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Resumo

Nesta dissertação, é proposto um modelo computacional para detetar mudanças de harmonia numa
sequência musical simbólica. Um modelo computacional para a detecção de mudanças de harmo-
nia torna-se fundamental para o campo da recuperação de informação musical, bem como para
uma vasta área de outras aplicações musicais. Uma vez que uma grande parte da investigação
é realizada utilizando áudio, a investigação com música simbólica é ainda muito reduzida e em-
brionária, uma vez que não existem muitos datasets organizados de musica simbólica e que a
conversão de datasets de outros formatos para simbólico pode ser um processo moroso. Fazendo
uso do Tonal Interval Space (TIS) [1], a aplicação de uma redução das notas que compõem os
acordes, numa representação hierárquica em árvore, pretende eliminar ornamentos e notas não
fundamentais à estrutura musical como pré processamento. Esta representação constitui a base
da tarefa de detecção de mudanças de harmonia, onde o início de cada novo acorde é inferido,
utilizando a versão atualizada da função de deteção de alterações harmónicas proposta por Ra-
moneda e Bernardes [2]. A avaliação do modelo proposto foi realizada através da aplicação sobre
cinco conjuntos de música clássica de épocas e estilos distintos. Os resultados obtidos estão em
linha com os valores encontrados para a função de detecção de mudanças de harmonia para áudio
reportadas em [2] e [3], com os valores alcançados a rondarem os 60-80%, embora estes diminuam
ligeiramente quando o processo de redução é aplicado. Os códigos, em Python, para a computação
do modelo proposto com e sem redução harmónica estão disponíveis nos apêndices para efeitos
de replicação e disseminação.

Keywords: Harmonic Change Detection, Symbolic Music, Harmonic Segmentation, Music
Information Retrieval
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Abstract

In this dissertation, a computational model for harmonic change detection in a symbolic musical
sequence is proposed. A computational model for detecting harmonic changes is fundamental to
the field of musical information retrieval, and to a wide area of other musical applications. Related
research has been conducted to address musical audio signals. Adopting symbolic notation to the
task is at an embryonic stage, since there are not many organized symbolic music datasets, and
converting datasets from other formats to symbolic can be a time-consuming process. Making use
of the Tonal Interval Space (TIS) [1], we adopt a strategy to reduce the component notes of a chord,
in a hierarchical tree representation, to eliminate ornaments and notes that are not fundamental to
the musical structure as a preprocessing stage. This representation forms the basis of an harmonic
change detection model, where the beginning of each new chord is inferred, using the altered ver-
sion of the harmonic change detection function proposed by Ramoneda and Bernardes [2]. The
proposed model was evaluated on five datasets of classical music from different eras and styles.
The results are in line with the values found for the harmonic change detection function for audio
reported in [2] and [3], with the values achieved being around 60-80%, although these decrease
slightly when the reduction process is applied. The codes, in Python, for computing the proposed
model with and without harmonic reduction are available in the appendices for replication and
dissemination purposes.
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Chapter 1

Introduction

1.1 Context

Harmonic Change Detection (HCD) is the task that studies the detection of chord boundaries

(onset or chords in the musical surface). It is framed within the Music Information Retrieval

(MIR) and Sound and Music Computing (SMC) fields, two of the most prolific areas of the last

few decades in Music Computing’s domain.

1.2 Motivation

The importance of harmony in the music spectrum is undeniable. In the computational side of

things, there is a wide range of musical areas where harmony is an integral part of them, with HCD

being one of the main tasks in MIR, covering many applications, like Structural Segmentation,

Genre Classification or Music Generation, to cite a few.

The HCD topic has been studied in greater depth in recent years, mainly in SMC and MIR

fields, where it can be used as a preprocessing strategy to detect chord boundaries in musical

representations, and it has also been instrumental to Automatic Chord Recognition (ACR), which

has been growing as a topic of interest in the field of MIR, not only for its commercial applications,

but also for future and more advanced music analysis.

From a computational stand, HCD is the first step to a better understanding and creation of

computed harmony, as the given information at the change of a chord yields the harmonic rela-

tionships.

While this task has been most prominent in audio processing, the growing interest in process-

ing symbolically encoded music has given new horizons to this area and expanded its possibilities

to other ones (e.g. musicology and data recovery).

The major difference between audio ACR and symbolic ACR is related to the processing

of the data: audio contains expressive information (e.g. timbre) and it is usually represented

in spectrograms and chromagrams (based on Discrete Fourier Transform (DFT) functions, e.g.

Short-Time Fourier Transform (STFT)); while symbolic music contains a more abstract view of

1



Introduction 2

music representation (e.g. a MIDI file generally delivers its own information given through a letter,

which tells the note, and a number, which tells the octave).

Recently, the increasing evolution of the technologies for artificial intelligence and for machine

and deep learning has provided newer ways to improve the efficiency on many computational

music tasks, also bringing new horizons for this and other related tasks in the future.

1.3 Objectives

The main objective of this thesis is to define an harmonic change detection function inspired by [2]

to be applied to symbolic music manifestations, seeking to outperform existing state-of-the-art

models.

In greater detail, the following three main objectives will be pursued:

1. To advance a model for pitch distances between the component notes of a chord. It ulti-

mately aims at reducing the symbolic musical surface to a minimal and constant chordal

texture (e.g., triads), thus excluding all embellishments from the structure;

2. To propose a compatible and efficient method for detecting harmonic changes in symbolic

music manifestations, based on a critical assessment of HCDF model (proposed by Ra-

moneda and Bernardes [2]) and its parameterization;

3. To evaluate the proposed method, based on standard evaluation metrics (e.g., F-score), and

assess the future improvements to the model.

1.4 Methodology

To attain objective 1, which is to create a model for pitch distances, it is necessary to find rating

reduction strategies in order to eliminate embellishment notes and reduce structure to its essential

minimum (e.g. triads), in order to reduce the amount of information and avoid false positives in

HCDF. For that matter, several distances within the TIS will be used, like the inter-note distance

and dissonance, as well as the distance of the note to the entire chord cluster. The regional context

(i.e., key) on TIS will also be valuable at this point.

Regarding objective 2, it will be necessary to adapt the HCDF proposed by Ramoneda and

Bernardes [2] to process symbolic music notation. The main challenges here are the definition

of a parametrization that is aligned with a reduced number of data entry points (in comparison to

audio processing signals). Defining the otimal parametrization will lead through an extensive grid

search to the set of parameters that best fit the problem at hand.

In relation to objective 3, a search for a varied and conclusive gathering of datasets with anno-

tated symbolic data has to be made. In order to evaluate the obtained results and draw conclusions

about them, a set of evaluation metrics is designed. The global evaluation will be made by standard

metrics like F-Score and Precision and Recall [7]. Its results, based on the comparison between
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dataset data and evaluation data, can lead to certain conclusions that can direct the work produced

for future application developments or even the work itself (e.g. higher F-Score measures provide

a more balanced prediction of string boundaries).

1.5 Preliminary Work

All the preliminary work was carried out in order to obtain the greatest amount of knowledge on

the subject and on what has already been achieved in this field, besides getting acquainted with

which innovations are being prepared today and which can be created in the future.

However, before starting with the coding itself, there is some preliminary work that can al-

ready be done. Such tasks have to do with a proper understanding of this procedure and how to

promote satisfactory results. Therefore, a proper installation and execution of Python libraries like

TIVlib [1] [8], music21 [9] and scipy [10] and libfmp [6] [11] [12] [13] are mandatory for

the smooth running of the final program.

1.6 Workplan

The proposed workplan for this dissertation will be based on the one presented in [2], but with

substantial differences: for example, changing the type of input promotes significant changes in

the work plan formed. These differences will be covered under the innovations portrayed in [3].

A tentative Workplan has been created, in order to represent a formal map for the dissertation:

it serves basically as a guiding document for its future endeavours.

Figure 1.1: Initial Workplan
.
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Its various groups and subgroups will be explained in more detail in the following paragraphs:

• Preparation Phase: Comprehends the period related to the course "Initiation to Research".

In this course there was a seminar (How to Write an Engineering Dissertation), where the

rules and precautions to be taken in writing a thesis, as well as to undertake a literature

review for relevant information were addressed. In addition, two reports were written on the

thesis proposal: an intermediate and a final one, the latter being the object of a presentation;

• Research Phase: It refers to the period of efficient search for relevant information to the

writing of the dissertation, from the initial search and understanding of the state of the art

to the creation of an effective algorithm that positively supports all the stages defined in the

methodology.

In the case of this dissertation, the "Code Development" part requires some important notes:

• Harmonic Change Detection: It is the main task of this thesis. It will pick up the proposed

variation of Harte’s HCDF [5] by Ramoneda and Bernardes [2] and, based on the latter,

promote a new one (in this case for symbolic music representations);

• Reduction Algorithm Development: TIS will take a pivotal role, assuming the task of

reducing the symbolic surface of the music used;

• Evaluation: According to the standard metrics, the comparison of the obtained results and

the datasets results will form a global opinion about the developed work and its results, as

well as a thought for future improvements.

The last part refers to the actual writing of the thesis, as well as certain subsequent actions

(e.g. Poster Design), only being subject to scrutiny in the final phase of its writing.

1.7 Structure of the Dissertation

This dissertation is organized as follows:

• This initial Chapter introduces the subject of the dissertation and presents the methodology

employed to carry out the study. It ends with a graphical depict of all stages defined in

advance to establish a tentative workplan;

• Chapter 2 renders a closer look at the work previously done in the field of study of harmonic

change detection. This "State-of-the-art" provides a backbone for all the background on

which this thesis is based on;

• Chapter 3 provides a detailed illustration of each step of the direction followed according to

its primary objective;
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• Chapter 4 brings to the fore a critical evaluation of the obtained results, as well as possible

explanations for unexpected behaviours;

• Finally, Chapter 5 renders the main conclusions, making a constructive assessment of all

the work developed and the results obtained, and suggesting possible future changes or

additions that can help to improve the constructed method in future endeavours.



Chapter 2

Harmonic Change Detection: An
Extensive Review

2.0.1 Fundamentals of Harmony

2.0.1.1 Harmony

The most basic and central concept of this study is harmony, which is defined as the simultaneous

combination of notes, which leads to the formation of chords, and, in consequence, to the produc-

tion of chord progressions [14]. Harmony and its computational processing has been a topic of

interest in computer music, and largely addressed by the sound and music computing community.

2.0.1.2 Intervals

An interval can be described as a pitch difference (in semitones) between two notes [15]. Table 2.1

shows the nomenclature adopted in Western music traditions for all intervals within an octave.

2.0.1.3 Chord

In Western Tonal Harmony, a chord is defined as a group of two or more notes sounded together,

with each existing type named according to the intervals formed by the constituent notes [16].

The most frequently encountered type of chord is a triad, which is designed as a set of three

notes which are arranged to form two thirds [17]. There are two basic types of triads: major, if

the lower third is major and the upper is minor (e.g. C-E-G), and minor, if the aforementioned

sequence is reversed (lower 3rd minor and upper third major, e.g. A-C-E). Two variations can arise

from these definitions: augmented, if the chord is composed by two major thirds (e.g. C-E#-G),

and diminished, if the chord is composed by two minor thirds (e.g. A-C-C♭) [17]. There are also

tetrads, which are basically "four note-chords", or, in order to relate the two definitions, they are

triads with an additional note: this addition promotes two new chord types: Major Seventh (e.g.

C-E-G-B), and Minor Seventh (A-C-E-G). But these are not the only existing types of chords: its

6
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Number of Semitones Interval
0 Unison
1 Minor Second/Augmented Unison
2 Major Second/Diminished Third
3 Minor Third/Augmented Second
4 Major Third/Diminished Fourth
5 Perfect Fourth/Augmented Third
6 Diminished Fifth/Augmented Fourth
7 Perfect Fifth/Diminished Sixth
8 Minor Sixth/Augmented Fifth
9 Major Sixth/Diminished Seventh
10 Minor Seventh/Augmented Sixth
11 Major Seventh/Diminished Octave
12 Perfect Octave/Augmented Seventh

Table 2.1: Relationships between Number of Semitones and its corresponding Interval Name
.

type depends on the intervals between the notes. The variety of existing harmonies is multiplied

with the addition of notes in the chord.

The computational description of a chord is typically made with Roman Numeral (RN) anal-

ysis, which represents chords as RNs to show the relation between the root note of the chord and

its tonic: that relationship forms the functional harmony [18].

2.0.1.4 Tonality

Since this study revolves around Western tonal harmony, it is fundamental to understand the notion

of tonality. Tonality is defined as an organization of pitch relationships which helps creating a

musical articulation in time [19]. Its two main components are melody (sequential pitch structures)

and harmony (synchronous pitch structures) and its intervals are considered to be two important

perceptual tonal descriptors in the Tonal Pitch Space.

2.0.2 Symbolic Digital Music Notation

Symbolic digital music manifestations, such as scores, ABC notation, MIDI, and MusicXML

files, have been recently growing in both public and private datasets. Given its nature, a greater

interest in studying this descriptive form of music has been pointed out by musicologists and

music theorists, who work primarily with musical representations. In this context, due to greater

ease to obtain audio content rather than symbolic representations, the study of the latter is still

quite scarce. However, recent studies show that it can produce results similar to those obtained

with audio [3].
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2.1 Tonal Pitch Spaces

Tonal pitch spaces are algebraic or geometric representations of a pitch, where distances between

its relations are perceived with a proximity among pitches, chords or keys [20]. One of the ear-

liest pitch spaces, Tonnetz, was proposed by Euler [4]. Euler proposed an equal-tempered pitch

organization based on interval relations, especially perfect fifths and major and minor thirds.

Figure 2.1: Excerpt of Original Tonnetz Graphic by Euler [4]
.

Figure 2.1 shows a part of the Tonnetz diagram proposed by Euler [4]. It is possible to notice

some formed relationships between pitches, with the two coloured triads (one major and one

minor), along with the possible relations formed in each direction (Fifths are formed horizontally

from left to right, minor thirds are formed diagonally from bottom left to top right, and major

thirds are also formed diagonally from top left to bottom right). A more extensive diagram will

cover more relationships between the various pitches.

The Tonnetz was the inspiration for many contributions on this domain [21][5][1]. They are

considerably more complex, since they encompass, in their description, the modeling of more and

more harmonic hierarchies:

• Chew Spiral Array: Based on [22], is basically the Euler’s Tonnetz representation, but in

a 2-dimensional helix, with pitches being mapped into a continuous spiral, which allows

the modelling of abstract concepts (e.g. chords and keys) and the construction of spatial

relations between pitches, chords and keys;

• Tonal Centroid Space: Tonal Centroid Space, proposed by Harte [5], introduced Enhar-
monic Equivalence (Chew Spiral Array model assumed all possible notes and its notations

(e.g. assumes that Fb is not the same that E) so, to perpetuate this behaviour, it did not

assume enharmonic equivalence) and Octave Equivalence, reducing all possible notes to

a set of 12 pitch classes, categorized into a "6-D Hypertorus" space: each chord can be

described by its respective 6-D centroid present in the space;

• Tonal Interval Space: Proposed by Bernardes [1] and inspired in the aforementioned hy-

potheses, its characterization allows significant improvements in relation to the previously

mentioned base models: the characterization of the various possible relationships between

pitches makes an improvement relative to Euler’s base model, which only characterized ma-

jor and minor triads; the existence of Chroma Vectors and its function promotes a more easy

representation than Spiral Array by Chew [21]. Lastly, by considering all pitch relationships

in only one octave, TIV has an upgrade upon Harte’s [5] method.
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2.1.1 Tonal Interval Space

In this study, TIS, a 12-dimension pitch space, where each dimension corresponds to a harmonic

quality and has some links to the interval content of a sonority, will be adopted. To map the pitch

into the TIS, a pitch class profile vector (also referred to as a chroma vector, namely when driven

from audio) is first aggregated, which is then projected into the space as Tonal Interval Vectors

(TIV).

Figure 2.2: TIV - Sequence [1]
.

In audio processing, chroma vectors are 12-element vectors, with each dimension referring

to a pitch class, that indicates how much of the energy of each of the 12 distinct pitch classes of

the octave is actually present in the signal [23]. For symbolic music, chroma vector refers to the

cardinality of each pitch class.

In this matter, it is also worthwhile to refer Pitch Class Vectors (PCV), remmant of Pitch Class

Profiles [24] [25]: the definition is pretty much similar, but the profiles are only binary or integers.

Chroma Vector Position 0 1 2 3 4 5 6 7 8 9 10 11
Pitch Class C C# D D# E F F# G G# A A# B

Chroma Vector Value 1 0 0 0 1 0 0 1 0 0 0 0
Table 2.2: Example of a Chroma vector c(n) representation (C major chord)

.

For each chroma vector, c(n), a TIV, T (k), is computed, as its normalized and weighted dis-

crete Fourier transform (DFT), such that:

T (k) = w(k)
N−1

∑
n=0

c(n)e−
j2πkn

N ,k = (0, ...,6) (2.1)

c(n) =
c(n)

∑n = 0N−1c(n)
(2.2)

where c(n) is the normalized chroma vector, N = 12 is the dimension of the chroma vector and

ws(k) = [2, 11, 17, 16, 19, 7] is a set of weights constructed from empirical consonance ratings

using dyads.

The final result is a 12-dimension TIV T (k), where each dimension (or coefficient) has an

interpretation as a harmonic quality and a weaker relation to musical intervals. It is important to

note that, as the last six dimensions will be symmetric to the first six, only these first six are worth

exploring, as referred in 2.1.
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With TIV, all the major and minor chords have the same magnitude (i.e. distance to the centre

of TIS), since the interval structure is the same, but they have all different angles), which can create

the assumption that they all have the same interval content. Moreover, the phase gives information

about the pitch class content of the chord.

Figure 2.3: C chord looked through the first 6 dimensions of the Tonal Interval Space [1]
.

TIV is the basis of reduction processes inscribed in certain methods for various types of

themes: e.g. MusikVerb [26], a novel digital reverberation which, using a spectral filtering

technique, ‘tunes’ the reverberation output, according to the harmonic content of the input; and

Sostenante Pedal [27], a sustain pedal used for digital pianos, where certain notes of the

chords, according to the relation of their positions in the TIS, are released, resulting in a more

consonant and less dissonant final chord.

2.2 Harmonic Change Detection Methods

The Harmonic Change Detection Function (HCDF), originally proposed by Christopher A. Harte

in [5], has widely been considered the base of the "train of thought" that must be implemented in

the study of this theme, given to be successful in detect harmonic changes such as chord bound-

aries in polyphonic audio recordings. HCDF involves a model that creates a space formed by equal

tempered Pitch Classes, mapping 12-element Chroma Vectors to the interior of a 6-D polytope vi-

sualized as three circles, mapping also 6-D Centroid Vectors to represent the existing harmonic

relations. To measure a possible harmonic change occurred in a certain frame n, a calculated

euclidean distance between frames n− 1 and n+ 1 is needed. Its results can render various con-

clusions (e.g. a small result of a euclidean distance denotes closer harmonic relations). A peak

occurred in the detection function shows a transition from a harmonically stable region to another.
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Figure 2.4: Original HCDF Sequence, proposed by Harte [5]
.

In this dissertation, it will be employed the same method as in [2]. Although using symbolic

music representations instead of audio as input, it will be created an improved way of computing

HCDF, aiming at detecting harmonic transitions in musical signals. This is a vital condition for

the ACR task, as a revision (and betterment) of each component block of HCDF, relying on more

recent advances, promotes a more efficient and adapted HCDF when compared to the original [5].

Figure 2.5: A changed HCDF sequence [2]
.

As referred earlier, the aforementioned changes and inclusions are the result of a "block-by-

block" revision of the original HCDF methodology, with each block retaining the most efficient

algorithm (based in the recent literature), creating the most effective HCDF algorithm possible, as

follows:

• Preprocessing: Creates a frequency-based representation of the digital input waveform (au-

dio). To that end, and considering future chromagrams computation requirements, Constant-

Q spectral analysis is made;
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• 12-Element Chromagram: To create a 12-element chroma vector, compressing the sum

of all the energy of each pitch class (of all the 12 notes), various algorithms have been put

to test: from the earliest methods (e.g. Short Time Fourier Transform Chromagram
(CST FT ) [28], Constant-Q Transform Chromagram (CCQTC) [29], Pitch Class Profiles
(PCP) [25]), to some more advanced ones (e.g. Harmonic Pitch Classes Profiles (HPCP)

[24] and NNLS Chromagrams (CNNLS) [30]). To this day, NNLS seems the best way to

create the most balanced chroma vector.

Figure 2.6: NNLS Chromagram (CNNLS) Pipeline Diagram
.

A descriptive diagram of the creation of NNLS Chromagrams is presented in figure 2.6.

In it, the two main steps for the realization of this chroma are visible: Log-Frequency
Spectrogram, in which is computed the spectrogram that indicates the distribution of the

signal’s energy across the various signal’s pitches, and Approximate Transcription, a ten-

tative transcription of the information contained on the spectrogram is computed in a new

spectrum, with this to be inferred using a Non-Negative Least Squares (NNLS) algorithm.

At last, two types of chromagram are created: a treble chroma for higher frequencies, and

a bass chromagram in lower frequencies (a third one can also be computed, being this a

mixture of both);

• Tonal Interval Space: The great addition to this revamped algorithm is the Tonal Interval

Space [1]. Exhaustively described in the "Background" section, it provides a good solution

for the creation of TIV, a 12-element vector formed from each chroma vector relative to

each of the 12 existing notes. The corresponding space will especially represent the most

important parameters of Western Tonal Music: Pitch, Chord and Key will be included in

unique and notable locations in the space;

• Smoothing and Distance Calculation:

– A convolution between TIV (T (k)) with a Gaussian smoothing function is constructed,

in order to minimize the effect caused by noise and transient frames;

– To take some conclusions about the relationships created between notes, "distances"

between T (k) vectors are calculated: the Euclidean Distance, to state movements be-

tween two sounds, and Cosine Distances, to evaluate a supposed "mix" of the afore-

mentioned sounds;
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• Harmonic Change Detection Function (HCDF):

– Given the smoothed T (k) vectors resulting from the Smoothing step, HCDF retreats

an overall rate of change between consecutive frames (frames n− 1 and n+ 1), with

peak picking applied in the end to highlight harmonic stable regions [31]. The code

used for TIV computation has been provided by [1];

According to [2], the aforementioned improvement results in a 5.57% (F-Score evaluation

metric) progress of the ability to detect harmonic changes, when compared to other methods. Al-

though there is an improvement in results when compared to previous methods, an amendment

from a type of audio input to symbolic music takes a significant change in the entire process, from

data processing to the creation of TIV’s.

An important ally is [3], which promotes harmonic analysis with symbolic music and its pos-

sibilities of use in the Automatic Chord Recognition (ACR) task.

In this dissertation, two recent models related to ACR are portrayed: Bi-directional Trans-

former for Chord Recognition (BTC) [32] and the Harmony Transformer (HT), with this disser-

tation comparing both, namely in chord symbol recognition and functional harmony recognition

quality. Both methods are built upon the Transformer model [33] and its two main computation

blocks (Multi-Head Attention (MHA), used to create global dependencies between inputs and out-

puts, and the Feed-forward Networks (FFN)). Both methods share great ability to chord segmen-

tation. These revamped versions demonstrate the capacity of improvement that the "multi-head

attention" mechanism introduces in the performance of ACR, as described below:

• Bi-directional Transformer for Chord Recognition (BTC): Originally created just for au-

dio file datasets, it only uses the encoder part of Transformer and aims to capture harmonic

dependencies in the chord sequences provided;

• Harmony Transformer (HT): Created for both audio and symbolic music datasets, it uses

the full extent of Transformer’s architecture and aims to estimate chord boundaries, and

then, according to the information present in the segmented chord, recognise the chord.

The introduction of intra/inter-MHA’s (according to the type of input of the Attention function),

uni/bi-directional MHA’s (according to which positions of a sequence are valid to be applied the

attention function) and FFN’s blocks provide several adaptions from the original methods.

2.2.1 Reduction-based Musical Structures

A part of this thesis’ main goal is to reduce the complexity of the structure of symbolic music

representation. To achieve that, musical structures based on reduction are used.

Various forms of reducing musical structures have been proposed: the most known, and con-

sidered a classic in the field, is Generative Theory of Tonal Music (GTTM), proposed by Lerdahl

and Jackendoff [34], where four hierarchically reduced structures (Grouping Structure, Metrical
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Structure, Time-span Reduction and Prolongational Reduction), are presented as possible ways of

modeling a person’s musical intuition. Dominant regions contain a smaller number of subordinate

elements and equal elements can exist contiguously within a particular hierarchical level [34].

Largely based on GTTM, is other reduction-based method proposed by Nakamura [35]. It re-

volves around a probabilistic formulation of music language, forming a tree-representation model,

probabilistic context-free grammar, based on time-span tree proposed in GTTM. More recently,

other methods, based on GTTM, have been proposed ([36] [37]), with the second reference being

an updated version of the first. Both follow a very similar path:

• At first, each chord of the musical sequence is segmented;

• Once the segmentation is performed, the most relevant note of each chord is identified.

Carrying out this process on all elements of the input sequence, this whole path is summarized

in a tree structure, containing all the aforementioned reduction levels.

Figure 2.7: An Exemplified Reduction of a Structured Musical Sequence
.

In this dissertation it will be also developed a tree-based representation, where the notes of

the analysed piece of music will be ranked into various levels of importance, between the original

sequence (i.e., leaf notes) and the root, in a form of a tree (hence the term "tree-based representa-

tion": the lowest level being the whole chord and whole harmony to be scrutinized and the highest

level of reduction being only the most noticeable note of the chord. The resulting tree will be the

input to the harmonic change detection task, where the boundaries of the chords will be deducted.

This process will be implemented using TIS and its reduction characteristics.
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2.2.2 Evaluation Metrics

The evaluation metrics used in this dissertation are considered standard evaluation metrics [7]

generally used to evaluate Music Information Retrieval Evaluation eXchange MIREX Tasks and

researches released in Transactions of the International Society for Music Information Retrieval

TISMIR to indicate performances measures of the algorithm:

• Precision (p): Percentage of correct hits to detected changes in the harmony of the chord:

p =
t p

t p+ f p
·100(%)

• Recall (r): Percentage of correct hits to harmonic changes according to ground truth anno-

tations:

p =
t p

t p+ f n
·100(%)

• F-Score: The most usual evaluation metric, represents an harmonic mean value of the Pre-

cision and Recall indicators:

p =
2∗ p∗ r

p+ r

Note that tp, fp and fn are acronyms for true positives, false positives and false negatives (respec-

tively). A true positive represents a correct hit of a harmonic change by the HDCF function; a

false positive is a correct hit in the HCDF function, but is not a harmonic change in the symbolic

representation. At last, a false negative is a hit that has not been identified by the HDCF function

as a harmonic change, although there’s actually an harmonic change in the representation.

In [3], the segmentation quality (SQ) is calculated using Directional Hamming Distance (DHD)

[30]:

SQ = 1−MAX [DHD(S,S’),DHD(S’,S)] (2.3)

DHD(S,S’) =

size(N)

∑
i=1

(|Sn|−MAXn|Sn ∩S’n|)

size(N)

∑
i=1

|Sn|
(2.4)

Sn refers to the frames of the nth segment of the annotated segmentation S and S′n denotes the

frames of the nth segment of the predicted segmentation S’. The SQ value (which goes from 0 to

1 only) reflects the similarity of two segmentations: the higher the SQ coefficient, the higher the

quality of the segmentation produced: a null value represents an uneven segmentation between the

two parts, without any kind of correlation of parts between them; a unit value indicates complete

equality between them: they mean the same representation.



Chapter 3

Symbolic Harmonic Change Detection
in the Tonal Interval Space

This Chapter defines the proposed Harmonic Change Detection Function (HCDF) for symbolic

music manifestations. The reasoning behind the multiple components of the HCDF are detailed

along with the computational methods adopted.

3.1 Harmonic Change Detection Function

Figure 3.1: Diagram Sequence of the various steps involved on the HCDF process
.

Figure 3.1 shows the pipeline to compute the HCDF for symbolic music manifestations. It

features four prominent modules that will be detailed in the following sections. In the resulting

function, peaks indicate the changes in the harmonic content of the symbolic music input, i.e.,

16
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the onset of chords. A novelty to the pipeline introduced in Ramoneda and Bernardes [2] is the

adoption of a preprocessing harmonic reduction module, where the component notes of chords

are inspected and potentially filtered to avoid ornament and embellishment notes which are not

fundamental to the harmonic structure and typically introduce false positive detection in the HCDF.

A GitHub repository containing the Python scripts for this work was created, to save all devel-

opment steps that ended up morphing into the final code 1.

3.1.1 Symbolic Input

The basic format used to describe symbolic music was MIDI, for its handling in storing onset

times and notes duration, fundamental for the later comparison with the groundtruth values of

each chord annotations, generally contained on CSV or XLSX extensions. For this matter, all

files from the considered datasets were converted, from a machine-readable format (MuseScore

format), to MIDI file 2. Another reason for the choice of this format is its easy interconnection

with certain Python libraries, such as music21 [9], a very important library in the MIR area, and

TIVlib [1] [8], necessary for this work.

For each MIDI file, a number of relevant descriptors for the non-reduction and reduction pro-

cesses are used, as the following information can detail:

• Onset Tick - Starting time of each note;

• Midi Pitch - Integer number that represents a note’s pitch;

• Offset - Starting time of each note (with quarter note as unit and the first note has 0);

• Duration - Duration of each note, (with quarter note as unit).

3.1.2 Tonal Interval Vectors

The harmonic content of a symbolic music manifestation is represented by Tonal Interval Vectors,

T (k), computed as the discrete Fourier transform of chroma vector or pitch class profile vectors.

The resulting vector is a 12-dimension vector ( 2.1).

Chroma or pitch class vectors play an important role in music processing, as they represent the

energy (in audio) or the cardinality (in symbolic) of each pitch class.

For this work, chroma vectors (or harmonic pitch class profiles [25]) were created by the

get.chroma function of the pretty_midi library to each MIDI file, with its final chromagram,

i.e., a temporal sequence of chroma vectors in time, being segmentated in columns spaced apart

by 1/fs seconds (in this case, fs is the resolution value). Figures 3.2 and 3.3 show two possible

chromagram representations for the Beethoven’s 19th Sonata: one using pretty_midi [41] and

librosa libraries, and the other using libfmp library [6].

1The GitHub repository can be accessed in https://github.com/ZMacedo/HCDF-Symbolic_Music.git
2All datasets can be found as submodules of the AugmentedNet repository, which can be accessed in https:

//github.com/napulen/AugmentedNet.git

https://github.com/ZMacedo/HCDF-Symbolic_Music.git
https://github.com/napulen/AugmentedNet.git
https://github.com/napulen/AugmentedNet.git
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Figure 3.2: Chromagram of Beethoven’s 19th Sonata by pretty_midi and librosa libraries
.

Figure 3.3: Chromagram of Beethoven’s 19th Sonata by libfmp library [6]
.

After applying the DFT, the resulting Tonal Interval Vector, T (k), exist in a space, where

distances equate with the the cognitive distance of the pitch configurations [1]. T (k) vectors can

represent any pitch configuration from a single note to chords with varying number of notes and

scales. In greater detail, pitch configurations that are close in space are understood by humans as

related, such as the interval of fifth. Conversely, a minor second will have a larger distance, as a

result of commonly being harmonically unrelated within the tonal music context.

For each chroma vector (or pitch class profile vector), a 12-dimensional TIV can be computed

using the from_pcp function of the TIVlib library (using the base parameters). The final TIV

can also be plotted with plot_TIV function.

3.1.3 Smoothing

Tonal Interval Vectors, T (K), are convoluted with a Gaussian filter to avoid possible transient

frames, at later peak picking stages in the system’s pipeline, a process named Smoothing. The

degree of convolution will be measured from a sigma parameter, σ . The impact of high-convoluted

T(k) vectors (i.e. convolution made with major σ values) is to provide a blurred convolution,
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whereas with null or minor σ it can be denoted a more clear convolution operation. This step is

constructed using the Gaussian filter function by the scipy.ndimage package of the scipy library

[10].

3.1.4 Distance Calculation

Equations 3.1 and 3.2 define the Euclidean and cosine distance metrics adopted in the HCDF

calculation. For a given event in time n the HCDF value is defined by the distance between

T (k)n−1 and T (k)n+1 vectors.

ζ
eucl
n = ∥ζ

′
n+1 −ζ

′
n−1∥ (3.1)

ζ
cos
n =

<ζ
′
n+1,ζ

′
n+1>

∥ζ
′
n+1∥∥ζ

′
n+1∥

(3.2)

While the Euclidean distance accounts for both interval and pitch class content properties

of the pitch configurations, cosine distance only accounts for the latter. In other words, while

Euclidean distance accounts for similar intervals and common tones between two pitch configura-

tions, the cosine distance only considers the latter.

3.1.5 HCDF

All above steps lead to the HCDF, from which we extract the chord changes in a symbolic mu-

sic manifestation. Peaks, or local maxima, in the HCDF indicate the onset of chord changes.

Figure 3.4 illustrates the detected chord changes (in green) of a HCDF (in blue).

Figure 3.4: A Perfect HCDF Plot (with Bach Chorale example)

3.2 Harmonic Reduction

As identified in the literature, one of the main drawbacks of the HCDF is the large amount of false

positive it tends to feature. In symbolic music manifestations, these false positive may be driven

by ornaments or embellishments notes that typically occur in the musical surface. To account for

latter and aiming to diminish their impact on the HCDF, we propose three harmonic reduction

strategies: 1) tree-note chord, 2) threshold and reduction, and 3) distance threshold.
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3.2.1 Tree-note Chord Reduction

This reduction strategy aims to transform any chord with four or more component notes to a

triad, while retaining the root, third and fifth. To this end, the computational reduction method is

fourfold: 1) identify the chords with 4 or more component notes; 2) compute the TIV (T (k)) of

the chord; 3) compute the distance of each component note to the chord T (k) vector; and 4) retain

the 3 notes that have smaller distance.

A multi-part score can be represented in a single part, result of slicing the symbolic music score

into “salami slices”, i.e., temporal segments sliced vertically at every new onset in the musical

score. Furthermore, the multi-part score is reduced to a single part score composed of a sequence

of chords per slice. This transformation, using the Chordify function of the music21 library, is

illustrated in 3.5.

Figure 3.5: Example of a "Chordified" Score (Bach Chorale)
.

The reduction process is only applied to chords with four or more unique notes, therefore it

ignores duplicated notes. After removing duplicate notes (as shown in Figure 3.6), the reduction

steps can be applied. The output of this harmonic reduction process is a new score which can

be parsed into a symbolic music notation format, such as MusicXML or MIDI. To verify the

process, a score showing both filtered (red note-heads) and unfiltered (black note-heads) notes can

be produced as shown in Figure 3.7.

In Figure 3.7, red note-heads indicate note to be removed from the harmonically reduced score.

The method behaved as intended. For example, looking at the first chord that undergoes reduction,

it consists of E, D, G#, B, which allows us to understand what forms a chord dominant seventh of

E (E7 major). If the objective is to reduce the chord to its basic form (triad, in this case E major),

the note to remove would be the most dissonant note, which promotes the dominant seventh nature

of the chord (in this case, it would be the note D).
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Figure 3.6: Bach Chorale with a Non-duplicated "Chordified" Score
.

Figure 3.7: Non-duplicated "Chordified" Bach Chorale Score with Painted Removed Notes
.
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Figure 3.8 shows the resulting score after the harmonic reduction process. The main problem

with this method is that music21 library does not provide a good conversion from a "chordified"

score to MIDI. This conversion always calls stripTies() but, when this function is called, notes of

the chord that are not strip-tied to the next chord can be lost, which leads to these notes being lost

when converted to MIDI, in addition to the reduced notes themselves, which is not desirable.

Figure 3.8: Final Reduced Non-duplicated "Chordified" Bach Chorale Score
.

3.2.2 Other Reduction Methods

In order to try new approaches and to expand the model presented to the reduction process, two

more processes were created, with each one revolving around a threshold value:

3.2.2.1 "Threshold&Reduction"

Along the reduction method presented in the subsection before, a second reduction phase, based

on a threshold value defined by the distance between each note and the centroid point of the TIV

of the chord on its TIS representation, is added: above this value, all notes will be reduced, with

an auxiliary reduction in case of having chords still not on its triad form. To that end, every MIDI

file in each dataset will be reduced according to threshold values between 30 and 35, writing down

the HCDF values for each case to find the best threshold value for the effect. It is expected that,

with the increase of the threshold value, and the consequent decrease of the number of notes to

reduce, the HCDF result will be closer to the results obtained without any kind of threshold.

3.2.2.2 Only Threshold

Another way would be just to look at the threshold values and only reduce notes that would be on

a higher distance from the TIV center of the chord, not caring if the new chord would be a triad or

not, but once again, the behaviour was the same as the other reduction processes.



Chapter 4

Evaluation

This Chapter presents the evaluation of the proposed HCDF for symbolic music manifestations in

detecting chord changes.

The evaluation will be based on an objective and quantitative comparison between the onset

times of ground truth annotation data (in seconds) of chord onsets. Namely, by assessing how well

the predicted changes from the HCDF temporally align with the ground truth data. To quantify

this alignment we adopt the standard evaluation metrics F-Score, Precision and Recall, already

described in subsection 2.2.2. These are calculated using the mir_eval library [38], specifically

its mir_eval.onset.f_measure function, which, from the Precision and Recall metrics, calculates

the F-score value, in terms of correct and incorrectly predicted onsets. The correctness of this

calculation is determined by a small window (since this work is being done in seconds, the value

used for the window is 0.628).

4.1 Datasets

To test the developed model, four datasets will be adopted: BPS-FH Dataset (composed by

symbolic music data and functional harmony annotations of the 1st movements from Beethoven’s

32 piano sonatas), Bach Preludes Dataset (which consists of 24 preludes to Bach’s Well-

Tempered Clavier first book), TAVERN dataset [39] (formed by 17 works by Beethoven and 10 by

Mozart for a total of 27 works and 281 Variations, 100 from Mozart and 181 from Beethoven), and

ABC dataset [40], which consists of harmonic analysis of all Beethoven string quartets. To an easier

extraction of information contained on the collected datasets, all symbolic data was converted to

MIDI files, as previously explained in 3.1.1.

4.2 Evaluating HCDF

In this section a description is provided about the evaluation performed on the HCDF process for

both non-reduction and reduction methods, as well as providing the results obtained and possible

explanations for them.

23
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4.2.1 HCDF Evaluation

To evaluate the HCDF function on symbolic musical data, a comparison of the time onsets of each

chord change from the HCDF with the ground truth annotations was conducted. To this end, the

parameterization of the following threefold HCDF variables was defined or assessed:

• Sigma - Parameter for the Smoothing process;

• Distance - Measure of the distance (considering Euclidean and Cosine metrics) between

smoothed TIV vectors. Its overall value defines HCDF.

4.2.2 Results

To define the resolution of the MIDI files, the pretty_midi [41] library was used. This library

creates a container for MIDI data in a format that allows changing its parameter values, such as

resolution. For the evaluation, a resolution of 28 ticks per unit is adopted. The defined resolution is

much lower than the initial resolution provided by the container (when no file or resolution value

is provided, the container initialize with 220). The initial tempo of the file can also be controlled,

although the value used for this parameter was the basic value given by the container (i.e. 120

BPM). Every score, before its conversion to MIDI, was altered to only have one single tempo

throughout the whole piece (it was decided to maintain the 120 BPM basic value) for a correct

read of the MIDI file by the pretty_midi library.

Figure 4.1: Beethoven’s 19th Sonata’s HCDF, with σ 10 and Euclidean Distance
.

Figure 4.2: First 30 seconds of Beethoven 19th Sonata’s HCDF
.

Figure 4.1 and 4.2 show HCDF plots from a symbolic music score. These figures show a

clear difference in HCDF plots for audio and for symbolic music: for audio, it is expected to have

angular peaks representing harmonic changes [2]; in symbolic music, as figures 4.1 and 4.2 can

suggest, the peaks are sharp, almost as if the diagram consisted exclusively of line segments.
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For a better understanding of the evolution of the evaluation metrics with the various possible

values of σ , a graph is also computed that shows how the σ parameter performs, aiming to find

the best σ value. Given that σ controls the Gaussian blur filter in the HCDF, it is expected to

see a “inverted parable behavior” for F-Score and Precision, i.e., low values for low σ values, a

substantial increase to median values and a decrease for major values, but a sharp and sustained

growth for Recall values, behavior translated on the increase of σ , as can be seen in figures 4.3

and 4.4. Considering this behavior, we proceeded to search for the sigma value that promotes the

best values for the mentioned metrics: as 4.3 and 4.4 suggest, the best σ value, and the one that

would be adopted in the evaluation tests, is 10.

Figure 4.3: Evaluation Metrics Behaviour with σ increase (BPS-FH Dataset, Euclidean Distance)
.

Figure 4.4: Evaluation Metrics Behaviour with σ increase (BPS-FH Dataset, Cosine Distance)
.

Tables 4.3 and 4.4 show that all non-reduction values stand in the 60-80% range, just like

the values referred in the symbolic version of [2] and [3] (these values are represented in 4.1 and

4.2). Also worth of notice is the closeness of results between the Euclidean and cosine distances,

denoting no difference between their adoption.
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Table 4.1: Ramoneda’s results for HCDF
.

Table 4.2: Chen and Su’s results for symbolic chord and functional harmony recognition
.

The results of the reduction process are inconclusive: in some cases they perform better, but

it is mostly aligned with the results of the non-reduced scores, being slightly lower than these.

In a way, it can be because of possible data being lost in the MIDI conversion in the Chordify

function by music21 library. In theory, when removing embellishment notes and dissonant notes,

the performance of the HCDF would increase, but that is only true for the Bach Preludes

Dataset, composed by simple scores (only two-part voices at maximum), with low chord reduction

requirements.

Table 4.3: Results without Reduction (for both distances)
.

To obtain the best σ value for these evaluations, as was done for HCDF without reduction,

an observation of the progress of the evaluation metrics with various possible values of σ , for the

tree-note chord reduction process, was also made, as it can be seen in figures 4.5 and 4.6. It can

be concluded, from these figures, that the σ value that can provide higher results is also 10.
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Table 4.4: Results with Reduction (for both distances)
.

Figure 4.5: Evaluation Metrics Behaviour with σ increase (BPS-FH Reduced Dataset, Euclidean
Distance)

.

Figure 4.6: Evaluation Metrics Behaviour with σ increase (BPS-FH Reduced Dataset, Cosine
Distance)

.
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Finally, an important assessment in our evaluation is the comparison of the non-reduction

methods with the different methods for harmonic reduction: the non-reduction method obtains

better results than all three reduction programs, with the original reduction method being the best

of them. Although, in theory, the presented reduction processes seem to be methods that may gen-

erate better results, one can not forget that, with TIV, the most dissonant notes will also be the most

distant, being the first to be cut in the reduction process, so the "Threshold&Reduction" method

will, in essence, give the same form of the original reduction previously made, so the results are

similar in both cases: if a threshold value above 35 (the maximum value of the proposed interval

of threshold values, as referred in 3.2.2.1) is used, since notes with a distance greater than this

value to the TIV center of their respective chord are rare, so this method becomes a repetition of

the initial reduction method. In relation to the case with only the threshold, the optimal threshold

value, according to the obtained results for each dataset and using both methods for all possible

threshold values, would be 33.

Table 4.5: "Threshold&Reduction" results for all datasets (for both distances)
.

Table 4.6: Maximum Threshold (without previous Tree-Note Chord reduction) for all datasets (for
both distances)

.
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The results obtained with the two types of representations mentioned are comparably similar,

and, in certain cases, those involving symbolic music are better, which has allowed a greater use

of these in studies in the area.

Finally, it can be concluded from the aforementioned lists of results and set of tables that the

reduction methods generally do not improve the maximum values achieved for HCDF in previous

works.



Chapter 5

Conclusions and Future Work

In this dissertation, the latest advances in harmonic description of symbolic music, namely the

use of the Tonal Interval Vectors [1] were adopted to compute an HCDF for symbolic music rep-

resentations. The proposed method detects harmonic changes in symbolic music manifestations,

based on a critical revision on the HCDF model proposed by Ramoneda and Bernardes [2] and its

parameterization. The proposed model and its parameterization were objectively evaluated using

four datasets (BPS-FH, Bach Preludes, Tavern and ABC datasets) and standard F-score, precision

and recall metrics.

The motivation to pursue this study is driven by the scarce research on symbolic music repre-

sentations, when compared with musical audio signals.

At the core of this method lies Tonal Interval Space, where a 12-dimension Vector with each

dimension containing the cardinality of each of the twelve pitch class [1]. From the Tonal Interval

Vector, distances were calculated: the shorter the distance, the closer two notes were between each

other. This line of thought formed the basis of the proposed model, namely the HCDF.

The main contribution of this dissertation is the addition of a new concept to this task: the

harmonic reduction step, where the embellishment notes of the chord were removed. Three reduc-

tion models were proposed: one, more based on musical theory and based on the reduction of the

chord to its basic harmonic form (triad), and the two others, more based on the properties of the

chord’s structure, which revolve around a threshold value (based on distances between notes on

TIS), and which remove notes with distances above this base value.

All the objectives proposed in the introductory section of this dissertation were successfully

achieved, with the creation and testing of methods that promote the detection of harmonic changes

in the structure of each constituent chord of each symbolic music file, as well as the reduction of

each chord either to its basic form (triad) or to a threshold value.

30
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5.1 Main Results

The results of our evaluation on the proposed HCDF without harmonic reduction method are in

line with those proposed in [2] and [3], with a close similarity between the values provided by

both distances used (Euclidean and Cosine).

Regarding the harmonic reduction methods, they did not improve the performance of the

HCDF in relation to the non-reduction harmonic method in most datasets, which was a non ex-

pected behaviour. However, it should be noted that the tree-note chord reduction method manages

to capture the essential part of each chord, without changing its original harmonic structure, this

being one of the main objectives to be achieved in the construction of the reduction process. For

the other two methods, the results are similar, with the "Only Threshold" methods having the

best performance values for Bach Preludes, results that are aligned with the ones obtained for

the same dataset by Chen and Su [3], being the former a more transparent and computationally

effective model.

One of the main purposes of this dissertation was to understand how the hierarchical reduction

of the harmonic structure of a chord would improve the efficiency of the detection of harmonic

changes. Emerging from the results shown earlier, it can be said that reduction, although only

presenting better results on a small number of cases, can be a useful tool to obtain a more direct

way to analyse and detect harmonic changes, as it provides a more concise chord with its original

structure intact.

5.2 Future Work

As for the work that can be done in the future in the HCDF computation, some points need to be

further explored: for this work, the only tempo of each piece is the same for all of its duration,

120 BPM, which forces the rewriting of the musical staff and the reduction of its various tempos

to this single value. A future improvement would be promoting an efficient HCDF without these

tempo limitations, in order to correctly point out the chord changes in the original, unchanged file,

still containing all the different tempos and feels.

Another point where this work can be improved is to apply the method to music of different

genre and style. Other datasets were to be included, like Haydn20 [42], composed by String

Quartets from Joseph Haydn but, due to tight schedule of the dissertation, it was not developed

further to enter on the main options for this thesis, but it can be considered on future endeavours

or in other future works. Most of the datasets used in Automatic Chord Recognition (ACR) are

based on audio, a substantially more developed part than that of symbolic music, so the annotation

of new datasets to symbolic music or the correct conversion of audio datasets to symbolic ones

would also be a great improvement to future studies.

On a broader level, and noting the wide range of themes inserted on MIR field (e.g. ACR),

and the number of new possible approaches (e.g Deep Learning was used in [3]), this work can

also be applied to several of these, expanding this research.
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HCDF Code (without Reduction)

In this appendix, the Python code for computing HCDF without reduction is presented:

1 import plotly.express as px

2 import sys

3 import numpy as np

4 import glob

5 import pretty_midi

6 import libfmp.b

7 import libfmp.c1

8 import libfmp.c3

9 import mir_eval

10 from TIVlib import TIV

11 import matplotlib.pyplot as plt

12 import pandas as pd

13 from scipy.spatial.distance import cosine, euclidean

14 from scipy.ndimage import gaussian_filter

15

16 # # TIS&TIV - Tonal Interval Space & Tonal Interval Vectors

17 # A truncated version of TIV library [1].

18 #[1] - Ramires, A., Bernardes, G., Davies, M.E., & Serra, X. (2020). TIV.lib: an

open-source library for the tonal description of musical audio. ArXiv, abs

/2008.11529.

19

20 #The full TIV library isn’t importing correctly to the program, so here is a part

of the TIV library.

21 class TIV:

22 weights_symbolic = [2, 11, 17, 16, 19, 7]

23 weights_audio = [3, 8, 11.5, 15, 14.5, 7.5]

24

25 def __init__(self, energy, vector):

26 self.energy = energy

27 self.vector = vector

28

29 def abs_vector(self):

30 return np.abs(self.vector)

32
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31

32 def phases_vector(self):

33 return np.angle(self.vector)

34

35 def get_vector(self):

36 return np.array(self.vector)

37

38 def diss(self): #Compute dissonance

39 return 1 - (np.linalg.norm(self.vector) / np.sqrt(np.sum(np.dot(self.

weights_symbolic, self.weights_symbolic))))

40

41 def coeffs(self, coef): #Compute coefficient

42 return self.abs_vector()[coef] / self.weights_symbolic[coef]

43

44 def chromaticity(self): #Compute chromaticity

45 return self.abs_vector()[0] / self.weights_symbolic[0]

46

47 def dyads(self): #Compute dyadicity

48 return self.abs_vector()[1] / self.weights_symbolic[1]

49

50 def triads(self): #Compute triadicity (triads)

51 return self.abs_vector()[2] / self.weights_symbolic[2]

52

53 def d_q(self): #Refers a possible diminished quality

54 return self.abs_vector()[3] / self.weights_symbolic[3]

55

56 def diatonal(self): #Compute diatonicity

57 return self.abs_vector()[4] / self.weights_symbolic[4]

58

59 def tone(self): #Define wholetoneness

60 return self.abs_vector()[5] / self.weights_symbolic[5]

61

62 @classmethod

63 def from_pcp(cls, pcp, symbolic=True):

64 # Get TIVs from pcp, as the original method

65 # :param pcp: 12xN vector containing N pcps

66 # :return: TIVCollection object

67 # """

68 if pcp.shape[0] == 12:

69 fft = np.fft.rfft(pcp, n=12)

70 energy = fft[0]

71 vector = fft[1:7]

72 if symbolic:

73 vector = ((vector / energy) * cls.weights_symbolic)

74 else:

75 vector = ((vector / energy) * cls.weights_audio)

76 return cls(energy, vector)

77 else:

78 return cls(complex(0), np.array([0, 0, 0, 0, 0, 0]).astype(complex))
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79

80 def plot_TIV(self):

81 titles = ["m2/M7", "TT", "M3/m6", "m3/M6", "P4/P5", "M2/m7"]

82 TIVector = self.vector / self.weights_symbolic

83 i = 1

84 for tiv in TIVector:

85 circle = plt.Circle((0, 0), 1, fill=False)

86 plt.subplot(2, 3, i)

87 plt.subplots_adjust(hspace=0.4)

88 plt.gca().add_patch(circle)

89 plt.title(titles[i - 1])

90 plt.scatter(tiv.real, tiv.imag)

91 plt.xlim((-1.5, 1.5))

92 plt.ylim((-1.5, 1.5))

93 plt.grid()

94 i = i + 1

95 plt.show()

96

97 def hchange(self):

98 tiv_array = self.vector

99 results = []

100 for i in range(len(tiv_array)):

101 distance = TIV.euclidean(tiv_array[i + 1], tiv_array[i])

102 results.append(distance)

103 return results

104

105 # # Auxiliary Functions

106 # By Pedro Ramoneda in "Harmonic Change Detection from Musical Audio"

107 def gaussian_blur(centroid_vector, sigma):

108 centroid_vector = gaussian_filter(centroid_vector, sigma=sigma)

109 return centroid_vector

110

111 def get_peaks_hcdf(hcdf_function, rate_centroids_second, symbolic=True):

112 changes = [0]

113 hcdf_changes = []

114 last = 0

115 for i in range(2, hcdf_function.shape[0] - 1):

116 if hcdf_function[i - 1] < hcdf_function[i] and hcdf_function[i + 1] <

hcdf_function[i]:

117 hcdf_changes.append(hcdf_function[i])

118 if not symbolic:

119 changes.append(i / rate_centroids_second)

120 else:

121 changes.append(i)

122 last = i

123 return np.array(changes), np.array(hcdf_changes)

124

125 #Distance Calculation (Euclidean and Cosine)

126 def distance_calc(centroid_point, distance):
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127 dist = []

128 if distance == ’Euclidean’:

129 for j in range(1, centroid_point.shape[1] - 1):

130 aux = 0

131 for i in range(0, centroid_point.shape[0]):

132 aux += ((centroid_point[i][j + 1] - centroid_point[i][j - 1]) ** 2)

133 aux = np.math.sqrt(aux)

134 dist.append(aux)

135

136 if distance == ’Cosine’:

137 for j in range(1, centroid_point.shape[1] - 1):

138 cosine_distance = cosine(centroid_point[:, j - 1], centroid_point[:, j

+ 1])

139 dist.append(cosine_distance)

140 dist.append(0)

141

142 return np.array(dist)

143

144 #Now we will need to take information from TIV. So we will need some additional

functions

145 def all_zero(vector):

146 for element in vector:

147 if element != 0:

148 return False

149 return True

150

151 def real_imag(TIVector):

152 aux = []

153 for i in range(0, TIVector.shape[1]):

154 real_vector = []

155 imag_vector = []

156 for j in range(0, TIVector.shape[0]):

157 real_vector.append(TIVector[j][i].real)

158 imag_vector.append(TIVector[j][i].imag)

159 aux.append(real_vector)

160 aux.append(imag_vector)

161 return np.array(aux)

162

163 def tonalIntervalSpace(chroma, symbolic=True):

164 centroid_vector = []

165 for i in range(0, chroma.shape[1]):

166 each_chroma = [chroma[j][i] for j in range(0, chroma.shape[0])]

167 each_chroma = np.array(each_chroma)

168 if all_zero(each_chroma):

169 centroid = [0. + 0.j, 0. + 0.j, 0. + 0.j, 0. + 0.j, 0. + 0.j, 0. + 0.j]

170 else:

171 tonal = TIV.from_pcp(each_chroma, symbolic) #Calculate the TIV

for each chroma
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172 #tonal.plot_TIV() #PLOT TIV for each chroma -> too expensive in terms

of program’s space

173 centroid = tonal.get_vector()

174 centroid_vector.append(centroid)

175 return real_imag(np.array(centroid_vector))

176

177 def harmonic_change(chroma: list, window_size: int=2048, symbolic: bool=True, sigma

: int = 5, dist: str = ’euclidean’):

178 chroma = np.array(chroma).transpose()

179 centroid_vector = tonalIntervalSpace(chroma, symbolic=True)

180

181 # Blur

182 centroid_vector_blurred = gaussian_blur(centroid_vector, sigma)

183

184 # Harmonic Distance Calculation - Euclidean or Cosine

185 harmonic_function = distance_calc(centroid_vector_blurred, dist)

186

187 changes, hcdf_changes = get_peaks_hcdf(harmonic_function, window_size, symbolic

=True)

188

189 return changes, hcdf_changes, harmonic_function

190

191 np.set_printoptions(threshold=sys.maxsize)

192

193 # # Piano Roll Representations

194 def midi_pianoRoll(file):

195 midi_data = pretty_midi.PrettyMIDI(file)

196 score = libfmp.c1.midi_to_list(midi_data)

197 libfmp.c1.visualize_piano_roll(score, figsize=(8, 3), velocity_alpha=True);

198

199 #Chroma Vectors

200 def chromagram(midi_file):

201 midi_data = pretty_midi.PrettyMIDI(midi_file)

202 score = libfmp.c1.midi_to_list(midi_data)

203 df = pd.DataFrame(score, columns=[’Start’, ’Duration’, ’Pitch’, ’Velocity’, ’

Instrument’])

204 array_time = np.array(df[[’Start’]]) #It’s in seconds

205 array_pitch = np.array(df[[’Pitch’]])

206 df_array = np.column_stack((array_time, array_pitch))

207 chromagram = libfmp.b.b_sonification.list_to_chromagram(score, df_array.shape

[0], 1)

208 chroma = libfmp.b.b_plot.plot_chromagram(chromagram, xlim = (0, array_time[-1])

, figsize=(16, 6))

209 print(df[’Start’].max())

210

211 plt.xlabel("Time (Seconds)")

212 plt.ylabel("Pitch")

213 plt.title("Chroma Vectors")

214 plt.show()
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215

216 return chroma

217

218 #HCDF

219 def hcdf_changes_gt(csv_file):

220 if csv_file.endswith(".xlsx"):

221 df = pd.read_excel(csv_file, header=None)

222 elif csv_file.endswith(".csv"):

223 df = pd.read_csv(csv_file, header=None)

224 else:

225 print("Not a valid excel format")

226 beat_chord_onset = df[0].to_numpy() * 60 / 120

227 return beat_chord_onset

228

229 def HCDF(file, csv_file, sigma=int, distance=’Euclidean’, resolution = 28):

230 f_measure_results, precision_results, recall_results = [], [], []

231 # read midi

232 midi_vector = pretty_midi.PrettyMIDI(file, resolution, initial_tempo=120)

233

234 # Compute chroma

235 chroma_vector = midi_vector.get_chroma(resolution).transpose()

236

237 # Predicted harmonic changes

238 changes, hcdf_changes, harmonic_function = harmonic_change(chroma=chroma_vector

, symbolic=True, sigma=sigma, dist = distance)

239 changes = changes / resolution

240

241 # Ground truth harmonic changes

242 changes_ground_truth = hcdf_changes_gt(csv_file)

243

244 #Plot

245 #plt.figure(figsize=(10, 7))

246 #plt.plot(hcdf_changes)

247 #plt.vlines(x=changes_ground_truth, ymin=0, ymax=max(hcdf_changes), colors=’

green’)

248 #plt.title(’Changes_GT / Changes’)

249

250 # evaluation

251 f_measure, precision, recall = mir_eval.onset.f_measure(changes_ground_truth,

changes, window=0.628)

252 f_measure_results.append(f_measure)

253 precision_results.append(precision)

254 recall_results.append(recall)

255

256 return np.mean(np.array(f_measure_results)), np.mean(np.array(precision_results

)), np.mean(np.array(recall_results))

257

258 def tune_sigma_plot(evaluation_result):

259 sigma_list = []; type_metric = []; metrics = []
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260 for s, v in evaluation_result.items():

261 f, p, r = v

262 # F-Measure

263 sigma_list.append(s)

264 type_metric.append("F_score")

265 metrics.append(f)

266 # Precision

267 sigma_list.append(s)

268 type_metric.append("Precision")

269 metrics.append(p)

270 # Recall

271 sigma_list.append(s)

272 type_metric.append("Recall")

273 metrics.append(r)

274 df_dict = {

275 "sigma": sigma_list,

276 "metric": type_metric,

277 "Evaluation Metrics": metrics

278 }

279

280 df = pd.DataFrame(df_dict)

281 fig = px.line(df, x="sigma", y="Evaluation Metrics", color="metric",

render_mode="svg")

282 fig.show()

283

284 def compute_hcdf(lst1, lst2, distance, sigma, resolution):

285 f_sc_results = []

286 prec_results = []

287 rec_results = []

288 for file, file2 in zip(lst1, lst2):

289

290 hcdf = HCDF(file, file2, sigma=sigma, distance=distance, resolution=

resolution)

291 f_sc_results.append(hcdf[0])

292 prec_results.append(hcdf[1])

293 rec_results.append(hcdf[2])

294

295 return np.mean(np.array(f_sc_results)), np.mean(np.array(prec_results)), np.

mean(np.array(rec_results))

296

297 def results(lst1,lst2, resolution):

298 for file, file2 in zip(lst1, lst2):

299 results_euclidean = {

300 sigma: HCDF(file, file2, sigma=sigma, distance=’Euclidean’,resolution =

resolution) for sigma in range(0, 50, 10)}

301 results_cosine = {

302 sigma: HCDF(file, file2, sigma=sigma, distance=’Cosine’,resolution =

resolution) for sigma in range(0, 50, 10)}

303 return results_euclidean, results_cosine
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304

305 # #HCDF in BPS Dataset

306 path_score_BPS = ’./Datasets/BPS’

307 file_list_BPS = glob.glob(path_score_BPS + ’/*.mid’)

308 file_csv_BPS = glob.glob(path_score_BPS + ’/*.xlsx’)

309

310 lst1_bps = list()

311 lst2_bps = list()

312 for file in file_list_BPS:

313 lst1_bps.append(file)

314 for file in file_csv_BPS:

315 lst2_bps.append(file)

316

317 print("BPS - Euclidean")

318 f_sc_bps_e, p_bps_e, r_bps_e = compute_hcdf(lst1_bps,lst2_bps, ’Euclidean’, 10,

resolution = 28)

319 print(f_sc_bps_e, p_bps_e, r_bps_e)

320 print("BPS - Cosine")

321 f_sc_bps_c, p_bps_c, r_bps_c = compute_hcdf(lst1_bps,lst2_bps, ’Cosine’, 10,

resolution = 28)

322 print(f_sc_bps_c, p_bps_c, r_bps_c)

323

324 results_euclidean_BPS, results_cosine_BPS = results(lst1_bps,lst2_bps,resolution =

28)

325

326 tune_sigma_plot(results_euclidean_BPS)

327 tune_sigma_plot(results_cosine_BPS)

328

329 # #HCDF in Tavern Dataset

330 #TAVERN consists of three types of files for each musical phrase for each annotator

(A and B)

331

332 path_Tavern = ’./Datasets/Tavern’

333 lst_midi_beethoven = list()

334 lst_midi_mozart = list()

335 for file in glob.glob(path_Tavern + ’./Beethoven/*.mid’):

336 lst_midi_beethoven.append(file)

337 for file in glob.glob(path_Tavern + ’./Mozart/*.mid’):

338 lst_midi_mozart.append(file)

339

340 lst_csv_beethovenA = list()

341 lst_csv_beethovenB = list()

342 lst_csv_mozartA = list()

343 lst_csv_mozartB = list()

344

345 for file in glob.glob(path_Tavern + ’./Beethoven/*A.csv’):

346 lst_csv_beethovenA.append(file)

347 for file in glob.glob(path_Tavern + ’./Beethoven/*B.csv’):

348 lst_csv_beethovenB.append(file)
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349 for file in glob.glob(path_Tavern + ’./Mozart/*A.csv’):

350 lst_csv_mozartA.append(file)

351 for file in glob.glob(path_Tavern + ’./Mozart/*B.csv’):

352 lst_csv_mozartB.append(file)

353

354 # #Beethoven with Annotator A

355 print("Beethoven with Annotator A - Euclidean")

356 f_sc_beethovenA_e, p_beethovenA_e, r_beethovenA_e = compute_hcdf(lst_midi_beethoven

,lst_csv_beethovenA, ’Euclidean’, 10,resolution = 28)

357 print(f_sc_beethovenA_e, p_beethovenA_e, r_beethovenA_e)

358 print("Beethoven with Annotator A - Cosine")

359 f_sc_beethovenA_c, p_beethovenA_c, r_beethovenA_c = compute_hcdf(lst_midi_beethoven

,lst_csv_beethovenA, ’Cosine’, 10,resolution = 28)

360 print(f_sc_beethovenA_c, p_beethovenA_c, r_beethovenA_c)

361

362 results_euclidean_TAVERN_Beethoven_A, results_cosine_TAVERN_Beethoven_A= results(

lst_midi_beethoven,lst_csv_beethovenA,resolution = 28)

363

364 tune_sigma_plot(results_cosine_TAVERN_Beethoven_A)

365 tune_sigma_plot(results_cosine_TAVERN_Beethoven_A)

366

367 # #Beethoven with Annotator B

368 print("Beethoven with Annotator B - Euclidean")

369 f_sc_beethovenB_e, p_beethovenB_e, r_beethovenB_e = compute_hcdf(lst_midi_beethoven

,lst_csv_beethovenB, ’Euclidean’, 10,resolution = 28)

370 print(f_sc_beethovenB_e, p_beethovenB_e, r_beethovenB_e)

371 print("Beethoven with Annotator B - Cosine")

372 f_sc_beethovenB_c, p_beethovenB_c, r_beethovenB_c = compute_hcdf(lst_midi_beethoven

,lst_csv_beethovenB, ’Cosine’, 10,resolution = 28)

373 print(f_sc_beethovenB_c, p_beethovenB_c, r_beethovenB_c)

374

375 results_euclidean_TAVERN_Beethoven_B, results_cosine_TAVERN_Beethoven_B= results(

lst_midi_beethoven,lst_csv_beethovenB,resolution = 28)

376

377 tune_sigma_plot(results_cosine_TAVERN_Beethoven_B)

378 tune_sigma_plot(results_cosine_TAVERN_Beethoven_B)

379

380 # #Mozart with Annotator A

381 print("Mozart with Annotator A - Euclidean")

382 f_sc_mozartA_e, p_mozartA_e, r_mozartA_e = compute_hcdf(lst_midi_mozart,

lst_csv_mozartA, ’Euclidean’, 10,resolution = 28)

383 print(f_sc_mozartA_e, p_mozartA_e, r_mozartA_e)

384 print("Mozart with Annotator A - Cosine")

385 f_sc_mozartA_c, p_mozartA_c, r_mozartA_c = compute_hcdf(lst_midi_mozart,

lst_csv_mozartA, ’Cosine’, 10,resolution = 28)

386 print(f_sc_mozartA_c, p_mozartA_c, r_mozartA_c)

387

388 results_euclidean_TAVERN_MozartA, results_cosine_TAVERN_MozartA= results(

lst_midi_mozart,lst_csv_mozartA,resolution = 28)
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389

390 tune_sigma_plot(results_euclidean_TAVERN_MozartA)

391 tune_sigma_plot(results_cosine_TAVERN_MozartA)

392

393 # #Mozart with Annotator B

394 print("Mozart with Annotator B - Euclidean")

395 f_sc_mozartB_e, p_mozartB_e, r_mozartB_e = compute_hcdf(lst_midi_mozart,

lst_csv_mozartB, ’Euclidean’, 10,resolution = 28)

396 print(f_sc_mozartB_e, p_mozartB_e, r_mozartB_e)

397 print("Mozart with Annotator B - Cosine")

398 f_sc_mozartB_c, p_mozartB_c, r_mozartB_c = compute_hcdf(lst_midi_mozart,

lst_csv_mozartB, ’Cosine’, 10,resolution = 28)

399 print(f_sc_mozartB_c, p_mozartB_c, r_mozartB_c)

400

401 results_euclidean_TAVERN_MozartB, results_cosine_TAVERN_MozartB= results(

lst_midi_mozart,lst_csv_mozartB,resolution = 28)

402

403 tune_sigma_plot(results_euclidean_TAVERN_MozartB)

404 tune_sigma_plot(results_cosine_TAVERN_MozartB)

405

406

407 # #HCDF in Bach’s Preludes (First Book of Well Tempered Clavier Preludes)

408 path_Bach_Preludes = ’./Datasets/Bach_Preludes’

409 midi_bach = list()

410 csv_bach = list()

411 for file in glob.glob(path_Bach_Preludes + ’./*.mid’):

412 midi_bach.append(file)

413 for file in glob.glob(path_Bach_Preludes + ’./*.csv’):

414 csv_bach.append(file)

415

416 print("Bach Preludes - Euclidean")

417 f_sc_bach_preludes_e, p_bach_preludes_e, r_bach_preludes_e = compute_hcdf(midi_bach

,csv_bach, ’Euclidean’, 10,resolution = 28)

418 print(f_sc_bach_preludes_e, p_bach_preludes_e, r_bach_preludes_e)

419 print("Bach Preludes - Cosine")

420 f_sc_bach_preludes_c, p_bach_preludes_c, r_bach_preludes_c = compute_hcdf(midi_bach

,csv_bach, ’Cosine’, 10,resolution = 28)

421 print(f_sc_bach_preludes_c, p_bach_preludes_c, r_bach_preludes_c)

422

423 results_euclidean_Bach_Prelude, results_cosine_Bach_Prelude= results(midi_bach,

csv_bach,resolution = 28)

424

425 tune_sigma_plot(results_euclidean_Bach_Prelude)

426 tune_sigma_plot(results_cosine_Bach_Prelude)

427

428

429 # #HCDF with Beethoven Quartets (ABC Dataset)

430 path_ABC_Beethoven_Quartets = ’./Datasets/ABC(Beethoven_Quartets)’

431 midi_beeQ = list()
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432 csv_beeQ = list()

433 for file in glob.glob(path_ABC_Beethoven_Quartets + ’./*.mid’):

434 midi_beeQ.append(file)

435 for file in glob.glob(path_ABC_Beethoven_Quartets + ’./*.csv’):

436 csv_beeQ.append(file)

437

438 print("Beethoven Quartets (ABC) - Euclidean")

439 f_sc_beeQ_e, p_beeQ_e, r_beeQ_e = compute_hcdf(midi_beeQ,csv_beeQ, ’Euclidean’, 10,

resolution = 28)

440 print(f_sc_beeQ_e, p_beeQ_e, r_beeQ_e)

441 print("Beethoven Quartets (ABC) - Cosine")

442 f_sc_beeQ_c, p_beeQ_c, r_beeQ_c = compute_hcdf(midi_beeQ,csv_beeQ, ’Cosine’, 10,

resolution = 28)

443 print(f_sc_beeQ_c, p_beeQ_c, r_beeQ_c)

444

445 results_euclidean_Beethoven_Quartets, results_cosine_Beethoven_Quartets = results(

midi_beeQ,csv_beeQ,resolution = 28)

446

447 tune_sigma_plot(results_euclidean_Beethoven_Quartets)

448 tune_sigma_plot(results_cosine_Beethoven_Quartets)



Appendix B

HCDF Code (with Reduction)

In this appendix, the Python code for computing HCDF with reduction process is presented:

1 from music21 import *

2 from collections import Counter

3 import plotly.express as px

4 import sys

5 import numpy as np

6 import glob

7 import pretty_midi

8 from scipy import spatial

9 import mir_eval

10 import matplotlib.pyplot as plt

11 import pandas as pd

12 from scipy.spatial.distance import cosine, euclidean

13 from scipy.ndimage import gaussian_filter

14

15 # The full TIV library isn’t importing correctly to the program, so here is a part

of the TIV library.

16 class TIV:

17 weights_symbolic = [2, 11, 17, 16, 19, 7]

18 weights_audio = [3, 8, 11.5, 15, 14.5, 7.5]

19

20 def __init__(self, energy, vector):

21 self.energy = energy

22 self.vector = vector

23

24 def abs_vector(self):

25 return np.abs(self.vector)

26

27 def phases_vector(self):

28 return np.angle(self.vector)

29

30 def get_vector(self):

31 return np.array(self.vector)

32

43
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33 def diss(self): # Compute dissonance

34 return 1 - (np.linalg.norm(self.vector) / np.sqrt(np.sum(np.dot(self.

weights_symbolic, self.weights_symbolic))))

35

36 def coeffs(self, coef): # Compute coefficient

37 return self.abs_vector()[coef] / self.weights_symbolic[coef]

38

39 def chromaticity(self): # Compute chromaticity

40 return self.abs_vector()[0] / self.weights_symbolic[0]

41

42 def dyads(self): # Compute dyadicity

43 return self.abs_vector()[1] / self.weights_symbolic[1]

44

45 def triads(self): # Compute triadicity (triads)

46 return self.abs_vector()[2] / self.weights_symbolic[2]

47

48 def d_q(self): # Refers a possible diminished quality

49 return self.abs_vector()[3] / self.weights_symbolic[3]

50

51 def diatonal(self): # Compute diatonicity

52 return self.abs_vector()[4] / self.weights_symbolic[4]

53

54 def tone(self): # Define wholetoneness

55 return self.abs_vector()[5] / self.weights_symbolic[5]

56

57 @classmethod

58 def from_pcp(cls, pcp, symbolic=True):

59 # Get TIVs from pcp, as the original method

60 # :param pcp: 12xN vector containing N pcps

61 # :return: TIVCollection object

62 # """

63 if pcp.shape[0] == 12:

64 fft = np.fft.rfft(pcp, n=12)

65 energy = fft[0]

66 vector = fft[1:7]

67 if symbolic:

68 vector = ((vector / energy) * cls.weights_symbolic)

69 else:

70 vector = ((vector / energy) * cls.weights_audio)

71 return cls(energy, vector)

72 else:

73 return cls(complex(0), np.array([0, 0, 0, 0, 0, 0]).astype(complex))

74

75 def plot_TIV(self):

76 titles = ["m2/M7", "TT", "M3/m6", "m3/M6", "P4/P5", "M2/m7"]

77 TIVector = self.vector / self.weights_symbolic

78 i = 1

79 for tiv in TIVector:

80 circle = plt.Circle((0, 0), 1, fill=False)
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81 plt.subplot(2, 3, i)

82 plt.subplots_adjust(hspace=0.4)

83 plt.gca().add_patch(circle)

84 plt.title(titles[i - 1])

85 plt.scatter(tiv.real, tiv.imag)

86 plt.xlim((-1.5, 1.5))

87 plt.ylim((-1.5, 1.5))

88 plt.grid()

89 i = i + 1

90 plt.show()

91

92 def hchange(self):

93 tiv_array = self.vector

94 results = []

95 for i in range(len(tiv_array)):

96 distance = TIV.euclidean(tiv_array[i + 1], tiv_array[i])

97 results.append(distance)

98 return results

99

100 np.set_printoptions(threshold=sys.maxsize)

101

102 ##Auxilary Functions

103 #Auxiliary TIV Functions:

104 def all_zero(vector):

105 for element in vector:

106 if element != 0:

107 return False

108 return True

109

110 def real_imag(TIVector):

111 aux = []

112 for i in range(0, TIVector.shape[1]):

113 real_vector = []

114 imag_vector = []

115 for j in range(0, TIVector.shape[0]):

116 real_vector.append(TIVector[j][i].real)

117 imag_vector.append(TIVector[j][i].imag)

118 aux.append(real_vector)

119 aux.append(imag_vector)

120 return np.array(aux)

121

122 def tonalIntervalSpace(chroma, symbolic=True):

123 centroid_vector = []

124 for i in range(0, chroma.shape[1]):

125 each_chroma = [chroma[j][i] for j in range(0, chroma.shape[0])]

126 each_chroma = np.array(each_chroma)

127 if all_zero(each_chroma):

128 centroid = [0. + 0.j, 0. + 0.j, 0. + 0.j, 0. + 0.j, 0. + 0.j, 0. + 0.j]

129 else:
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130 tonal = TIV.from_pcp(each_chroma, symbolic) #Calculate the TIV

for each chroma

131 #tonal.plot_TIV() #PLOT TIV for each chroma -> too expensive in terms

of program’s space

132 centroid = tonal.get_vector()

133 centroid_vector.append(centroid)

134 return real_imag(np.array(centroid_vector))

135

136 def harmonic_change(chroma: list, window_size: int=2048, symbolic: bool=True, sigma

: int = 5, dist: str = ’euclidean’):

137 chroma = np.array(chroma).transpose()

138 centroid_vector = tonalIntervalSpace(chroma, symbolic=True)

139

140 # Blur

141 centroid_vector_blurred = gaussian_blur(centroid_vector, sigma)

142

143 # Harmonic Distance Calculation - Euclidean or Cosine

144 harmonic_function = distance_calc(centroid_vector_blurred, dist)

145

146 changes, hcdf_changes = get_peaks_hcdf(harmonic_function, window_size, symbolic

=True)

147

148 return changes, hcdf_changes, harmonic_function

149

150 #Auxiliary HCDF Functions:

151 #By Pedro Ramoneda in "Harmonic Change Detection from Musical Audio"

152 def gaussian_blur(centroid_vector, sigma):

153 centroid_vector = gaussian_filter(centroid_vector, sigma=sigma)

154 return centroid_vector

155

156 def get_peaks_hcdf(hcdf_function, rate_centroids_second, symbolic=True):

157 changes = [0]

158 hcdf_changes = []

159 last = 0

160 for i in range(2, hcdf_function.shape[0] - 1):

161 if hcdf_function[i - 1] < hcdf_function[i] and hcdf_function[i + 1] <

hcdf_function[i]:

162 hcdf_changes.append(hcdf_function[i])

163 if not symbolic:

164 changes.append(i / rate_centroids_second)

165 else:

166 changes.append(i)

167 last = i

168 return np.array(changes), np.array(hcdf_changes)

169

170 #Distance Calculation (Euclidean and Cosine)

171 def distance_calc(centroid_point, distance):

172 dist = []

173 if distance == ’Euclidean’:
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174 for j in range(1, centroid_point.shape[1] - 1):

175 aux = 0

176 for i in range(0, centroid_point.shape[0]):

177 aux += ((centroid_point[i][j + 1] - centroid_point[i][j - 1]) ** 2)

178 aux = np.math.sqrt(aux)

179 dist.append(aux)

180

181 if distance == ’Cosine’:

182 for j in range(1, centroid_point.shape[1] - 1):

183 cosine_distance = cosine(centroid_point[:, j - 1], centroid_point[:, j

+ 1])

184 dist.append(cosine_distance)

185 dist.append(0)

186

187 return np.array(dist)

188

189 #Reduction Functions:

190 # Just to order list of TIV_Redux

191 def sort_dist(dist):

192 return dist[1]

193

194 def dist_calc(pitches_chord, dist):

195 dist_list = []

196 hist = Counter(pitches_chord)

197 pitch_list = [0] * 12

198 for pitch in hist:

199 index = pitch % 12

200 pitch_list[index] += hist[pitch]

201 TIV_vector = TIV.from_pcp(np.array(pitch_list))

202

203 for i in range(len(pitches_chord)):

204 each_pitch = pitches_chord[i]

205 aux_vector = [0] * 12

206 aux_vector[each_pitch % 12] += 1

207 aux_vector = TIV.from_pcp(np.array(aux_vector))

208 distance = dist(TIV_vector.vector, aux_vector.vector)

209 dist_list.append((i, distance))

210 return dist_list

211

212 #NOW WITHOUT DUPLICATED NOTES ON THE CHORD:

213 def non_duplicated_stream(stream):

214 for chord in stream.flatten().getElementsByClass(’Chord’):

215 chord.removeRedundantPitchNames(inPlace=True)

216 return stream

217

218 #The aim is to only show the notes that are going to be cut by the reduction step

219 #(Taking into account that the representation of each chord are only up to 3 notes

maximum)

220 def TIV_Redux(pitches_chord, dist):
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221 dist_list = dist_calc(pitches_chord, dist)

222 dist_list.sort(key=sort_dist)

223 dist_reduced = dist_list[3:] #only show the notes that are going to be cut,

reducing the chord

224 return dist_reduced

225

226 #Reduction Process

227 def info_chord(stream):

228 midi_pitches = []

229 duration_pitches = []

230 offset_pitches = []

231

232 for chord in stream.flatten().getElementsByClass(’Chord’):

233 midi_pitches.append([n.pitch.midi for n in chord.notes])

234 duration_pitches.append([n.quarterLength for n in chord.notes])

235 offset_pitches.append([chord.offset for n in chord])

236

237 print(midi_pitches)

238 print(duration_pitches)

239 print(offset_pitches)

240 return midi_pitches, duration_pitches, offset_pitches

241

242 def red_notes_quantifier(lst):

243 reduced_notes_lst = []

244 for s in lst:

245 red_notes = TIV_Redux(s, spatial.distance.euclidean)

246 e = [x[0] for x in red_notes]

247 n_name = [note.Note(s[i]).nameWithOctave for i in e]

248 if n_name:

249 reduced_notes_lst.append(n_name)

250 return reduced_notes_lst

251

252 def times_info(offset_pitches):

253 times_offset = []

254 for value in offset_pitches:

255 if len(value) >= 4:

256 times_offset.append(value[0])

257 return times_offset

258

259 def stream_painted_notes(stream1 ,notes_lst, times_offset):

260 final_reduced_list = zip(notes_lst, times_offset)

261 zipped_reduced_list = list(final_reduced_list)

262 zipped_reduced_list.sort(key=lambda x: x[1])

263

264 for i in range(len(zipped_reduced_list)):

265 for j in range(len(zipped_reduced_list[i][0])):

266 if len(zipped_reduced_list[i][0]) > 0:

267 note_zipped = note.Note(zipped_reduced_list[i][0][j])

268 note_zipped.style.color = ’red’
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269 stream1.insert(zipped_reduced_list[i][1], note_zipped)

270

271 stream1 = stream1.flat

272 return stream1

273

274 def reduced_stream(stream):

275 for chord in stream.flatten().getElementsByClass(’Chord’):

276 chord_new = chord

277 n = [n.pitch.midi for n in chord_new.notes]

278 n_pitch = [nt for nt in chord_new.pitches] #All pitches from each chord

279 red_chord = TIV_Redux(n, spatial.distance.euclidean) #Putting TIV on the

equation

280 e = [x[0] for x in red_chord]

281 n_to_cut = [n_pitch[i] for i in e] #The pitches of notes that are going to be

cutted from the chord

282 for element in n_to_cut:

283 if element in n_pitch:

284 for i in chord_new.pitches:

285 if i == element:

286 chord_new.remove(i)

287 stream.replace(chord,chord_new)

288 return stream

289

290 #Functions for computing HCDF

291 def hcdf_changes_gt(csv_file):

292 if csv_file.endswith(".xlsx"):

293 df = pd.read_excel(csv_file, header=None)

294 elif csv_file.endswith(".csv"):

295 df = pd.read_csv(csv_file, header=None)

296 else:

297 print("Not a valid excel format")

298 beat_chord_onset = df[0].to_numpy() * 60 / 120

299 return beat_chord_onset

300

301 def HCDF(file, csv_file, sigma=int, distance=’Euclidean’, resolution = 28):

302 f_measure_results, precision_results, recall_results = [], [], []

303

304 # Read Midi File

305 midi_vector = pretty_midi.PrettyMIDI(file, resolution, initial_tempo=120)

306

307 # Compute chroma

308 chroma_vector = midi_vector.get_chroma(resolution).transpose()

309

310 # Predicted harmonic changes

311 changes, hcdf_changes, harmonic_function = harmonic_change(chroma=chroma_vector

, symbolic=True, sigma=sigma, dist = distance)

312 changes = changes / resolution

313

314 # Ground truth harmonic changes
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315 changes_ground_truth = hcdf_changes_gt(csv_file)

316

317 #Plot

318 #plt.figure(figsize=(10, 7))

319 #plt.plot(hcdf_changes)

320 #plt.vlines(x=changes_ground_truth, ymin=0, ymax=max(hcdf_changes), colors=’

green’)

321 #plt.title(’Changes_GT / Changes’)

322

323 # Evaluation

324 f_measure, precision, recall = mir_eval.onset.f_measure(changes_ground_truth,

changes, window=0.628)

325 f_measure_results.append(f_measure)

326 precision_results.append(precision)

327 recall_results.append(recall)

328

329 return np.mean(np.array(f_measure_results)), np.mean(np.array(precision_results

)), np.mean(np.array(recall_results))

330

331 def tune_sigma_plot(evaluation_result):

332 sigma_list = []; type_metric = []; metrics = []

333 for s, v in evaluation_result.items():

334 f, p, r = v

335 # F-Measure

336 sigma_list.append(s)

337 type_metric.append("F_score")

338 metrics.append(f)

339 # Precision

340 sigma_list.append(s)

341 type_metric.append("Precision")

342 metrics.append(p)

343 # Recall

344 sigma_list.append(s)

345 type_metric.append("Recall")

346 metrics.append(r)

347 df_dict = {

348 "sigma": sigma_list,

349 "metric": type_metric,

350 "Evaluation Metrics": metrics

351 }

352

353 df = pd.DataFrame(df_dict)

354 fig = px.line(df, x="sigma", y="Evaluation Metrics", color="metric",

render_mode="svg")

355 fig.show()

356

357 def compute_hcdf(lst1, lst2, distance, sigma, resolution):

358 f_sc_results = []

359 prec_results = []
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360 rec_results = []

361 for file, file2 in zip(lst1, lst2):

362 hcdf = HCDF(file, file2, sigma=sigma, distance=distance, resolution=

resolution)

363 f_sc_results.append(hcdf[0])

364 prec_results.append(hcdf[1])

365 rec_results.append(hcdf[2])

366

367 return np.mean(np.array(f_sc_results)), np.mean(np.array(prec_results)), np.

mean(np.array(rec_results))

368

369 def results(lst1,lst2, resolution):

370 for file, file2 in zip(lst1, lst2):

371 results_euclidean = {

372 sigma: HCDF(file, file2, sigma=sigma, distance=’Euclidean’,resolution =

resolution) for sigma in range(0, 50, 10)}

373 results_cosine = {

374 sigma: HCDF(file, file2, sigma=sigma, distance=’Cosine’,resolution =

resolution) for sigma in range(0, 50, 10)}

375 return results_euclidean, results_cosine

376

377 # #HCDF in BPS Dataset

378 path_score_BPS = ’./Chordify/BPS’

379 file_list_BPS = glob.glob(path_score_BPS + ’/*.mid’)

380 file_csv_BPS = glob.glob(path_score_BPS + ’/*.xlsx’)

381

382 lst1_bps = list()

383 lst2_bps = list()

384 for file in file_list_BPS:

385 lst1_bps.append(file)

386 for file in file_csv_BPS:

387 lst2_bps.append(file)

388

389 print("BPS - Euclidean")

390 f_sc_bps_e, p_bps_e, r_bps_e = compute_hcdf(lst1_bps,lst2_bps, ’Euclidean’, 10,

resolution = 28)

391 print(f_sc_bps_e, p_bps_e, r_bps_e)

392 print("BPS - Cosine")

393 f_sc_bps_c, p_bps_c, r_bps_c = compute_hcdf(lst1_bps,lst2_bps, ’Cosine’, 10,

resolution = 28)

394 print(f_sc_bps_c, p_bps_c, r_bps_c)

395

396 results_euclidean_BPS, results_cosine_BPS = results(lst1_bps,lst2_bps,resolution =

28)

397

398 tune_sigma_plot(results_euclidean_BPS)

399 tune_sigma_plot(results_cosine_BPS)

400

401
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402 # #HCDF in Tavern Dataset

403 #TAVERN consists of three types of files for each musical phrase for each annotator

(A and B)

404 path_Tavern = ’./Chordify/Tavern’

405 lst_midi_beethoven = list()

406 lst_midi_mozart = list()

407 for file in glob.glob(path_Tavern + ’./Beethoven/*.mid’):

408 lst_midi_beethoven.append(file)

409 for file in glob.glob(path_Tavern + ’./Mozart/*.mid’):

410 lst_midi_mozart.append(file)

411

412 lst_csv_beethovenA = list()

413 lst_csv_beethovenB = list()

414 lst_csv_mozartA = list()

415 lst_csv_mozartB = list()

416

417 for file in glob.glob(path_Tavern + ’./Beethoven/*A.csv’):

418 lst_csv_beethovenA.append(file)

419 for file in glob.glob(path_Tavern + ’./Beethoven/*B.csv’):

420 lst_csv_beethovenB.append(file)

421 for file in glob.glob(path_Tavern + ’./Mozart/*A.csv’):

422 lst_csv_mozartA.append(file)

423 for file in glob.glob(path_Tavern + ’./Mozart/*B.csv’):

424 lst_csv_mozartB.append(file)

425

426 # #Beethoven with Annotator A

427 print("Beethoven with Annotator A - Euclidean")

428 f_sc_beethovenA_e, p_beethovenA_e, r_beethovenA_e = compute_hcdf(lst_midi_beethoven

,lst_csv_beethovenA, ’Euclidean’, 10,resolution = 28)

429 print(f_sc_beethovenA_e, p_beethovenA_e, r_beethovenA_e)

430 print("Beethoven with Annotator A - Cosine")

431 f_sc_beethovenA_c, p_beethovenA_c, r_beethovenA_c = compute_hcdf(lst_midi_beethoven

,lst_csv_beethovenA, ’Cosine’, 10,resolution = 28)

432 print(f_sc_beethovenA_c, p_beethovenA_c, r_beethovenA_c)

433

434 results_euclidean_TAVERN_Beethoven_A, results_cosine_TAVERN_Beethoven_A= results(

lst_midi_beethoven,lst_csv_beethovenA,resolution = 28)

435

436 tune_sigma_plot(results_cosine_TAVERN_Beethoven_A)

437 tune_sigma_plot(results_cosine_TAVERN_Beethoven_A)

438

439 # #Beethoven with Annotator B

440 print("Beethoven with Annotator B - Euclidean")

441 f_sc_beethovenB_e, p_beethovenB_e, r_beethovenB_e = compute_hcdf(lst_midi_beethoven

,lst_csv_beethovenB, ’Euclidean’, 10,resolution = 28)

442 print(f_sc_beethovenB_e, p_beethovenB_e, r_beethovenB_e)

443 print("Beethoven with Annotator B - Cosine")

444 f_sc_beethovenB_c, p_beethovenB_c, r_beethovenB_c = compute_hcdf(lst_midi_beethoven

,lst_csv_beethovenB, ’Cosine’, 10,resolution = 28)
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445 print(f_sc_beethovenB_c, p_beethovenB_c, r_beethovenB_c)

446

447 results_euclidean_TAVERN_Beethoven_B, results_cosine_TAVERN_Beethoven_B= results(

lst_midi_beethoven,lst_csv_beethovenB,resolution = 28)

448

449 tune_sigma_plot(results_cosine_TAVERN_Beethoven_B)

450 tune_sigma_plot(results_cosine_TAVERN_Beethoven_B)

451

452 # #Mozart with Annotator A

453 print("Mozart with Annotator A - Euclidean")

454 f_sc_mozartA_e, p_mozartA_e, r_mozartA_e = compute_hcdf(lst_midi_mozart,

lst_csv_mozartA, ’Euclidean’, 10,resolution = 28)

455 print(f_sc_mozartA_e, p_mozartA_e, r_mozartA_e)

456 print("Mozart with Annotator A - Cosine")

457 f_sc_mozartA_c, p_mozartA_c, r_mozartA_c = compute_hcdf(lst_midi_mozart,

lst_csv_mozartA, ’Cosine’, 10,resolution = 28)

458 print(f_sc_mozartA_c, p_mozartA_c, r_mozartA_c)

459

460 results_euclidean_TAVERN_MozartA, results_cosine_TAVERN_MozartA= results(

lst_midi_mozart,lst_csv_mozartA,resolution = 28)

461

462 tune_sigma_plot(results_euclidean_TAVERN_MozartA)

463 tune_sigma_plot(results_cosine_TAVERN_MozartA)

464

465 # #Mozart with Annotator B

466 print("Mozart with Annotator B - Euclidean")

467 f_sc_mozartB_e, p_mozartB_e, r_mozartB_e = compute_hcdf(lst_midi_mozart,

lst_csv_mozartB, ’Euclidean’, 10,resolution = 28)

468 print(f_sc_mozartB_e, p_mozartB_e, r_mozartB_e)

469 print("Mozart with Annotator B - Cosine")

470 f_sc_mozartB_c, p_mozartB_c, r_mozartB_c = compute_hcdf(lst_midi_mozart,

lst_csv_mozartB, ’Cosine’, 10,resolution = 28)

471 print(f_sc_mozartB_c, p_mozartB_c, r_mozartB_c)

472

473 results_euclidean_TAVERN_MozartB, results_cosine_TAVERN_MozartB= results(

lst_midi_mozart,lst_csv_mozartB,resolution = 28)

474

475 tune_sigma_plot(results_euclidean_TAVERN_MozartB)

476 tune_sigma_plot(results_cosine_TAVERN_MozartB)

477

478

479 # #HCDF in Bach’s Preludes (First Book of Well Tempered Clavier Preludes)

480 path_Bach_Preludes = ’./Chordify/Bach_Preludes’

481 midi_bach = list()

482 csv_bach = list()

483 for file in glob.glob(path_Bach_Preludes + ’./*.mid’):

484 midi_bach.append(file)

485 for file in glob.glob(path_Bach_Preludes + ’./*.csv’):

486 csv_bach.append(file)
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487

488 print("Bach Preludes - Euclidean")

489 f_sc_bach_preludes_e, p_bach_preludes_e, r_bach_preludes_e = compute_hcdf(midi_bach

,csv_bach, ’Euclidean’, 10,resolution = 28)

490 print(f_sc_bach_preludes_e, p_bach_preludes_e, r_bach_preludes_e)

491 print("Bach Preludes - Cosine")

492 f_sc_bach_preludes_c, p_bach_preludes_c, r_bach_preludes_c = compute_hcdf(midi_bach

,csv_bach, ’Cosine’, 10,resolution = 28)

493 print(f_sc_bach_preludes_c, p_bach_preludes_c, r_bach_preludes_c)

494

495 results_euclidean_Bach_Prelude, results_cosine_Bach_Prelude= results(midi_bach,

csv_bach,resolution = 28)

496

497 tune_sigma_plot(results_euclidean_Bach_Prelude)

498 tune_sigma_plot(results_cosine_Bach_Prelude)

499

500

501 # #HCDF with Beethoven Quartets (ABC Dataset)

502 path_ABC_Beethoven_Quartets = ’./Chordify/ABC_(Beethoven_Quartets)’

503 midi_beeQ = list()

504 csv_beeQ = list()

505 for file in glob.glob(path_ABC_Beethoven_Quartets + ’./*.mid’):

506 midi_beeQ.append(file)

507 for file in glob.glob(path_ABC_Beethoven_Quartets + ’./*.csv’):

508 csv_beeQ.append(file)

509

510 print("Beethoven Quartets (ABC) - Euclidean")

511 f_sc_beeQ_e, p_beeQ_e, r_beeQ_e = compute_hcdf(midi_beeQ,csv_beeQ, ’Euclidean’, 10,

resolution = 28)

512 print(f_sc_beeQ_e, p_beeQ_e, r_beeQ_e)

513 print("Beethoven Quartets (ABC) - Cosine")

514 f_sc_beeQ_c, p_beeQ_c, r_beeQ_c = compute_hcdf(midi_beeQ,csv_beeQ, ’Cosine’, 10,

resolution = 28)

515 print(f_sc_beeQ_c, p_beeQ_c, r_beeQ_c)

516

517 results_euclidean_Beethoven_Quartets, results_cosine_Beethoven_Quartets = results(

midi_beeQ,csv_beeQ,resolution = 28)

518

519 tune_sigma_plot(results_euclidean_Beethoven_Quartets)

520 tune_sigma_plot(results_cosine_Beethoven_Quartets)
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