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Abstract

Structural mechanics calculation methods can be computationally demanding and time-consuming.
An example of that is the finite-elements method (FEM), which is the most popular method for
solving such problems.

As a step to widen available approaches for solving these problems, the present work explores
a deep learning based approach for predicting bending stress fields in plan 2D structures. These
structures may be subject to different patterns and magnitudes of external out-of-plane loads, ge-
ometry and support conditions.

To that end, a dataset of finite-element structural models was firstly developed by means of
commercial software, followed by the design, train and test of the deep learning models. This
research is conducted using Convolutional Neural Networks (CNN), benefiting from its special-
ization in processing data that has a grid-like topology.

Results show that the developed DL models are able to produce good results in the vast ma-
jority of the test samples within considerably lower computation times. Nevertheless, the fact that
the models still do not perform well against some indistinguishable instances makes it unfeasible
to consider its direct utilization in practice.
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Resumo

Métodos de cálculo da mecânica estrutural podem ser computacionalmente exigentes e demor-
ados. Um exemplo disso é o método de elementos finitos (FEM), que se trata do método mais
utilizado para resolver este género de problemas.

Com vista a ampliar as abordagens disponíveis para resolver tais problemas, o presente tra-
balho explora uma abordagem baseada em deep learning para prever mapas de esforços de flexão
em estruturas planas 2D. Essas estruturas podem estar sujeitas a diferentes padrões e magnitudes
de cargas externas perpendiculares ao plano, geometria e condições de apoio.

Para o efeito, foi primeiramente desenvolvido um dataset de modelos estruturais de elementos
finitos por meio de software comercial, seguido do desenvolvimento, treino e teste dos mode-
los de deep learning. Este estudo é realizado utilizando redes neurais convolucionais (CNN),
beneficiando-se de sua especialização em processar dados que tem uma topologia em forma de
grelha.

Os resultados mostram que os modelos DL desenvolvidos produzem bons resultados na grande
maioria das instâncias de teste, com tempos de processamento consideravelmente menores que os
modelos de elementos finitos. No entanto, o facto de os modelos não apresentarem bom desem-
penho frente a alguns exemplos indistinguíveis torna inviável considerar a sua utilização directa
na prática.

Keywords: elementos finitos, engenharia de estruturas, redes neuronais convolucionais, deep
learning
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Chapter 1

Introduction

1.1 Context and Motivation

The finite element method is a popular tool for the numerical solution of partial differential equa-

tions in engineering which origin is not consensual, although most of the engineering community

assigns it to Clough [13], back in 1960 [11]. It was originally developed for solving problems

in solid-state mechanics (namely, plate bending), but it found application in all areas of compu-

tational physics and engineering since then. Simply put, the main idea behind the method is to

discretize the continuum into a mesh of simple geometric elements such as triangles or quadrilat-

erals [53].

Much like an image, the tighter the mesh, the more accurate is the approximation. This unde-

niable resemblance suggests that the success that convolutional neural networks (CNN) achieved

so far in many tasks related to image processing, have much potential to go beyond that domain.

Given this similarity, considering a rectangular panel discretized into finite elements, in com-

parison to a typical image, the “resolution” of this “image” is the number of finite elements along

both orthogonal directions. Instead of color channels, in this approach, each channel will con-

tain fundamental inputs to perform the stress calculations, and of course, the ground truth. These

inputs are mainly related to: geometry (whether an element belongs to the structure of it is in a

void region), loads (magnitude of the load applied to each element) and supports (if an element is

supported or not).

With this work it is intended to promote the approximation between structural engineering and

artificial intelligence, broaden horizons with regard to calculation methods, show the transversality

of deep learning applications and suggest its adoption in problems of high complexity.

1.2 Objectives

The main goal of this project is to design an effective Convolutional Neural Network, capable

of predicting the internal bending moments of linear elastic and non-linear shell finite element

models subject to out-of-plane loads.

1



2 Introduction

To achieve such goal, the following objectives are defined:

• Produce a dataset of 18,000 linear elastic finite element models, with different configura-

tions of geometry, loads and supports among each other, calculated with specific software.

The same models (and their input features) will also be used to solve the problem with non-

linear supports, which leads to a more complex and time consuming calculation method;

• Assess the prediction performance of the resulting finite-element stresses of state-of-the-art

architectures, using train, test and validation subsets from the previously described dataset;

• Develop and fine-tune CNN models that best suit the problem;

• Analyze the results, compare the results among different models and evaluate their feasibil-

ity for solving real structural engineering problems.

1.3 Document Structure

Besides the present introductory chapter, Chapter 2 presents a brief introduction to Deep Learning

(DL) — and more specifically Convolutional Neural Networks (CNNs) — as well as a literature

revision of AI research applied to structural engineering. Chapter 3 presents the generated dataset

and all its inherent considerations. All information regarding the experimental methodology and

results analysis is addressed in Chapters 4 and 5, respectively. Finally, conclusions and future

research directions are drawn in Chapter 6.



Chapter 2

State Of The Art & Related Work

2.1 Deep Learning

Deep learning (DL) allows computational models of multiple processing layers to learn and repre-

sent data with multiple levels of abstraction, mimicking how the brain perceives and understands

multimodal information [65]. DL is part of a family of machine learning (ML) methods based on

artificial neural networks (ANN) with the particularity that it consists of several layers in between

input and output layer, allowing for many stages of non-linear information processing units that

are exploited for feature learning and pattern classification [3]. Figure 2.1 shows a taxonomy of

Artificial Intelligence (AI), in which neural networks and deep learning are included.

One of the reasons why DL is so popular is because of its needlessness of "manual" feature

extraction. ML algorithms (such as: Decision Trees, SVM, Naïve Bayes Classifier, etc.) presup-

pose prior feature extraction on raw data, which is usually complex and requires detailed domain

knowledge. DL techniques replace this engineering step by learning the best features, in a process

called "representation learning". This difference is illustrated in Figure 2.2.

Figure 2.1: Taxonomy of AI. AI: Artificial Intelligence; ML: Machine Learning; NN: Neural
Networks; DL: Deep Learning; SNN: Spiking Neural Networks . Extracted from [3].

3
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Figure 2.2: Feature Extractions: Machine Learning vs. Deep Learning. Extracted from [49].

2.1.1 Historical Background

Deep learning dates back to the 1940s. It only appears to be new because it was relatively unpop-

ular during several years and because it has gone through many different names along time, only

recently being called "deep learning" [24].

Goodfellow et al. [24] describe a "three wave" development of deep learning. The first wave,

between 1940s and 1960s, when deep learning was called cybernetics, consisted of early neural

networks. In 1943, McCulloch and Pitts [45] tried to understand how the brain could produce

highly complex patterns by using interconnected basic cells. The authors presented the first ar-

tificial neural network architecture, which consisted of a simplified computational model of how

biological neurons might work together in animal brains to perform complex computations using

propositional logic [22]. In 1957, the perceptron was presented by Frank Rosenblatt [54]. The

perceptron is one of the simplest artificial neural network architectures, based on a slightly dif-

ferent neuron, called a Linear Threshold Unit (LTU), in which the inputs are numbers (instead

of on/off values) and each input connection is associated with a weight. An LTU can be used

for simple linear binary classification. It processes a combination of inputs, if the result exceeds

a threshold it outputs the positive class, otherwise it outputs the negative class [22]. Figure 2.3

illustrates the workflow of a perceptron.

Despite looking very promising then, the first major dip of neural networks started from the

publishing, in 1969, of a book called "Perceptrons", by Marvin Minsky and Seymour Papert [46],

in which the authors identified a number of serious weaknesses of the linear model (single Per-

ceptron), especially the fact that they are incapable of solving some trivial problems like the XOR

(Exclusive or) classification problem [22]. These limitations basically stopped all research in neu-

ral networks for 15 years and this period is referred to as an “AI Winter” [62].
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Figure 2.3: Workflow of a perceptron. Extracted from [59].

The second wave started with the connectionist approach, from 1980s to 1990s, with a con-

cept called back-propagation proposed by Rumelhart et al. [56]. Back-propagation brought a key

element missing from the Rosenblatt era, that was the ability to train a multi-layer neural network,

thus to solve non-linear problems such as the XOR problem mentioned before. At this point,

despite being able to solve many problems, deep networks were generally believed to be very

difficult to train, specially because they were too computationally expensive to allow much exper-

imentation with the hardware available at the time. This difficulty led to a second "AI Winter",

during which little research was carried out [24].

The third wave, termed Deep Learning, that started in 2006 and extends until nowadays, be-

gan with a research, from Hinton et al. [28], which concluded that the greedy layer-wise learning

procedure could be used to find a good initialization for a joint learning procedure over all the lay-

ers, and that this approach could be used to successfully train even fully connected architectures.

[24]. This discovery has put Deep Learning back onto the table, and led to the hype that we are

still experiencing nowadays. Figure 2.4 shows a timeline with the main events of Deep Learning

research.

Figure 2.4: Deep Learning Timeline. Adapted from [19].



6 State Of The Art & Related Work

2.1.2 Background Knowledge

Neural networks are composed of an input layer, hidden layers, and an output layer. The adoption

of two or more hidden layers makes it a deep network or a multilayer perceptron. The input layer

transmits the data to the output layer, passing through the hidden layers, where the computations

are performed. These computations are not visible to the user, hence the name "hidden" [1].

In a single-layer neural network, the training process is straightforward because the loss func-

tion can be computed as a direct function of the weights, which allows easy gradient computation.

With multi-layer networks, the problem is that the loss is a complex composition function of the

weights in earlier layers. The gradient of a composition function is computed using the back-

propagation algorithm [56]. Simply put, back-propagation leverages the chain rule of differential

calculus, which computes the error gradients in terms of summations of local gradient products

over the various paths from a note to the output. Wrapping up, the forward phase is required to

firstly compute the output values and the local derivatives at various nodes, while the backward

phase (back-propagation) is required to accumulate the products of these local values over all

paths from the node to the output [1].

Some additional important concepts inherent to deep neural networks are briefly presented

below.

• Weight Initialization: Successfully training a CNN using a gradient-based method without

a good initialization is nearly impossible. An important principle to keep in mind is that,

weights of the neurons among the network must be different. If they all have the same value,

neurons in the same layer will have identical gradients, leading to redundant update rules

[2].

Traditionally, weight initialization involves the use of small random numbers. However,

over the last decade, more specific heuristics have been designed to take advantage of addi-

tional information about each layer, in order to render the training process more effective,

such as the activation function to be employed and the number of inputs and outputs of the

node [8].

In 2010, Xavier Glorot and Yoshua Bengio [23], argued that for the signal to flow properly,

it is needed that the variance of the outputs of each layer is equal to the variance of its

inputs and that the gradients have equal variance before and after flowing through a layer

in the reverse direction. Despite not being possible to guarantee both principles unless the

layer has an equal number of inputs and outputs, the authors found a good compromise

that has proven to work very well in practice [22]. This weight initialization technique was

discovered to have problems when used to initialize networks that use the ReLU activation

function. To overcome such limitation, Kaiming He et al. [26] proposed a method which

would turn out to be commonly known as "He" initialization. This method is widely used

nowadays, it is even the default method for initializing ReLU layers in some deep learning

frameworks, such as PyTorch1.
1https://www.pytorch.org/
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• Loss Function: The general idea of gradient descent is to tweak parameters iteratively in

order to minimize a loss or cost function. In deep learning, typically by its minimization,

it is used to measure how close the model is to the ground truth [22]. The choice of a

suitable loss function depends heavily on the task to be solved. The most common loss

functions for regressions problems are: Mean Absolute Error (MAE), Mean Squared Error

(MSE) or Root Mean Squared Error (RMSE), whereas for classification problems the most

commonly used are: Binary Crossentropy, Categorical Crossentropy or Sparse Categorical

Crossentropy [52]. Besides these typical loss functions, custom ones may also be developed,

according to the problem particularities.

• Activation Function: An activation function, sometimes called "transfer function", defines

how the weighted sum of the input is transformed into an output from a node or nodes in

a layer of a network. The output range of the activation function may either be limited

("squashing function") or unlimited. Many activation functions are non-linear, but also

typically differentiable (the first-order derivative can be calculated for a given input value).

This fact is crucial to allow for the backpropagation of the error [7].

Usually all hidden layers of a network use the same activation function. The output layer,

depending on the range of values to predict, may use a different activation function.

The most commonly used activation function for hidden layers is the Rectified Linear Unit

(ReLU) [7]. Its popularity is mostly due to the fact that it is easy to implement and effec-

tive at overcoming the limitations of other popular activation functions such as Sigmoid and

Tanh (Hyperbolic Tangent), like the vanishing/exploding gradient problem, since it does not

saturate for positive values. ReLU, like all other activation functions, also has problems of

its own, such as the "dying ReLU" problem. This problem is related to the fact that, during

training, some neurons effectively die, meaning they stop outputting anything other than 0.

When such happens, the neuron is not likely to be restored, since the gradient of the ReLU

function is 0 when its input is negative [22]. This problem led to the development of a variant

of ReLU, called LeakyReLU, which instead of being 0 for negative inputs, the output will

be a small negative value given by the hyper-parameter α , which is the slope of the function

for negative values, hence the term "leaky". Besides LeakyRelu, other variants of ReLU

were developed to solve this problem, although sharing the same concept. For example,

Randomized Leaky ReLu (RReLU), which is similar to LeakyReLU with the difference that

α is determined randomly within a given range throughout training, and Parametric leaky

ReLU, where α is learned during the training process. More recently, a paper presented

by Djork-Arné Clevert et al. [12] proposed a new function called Exponential linear unit

(ELU), which is also part of this family, but this time employing the exponential function.

This function not only attempts to solve the vanishing gradient problem but it is also smooth

along the entire function, which helps speed up gradient descent, since it does not bounce

around 0− and 0+. Like Leaky ReLU it also has an α hyperparameter which defines the
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value for which the ELU function tends when the input is a large negative number. Com-

paring to the previous ones, it is slower to compute, but it is expected to compensate due to

its faster convergence rate [22]. Figure 2.5 shows a plot of ReLU, Leaky ReLU and ELU

activation functions.

Figure 2.5: ReLU, Leaky ReLu (with α=0.01) and ELU (with α=1.0) activation functions plots.
Adapted from [10]

Depending on the problem, the previously introduced activation functions may also be ap-

plied to the output layer, however they are not usually suitable for classification problems. In

the presence of a binary classification problem, Sigmoid (or logistic function) is a typically

used activation function [7], which will output a value between 0 and 1, that can be seen as

the probability of belonging to the given class. In multi-class problems, Softmax (which is

a generalization of the logistic function to multiple dimensions) is commonly used. Figure

2.6 shows a plot of the Sigmoid function.

Figure 2.6: Sigmoid activation function plot. Adapted from [10]

• Learning Rate: Stochastic gradient descent has an hyper-parameter called learning rate (or

step size), usually denoted by α , which sets the rate at which a neural network updates its

weights in response to a loss. If a learning rate is chosen properly, it is expected to see the

loss function decreasing at each iteration at the beginning of the training process. However,

with a constant learning rate, at a certain point close to a local minimum, the algorithm may

fluctuate near it and never exactly converge. This problem may be related to a high learning

rate. Generally it is a good practice to decay the leaning rate over time [2]. There are several
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ways of achieving this. The most common decay functions are the step decay schedule (in

which the learning decays by half after a given number of epochs) and the exponential decay

schedule (as the name suggests, the learning rate decays at an exponential rate). Examples

of these are depicted in Figure 2.7.

There are many other learning rate schedulers besides these, not necessarily descending-

only, but also cyclic, such as Cosine Annealing [43]. No scheduler can be said to be the ab-

solute best, because it depends on the problem to solve and even on other hyper-parameters.

Figure 2.7: Step decay and exponential decay learning rate schedules. Adapted from [39]

• Optimizer: The optimizer aims at minimizing the loss function. For that, Gradient De-

scent is still the most common algorithm, although adaptive methods, such as Adam [37],

Adadelta [68], Adagrad [17] and Adabound [44], are progressively gaining traction. Among

the community, Adam is considered to be the best suit for general purpose problems. [22]

• Regularization: Regularization techniques are usually applied in order to prevent the model

from overfitting. Technically, a model is said to be overfitting if it simply "memorizes" the

training set and does not learn to generalize on the test and validation sets.

The most popular regularization technique for deep neural networks is called dropout and it

was proposed by Hinton et al [29]. With this technique, at every training step, every neuron

(including the input neurons but excluding the output neurons) has a probability p of being

temporarily ignored during this training step, although it may be active during the next step

and so on. It is known that this technique slows down convergence, but it also has proven to

work well in practice [22].

2.2 Convolutional Neural Networks (CNN)

Convolutional neural networks are a particular kind of neural networks for processing data that has

a grid-like topology. Examples include time-series data, that can be seen as a 1D grid taking sam-

ples at regular time intervals, image data, that can be thought of as a 2D grid of pixels, and video
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data, that can be seen as a stack of 2D frames. The name “Convolutional Neural Networks” indi-

cate that the network employs a linear mathematical operation called “convolution” [24], which is

further described in section 2.2.2.

2.2.1 Historical Background

CNNs initially emerged from the study of the brain’s visual cortex. Hubel and Wiesel (1981 Nobel

prize laureates in Physiology or Medicine) performed a series of experiments on cats [33, 32]. The

authors concluded that many neurons in the visual cortex have a “small local receptive field” that

reacts only to visual stimuli located in a limited region of the visual field. These neurons may

overlap, and together they cover the whole visual field. It was also showed that some neurons

react only to images of horizontal lines, while others react only to lines with different orientations,

even if they have the same receptive field. Additionally, the authors concluded that some neurons

have larger receptive fields, and that those react to more complex patterns, which are the outputs

of neighboring lower-level neurons, as illustrated in Figure 2.8 [22].

Figure 2.8: Local receptive fields in the visual cortex and incremental complexity of patterns
throughout neuron layers. Extracted from [22].

These conclusions were the inspiration to the neocognitron model proposed by Fukushima

[20], later, in the 1980s. The neocognitron model includes components named “S-cells” (simple

cells) and “C-cells” (complex cells). These are not biological cells, but rather mathematical op-

erations [16]. The “S-cells” sit in the first layer of the model, and are connected to the “C-cells”

which sit on the second layer of the model. The main idea, following the conclusions drawn by

Hubel and Wiesel, is to capture the “simple-to-complex” concept and turn it into a computational

model for visual pattern recognition [16].

On its turn, inspired by the neocognitron, the first work on modern convolutional neural net-

works occurred in 1998 by Yann LeCun et al. [41]. LeNet-5 was a pioneering 7-level CNN model

that was able to recognize hand-written numbers digitized in 32x32 pixel gray-scale input images

[15]. This architecture and the following modern architectures are further described in 2.2.3.
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From the late 1990s up to 2000, various improvements in CNN learning methodology and

architecture were performed to make CNN scalable to large, heterogeneous, complex, and multi-

class problems [36]. In the early 2000’s there was some stagnation in the development of new CNN

architectures, especially because its training was not effective in converging to the global minima

of the error surface. Thus, CNNs started to be considered as a less effective feature extractor

compared to handcrafted features [36].

The revival of CNN’s began from 2006 to 2011, as significant efforts have been made to tackle

the CNN optimization problem. The use of activation functions other than Sigmoid, such as ReLU,

tanh, etc. and the use of graphical processing units (GPU) are among the most significant tweaks

that led the re-rise of the CNN research, making it a hot research topic even nowadays.

2.2.2 Background Knowledge

CNNs and DNNs share essentially the same layers, except for two characteristic layers that make

CNNs exceptional. These are the "Convolutional layer" and the "Pooling layer", that are briefly

described in this subsection.

• Convolutional Layer: As stated at the beginning of this chapter, CNNs are a type of neural

network especially designed to process data which has a grid-like topology. The convolu-

tional layer takes advantage of each pixel’s neighbourhood by computing the dot product

between each filter (or kernel) and the input at every position. Each filter, which dimen-

sions are an hyper-parameter, is learned by the network and will be suited to extract the

features that help solving the network’s task. Figure 2.9 shows a visual representation of the

convolutional operation.

Stride and padding are two hyperparameters that need to be defined when designing a convo-

lutional layer. The result of the convolution operation is a new matrix (feature map), whose

dimensions depend on these hyperparameters. When applying convolution to an input as is

(i.e. with no padding), with a kernel which dimension is greater than 1, the operation will

result in a slightly shrinked image – depending on the dimension of the kernel – because the

number of operations is smaller than the number of rows and columns. Therefore, padding

is generally used in order to prevent this phenomenon from happening, enabling the output

to have the same dimensions as the input. Stride, in its turn, specifies the distance (in pixels)

between two receptive fields. When stride is greater than 1, the output will be smaller than

the input. Figure 2.10 evidences the effect of different striding values on an input with no

padding, by highlighting the distance among the coloured boxes. Figure 2.11 shows the

difference between a non-padded input and a padded input subject to the same convolution

operation, being the latter able to preserve the same dimensions in its input and output.

Convolutional layers allow for each neuron to be connected not to every single pixel in the

input image – as a fully connected layer would – but only to its receptive field. In turn, each

neuron in the following convolutional layer is connected only to neurons within a restrained

field of the previous layer and so on, like what happens in the brain’s visual cortex. [22]
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Figure 2.9: Visual representation of the convolutional operation. Extracted from [9].

Figure 2.10: Visual representation of different striding values. Extracted from [57].

Figure 2.11: Example of the padding effect on convolution operations. Adapted from [57].

• Pooling Layer: The main goal of a pooling layer is to subsample in order to reduce dimen-

sionality. Contrary to convolution layers, what pooling layers do is just aggregating inputs,

thus having no parameters. The most common pooling types are max pooling and average

pooling, obviously named after each aggregation function – maximum and mean, respec-

tively. Like convolutional layers, pooling layers are defined by a window size, stride and
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padding. Figure 2.12 shows an example of max pooling and average pooling applied to the

same input. [22]

Figure 2.12: Example of a max and average pooling with a window size of 2x2 and stride 2.
Extracted from [18].
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2.2.3 Architectures

Fuelled by previous successful architectures and the increasing computational power, CNN archi-

tectures continued to evolve throughout the years. The evolutionary history of the most famous

CNN architectures until 2018 is shown in Figure 2.13. A brief description of the most famous

CNNs is also presented below.

Figure 2.13: Evolutionary history of deep CNNs showing architectural innovations. Extracted
from [36].

• LeNet-5 [41]: As previously stated, developed by Yann LeCun, LeNet-5 is one of the most

famous CNN architectures. LeNet is a feed-forward network, consisting of five interleaved

convolutional and pooling layers, followed by two fully connected layers. Its input has a

size of 32 x 32 and it uses the hyperbolic tangent as the activation function.
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Figure 2.14: LeNet-5 architecture. From C1 to C5 the interleaved convolutional/pooling layers,
F6 and OUTPUT are two fully connected layers. Extracted from [41].

• AlexNet [38]: Developed by Alex Krizhevsky, the AlexNet architecture won the 2012 Ima-

geNet Large Scale Visual Recognition Challenge2 (ILSVRC) by a large margin: 17% top-5

error rate, while the second best achieved only 26% [22]. This architecture is similar to

LeNet-5, but larger and deeper. The main differences are its input size of 224 x 224, that it

stacks convolutional layers directly on top of each other, the use of a larger kernel in the first

layer (11 x 11), the use of ReLU activation function for the hidden layers – improving the

convergence rate by alleviating the problem of vanishing gradient – and the use of Softmax

for the output layer.

Figure 2.15: AlexNet architecture. The delineation of responsibilities between two GPUs is ex-
plicitly shown. The GPUs communicate only at certain layers. Extracted from [38].

• VGG-16 [60]: Developed by Karen Simonyan and Andrew Zisserman, it was one of the

top performing architectures of ILSVRC 2014 together with GoogLeNet. Like AlexNet

it uses an input size of 224 x 224, but instead of larger kernels followed by pooling, it

uses multiple 3x3 kernel filters (which is the smallest size to capture the notion of left/right,

up/down, centre) one after another. By doing such, the authors not only increase the effective

receptive field throughout convolutional layers, but also make the decision function far more

2https://www.image-net.org/
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discriminative, by using multiple non-linear rectification layers. This depth is evidenced by

Figure 2.16 and Figure 2.17. Besides VGG-16 with 16 weight layers, there are other variants

of VGG, such as VGG-11 and VGG-19 with 11 and 19 weight layers respectively.

Figure 2.16: VGG-16 architecture. Extracted from [47].

Figure 2.17: VGG-16 layers description. Extracted from [67].

• GoogLeNet [61]: Introduced by Christian Szegedy et al. from Google Research, it won the

ILSVRC 2014 challenge by lowering the top-5 error rate below 7% [22]. This architecture

introduced a new concept that the authors called the “inception module”, which incorpo-

rates multi-scale convolutional transformations using split, transform and merge, allowing

GoogLeNet to use parameters more efficiently. This module encloses filters of different

sizes (1x1, 3x3, and 5x5) to capture special information at different scales. 1x1 filters work

as bottleneck layers in order to perform dimensionality reduction. The architecture of this

module is depicted in Figure 2.18. The whole architecture includes 9 inception modules.
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Figure 2.18: GoogLeNet inception module. Extracted from [61].

• ResNet [27]: The winner of ILSVRC 2015 was a network called ResNet, developed by

Kaiming He et al. [27]. The main novelty with this network was the introduction of “skip

connections” (also called “shortcut connections”). These are connections that link a certain

layer with another one some levels ahead in the chain. The goal is, when modelling a target

function h(x), by adding the input x to the output of the network, then the network will be

forced to model f (x) = h(x)− x instead of h(x). Figure 2.19 shows a diagram of a residual

block. This manoeuvre speeds up training considerably every time the target function is

close to the identity function – which is often the case [22].

Besides ResNet-50, the most typically used, several other architectures, with different num-

ber of layers, were also presented, namely 18, 34, 101 and 152 layers. The constitution of

the residual layers also varies among these architectures as depicted in Figure 2.20. ResNet-

18 and ResNet-34 encapsulates residual blocks composed of two 3x3 convolutional layers

with batch normalization and ReLU activation function, whereas the 50-layer architectures

and above are composed of residual blocks with a first 1x1 convolutional layer (which acts

as a bottleneck, like in GoogLeNet), the 3x3 convolutional layer and finally another 1x1

convolutional layer.

Figure 2.19: Residual learning block. Extracted from [27].
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Figure 2.20: Resnet architectures. Two different configurations for the residual blocks are adopted:
one for ResNet with 18 and 34 layers, another from Resnet-50 onwards. Extracted from [27].

• ResNeXt [66]: Also known as "Aggregated Residual Transform Network", ResNeXt, one

of the top performers of ILSVRC 2016 [66] is an enhanced version of the Inception net-

work. It exploits the concept of split, transform and merge in a powerful but simple way by

introducing an additional dimension, called "Cardinality", that refers to the size of the set of

transformations. Picking up from the improvements that Inception made to other previous

conventional CNNs, ResNext improves on the fact that each layer needs to be customized

separately due to the use of diverse spatial embeddings (such as the use of 3x3, 5x5, and 1x1

filter) in the transformation branch, by using residual learning to improve the convergence

of deep and wide networks [66]. Figure 2.21 depicts the ResNeXt building blocks.

Figure 2.21: Basic block diagram for the ResNeXt building blocks. Extracted from [4].

• SENet [30]: Squeeze and Excitation Network (SE-Network), winner of the ILSVRC 2017

classification challenge with a 25% improvement on the top-5 error relatively to the pre-

vious year, was reported by Hu et al. [30]. The authors proposed a new block, named

SE-block, for the selection of feature-maps (a.k.a. channels). Regular CNN architectures

presented so far weight each of its channels equally when creating the output feature maps.
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SENets change this principle by adding a content aware mechanism to weight each chan-

nel adaptively. Simply put, this could mean adding a single parameter to each channel and

giving it a linear scalar value, stating how relevant each one is [51]. Figure 2.22 depicts the

architecture of a SE-block.

Squeeze-and-Excitation is a concept that can be adopted to any other existing CNN archi-

tecture. Hu et al. [30] demonstrated, as an example, that by adding SE-blocks to ResNet-50,

the model not only outperforms the original ResNet-50, but delivers almost the same per-

formance of ResNet-101 with an increase of only 0.26% computational cost (in terms of

GFLOPs) over the original ResNet-50.

However, when a SE-block is applied in ResNet, the identity mapping does not take into

account the input of the channel-wise attention of the residual flow. This reduces the impact

of SE-block and makes ResNet information redundant. In order to alleviate this redundancy

Hu et al. [31] designed a new network called Competitive Inner-Imaging Squeeze and

Excitation for Residual Network, also known as CMPE-SE, which models the competitive

relation from both the residual and identity mapping based feature-maps. The results of

CMPE-SE-ResNet-50 were "slightly superior" of those of the SE-ResNet-50, improving the

top-1 error rate by 0.5% and the top-5 error rate by 0.27% [31].

Figure 2.22: SE-block. Extracted from [30].

2.2.4 Current Research Status and Future Directions

CNNs have been extensively applied to different ML tasks, such as: computer vision, speech

processing, natural language processing, object detection and segmentation, image classification,

video processing, among others. The main advances in CNNs can be categorized in different

ways, including activation functions, loss functions, optimization, regularization and innovations

in architecture.

Currently, one of the paradigms of research in CNN architectures is the development of new

and effective block architectures that can work as an auxiliary learner [4, 36]. Apart from the

architectures presented in the previous section, specially SENet, one example of recent research

is the Res2Net block. According to Gao et al. [21], the Res2Net block exposes a new dimension,

namely "scale", that is an essential and more effective factor in addition to existing dimensions of

depth, width, and cardinality. This block can be "plugged" into state-of-the-art methods with no
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effort, generally achieving superior results over the baseline methods. Another successful example

is GhostNet. Introduced by Han et al. [25], the Ghost module is a "plug-and-play" component that

applies a series of linear transformations with cheap computational cost in order to generate ghost

feature maps that can reveal information underlying intrinsic features.

One of main challenges that CNN research is still facing is that deep CNNs are generally like

a black box, in a sense that the results may lack interpretability and explainability.

The large number of hyper-parameters also still constitutes a challenge. Hyper-parameter

tuning is a difficult and intuition driven task which cannot be defined by explicit formulation [36].

In this respect, Genetic Algorithms have been showing promising results. Johnson et al. [35]

proposed a novel crossover operator that considers the nature of the underlying structures, as well

as a way to explore different possible depths in an automated manner. Another challenge is the

fact that deep CNNs are essentially supervised learning algorithms, thus the availability of large

sets of annotated data are generally required for a successful generalization, unlike humans, that

can learn and generalize from a few examples. In fact, regarding this specific challenge, LeCun

et al. [40] states that it is expected that the future progress in computer vision will come from

systems that are trained combining CNNs with RNNs that use reinforcement learning to decide

where to look.

Regarding future directions, Alzubaidi et al. [4] and Khan et al. [36] agree that those are

likely to include deeper research in ensemble learning (through the combination of multiple and

diverse architectures, improving generalization and robustness on diverse categories), the atten-

tion mechanism — of undeniable potential due to its resemblance to the human visual system —

in a way that preserves spatial relevance of objects, and improvements in both hardware technol-

ogy and pipeline parallelism that can amend training times and power consumption that we are

experiencing nowadays.
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2.3 Related Work

Structural engineering is not one of the most active areas in nowadays’ Machine Learning research.

In fact, according to McKinsey, the adoption of AI solutions is quite low in engineering and

construction (E&C), particularly compared with other industries, as shown in Figure 2.23 [5].

Figure 2.23: Future AI demand trajectories. Adapted from [5].

Despite not being one of the most active areas of research, Structural Engineering research

is not totally insensible to the recent advances in machine learning algorithms and computational

power. According to Thai [63], a bibliometric survey on Scopus3 indexed papers collected from

well recognised academic databases has identified over 485 relevant publications since 1989, most

of which published in the last five years. Figure 2.24 shows the yearly evolution of publications

related to machine learning (ML) applications in structural engineering, where an exponential

growth in the number of publications from 2018 onward is evident, especially on those using

Neural Networks (NN) methods.

3https://www.scopus.com/
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Figure 2.24: Yearly distribution of articles related to ML applications in structural engineering:
(a) all algorithms and (b) three mostly used algorithms. Extracted from [63].

Neural Networks is by far the most widely used method for structural engineering. In fact,

the ten most cited publications of this sample use Neural Networks. Within Neural Networks

(NN) methods, Artificial Neural Networks is dominant (84%), followed by Convolutional Neural

Networks (CNN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Radial Basis Function

Neural Networks (RBFNN). The breakdown percentage of different ML methods used in structural

engineering is depicted in Figure 2.25. Among these are: Boosting Algorithms (BA), Decision

Trees (DT), Neural Networks (NN), Regression Analysis (RA), Random Forests (RF), Support

Vector Machines (SVM) and other (mostly composed of Naive-Bayes and k-Nearest Neighbours)

[63].

Figure 2.25: Breakdown of ML methods used in structural engineering domain. Edited from [63].

Regarding applications of this research publications, they may be split into five major groups,

namely: predictions applied to structural members, prediction of fire resistance of structures, struc-

tural health monitoring (SHM) and damage detection, structural analysis and design and prediction

of mechanical properties of the material (mostly related to concrete material) [63]. The pie chart

in Figure 2.26 shows the distribution of the publications into these groups.
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Figure 2.26: Breakdown of ML applications in structural engineering domain. Extracted from
[63].

The present work fits in the "Analysis & Design" application. It corresponds not to already

built structures, nor to experimental simulations’ data, but to the study of "physics-based" or

"mechanics-based" models and respective structural responses against a set of input variables,

such as: structural properties, loading characteristics, etc. These are usually studied in order to

optimize performance by reducing the number of computationally intensive simulations and topol-

ogy optimization — i.e. structural layout optimization within a given design space.

An example of research within this category with considerable resemblance to this work was

developed by Nie et al. [48]. In this paper, the authors present two architectures for predicting

finite-element stress fields in cantilevered structures. Two different CNN architectures are pre-

sented, one of which considering all the input variables in one single channel (SCSNet), and the

second one (StressNet) considering each variable in a different channel, using SE residual blocks

(see "SENet" in 2.2.3). SCSNet and StressNet architectures are depicted in Figures 2.27 and 2.28,

respectively.

A different approach to this problem was recently proposed by the same authors [34], using a

GAN (Generative Adversarial Network) and comparing it to the previous approach. The authors

state that StressGAN generally achieves higher accuracy compared to StressNet, despite Stress-

Net being better in some particular aspects, such as estimating zero stresses in void areas. The

architecture of StressGAN is shown in Figure 2.29.
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Figure 2.27: SCSNet architecture. Extracted from [48].

Figure 2.28: StressNet architecture. Extracted from [48].

Figure 2.29: StressGAN architecture. The numbers indicate channel dimensions of the output of
each block. The purple triangle means a reshape layer followed by a linear layer and a Sigmoid
activation. Extracted from [34].
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One of the differences of the structural problem portrayed by Nie et al. [48] compared to the

present work is that it considers in-plane loads, while in this work, out-of-plane loads are consid-

ered. In practical terms this means that in this work it is intended to predict bending stresses, which

gradient among neighbouring finite elements is expected to be much larger. Other fundamental

difference is that cantilevered structures are isostatic (statically determinate) by definition, while

in this work it is intended to predict stresses for hyperstatic (statically indeterminate) structures -

i.e. structures with support redundancy, in which the resultant stress for a given finite element may

not only be influenced by the closest supports, but from all the supports of the structure, depending

(in simple terms) on how close they are.

Another successful example of finite-element results prediction through a deep learning ap-

proach was presented by Liang et al. [42], this time applied not to structural engineering per se,

but to biomechanics. Liang et al. [42] developed a DL model to directly estimate stress distribu-

tions, given the geometry and material properties, of the human thoracic aorta within 1 second,

while the finite-element model takes about 30 minutes on the same computer. The proposed net-

work consists of three modules: shape encoding, non-linear mapping and stress decoding, as

depicted in Figure 2.30.

This work presented by Liang et al. [42], despite its remarkable accuracy, does not account

for the effect of different loading patterns and support conditions, due to inherent specifications of

this biomedical problem. In the present work it is intended not only to learn how to generalize the

effects of different load magnitudes, but also to different load patterns and support conditions.

Figure 2.30: Overall data flow of the deep learning model, which takes an aorta shape as the input
and outputs the wall stress distribution. Extracted from [42].
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Chapter 3

Dataset

This chapter is dedicated to the description of the synthetization process of the dataset. It starts

by briefly introducing the Finite Element Method (FEM) theory in Section 3.1, followed by a

description of the dataset generation itself through commercial software in Section 3.2, and finally,

data augmentation in Section 3.3.

3.1 Finite Element Analysis

As previously mentioned in Chapter 1 the origin of the Finite Element Method (FEM) is not

consensual. As a method of piecewise polynomial approximation, to most mathematicians the

FEM dates back to 1943, when Courant [14] discussed a piecewise linear approximation of a

problem over a network of triangles. On its turn, the approximation of variational problems on

a mesh of triangles goes back much further. In 1851, Schellbach [58] proposed a finite-element-

like solution to Plateau’s problem of determining the surface S of minimum area enclosed by a

given curve. On the other hand, to a large segment of the engineering community, the work that

represents the beginning of finite elements was presented by Turner et al. [64], which presents an

attempt at both local approximation and the use of assembly strategies, essential to finite element

methodology. Continuous improvements over the next few years and the realisation that these

methods could be used to solve difficult engineering problems led to a rise in popularity of this

method, which is still widely used nowadays [11].

Simply put, typical linear finite element analysis for stress calculations is expressed by [34]:

KQ = F (3.1)

Where:

K – global stiffness matrix;

F – vector of the applied load at each node;

Q – nodal displacements.
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The elemental stiffness ke for each element that composes the stiffness matrix K is given as

follows [34]:

ke = AeBT DB (3.2)

Where:

B – strain/displacement matrix;

D – stress/strain matrix;

Ae – area of the element.

B and D depend on material properties and mesh geometry. Nowadays, several direct factor-

ization based or iterative solvers exist for computing the value of Q [34].

Linear finite element calculations (presented in the previous paragraphs) are much simpler than

those non-linear. The set of possible non-linearities to be considered in structural finite element

analysis is divided into two groups: geometric non-linearities and material non-linearities. A

geometrically non-linear model differs from a linear model in two base assumptions, that is the

fact that structural deformation has impact on the behaviour of the structure, and that there may be

stability failure. On the other hand, a materially non-linear model differs from a linear model in a

sense that the strain is not a linear function of the material stress. Regardless of being geometric or

material, non-linearities make a finite element model iterative, computationally more demanding,

thus more time consuming [69]. Because of being more demanding, non-linear models are mostly

used to analyse very specific structures or self-contained phenomena in specific structural parts.

3.2 Dataset Generation

3.2.1 Dataset Design and Considerations

For the purpose of this study, two datasets were developed from the ground up. These datasets

contain information regarding several configurations of 2D finite element model calculations, sub-

ject to out-of-plane loads, designed and calculated by means of the commercial software Autodesk

Robot Structural Analysis1. The communication, for information extraction, with this commer-

cial software was performed using Visual Basic 6.0 (VB6) 2 scripts specifically developed for this

purpose.

The two datasets are essentially equal in terms of input data, differing in a particular calculation

assumption that leads to a non-linear calculation method. This calculation assumption is further

described in the next section. Once these datasets differ in the calculation method, from this point

on they are referred to as "Linear dataset" and "Non-Linear dataset".

These datasets represent a 60x60 frame, in which the information of each 2D panel finite el-

ements model is enclosed. Each instance is composed of three features (geometry, supports and

1https://www.autodesk.com/products/robot-structural-analysis/overview
2https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-basic-6/visual-basic-6.0-documentation
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loads) and the ground truth (bending moments). Those four "information channels" are repre-

sented by squary 60x60 matrices, matching the maximum dimensions (in finite elements) of each

panel. Both geometry and supports are binary variables. "Geometry" states if a finite element at

a specific location exists of not, that is, if a certain "cell" of the panel is solid or void, whereas

"supports" indicated whether a certain finite element is supported or not. The "Loads" feature has

a different range, unbounded for positive values, where its value specifies the amplitude of the

vertical load in kiloNewton, at which obviously 0 means not loaded.

Bending moments, on its turn, have some particularities when compared to the previously

mentioned features. A proper representation of bending stresses on a bi-dimensional structure,

which is the case, takes not only one, but two maps along two orthogonal directions, usually

named as X and Y. The ability of predicting maps along both directions is within the scope of

this work. One option to achieve such goal would be to predict both maps independently, using

the same network, but having an output of two channels instead of one. Once they share the

same theoretical background and some geometrical interdependence, this problem was tackled

by developing additional data instances from the original ones, geometrically transformed, so that

bending moments along Y direction in the original instances correspond to bending moments along

X in the new instances. By sticking to the prediction of a single output channel, this operation is

believed to lead to a more effective training of the network, and it is further described in Section

3.3. Unlike the previous features, the range of bending moments’ data is unbounded in both

positive and negative values, meaning that each map will have its own maximum and minimum

value.

Figure 3.1 shows the correspondence between the actual structural model of a sample instance

in the calculation software, and the construction of these features. The rightmost column shows

a 3D perspective of the model, highlighting the mesh geometric contour, supports (blue triangles)

and the loads (pink arrows), followed by the map of bending stresses along X direction. The

leftmost column shows the correspondent features extracted from the model.

It is also worth noting that besides the three features (geometry, supports and loads), there

are many other variables that can be considered in a finite element model, mainly: structural

material, thickness of the panel, finite element size and lateral loads. In this case, for simplification,

these were considered constant. The structural material was considered equivalent to C30/37

concrete (EN19923), each panel with a thickness of 30 centimetres, discretized by quadrilateral

finite elements with 50 centimetres of border dimension, subject to no lateral loading.

Regarding the composition of the dataset itself, a total of 18 000 instances were crafted. This

amount is the result of a combination of 15 geometric configurations with different external con-

tours and inner voids, 40 different load cases and 30 different support configurations assigned to

each of the previously mentioned geometries. Figure 3.2 shows a combined plot of each of the

base geometric configurations.

Since this dataset is fully synthesized, no additional data preparation processes were conducted

prior to the feeding of the DL regression models.

3Eurocode 2: Design of concrete structures
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Figure 3.1: Correspondence between a sample calculation model and the feature maps
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Figure 3.2: Different geometric configurations of the dataset
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3.2.2 Linear vs. Non-Linear Calculations

As previously mentioned in Section 3.1, many types of non-linearities can be considered when

developing a structural model, even more than one type of non-linerity is adopted in some cases.

Each non-linearity increases the computational demand of a model. Most commercial software

allow for certain geometric non-linearities, but very few can operate with material non-linearity.

For the purpose of this work, a geometric non-linearity related to the uplifting of the supports

was considered. In a general case of a static structure calculated assuming geometric linearity,

a support works both ways for a given direction – in the case of the "Z" direction, its reaction

can be either upwards or downwards, depending on the load configuration. On the other hand,

considering the mentioned non-linearity, a support can either stay in place and have a reaction

force upwards, if the applied load demands so, or will uplift if otherwise. In the presence of an

hyperstatic structure, these different approaches (linear or non-linear) lead to different stresses and

deformations.

For a clearer understanding of this phenomena, Figures 3.3 and 3.4 show two simple exam-

ples of a single bar structure, calculated with linear and non-linear approaches, respectively. By

comparing these figures, one can easily spot the differences in the results of the models. In the

non-linear case, despite maintaining static equilibrium, the rightmost support uplifts, causing a

different behaviour of the structure, and consequently different internal forces.

(a) Model geometry and load

(b) Qualitative deformation

(c) Bending moment [kN.m]

Figure 3.3: Sample linear model and calculation results
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(a) Model geometry and load

(b) Qualitative deformation

(c) Bending moment [kN.m]

Figure 3.4: Sample non-linear model and calculation results

3.3 Data Augmentation

As previously mentioned in section 3.1, the original dataset was augmented as an attempt to train

models more effectively.

Despite the resemblance of this problem to the generation of general images, in this case

data augmentation cannot be performed by means of several traditional computer vision trans-

formations, such as: application of filters, application of patches, isolating parts of the image,

combining parts of different images or rotating in angles other than orthogonal. Since the dataset

comprehends features of a calculation model and the results of the calculation of those, this data

only makes sense as a whole, once the application of any of the before-mentioned transformations

would corrupt the mathematical link between features and results.

As also described previously, in section 3.2.1, the representation of bending stresses involves

two result maps along two orthogonal directions, generally taken as X and Y. Instead of designing

the regression models to predict for these two channels, this problem was tackled by sticking to

the prediction of a single output channel (along X direction) and stacking additional transformed

data, based on the following principle of interchangeability: the bending moment map along X

direction for certain model, corresponds to the bending moment map along Y direction for the

same model rotated by 90 degrees. The same principle applies to the bending moments along Y

of the original model, which rotated by 90 degrees corresponds to the bending moments along X

in the newly generated model. This fact makes the regression model versatile for predicting the
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bending moments along X and Y, as long as the input features are oriented in the correct direction.

This correspondence is evidenced by Figure 3.5, where the bending moment map along X of the

original model (top-left) corresponds to the bending moment map along Y of the rotated model

(bottom-right), and likewise, the moment map along Y of the original model corresponds to the

map along X of the rotated model.

(a) Original model - bending moments along X (LHS) and Y (RHS)

(b) 90-degrees rotated model - bending moments along X (LHS) and Y (RHS)

Figure 3.5: Correspondence of X and Y bending moments between a model and itself rotated by
90 degrees

In summary, the application of the previous operation results in a new dataset, with the same

size as the initial. The concatenation of these two subsets results in a dataset of 36 000 instances,

object of further augmentation. This new dataset was then rotated by 180 degrees and flipped over

both vertical and horizontal axes, resulting in a total of 136 886 instances, excluding repeated

cases. Figure 3.6 depicts an example of application of these three operations in the geometry

feature of a sample instance, by showing the original instance on the left-hand side, and the trans-

formed instance on the right-hand side.
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(a) 180 degree rotation

(b) Flipping along vertical axis

(c) Flipping along horizontal axis

Figure 3.6: Additional data augmentation operations
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Chapter 4

Experimental Methodology

The present chapter intends to describe the experimental methodology applied in this work. This

methodology comprehends the use of two deep learning CNN models. One of these, Model A,

derives from a model proposed by Nie et al. [48] for predicting linear FEM stresses of isostatic

structures. The second model, Model B, is an improvement attempt over Model A, more complex,

hence with more parameters, and some fundamental changes. This exposition starts with a brief

explanation of the data split for training, testing and validation, in section 4.1, followed by the

presentation of the deep learning models themselves, with particular focus on their architecture and

hyperparameters in section 4.2, and finally, the metrics adopted for the evaluation of the models,

in section 4.3.

4.1 Train-Test-Validation Data Split

As previously stated, both datasets (calculated using linear and non-linear approaches) are the

same size, totalling 136 886 instances after augmentation. In the case of the Linear dataset, all

these instances are qualified to participate in the deep learning process through the regression

model, but the same does not happen with the case of the Non-Linear dataset. The introduction of

the non-linearity that makes the calculation models more complex – by adding the possibility of

uplifting supports – made some instances statically inadmissible and therefore non-solvable. This

fact leads to a slightly shorter Non-Linear dataset when compared to the Linear case. Since this

work also has the objective of comparing the performance of the same model trained with Linear

and Non-Linear datasets, once the latter is slightly shorter, it was taken as a baseline for splitting

for training, testing and validation at fixed percentages, being the remainder of the Linear dataset

added to the testing subset. Tables 4.1 and 4.2 summarise the breakdown setup of the Linear and

Non-Linear datasets, respectively.
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Table 4.1: Data split setup – Linear Dataset

Instances Percentage

Train 85 620 62.55%

Test 30 734 22.45%

Validation 20 532 15.00%

Total 136 886 100.00%

Table 4.2: Data split setup – Non-Linear Dataset

Instances Percentage

Train 85 620 70.00%

Test 18 348 15.00%

Validation 18 347 15.00%

Total 122 315 100.00%

4.2 Deep Learning Models

As previously mentioned, two deep learning regression models (Model A and Model B) were

developed in this work. These models were built up using the PyTorch framework, and both

were trained using a Nvidia Tesla P100 16GB GPU provided by Google Colab1 platform. Further

considerations regarding these models are outlined below.

4.2.1 Model A

Model A is an encode-decoder CNN model, adapted from the StressNet approach proposed by

Nie et al. [48], previously presented in Section 2.3, for the prediction of linear FEM stresses of

isostatic structures subject to in-plane loads, where it has shown to produce good results.

The model proposed by Nie et al. [48] cannot simply be used "as is" in the present work due

to the fact that it needs to be able to output both negative and positive values, not just positive.

The output layer of StressNet is a convolutional layer that takes 32 channels as input and out-

puts one channel (result) with a ReLU activation function. As stated in Section 2.2.2, the ReLU

activation function outputs a value of 0 for every input lower than or equal to 0. This peculiar

characteristic prevents the output from having negative values, which is incompatible with the

dataset in analysis. To overcome this limitation while keeping the same number of activations, the

previously mentioned layer was kept with the ReLU activation function but with an output size of

32 channels (same as input). After that, as the output layer, an additional convolutional layer was

adopted, with a kernel size of 1x1 and no activation function, with the sole objective of performing

dimensionality reduction from 32 channels to one single channel, i.e. the result.

1https://colab.research.google.com/
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Figure 4.1 outlines the whole architecture of the model, thoroughly described in Table 4.3. The

encoder stage is composed of 3 convolutional layers, with batch normalization (BN) and ReLU

activation function, progressively decreasing the size of the input (downsampling) and increasing

the number of channels (Layers 1 to 3). The decoder stage does the exact opposite, by increasing

the input dimension up to its initial size while decreasing the number of channels (Layers 9 to 11),

followed by the additional dimensionality reduction convolution introduced in the last paragraph

(Layer 12). Amid these stages sits a stack of 5 Residual Squeeze & Excitation blocks. A residual

block, in its essence, is used to mimic identical layers in order to fight the vanishing gradient

problem [48]. This block is composed of two consecutive convolutional layers with a kernel size

of 3x3, batch normalization, and ReLU activation function, followed by a Squeeze & Excitation

block (hence the name) and a shortcut connection. Figure 4.2 depicts the architecture of this block.

The Squeeze & Excitation block, as already presented in Section 2.2.3, is meant to improve the

representational capacity of the network by adding a mechanism to weight each channel depending

on how relevant each one is. Following the scheme shown in Figure 4.3, the input data u ∈ RHxWxC

is squeezed into S(u) through the global average-pooling layer. The output of this operation is then

subject to two consecutive fully connected layers, downsampling (FC+ ReLU) and upsampling

(FC+ Sigmoid) back to the dimension of S(u). E(u) is obtained by reshaping the output into a

tensor in order to finally multiply with the input u, obtaining v with the same dimensions as the

input u.

Figure 4.1: Architecture of Model A
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Figure 4.2: Architecture of a Residual SE Block. Adapted from [48].

Figure 4.3: Architecture of a Squeeze and Excitation (SE) block Adapted from [48].
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Table 4.3: Model A – Layer Setup

Layer Type Activation Stride Pad Filter Output Shape Parameters
no. function size size [Chan., L, C]

1 Conv. + BN ReLu 1 4 9x9 [32, 60, 60] 7 872

2 Conv. + BN ReLu 2 1 3x3 [64, 30, 30] 18 624

3 Conv. + BN ReLu 2 1 3x3 [128, 15, 15] 74 112

4 Residual SE

Block

n.a. n.a. n.a. n.a. [128, 15, 15] 299 920

5 Residual SE

Block

n.a. n.a. n.a. n.a. [128, 15, 15] 299 920

6 Residual SE

Block

n.a. n.a. n.a. n.a. [128, 15, 15] 299 920

7 Residual SE

Block

n.a. n.a. n.a. n.a. [128, 15, 15] 299 920

8 Residual SE

Block

n.a. n.a. n.a. n.a. [128, 15, 15] 299 920

9 Transposed

Conv. + BN

ReLu 2 1 3x3 [64, 30, 30] 73 920

10 Transposed

Conv. + BN

ReLu 2 1 3x3 [32, 60, 60] 18 528

11 Conv. + BN ReLu 1 4 9x9 [32, 60, 60] 83 040

12 Conv. None 1 0 1x1 [1, 60, 60] 33

Total number of parameters: 1 775 729

Model A was trained along 3500 epochs, with a batch size of 256 instances, using Adam

optimizer, a learning rate of 0.02 with exponential decay, and Mean Squared Error (MSE) as its

function.

The adopted stopping criteria for the training process was the lack of significant evolution

not only in the loss of the validation set, but also along other parallel performance metrics, that

were kept track of, namely: Mean Absolute Error (MAE) and median Weighted Mean Absolute

Percentage Error (WMAPE) – detailed in section 4.3. These metrics were monitored at the end of

every epoch.

The GPU model used for the training process can handle a batch size up to 1048 instances. The

use of such a large batch size results in faster processing times per epoch, but the whole process

takes far more epochs to converge than with a smaller batch size. Having this in mind, a batch size

of 256 was found to be a good compromise between the processing time taken for each epoch and

the number of epochs to achieve the so-called convergence. With this batch size, each epoch takes

nearly 68 seconds to compute, resulting in a total training time of nearly 66 hours for each dataset

(Linear and Non-Linear).
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Mean Squared Error is one of the typical loss functions used for regression problems [52].

After some trials with other absolute and relative loss functions, such as Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE), Huber Loss, and median Weighted Mean Absolute

Percentage Error (WMAPE), MSE has proven to be the most suitable for this problem by being

able to achieve lower validation error among the considered metrics.

4.2.2 Model B

Model B is a tentative upgrade of Model A. Following the same encoder-decoder type of archi-

tecture, one of the differences between this model and Model A is the robustness of both encoder

and decoder stages. Despite keeping only two downsampling steps in the encoder stage, two

additional convolutional layers activated by non-linear functions were placed before each down-

sampling layer (convolutional layer with stride 2). The same happens in the decoder stage. Apart

from that, all the ReLU activation functions in the main layers were replaced by Exponential Lin-

ear Units (ELU), all the Squeeze & Excitation (SE) Residual blocks between the encoding and

decoding stages were replaced by Residual Concurrent Spatial and Channel Squeeze & Excitation

Blocks (SCSE) blocks, and an additional operation was added in the output layer, which is the

element wise multiplication of the output of the decoding stage with the "Geometry" channel of

the input features, generating the new output layer.

The objective of adding two additional convolutional layers before each downsampling layer

is to provide the model with more non-linearity, improving its potential for generalization. By

replacing the SE Residual Blocks with SCSE Residual Blocks the idea is to extend the recalibra-

tion not only along channels, but also along space providing spatial attention to focus on certain

regions of the channels [55]. This block has half of its architecture in common with the previously

presented SE Block, apart from the Spatial Squeeze & Excitation (SSE), which occurs parallelly

to Channel Squeeze & Excitation (CSE, previously designated simply as SE). Both CSE and SSE

outputs are summed at the end, producing the final output. The architecture of this block is de-

picted in Figure 4.5. The replacement of the ReLU activation functions of the convolutional layers

leads to a faster convergence of the model (in terms of number of epochs) with the plus of ditching

the "dying ReLU" problem (Section 2.1.1), even though it is slower to compute than ReLU. The

additional element-wise operation placed at the output stage of the network intends to take advan-

tage of some prior logic knowledge about FEM models. This knowledge is simply the fact that it

is known beforehand that the output results (i.e. bending moments) must be null in void regions of

the model. In other words, the result must be null at every node where the "Geometry" feature has

the value of 0. Once this binary feature only assumes the values 0 and 1, a simple element-wise

multiplication with the output will zero eventual residual values in the void regions and keep the

result "as is" in every node representing actual material. The whole architecture of Model B as

well as the detailed layer setup are shown in Figure 4.4 and Table 4.4, respectively.
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Figure 4.4: Architecture of Model B

Figure 4.5: Concurrent Spatial and Channel Squeeze & Excitation (SCSE) Block
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Table 4.4: Model B – Layer Setup

Layer Type Activation Stride Pad Filter Output Shape Parameters
no. function size size [Chan., L, C]

1 Conv. + BN ELU 1 4 9x9 [32, 60, 60] 7 872

2 Conv. + BN ELU 1 4 9x9 [32, 60, 60] 83 040

3 Conv. + BN ELU 2 4 9x9 [64, 30, 30] 83 040

4 Conv. + BN ELU 1 2 5x5 [64, 30, 30] 51 392

5 Conv. + BN ELU 1 2 5x5 [64, 30, 30] 102 592

6 Conv. + BN ELU 2 2 5x5 [128, 15, 15] 102 592

7 Conv. + BN ELU 1 1 3x3 [128, 15, 15] 74 112

8 Conv. + BN ELU 1 1 3x3 [128, 15, 15] 147 840

9 Residual

SCSE Block

n.a. n.a. n.a. n.a. [128, 15, 15] 300 049

10 Residual

SCSE Block

n.a. n.a. n.a. n.a. [128, 15, 15] 300 049

11 Residual

SCSE Block

n.a. n.a. n.a. n.a. [128, 15, 15] 300 049

12 Residual

SCSE Block

n.a. n.a. n.a. n.a. [128, 15, 15] 300 049

13 Residual

SCSE Block

n.a. n.a. n.a. n.a. [128, 15, 15] 300 049

14 Conv. + BN ELU 1 1 3x3 [128, 15, 15] 147 840

15 Conv. + BN ELU 1 1 3x3 [128, 15, 15] 147 840

16 Transposed

Conv. + BN

ELU 2 1 3x3 [64, 30, 30] 73 920

17 Conv. + BN ELU 1 1 3x3 [64, 30, 30] 37 056

18 Conv. + BN ELU 1 1 3x3 [64, 30, 30] 37 056

19 Transposed

Conv. + BN

ELU 2 1 3x3 [32, 60, 60] 18 528

20 Conv. + BN ELU 1 1 3x3 [32, 60, 60] 9 312

21 Conv. + BN ELU 1 1 3x3 [32, 60, 60] 9 312

22 Conv. None 1 0 1x1 [1, 60, 60] 33

23 Element-wise

multiplication

n.a. n.a. n.a. n.a. [1, 60, 60] 0

Total number of parameters: 2 633 62

Model B was trained along 2500 epochs. Similarly, and for the same reasons as Model A, this

model was trained with a batch size of 256 instances, using Adam optimizer, a learning rate of

0.02 with exponential decay and Mean Squared Error (MSE) loss function. Each epoch takes 114
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seconds to compute, leading to a total training time of about 79 hours for each dataset.

4.3 Evaluation Metrics

The results of the regression models were evaluated by means of five absolute error metrics (Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Peak

Absolute Error (PAE)) and two relative error metrics, i. e. Weighted Mean Absolute Percentage

Error (WMAPE) and Percentage Peak Absolute Error (PPAE). Their definitions are presented

herein.

4.3.1 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) measures the average magnitude of the errors in a regression. Re-

gardless of the direction of the errors, it always ranges from 0 to ∞, where 0 means a perfect

approximation. MAE can be estimated using (4.1):

MAE =
1
N

N

∑
i
|yi − ŷi| (4.1)

Where:

N – number of samples;

ŷ – prediction value;

y – target value.

4.3.2 Mean Squared Error (MSE)

Mean Squared Error (MSE) represents the average magnitude of the squared errors. Compared to

MAE, MSE has the characteristic of heavily weighting outlier values. As a result of using squared

values, MSE units are not the same as the actual observed values, hence not directly comparable.

Its calculation is given by the following expression (4.2):

MSE =
1
N

N

∑
i
(yi − ŷi)

2 (4.2)

Where:

N – number of samples;

ŷ – prediction value;

y – target value.

4.3.3 Root Mean Squared Error (RMSE)

Simply put, Root Mean Squared Error (RMSE) is the root value of MSE. This metric has the ad-

vantage of combining both larger penalization of outliers and having the same unit as the observed

values, making it directly comparable. Its expression is given as follows (4.3):



46 Experimental Methodology

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)
2 =

√
MSE (4.3)

Where:

N – number of samples;

ŷ – prediction value;

y – target value.

4.3.4 Peak Absolute Error (PAE)

Peak Absolute Error (PAE) estimates the local absolute error at the finite-element where the high-

est stress is observed. This value is of critical importance in engineering applications. Its location

is firstly determined on the ground truth side, then compared to the prediction value at the same

position, in order to account for its magnitude but also for its position in the array. Its calculation

is given by the following expression (4.4):

PAE = |maxyi − ŷi[arg max yi]| (4.4)

Where:

ŷ – prediction value;

y – target value.

This metric was used discriminately for positive and negative values of the results. Therefore,

this metric will be referred to as PAE+ or PAE- depending on whether positive or negative values

are at stake.

4.3.5 Weighted Mean Absolute Percentage Error (WMAPE)

Weighted Mean Absolute Percentage Error (WMAPE) is a relative metric that gives more impor-

tance to errors of observations with a high realized value. Furthermore, WMAPE ranges from 0

to ∞ and equally penalizes over-estimating and under-estimating [50]. Its calculation is given by

dividing the sum of errors by the sum of target values (4.5).

The name assigned to this metric is not consensual among the literature. Some references refer

to this metric as Weighted Absolute Percentage Error (WAPE).

WMAPE =
∑

N
i=1 |yi − ŷi|
∑

N
i=1 |yi|

(4.5)

Where:

N – number of samples;

ŷ – prediction value;

y – target value.
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4.3.6 Percentage Peak Absolute Error (PPAE)

Percentage Peak Absolute Error (PPAE) is conceptually similar to Peak Absolute Error (PAE) in

the sense that it measures the local error at the highest stress point of each instance. The difference,

compared to PAE, is that instead of this estimating the absolute error, it is expressed in relative

terms. Its calculation is given by the following expression (4.6):

PPAE =
|maxyi − ŷi[arg max yi]|

|maxyi|
=

PAE
|maxyi|

(4.6)

Where:

ŷ – prediction value;

y – target value.

Similarly to PAE, this metric was unfolded into PPAE+ and PPAE- depending on whether

positive or negative values, respectively, are object of evaluation.

4.4 Success Criteria

From the metrics presented in the previous section, in order to assess the performance of the

models, a success criteria was established based on structural engineering practice. It is obvious

that, like with every other kind of practise, the lower error, the better, but in this case it was

settled that for conceptual/early stages of structural design, each predicted instance is considered

a successful approximation if at least one of the two criteria are met:

• PPAE−≤ 1%, PPAE+≤ 1% and WMAPE ≤ 1%;

• PAE+≤ 5.0, PAE−≤ 5.0 and MAE ≤ 1.0.

For being of harder interpretation and inherently correlated with each other, MSE and RMSE

were disregarded in this criteria. These metrics differ from MAE in the sense that they are more

penalized by outliers. Since WMAPE is itself weighted by the magnitude of each value and that

both PAE+ and PAE- assess the errors at potential outliers (maximum and minimum value), the

variability of errors among each instance is assumed to be covered.
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Chapter 5

Results and Discussion

The present chapter is dedicated to the presentation and discussion of the results obtained using

the models presented in Chapter 4. Firstly, a brief overview of the training process of both models

is outlined in section 5.1, followed by the results and error metrics obtained by the application of

the trained models against the test datasets (section 5.2). Finally, section 5.3 intends to present

some interpretation and comments to these results.

5.1 Models Training

This section is organized in two sub-sections corresponding to the two models object of study

(Model A and Model B). Each section comprises the training process of the corresponding model

under both datasets.

5.1.1 Model A

Figures 5.1, 5.2 and 5.3 plot the evolution, at logarithmic scale, of MSE, MAE and median

WMAPE, respectively, throughout the training process of Model A for both datasets. It is notewor-

thy to mention that, despite the equal sizes of both datasets, training the model on the Non-Linear

dataset leads to higher errors along all metrics, compared to training on the Linear dataset. This

fact complies with the increased mathematical complexity of the Non-Linear calculation models

when compared to the linear calculation models. It is also worth noting that from epoch 250 on-

wards, the MSE of the validation set starts to drift apart from the training set. Despite the increase

of this gap along further epochs, the error on the validation set continues to improve along all

metrics, however constantly slowing down the rate. Since an actual increase of the error on the

validation set is never observed, it cannot be said that the model experiences overfitting.

49
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Figure 5.1: Loss function (MSE) evolution along the training process of Model A

Figure 5.2: MAE evolution along the training process of Model A
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Figure 5.3: Median WMAPE evolution along the training process of Model A

5.1.2 Model B

Figures 5.4, 5.5 and 5.6 show the evolution of MSE, MAE and median WMAPE, respectively,

along the training process of Model B. Compared to Model A, lower errors along either metrics

are observable, as well as a narrower gap between the train and validation results for all metrics,

which is desirable. Similarly to the training process of Model A, when training on the Non-Linear

dataset, the validation errors are higher among all metrics.

Figure 5.7 shows the prediction results of a sample instance of the test set using the weights

of intermediate checkpoint models (Epoch no. 10 and Epoch no. 100) and the final weights of

the model (Epoch no. 2500) versus the ground truth, i.e. the bending moments obtained by the

mathematical finite-element model. The differences are visually noticeable, especially between

the first two checkpoints (Epoch no.10 and Epoch no.100), where considerable changes have taken

place within a small range of epochs. From Epoch no.100 to Epoch no.2500, differences are still

noticeable, although at a finer level.
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Figure 5.4: Evolution of the prediction of a testing sample along the training process of Model B

Figure 5.5: Evolution of the prediction of a testing sample along the training process of Model B
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Figure 5.6: Evolution of the prediction of a testing sample along the training process of Model B

Figure 5.7: Evolution of the prediction of a testing sample along the training process

5.2 Models Testing

Identically to the previous section, this section is organized in two sub-sections, corresponding

to Models A and B, respectively. Histograms of all considered error metrics as well as summary

statistics and some regression plots of test samples are presented herein.
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5.2.1 Model A

5.2.1.1 Error Metrics

Regarding the results obtained by Model A, Figures 5.8 to 5.15 plot the histograms of all the con-

sidered error metric distributions, namely: MAE, MSE, RMSE, PAE+, PAE-, WMAPE, PPAE+

and PPAE-. Due to the fact that all distributions present a very wide range of values, each metric

(X axis) is shown at a logarithmic scale.

All metrics show positively skewed distributions, being the mean of each distribution signif-

icantly higher than its median. This fact shows that despite the majority of the instances being

clustered within lower error values, there are also some observations whose error values are no-

tably higher. Along with the distribution histograms, Figures 5.8 to 5.15 also show box-plots

highlighting the outliers calculated according to the 1.5 IQR (Inter-Quartile Range) rule.

The performance of Model A on the Non-Linear dataset is worse than on the Linear dataset

among all metrics, as suggested by the validation error of the training process presented in the last

section, with exception for the mean PAE- which is slightly higher, in spite of the median being

also lower. Despite the median WMAPE being higher on the Non-Linear dataset, the mean value

is very close to that of the Linear dataset, suggesting a less skewed distribution. It is also worth

noting that, despite PAE+ being higher than PAE- in both datasets, in relative terms, PPAE+ is

lower and similar to PPAE- on the Linear and Non-Linear dataset, respectively. This is due to the

fact that, in absolute terms, the maximum positive value of each instance is generally higher than

the maximum negative. Descriptive statistics are shown in Tables 5.1 and 5.2 for the case of the

Linear Dataset, and Tables 5.3 and 5.4 for the Non-Linear Dataset case.

Moreover, both maximum values (positive and negative) tend to form peaks with different

shapes. While the maximum positive value tends to form a peak over a supported element, the

maximum negative value occurs most of the times in between supported elements, forming a

plateau-like peak, with a smoother variation among the neighboring elements. This tendency,

particularly visible in Figures 5.16, 5.17, 5.18 and 5.21, does not seem to cause particular trouble

to the DL model, since PPAE+ is not particularly higher than PPAE- in either datasets.

Table 5.1: Model A – Linear Dataset results – Absolute metrics

MAE MSE RMSE PAE+ PAE-
(kN.m) ((kN.m)2) (kN.m) (kN.m) (kN.m)

mean 0.307 0.991 0.545 2.716 1.664

std. dev. 0.479 23.878 0.833 6.252 4.874

median 0.231 0.169 0.411 1.489 0.621

max 2.705×101 2.816×103 5.307×101 3.651×102 3.047×102

min 5.019×10−4 2.519×10−7 5.019×10−4 6.104×10−5 1.144×10−6
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Table 5.2: Model A – Linear Dataset results – Relative metrics

WMAPE PPAE+ PPAE-
(%) (%) (%)

mean 17.646 8.437 10.348

std. dev. 55.775 23.204 23.639

median 6.512 1.541 1.941

max 2.620×103 3.616×102 3.458×102

min 6.190×10−1 8.652×10−5 1.144×10−4

Table 5.3: Model A – Non-Linear Dataset results – Absolute metrics

MAE MSE RMSE PAE+ PAE-
(kN.m) ((kN.m)2) (kN.m) (kN.m) (kN.m)

mean 0.475 2.225 0.786 3.543 1.549

std. dev. 0.745 53.595 1.267 6.914 4.572

median 0.348 0.334 0.577 1.847 0.683

max 4.482×101 5.875×103 7.665×101 2.479×102 3.558×102

min 2.980×10−3 8.881×10−6 2.980×10−3 2.441×10−4 1.116×10−4

Table 5.4: Model A – Non-Linear Dataset results – Relative metrics

WMAPE PPAE+ PPAE-
(%) (%) (%)

mean 17.756 9.447 9.444

std. dev. 27.672 23.624 23.020

median 8.984 2.254 2.228

max 6.870×102 3.038×102 3.199×102

min 6.962×10−1 9.799×10−5 3.415×10−4
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Figure 5.8: Mean Absolute Error (MAE) histograms of the results obtained by Model A for the
Linear Dataset (LHS) and Non-Linear Dataset (RHS)

Figure 5.9: Mean Squared Error (MSE) histograms of the results obtained by Model A for the
Linear Dataset (LHS) and Non-Linear Dataset (RHS)



5.2 Models Testing 57

Figure 5.10: Root Mean Squared Error (RMSE) histograms of the results obtained by Model A
for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)

Figure 5.11: Peak Absolute Error applied to positive values (PAE+) histograms of the results
obtained by Model A for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)
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Figure 5.12: Peak Absolute Error applied to negative values (PAE-) histograms of the results
obtained by Model A for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)

Figure 5.13: Weighted Mean Absolute Percentage Error (WMAPE) histograms of the results ob-
tained by Model A for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)
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Figure 5.14: Percentage Peak Absolute Error applied to positive values (PPAE+) histograms of
the results obtained by Model A for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)

Figure 5.15: Percentage Peak Absolute Error applied to negative values (PPAE-) histograms of the
results obtained by Model A for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)

5.2.1.2 Result Samples

In order to illustrate the results presented in the past section, some prediction plots of sample

instances are presented herein. The chosen instances are those where the median and maximum

MSE and WMAPE were observed, i.e. the absolute error metric chosen as loss function for the

training process and a relative error metric.

The choice for the median observation over the mean is due to the fact that the error metric

distributions are positively skewed. Thus, by not being so affected by extreme outliers, the median

is believed to be a better measure of central tendency in this case. By showcasing the instances
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where the maximum errors were observed, it is intended to outline the inferior limit to the quality

of the obtained results. Each of these plots outline the input features at the top line, followed by the

regression result (Prediction), results obtained by the FEM model (Ground Truth) and the absolute

error (|GT - Pred|) in the bottom line.

Figures 5.16 and 5.17 plot the results for the instances where the median MSE and maximum

MSE were observed, respectively. The former presents a prediction visibly close to the ground

truth, as it can be confirmed by the map of absolute errors (|GT - Pred|) where most of the elements

unveil values very close to 0. The same does not apply to the latter, where the differences between

the prediction and the ground truth are evident. The error is especially high in the surroundings

of the element located at row 9 and column 34, even though there are no loads applied within that

area.

Figures 5.18 and 5.19 outline the results for the samples where the median WMAPE and

maximum WMAPE were observed, respectively. Like the case of MSE, the results of the median

WMAPE instance are also visibly close to the ground truth. Regarding the maximum WMAPE

instance, it is an instance with a single loaded element (as outlined in the "Loads" feature plot).

This fact implies that the bending moments are generally low across the ground truth map. Once

WMAPE is a relative measure, even low absolute prediction errors lead to a high WMAPE value.

From Figure 5.20 onward the result plots concern the Non-Linear dataset. This plot outlines

the results for the instance with median MSE. Even put up to the Non-Linear dataset, known to be

more mathematically complex in terms of FEM calculations, Model A is able to achieve results

very close to the ground truth, as evidenced by the absolute error plot and by visually comparing

the Prediction plot against the Ground Truth one. Curiously, the instance of maximum MSE of the

Non-Linear dataset, depicted in Figure 5.21, is similar, in terms of the "Geometry" and "Supports"

input features, to that of the Linear case. This time, most of the errors are located in the area under

loading, but also around the inner corners of the geometry void.

Finally, the instances of median and maximum WMAPE for the Non-Linear dataset are very

similar, in terms of analysis, to those of the Linear dataset. The results of the instance of me-

dian WMAPE reveals a near perfect approximation, while the case of the instance of maximum

WMAPE reveals a generally low absolute error, but high relative error for being subject to low

bending moments across its elements. These results are shown in Figures 5.22 and 5.23, respec-

tively.
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Figure 5.16: Model A – Linear Dataset – Regression results plot of the instance with median MSE

Figure 5.17: Model A – Linear Dataset – Regression results plot of the instance with maximum
MSE
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Figure 5.18: Model A – Linear Dataset – Regression results plot of the instance with median
WMAPE

Figure 5.19: Model A – Linear Dataset – Regression results plot of the instance with maximum
WMAPE
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Figure 5.20: Model A – Non-Linear Dataset – Regression results plot of the instance with median
MSE

Figure 5.21: Model A – Non-Linear Dataset – Regression results plot of the instance with maxi-
mum MSE
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Figure 5.22: Model A – Non-Linear Dataset – Regression results plot of the instance with median
WMAPE

Figure 5.23: Model A – Non-Linear Dataset – Regression results plot of the instance with maxi-
mum WMAPE
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5.2.1.3 Run-time

As previously mentioned, both deep learning models were trained on a NVIDIA Tesla P100 pro-

vided by Google Colab platform. Since the commercial FEM software used to generate the dataset

does not take advantage of a GPU and that it was ran on a local computer, in order to compare

their running times it is imperative that both are ran on the same setup. To this end, the test set was

run on Model A, on the local CPU, loaded with the weights obtained from the training process.

This so-called local setup is composed of an AMD Ryzen 5600H CPU @ 3.300 GHz, with 16GB

DDR4 RAM @ 3200 MHz.

The run-time comparison between Model A and the commercial FEM software for both Linear

and Non-Linear calculation approaches, per 100 calculated instances, is presented in Tables 5.5

and 5.6, respectively. As expected, the run-times of Model A on both datasets is virtually the

same, since it is the same model. The FEM Model on the Linear calculation approach presents

a slight variability due to the number of finite elements being variable among instances, contrary

to the Non-Linear approach, where a large variability may be observed, not only because of the

different number of finite elements varying among instances, but also because it is an iterative

calculation method whose solution may be closer or farther depending on the complexity of the

problem. It is also important to note that each run of the FEM model computes not only the

bending moments along X direction (as Model A and Model B do), but all sorts of stresses and

displacements, despite bending stresses are the most preponderant for the type of loads considered

in this dataset. Considering this fact, to get a full characterization of the bending stresses of an

instance (along directions X and Y), as presented in section 3.3, the deep learning model would

have to be ran twice, rotating the input data by 90 degrees in one of the runs, for obtaining the

bending moments along Y direction.

Table 5.5: Model A – Linear Dataset results – Processing time per 100 instances

FEM Model (s) Model A (s)

mean 14.627 1.010

std. dev. 1.869 0.031

median 15.034 1.004

Table 5.6: Model A – Non-Linear Dataset results – Processing time per 100 instances

FEM Model (s) Model A (s)

mean 1333.104 0.987

std. dev. 764.089 0.012

median 1067.077 0.987
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5.2.2 Model B

5.2.2.1 Error Metrics

Following the exposed for Model A, Figures 5.24 to 5.31 plot the histograms and box-plots for all

the considered error metric distributions at a logarithmic scale.

Identically to the error metrics obtained by Model A, those of Model B also present positive

skewness, i.e. most of the observations concentrate at lower error values, but there are undoubtedly

some instances presenting higher error values.

Also similar to Model A is the fact that Model B performs worse on the Non-Linear dataset

compared to the Linear dataset, except for the mean values of WMAPE and PPAE-, contrary to

their median. It also becomes evident that despite the similarities, Model B outperforms Model

A for either Linear and Non-Linear datasets. Regarding errors at peak values, like in Model A,

PPAE+ shows slightly lower errors than PPAE- in the Linear dataset, and similar results in the

Non-Linear dataset. Descriptive statistics are presented in Tables 5.7 and 5.8 for the Linear case,

and Tables 5.9 and 5.10 for the Non-Linear case.

Table 5.7: Model B – Linear Dataset results – Absolute metrics

MAE MSE RMSE PAE+ PAE-
(kN.m) ((kN.m)2) (kN.m) (kN.m) (kN.m)

mean 0.167 0.272 0.293 1.420 0.916

std. dev. 0.251 6.692 0.431 3.310 3.162

median 0.125 0.049 0.222 0.784 0.341

max 2.070×101 9.781×102 3.127×101 2.325×102 2.160×102

min 8.125×10−3 2.873×10−4 1.695×10−2 0.000 0.000

Table 5.8: Model B – Linear Dataset results – Relative metrics

WMAPE PPAE+ PPAE-
(%) (%) (%)

mean 16.122 5.900 7.505

std. dev. 56.750 18.911 20.186

median 3.577 0.794 1.045

max 1.231×103 1.846×102 1.896×102

min 3.033×10−1 4.356×10−5 1.413×10−4



5.2 Models Testing 67

Table 5.9: Model B – Non-Linear Dataset results – Absolute metrics

MAE MSE RMSE PAE+ PAE-
(kN.m) ((kN.m)2) (kN.m) (kN.m) (kN.m)

mean 0.261 0.830 0.435 1.955 0.921

std. dev. 0.457 19.100 0.800 4.212 2.895

median 0.185 0.096 0.310 1.026 0.406

max 1.846×101 1.723×103 4.151×101 1.444×102 1.55×102

min 7.468×10−3 2.253×10−4 1.501×10−2 0.000 0.000

Table 5.10: Model B – Non-Linear Dataset results – Relative metrics

WMAPE PPAE+ PPAE-
(%) (%) (%)

mean 14.848 7.173 6.800

std. dev. 50.855 22.490 19.360

median 4.411 1.071 1.173

max 3.288×103 4.081×102 2.665×102

min 4.371×10−1 1.401×10−4 1.428×10−5

Figure 5.24: Mean Absolute Error (MAE) histograms of the results obtained by Model B for the
Linear Dataset (LHS) and Non-Linear Dataset (RHS)
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Figure 5.25: Mean Squared Error (MSE) histograms of the results obtained by Model B for the
Linear Dataset (LHS) and Non-Linear Dataset (RHS)

Figure 5.26: Root Mean Squared Error (RMSE) histograms of the results obtained by Model B
for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)



5.2 Models Testing 69

Figure 5.27: Peak Absolute Error applied to positive values (PAE+) histograms of the results
obtained by Model B for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)

Figure 5.28: Peak Absolute Error applied to negative values (PAE-) histograms of the results
obtained by Model B for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)
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Figure 5.29: Weighted Mean Absolute Percentage Error (WMAPE) histograms of the results ob-
tained by Model B for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)

Figure 5.30: Percentage Peak Absolute Error applied to positive values (PPAE+) histograms of
the results obtained by Model B for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)
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Figure 5.31: Percentage Peak Absolute Error applied to negative values (PPAE-) histograms of the
results obtained by Model B for the Linear Dataset (LHS) and Non-Linear Dataset (RHS)

5.2.2.2 Result Samples

In the same way as with Model A, prediction plots of the instances corresponding to the median

and maximum MSE and WMAPE are presented within this section, so as to illustrate the results

debated in the previous section. In general, the results are qualitatively equivalent to those of

Model A, i.e., the prediction results obtained for the instances of median MSE and WMAPE are

very close to the ground truth, while the errors of the instances of maximum MSE are unmistakenly

high and the instances of higher WMAPE are single loaded instances, with high relative error, but

low absolute error. The results for the instances of median and maximum MSE and WMAPE of

the Linear dataset respectively are shown from Figure 5.32 to Figure 5.35. As for the Non-Linear

dataset, by the same order, the results are presented from Figure 5.36 to 5.39.
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Figure 5.32: Model B – Linear Dataset – Regression results plot of the instance with median MSE

Figure 5.33: Model B – Linear Dataset – Regression results plot of the instance with maximum
MSE
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Figure 5.34: Model B – Linear Dataset – Regression results plot of the instance with median
WMAPE

Figure 5.35: Model B – Linear Dataset – Regression results plot of the instance with maximum
WMAPE
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Figure 5.36: Model B – Non-Linear Dataset – Regression results plot of the instance with median
MSE

Figure 5.37: Model B – Non-Linear Dataset – Regression results plot of the instance with maxi-
mum MSE
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Figure 5.38: Model B – Non-Linear Dataset – Regression results plot of the instance with median
WMAPE

Figure 5.39: Model B – Non-Linear Dataset – Regression results plot of the instance with maxi-
mum WMAPE
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5.2.2.3 Run-time

Like with Model A, Model B was also ran in the local setup loaded with the weights obtained

from the training process. The run-time results in comparison with the FEM model are presented

in Tables 5.11 and 5.12 for the Linear and Non-Linear approaches, respectively. Like with Model

A, Model B takes virtually the same time to run regardless of the dataset in analysis. The higher

complexity of Model B when compared to Model A comes at a cost of an increase of roughly 65%

on the run-time. Nevertheless, in absolute terms, it can still be considered a low computation time

when compared to the FEM model.

Table 5.11: Model B – Linear Dataset results – Processing time per 100 instances

FEM Model (s) Model B (s)

mean 14.627 1.664

std. dev. 1.869 0.059

median 15.034 1.657

Table 5.12: Model B – Non-Linear Dataset results – Processing time per 100 instances

FEM Model (s) Model B (s)

mean 1333.104 1.645

std. dev. 764.089 0.028

median 1067.077 1.638

5.3 Discussion

The main takeaways from the previous sections are that both models output results with very

different levels of quality, i.e. with discrepant error metrics among each other, that Model B is

able to achieve better results than Model A independently of the dataset in analysis, and that both

models are more erroneous against the Non-Linear dataset than against the Linear dataset. The

present section focuses in understanding what the magnitude of these error metrics represents in

practise, as well as trying to circumscribe the worst-performing instances by means of unraveling

singular characteristics of their input features. Taking into account the success criteria presented

in section 4.4, Table 5.13 summarizes the success instance counts and rates among both models

and datasets.
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Table 5.13: Success instance counts and rates among models and datasets

Instances Linear Dataset Non-Linear Dataset
Model A Model B Model A Model B

Successful 23 405 27 727 13 251 16 142

Total 30 734 30 734 18 348 18 348

Successful (%) 76.153 90.216 72.220 87.977

Focusing on the unsuccessful instances, efforts were made in order to find patterns within the

input features that could lead to such high error metrics. To that end, the following set of features

was engineered from the three input features (Geometry, Loads and Supports):

• geom_group (categorical): Original geometry group (Figure 3.2) to which the geometry of

an instance corresponds, despite being potentially rotated and/or flipped;

• load_count (numerical): Count of loaded elements of each instance regardless of its mag-

nitude;

• load_sum (numerical): Sum of applied loads among elements of each instance;

• sup_count (numerical): Count of supported elements of each instance;

• loads_on_supp (numerical): Count of elements both loaded and supported;

• Psupp_edges (numerical): Percentage of supports located within the geometrical edges of

the panel or in the frontier with geometric voids;

• Psingle_loads (numerical): Percentage of single loaded nodes, i.e. percentage of loads

surrounded by unloaded nodes, with relation to the total loads count;

• Plinear_loads (numerical): Percentage of loads arranged in a linear (vertical, horizontal or

diagonal) pattern.

The genesis of the last four features are due to technical reasons. With the count of elements

both loaded and supported ("loads_on_supp") it is intended to assess whether the model was able

to learn the principle that loads directly applied in a supported element do not cause bending

moments. Supports located at the edge of the panel or near void contours tend to be critical points

in the sense that the bending moments pattern generated within their neighbours is potentially

different than those located internally. This success in learning this difference in behaviour is

what "Psupp_edges" tries to assess. "Psingle_loads" and "Plinear_loads" are designed to appraise

whether the models have problems in dealing with particular load patterns, i.e. isolated loads or

load patterns with a "thickness" of one finite element. Examples of linear loading (Plinear_loads

= 1.0) and single loading patterns (Psingle_loads = 1.0) are shown in Figure 5.40.
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Figure 5.40: Examples of linear loading pattern and single loading pattern

Through the analysis of the "geom_group" feature, it can be seen that the so-called unsuccess-

ful instances are spread over all of the geometry groups. Despite G06 and G09 standing out for the

Linear dataset case, and G09 standing out for the the Non Linear dataset case, it cannot be stated

that the errors are specific to these groups. Figure 5.41 shows a stacked bar plot with the count of

successful and unsuccessful instances across both models and datasets. In relative terms, Figure

5.42 summarizes the success rates for each model and dataset throughout each geometry group.

Figure 5.41: Count of successful and unsuccessful instances across the geometry groups
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Figure 5.42: Rates of successful and unsuccessful instances across the geometry groups

Continuing the univariate analysis of these features, histograms of the remaining (numerical)

features were analyzed. From the analysis of these, similarly to "geom_group" it can be concluded

that the unsuccessful instances are spread over the range of each feature. In other words, they do

not concentrate at any specific zone within the range of any of the features so that any conclusion

can be drawn. Since the results of the various combinations of models and datasets are qualita-

tively equivalent, by virtue of simplicity, instead of presenting histograms for all the combinations

of models and datasets, these are presented for one combination only. Figure 5.43 plots the his-

tograms of both successful and unsuccessful instances for all numeric features for the combination

of Model B and the Non Linear dataset.

Following the principle of simplicity from the last paragraph, Figure 5.44 plots a pair-wise

distribution of the features in analysis for the combination of Model B and the Non Linear dataset.

Subplots below the diagonal represent scatter plots between each of the feature while the subplots

above the diagonal show KDE (kernel density estimate) plots. From this bivariate analysis no ad-

ditional conclusion can be drawn, since once again, none of the pairs evidentiate a clear separation

between successful and unsuccessful instances.

From the analysis of these results it is concluded that no simple rules can be drawn in order to

control or limit the range of application of the models in analysis as a way of preventing erroneous

results.
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Figure 5.43: Overlapped histograms of the engineered numerical features of the Non-Linear
dataset for Model B
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Figure 5.44: Pair plot of the engineered numerical features of the Non-Linear dataset for Model B
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Chapter 6

Conclusions and Future Work

The main objective of this dissertation is to present a faster but still reliable approach for cal-

culating internal stresses in shell structures. Nowadays this task is commonly solved by using

computational models based on the finite-element method. This method is an analytical method,

widely used in engineering, not only for structural analysis but also for a wide range of appli-

cations within the mechanical engineering discipline (such as aeronautical, biomechanical, and

automotive industries), which is typically time-consuming and demanding in terms of computa-

tional resources. This method has as its fundamental principle the discretization of a larger system

into a mesh of smaller elements (hence the name "finite-elements"). This discretization principle,

which is the basis of this work, is deeply linked to images in general, in the sense that they are a

discretization of the spacial domain. Taking advantage of this resemblance, and since Convolu-

tional Neural Networks (CNN) are widely known for their great potential for image processing, the

main idea is to extend the use this subtype of Neural Networks to predict bending stresses on shell

structures using FEM models as ground truth. To this end, simply put, a dataset of 18 000 models

was built from the ground up and calculated following two calculation approaches with different

levels of mathematical complexity to serve as basis for the learning procedure. Thenceforth, a

pre-designed model from the literature, for solving a different problem also related with the finite-

element method (Model A) was experimented in this particular problem, and a new model (Model

B), as an upgrade of the previous, was designed and put into practise.

After a thorough analysis of the results, it becomes clear that both Deep Learning models are

able to produce very good results in the vast majority of the test instances. For instance, Model

B, the top performer, is able to achieve a success rate of roughly 90% on the Linear dataset and

88% on the Non-Linear dataset, which is as improvement of approximately 20% over Model A.

Regarding processing times, the greater performance of Model B, compared to Model A, comes

at a cost of 65% more computation time. Still, the difference in processing times between the

DL models and the FEM models is appreciable. Even taking into account that each DL model

needs to be ran twice to get a full representation of bending moments of an instance, i.e. to predict

83
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bending stresses along both X and Y directions, Model B showed to be about 4.4 times faster than

the Linear FEM calculations, and about 405 times faster than the Non-Linear FEM calculations,

considering mean times.

On the other hand, it is also clear that, despite not many, there are some examples in which the

models do not perform well. The fact that these examples cannot be conveniently circumscribed

in terms of their input features, in other other words, cannot be easily distinguished among the

"population", makes it unfeasible to use these models, at their current state, even in basic structural

analysis tasks, simply because one would not know what to expect in terms of errors. However,

the evidence that the majority of the instances were able to attain neglectable errors should not be

disregarded, as it leaves the door open for future improvements.

As an attempt to improve generalization, the dataset in analysis was object of augmentation

according to some usual data augmentation techniques in computer vision, such as rotation and

flipping. Even so, the increase on the ability of generalization obtained from data augmentation

can only go so far, once it derives from the original dataset. Since the features extracted by the

models are unknown, it is unclear that the original dataset is enough to provide the model with

sufficient diversity or how much it would benefit from a larger and more diversified dataset.

As previously stated, Non-Linear FEM models, are solved by means of a iterative calculation

routine. These routines typically start from an initial state, perform the calculations and use the

result as initial state for the iteration to come, repetitively, until its error falls within a given tol-

erance. Having this in mind, it becomes evident that the more accurate is the initial state of the

problem, the faster will be its calculation process. Thereby, having a mechanism based on the

present approach, capable of instantly providing an educated guess for the initial state could be

highly rewarding in terms of number of iterations and consequently in the calculation time.

As concluded in Chapter 5, Model B, an upgrade attempt over Model A, actually achieves

better results than Model A. Therefore, as a suggestion for future works, it would be important to

understand whether more complex CNN architectures could still improve on the results obtained

in the present work within low computation time. Other architectures may also be suitable for

this particular problem, such as GANs (Generative Adversarial Networks). Another suggestion

for a potential future work would be to understand whether Transfer Learning (the technique of

reusing model layers from a network designed to solve a specific problem, in other problem)

[6] from classic computer vision models would produce good results in this particular problem.

Models such as VGG, Inception and ResNet were trained on real images rather than finite-element

models, although it is unclear whether the present problem could benefit from low-level features

extracted by these pre-trained models.
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