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Abstract

This dissertation aims to provide an overview of the theory of arithmeti-
cal functions and Dirichlet series, and their relation to the popular Riemann
Hypothesis. The main objective of this work is to expose a direct proof
of two statements equivalences to the Riemann Hypothesis, one that the
growth of M(x) :=

∑
n≤x µ(n) is asymptotically bounded by x

1
2
+ε, for all

ε > 0 and the other that the growth of L(x) :=
∑

n≤x λ(n) is equally asymp-
totically bounded by the same expression, where µ is the Möbius function
and λ is the Liouville function, two very relevant arithmetical functions.
Here, we also aim to provide a connection between two branches of Number
theory, the Algebraic and the Analytic, as arithmetical functions are part
of the former and the study of the Riemann Zeta Function often lies in the
realm of the latter.

Keywords: Arithmetical Functions, Dirichlet Series, Riemann Hypoth-
esis, Riemann’s Zeta Function

vii



viii



Resumo

Esta dissertação pretende dar uma visão geral sobre a teoria das funções
aritméticas e séries de Dirichlet e também sobre a sua relação com a famosa
Hipótese de Riemann. O objetivo principal deste trabalho é expor uma
prova que duas proposições equivalentes à Hipótese de Riemann: que o
crescimento de M(x) :=

∑
n≤x µ(n) é assimptoticamente limitado por x 1

2
+ε,

para todo o ε > 0 e que o crescimento de L(x) :=
∑

n≤x λ(n) é igualmente
limitado assintoticamente pela mesma expressão, onde µ denota a função
de Möbius e λ a função de Liouville duas importantes funções aritméticas.
Aqui, também pretendemos mostrar uma conexão entre dois ramos da Teoria
de Números, Algébrica e Analítica, dado que as funções aritméticas fazem
parte da primeira enquanto o estudo de Função Zeta de Riemann usualmente
está relacionado com a segunda.

Keywords: Funções Aritméticas, Séries de Dirichlet, Hipotese de Rie-
mann, Função Zeta de Riemann
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Chapter 1

Introduction

Number Theory is a branch of Mathematics devoted mainly to the study
of the integers and integer-valued functions. The primary area where this
dissertation is placed, Analytic Number Theory, is one of its sub-branches
and can be described as the study of the integers employing tools from real
and complex analysis, in particular, about estimates on size and density, as
opposed to identities.

The main focus of this work lies on arithmetical functions, also known
as number-theoretic functions, which are simply maps with domain in N
and codomain C, and their respective Dirichlet series, defined as

∑
n≥1

f(n)
ns

for an arithmetical function f and complex number s. In fact, these se-
ries are a special case of the general Dirichlet series, named after Lejeune
Dirichlet (1805–1859), defined as

∑
n≥1 f(n)e

λns where λn is a complex val-
ued sequence and s a complex number. Throughout this work, we will use
s = σ+ it, where σ, t ∈ R to represent a complex number, as it is common in
this area, after it being first used by the mathematician Bernhard Riemann
(1826–1866).

Riemann had a great role in establishing the relation between Dirichlet
series and analytic number theory when he first studied the now called Rie-
mann Zeta function, first defined as what we now call the Dirichlet series of
the arithmetical function constant equal to 1, i.e.,

ζ(s) =
∑
n≥1

1

ns

for any s with real part greater than 1. We will see how we can then extend,
analytically, this function through the whole complex plane except at s = 1.
Riemann is also responsible for his notorious Riemann Hypothesis, a conjec-
ture proposed in 1859 that says that the Riemann zeta function has its zeros
only at the negative even integers, known as trivial zeros, and at the com-
plex numbers with real part 1

2 , known as the critical line. Still unsolved at
the time of writing of this dissertation, proving the conjecture validity is one
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CHAPTER 1. INTRODUCTION

of the Millennium Problems, www.claymath.org/millennium-problems.
Here we hope to convey the importance of arithmetical functions in this

particular context, while also expound their theory. Futhermore, we will
focus on two very relevant arithmetic functions, namely the Möbius function,
µ, and the Liouville function, λ, that are defined as follows. Let νp(n) be
the biggest exponent k such that pk | n. Then, we define

λ(n) := (−1)

∑
p|n

νp(n)

and

µ(n) :=

{
λ(n), if n is square-free
0, otherwise.

From these two functions, one defines

L(x) :=
∑
n≤x

λ(n) and M(x) :=
∑
n≤x

µ(n)

two functions that are closely related to the Riemann Hypothesis. The M
function is known as the Mertens function, in honour of Franz Mertens
(1840–1927).

This dissertation is organized as follows. In chapter 2, we will give
some examples of well-known arithmetic functions and then explore some
properties of the ring of all arithmetic functions, denoted as A. The main
point of this chapter is to expose a clearer version of the proof of [CE59] of
the following theorem

Theorem. A is a unique factorization domain.

As it will be seen, this ring is isomorphic to the ring of formal Dirichlet
series. We close this chapter with the study of the above mentioned λ, µ, L
and Mertens functions. Our main references for this chapter were [Apo76]
and [Siv89].

We move on to look into the convergence of Dirichlet series in the com-
plex plane, in chapter 3. As it is known, for this type of series, if it converges
for some complex number s, it will converge for any s0 with real part bigger
than Re(s). This will allow us to define some convergence abscissas, namely
the absolute, uniform and conditional convergence abscissas. These num-
bers are closely related among themselves, as we will see. In this chapter,
we follow the book [Apo76] and the articles [BH16] and [Boa97].

In the last chapter 4, our objective is to present a complete but concise
proof of the following main Theorem involving the Riemann’s Hypothesis.

Theorem. The following conditions are equivalent

1. (Riemann’s Hypothesis) The Zeta function has its zeros only at the
negative even integers (called the trivial zeros) and complex numbers
with real part 1/2.

2
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2. For all ε > 0, M(x) =
∑
n≤x

µ(n) = O(x
1
2
+ε).

3. For all ε > 0, L(x) =
∑
n≤x

λ(n) = O(x
1
2
+ε).

This Theorem serves to show that the validity of the Riemann Hypoth-
esis is closely tied to the cumulative growth of the Möbius and Liouville
functions. First, we start by exposing and proving some necessary facts
about the zeta function before moving to the proof of the Theorem. Here,
our references were [TH87], [Edw01],[Bro17a] and [Bro17b].

At the end of this work are four appendixes with some background theory
necessary to supplement the main chapters, namely in Ring Theory, Fourier
Series, Summation Formulas and Complex Analysis.
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Chapter 2

Arithmetic Functions

In this chapter we recall the notions of arithmetical function and Dirich-
let series, giving several examples, including some of the most notorious
and relevant ones. We then describe the usual ring structure on the set
of all arithmetic functions and on the set of all Dirichlet series, showing
that they are in fact isomorphic, and unique factorization domains. We
finish this chapter by bringing attention to two important functions, the
Liouville, λ(n), and Möbius, µ(n), functions, and to their summation func-
tions L(x) =

∑
n≤x λ(n) and M(x) =

∑
n≤x µ(n). These last two functions

will play an important role later in this dissertation, in chapter 4, by their
relation to the Riemann’s Hypothesis.

Definition 2.1. An arithmetical function is a complex valued function
defined on N = {1, 2, 3, 4, . . . }.

To each arithmetical function f : N → C, we associate a formal Dirich-
let series:

D(f ; s) :=
∑
n≥1

f(n)

ns
(s ∈ C).

We will denote by 0 the identically zero arithmetical function, by A the
set of all arithmetical functions, and by S the set of all Dirichlet series.

Throughout the following section, we will use the following notation

1. n ∈ N, unless stated otherwise;

2. p ∈ N is always prime, unless stated otherwise;

3. νp(n) := max{t ∈ N0 : p
t | n} is the p-adic valuation of n ∈ N;

4. s denotes a complex-valued variable of the form s = σ + it (σ, t ∈ R).

5



CHAPTER 2. ARITHMETIC FUNCTIONS

2.1 List of Arithmetic Functions
Here we list some of the most notorious and relevant arithmetic functions.

For the ones without a universally agreed notation, we will chose one that
helps to better identify the function. Also, for those with known Dirichlet
series, we will display it as a formal infinite series and later in the chapter
we will justify them.

• ι(n) :=
⌊
1
n

⌋
=

{
1, n = 1,

0, n > 1,

D(ι; s) = 1.
Other notations for this function are e0 on [Siv89], e1 on [Bor20] δ on
[McC86] and i and I on [Apo76].

• m denotes the constant function equal to m ∈ C,
D(1; s) =

∑
n≥1

1
ns = ζ(s).

Other notations for the function 1 are U , u on [Apo76] and I on
[Siv89].

• eα(n) := nα, (α ∈ C),
D(e0; s) = ζ(s) and D(eα; s) = ζ(s− α).
Other notations for this function are Nα on [Apo76], idα on [Bor20]
and ζα on [McC86].

• ω(n) :=


∑
p|n

1, n > 1,

0, n = 1,
the number of different prime factors of n.

• Ω(n) :=
∑
p|n
νp(n), the number of prime factors of n with multiplicity.

• λ(n) := (−1)Ω(n), the Liouville function.

D(λ; s) = ζ(2s)
ζ(s) .

• µ(n) :=

{
λ(n), if n is square-free,
0, otherwise,

the Möbius function,

D(µ; s) = 1
ζ(s) .

• d∗(n) = 2ω(n), the number of unitary divisors of n, i.e. the numbers
d such that d | n and (d, nd ) = 1, which is the same as the number of
square-free divisors.
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2.1. LIST OF ARITHMETIC FUNCTIONS

• qk(n) :=

{
0, if ∃ prime p s.t. pk | n,
1, otherwise

, the characteristic function of

the set of k-free numbers,
Note that q2 = µ2 = |µ|.
Other notation for this function is µk on [Bor20].

• ςk(n) :=

{
1, if ∃ a s.t. ak = n,

0, otherwise,
the characteristic function of the set

of k-full numbers,
ς1 = e0,
D(ςk; s) = ζ(ks).
Other notations are χk and sk on [Bor20].

• Λ(n) =

{
log(p), if n = pk for some p prime, k ∈ N,
0, otherwise,

the Van Man-

goldt function;

• Λk(n) =
∑
d|n
µ(d)(log

(
n
d

)
)k, the generalized Van Mangoldt func-

tion,
Λ1 = Λ.

• τk(n) =
∑
d|n
τk−1(d) and τ1 = 1, the Dirichlet-Piltz divisor func-

tion,
τ := τ2.
Other notation for this family of function is dk on [Siv89].

• σα(n) :=
∑
d|n
dα, divisor functions,

σ0(n) = τ(n), number of divisors of n,
σ1(n) =: σ(n), sum of the divisors of n.

• ϕ(n) :=
∑
m≤n

(m,n)=1

1 = n
∏
p|n

(
1− 1

p

)
, the Euler’s totient function.

• Jk(n) :=
∑

(m1,...,mk)∈Nk

mi≤n
(m1,...,mk,n)=1

1, the Jordan totient function,

J1 = ϕ.

• Ψ(n) := n
∏
p|n

(
1 + 1

p

)
, the Dedekind totient function.

7



CHAPTER 2. ARITHMETIC FUNCTIONS

• Ψk(n) := nk
∏
p|n

(
1 + 1

pk

)
, the generalized Dedekind totient func-

tion,
Ψ1 = Ψ.

• A Dirichlet character modulo q, χ : N → C is a map satisfying:

χ(a) = χ(a mod q);

χ(ab) = χ(a)χ(b);

If (a, q) > 1, then χ(a) = 0.

There are φ(q) characters modulo q and the set formed by them is a
group isomorphic to the multiplicative group (Z/qZ)∗.
The identity element of this group is called the principal character
modulo q and is usually denoted by χ0. Thus, χ0 is defined for all
a ∈ Z by

χ0(a) =

{
1, if (a, q) = 1,

0, otherwise.

Also, for any χ, the Dirichlet L-function associated to χ is defined
by

L(s, χ) := D(s, χ) =
∑
n≥1

χ(n)

ns
.

2.2 The Ring of Arithmetic Functions
The set of all arithmetic functions has a natural ring structure if we

consider a particular product, the Dirichlet convolution, inspired by the
product of two series. Here, we will describe this structure in some detail.

Definition 2.2. An arithmetical function f is said to be multiplicative if
one has:

(m,n) = 1 =⇒ f(mn) = f(m)f(n).

If f(mn) = f(m)f(n) for all m,n ∈ N, we say that f is completely
multiplicative.

If we multiply two Dirichlet series, we see that

∑
a≥1

f(a)

as
·
∑
b≥1

g(b)

bs
=
∑
n≥1

∑
ab=n f(a)g(b)

ns
.

This provides a motivation for the following definition.

8



2.2. THE RING OF ARITHMETIC FUNCTIONS

Definition 2.3. Let f and g be two arbitrary arithmetical functions.
Their sum is the function f + g and their product is the function fg,

defined as, respectively:

(f + g)(n) := f(n) + g(n), (fg)(n) := f(n)g(n),

and their Dirichlet product or Dirichlet convolution is the arithmetical
function defined by:

(f ∗ g)(n) :=
∑
d|n

f(d)g
(n
d

)
=
∑
ab=n

f(a)g(b).

Proposition 2.4. If f, g are multiplicative functions, then f ∗ g is also
multiplicative.

Proof. Notice first that when (m,n) = 1,

{d : d | mn} = {d1d2 : (d1 | m) ∧ (d2 | n)}

and if d1 | m and d2 | n, then (d1, d2) = 1.Therefore f(d1d2) = f(d1)f(d2).
Hence:

(f ∗ g)(mn) =
∑
d|mn

f(d)g
(mn
d

)
=
∑
d1|m
d2|n

f(d1)f(d2)g

(
m

d1

)
g

(
n

d2

)

=
∑
d1|m

f(d1)g

(
m

d1

)
·
∑
d2|n

f(d2)g

(
n

d2

)
= (f ∗ g)(m) · (f ∗ g)(n).

Theorem 2.5. (A,+, ∗) is a commutative ring, and its group of units is
A∗ = {f : f(1) 6= 0}.

Proof. It is trivial to verify that (A,+) is an abelian group, and it is also very
easy to see that ∗ is associative, distributive with respect to +, commutative,
and that ι is the identity element.

As for the existence of an inverse, f−1, for every arithmetical function f
that satisfies f(1) 6= 0, one proceeds by complete induction, observing that

f−1(1) =
1

f(1)
,

and that, for n > 1,

f ∗ f−1(n) = 0 ⇐⇒ f−1(n) =
−1

f(1)

∑
d|n
d<n

f
(n
d

)
f−1(d),

which allows us to define f−1(n), assuming f−1 defined for all numbers less
than n.

9



CHAPTER 2. ARITHMETIC FUNCTIONS

2.2.1 The Ring of Arithmetic Functions is a Unique Factor-
ization Domain

We will now show that A is a unique factorization domain, following the
proof in [CE59].

Let us define the following function

N : A −→ N0

0 7−→ 0

0 6=f 7−→ min{n : f(n) 6= 0}.

We will show that this is a valuation in the sense defined as follows.

Definition 2.6. Let R be a ring. A valuation on R is a real-valued function
v : R→ R+

0 satisfying the following three properties:

• For all x ∈ R, v(x) ≥ 0 and v(x) = 0 =⇒ x = 0;

• For all x, y ∈ R, v(xy) = v(x)v(y);

• For all x, y ∈ R, v(x+ y) ≥ min{v(x), v(y)}.

Let us see now that N is indeed a valuation.
By definition, we have N(f) = 0 ⇐⇒ f = 0. Let f, g ∈ A. If f = 0 or

g = 0, it is trivial that f ∗ g = 0, and thus N(f ∗ g) = 0.
Suppose that N(f) = a > 0, N(g) = b > 0. For n < ab, if d is a divisor

of n, then d ≥ a implies n
d < b, so g

(
n
d

)
= 0 and d < a implies f(d) = 0.

So, we have
(f ∗ g)(n) =

∑
d|n

f(d)g
(n
d

)
= 0.

So 0 6= N(f ∗ g) ≥ ab. We have the equality, because, using the same
argument as above for the last equality

(f ∗ g)(ab) =
∑

xy=ab

f(x)g(y) = f(a)g(b) 6= 0.

Thus, N has the property of N(f ∗ g) = N(f)N(g).
It only remains to be seen that N(f + g) ≥ min{N(f), N(g)}, for all

f, g ∈ A. Let us suppose, without loss of generality, that N(f) ≤ N(g). So
for n < N(f), we have both f(n) = 0 and g(n) = 0 and thus

N(f + g) = min{n : f(n) + g(n) 6= 0} ≥ N(f) = min{N(f), N(g)}.

10



2.2. THE RING OF ARITHMETIC FUNCTIONS

Lemma 2.7. If f, g are elements of A, if N(f) 6= N(g), then N(f + g) =
min{N(f), N(g)}.

Proof. From the definition of N , we already have that the valuation of
the sum is greater than the minimum. Without loss of let us suppose
min{N(f), N(g)} = N(f).

(f + g) (N(f)) = f (N(f)) + g (N(f))

= f (N(f)) + 0 = f (N(f)) 6= 0.

Thus N(f + g) ≤ N(f). Therefore we have the equality.

This valuation will help us better identify some elements of A, as we
have that if N(f) is a prime on N, then f is irreducible on A, by the second
propriety of valuations, and that if N(f) = 1 then f ∈ A∗, as the units of
A are exactly the functions with f(1) 6= 0.

Theorem 2.8. A is an integral domain.

Proof. Using the valuation N , it follows that

f ∗ g = 0 ⇐⇒ N(f ∗ g) = 0 ⇐⇒ N(f)N(g) = 0

⇐⇒ N(f) = 0 or N(g) = 0 ⇐⇒ f = 0 or g = 0.

Lemma 2.9. A has the Ascending Chain Condition on Principal ideals
(definition A.6).

Proof. Let
(f0) ⊊ (f1) ⊊ . . .

be a infinite ascending chain of principal ideals of A. This means there is,
for all i, an element gi ∈ A \ (A∗ ∪ {0}) such that figi = fi−1.

Let us show this chain has to end eventually, using the valuationN . From
figi = fi−1, we see that N(fi−1) = N(fi)N(gi) with N(gi) > 1 (note that
gi is neither a unit nor zero). So N(fi) < N(fi−1). Because N takes values
in N, the chain can not continue infinitely, and therefore has to end.

By the Lemma A.8, we have now shown that A is a factorization domain.
We only need to show the uniqueness of factorization up to order and units.

Let us call f ∈ A\ (A∗ ∪ {0}) normal if it has unique factorization and
abnormal if it does not. It is clear that a irreducible element is normal.

Lemma 2.10. Let α be an abnormal element with minimal norm N(α) and

α = σ1 ∗ · · · ∗ σm = τ1 ∗ · · · ∗ τn

two essentially different factorizations of α into irreducibles. Then neces-
sarily m = n = 2 and σ1, σ2, τ1, τ2 all have the same norm.

11



CHAPTER 2. ARITHMETIC FUNCTIONS

Proof. Let α be an abnormal element as stated in the Lemma. First note
that m,n > 1, since a irreducible is normal. Moreover no σj is the associate
of any τi, for if so, cancellation would produce an abnormal element of norm
less that N(α).

Without loss of generality, we may assume

N(σ1) ≤ N(σ2) ≤ · · · ≤ N(σm),

N(τ1) ≤ N(τ2) ≤ · · · ≤ N(τn),

N(σ1) ≤ N(τ1).

Then N(σ1 ∗ τ1) = N(σ1)N(τ1) ≤ N(τ1)N(τ1) ≤ N(τ1)N(τ2) ≤ N(α). If
any of these ≤ is a <, we have N(σ1 ∗ τ1) < N(α) which we will see leads
to a contradiction.

Let us suppose N(σ1∗τ1) < N(α). Consider β = α−σ1∗τ1. If β = 0, we
would have α = σ1 ∗ τ1 and thus σ2 . . . σm = τ1 and, since τ1 is irreducible,
we would have m = 2 and τ1 and σ2 are associates, see definition A.2, which
is a contradiction. So β 6= 0. Also β is not a unit since σ1 | β. From the
definition of N , the lemma 2.7 and the assumption N(σ1 ∗ τ1) < N(α), it
follows that N(β) = N(σ1 ∗ τ1) ≤ N(α).

Hence β is normal. However the non-associates σ1, τ1 both divide β,
so we must have σ1 ∗ τ1 | β, as β is normal. This because, as beta has a
unique factorization, both σ1 and τ1 must be associate of (at least) one of
the irreducibles in the factorization. It follows that σ1 ∗ τ1 | α and thus
σ1 ∗ · · · ∗σm = α = σ1 ∗ τ1 ∗γ, which in turn imply that σ2 ∗ · · · ∗σm = τ1 ∗γ.
But N(σ2 ∗ · · · ∗ σm) < N(α), so σ2 ∗ · · · ∗ σm has to be normal and τ1 must
be associated with some σi, which is a contradiction.

So we conclude that N(σ1 ∗τ1) = N(α), i.e., N(σ1 ∗τ1) = N(σ1)N(τ1) =
N(τ1)N(τ1) = N(τ1)N(τ2) = N(α). This implies that N(σ1) = N(τ1) =
N(τ2) and n = 2. Let us define M := N(σ1) so we can easily see that
M2 = N(α) = N(σ1) . . . N(σm) ≥ Mm. We may now conclude that m = 2
and N(σ2) =M .

We have now seen that if the uniqueness fails in A, we should have an
element of the form α ∗ β = γ ∗ δ, where α, β, γ, δ are irreducibles of norm
M and α not associated with either γ or δ.

Proposition 2.11. A is isomorphic to the ring of formal power series with
infinite indeterminates Fω := C[[x1, x2, . . . ]], with the usual formal power
series operations.

Proof. First, let us order all primes of N, p1, p2, . . . Any n ∈ N can be written
uniquely as n = pa11 p

a2
2 . . . and thus uniquely identified with the infinite

vector (a1, a2, . . . ), with entries in N0, only finitely many being non-zero.
Conversely, each such vector is uniquely identified to a natural number.

12
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We can now identify each α ∈ A with a formal power series in a countably
infinite number of indeterminates with coefficients in C, as follows.

P : A −→ Fω

α 7−→ P (α) =
∑
n∈N

α(n)xa11 x
a2
2 . . . ,

where n = pa11 p
a2
2 . . . . Note that any term of that sum only has a finite

number of indeterminates, although infinitely many xi may occur (in terms
with non-zero coefficients) in the same series.

It is easy to see that

P (ι) = 1,

P (α+ β) = P (α) + P (β),

P (α ∗ β) = P (α)P (β),

the last one following from definition of Dirichlet convolution. So P is a ring
isomorphism.

Remark. Note that, by this isomorphism, the units of Fω correspond to the
series with non-zero constant term (corresponding to n = 1 on the sum).

Set Fℓ := C[[x1, . . . , xℓ]], for ℓinN. It is known [Lan02, Theorem 9.3]
that these domains Fl are unique factorization domains. As in the previous
case, the units of Fℓ are the series with non-zero constant term.

Let A ∈ Fω be the series associated with α ∈ A, that is,

A := A(x1, x2, . . . ) = P (α)

and let
(A)ℓ := A(x1, . . . , xℓ, 0, 0, . . . )

be the series obtained from A by deleting all its terms involving any xi with
i > ℓ. It is easy to see that (AB)ℓ = (A)ℓ(B)ℓ and (A+B)ℓ = (A)ℓ + (B)ℓ.
Therefore, the map

πℓ : Fω −→ Fℓ

A 7−→ (A)ℓ

is a ring homomorphism of Fω onto Fℓ.
In the same manner, we can also define a ring homomorphism, for m ≥ ℓ,

from Fm onto Fℓ. We will use the same notation for this homomorphism, as
one can say that Fω “contains” Fm, for allm. Also note that πℓ((A)ℓ) = (A)ℓ,
that is, πℓ : Fℓ → Fℓ is just the identity map.

13
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Lemma 2.12. If A ∈ Fω \ (F ∗
ω ∪ {0}), then there is some minimal L(A) for

which (A)ℓ is neither zero nor a unit of Fℓ, for all ℓ ≥ L(A).

Proof. Since A is not a unit, its constant term is zero, but as A 6= 0, the
series must contain some product xa11 x

a2
2 . . . with some non-zero coefficient

and (a1, a2, . . . ) 6= (0, 0 . . . ). If in this term the last indeterminate with
non-zero exponent is xk, then (A)k 6= 0. So there is a minimal L := L(A)
such that for all ℓ ≥ L, (A)ℓ 6= 0.

By construction, for k ≥ ℓ, (A)k = (A)ℓ + S, where S is a series of Fk

such that each term has at least one xi with i > ℓ. So, for all ℓ ≥ L, (A)ℓ is
neither zero nor a unit.

Lemma 2.13. Let A ∈ Fω\(F ∗
ω ∪ {0}). If there is a ℓ ≥ L(A) such that (A)ℓ

is irreducible in Fℓ, then for all m ≥ ℓ, (A)m is irreducible in Fm. Hence
there is a minimal integer, P (A) ≥ L(A) such that, (A)ℓ is irreducible in Fℓ

for all ℓ ≥ P (A). Also, A is irreducible in Fω.

Proof. Fix m ≥ ℓ. Let us suppose (A)m is reducible. So there are non-zero
elements Rm, Sm ∈ Fm \ F ∗

m such that (A)m = RmSm. Thus, we can write
(A)ℓ = ((A)m)ℓ = (Rm)ℓ(Sm)ℓ. But as Rm, Sm were not units, (Rm)ℓ, (Sm)ℓ
cannot be units and therefore (A)ℓ is reducible, a contradiction.

So there is a minimal integer P := P (A) as stated. Let us now suppose
A is reducible in Fω, i.e., there are R,S non-zero and non-units of Fω such
that A = RS. But then (A)P = (R)P (S)P , both (R)P , (S)P are non-zero
and non-units of FP , and (A)P is reducible, which is a contradiction.

Definition 2.14. Let A ∈ Fω be an irreducible. We say A is finitely
irreducible if exists ℓ ≥ L(A) such that (A)ℓ is irreducible.

By the previous Lemma, this is the same as saying for all ℓ ≥ P (A),
(A)ℓ is irreducible.

We have shown that, for A\(F ∗
ω∪{0}), if there is any m ≥ L(A) such that

(A)m is irreducible, then A is irreducible. The only remaining possibility is
that for A \ (F ∗

ω ∪ {0}), we have (A)ℓ reducible in Fℓ for all ℓ ≥ L(A). We
will show that, in this case, such A is reducible in Fω.

Definition 2.15. For all ℓ ∈ N or ℓ = ω (here, ω represent the first infinite
ordinal number), we call true factor of Aℓ ∈ Fℓ to a Rℓ ∈ Fℓ \ F ∗

ℓ if
there exists Sℓ ∈ Fℓ \ F ∗

ℓ such that Aℓ = RℓSℓ. We say RℓSℓ is a true
factorization of Aℓ.

We shall call any chain [RM , RM+1, . . . , RN ] of true factors of the cor-
responding Aℓ, for ℓ = M + 1, . . . , N , telescopic if for each ell, we have
Rℓ−1 = πℓ−1(Rℓ).

14
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Proposition 2.16. All irreducibles of Fω are finitely irreducible.

Proof. Let A ∈ Fω \ (F ∗
ω ∪ {0}), with L := L(A) and suppose that ∀ℓ ≥ L,

there are Rℓ, Sℓ ∈ Fℓ \ F ∗
ℓ such that

(A)ℓ = RℓSℓ, (2.1)

or in other words, suppose A is reducible for all ℓ ≥ L.
Observe that (A)m = RmSm, for some m > L implies that (A)m−1 =

πm−1((A)m) = πm−1(Rm)πm−1(Sm) and so on down to L. The chain of
true factors [πL(Rm), . . . , πm−1(Rm), Rm] is telescopic, since πi are homo-
morphisms. Then, from the original assumption (2.1), we have the existence
of a sequence of telescopic chains of true factors

κ0 = [RL]

κ1 = [πL(RL+1), RL+1]

κ2 = [πL(RL+2), πL+1(RL+2), RL+2]

...
κn = [πL(RL+n), . . . , πL+n−j(RL+n), . . . , πL+n−1(RL+n), RL+n]

...

We want to prove the existence of R,S ∈ Fω such that A = RS. Suppose
we have an infinite chain of true factors of (A)L+j for j ∈ {0, 1, . . .}

κ∗ = [R∗
L, R

∗
L+1, R

∗
L+2, . . . ]

which is telescopic throughout. Its existence implies the existence of one
infinite chain [S∗

L, S
∗
L+1, . . . ] such that it is also telescopic, since

R∗
L+j−1S

∗
L+j−1 = (A)L+j−1 = πL+j−1((A)L+j)

= πL+j−1(R
∗
L+jS

∗
L+j)

= πL+j−1(R
∗
L+j)πL+j−1(S

∗
L+j)

= R∗
L+j−1πL+j−1(S

∗
L+j)

=⇒ S∗
L+j−1 = πL+j−1(S

∗
L+j).

Such telescopic infinite chain κ∗ will define unambiguously a series R
in Fω by taking the coefficients of R∗

l+j , for an appropriate j ∈ N0 in each
step. As the chain is infinite and telescopic, this is possible for any term
xa11 x

a2
2 . . . xamm . Now that we have both R,S we can show that A = RS

as above, by comparing each coefficient using a suitable j and the equality
(A)L+j = R∗

jS
∗
j . Thus, if we prove existence of such κ∗, we would prove the

existence of R,S ∈ Fω such that A = RS.
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Since unique factorization holds in Fl, there are only a finite number of
classes of associates into which the true factors of any (A)ℓ can fall. Hence
by the pigeon-hole principle, an infinite set of chains κi such that all have
their first entry equivalent to some true factor T0 of (A)L. Let us choose
such chain and call it K0, that is

K0 = [πL(Ri0), . . . , Ri0 ] = κi0−L

where i0 ≥ L. Note that this is a finite chain, but we are only interested
in the first entry.

Now, of this infinite set, there is an infinite subset of chains whose second
entry is equivalent to some other true factor T1 of (A)L+1. Again, let us
choose one and call it K1, that is

K1 = [πL(Ri1), πL+1(Ri1), . . . , Ri1 ]

for some i1 ≥ L. Repeating this process for each ℓ ≥ L and (A)ℓ we will
have a sequence of telescopic chains

K0 = [πL(Ri0), . . . , Ri0 ]

K1 = [πL(Ri1), πL+1(Ri1), . . . , Ri1 ]

K2 = [πL(Ri2), πL+1(Ri2), πL+2(Ri2), . . . , Ri2 ]

...

such that πL+j(Rin) ∼ Tj for all j ≥ 0, for all n ≥ j.
We can now construct the telescopic infinite chain κ∗ working only with

the main diagonal and the diagonal below it, as follows. Define R∗
0 =

πL(Ri0). Since πL(Ri1) ∼ T0 ∼ R∗
0 in FL, as per choice of K1, there is

a unit UL of FL such that

R∗
0 = πL(Ri1)UL

= πL(Ri1)πL(UL) (as πℓ : Fℓ → Fℓ is the identity)
= πL(πL+1(Ri1)UL) (as K1 is telescopic)

Define R∗
1 := πL+1(Ri1)UL in FL+1 and note that R∗

1 is a true factor of
(A)L+1, because R∗

1 ∼ πL+1(Ri1) ∼ T1 in FL+1, and that πL(R∗
1) = R∗

0.
Let m ∈ N. Now let us assume we have R∗

m defined, such that R∗
m ∼

πL+m(Rim) ∼ Tm in FL+m, and that πL(R∗
m) = R∗

m−1. Since πL+m(Rim+1) ∼
Tm in FL+m, by definition of the sequence of chains Kn, there is a unit UL+m

of FL+m such that

R∗
m = πL+m(Rim+1)UL+m

= πL+m(Rim+1)πL+m(UL+m) (as πℓ : Fℓ → Fℓ is the identity)
= πL+m(πL+m+1(Rim+1)UL+m) (as Km+1 is telescopic)
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Now, let us define

R∗
m+1 := πL+m+1(Rim+1)UL+m

in FL+m+1 and note that R∗
m+1 is a true factor of (A)L+m+1, because

R∗
m+1 ∼ πL+m+1(Rim+1) ∼ Tm+1 in FL+m+1, and that πL+m(R∗

m+1) = R∗
m.

So, by induction, we have defined an infinite telescopic chain with the
properties we wanted, and A is indeed reducible. Thus, all irreducibles of
Fω are finitely irreducible.

Now that we have identified all irreducibles in Fω, we can prove the
uniqueness of factorization in this domain (and thus, by isomorphism, in
A).

Theorem 2.17. A is a unique factorization domain.

Proof. We have already seen that it is possible to factor any non-zero non-
unit element of A into irreducibles. We will now show this factorization is
unique up to order and units.

Let us suppose the uniqueness fails in Fω. By Lemma 2.10 and Propo-
sition 2.11, we must have a series of the form AB = CD, where A,B,C,D
are irreducibles in Fω and A is not associated with either C or D. Since all
irreducibles are of finite type, taking P := max{P (A), P (B), P (C), P (D)},
we have that (A)ℓ, (B)ℓ, (C)ℓ, (D)ℓ are all irreducible in Fℓ for all ℓ ≥ P and
that they satisfy the equation

(A)ℓ(B)ℓ = (AB)ℓ = (CD)ℓ = (C)ℓ(D)ℓ.

Since Fℓ is a unique factorization domain, (A)ℓ must be associated with
either (C)ℓ or (D)ℓ, for all ℓ ≥ P . Hence there must be a infinite subset
S ⊂ N such that ∀s ∈ S (A)s ∼ (C)s in Fs or ∀s ∈ S (A)s ∼ (D)s in Fs.

Without loss of generality, let us assume the first possibility. Thus, for
all s ∈ S, there is Us ∈ F ∗

s such that (A)s = Us(C)s. If s < t are two integers
of S, we have

Us(C)s = (A)s = ((A)t)s = (Ut(C)t)s = (Ut)s(C)s

and Ut is an extension of Us by terms that involve at least one indeterminate
xi with t ≥ i > s. Thus the sequence (Us)s∈S defines a unit U of Fω and
A = UC by the same argument used in showing A = RS in the previous
Proposition. But then A ∼ C in Fω, contradiction.

Thus, Fω, and therefore A, is a UFD.
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Proposition 2.18. A is not a principal ideal domain.

Proof. In a UFD, one can always define a greater common divisor, gcd, for
any two elements. Let f, g be two primes in A. Then, of course, we have
gcd(f, g) = ι.

Now, suppose A is a PID. Then the Bézout identity holds, i.e., there are
h, k ∈ A such that ι = h ∗ f + k ∗ g. Let us evaluate this equality at n = 1.
Note that, as f, g are primes, f(1) = 0 and g(1) = 0, and hence

1 = ι(1) = h(1)f(1) + k(1)g(1) = 0,

a contradiction. So A is not a PID.

The definition of the Dirichlet convolution immediately yields:

D(f ; s) · D(g; s) = D(f ∗ g; s)

It is then clear that the map A → S given by f 7→ D(f ; s) is a ring
isomorphism. Therefore the ring (S,+, ·) is a unique factorization domain.

2.2.2 Möbius inversion
We will now describe some inversion results, the Möbius inversion, the

inverse of a completely multiplicative function and one more particular one,
all in which the Möbius function also plays an important role.

Lemma 2.19. If f is a multiplicative function, then:

(f ∗ e0)(n) =
∏
p|n

(
1 + f(p) + f(p2) + · · ·+ f(pνp(n))

)
Proof. This is a direct consequence of unique factorization in Z.

Proposition 2.20. The Möbius function is the inverse of e0, i.e., µ∗e0 = ι.

Proof. It follows from the previous Lemma that (µ∗e0)(n) =
∏

p|n(1+µ(p)),
which is zero unless n = 1.

Note that it follows from Proposition 2.20 and definition 2.3 that∑
n≥1

µ(n)

ns
=

1

ζ(s)
.

Proposition 2.21 (Möbius inversion). For all f ∈ A,

F (n) =
∑
d|n

f(d) ⇐⇒ f(n) =
∑
d|n

µ(d)F
(n
d

)
.

18
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Proof. This is an immediate consequence of the previous Proposition, as the
above equivalence is the same as

F = f ∗ e0 ⇐⇒ f = F ∗ µ.

Proposition 2.22. If f 6= 0 is completely multiplicative, then f−1 = µf .

Proof. First, as f is completely multiplicative, we have for all n ∈ N,

f(n) = f(1 · n) = f(1)f(n),

and therefore f(1) = 1, since f(n) 6= 0 for some n. Put g = µf . Then

(f ∗ g)(n) =
∑
d|n

µ(d)f(d)f
(n
d

)
=
∑
d|n

µ(d)f(n)

= f(n)
∑
d|n

µ(d) = f(n)ι(n) = ι(n),

because f(n)ι(n) = 0 for all n 6= 0 and f(1)ι(1) = 1.

Lemma 2.23. For all k ∈ N, we have that ςk ∗ qk = e0.

Proof. This can be seen as follows. For n, k ∈ N, let

mk(n) = max{tk : t ∈ N ∧ tk | n}.

Note that if n is kth-power-free, then mk(n) = 1, and that n/mk(n) is kth-
power-free. Now, for any divisor d of n, one has ςk(d)qk(n/d) 6= 0 if and
only if d is a kth-power and n/d is kth-power-free, and there is only one such
divisor, namely d = mk(n).

Proposition 2.24. For all f ∈ A,

f(n) =
∑
j2|n

g

(
n

j2

)
⇐⇒ g(n) =

∑
j2|n

µ(j)f

(
n

j2

)
.

Proof. We have that

f(n) =
∑
j2|n

g

(
n

j2

)
=
∑
d|n

ς2(d)g
(n
d

)
= (ς2 ∗ g)(n).

By Proposition 2.20 and Lemma 2.23, we have

f = ς2 ∗ g ⇐⇒ f ∗ q2 = g ∗ e0 ⇐⇒
⇐⇒ f ∗ q2 ∗ µ = g ∗ ι ⇐⇒ f ∗ q2 ∗ µ = g
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Define

µ(n) = q2 ∗ µ(n) =

{
µ(k), if n = k2 for some k,
0, otherwise.

Then g = µ ∗ f and therefore

g(n) =
∑
d|n

µ(d)f
(n
d

)
=
∑
j2|n

µ(j)f

(
n

j2

)

So f = ς2 ∗ g ⇐⇒ g = µ ∗ f , which shows the claim.

2.3 Liouville and Möbius Functions
We shift our focus to two important arithmetic functions, the Liouville

and Möbius functions. After we study some interesting results involving
them, for the purpose of exploration, we will show some relation between
them. To conclude this chapter, we will exhibit and prove a proposition on
the relation between their summation functions

L(x) :=
∑
n≤x

λ(n) M(x) :=
∑
n≤x

µ(n),

which will be used in chapter 4, as their asymptotic growth is closely related
the Riemann’s Hypothesis.

Proposition 2.25. We have that λ ∗ e0 = ς2.

Proof. Since λ is completely multiplicative,∑
d|n

λ(d) =
∏
p|n

(
1 + λ(p) + λ(p)2 + · · ·+ λ(p)νp(n)

)
=
∏
p|n

1− λ(p)νp(n)+1

1− λ(p)
=
∏
p|n

1− (−1)νp(n)+1

2
= ς2(n).

Lemma 2.26. For any sequence of complex numbers x1, x2, . . . , xn, we have∑
k≤n

λ(k)(xk + x2k + · · ·+ xbn
k ck) =

∑
j≤

√
n

xj2 . (2.2)

Proof. Rearranging the terms, by factoring out the xt, we have

∑
k≤n

λ(k)

bn
k c∑

t=1

xkt

 =
∑
t≤n

xt

∑
t|k

λ(k)

 .
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And, by Proposition 2.25 ∑
t≤n

xt ς2(t) =
∑
j≤

√
n

xj2 .

Lemma 2.27. For any sequence of complex numbers x1, x2, . . . , xn, we have∑
k≤n

µ(k)
(
xk + x2k + · · ·+ xbn

k ck
)
= x1. (2.3)

Proof. Rearraging the sums, we get

∑
k≤n

µ(k)

bn
k c∑

t=1

xkt

 =
∑
t≤n

xt

∑
t|k

µ(k)


=
∑
t≤n

xt ι(t) = x1 (by Proposition 2.20).

Proposition 2.28. For all n ∈ N one has∑
k≤n

λ(k)
⌊n
k

⌋
=
⌊√

n
⌋
, (2.4)

∑
k≤n

µ(k)
⌊n
k

⌋
= 1. (2.5)

Proof. Both equalities come from the last two Lemmas, applied to the se-
quence xk = 1 for all k.

Definition-Proposition 2.29. For x ≥ 0, we define

δx =

{
0, bxc even,
1, bxc odd.

(2.6)

We have that

δx =
1− (−1)⌊x⌋

2
= bxc − 2

⌊x
2

⌋
, (2.7)

and also that ∑
1≤n≤x

(−1)n+1 = δ⌊x⌋. (2.8)
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Proof. The first equality of (2.7) is easy.

1− (−1)⌊x⌋

2
=

{
1−1
2 , bxc even

1−(−1)
2 , bxc odd

=

{
0, bxc even,
1, bxc odd.

For the second one, recall that {x} = x− bxc and note that

bxc − 2
⌊x
2

⌋
= bxc − 2

⌊
bxc
2

+
{x}
2

⌋
.

Now let us first consider x with bxc even. Then ⌊x⌋
2 is an integer and as

{x} < 1 we have that {x}
2 < 1

2 . Hence⌊
bxc
2

+
{x}
2

⌋
=

bxc
2

and therefore

bxc − 2

⌊
bxc
2

+
{x}
2

⌋
= bxc − 2

bxc
2

= 0.

For x with bxc odd, we have that ⌊x⌋
2 is not an integer, but ⌊x⌋−1

2 is and thus⌊
bxc
2

+
{x}
2

⌋
=

⌊
bxc − 1

2
+

1

2
+

{x}
2

⌋
and, thus, as {x}

2 + 1
2 < 1, we have that⌊

bxc
2

+
{x}
2

⌋
=

bxc − 1

2
,

and therefore

bxc − 2

⌊
bxc
2

+
{x}
2

⌋
= bxc − 2

bxc − 1

2
= 1.

As for (2.8),∑
1≤n≤x

(−1)n+1 = 1− 1 + 1− 1 + · · ·+ (−1)⌊x⌋+1

= (1− 1) + (1− 1) + · · ·+ (−1)⌊x⌋+1

=

{
0, bxc even,
1, bxc odd.
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Proposition 2.30. For any n ∈ N, we have∑
k≤n

λ(k)
(
(−1)k + (−1)2k + · · ·+ (−1)b

n
k ck
)
= −δ√n. (2.9)

Proof. By Lemma 2.26 applied the sequence xk = (−1)k for all k,∑
k≤n

λ(k)
(
(−1)k + (−1)2k + · · ·+ (−1)b

n
k ck
)
=
∑
j≤

√
n

(−1)j
2

=
∑
j≤

√
n

(−1)j

= −
∑
j≤

√
n

(−1)j+1 = −δ√x.

Proposition 2.31. Recall that L(x) =
∑
n≤x

λ(n). We have, for all N ∈ N,

N∑
t=1

(−1)tL

(
N

t

)
= 2

⌊√
N

2

⌋
−
⌊√

N
⌋
. (2.10)

Proof.
N∑
t=1

(−1)tL

(
N

t

)
=
∑
t≤N

(−1)t
∑
n≤N

t

λ(n)

=
∑
t≤N

∑
nt≤N

(−1)tλ(n)

=
∑
n≤N

λ(n)

∑
nt≤N

(−1)t


=
∑
n≤N

λ(n)
(
−δbN

n c
)

(by equation (2.8))

=
∑
n≤N

λ(n)

(
2

⌊
N

2n

⌋
−
⌊
N

n

⌋)
(by equation (2.7))

=2
∑
n≤N

λ(n)

⌊
N

2n

⌋
−
∑
n≤N

λ(n)

⌊
N

n

⌋
If N

2 < n ≤ N , we have
⌊
N
2n

⌋
= 0 and thus we can simply the expression

as

2
∑
n≤N

λ(n)

⌊
N

2n

⌋
−
∑
n≤N

λ(n)

⌊
N

n

⌋
= 2

∑
n≤N

2

λ(n)

⌊
N

2n

⌋
−
∑
n≤N

λ(n)

⌊
N

n

⌋
.
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Finally, using equation (2.4)

N∑
t=1

(−1)tL

(
N

t

)
= 2

⌊√
N

2

⌋
−
⌊√

N
⌋
.

Lemma 2.32. For any n ≥ 1, we have

λ(n) =
∑
j2|n

µ

(
n

j2

)
and µ(n) =

∑
j2|n

µ(j)λ

(
n

j2

)
. (2.11)

Proof. Write n = td2, where t, d ∈ N and t is square-free.
If j2 | n, as t is square-free, we must have j2 | d2, and therefore j | d. So

j2 | n ⇐⇒ n = j2k2t for some k ∈ N, and µ
(

n
j2

)
6= 0 ⇐⇒ j = d. We also

have that

λ(t) = λ(d2)λ(t) = λ(n) = λ

(
n

j2

)
λ(j2) = λ

(
n

j2

)
λ(j)2 = λ

(
n

j2

)
.

Thus λ(n) = λ(t) and

∑
j2|n

µ

(
n

j2

)
= µ

( n
d2

)
= µ(t) = λ(t) = λ(n),

which shows the first equality. Also, using the fact that λ(t) = λ(n/j2)

∑
j2|n

µ(j)λ

(
n

j2

)
=
∑
j2|n

µ(j)λ (t)

= λ(t)
∑
j|d

µ(j) = λ(t)ι(d) (by Proposition 2.20)

=

{
λ(t), if d = 1 ⇐⇒ n is square-free,
0, otherwise

= µ(n).

Proposition 2.33. Recall that L(x) =
∑
n≤x

λ(n) and M(x) =
∑
n≤x

µ(n). One

has

L(n) =
∑
j≤

√
n

M

(
n

j2

)
and M(n) =

∑
j≤

√
n

µ(j)L

(
n

j2

)
. (2.12)
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Proof. Using the previous Lemma, we have

L(n) =
∑
t≤n

λ(t) =
∑
t≤n

∑
j2|t

µ

(
t

j2

)
=
∑
j2≤n

∑
kj2≤n

µ (k) (by rearranging the sums with t = kj2)

=
∑
j≤

√
n

M

(
n

j2

)
.

On the other hand,

M(n) =
∑
t≤n

µ(t) =
∑
t≤n

∑
j2|t

µ(j)λ

(
t

j2

)
=
∑
j2≤n

∑
kj2≤n

µ(j)λ (k) (by rearranging the sums as above)

=
∑
j≤

√
n

µ(j)L

(
n

j2

)
.
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Chapter 3

Convergence of Dirichlet
Series

While power series converge in discs, the convergence of Dirichlet series
happens in half-planes, as we will see in this chapter. Furthermore, the for-
mer converges both simply and absolutely inside its disc of convergence and
converges uniformly in any compact inside the disc, whereas the Dirichlet
series may have different half-planes of convergence for each type. Harald
Bohr was the first mathematician to study, on [Boh13a] and [Boh13b], the
relationship between the following three abscissas of convergence

σa := inf

σ ∈ R :
∑
n≥1

f(n)

nσ
converges absolutely

 ,

σc := inf

σ ∈ R :
∑
n≥1

f(n)

nσ
converges

 ,

σu := inf

σ ∈ R :
∑
n≥1

f(n)

nσ+it
converges uniformly for t ∈ R

 .

As absolute convergence implies uniform and simple convergence, and uni-
form convergence implies simple convergence, we have that σc ≤ σu ≤ σa.
We will see that σa − σc and σa − σu are bounded, and that if we assume
that the respective arithmetical function f is multiplicative, then σu = σa.

Let s = σ + it ∈ C with σ, t ∈ R be a complex number in the course of
this chapter. It is worth noting that

|ns| =
∣∣∣nσeit log(n)∣∣∣ = nσ,

as this implies that if a Dirichlet series converges for some s0 = σ0 + it0,
then it converges for s = σ0 + it for all t ∈ R.
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CHAPTER 3. CONVERGENCE OF DIRICHLET SERIES

Throughout this chapter, f is an arithmetic function and D(f ; s) denotes
its Dirichlet series, as defined above in Definition 2.1.

3.1 Absolute Convergence

Recall that a series converges absolutely if the series of the absolute
values of its terms is finite. We start this section by seeing that the abso-
lute convergence happens in a half-plane. After we will prove a uniqueness
theorem, stating that if Dirichlet series are equal in a sequence tending to
infinity, then their respective arithmetic functions are the same.

Lemma 3.1. If D(f ; s) converges absolutely for s = a+ib, then it converges
absolutely for all s = σ + it with σ ≥ a.

Proof. As σ ≥ a, |ns| = nσ ≥ na =
∣∣na+ib

∣∣, so∣∣∣∣f(n)ns

∣∣∣∣ ≤ ∣∣∣∣ f(n)na+ib

∣∣∣∣
and the result follows by the comparison test.

Proposition 3.2. Suppose that exists an s such that
∑

n≥1

∣∣∣f(n)ns

∣∣∣ diverges
and also another s such that it converges.

Then there exists a real number σa, called the abscissa of absolute
convergence, such that the series D(f ; s) converges absolutely if σ > σa
but does not converge absolutely if σ < σa.

Proof. Let D = {σ ∈ R :
∑

n≥1

∣∣∣f(n)ns

∣∣∣ diverges for s = σ + it} be the set of
all real numbers such that the series does not converge absolutely.

It is not empty by hypothesis and by the previous Lemma it is bounded
above (or else it would diverge for all s). So D has a supremum, which we
call σa. If σ < σa then σ ∈ D. If σ > σa, then σ /∈ D, so it converges
absolutely.

Remark. By convention, if the series converges absolutely everywhere, we
define σa = −∞ and if never converges absolutely we define σa = ∞.

3.1.1 Examples

• If f is bounded, then D(f ; s) converges absolutely for σ > 1, so σa ≤ 1.

• The Riemann Zeta Function ζ(s) =
∑∞

n=1
1
ns has σa = 1, since we

know it diverges for s = 1.
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3.1. ABSOLUTE CONVERGENCE

• For any character, the Dirichlet L-function L(s, χ) =
∑

n≥1
χ(n)
ns has

σa = 1; because if χ is the principal character, then s = 1 is a pole of
L(s, χ) and therefore σa = 1. If χ is not the principal character, given
to the periodic and completely multiplicative nature of the function,
we will have |χ(n)| ∈ {0, 1} for all n; in fact, if χ(n) 6= 0, then (n, q) = 1
and by Euler’s Theorem we then have nϕ(q) ≡ 1 mod q, which implies
χ(n)ϕ(q) = χ(nϕ(q)) = χ(1) = 1, therefore |χ(n)| = χ0(n).

• The series
∑∞

n=1
nn

ns diverges for all s, so it has σa = ∞.

• The series
∑∞

n=1
1

nnns converges absolutely for all s so it has σa = −∞.

Remark. Assuming D(f ; s) converges absolutely for σ > σa, we can define a
function F (s) :=

∞∑
n=1

f(n)
ns for s with σ > σa.

Lemma 3.3. If N ≥ 1 and c > σa, for s = σ + it such that σ ≥ c we have∣∣∣∣∣
∞∑

n=N

f(n)

ns

∣∣∣∣∣ ≤ N−(σ−c)
∞∑

n=N

|f(n)|
nc

. (3.1)

Proof. Since∣∣∣∣∣
∞∑

n=N

f(n)

ns

∣∣∣∣∣ ≤
∞∑

n=N

∣∣∣∣f(n)ns

∣∣∣∣ = ∞∑
n=N

|f(n)|
nσ

≤
∞∑

n=N

|f(n)|
ncnσ−c

,

as n ≥ N and σ − c ≥ 0, we have that nσ−c ≥ Nσ−c, and thus
∞∑

n=N

|f(n)|
ncnσ−c

≤
∞∑

n=N

N−(σ−c) |f(n)|
nc

.

Theorem 3.4. If F (s) = D(f ; s) is the function associated to the Dirichlet
series, for s = σ + it, then

lim
σ→∞

F (σ + it) = f(1)

uniformly for −∞ < t < +∞.

Proof. As we have F (s) = f(1) +
∑

n≥2
f(n)
ns , we only need to prove that

the second term tends to 0 as σ → ∞. Choose c > σa. Then for σ > c the
previous Lemma gives us∣∣∣∣∣∣

∑
n≥2

f(n)

ns

∣∣∣∣∣∣ ≤ 2−(σ−c)
∑
n≥2

|f(n)|
nc

=M
1

2σ

where M = 2c
∑

n≥2
|f(n)|
nc is independent of σ and t. As 1

2σ → 0 as σ → ∞,
the theorem follows.
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CHAPTER 3. CONVERGENCE OF DIRICHLET SERIES

Theorem 3.5 (Uniqueness). Given two Dirichlet series, absolutely con-
vergent for some s, consider the associated functions F (s) = D(f ; s) and
G(s) = D(g; s) defined for s with σ > σa. If F (sk) = G(sk) for all k ∈ N
where (sk)k∈N = (σk + itk)k∈N is a sequence such that σk → ∞ as k → ∞,
then f(n) = g(n) for all n ∈ N.

Proof. Let h(n) = f(n)−g(n) and H(s) = F (s)−G(s). So we get H(sk) = 0
for all k. Let us suppose that h(n) 6= 0 for some n and let

N := min{n : h(n) 6= 0}.

Then
H(s) =

∞∑
n=N

h(n)

ns
=
h(N)

N s
+

∞∑
n=N+1

h(n)

ns
.

Rewriting in order to h(N) we have

h(N) = N sH(s)−N s
∞∑

n=N+1

h(n)

ns
.

Now, taking s = sk, we have H(sk) = 0 and therefore

h(N) = −N sk

∞∑
n=N+1

h(n)

nsk
.

Let c > σa. Let us choose k such that σk > c and thus, by Lemma 3.3, we
have

|h(N)| ≤ Nσk(N + 1)−(σk−c)
∞∑

n=N+1

|h(n)|
nc

=

=

(
N

N + 1

)σk
(
(N + 1)c

∞∑
n=N+1

|h(n)|
nc

)
.

As k → ∞,
(

N
N+1

)σk

→ 0 and the second part does not depend on k. So
|h(N)| = 0, which is a contradiction. So we must have h(n) = 0 for all
n.

Theorem 3.6. Let F (s) = D(f ; s) be the function associated to the Dirichlet
series of f and suppose F (s) 6= 0 for some s such that σ > σa. Then exists
a half-plane σ > c, with c ≥ σa, where F (s) 6= 0 always.

Proof. Let us suppose such half-plane does not exist. Then, for each k ∈ N
we can choose sk with σk > k such that F (sk) = 0. Since σk → ∞ as k → ∞,
by the Uniqueness Theorem we have f(n) = 0 for all n, contradicting the
hypothesis that F (s) 6= 0 for some s.
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3.2. CONVERGENCE

3.2 Convergence
After the study of absolute convergence, we will now consider simple

and conditional convergences. We will show that, if the Dirichlet series
convergences conditionally, the series does it in an infinite vertical strip
whose horizontal length is bounded.

Proposition 3.7. If D(f ; s) converges for s0 = σ0 + it0, then it converges
for all s = σ+ it such that σ > σ0. Also if D(f ; s) diverges for s1 = σ1+ it1,
then it diverges for all s = σ + it such that σ < σ1.

Proof. The second statement follows from the first one.
As D(f ; s0) converges, the partial sums are bounded and therefore by

Lemma 3.3, if σ > σ0, we have∣∣∣∣∣∣
∑

a<n≤b

f(n)

ns

∣∣∣∣∣∣ ≤ Kaσ0−σ

where K is independent of a. So, making a→ ∞, we can see that the series is
a Cauchy series (see Definition D.3) and therefore converges by Proposition
D.4.

Theorem 3.8. Suppose that exists an s0 ∈ C such that
∑

n≥1
f(n)
ns diverges

and an s1 ∈ C such that it converges. Then there exists a real number σc,
called the abscissa of convergence, such that the series D(f ; s) converges
if σ > σc but diverges if σ < σc.

Remark. By the last Proposition, we must have Re(s0) ≤ Re(s1).

Proof. As in Proposition 3.2, we take

σc = sup{σ : D(f ; s) diverges for some s = σ + it}.

By the hypothesis made, σc ∈ R. As a consequence of the previous Propo-
sition and the fact that σc is a supremum, the theorem follows immedi-
ately.

As absolute convergence implies convergence, we have that

σa ≥ σc.

If σa > σc, there is an infinite strip σc < σ < σa in which the series converges
conditionally.

Theorem 3.9. For any Dirichlet series with σc finite, we have

0 ≤ σa − σc ≤ 1.

If σc = +∞, then σa = +∞. If σc = −∞, then σa = −∞.
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Proof. It suffices to show that if D(f ; s) converges for s0 = σ0 + it0, then it
converges absolutely for s = σ + it with σ > σ0 + 1.

Let A be an upper bound to
∣∣∣f(n)ns0

∣∣∣, that must exist because f(n)
ns0 con-

verges. Then we have∣∣∣∣f(n)ns

∣∣∣∣ = ∣∣∣∣f(n)ns0

∣∣∣∣ · ∣∣∣∣ 1

ns−s0

∣∣∣∣ ≤ A

nσ−σ0
.

So
∑

n≥1

∣∣∣f(n)ns

∣∣∣ converges for σ − σ0 > 1, by comparison with
∑

n≥1
1

nσ−σ0
.

Lemma 3.10. Suppose that for some s0 = σ0 + it0, the partial sums of
D(f ; s0) are bounded, say ∣∣∣∣∣∣

∑
n≤x

f(n)

ns0

∣∣∣∣∣∣ ≤M,

for all x ≥ 1. Then for all s such that σ > σ0 we have∣∣∣∣∣∣
∑

a<n≤b

f(n)

ns

∣∣∣∣∣∣ ≤ 2Maσ0−σ

(
1 +

|s− s0|
σ − σ0

)
. (3.2)

Proof. Let a(n) := f(n)
ns0 and A(x) :=

∑
n≤x a(n). Then we have

f(n)

ns
=

a(n)

ns−s0
,

and using the Abel’s summation formula (C.1) on a(n) we get∑
a<n≤b

f(n)

ns
=
∑

a<n≤b

a(n)

ns−s0

= A(b)bs0−s −A(a)as0−s + (s− s0)

∫ b

a
A(t)ts0−s−1dt.

As |A(x)| ≤M by hypothesis, we have, for σ > σ0∣∣∣∣∣∣
∑

a<n≤b

f(n)

ns

∣∣∣∣∣∣ ≤Mbσ0−σ +Maσ0−σ + |s− s0|M
∫ b

a
tσ0−σ−1dt

≤ 2Maσ0−σ + |s− s0|M
∣∣∣∣bσ0−σ − aσ0−σ

σ0 − σ

∣∣∣∣
≤ 2Maσ0−σ + |s− s0|M

2aσ0−σ

σ0 − σ

≤ 2Maσ0−σ

(
1 +

|s− s0|
σ − σ0

)
.
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Proposition 3.11. Let f be an arithmetical function. Suppose that the
partial sums

∑
n≤x f(n) are bounded. Then the series converges for all

s = σ + it such that σ > 0.

Proof. Take s0 = 0 and let b tend to ∞ in the previous Lemma. Then∣∣∣∣∣∑
n>a

f(n)

ns

∣∣∣∣∣ ≤ Ka−σ

for some constant K > 0. Taking a → ∞, we have that teh series is a
Cauchy series (see Definition D.3) and thus D(f ; s) converges by Proposition
D.4.

3.2.1 Examples

• The Riemann zeta function ζ(s) =
∑∞

n=1
1
ns has σc = 1, as |1(n)| = 1,

we have σa = σc.

• The series
∞∑
n=1

(−1)n

ns

has σa = 1 but σc = 0. As the partial sums
∑

n≤x(−1)n are bounded,
so σc ≤ 0, but as we have that σa = 1, by Theorem 3.9 we must have
σc = 0.

• The Dirichlet L-function L(s, χ) =
∑

n≥1
χ(n)
ns for a non-principal char-

acter, has σc = 0, by the same argument as in the previous example,
since σa = 1 and the partial sums

∑
n≤x χ(n) are bounded. This can

be seen as follows. As χ is periodic modulo q, we have

∑
n≤x

χ(n) =

⌊
x

q

⌋ q∑
n=1

χ(n) +R

where |R| ≤ |
∑q

n=1 χ(n)|, and since∣∣∣∣∣
q∑

n=1

χ(n)

∣∣∣∣∣ ≤
q∑

n=1

|χ(n)| ≤ ϕ(q)

we have |R| ≤ ϕ(n).
Since χ is not the principal character, there exists a number n0 with
(n0, q) = 1 such that χ(n0) /∈ {0, 1}. We can consider only the non-
zero terms in the sum, in other words, only the terms such that, for
n ∈ [1, q], we have (n, q) = 1. Also, observe that, if n runs through
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these values, then so does m = nn0, after reducing modulo q. Thus
we have

χ(n0)

q∑
n=1

χ(n) =
∑

1≤n≤q
(n,q)=1

χ(n0)χ(n) =
∑

1≤n≤q
(n,q)=1

χ(n0n) =
∑

1≤m≤q
(m,q)=1

χ(m)

and therefore, adding back the zero terms of the sum, we have

χ(n0)

q∑
n=1

χ(n) =
∑

1≤m≤q
(m,q)=1

χ(m) =

q∑
m=1

χ(m)

∑q
n=1 χ(n) = 0. So we have∣∣∣∣∣∣

∑
n≤x

χ(n)

∣∣∣∣∣∣ = |R| ≤ ϕ(q).

It is clear, like in the case of the Zeta function, σc = 1 if χ is the
principal character.

Theorem 3.12. There exists a Dirichlet series D(f ; s), with f a completely
multiplicative arithmetic function, such that σa − σc = α for any α ∈ [0, 1].

Proof. [BH16]. We already saw the cases α = 0 and α = 1.
For 0 < α < 1, consider the geometric series

Gα(s) =
(
1− 31−α−s

)−1
=
∑
k≥0

3(1−α)k

3ks
.

We can rewrite Gα(s) as a Dirichlet series using the change of variable n = 3k

and a suitable arithmetic function

Gα(s) =
∑
k≥0

3(1−α)k

3ks
=
∑
n≥1

gα(n)

ns

where

gα(n) =

{
n(1−α), if ∃k s.t. n = 3k,

0, otherwise,

is completely multiplicative. Since a geometric series both converges simply
and absolutely inside the disk |r| < 1, where r = 31−α−s is the ratio, i.e.
converges for any s = σ + it with σ > 1 − α, this Dirichlet series has
σa = σc = 1− α.

Let χ denote a non-principal character modulus 3, as defined above in
p. 8 and L(s, χ) its Dirichlet series. Recall that by definition χ is completely
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multiplicative. We saw that σa(L(s, χ)) = 1 in the subsection 3.1.1 and that
σc(L(s, χ)) = 0 in the subsection 3.2.1.

Consider the Dirichlet series given by the product

F (s) = Gα(s)L(s, χ) =
∑
n≥1

gα(n)

ns

∑
n≥1

χ(n)

ns

=
∑
n≥1

∑
ab=n gα(a)χ(b)

ns
.

Let us now study the behaviour of gα ∗ χ. We know it’s multiplicative,
because both gα and gαχ are. Since we can write any number n as n = 3kd,
where 3 ∤ d and k is the biggest exponent such that 3k | n, we have that
gα∗χ(n) = (gα ∗ χ) (3k) (gα ∗ χ) (d). Let us consider both factors separately.
We have

gα ∗ χ(3k) = gα(1)χ(3
k) + gα(3)χ(3

k−1) + · · ·+ gα(3
k−1)χ(3) + gα(3

k)χ(1)

= 0 + · · ·+ 0 + gα(3
k)χ(1) = gα(3

k)

because χ(3) = 0, and

gα ∗ χ(d) = gα(1)χ(d) +
∑
j>1
j|d

gα(j)χ

(
d

j

)

= 1 · χ(d) + 0 = χ(d),

because gα 6= 0 only if it’s a power of 3. Let n,m ∈ N, write n = 3kd and
m = 3lj. Then we have

gα ∗ χ(nm) = gα ∗ χ
(
3k+ldj

)
= (gα ∗ χ)

(
3k+l

)
(gα ∗ χ) (dj)

= gα

(
3k+l

)
χ(dj) = gα

(
3k
)
gα

(
3l
)
χ(d)χ(j)

= gα

(
3k
)
χ(d)gα

(
3l
)
χ(j) = gα ∗ χ

(
3kd
)
gα ∗ χ

(
3lj
)

= gα ∗ χ(n) gα ∗ χ(m),

that is, gα ∗ χ is completely multiplicative.
Finally, the product of two series is absolutely convergent where both

series are, so we have σa(F ) ≤ 1. But as L(1, |χ|) does not converge and
gα(1) > 0, so F also does not and therefore σa(F ) = 1. The product of
two series converge where both series do, so we have σc(F ) ≤ 1 − α, but
as Gα(1 − α) diverges as an infinity sum of 1, F will also have an infinity
number of coefficients with modulus 1, so we must have σc(F ) = 1− α.
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3.3 Uniform Convergence
We say a series converges uniformly if the sequence of its partial sums

converges uniformly. It is a stronger type of convergence than the one con-
sider in the previous section, and this fact will have some consequences about
the function defined by the series, namely that said function is analytic.

Let us define, as illustrated in figure 3.1,

D(b, δ, ε) = {s ∈ C : Re(s) ≥ b+ δ, |arg(s− b)| ≤ π

2
− ε}.

Rb {

δ

ε

ε

Figure 3.1: D(b, δ, ε)

Theorem 3.13. Let F (s) = D(f ; s) be the function associated to the Dirich-
let series of f and S(x) =

∑
n≤x f(n). Suppose there exist constants a, b > 0

such that |S(x)| ≤ axb for any x ≥ r, for some r > 0. Then the series D(f ; s)
is uniformly convergent in D(b, δ, ε) for any positive δ, ε.

In particular, F (s) is analytic in the half plane Re(s) > b.

Proof. [Jan96, Ch. IV.2] Let s = σ + it be in D(b, δ, ε). We have that
f(n) = S(n)− S(n− 1), so we can write∣∣∣∣∣

v∑
n=u

f(n)

ns

∣∣∣∣∣ =
∣∣∣∣∣

v∑
n=u

S(n)

ns
−

v−1∑
n=u−1

S(n)

(n+ 1)s

∣∣∣∣∣
=

∣∣∣∣∣S(v)vs
− S(u− 1)

us
+

v−1∑
n=u

S(n)

(
1

ns
− 1

(n+ 1)s

)∣∣∣∣∣
≤
∣∣∣∣S(v)vs

∣∣∣∣+ ∣∣∣∣S(u− 1)

us

∣∣∣∣+ v−1∑
n=u

|S(n)|
∣∣∣∣ 1ns − 1

(n+ 1)s

∣∣∣∣.
As |ns| = nσ and |S(x)| ≤ axb, we can write, by Abel Summation Formula
C.1:
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∣∣∣∣∣
v∑

n=u

f(n)

ns

∣∣∣∣∣ ≤ avb

vσ
+
aub

uσ
+

v−1∑
n=u

anb
∣∣∣∣ 1ns − 1

(n+ 1)s

∣∣∣∣
≤ 2a

uσ−b
+ a

v−1∑
n=u

∣∣∣∣nbns − nb

(n+ 1)s

∣∣∣∣. ( u ≤ v).

We have that

nb

ns
− nb

(n+ 1)s
≤ |s|nb

∣∣∣∣∫ n+1

n

dt

ts+1

∣∣∣∣ ≤ |s|nb
∫ n+1

n

dt

tσ+1
.

Thus, replacing it on the previous equality, we have∣∣∣∣∣
v∑

n=u

f(n)

ns

∣∣∣∣∣ ≤ 2a

uσ−b
+ a

v−1∑
n=u

|s|nb
∫ n+1

n

dt

tσ+1

≤ 2a

uσ−b
+ a|s|

∫ ∞

u

dt

tσ−b+1

≤ 2a

uσ−b
+

a|s|
(σ − b)uσ−b

.

Defining θ := arg(s− b), we have that cos θ = σ−b
|s−b| , and thus

|s|
σ − b

≤ |s− b|+ b

σ − b
≤ |s− b|

σ − b
+

b

σ − b
≤ 1

cos θ
+

b

σ − b
.

Because s ∈ D(b, δ, ε), we have σ− b ≥ δ and θ ≤ π
2 − ε, which means there

exists an M > 0 such that 1
cos θ ≤ M . So, for any ε0 > 0, there exists N

such that ∀u ≥ N and we have∣∣∣∣∣
v∑

n=u

f(n)

ns

∣∣∣∣∣ ≤ 2a

uσ−b
+

a|s|
(σ − b)uσ−b

≤
2a+M + b

δ

uσ−b
≤ ε0.

Hence the Cauchy criterion holds, and thus the series converges uniformly.
For any s = σ + it such that σ > b, there exists δ and ε such that

s ∈ D(b, δ, ε), and we have F (s) =
∑

n≥1
f(n)
ns , a uniformly convergent series,

therefore F is analytic in σ > b.

Definition 3.14. If D(f ; s) converges for some s, there exists a real number
σu, called the abscissa of uniform convergence, such that the series
D(f ; s) uniformly converges if σ > σu but not if σ < σu.

It is easy to see that
σc ≤ σu ≤ σa.

Remark. The previous theorem implies that σu is the minimum of all possible
b.
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Theorem 3.15. For any Dirichlet series, we have σa − σu ≤ 1
2 .

Proof. It suffices to prove that if a Dirichlet series D(f ; s) converges uni-
formly for s = σ0 + it, it converges absolutely for s = σ0 +

1
2 + ε, for any

ε > 0.
By the Cauchy-Schwarz inequality, we have

∑
n≥1

|f(n)|
nσ0+

1
2
+ε

≤

∑
n≥1

|f(n)|2

n2σ0

 1
2
∑

n≥1

1

n1+2ε

 1
2

(3.3)

and as we know that the second term of the product converges, we only need
to show that the first also does.

Note that each partial sum
∑

1≤n≤N
f(n)
ns is bounded at σ = σ0, since

uniform convergence implies convergence. More so, by hypothesis, the par-
tial sums must be uniformly bounded on the line σ = σ0, say by a constant
M . Then we have, for any t ∈ R

M2 ≥

∣∣∣∣∣∣
∑

1≤n≤N

f(n)

nσ0+it

∣∣∣∣∣∣
2

=
∑

1≤n≤N

|f(n)|2

n2σ0
+
∑
n ̸=m

Re

(
f(n)

nσ0+it

(
f(m)

mσ0+it

))

=
∑

1≤n≤N

|f(n)|2

n2σ0
+ 2Re

 ∑
1≤n<m≤N

f(n)

nσ0+it

f(m)

mσ0−it


=

∑
1≤n≤N

|f(n)|2

n2σ0
+ 2Re

 ∑
1≤n<m≤N

f(n)f(m)

(nm)σ0
(
n
m

)it
 .

We can take the average value of f(n)f(m)

(nm)σ0( n
m)

it with respect to t by integrating
from −T to T and dividing by 2T :

1

2T

∫ T

−T

f(n)f(m)

(nm)σ0
(
n
m

)it dt = f(n)f(m)

(nm)σ02T

∫ T

−T

(m
n

)it
dt

=
f(n)f(m)

(nm)σ02T

2 sin
(
T log

(
m
n

))
log
(
m
n

)
=
f(n)f(m) sin

(
T log

(
m
n

))
(nm)σ0T log

(
m
n

) .
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So we have that, taking T → ∞

M2 ≥
∑

1≤n≤N

|f(n)|2

n2σ0
+ 2Re

 ∑
1≤n<m≤N

f(n)f(m) sin
(
T log

(
m
n

))
(nm)σ0T log

(
m
n

)


≥
∑

1≤n≤N

|f(n)|2

n2σ0
.

Now, as N is arbitrary, we have that
∑

1≤n≤N
|f(n)|2
n2σ0

converges and thus,
by lemma 3.3, so does

∑
n≥1

|f(n)|
nσ0+

1
2+ε

.

Remark. The inequality σa − σu ≤ 1
2 is the best we can do, as it is possible

to built an arithmetical function d such that its Dirichlet Series has σu = 1
2

and σa = 1. The details of this construction and the proof that it has the
properties desired is very technical and by that reason is omitted from this
work. The full proof can be found on [Boa97].

Theorem 3.16. There exists a Dirichlet series D(f ; s), such that σa−σu =
α for any α ∈

[
0, 12
]
.

Proof. Fix α ∈
[
0, 12
]
. Consider the arithmetical function mention on the

remark above and denote its Dirichlet series by F (s) := D(f ; s). By con-
struction it has σu = 1

2 and σa = 1. Consider now the function ζ(s + α),
that has σa = σu = 1 − α. Then the Dirichlet series F (s) + ζ(s + α) has
σa = 1 but σu = 1− α. So σa − σu = α.

Theorem 3.17. Let D(f ; s) be the Dirichlet series of f , where f is multi-
plicative. Then σa = σu.

The proof can be seen in [BH16, pp. 450–452].
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Chapter 4

Riemann’s Hypothesis

We will first give out the necessary theory about the Riemann zeta func-
tion to then prove the main theorem that says the Riemann Hypothesis is
equivalent to the growth of M(x) :=

∑
n≤x µ(n) and L(x) :=

∑
n≤x λ(n)

being asymptotically bounded by x 1
2
+ε, for all ε > 0.

Recall that, we say f(x) = O(g(x)) if there exists a positive real number
M such that for any x

|f(x)| ≤Mg(x).

4.1 Riemann’s Zeta Function
The following function was first introduced and studied over the real

numbers by Leonhard Euler in the first half of the eighteenth century, but
it gained more importance when Bernhard Riemann studied it over the
complex plane in 1859.

Definition 4.1. For any s = σ + it ∈ C with σ > 1 one defines

ζ(s) = D(1; s) =
∑
n≥1

1

ns
.

This function can be extended to all complex values, except s = 1, via
analytic continuation. The extended function is called the Riemann zeta
function, while still denoted by ζ.

Remark. It is well known, [Apo76, Theorem 11.7], that one has

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

.

This identity is known as Euler’s product formula and it is an alternative
way to express the zeta function, that shows a direct relation between the
function and prime numbers.
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Hypothesis (Riemann’s Hypothesis). The Riemann’s zeta function has its
zeros only at the negative even integers (called the trivial zeros) and complex
numbers with real part 1

2 .

Definition 4.2. For any s = σ + it ∈ C with σ > 1 and for 0 < a < 1 a
fixed real number, one defines

ζ(s, a) =
∑
n≥0

1

(n+ a)s
.

Once again, it is possible, via analytic continuation, to extended this function
to all complex values with exception of s = 1. This extended function is called
Hurwitz zeta function, named after Adolf Hurwitz, who introduced it in
1882. Note that ζ(s, 1) = ζ(s).

Theorem 4.3. For any integer N ≥ 0 and s = σ + it such that σ > 0, we
have

ζ(s, a) =
N∑

n=0

1

(n+ a)s
+

(N + a)1−s

s− 1
− s

∫ ∞

N

x− bxc
(x+ a)s+1

dx.

Proof. [Apo76]. Let us apply Euler’s Summation formula, Proposition C.2,
to f(t) = (t+ a)−s and integers x and y.

∑
y<n≤x

1

(n+ a)s
=

∫ x

y

1

(t+ a)s
dt− s

∫ x

y

t− btc
(t+ a)s+1

dt+
bxc − x

(x+ a)s
− byc − y

(y + a)s

=

∫ x

y

1

(t+ a)s
dt− s

∫ x

y

t− btc
(t+ a)s+1

dt.

Taking y = N and letting x→ ∞, σ > 1, we obtain

∞∑
n=N+1

1

(n+ a)s
=

∫ ∞

N

1

(t+ a)s
dt− s

∫ ∞

N

t− btc
(t+ a)s+1

dt,

and therefore

ζ(s, a)−
N∑

n=0

1

(n+ a)s
=

(N + a)1−s

s− 1
− s

∫ ∞

N

t− btc
(t+ a)s+1

dt,

which proves the Theorem for σ > 1. If σ ≥ δ > 0, the integral
∫∞
N

t−⌊t⌋
(t+a)s+1 dt

is dominated by
∫∞
N

1
(t+a)s+1 dt, so it converges uniformly for σ ≥ δ, and

hence represents an analytic function in the half-plan σ > 0. Thus, by
analytic continuation, the Theorem holds for σ > 0.
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Proposition 4.4. We have, for σ > 1,

log ζ(s) =
∑
n≥1

Λ(n)

ns log n
,

where Λ is the Van Mangoldt funtion.

Proof. Recall that

Λ(n) =

{
log(p), if n = pk for some p prime and k ∈ N,
0, otherwise,

and that ζ(s) =
∏

p

(
1− 1

ps

)−1
.

Then log ζ(s) = −
∑

p log(1− p−s). Differentiating this expression, term
by term, we get

ζ ′(s)

ζ(s)
= −

∑
p

log (p)p−s

1− p−s

=
∑
p

log p

(
1− 1

1− ps

)
=
∑
p

log p
∑
k≥1

p−ks

=
∑
p

∑
k≥1

log p(pk)−s

=
∑
n≥1

Λ(n)n−s.

Now, anti-differentiating this expression we get

log ζ(s) =
∑
n≥1

Λ(n)

ns log n
.

4.2 The Gamma Function
The Gamma function is an extension of the factorial function to the

complex plane, except for the non-positive integers, where the function has
simple poles. We will study the connection it has to the Riemann’s Zeta
function.

Definition 4.5. For any s = σ + it with σ > 0, one defines

Γ(s) =

∫ +∞

0
e−xxs−1 dx. (4.1)
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One can extend this integral function to all complex plane except zero and the
negative integers by analytic continuation, to which one calls the gamma
function.

Remark. The following expressions are alternative ways to write Γ (4.1),
both of which extend it to C \ {0,−1,−2,−3, . . . }

Γ(s) = lim
n→∞

1 · 2 · 3 . . . n
s(s+ 1)(s+ 2) . . . (s+ n)

(n+ 1)s (4.2)

Γ(s) =
1

s

∏
n≥1

(
1 +

s

n

)−1
(
1 +

1

n

)s

.

The proof of the first one can be found in [Art64, Equation (2.7)], and the
second can be obtained from the first.

Proposition 4.6. We have the following identities:

Γ(s+ 1) = sΓ(s), (4.3)
n! = Γ(n+ 1), n ∈ N, (4.4)

Γ(s)Γ(1− s) =
π

sinπs
, s /∈ Z, (4.5)

Γ(s)Γ

(
s+

1

2

)
= 21−2sπ

1
2Γ(2s). (4.6)

Proof. The first identity comes from integration by parts of the integral
expression:

Γ(s+ 1) =

∫ +∞

0
e−xxs dx

=
[
−e−xxs

]∞
0

−
∫ +∞

0
−e−xsxs−1 dx =

= s

∫ +∞

0
e−xxs−1 dx = sΓ(s).

The second identity results from the first by induction, and the fact that
Γ(1) = 1.

The third identity is known as Euler’s reflection formula and it uses the
product formula, for the sine function

sin (πs) = πs
∏
n≥1

(
1− s2

n2

)
,

and the limit expression of Γ (4.2) and taking s /∈ Z:
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Γ(s)Γ(1− s) = lim
n→+∞

n!(n+ 1)s

s(s+ 1)(s+ 2)(s+ 3) . . . (s+ n)

n!(n+ 1)1−s

(1− s)(−s)(1− s)(2− s) . . . (n+ 1− s)

= lim
n→+∞

(n!)2(n+ 1)

s(s+ 1)(1− s) . . . (s+ n)(n− s)(n+ 1− s)

= lim
n→+∞

(n!)2(n+ 1)

s(n+ 1− s)
∏

1≤i≤n(i
2 − s2)

= lim
n→+∞

(n!)2(n+ 1)

s(n+ 1− s)
∏

1≤i≤n i
2(1− s2

i2
)

= lim
n→+∞

(n!)2(n+ 1)

s(n+ 1− s)(n!)2
∏

1≤i≤n(1−
s2

i2
)

= lim
n→+∞

n+ 1

(n+ 1− s)

1

s
∏

1≤i≤n(1−
s2

i2
)

= lim
n→+∞

1

s
∏

1≤i≤n(1−
s2

i2
)

=
π

sin(πs)
.

Note that we have to assume s /∈ Z so the left side has meaning.
The fourth identity is known as Legendre duplication formula and it

comes from the beta function, which is also called the Euler integral of the
first kind,

B(s1, s2) :=

∫ 1

0
ts1−1(1− t)s2−1 dt =

Γ(s1)Γ(s2)

Γ(s1 + s2)
,

the function is defined as the integral, but it is possible to show the second
equality. More can be found on [Art64, Ch. 2, Equation (2.12)].

Let us evaluate the beta function at (s, s)

B(s, s) =
Γ(s)2

Γ(2s)
=

∫ 1

0
ts−1(1− t)s−1 dt.

Substituting t = 1+x
2 we get

Γ(s)2

Γ(2s)
=

1

22s−1

∫ 1

−1
(1− x2)s−1 dx.

As the integrand is even, we get

Γ(s)2

Γ(2s)
=

2

22s−1

∫ 1

0
(1− x2)s−1 dx.
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Now, let us evaluate beta at
(
1
2 , s
)

B

(
1

2
, s

)
=

Γ(12)Γ(s)

Γ
(
s+ 1

2

) =

∫ 1

0
t−

1
2 (1− t)s−1 dt.

Substituting t = x2 we get
Γ(12)Γ(s)

Γ
(
s+ 1

2

) =

∫ 1

0
x−1(1− x2)s−12x dx

= 2

∫ 1

0
(1− x2)s−1 dx.

This implies that
22s−1Γ(s)2

Γ(2s)
=

Γ(12)Γ(s)

Γ
(
s+ 1

2

) .
Rearranging the terms we have

Γ (s) Γ

(
s+

1

2

)
= 21−2sΓ(2s)Γ

(
1

2

)
.

Now, evaluating equation (4.5) at s = 1
2 , we get Γ

(
1
2

)
= π

1
2 . Therefore,

we have
Γ (s) Γ

(
s+

1

2

)
= 21−2sπ

1
2Γ(2s).

Using the Gamma function, one can get an alternative expression for the
zeta function.
Proposition 4.7. For all s = σ + it with σ > 1, we have

ζ(s) =
∑
n≥1

1

ns
=

1

Γ(s)

∫ +∞

0

xs−1

ex − 1
dx. (4.7)

Proof. We have, by substituting x with nx in (4.1) and using the sum∑
n≥1 r

−n = (r − 1)−1:

Γ(s)

ns
=

∫ +∞

0
e−nxxs−1 dx.

Summing, we obtain

Γ(s)
∑
n≥1

1

ns
=
∑
n≥1

∫ +∞

0
e−nxxs−1 dx

=

∫ +∞

0

∑
n≥1

e−nx

xs−1 dx =

∫ +∞

0

xs−1

ex − 1
dx.

We can change the order of the sum and integral because, for σ > 1, the
series converges absolutely.
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4.2.1 Stirling’s Formula
Because of the connection between the Gamma and Zeta functions, we

will need to study the former in more detail to draw some conclusions about
the growth of the latter. In particular, we will need the Stirling’s Formula
in order to give some approximations to the Gamma function.

Proposition 4.8 (Stirling’s Formula). For −π+ δ ≤ arg s ≤ π− δ, we have

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log 2π +

B2

2s
+O

(
1

s3

)
where B2 is the Bernoulli number (definition C.6) of order 2.

Proof. For N integer, let SN (s) =
∑N

n=0 log (s+ n). Using the Euler-
Maclaurin Summation Formula C.7, with v = 0, on the function f(x) =
log (s+ x), where s > 0 is a real number, we get

SN (s) =

N∑
n=0

log (s+ n)

=

∫ N

0
log (s+ x) dx+

1

2
(log (s) + log (s+N)) +

∫ N

0

B1(x)

x+ s
dx.

Note that
∫
log (s+ x) dx = (s+ x) log (s+ x)− x.

So we can then write

SN (s) = ((s+ x) log (s+ x)− x)
∣∣∣N
0
+

1

2
(log (s) + log (s+N))

+

∫ ∞

0

B1(x)

s+ x
dx−

∫ ∞

N

B1(x)

s+ x
dx

=

(
N + s+

1

2

)
log (s+N)−N −

(
s− 1

2

)
log s+

∫ ∞

0

B1(x)

s+ x
dx−

−
∫ ∞

N

B1(x)

s+ x
dx.

Now, from the limit expression of the Gamma function, (4.2), we can see
that

log Γ(s) = lim
N→∞

[SN−1(1)− SN (s) + s log (N + 1)]

= lim
N→∞

[(
N +

1

2

)
log (N) +

∫ ∞

0

B1(x)

1 + x
dx−

∫ ∞

N−1

B1(x)

1 + x
dx

−N + 1−
(
N + s+

1

2

)
log (s+N) +N +

(
s− 1

2

)
log s

−
∫ ∞

0

B1(x)

s+ x
dx+

∫ ∞

N

B1(x)

s+ x
dx+ s log (N + 1)

]
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Now, we have that∫ ∞

N−1

B1(x)

1 + x
dx+

∫ ∞

N

B1(x)

s+ x
dx =

∫ ∞

N

B1(y)

y
dx+

∫ ∞

N

B1(x)

s+ x
dx

=

∫ ∞

N

B1(x)

x
+
B1(x)

s+ x
dx

=

∫ ∞

N

(s+ x)B1(x)

x
+

(x)B1(x)

s+ x
dx

=

∫ ∞

N

(s+ 2x)B1(x)

x(s+ x)
dx

and as x→ ∞, the integrand tends to 0. Thus if we take N → ∞, we have
that this integral is equal to 0.

log Γ(s) =

(
s− 1

2

)
log s+ 1 +

∫ ∞

0

B1(x)

1 + x
dx−

∫ ∞

0

B1(x)

s+ x
dx+

+ lim
N→∞

[(
N +

1

2

)
log (N) + s log (N + 1)−

−
(
N + s+

1

2

)
log (s+N)

]

=

(
s− 1

2

)
log s+ 1 +

∫ ∞

1

B1(y − 1)

y
dy −

∫ ∞

0

B1(x)

s+ x
dx+

+ lim
N→∞

[(
N +

1

2

)
log

(
N

N + s

)
+ s log

(
N + 1

N + s

)]
Now, as limN→∞

(
N + 1

2

)
log
(

N
N+s

)
= −s and limN→∞ s log

(
N+1
N+s

)
= 0,

we have

log Γ(s) =

(
s− 1

2

)
log s+ 1 +

∫ ∞

1

B1(y)

y
dy −

∫ ∞

0

B1(x)

s+ x
dx− s

=

(
s− 1

2

)
log s− s+A−

∫ ∞

0

B1(x)

s+ x
dx

where A = 1 +
∫∞
1

B1(y)
y dy.

We can now write it as

Γ(s) = ss−
1
2 e−seAr(s)

where r(s) = exp
(
−
∫∞
0

B1(x)
s+x dx

)
.
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Now, substituting this expression on the identity (4.6) we have

ss−
1
2 e−seAr(s)

(
s+

1

2

)s

e−s− 1
2 eAr

(
s+

1

2

)
=

= 21−2sπ
1
2 (2s)2s−

1
2 e−2seAr(2s).

Cancelling equal terms on both sides, we get

eAr(s)

(
2s+ 1

2

)s

e−
1
2 r

(
s+

1

2

)
= (2π)

1
2 ssr(2s).

Writing in order to eA, we have

eA = (2π)
1
2

ss

(2s+1)s

2s

e
1
2

r(2s)

r(s)r
(
s+ 1

2

) .
Simplifying the fraction, we have

eA = (2π)
1
2

(
1 +

1

2s

)−s

e
1
2

r(2s)

r(s)r
(
s+ 1

2

) .
Now, taking s→ ∞, we get

(
1 + 1

2s

)−s
= e−

1
2 and

lim
s→∞

r(2s)

r(s)r
(
s+ 1

2

) =

= lim
s→∞

exp

(
−
∫ ∞

0

B1(x)

2s+ x
dx+

∫ ∞

0

B1(x)

s+ x
dx+

∫ ∞

0

B1(x)

s+ 1
2 + x

dx

)

= exp

(
lim
s→∞

∫ ∞

0

B1(x)

s+ x
dx+

∫ ∞

0

B1(x)

s+ 1
2 + x

dx−
∫ ∞

0

B1(x)

2s+ x
dx

)
= e0.

Therefore,
eA = (2π)

1
2 e−

1
2 e

1
2 = (2π)

1
2

and hence
A =

1

2
log (2π).

Now we have, for all s > 0,

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log (2π)−

∫ ∞

0

B1(x)

s+ x
dx. (4.8)

All terms of this expression are defined throughout the complex plane except
for the real negatives numbers and 0, which we are going to call the slit
plane, and are analytic functions of s. This is obvious for all terms, except
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the integral, but we have already shown that this integral is convergent for
s > 0 and the same argument works for all s in the slit plane. So, by
analytic continuation, the above expression is valid to all complex s except
the non-positive real numbers.

Now, if we integrate by parts that integral, we have

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log (2π) +

B2

2s
+

B4

4 · 3 · s3
+ · · ·+

+ · · ·+ B2v

2v(2v − 1)s2v−1
+R2v

where R2v = −
∫∞
0

B2v(x)
2v(s+x)2v

dx, or alternatively

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log (2π) +

B2

2s
+O

(
1

s3

)
.

Corollary 4.9. For σ bounded and |t| → ∞, we have

|Γ(s)| ∼
√
2π|t|σ−

1
2 e−

|t|π
2 .

Proof. We only need to show this for t positive, as Γ(σ − it) = Γ(σ + it),
and therefore |Γ(σ − it)| = |Γ(σ + it)|. Now,

log |Γ(s)| = Re (log Γ(s))

= Re

((
s− 1

2

)
log s− s+

1

2
log (2π) +

B2

2s
+O

(
1

s3

))
=

(
σ − 1

2

)
log |s|+ t Im(log s)− σ +

1

2
log 2π +O

(
t−1
)

=

(
σ − 1

2

)
log |s| − t arg s− σ +

1

2
log 2π +O

(
t−1
)
.

As t → ∞, we have arg s = π
2 − δ, with δ → 0. More so, |s| = |t| + O(1),

thus log |s| = log |t|. Also σ = t tan(δ) and, as δ → 0 when t→ ∞, we have
tan(δ) = δ +O(δ3), so σ = tδ +O(tδ3) = tδ +O( 1

t2
).

Adding all of these estimates together, we get

log |Γ(s)| =
(
σ − 1

2

)
log |s| − t arg s− σ +

1

2
log 2π +O

(
t−1
)

=

(
σ − 1

2

)
log |t| − t

(π
2
− δ
)
− tδ +O

(
1

t2

)
+

1

2
log 2π +O

(
t−1
)

=

(
σ − 1

2

)
log |t| − t

π

2
+

1

2
log 2π +O

(
t−1
)
.
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So, we can deduce, for |t| → ∞

exp (log |Γ(s)|) = exp

((
σ − 1

2

)
log |t| − t

π

2
+

1

2
log 2π +O

(
t−1
))

,

and hence,
|Γ(s)| ∼

√
2π|t|σ−

1
2 e−

|t|π
2

4.3 The Functional Equation for the Zeta Function
One of the most used ways to extend the Riemann Zeta function over

all complex plane, except at its pole at s = 1, is through what is called its
functional equation. In this section, we will give one of the many proofs of
this functional equation.

Proposition 4.10 (Functional Equation). We have, for all s ∈ C,

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s). (4.9)

Remark. The functional equation implies that ζ(s) has a zero at each even
negative integer, collectively known as the trivial zeros of ζ(s). When s is
an even positive integer, the product sin

(
πs
2

)
Γ(1−s) on the right is non-zero

because Γ(1− s) has a simple pole that cancels with the simple zero of the
sine factor.

Proof. [Mur01]. Doing a change of variable x = n2xπ in the identity (4.1),
we have

Γ

(
1

2
s

)
=

∫ +∞

0
e−xx

1
2
s−1 dx

=

∫ +∞

0
e−n2xπ(xn2π)

1
2
s−1n2π dx

= nsπ
1
2
s

∫ +∞

0
e−n2xπx

1
2
s−1 dx.

Similarly to Proposition 4.7, for σ > 1, the integral and the sum converge
absolutely, so we have

ζ(s)Γ(12s)

π
1
2
s

=

∫ ∞

0
x

1
2
s−1

∞∑
n=1

e−n2xπ dx. (4.10)

Define ψ(x) :=
∑∞

n=1 e
−n2xπ. Note that for x > 0, by Corollary C.5 and

by
f̂(u) =

∫ ∞

−∞
e−y2πxe−2πiyu dy = e−π u2

x
1√
x
,
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we have
∞∑

n=−∞
e−n2xπ =

1√
x

∞∑
n=−∞

e
−n2π

x .

Or, alternatively,

2ψ(x) + 1 =
1√
x

(
2ψ

(
1

x

)
+ 1

)
.

Hence, we can rewrite (4.10) as

ζ(s)Γ(12s)

π
1
2
s

=

∫ ∞

0
x

1
2
s−1ψ(x) dx

=

∫ 1

0
x

1
2
s−1ψ(x) dx+

∫ ∞

1
x

1
2
s−1ψ(x) dx

=

∫ 1

0
x

1
2
s−1

(
1√
x
ψ

(
1

x

)
+

1

2
√
x
− 1

2

)
dx+

∫ ∞

1
x

1
2
s−1ψ(x) dx

=
1

s− 1
− 1

s
+

∫ 1

0
x

1
2
s− 3

2ψ

(
1

x

)
dx+

∫ ∞

1
x

1
2
s−1ψ(x) dx

=
1

s(s− 1)
+

∫ ∞

1

(
x−

1
2
s− 1

2 + x
1
2
s−1
)
ψ(x) dx.

As the integral converges for all s, the formula holds for all s. Replacing s
by 1− s, as the right side stays unchanged, we obtain

ζ(s)Γ(12s)

π
1
2
s

=
ζ(1− s)Γ(12 − 1

2s)

π
1
2
− 1

2
s

.

Rearranging in order to ζ(s), we get

ζ(s) = πsζ(1− s)
Γ
(
1
2 − 1

2s
)

π
1
2Γ
(
1
2s
) . (4.11)

Now using propriety (4.6) for −s
2 , we have

Γ

(
−s
2

)
Γ

(
1− s

2

)
= Γ (−s)π

1
2 21+s.

Multiplying both sides by Γ
(
s
2

)
s
2 we get

Γ
(s
2

) s
2
Γ

(
−s
2

)
Γ

(
1

2
− s

2

)
= Γ

(s
2

) s
2
Γ(−s)π

1
2 21+s.

Using property (4.3) on s
2Γ
(−s

2

)
and sΓ(−s) we get

−Γ
(s
2

)
Γ
(
1− s

2

)
Γ

(
1

2
− s

2

)
= −2sΓ

(s
2

)
π

1
2Γ(1− s).
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Rearranging the terms, we have

Γ
(
1
2 − s

2

)
π

1
2Γ( s2)

= 2s
Γ(1− s)

Γ
(
s
2

)
Γ
(
1− s

2

) .
Finally, using property (4.5), we have

Γ
(
1
2 − s

2

)
π

1
2Γ( s2)

= 2sΓ(1− s) sin
(πs
2

)
π−1.

Finally, substituting the last identity on (4.11), we get the desired result.

Corollary 4.11 (Alternative ways of expressing the functional equation).
We can rewrite the functional equation as

1. ζ(1− s) = 21−sπ−s cos
(
πs
2

)
Γ(s)ζ(s),

2. ξ(s) = ξ(1− s), where ξ(s) = 1
2π

− s
2 (s)(s− 1)Γ

(
(s)
2

)
ζ(s).

Proof. (1) Evaluate the functional equation on s = 1− s, we have

ζ(1− s) = 21−sπ−s sin

(
π(1− s)

2

)
Γ(s)ζ(s)

= 21−sπ−s cos
(πs
2

)
Γ(s)ζ(s).

(2) As we saw on the proof of Proposition 4.10, the functional equation is
equivalent to (4.11), i.e,

ζ(s) = ζ(1− s)πs−
1
2
Γ
(
1−s
2

)
Γ
(
s
2

) .

We can multiply this equation by 1
2π

− s
2 s(s− 1)Γ

(
s
2

)
to get

1

2
π

−s
2 s(s− 1)Γ

(s
2

)
ζ(s) =

1

2
π

−s
2 πs−

1
2 s(s− 1)Γ

(s
2

) Γ
(
1−s
2

)
Γ
(
s
2

) ζ(1− s).

Finally, simplifying the expression we obtain, as desired,

ξ(s) = ξ(1− s).
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4.4 Growth of the Zeta Function
As the Dirichlet series of the Möbius function and the Zeta function

are inverses of one another, one can expect that the ”growth” of the Zeta
Function will have a role in the proof of the main theorem of this chapter,
namely about the growth of M(x), the summation function of µ. So, here
we will study the growth of Zeta over vertical lines, first outside the critical
strip and then inside the critical strip, first without any assumptions and
then assuming the Riemann’s Hypothesis.

Definition 4.12. For σ ∈ R, define

ν(σ) := inf{α : ζ(σ + it) = O (tα) , |t| → ∞}.

Remark. It follows from general Dirichlet Series Theory, that ν is a non-
negative, non-increasing and continuous function. See [TH87, Ch. V].

Proposition 4.13. We have that

ν(σ) =

{
0, σ ≥ 1,
1
2 − σ, σ ≤ 0.

Proof. First, for σ ≥ 2, we have |ζ(σ + it)| ≤ ζ(σ) ≤ ζ(2). So, of course
ζ(s) = O(t0). We choose 2 arbitrarily, it could have been any real number
bigger than 1.

Now, for 1 ≤ σ ≤ 2, we will apply Lindelöf’s Bound Theorem D.9, to
the function f(s) := ζ(s)

log s , the rectangle [1, 2] × [t0,∞] (where t0 > 0) and
affine function κ(σ) = 0. It’s clear that f(s) is holomorphic inside and on
this infinite rectangle, because both log(s) and ζ(s) are holomorphic in this
region (note that s = 1 is not in it).

Now, let us check that |ζ(s)| = O(log t) on σ = 1. Using Theorem 4.3
we can write, for a = 1, N ≥ 1 (and doing a change of variable N ′ = N − 1)
and σ > 0,

ζ(s) =
N∑

n=1

1

ns
+
N1−s

s− 1
− s

∫ ∞

N

x− bxc
xs+1

dx. (4.12)

Setting s = 1 + it and N = btc, we have

|ζ(1 + it)| ≤ 1 +
1

2
+

1

3
+ · · ·+ 1

btc
+

1

t
+
√

1 + t2
∫ ∞

⌊t⌋

1

x2
dx

≤
∫ t

1

1

x
dx+

√
1 + t2

btc

≤ log(t) +
t+ 1

t− 1

≤ 2 log(t) = O(log t).

54



4.4. GROWTH OF THE ZETA FUNCTION

Note that |log s| ≥ log t, because

|log s| =
∣∣∣log√1 + t2 + i arg s

∣∣∣
≥ log

√
1 + t2 =

1

2
log (1 + t2)

≥ 1

2
log t2 ≥ log t.

So we have, for some constants K > 0, L > 0

|f(1 + it)| ≤ K log t

|log s|
≤ Lt0.

As we have seen, |ζ(2 + it)| ≤ ζ(2)t0. So, for some constant B > 0, we
have

|f(2 + it)| = ζ(2)

|log s|
≤ Bt0.

We also have, by taking N = 1 in identify (4.12), for s 6= 1 and σ > 0

ζ(s) =
s

s− 1
− s

∫ ∞

1

x− bxc
xs+1

dx.

This implies that ζ(s) = O(tL) for some L > 0 on the infinite rectangle,
because

|ζ(s)| ≤
∣∣∣∣ s

s− 1

∣∣∣∣− |s|
∫ ∞

1

x− bxc
xσ+1

dx.

Thus, for 1 ≤ σ ≤ 2 and some constants C,D > 0, we have

|f(σ + it)| ≤ MtL

|log s|
≤ MtL

log t
≤ CtD.

Hence, we can apply Lindelöf’s Theorem and we have, on the defined
rectangle,

|ζ(s)|
|log s|

≤ K,

and thus
|ζ(s)| = O(log(t)) = O(tε),

for all ε > 0. So the Theorem is proved for σ ≥ 1.

Let us now assume σ ≤ 0.First, let us consider the following estimate
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∣∣∣∣sin(π(σ + it)

2

)∣∣∣∣ = ∣∣∣∣sin(πσ2 ) cosh
(
πt

2

)
− i cos

(πσ
2

)
sinh

(
πt

2

)∣∣∣∣
≤
∣∣∣sin(πσ

2

)∣∣∣∣∣∣∣cosh(πt2
)∣∣∣∣+ ∣∣∣cos(πσ2 )∣∣∣

∣∣∣∣sinh(πt2
)∣∣∣∣

≤
∣∣∣∣cosh(πt2

)∣∣∣∣+ ∣∣∣∣sinh(πt2
)∣∣∣∣

≤ e
πt
2 + e

−πt
2

2
+
e

πt
2 − e

−πt
2

2
= e

πt
2 .

So, we have, for fixed σ ≤ 0, for some constant K > 0

|ζ(σ + it)| = 2σπσ−1|ζ(1− σ − it)||Γ(1− σ − it)|
∣∣∣sin(πs

2

)∣∣∣
= 2σπσ−1|ζ(1− σ + it)||Γ(1− σ + it)|

∣∣∣sin(πs
2

)∣∣∣
Using the first part of the theorem for the modulus of Zeta, the above
estimate for the sine function and the estimate from Corollary 4.9, we have

|ζ(σ + it)| ≤ K
√
2πtσ−

1
2 e

−πt
2 e

πt
2 = O

(
tσ−

1
2

)
.

So ν(σ) ≤ σ − 1
2 for σ ≤ 0.

Recall that ξ(s) = 1
2π

− s
2 (s)(s − 1)Γ

(
s
2

)
ζ(s). Fix σ ≤ 0 and let t → ∞.

Then, using Stirling’s Formula for the Gamma function (Proposition 4.8),
we have

log |ξ(σ + it)| = Re log ξ(σ + it) = Re

(
log

1

2
π−

s
2 (s− 1)sΓ

(s
2

)
ζ(s)

)
Using property (4.3)

log |ξ(σ + it)| = Re
(
log Γ

(s
2
+ 1
))

+Re
(
log π−

s
2

)
+Re log (σ − 1 + it)+

+ Re (log(ζ(σ + it)))

= log
∣∣∣Γ(s

2
+ 1
)∣∣∣− σ

2
log π + log |s− 1|+ log |ζ(σ + it)|

Now using the Stirling Formula and the fact that as t → ∞, log |s| → log t
and Im

(
log s

2

)
= arg s

2 → π
2 , we have
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log |ξ(σ + it)| ∼
(
σ + 1

2

)
log
∣∣∣s
2

∣∣∣− t

2
Im
(
log

s

2

)
− σ

2
+

1

2
log 2π−

− σ

2
log π + log |s− 1|+ log |ζ(σ + it)|

∼ σ

2
(log t− 1− log π) +

3

2
log t− πt

4
+

1

2
log 2π+

+ log |ζ(σ + it)|

∼ σ

2
log

t

πe
+

3

2
log t− πt

4
+

1

2
log 2π + log |ζ(σ + it)|

As we have ξ(s) = ξ(1− s), we can write

0 = log |ξ(σ + it)| − log ξ(1− σ + it),

or, alternatively, using the above estimates

0 ∼ σ

2
log

t

eπ
− 1− σ

2
log

t

eπ
+ log |ζ(σ + it)| − log |ζ(1− σ + it)|.

Thus, we have

0 ∼
(
σ − 1

2

)
log

t

eπ
+ log

∣∣∣∣ ζ(σ + it)

ζ(1− σ + it)

∣∣∣∣.
Therefore

1 ∼
(
t

eπ

)σ− 1
2
∣∣∣∣ ζ(σ + it)

ζ(1− σ + it)

∣∣∣∣.
As we have already seen that |ζ(s)| = O(log t) = O(tε) for σ ≥ 1, we have,
on any vertical line Re(s) = σ ≤ 0, that

|ζ(σ + it)| = O
(
t
1
2
−σ log t

)
.

So it follows that the exponent 1
2 − σ is the best possible, that is, it is the

infimum.

Proposition 4.14 (Zeta critical strip bound). Let κ(σ) := 1
2 − 1

2σ and
ε > 0. Then for t ≥ 2 and 0 ≤ σ ≤ 1 we have

|ζ(σ + it)| = O
(
tκ(σ+ε)

)
Proof. We want to use once again Lindelöf’s bound Theorem D.9 on the
affine function κ(σ)+ε and infinite rectangle [0, 1]× [2,∞[ and holomorphic
function ζ(s), so we need to check if the growth conditions apply.

As we have seen in Proposition 4.13, for σ = 1 we have |ζ(s)| = O(tε),
for all ε > 0, i.e., for some constant B we have |ζ(1 + it)| ≤ Btε, and for
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σ = 0, we have |ζ(s)| = O(t
1
2
+ε), for all ε > 0, i.e., for some constant A, we

have |ζ(it)| ≤ At
1
2
+ε.

Now, recall that in order to use Theorem D.9 we need to check that the
function admits the following growth condition, |ζ(s)| ≤ CtD on 0 ≤ σ ≤ 1
and t ≥ 2, for some constants C,D. First, let us consider 1

2 ≤ σ ≤ 1. Once
again, from Theorem 4.3 for N = 0 and a = 1 we get

ζ(s) = 1 +
1

s− 1
− s

∫ ∞

0

x− bxc
(x+ 1)s+1

dx =
s

s− 1
− s

∫ ∞

1

x− bxc
xs+1

dx.

So we get

|ζ(s)| ≤ |s|
|1− s|

+ |s|
∫ ∞

1

x− bxc
xσ+1

dx

≤
√
σ2 + t2√

(1− σ)2 + t2
+

√
σ2 + t2

σ

As we have σ2 ≤ 1 and 0 ≤ (1− σ)2 ≤ 1
4 and t ≥ 2:

|ζ(s)| ≤
√
1 + t2

t
+ 2
√

1 + t2

≤ 1 + t

t
+ 2(1 + t)

≤ 3

2
+ 3t ≤ 3

√
2t.

Now, let consider σ such that 0 ≤ σ ≤ 1
2 . From the functional equa-

tion evaluated at s = σ − it and the Schwarz reflection principle, [Con78,
Ch. IX.1], that says ζ(s) = ζ(s) for all s 6= 1, we get that

|ζ(σ + it)| = |ζ(σ − it)| = |ζ(1− σ + it)|(2π)σ

2|Γ(σ − it)|
∣∣∣cos(π(σ−it)

2

)∣∣∣
=

4(2π)σ3
√
2

2
√
2π

t

tσ−
1
2 e−

πt
2 e

πt
2

= O
(
t
3
2
−σ
)
= O

(
t2
)
.

So, for t ≥ 2, 0 ≤ σ ≤ 1 and for all ε > 0, we have

|ζ(σ + it)| = O
(
t2
)
.

So, by Theorem D.9, we have the result as desired.

We have proved that the graph of ν between 0 and 1 lies somewhere in
the grey triangle shown in the figure 4.1. We will show that, if the Riemann’s
Hypothesis is true, for σ > 1

2 , ν(σ) = 0.
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R

R

1−1

1
2
+ 1

1
2

Figure 4.1: Graph of the ν function

Theorem 4.15. Let ε > 0 be given and assume the Riemann’s Hypothesis.
Then, for all σ > 1

2 , we have, as t→ ∞,

ζ(s) = O (tε) and 1

ζ(s)
= O (tε) .

Proof. [Bro17b]. For σ ≥ 1 + δ, where δ > 0, it is already proven, as
|ζ(σ + it)| ≤

∑
n≥1

1
nσ ≤

∑
n≥1

1
n1+δ which is a convergent series. Because

we are assuming the Riemann’s Hypothesis, log ζ(s) is well defined on σ > 1
2 ,

with a pole on s = 1.
Now, let us prove that we have, for 0 < δ < 1

2 and 1
2 + δ ≤ σ ≤ 1 and

log ζ(σ + it) = O
(
(log t)2−2σ+λ

)
uniformly for any λ > 0.

Fix 1 ≤ σ1 ≤ t. Then 1
2 − δ

2 ≤ σ1 − 1
2 − δ

2 and 1
2 − δ ≤ σ1 − 1

2 − δ,
so the function log ζ(s), assuming Riemann’s hypothesis, is well defined and
holomorphic on the two concentric circles

|s− (σ1 + it)| = σ1 −
1

2
− δ

2
and |s− (σ1 + it)| = σ1 −

1

2
− δ.

Now, let us apply the Borel-Carathéodory Theorem D.8 to the function
log ζ(s) and the two circles.

By Lemma 4.13 and Proposition 4.14 we have, for some A > 0,

ζ(s) = O
(
tA
)
.

Thus Re (log ζ(s)) = log |ζ(s)| < A log t. Then, on the inner circle we have

|log ζ(s)| ≤ 2(2σ1 − 1− 2δ)

δ
A log t+

4σ1 − 2− 3δ

δ
|log ζ(σ1 + it)|

<
Ã log t

δ
(for Ã > 0). (4.13)

Now, let 1 < σ1 ≤ t, and apply Hadamard’s three circles Theorem,
theorem D.7, to the circles

C1 : |s− (σ1 + it)| = σ1 − 1− δ =: r1,
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C2 : |s− (σ1 + it)| = σ1 − σ =: r2,

C3 : |s− (σ1 + it)| = σ1 −
1

2
− δ =: r3.

Recall that 1
2 + δ ≤ σ ≤ 1. Hence we have r1 ≤ r2 ≤ r3 and that each circle

respectively passes through the points 1 + δ + it, σ + it and 1
2 + δ + it.

Let Mi := maxs∈Ci |log ζ(s)| for each i. By (4.13), we have that

M3 ≤
A log t

δ
.

By Proposition 4.4, valid for σ ≥ 1 + δ, we have on the circle C1, that

M1 ≤ max
x≥1+δ

∣∣∣∣∣∣
∑
n≥1

Λ(n)

nx log n

∣∣∣∣∣∣ ≤ 1

n1+δ
<
A

δ

Now Theorem D.7 gives

M
log

r3
r1

2 ≤M
log

r3
r2

1 M
log

r2
r1

3 ,

or, alternatively,

M2 ≤M

log
r3
r2

log
r3
r1

1 M

log
r2
r1

log
r3
r1

3 .

Let us denote
a :=

log r2
r1

log r3
r1

.

Then M2 ≤ M1−a
1 Ma

3 . We can estimate a, using Lemma D.10, because
0 < 1 + δ − σ < 1, as follows

a =
log
(
1 + r2−r1

r1

)
log
(
1 + r3−r1

r1

)
=
log
(
1 + 1+δ−σ

σ1−1−δ

)
log
(
1 +

1
2

σ1−1−δ

)
=
1 + δ − σ

1
2

+O
(

1

σ1

)
=2− 2σ +O(δ) +O

(
1

σ1

)
.

Hence

|log ζ(σ + it)| ≤M2 ≤
(
A

δ

)1−a(A log t

δ

)a

=
A

δ
(log t)a.
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Now, take σ1 = log log t and δ = 1
σ1

. Then δ → 0 implies a = 2+2σ+λ,
for some λ > 0. Thus

|log ζ(σ + it)| = O
(
log log t(log t)2−2σ+λ

)
= O

(
(log t)2−2σ+λ

)
.

Now, let us choose λ sufficiently small such that 2 − 2σ + λ < 1. Thus, we
have, for t sufficiently large and any given ε > 0,

log |ζ(s)| ≤ |log ζ(s)| ≤ ε log t.

Therefore
−ε log t < log |ζ(s)| < ε log t.

Hence,

|ζ(s)| < tε and
∣∣∣∣ 1

ζ(s)

∣∣∣∣ < tε.

4.5 Equivalents to the Riemann’s Hypothesis
Finally, we will prove the main theorem of this dissertation.

Theorem 4.16. The following conditions are equivalent

1. (Riemann’s Hypothesis) The Zeta function has its zeros only at the
negative even integers (called the trivial zeros) and complex numbers
with real part 1/2.

2. For all ε > 0, M(x) =
∑
n≤x

µ(n) = O(x
1
2
+ε).

3. For all ε > 0, L(x) =
∑
n≤x

λ(n) = O(x
1
2
+ε).

Before we get to the main theorem of this chapter, we will need the
following Lemma.

Lemma 4.17. Let a > 0, T > 0. Then, for 0 < x < 1, we have∣∣∣∣ 1

2πi

∫ a+iT

a−iT

xs

s
ds

∣∣∣∣ ≤ xa

πT |log(x)|
.

And for x > 1 we have∣∣∣∣ 1

2πi

∫ a+iT

a−iT

xs

s
ds− 1

∣∣∣∣ ≤ xa

πT |log(x)|
.
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Proof. [Bro17a]. First assume 0 < x < 1, let A > a and apply Cauchy’s
Residue Theorem, Theorem D.2, to the holomorphic function xs

s on the
rectangle [a,A] × [−T, T ]. As the function has no singularities inside the
rectangle, we have

1

2πi

∫ a+iT

a−iT

xs

s
dx = − 1

2πi

(∫ A+iT

a+iT
−
∫ A+iT

A−iT
−
∫ A−iT

a−iT

)
xs

s
ds.

R

iR

a A

−T

T

Figure 4.2: The rectangle [a,A]× [−T, T ]

On the right hand vertical section (the line from A− iT to A+ iT ), we
have

∣∣xs

s

∣∣ ≤ xA

A and on the horizontal sections (the lines a − iT to A − iT
and a + iT to A + iT ), we have, for s = σ ± iT ,

∣∣xs

s

∣∣ ≤ xσ

T . Thus we have,
as x < 1,∣∣∣∣ 1

2πi

∫ a+iT

a−iT

xs

s
dx

∣∣∣∣ ≤ 1

2π

∫ T

−T

xA

A
dt+ 2

1

2π

∫ A

a

xσ

T
dσ

≤ TxA

πA
+

(xa − xA)

πT |log(x)|
−−−−→
A→∞

xa

πT log(x)
.

Similarly, for x > 1, let A > a and apply Cauchy’s Residue Theorem,
Theorem D.2, to the function xs

s but this time on the rectangle [−A, a] ×
[−T, T ], on which the function is meromorphic. Here the function has one

R

iR

a−A

−T

T

Figure 4.3: The rectangle [−A, a]× [−T, T ]
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singularity at s = 0, and its residue has value 1, because it is a simple pole
and lim

s→0
xs = 1. So we have

1

2πi

∫ a+iT

a−iT

xs

s
dx− 1 = − 1

2πi

(
−
∫ a+iT

−A+iT
−
∫ −A−iT

−A+iT
+

∫ a−iT

−A−iT

)
xs

s
ds.

And using the same calculations as in the first part of the Lemma, we get
the result.

We now have all the necessary tools for the proof of the Theorem 4.16.

Proof of Theorem 4.16. (2) ⇐⇒ (3)
Fix ε > 0. Let us suppose |M(x)| ≤ Cx

1
2
+ε, for C > 0. Then, we have

|L(x)| ≤
∑
j2≤x

∣∣∣∣M (
x

j2

)∣∣∣∣ (By Proposition 2.33)

≤
∑
j2≤x

C
x

1
2
+ε

(j2)
1
2
+ε

≤ Cx
1
2
+ε
∑
j2≤x

1

j1+2ε

≤ Cx
1
2
+ε

(
1 +

∫ √
x

1

1

t2ε+1
dt

)

≤ Cx
1
2
+ε

(
1 +

[
t−2ε

−2ε

]√x

1

)

≤ Cx
1
2
+ε

(
1 +

1

2ε

(
1− (

√
x)−2ε

))
≤ Cx

1
2
+ε

(
1 + 2ε

2ε
− x−ε

2ε

)
≤ C̃x

1
2
+ε − C

2ε
x

1
2

(
where C̃ =

C(1 + 2ε)

2ε

)
≤ C̃x

1
2
+ε

Now, let us suppose |L(x)| ≤ Cx
1
2
+ε, for C > 0. Then, we have, in the

same manner by using Proposition 2.33

|M(x)| ≤
∑
j2≤x

|µ(j)|
∣∣∣∣L( xj2

)∣∣∣∣ ≤ ∑
j2≤x

∣∣∣∣L( xj2
)∣∣∣∣

≤
∑
j2≤x

C
x

1
2
+ε

(j2)
1
2
+ε

≤ C̃x
1
2
+ε.
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Therefore (2) is true if and only if (3) is true.

(2) ⇒ (1)
Let us suppose that for all ε > 0, we have M(x) = O

(
x

1
2
+ε
)

, that is,

there exist M > 0 such that |M(x)| ≤ Mx
1
2
+ε. Then, by Theorem 3.13,∑

n≥1
µ(n)
ns converges uniformly in D(12 , δ, θ), for all δ > 0 and θ > 0 and

F (s) :=
∑

n≥1
µ(n)
ns is an analytic function in σ > 1

2 .
We know that F (s)ζ(s) = 1, for σ > 1. Taking the analytic continuation

of the zeta function, we define f(s) := F (s)ζ(s) and g(s) := 1 which are
analytic functions in D = {s ∈ C|σ > 1

2} \ {1}. By analytic continuation,
as f = g in a open non-empty proper subset of D, we have that f = g in all
D. Therefore ζ(s)F (s) = 1. As F (s) < ∞ in D, we have that ζ(s) 6= 0 in
1
2 < σ < 1.

From the functional equation of the zeta function, (4.9), it is clear that
ζ(s) = 0 ⇐⇒ ζ(1 − s) = 0, so there are no zeros in the strip 0 < σ < 1
outside the line σ = 1

2 .

(1) ⇒ (2) ([Bro17a])
Suppose that the Riemann’s Hypothesis is true. Then, for σ > 1

2 , 1
ζ(s) is

well defined and by analytic continuation for σ > 1
2 ,
∑

n≥1
µ(n)
ns = 1

ζ(s) .
Let T > 0 and x > 0, considered large and x /∈ N. Let us define

∆(x, T ) : =

∣∣∣∣M(x)− 1

2πi

∫ 2+iT

2−iT

xs

ζ(s)

1

s
ds

∣∣∣∣
=

∣∣∣∣∣∣
∑

1≤n<x

µ(n)− 1

2πi

∫ 2+iT

2−iT

∑
n≥1

µ(n)
(x
n

)s 1
s
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

1≤n<x

µ(n)− 1

2πi

∫ 2+iT

2−iT

∑
n<x

µ(n)
(x
n

)s 1
s
ds

− 1

2πi

∫ 2+iT

2−iT

∑
n>x

µ(n)
(x
n

)s 1
s
ds

∣∣∣∣∣ .
Let us restrict x to of the form of an integer plus one half, so that

|log(x/n)| ≥ 1
2n for x/2 ≤ n ≤ 2x and |log(x/n)| ≥ log(2) for x/2 > n or

n > 2x. Note that |µ(n)| ≤ 1 for any n ∈ N. Now, using Lemma 4.17 and
these estimates, we have

∆(x, T ) ≤

∣∣∣∣∣∑
n<x

µ(n)− 1

2πi

∫ 2+iT

2−iT

∑
n<x

µ(n)
(x
n

)s 1
s
ds

∣∣∣∣∣+
+

∣∣∣∣∣ 1

2πi

∫ 2+iT

2−iT

∑
n>x

µ(n)
(x
n

)s 1
s
ds

∣∣∣∣∣
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≤
∑
n<x

∣∣∣∣1− 1

2πi

∫ 2+iT

2−iT

(x
n

)s 1
s
ds

∣∣∣∣+∑
n>x

∣∣∣∣ 1

2πi

∫ 2+iT

2−iT

(x
n

)s 1
s
ds

∣∣∣∣
≤
∑
n<x

(x/n)2

πT |log(x/n)|
+
∑
n>x

(x/n)2

πT |log(x/n)|

≤
∑

x/2≤n<2x

(x/n)2

πT |log(x/n)|
+

∑
x/2<n or n>2x

(x/n)2

πT |log(x/n)|

≤ x2

πT

 ∑
x/2≤n≤2x

2n

n2
+

∑
x/2<n or n>2x

1

n2 log(2)


≤ x2

πT

2
∑

x/2≤n≤2x

1

n
+

1

log(2)

∑
n≥1

1

n2


≤ x2

πT

(
2

∫ 2x

x/2

1

t
dt+

1

log(2)

π2

6

)

≤ x2

πT

(
2 log(2x)− 2 log(x/2) +

π2

6 log(2)

)
= O

(
x2

T

)
.

That is,

∆(x, T ) ≤M
x2

T
, (4.14)

for some constant M . By taking T sufficiently large, we have that the
integral 1

2πi

∫ 2+iT
2−iT

∑
n<x µ(n)

(
x
n

)s 1
s ds is a good approximation of M(x), in

the sense that the difference is no greater than a constant. So now we need
to estimate the growth of the integral.

Now, fix δ > 0 and let us integrate the function xs

ζ(s)s around the rectangle[
1
2 + δ, 2

]
× [−T, T ].

R

iR

1
2
+ δ 2

−T

T

Figure 4.4: The rectangle [12 + δ, 2]× [−T, T ]

As xs

ζ(s) does not have any singularities inside the rectangle, because we
are assuming Riemann’s Hypothesis, we have
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1

2πi

∫ 2+iT

2−iT

xs

ζ(s)s
ds =

1

2πi

∫ 2+iT

1
2
+δ+iT

xs

ζ(s)s
ds

+
1

2πi

∫ 1
2
+δ−iT

1
2
−δ+iT

xs

ζ(s)s
ds+

1

2πi

∫ 1
2
+δ−iT

2−iT

xs

ζ(s)s
ds

On the horizontal sections, we can use the Theorem 4.15, in particular
the fact that, for all ε > 0, σ > 1

2 and t→ ∞

1

|ζ(σ + it)|
≤ Kεt

ε,

as we are assuming the Riemann’s Hypothesis is true, and also the fact that∣∣∣∣xss
∣∣∣∣ ≤ xσ

|σ + iT |2
≤ x2

T

to estimate ∣∣∣∣∣
∫ 2+iT

1
2
+δ+iT

xs

ζ(s)s
ds

∣∣∣∣∣ ≤ K̃εT
ε−1x2.

For the vertical section, we start by taking T0 ∈]0, T [, such that Theorem
4.15 is valid for t > T0. Then we have∣∣∣∣∣ 1

2πi

∫ 1
2
+δ+iT

1
2
+δ−iT

xs

ζ(s)s
ds

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

2πi

∫ 1
2
+δ+iT0

1
2
+δ−iT0

xs

ζ(s)s
ds

∣∣∣∣∣+ 2

∣∣∣∣∣
∫ 1

2
+δ+iT

1
2
+δ+iT0

xs

ζ(s)s
ds

∣∣∣∣∣,
Thus,

2

∣∣∣∣∣
∫ 1

2
+δ+iT

1
2
+δ+iT0

xs

ζ(s)s
ds

∣∣∣∣∣ ≤ 2

2π

∫ T

T0

x
1
2
+δKεt

ε

t
dt ≤ Kεx

1
2
+δ(T ε − T ε

0 )

πε
.

For the other integral, as T0 is independent of x and by hypothesis ζ does
not have zeros in the line σ = 1

2 + δ, we have that∣∣∣∣∣ 1

2πi

∫ 1
2
+δ+iT0

1
2
+δ−iT0

xs

ζ(s)s
ds

∣∣∣∣∣ ≤ x
1
2
+δ

2π

∫ T0

−T0

∣∣∣∣∣ 1

ζ
(
1
2 + δ + it

)
t

∣∣∣∣∣ dt ≤ Kx
1
2
+δ.

Putting together the two estimates, we have for a constant Cε∣∣∣∣∣ 1

2πi

∫ 1
2
+δ+iT

1
2
+δ−iT

xs

ζ(s)s
ds

∣∣∣∣∣ ≤ Kx
1
2
+δ +

2Kε

πε
x

1
2
+δT ε ≤ Kx

1
2
+δ + Cεx

1
2
+δT ε.
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Thus, we get∣∣∣∣ 1

2πi

∫ 2+iT

2−iT

xs

ζ(s)s
ds

∣∣∣∣ ≤ 1

2π

∣∣∣∣∣
∫ 2+iT

1
2
+δ+iT

xs

ζ(s)s
ds

∣∣∣∣∣+
+

1

2π

∣∣∣∣∣
∫ 1

2
+δ+iT

1
2
−δ+iT

xs

ζ(s)s
ds

∣∣∣∣∣+ 1

2π

∣∣∣∣∣
∫ 1

2
+δ−iT

2−iT

xs

ζ(s)s
ds

∣∣∣∣∣
≤ 2KεT

ε−1x2 +Kx
1
2
+δ + Cεx

1
2
+δT ε.

Now, taking T = x2, we have that∣∣∣∣ 1

2πi

∫ 2+iT

2−iT

xs

ζ(s)s
ds

∣∣∣∣ ≤ 2Kεx
2ε +Kx

1
2
+δ + Cεx

1
2
+δ+2ε ≤Mεx

1
2
+δ+2ε,

where Mε is chosen appropriately. And, by (4.14),

∆(x, x2) =

∣∣∣∣M(x)− 1

2πi

∫ 2+iT

2−iT

xs

ζ(s)

1

s
ds

∣∣∣∣ ≤M
x2

x2
=M.

Hence, we have

|M(x)| ≤
∣∣∣∣ 1

2πi

∫ 2+iT

2−iT

xs

ζ(s)

1

s
ds

∣∣∣∣+∆(x, x2)

≤Mεx
1
2
+δ+2ε +M

≤ M̃εx
1
2
+δ+2ε.

So M(x) = O
(
x

1
2
+δ+2ε

)
for all large x of the form of an integer plus

one half. But since |µ(n)| ≤ 1, M(x) can change by at most 1 between these
values of x, so replacing δ and ε by ε/3, we get for all large x

M(x) = O(x
1
2
+ε).
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Appendix A

Ring Theory

The goal of this appendix is to recall some results about Ring Theory
while also clarifying the notation that is used in the main body of this
dissertation.

Definition A.1. A ring A is a set with two binary operations addition, +,
and multiplication, ·, satisfying the following conditions:

• With respect to addition, A is a commutative group;

• The multiplication is associative, and has a unit element;

• For all x, y, z ∈ A we have

(x+ y) · z = x · z + y · z and z · (x+ y) = z · x+ z · y.

A commutative ring is a ring such that it is commutative with respect to
multiplication. The set of the units of a ring, elements who have both a
right and a left inverse, is a group under ring multiplication and it is often
denoted as A∗.

Definition A.2. In a ring A, we say x and y in A are associates, and
write x ∼ y, if exists u ∈ A∗ such that x = u · y.

Definition A.3. A Integral Domain (ID) is a nonzero commutative ring
in which the product of any two nonzero elements is nonzero.

Definition A.4. Let A be a integral domain. We call x ∈ A an irreducible
element if x 6= 0, x is not a unit and if we write x = y · z, with y, z ∈ R
then y ∈ R∗ or z ∈ A∗. The remaining elements that are not units, zero or
irreducible are called reducible.

Definition A.5. We call an integral domain in which every ideal is princi-
pal, i.e., can be generated by a single element, a Principal Ideal Domain.
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Definition A.6. A partially ordered set (P,<) is said to satisfy the Ascend-
ing Chain Condition (ACC) if no infinite strictly ascending sequence

a1 < a2 < a3 < . . .

of elements of P exists.
Equivalently, every weakly ascending sequence

a1 ≤ a2 ≤ a3 ≤ . . .

of elements of P eventually stabilizes, meaning that there exists a positive
integer n such that

an = an+1 = an+2 = . . .

We can say a ring A has the Ascending Chain Condition on Prin-
cipal ideals (ACCP) is satisfied if there is no infinite strictly ascending
chain of principal ideals in the ring, or said another way, every ascending
chain of principal ideals is eventually constant.

Remark. Let x, y be two elements of the same ring. Note that if (x) ⊊ (y),
then x ∈ (y) and there is z ∈ A \ A∗ ∪ {0} such that x = zy. Conversely, if
x = yz, with y, z non-units, then (x) ⊊ (y).

Definition A.7. A ring is called a Unique Factorization Domain if it
is a integral domain and if every non-zero element has a unique factorization
into irreducible elements.

Lemma A.8. If a integral domain satisfies the Ascending Chain Condition
on Principal ideals, then every non-zero non-unit element has a factorization
into irreducible elements.

Proof. Let A be an integral domain. Suppose x is a non-zero non-unit
element of A that does not have a factorization into irreducible elements.

Clearly, x is reducible and thus there are y, z ∈ A non-units and non-zero
such that x = yz and such that at least one of them also cannot be factorized
into irreducible elements. Let us suppose, without loss of generality, that y
is that element.

We can then repeat this process infinitely and obtain an infinite chain

(x) ⊊ (y) ⊊ (y1) ⊊ . . .

But as A has the ACCP, this is a contradiction. So every element has
at least one factorization into irreducible elements.

Definition A.9. Let A be a commutative ring, and a and b elements of A.
We call d ∈ A a common divisor of a and b if it divides both elements,
i.e., if there are elements x, y ∈ A such that a = dẋ and b = dẏ. If d is a
common divisor of a and b such that every other common divisor of the two
elements divides d, we call d a greatest common divisor of a and b and
we write (a, b) = d or gcd(a, b) = d.
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Proposition A.10 (Bézout’s Identity). If A is a PID and a, b, d are ele-
ments of A such that d is a greatest common divisor of a and b, then there
are elements x and y in A such that ax+ by = d.

Proof. By hypothesis the ideal (a)+ (b) is principal, i.e., there is c ∈ A such
that (a) + (b) = (c), which means both a ∈ (c) and b ∈ (c), i.e., there are
x, y ∈ A such that a = x · c and b = y · c.Thus c is a common divisor of a
and b. But d = gcd(a, b) implies (a) ⊆ (d) and (b) ⊆ (d). Thus (c) ⊆ (d)
and we have d | c. Since d is a greatest common divisor, we must have d c
and thus (a) + (b) = (d).

71



APPENDIX A. RING THEORY

72



Appendix B

Fourier Series

In this appendix, we will give some definitions and results on Fourier
Series, following [Zyg59], necessary in appendix C.

Definition B.1. Given a sequence s0, s1, s2, . . . we define, for every k ∈ N0,
the sequences Sk

0 , S
k
1 , . . . and Ak

0, A
k
1, . . . by the conditions:

S0
n = sn, S1

n = s0 + s1 + · · ·+ sn,

Sk
n = Sk−1

0 + Sk−1
1 + · · ·+ Sk−1

n (k ∈ N;n ∈ N0),

A0
n = 1, A1

n = n+ 1,

Ak
n = Ak−1

0 +Ak−1
1 · · ·+Ak−1

n (k ∈ N;n ∈ N0).

We say that the sequence (sn)n∈N0 (or the series whose partial sums are
sn) is summable by the k-th arithmetic mean of Cesàro or summable
(C, k) to limit (or sum), if

lim
n→∞

Sk
n/A

k
n = s.

Remark. Summability (C, 0) is ordinary convergence. Summability (C, k)
implies summability (C, k + 1) to the same limit. See [Zyg59, Ch. III, The-
orem 1.6]

Definition B.2. We say a matrix

M =


a0,0 a0,1 . . . a0,n . . .
a1,0 a1,1 . . . a1,n . . .
. . . . . . . . . . . . . . .
an,0 an,1 . . . an,n . . .
. . . . . . . . . . . . . . .


is regular if
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1. lim
n→∞

an,v = 0 for v = 0, 1, . . . ;

2. the Nn =
∑

k≥0 |an,k| are bounded;

3. lim
n→∞

∑
k≥0 an,k = 1.

Definition B.3. Let M be a regular matrix, as in the definition B.2. Given
a sequence s0, s1, . . . consider the linear means

σn = an,0s0 + an,1s1 + · · ·+ an,ksk + . . .

generated by M .

Remark. The fact that M is regular implies that the convergence of the
series (σn)n is bounded.
Remark. If sn =

∑n
k=0 uk, the partial sums of the series

∑
uk, then we can

rewrite σn as

σn = αn,0u0 + αn,1u1 + · · ·+ αn,kuk + . . .

where αn,k =
∑∞

j=k an,j .

Definition B.4. Given a function f of period T , the Fourier coefficients
of f are

ak =
2

T

∫ t0+T

t0

f(t) cos

(
kt

2π

T

)
dt

bk =
2

T

∫ t0+T

t0

f(t) sin

(
kt

2π

T

)
dt

Let us define the complex Fourier coefficients

cv =
1

2π

∫ π

−π
f(t)e−

2π
T

ivt dt.

It is easy to see that cv = 1
2(av − ibv) and that c−v = 1

2(av + ibv) for v ≥ 0.
Let us assume here, without loss of generality, that the period of f is

T = 2π. So

ak =
1

π

∫ π

−π
f(t) cos(kt) dt,

bk =
1

π

∫ π

−π
f(t) sin(kt) dt.

Then the Fourier series of f is

S[f ] =

+∞∑
−∞

cve
ivx.
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Theorem B.5 (Fejér). At every point x0 at which the limits f(x0 ± 0) :=
lim

h→0+
f(x0 ± h) exist (and, if they are both infinite, are of the same sign),

we have
1

n+ 1

n∑
k=0

sk(x0)
n→∞−−−→ 1

2
(f(x0 + 0) + f(x0 − 0))

where sk(x0) =
∑

|n|≤k cne
inx0.

This theorem is saying that the sequence (sn)n∈N of partial sums of the
Fourier series of f is summable by the 1st arithmetic mean of Cesàro, that
is, the linear mean of the partial sums converges to f(x0), if f is continuous
at x0. See [Zyg59, Theorem III.3.4], for the proof, as the necessary theory
would be too extensive to include.
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Appendix C

Summation Formulas

Here we will present and prove the Abel, Euler, Poisson and Euler-
Maclaurin Summation Formulas, which are used throughout the main chap-
ters.

Proposition C.1 (Abel Summation Formula). Let (an)n∈N be a sequence
of complex numbers and A(x) =

∑
1≤n≤x

an its partial sums.

Fix 0 ≤ y < x ∈ R and let f : [y, x] → R be a continuously differentiable
function. Then we have,∑

y<n≤x

anf(n) = A(x)f(x)−A(y)f(y)−
∫ x

y
A(t)f ′(t) dt.

Proof. First, suppose that∑
1≤n≤x

anf(n) = A(x)f(x)−
∫ x

1
A(t)f ′(t) dt. (C.1)

Then∑
y<n≤x

anf(n) =
∑

1≤n≤x

anf(n)−
∑

1≤n≤y

anf(n)

= A(x)f(x)−
∫ x

1
A(t)f ′(t) dt−A(y)f(y) +

∫ y

1
A(t)f ′(t) dt

= A(x)f(x)−A(y)f(y)−
∫ x

y
A(t)f ′(t) dt.

So, it suffices to show that (C.1) is true.
Note that A(x) = A(bxc), so if we fix n ∈ N, we have A(x) = A(n) for

all n ≤ x < n+ 1. Now,
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∑
1≤n≤x

anf(n) =
∑

1≤n≤x

(A(n)−A(n− 1))f(n)

=
∑

1≤n≤x

A(n)f(n)−
∑

1≤n≤x

A(n− 1)f(n)

= A(bxc)f(bxc) +
∑

1≤n≤x−1

A(n)f(n)−
∑

1≤n≤x

A(n− 1)f(n)

= A(bxc)f(bxc) +
∑

1≤n≤x−1

A(n)(f(n)− f(n+ 1))

= A(x)f(x) +A(bxc)(f(bxc − f(x))−

−
∑

1≤n≤x−1

A(n)

(∫ n+1

n
f ′(t) dt

)
= A(x)f(x)−A(bxc)

∫ x

⌊x⌋
f ′(t) dt−

−
∑

1≤n≤x−1

(∫ n+1

n
A(t)f ′(t) dt

)

= A(x)f(x)−
∫ x

⌊x⌋
A(t)f ′(t) dt−

∑
1≤n≤x−1

∫ n+1

n
A(t)f ′(t) dt

= A(x)f(x)−
∫ x

⌊x⌋
A(t)f ′(t) dt−

∫ ⌊x−1⌋+1

1
A(t)f ′(t) dt

= A(x)f(x)−
∫ x

1
A(t)f ′(t) dt.

Proposition C.2 (Euler Summation Formula). Let f be a continuously
differentiable function on the interval [y, x], where 0 ≤ y < x. Then we
have,∑
y<n≤x

f(n) =

∫ x

y
f(t) dt+

∫ x

y
(t−btc)f ′(t) dt+f(x)(bxc−x)−f(y)(byc−y).

Proof. This is a consequence of the Abel Summation Formula, Proposition
C.1. Let us use it for for an = 1 for all n. Then we have A(x) = bxc and

∑
y≤n≤x

f(n) = bxc f(x)− byc f(y)−
∫ x

y
btc f ′(t) dt

= bxc f(x)− byc f(y) +
∫ x

y
(t− btc)f ′(t) dt−

∫ x

y
tf ′(t) dt

78



= bxc f(x)− byc f(y) +
∫ x

y
(t− btc)f ′(t) dt

− xf(x) + yf(y) +

∫ x

y
f(t) dt.

Rearranging the expression by putting in evidence equal terms, the result
follows.

Definition C.3. For f ∈ L1(R) function, we define f̂(u), its Fourier
transform, as

f̂(u) =

∫ ∞

−∞
f(x)e−2πiux dx.

Proposition C.4 (Poisson Summation Formula). Let f ∈ L1(R). Suppose
that the series

∑
n∈Z f(n+ v) converges absolutely and uniformly for v ∈ R

and that
∑

m∈Z

∣∣∣f̂(m)
∣∣∣ <∞. Then∑
n∈Z

f(n+ v) =
∑
n∈Z

f̂(n)e2πinv.

Proof. [Mur01]. Set SN (x0) =
∑

|n|≤N cne
2πinx0 . By Fejér Theorem, Theo-

rem B.5, we have

lim
N→∞

S0(x0) + · · ·+ SN (x0)

N + 1
=

1

2
(f(x0 + 0) + f(x0 − 0)).

As f is continuous and SN convergent, we get that

f(x0) = lim
N→∞

S0(x0) + · · ·+ Sn(x0)

N + 1

= lim
N→∞

1

N + 1

(
c0 + (c0 + c1e

2πix0 + c−1e
−2πix0) + · · ·+

+ · · ·+ (c0 +
N∑
k=1

cke
2πikx0 + cke

−2πikx0)
)

= lim
N→∞

(N + 1)c0
N + 1

+
N(c1e

2πix0 + c−1e
−2πix0)

N + 1
+ · · ·+

+ · · ·+ cNe
2πiNx0 + c−Ne

−2πiNx0

N + 1

= c0 + lim
N→∞

∑
1≤n≤N

N + 1− n

N
(cne

2πinx0 + c−ne
−2πinx0)

= c0 +
∑
n∈N

(cne
2πinx0 + c−ne

−2πinx0).

If
∑

n∈Z |cn| <∞ then f(x) =
∑

n∈Z cne
2πinx.
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Let us define G(v) =
∑

n∈Z f(n + v) is a continuous function of v of
period 1. Then, we have

cm =

∫ 1

0
G(v)e2πimv dv

=
∑
n∈Z

∫ 1

0
f(n+ v)e−2πmv dv

=
∑
n∈Z

∫ n+1

n
f(x)e−2πmx dx

=

∫ ∞

−∞
f(x)e−2πmx dx

= f̂(m).

Corollary C.5. With f as above, we have
∞∑

n=−∞
f(n) =

∞∑
k=−∞

f̂(k).

Proof. Take v = 0 on the previous proposition.

Definition C.6. The Bernoulli numbers can be defined in many different
ways, here we will give a explicit formula for them:

B−
n =

n∑
k=0

k∑
v=0

(−1)v
(
k

v

)
vn

k + 1

B+
n =

m∑
k=0

k∑
v=0

(−1)v
(
k

v

)
(v + 1)n

k + 1
.

It is possible to see that B−
n = B+

n for all n 6= 1. For n 6= 1 odd, Bn = 0
and for n even, Bn is negative if n is divisible by 4 and positive otherwise.

The Bernoulli polynomials can be defined by recurrence

Bn(x) =
n∑

k=0

(
n

k

)
Bn−kx

k,

or by a generating function

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

Note that Bn = Bn(0) = Bn(1) = Bn for all n expect for n = 1, where
B−

1 = B1(0) = −B1(0) = −B+
1 .
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Proposition C.7 (Euler-Maclaurin Summation Formula). For m,n natu-
ral number and f(x) a real or complex valued continuous function for real
numbers x in the interval [M,N ], then, for v ∈ N0 such that f is 2v + 1
times continuously differentiable

N∑
i=M

f(i) =

∫ N

M
f(x) dx+

f(M) + f(N)

2
+

v∑
j=1

B2j

(2j)!
f (2j−1)(x)

∣∣∣N
M

+R2v

where
R2v =

1

(2v + 1)!

∫ N

M
B2v+1(x)f

(2v+1)(x) dx

is the error term, Bp(x) are the Bernoulli polynomials, Bp(x) = Bp(x−bxc)
for p > 1 and B1(x) agree with B1 on the interval [0, 1].

Proof. We will prove this by induction. Let us start with the case v = 0.
Let k be an integer in [M,N ], and consider the integral∫ k+1

k
f(x) dx.

The integrand is of the form u dv, where u = f(x) and v = x+ c, where c is
any constant. Let c = −(k + 1

2), so v = x− bxc − 1
2 = B1(x).∫ k+1

k
f(x) dx =

[
f(x)B1(x)

]k+1

k
−
∫ k+1

k
f ′(x)B1(x) dx

= f(k + 1)B1(k + 1)− f(k)B1(k)−
∫ k+1

k
f ′(x)P1(x) dx

= f(k + 1)B1(1)− f(k)B1(0)−
∫ k+1

k
f ′(x)B1(x) dx

=
f(k) + f(k + 1)

2
−
∫ k+1

k
f ′(x)B1(x) dx.

We can then write∫ N

M
f(x) dx =

∫ M+1

M
f(x) dx+ · · ·+

∫ N

N−1
f(x) dx

=
f(M)

2
+ f(M + 1) + · · ·+ f(N − 1) +

f(N)

2
−

−
∫ N

M
f ′(x)B1(x) dx,

adding f(N)+f(M)
2 on both sides, we get∫ N

M
f(x) dx+

f(N) + f(M)

2
=

N∑
k=M

f(k)−
∫ N

M
f ′(x)B1(x) dx.
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Finally, we have

N∑
k=M

f(k) =
f(N) + f(M)

2
+

∫ N

M
f(x) dx+

∫ N

M
f ′(x)B1(x) dx.

Let us do the induction step next, let us assume it is true for n− 1, that is

N∑
k=M

f(k) =

∫ N

M
f(x) dx+

f(M) + f(N)

2
+

n−1∑
j=1

B2j

(2j)!
f (2j−1)(x)

∣∣∣N
M
+

+
1

(2n− 1)!

∫ N

M
B2n−1(x)f

(2n−1)(x) dx.

Let us write for k integer in [M,N ].∫ k+1

k
B2n−1(x)f

(2n−1)(x) dx =

∫ k+1

k
u dv

then u = f (2n−1)(x) and v = 1
2nB2n(x). Thus, we have∫ k+1

k
B2n−1(x)f

(2n−1)(x) dx =
[ 1

2n
f (2n−1)(x)B2n(x)

]k+1

k

− 1

2n

∫ k+1

k
f (2n)(x)B2n(x) dx

=
f (2n−1)(k + 1)B2n(0)− f (2n−1)(k)B2n(0)

2n
−

− 1

2n

∫ k+1

k
f (2n)(x)B2n(x) dx

=
B2n(0)(f

(2n−1)(k + 1)− f (2n−1)(k))

2n
−

− 1

2n

∫ k+1

k
f (2n)(x)B2n(x) dx.

Now, let us sum these integrals from M to N∫ N

M
B2n−1(x)f

(2n−1)(x) dx =
B2n(0)(f

(2n−1)(N)− f (2n−1)(M))

2n
−

− 1

2n

∫ N

M
f (2n)(x)B2n(x) dx.
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Let us substitute this in the previous expression

N∑
k=M

f(k) =

∫ N

M
f(x) dx+

f(M) + f(N)

2
+

n∑
j=1

B2j

(2j)!
f (2j−1)(x)

∣∣∣N
M
−

− 1

(2n)!

∫ N

M
B2n(x)f

(2n)(x) dx.

Now, let us repeat the same process for∫ k+1

k
B2n(x)f

(2n)(x) dx =

∫ k+1

k
u dv

where u = f (2v)(x), dv = B2n(x)dx and v = 1
2n+1B2n+1(x). Then, we have∫ k+1

k
f2n(x)B2n(x) dx =

[ 1

2n+ 1
f2n(x)B2n+1(x)

]k+1

k
−

− 1

2n+ 1

∫ k+1

k
f (2n+1)(x)B2n+1(x) dx

=
f2n(k + 1)B2n+1(0)− f2n(k)B2n+1(0)

2n+ 1
−

− 1

2n+ 1

∫ k+1

k
f (2n+1)(x)B2n+1(x) dx

= − 1

2n+ 1

∫ k+1

k
f2n+1(x)B2n+1(x) dx.

Let us substitute this in the previous expression

N∑
k=M

f(k) =

∫ N

M
f(x) dx+

f(M) + f(N)

2
+

n∑
j=1

B2j

(2j)!
f (2j−1)(x)

∣∣∣N
M
+

+
1

(2n+ 1)!

∫ N

M
B2n+1(x)f

(2n+1)(x) dx.

Hence, denoting R2n := 1
(2n+1)!

∫ N
M B2n+1(x)f

(2n+1)(x) dx, the results fol-
lows.
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Appendix D

Complex Analysis

In this appendix, we gather some results of Complex Analysis, omitting
the proof of the most well-known.
Theorem D.1 (Analytic Continuation). Let f , g be two analytic functions
in a connected open subset Ω ⊂ C. If there exists a non-empty open subset
U ⊂ Ω such that, for all s ∈ U , f(s) = g(s), then, for all s ∈ Ω, we have
f(s) = g(s).
Theorem D.2 (Cauchy’s Residue Theorem). Let Ω be an open set of C and
S be a subset of Ω without cluster points of Ω. Let f be analytic in Ω \ S
and K be a boundary-regular compact subset of Ω, such that ∂K does not
contain any point of S. Then, S has only finitely many points in K and

1

2πi

∫
∂K

f(s) ds =
∑

a∈S∩K
Ress=a f(s).

Definition D.3. We say a sequence (xn)n∈N is a Cauchy sequence if for
all ε > 0, there is N ∈ N0 such that for all m > n > N we have

|xm − xn| < ε.

We say a series
∑∞

n=1 an if the sequence of partial sums (
∑m

n=1 an)m∈N is a
Cauchy sequence, that is, if for all ε > 0, there is N ∈ N0 such that for all
m > p > N we have ∣∣∣∣∣∣

∑
m<n≤p

an

∣∣∣∣∣∣ < ε.

Proposition D.4. A series is convergent if and only if the partial sums
sn :=

∑n
i=1 ai form a Cauchy sequence.

Definition D.5. A harmonic function is a twice continuously differen-
tiable function f : U → R, where U is an open subset of Rn, that satisfies
Laplace’s equation, that is,

∂2f

∂x21
+
∂2f

∂x22
+ · · ·+ ∂2f

∂x2n
= 0
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Proposition D.6 (Maximum principle for Harmonic functions). Let f : U →
R be an harmonic function. If K is a nonempty compact subset of U , then
f restricted to K attains its maximum and minimum on the boundary of K.

Theorem D.7 (Hadamard’s Three Circles Theorem). Let 0 < r1 ≤ r2 ≤ r3
and f : C → C analytic inside and on an annulus Ω := {s : r1 ≤ |s− s0| ≤
r3}

Let Mi := max{|f(s)| : ri = |s− s0|} for i = 1, 2, 3.
Then

M
log

(
r3
r1

)
2 ≤M

log
(

r3
r2

)
1 M

log
(

r2
r1

)
3 .

s0

r1

r2

r3

Figure D.1: The annulus Ω

Proof. [Bro17b]. We may assume f 6≡ 0. So Mi > 0 for all i. First, let us
assume that f(s) 6= 0 inside and on Ω. Define

H(s) := a log |s− s0|+ b

where a = logM3−logM1

log r3−log r1
and b = log r3 logM1−log r1 logM3

log r3−log r1
.

In the circle |s− s0| = r3, H(s) = logM3 ≥ log |f(s)|, while in the circle
|s− s0| = r1, H(s) = logM1 ≥ log |f(s)|.

As the function log |f(s)| is harmonic inside and on Ω we can apply
the Maximum Principle, Proposition D.6, and thus we have that H(s) ≥
log |f(s)| throughout Ω, including the circle r2 = |s− s0|. So for s in this
circle we have H(s) = a log r2 + b ≥ log |f(s)|, which means that

a log r2 + b ≥ logM2.

Therefore, we have

(logM3 − logM1) log r2 + log r3 logM1 − log r1 logM3

log r3 − log r1
≥ logM2.

Rearranging the terms, we have

logM
log

r2
r1

3 + logM
log

r3
r2

1 ≥ logM
log

r3
r1

2 .
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Thus,
log

(
M

log
r3
r2

1 M
log

r2
r3

3

)
≥ logM

log
r3
r1

2 .

If f(s) has zeros in Ω, they must be in finite number, because f is not
identically zero. Since in a neighbourhood of a zero, log |f(s)| → −∞, we
can delete an open disc of radius ε > 0 around each zero with ε sufficiently
small so, since H(s) is bounded, the inequality H(s) ≥ log |f(s)| will apply
on the boundary of the neighbourhoods, and thus throughout Ω minus the
neighbourhoods. Letting ε→ 0 gives the result in this case.

Theorem D.8 (Borel-Carathéodory). Let f(s) be holomorphic on the closed
disc F := B(s0, R) and let 0 < r < R. Then

max{|f(s)| : |s− s0| ≤ r} ≤ 2r

R− r
max{Re(f(s)) : |s− s0| ≤ R}+

+
R+ r

R− r
|f(s0)|.

Proof. [Bro17b]. First, let us assume f(s0) = 0. Let

M := max{Re(f(s)) : |s− s0| ≤ R}

and assume M > 0 (else replace f by −f). Let H := {s : Re(s) ≤ M}, so
f(F ) ⊂ H.

Define
g(s) :=

Rs

s− 2M
,

which is the composite of s → s
M − 1 with s → R(s+1)

s−1 . So g(0) = 0 and
g maps H into B(0, R). Therefore g(f(s0)) = 0 and g(f(F )) ⊂ B(0, R).
From the first statement, we get that g ◦ f(s) = (s− s0)h(s), where h(s) is
holomorphic on Ω.

Let 0 < r < R. By the maximum modulus principle in B(s0, r), there
exist sr with |sr − s0| = r such that ∀ s with |s− s0| ≤ r, and we have

h(s) ≤ |h(sr)| =
|(g ◦ f)(sr)|
|sr − s0|

≤ R

r
.

Taking r → R, |h(s)| ≤ 1. So, we have, for |z| ≤ r

|Rf(s)|
|f(s)− 2M |

= |(g ◦ f)(s)| = abss|h(s)| ≤ |s|.

Thus
|Rf(s)|

|f(s)− 2M |
≤ |s| ≤ r.

Therefore
R|f(s)| ≤ r|f(s)− 2M | ≤ r|f(s)| − 2Mr.
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Finally, we get
(R− r)|f(s)| ≤ 2Mr,

or, alternatively,
|f(s)| ≤ 2Mr

R− r
.

Now, substituting f(s) by f(s)− f(s0), we get

|f(s)| − |f(s0)| ≤ |f(s)− f(s0)|

≤ 2r

R− r
max{Re(f(s)− f(s0)) : |s| ≤ R}

≤ 2r

R− r
(M + |f(s0)|)

and the result follows.

Theorem D.9 (Lindelöf’s bound). Let a, b, c be real with a < b and c > 0.
Let κ(σ) be an affine function with values κ(a) = α, κ(b) = β. Let f(s) be
holomorphic inside and on the infinite rectangle

Ω = [a, b]× [c,∞[

and such that it satisfy the bounds |f(s)| ≤ Atα when σ = a and |f(s)| ≤ Btβ

when σ = b. Suppose also that f(s) satisfies a growth condition |f(s)| ≤ CtD

on Ω. Then exists a constant K such that for all s ∈ Ω

|f(σ + it)| ≤ Ktκ(σ).

R

iR

a b

c

Figure D.2: The infinite rectangle [a, b]× [c,+∞]

Proof. [Bro17b]. If f is identically zero, the theorem is trivial. First let us
assume f(s) 6= 0 for all s ∈ Ω. From |f(s)| ≤ Ctd, we get

log |f(s| ≤ D log t+ logC.
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Let ε > 0 be given. Then exists T0 such that ∀T ≥ T0

−(κ(σ) + ε)T < −D log T − logC

Let g(s) := log |f(s)|−(κ(σ)+ε)t be a harmonic function on the rectangle
[a, b] × [c, T ] ⊂ Ω. Then exists constant M such that, on the vertical line
σ = a we have

g(s) ≤ logA+ α log t− (α+ ε)t ≤M,

on the line σ = b, we get

g(s) ≤ logB + β log t− (β + ε)t ≤M,

on the horizontal line t = T we have

g(s) ≤ log |f(σ + iT )| − (κ(σ) + ε)T

≤ D log T + logC − (κ(σ) + ε)T ≤M,

where the final inequality holds for all T ≥ T0, and on the line t = c, we
have

g(s) ≤ D log c+ logC − (κ(σ) + ε)c ≤M.

Thus, by the maximum modulus principle, we get g(s) ≤M on Ω. Therefore,
we have

g(s) = log |f(s)| − (κ(σ + ε))t ≤M.

Hence
|f(s)| ≤ eMeκ(σ)+ε.

This hold for each ε > 0, so setting K = eM and letting ε → 0, the result
follows.

Now, if f(s) has zeros in Ω, they must be in finite number, because f is
not identically zero. In the same manner of Theorem D.7, we can delete an
open disc of radius ε > 0 around each zero with ε sufficiently small such that
the inequality g(s) ≤M will apply on the boundary of the neighbourhoods,
and thus throughout Ω minus the neighbourhoods. Letting ε→ 0 gives the
result in this case.

Lemma D.10. For a, c bounded and b→ ∞, we have

log
(
1 + a

b

)
log
(
1 + c

b

) =
a

c
+O

(
1

b

)
Proof. We want to show that∣∣∣∣∣ log

(
1 + a

b

)
log
(
1 + c

b

) − a

c

∣∣∣∣∣ < M
1

b
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for all b ≥ b0, for some b0 and M .
It is known that, for |x| < 1, we have

log (1 + x) =

∞∑
k=1

(−1)k+1

k
xk = x− x2

2
+
x3

3
− . . . .

So, let us choose b0 such that for b ≥ b0, we have both
∣∣a
b

∣∣ < 1 and∣∣ c
b

∣∣ < 1. Then we can write,

log
(
1 + a

b

)
log
(
1 + c

b

) =
a
b −

1
2

(
a
b

)2
+ 1

3

(
a
b

)3 − . . .

c
b −

1
2

(
c
b

)2
+ 1

3

(
c
b

)3 − . . .
.

So, we want to show that∣∣∣∣∣ ab − 1
2

(
a
b

)2
+ 1

3

(
a
b

)3 − . . .

c
b −

1
2

(
c
b

)2
+ 1

3

(
c
b

)3 − . . .
− a

c

∣∣∣∣∣ < M
1

b
.

First, let’s simply the difference.

a
b −

1
2

(
a
b

)2
+ 1

3

(
a
b

)3 − . . .

c
b −

1
2

(
c
b

)2
+ 1

3

(
c
b

)3 − . . .
− a

c
=

=

ac
b − c

2

(
a
b

)2
+ c

3

(
a
b

)3 − . . .−
(
ac
b − a

2

(
c
b

)2
+ a

3

(
c
b

)3 − . . .
)

(
c
b −

1
2

(
c
b

)2
+ 1

3

(
c
b

)3 − . . .
)
c

=

=

1
b2

(
−a2c

2 + 1
3
a3c
b − 1

4
a4c
b2

+ . . .+ ac2

2 − 1
3
ac3

b + 1
4
ac4

b2
− . . .

)
c
b

(
c− 1

2
c2

b + 1
3
c3

b2
− . . .

) =

=
1

b

ac
(
−a

2 + 1
3
a2

b − 1
4
a3

b2
+ . . .+ c

2 − 1
3
c2

b + 1
4
c3

b2
− . . .

)
c
(
c− 1

2
c2

b + 1
3
c3

b2
− . . .

)
 =

=

a
[(

−1
2
a
b +

1
3
a2

bb
− 1

4
a3

b3
+ . . .

)
+
(
1
2
c
b −

1
3
c2

b2
+ 1

4
c3

b3
− . . .

)]
c
(
1− 1

2
c
b +

1
3
c2

b2
− . . .

)
 .

As b→ ∞ we have

1− 1

2

c

b
+

1

3

c2

b2
− . . . =

log (1 + c
b)

c
b

→ 1,

−1

2

a

b
+

1

3

a2

bb
− 1

4

a3

b3
+ . . . =

log (1 + a
b )

a
b

− 1 → 0,
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1

2

c

b
− 1

3

c2

b2
+

1

4

c3

b3
− . . . = −

log (1 + c
b)

c
b

+ 1 → 0.

Therefore, we have

a
b −

1
2

(
a
b

)2
+ 1

3

(
a
b

)3 − . . .

c
b −

1
2

(
c
b

)2
+ 1

3

(
c
b

)3 − . . .
− a

c
→ 0

and the desired result follows, because 1
b also converges to 0.
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