 | 0.0

5.3 | 0.3

10.2 | 0.7

27.2 | 6

100 | 0.0

6.0 | 0.2

16.6 | 0.6

205 | 24

Table 5.3: All algorithms statistics with sensor radius 600. The mean results followed by the
standard deviation of five runs are presented in each cell. The results are categorized by the
algorithms and the different groups run. The groups are Empty, Multiple Obstacles, Multiple
Rooms, One Obstacle, and Tight Corridors. The General column shows the aggregated results of
all the groups.

Algorithm Metric Empty M. Obst. M. Rooms 1 Obst. T. Corr. General

Random

Cov%

Num.S.

Eff%

T(s)

90.6 | 5.6

1.2 | 0.0

21.3 | 3.6

0.0 | 0

52.3 | 9.8

1.0 | 0.0

9.3 | 1.4

0.0 | 0

32.9 | 5.1

1.0 | 0.0

7.8 | 1.3

0.0 | 0

40.2 | 7.2

1.0 | 0.0

7.6 | 1.4

0.0 | 0

34.3 | 18.2

1.0 | 0.0

4.5 | 2.2

0.0 | 0

49.7 | 5.9

1.0 | 0.0

9.9 | 1.3

0.0 | 0

ORRD

Cov%

Num.S.

Eff%

T(s)

57.5 | 0.0

2.0 | 0.0

7.7 | 0.0

0.0 | 0

68.9 | 0.0

2.2 | 0.0

6.0 | 0.0

0.0 | 0

28.3 | 0.0

1.6 | 0.0

3.3 | 0.0

0.0 | 0

72.3 | 0.0

1.0 | 0.0

6.8 | 0.0

0.0 | 0

21.4 | 0.0

2.0 | 0.0

1.3 | 0.0

0.0 | 0

50.3 | 0.0

1.5 | 0.0

5.0 | 0.0

0.0 | 0

ORRD

M

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

3.0 | 0.0

9.8 | 0.0

0.0 | 0

78.8 | 0.0

2.4 | 0.0

4.5 | 0.0

0.0 | 0

45.1 | 0.0

2.0 | 0.0

5.1 | 0.0

0.0 | 0

89.2 | 0.0

3.0 | 0.0

5.6 | 0.0

0.0 | 0

29.4 | 0.0

1.0 | 0.0

1.2 | 0.0

0.0 | 0

68.7 | 0.0

2.3 | 0.0

5.1 | 0.0

0.0 | 0

OAVFA

Cov%

Num.S.

Eff%

T(s)

91.1 | 2.8

1.2 | 0.0

21.7 | 2.0

0.0 | 0

61.2 | 3.7

1.0 | 0.0

10.7 | 0.7

0.0 | 0

34.7 | 4.0

1.0 | 0.0

8.2 | 1.0

0.1 | 0

46.8 | 3.9

1.0 | 0.0

8.9 | 0.7

0.0 | 0

52.3 | 4.8

1.0 | 0.0

6.7 | 0.5

0.0 | 0

57.5 | 1.5

1.0 | 0.0

11.1 | 0.5

0.1 | 0
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OAVFA

T

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

2.0 | 0.2

13.3 | 1.4

1.2 | 0

100 | 0.0

8.5 | 0.5

2.8 | 0.3

11.1 | 1

100 | 0.0

7.0 | 0.3

3.6 | 0.2

17.5 | 2

100 | 0.0

4.6 | 0.1

4.2 | 0.2

5.8 | 1

100 | 0.0

4.4 | 0.2

3.1 | 0.2

3.2 | 0

100 | 0.0

5.2 | 0.1

5.4 | 0.3

38.8 | 2

OAVFA

CT

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

2.0 | 0.0

13.3 | 0.0

1.0 | 0

100 | 0.0

8.4 | 0.4

2.7 | 0.1

11.9 | 2

100 | 0.0

7.5 | 0.4

3.5 | 0.2

23.9 | 7

100 | 0.0

4.8 | 0.3

4.0 | 0.3

7.5 | 2

100 | 0.0

4.2 | 0.2

3.3 | 0.1

3.4 | 0

100 | 0.0

5.2 | 0.1

5.3 | 0.0

47.7 | 7

OAVFA

OT

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.9 | 0.1

14.7 | 1.3

1.0 | 0

100 | 0.0

8.6 | 0.7

2.7 | 0.2

10.2 | 3

100 | 0.0

7.0 | 0.2

3.7 | 0.2

15.7 | 2

100 | 0.0

4.7 | 0.2

4.1 | 0.2

6.0 | 1

100 | 0.0

4.4 | 0.5

3.2 | 0.4

3.3 | 1

100 | 0.0

5.2 | 0.2

5.6 | 0.2

36.3 | 5

Voronoi

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.4 | 0.0

19.9 | 0.0

5.0 | 1

62.9 | 0.0

1.0 | 0.0

11.0 | 0.0

14.6 | 2

45.1 | 0.0

1.0 | 0.0

10.4 | 0.0

38.8 | 10

51.4 | 0.0

1.0 | 0.0

9.7 | 0.0

24.6 | 2

59.1 | 0.0

1.0 | 0.0

7.6 | 0.0

22.2 | 4

63.8 | 0.0

1.1 | 0.0

11.6 | 0.0

105 | 6

Voronoi

R

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.4 | 0.1

19.4 | 1.1

4.9 | 1

63.8 | 3.1

1.1 | 0.1

10.8 | 0.3

20.8 | 7

45.1 | 0.0

1.0 | 0.0

10.4 | 0.0

31.4 | 6

43.5 | 4.5

1.1 | 0.1

7.4 | 0.7

30.8 | 7

59.1 | 0.0

1.0 | 0.0

7.6 | 0.0

19.8 | 4

62.1 | 1.3

1.1 | 0.0

10.9 | 0.4

108 | 10

Voronoi

T

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.4 | 0.0

19.9 | 0.0

1.0 | 0

100 | 0.0

10.6 | 0.2

2.0 | 0.0

12.6 | 1

100 | 0.0

9.8 | 0.2

3.3 | 0.0

21.0 | 3

100 | 0.0

5.5 | 0.0

3.5 | 0.0

5.7 | 0

100 | 0.0

4.8 | 0.0

3.5 | 0.0

3.5 | 0

100 | 0.0

6.2 | 0.1

6.4 | 0.0

43.8 | 3

Voronoi

TU

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.4 | 0.0

19.9 | 0.0

0.9 | 0

100 | 0.0

10.4 | 0.3

2.1 | 0.0

9.8 | 1

100 | 0.0

9.9 | 0.1

3.3 | 0.0

19.2 | 2

100 | 0.0

5.5 | 0.0

3.5 | 0.0

4.8 | 0

100 | 0.0

4.8 | 0.0

3.5 | 0.0

2.7 | 0

100 | 0.0

6.2 | 0.1

6.4 | 0.0

37.5 | 2

Voronoi

M

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.4 | 0.1

19.4 | 1.1

1.1 | 0

100 | 0.0

11.1 | 0.5

1.9 | 0.0

76.1 | 10

100 | 0.0

9.8 | 0.1

3.3 | 0.0

241 | 18

100 | 0.0

5.7 | 0.0

3.4 | 0.0

98.6 | 14

100 | 0.0

5.2 | 0.0

3.5 | 0.0

34.8 | 4

100 | 0.0

6.4 | 0.1

6.2 | 0.2

452 | 33

Voronoi

OT

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.4 | 0.0

19.9 | 0.0

1.0 | 0

100 | 0.0

10.4 | 0.2

2.1 | 0.0

11.9 | 1

100 | 0.0

10.0 | 0.0

3.3 | 0.0

19.3 | 1

100 | 0.0

5.5 | 0.0

3.5 | 0.0

6.0 | 0

100 | 0.0

4.8 | 0.0

3.5 | 0.0

3.7 | 0

100 | 0.0

6.2 | 0.0

6.4 | 0.0

41.8 | 2
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Voronoi

OTU

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.4 | 0.0

19.9 | 0.0

1.0 | 0

100 | 0.0

10.5 | 0.2

2.1 | 0.0

10.6 | 1

100 | 0.0

9.9 | 0.1

3.3 | 0.0

20.6 | 3

100 | 0.0

5.5 | 0.0

3.5 | 0.0

5.3 | 0

100 | 0.0

4.8 | 0.0

3.5 | 0.0

2.9 | 0

100 | 0.0

6.2 | 0.0

6.4 | 0.0

40.4 | 3

Voronoi

OTD

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.4 | 0.0

19.9 | 0.0

2.2 | 0

100 | 0.0

6.9 | 0.1

3.2 | 0.1

439 | 3

100 | 0.0

6.5 | 0.1

4.1 | 0.0

648 | 38

100 | 0.0

4.2 | 0.0

4.5 | 0.0

80.9 | 1

100 | 0.0

3.2 | 0.0

4.6 | 0.0

31.0 | 0

100 | 0.0

4.3 | 0.0

7.2 | 0.0

1202 | 41

Voronoi

RF

Cov%

Num.S.

Eff%

T(s)

100 | 0.0

1.4 | 0.0

19.9 | 0.0

5.5 | 1

100 | 0.0

8.2 | 0.4

2.8 | 0.2

23.7 | 4

100 | 0.0

7.6 | 0.3

3.4 | 0.2

49.5 | 9

100 | 0.0

4.7 | 0.3

4.1 | 0.3

34.6 | 5

100 | 0.0

4.0 | 0.2

3.9 | 0.3

23.3 | 3

100 | 0.0

5.0 | 0.1

6.7 | 0.1

137 | 15



Chapter 6

Conclusions and Future Work

This last chapter presents a small summary of what has been done and the results of our work. To

finish some possible future work is proposed.

6.1 Conclusions

Even though, to the best of our knowledge, our work is a first of its kind regarding the automatic

distribution of fire equipment, from our research, it is possible to see that some of its problems are

similar to some very well-known ones. Our search for already implemented solutions consisted of

WSN coverage problem solutions where we determined some problem context-related informa-

tion, such as datasets used, obtained results, benchmark metrics, and limitations. This information

allowed us to determine the best solutions to test and implement for our problem. After imple-

menting some of those solutions, we tested some modifications to improve their results in different

metrics, which seem to have been successful considering their results.

From our results, we have created a decision tree in Fig. 6.1 that shows the best solution to

use in each case, taking into account some variables. The main diversion paths are the presence

of obstacles in the scenario, the size of the sensor radius compared to the scenario, and the time to

achieve a solution. The recommended algorithms are chosen based on the results of the coverage

percentage, the number of sensors used, and the time to find a solution. From the tree, it is

possible to observe that the Voronoi algorithms perform better when obstacles exist, varying in the

modification chosen depending on the sensor’s radius and time limitation. In the empty scenarios,

it is possible to see that when sensors with smaller are used, the OAVFA modifications show the

best results. Still, when the radius is bigger, the Voronoi algorithms perform best.

We believe that our work is a good contribution to the WSN topic. Since we have implemented

a program that can run multiple algorithms in the same environment, in our opinion, it is a better

way to compare solutions than running the different algorithms in their ad-hoc way. Because in

this way, it could prevent some incongruent results caused by the different ways of implementing

53
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Voronoi OTD

Scenario contains
obstacles?

Is time a
limitation? *2

Is sensor radius
small? *1

NoYes

Is sensor radius
small? *1

OAVFA
Modifications Voronoi Algorithms

Yes No Yes No

Yes No

Voronoi T Voronoi RF

*1 - Sensor radius is smaller or equal to 1/3 of the smaller dimension of the scenario 
*2 - Is the time of finding a solution expected to be less than 40 seconds for a scenario 

Figure 6.1: Decision tree for best algorithm to use giving conditions

the structural platform. Also, since we tried to implement some previous solutions and got their

results in our test cases, it is a good contribution in comparing algorithms that have not previously

been compared. Also, our work on creating different modifications to the different researched

algorithms was a good contribution because we have improved some of the results that the al-

gorithms showed. The improved performance can be seen in multiple examples such as: in the

ORRD algorithm from a paper, to its modified algorithm ORRD M went from a 68.2% coverage

percentage to 96.5% with relatively the same time of processing; in the OAVFA algorithm from

a publication, to one of its modifications OAVFA OT there was an improvement from 86.3% to

100% in terms of coverage but with a significant increase, approximately 70 times, in processing

time; in the Voronoi algorithm also from a paper to a modification Voronoi OT, the results changed

from 79.7% to 100% coverage and with an approximately 40% time reduction. Also, since we

have focused on the ease of creating new algorithms/test cases/metrics in our program, we believe

it could be a good platform for creating new distribution algorithms in the future, making a good

contribution to this subject.

From our study, it was also possible to understand that it should be possible to accomplish our

primary goal of automating fire equipment distribution in buildings. Making this work a step in

the right direction for the Fire Safety project that tries to achieve this goal.
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6.2 Future Work

After all our work, we have identified some key topics that could be the subject of future works

related to this project. Some of these topics are already planned to be made in the future.

6.2.1 Safe Cities - Fire Planning

Some components in the Safe Cities program will be focusing in the following topics. But a

research was made to better understand what are some of the key concepts and features required

to create and develop those fragments.

6.2.1.1 BIM and CAD projects

Since our developed work mainly focuses on distribution of the sensors in a 2D environment that

has a specific representation which is not normally used in the real world building plans, it makes

sense to explore a way to convert the most used formats to ours.

Since most civil engineering projects involve the plans of buildings designed using BIM and

CAD files, it would make sense to explore and use them for the conversion.

The use of BIM for fire safety is not something new. In [Wang et al., 2015] the BIM file

type is used for evacuation assessment, escape route planning, safety education, and equipment

maintenance. Since BIM has a lot of information on the building, like the building structure and

details about current components and equipment, it is perfect for planning and maintenance.

Another project that also uses BIM and focuses on the automatic distribution of equipment

is [Dahmane et al., 2020]. In this paper, BIM is used to get the building’s main structure, which

includes walls. Posteriorly, they try to distribute WSN nodes on the whole building to achieve

maximum coverage. The process described in this paper is very similar to our work. However,

there are some limitations in their work, as they use a discrete environment using a 2D table where

each cell represents a one-meter square of the scene and the sensors have a three-meter radius,

which can lead to some loss of accuracy. Also, considering that their distribution algorithm is

genetically based, although the processing time in the paper is not mentioned, it is expected to be

slower than other types of methods like the geometric or force ones.

This topic is a bit touched on in the initial phase of the Safe Cities - Fire Planning project,

where a DWG file is used to create a 2D up view image of the floors, and the information relative

to the multiple rooms is presented in dimensions related to the pixels of said image. However,

this conversion is not detailed enough and not in the same format as our input, so additional work

would have to be done on this topic.

6.2.1.2 Sensor Wiring

Another aspect that wasn’t much explored in this project is the connection between the sensors.

After having all the required equipment positions, creating "loops" that connect the equipment

in disjunctive groups is necessary. Since the main objective is to minimize the quantity of wire
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used to connect all the equipment in groups, it would be important to research Vehicle Routing

Problem VRP algorithms that might be a good problem approximation.

One variation of the Vehicle Routing Problem that fits the problem is the Capacitated Vehicle

Routing Problem CVRP. The CVRP consists in the optimization of the distribution of goods from

a single depot to a given set of customers with known demand using a given number of vehicles of

fixed capacity [Augerat et al., 1995]. The CVRP can be translated for our context. A vehicle route

represents a wiring "loop," the vehicle’s capacity is the number of equipment in a "loop," and the

objective is to minimize wiring usage.

The CVRP has been a relevant explored subject of research, which makes it have a lot of

resources developed for its study. One of these resources is defined test cases, which make a

comparison between multiple solutions easier to access. In Fig. 6.2, it is possible to compare the

quality of the results and the time to achieve it from multiple solutions.

Aside from the paper solutions presented in Fig. 6.2, a library implementation also exists that

makes it possible to achieve a solution for the CVRP, the Google-OR tools [Perron and Furnon,

2022]. A significant advantage of using this tool is that it would probably be easier and faster to

implement it. Also, since this is a tool supported by Google, updates to its algorithm might happen

in the future, making it easier to always have the most up-to-date solution for this problem. A

disadvantage is that it is impossible to make minor modifications to the solving algorithm.

This topic will also be addressed in the late stages of the Safe Cities - Fire Planning pipeline.

The possible connections between the sensors need to be calculated, and an optimal wiring struc-

ture must be defined to use as little wiring as possible.

6.2.2 WSN simulators

Another possible future work is exporting the distribution of the WSN sensors and the environment

to some of the most used WSN simulators.

Since the WSN simulators are used to test the performance of the network in multiple aspects,

like, for example, energy or bandwidth, before the WSN is implemented in the real world, it would

make sense to implement a way to export the results from our program to them for future testing.

This future work would make it easier to do the complete process of implementing a WSN

from the start.
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Figure 6.2: Comparison of multiple CVRP solutions (extracted from [Szeto et al., 2011])
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Appendix A

Scenarios

In this appendix, we show all the scenarios that we have implemented and used in our work. The

scenarios are divided into groups, which contain scenarios that share some common characteris-

tics.

A.1 Empty Group

Figure A.1: 150x500 scenario Figure A.2: 500x150 scenario
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Figure A.3: 300x300 scenario Figure A.4: 900x900 scenario

Figure A.5: 1200x800 scenario
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A.2 One Obstacle Group

Figure A.6: C scenario Figure A.7: Circle scenario

Figure A.8: H scenario Figure A.9: Irregular scenario
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Figure A.10: PI scenario Figure A.11: T scenario
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A.3 Multiple Obstacles Group

Figure A.12: 2 Irregular 1 scenario Figure A.13: 2 Irregular 2 scenario

Figure A.14: 5 Circles scenario Figure A.15: 5 Squares scenario
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Figure A.16: 20 Squares scenario
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A.4 Multiple Rooms Group

Figure A.17: 3 Regular Rooms scenario Figure A.18: 6 Rooms 1 Hall scenario

Figure A.19: House Blueprint scenario Figure A.20: Irregular Rooms scenario
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A.5 Tight Corridors Group

Figure A.21: Width 150 scenario Figure A.22: Width 100 scenario

Figure A.23: Width 50 scenario Figure A.24: Width 25 scenario
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Figure A.25: ZigZag scenario Figure A.26: Decreasing Width scenario
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