
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Disruption Management of ASAE’s
Inspection Routes

Miguel Milheiro Pinto Ferreira

WORKING VERSION

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Luís Paulo Reis

Second Supervisor: Henrique Lopes Cardoso

October 31, 2021

Disruption Management of ASAE’s Inspection Routes

Miguel Milheiro Pinto Ferreira

Mestrado Integrado em Engenharia Informática e Computação

October 31, 2021

Abstract

The emergence of technologies capable of producing real-time data opened new horizons to plan-
ning and optimisation of vehicle routes. Dynamic vehicle routing problems (DVRPs) make use of
real-time information to calculate the most optimised set of routes at a certain moment. DVRP is
a challenging problem because its scope is real-time, meaning that decisions sometimes must be
made in short time windows, preventing the use of complex algorithms that require long computa-
tional times. The typical approach to this problem is to initially calculate the routes for the whole
fleet and dynamically revise them in real-time once a disruption occurs.

In this dissertation, the Autoridade de Segurança Alimentar e Económica (ASAE) operational
inspections will be explored and analysed as a case study of the DVRPs. ASAE is a Portuguese
administrative authority specialised in food security and economic surveillance and regulates mil-
lions of economic entities in the Portuguese territory. ASAE’s inspections are usually done by
brigades using vehicles to visit economic operators. Project IA.SAE, an exploratory project with
scientific purposes, gave rise to a route optimisation module capable of defining and assigning
routes to inspect economic operators, seeking to maximise a utility function. This dissertation
arises in the context of project CIGESCOP, which tackles the same problem and aims to build
an application to be launched in production. Optimisation algorithms calculate inspection routes
for each brigade, with information regarding specific map paths and inspection schedules. How-
ever, the approach used in project IA.SAE does not consider the dynamic properties of real-life
scenarios, which means that the precalculated operation plan is not reviewed in real-time. This
work aims to study the dynamic properties of ASAE’s operational environment and proposes a
solution to efficiently review the precalculated inspection routes and apply the required changes in
an appropriate time frame.

This work will model the problem as a DVRP and compare the performance of four meta-
heuristics in a series of metrics: Hill-Climbing, Simulated Annealing, Tabu Search and Large
neighbourhood Search. This work proposes a weighted utility function based on three aspects: the
sum utility of the customers visited, the similarity between the initial and new solutions, and the
time when the brigades reach the final depot at the end of the workday. The approach implemented
in this work includes a Disruption Generator module, developed to simulate and generate disrup-
tions on the inspection routes randomly and with defined intensities. The disruptions taken into
account were: travel and inspection times, vehicle and inspection breakdowns, utility changes, and
emergency inspections.

All the algorithms solved most of the several problem instances tested, providing reasonable
solutions. The Hill-Climbing algorithm had the fastest convergence, while the Simulated Anneal-
ing took the most time to solve the test instances. The Large Neighborhood Search was revealed
to be the method with higher solution quality, while the Hill-Climbing provided solutions of lower

i

ii

utility.

Keywords: Vehicle routing, Disruption Management, Real-Time Scheduling, Routes Reschedul-
ing, Hill-Climbing, Simulated Annealing, Tabu Search, Large Neighbourhood Search

Resumo

O aparecimento de tecnologias capazes de produzir dados em tempo real abriu novos horizontes
para o planeamento e otimização de rotas para veículos. Dynamic Vehicle Routing Problems
(DVRPs) dão uso a informação disponível em tempo real calculando o conjunto mais otimizado
de rotas num determinado instante. Os problemas DVRP são mais desafiadores na medida em
que são problemas passíveis de resolução em tempo real. As decisões e soluções têm de ser ap-
resentadas em intervalos de tempo curtos, impossibilitando o uso de abordagem mais complexas,
como algoritmos que requeiram elevados tempos computacionais. A abordagem típica para este
problema é calcular à priori um conjunto de rotas para a frota de veículos e, em tempo real, rever
o plano de operações definido, modificando-o sempre que ocorra um evento disruptivo.

Nesta dissertação, o cenário de inspeções operacionais da Autoridade de Segurança Alimen-
tar e Económica (ASAE) servirá como caso de estudo para um DVRP. A ASAE é uma autori-
dade portuguesa especializada em segurança alimentar e auditoria económica, sendo atualmente
responsável por regular milhares de agentes económicos em solo português. As inspeções real-
izadas pela ASAE são efetuadas por brigadas que se deslocam em veículos e têm como objetivo
fiscalizar operadores económicos. IA.SAE foi um projeto exploratório com propósitos científi-
cos, que culminou no desenvolvimento de um módulo de otimisação de rotas capaz de definir e
atribuir um conjunto de rotas de inspeção a um conjunto de agentes económicos, maximizando
uma função de utilidade. Esta dissertação surge no contexto do projeto CIGESCOP, que aborda o
mesmo problema e tem como objetivo o desenvolvimento de uma aplicação para ser lançada em
produção. No âmbito do projeto IA.SAE foram usados algoritmos de otimização para calcular as
rotas de inspeção de cada brigada. O sistema implementado utiliza a solução produzida por algo-
ritmos de otimização para representar as rotas calculadas num mapa e criar tabelas com o horário
de inspeções. No entanto, a abordagem usada não considera as propriedades dinâmicas de um
ambiente real e o plano operacional não é revisto em tempo real. Este trabalho de dissertação tem
como objetivo estudar as propriedades dinâmicas do ambiente em que a ASAE opera e propor uma
abordagem que permita, de forma otimizada, rever o plano de operações previamente calculado e
fazer modificações necessárias em tempo real. O cálculo do novo plano deve ser feito num período
temporal aceitável, o que implica o uso de métodos para aproximação da solução ótima.

Esta dissertação irá modelar o problema como um DVRP e tem como intuito comparar a
performance de diversos métodos meta-heurísticos: Hill-Climbing, Simulated Annealing, Tabu
Search, e Large Neighborhood Search. Este trabalho propõe uma função de utilidade flexível e
resultante de três diferentes domínios: soma de utilidade resultante dos clientes visitados, similar-
idade da nova solução com a solução inicial, e tempo de chegada de cada brigada no final do dia
de trabalho. A abordagem implementada nesta dissertação inclui um módulo de geração de dis-
rupções, desenvolvido com o intuito de simular e gerar disrupções nas rotas de inspeção de forma
aleatória e com intensidades definidas. As disrupções consideradas neste trabalho são: tempo
de viagem e inspeção, colapso de veículos e inspeções, mudanças nas utilidades, e inspeções de
emergência.

iii

iv

Os algoritmos desenvolvidos resolveram em globalidade as instâncias do problema usadas
como teste, apresentando soluções razoavelmente boas. O algoritmo Hill-Climbing apresentou
uma convergência mais rápida, em contraste com o Simulated Annealing que utilizou um intervalo
de tempo maior para encontrar a melhor solução. O método Large Neighborhood Search foi aquele
que apresentou melhores soluções, enquanto o Hill-Climbing obteve soluções de menor utilidade.

Keywords: Roteamento de veículos, Gestão de rupturas, Agendamento em tempo real, Reprogra-
mação de rotas, Hill-Climbing, Simulated Annealing, Tabu Search, Large Neighbourhood Search

Agradecimentos

Este trabalho teve como orientador o Professor Luís Paulo Reis, que me permitiu trabalhar neste
tema e desde início me fez sentir integrado no projeto. Apesar das dificuldades acrescidas devido
ao contexto pandémico, o Professor demonstrou sempre um auxílio bastante competente que
ajudou em muito o curso desta dissertação. Agradeço também ao coorientador Henrique Lopes
Cardoso, por toda a ajuda que prestou durante o curso deste trabalho.
À Faculdade de Engenharia da Universidade do Porto e a todo o Departamento de Engenharia
Informática pela casa que foram durante estes cinco anos da minha vida académica. Também por
todas as condições e ajudas para a minha formação académica. Um agradecimento também a
todos os Professores que me trouxeram bastantes conhecimentos nesta área, bem como
conhecimentos a nível pessoal e sobre o mundo do trabalho.
À ASAE e em especial aos seus membros que através do seu feedback e sugestões permitiram a
realização de um trabalho que espelha o seu modo de operação.
Um agradecimento muito especial ao meu Pai, uma pessoa excecional que por infelicidade partiu,
mas sem dúvida deixou a sua marca no mundo e contribuiu para a pessoa que sou hoje. A ele um
muito obrigado por todos os momentos que passamos juntos.
Um agradecimento também a toda a minha família, em especial á minha mãe, irmãos e avós, que
sempre demonstraram o seu apoio, incentivo e paciência durante todo o meu percurso. Um
agradecimento também a todas a suas influências, que me tornaram a pessoa que sou hoje. Sem
eles nada seria possível.
Por fim um agradecimento aos meus amigos, uns mais próximos que outros, mas todos com uma
grande influencia na pessoa que sou hoje. Um obrigado também por todos os bons momentos que
passámos juntos, os quais guardarei para sempre na minha memória. Agradeço também áqueles
que me acompanharam no meu percurso académico e foram uma ajuda essencial para a
conclusão desta fase da minha vida.

Miguel Ferreira

v

vi

“If I had asked people what they wanted,
they would have said faster horses.”

Henry Ford

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Projects IA.SAE / CIGESCOP . 2
1.3 Motivation . 2
1.4 Objectives . 3
1.5 Document Structure . 4

2 Dynamic Vehicle Routing Problems (DVRP) 7
2.1 Introduction . 7
2.2 Vehicle Routing Problems (VRP) . 8
2.3 Dynamic Vehicle Routing Problems (DVRP) 8

2.3.1 Dynamic and Deterministic VRP . 10
2.3.2 Dynamic and Stochastic VRP . 10
2.3.3 Differences with Static Routing . 11

2.4 Disruption Management . 12
2.5 Taxonomy on DVRP . 13

2.5.1 Type of Problem . 13
2.5.2 Logistic Context . 14
2.5.3 Transportation Mode . 14
2.5.4 Objective Function . 14
2.5.5 Fleet Size . 14
2.5.6 Time Constraints . 14
2.5.7 Vehicle Capacity Constraints . 15
2.5.8 Ability to Reject Customers . 15
2.5.9 Nature of Dynamic element . 15
2.5.10 Nature of Stochasticity (if any) . 15
2.5.11 Solution Methods . 15

2.6 Measuring the Dynamism . 16
2.6.1 Absence of Time Windows . 16
2.6.2 Time Windows . 16

2.7 Problem Formulations . 17
2.8 Solution Methods . 18

2.8.1 Dynamic and Deterministic VRP . 18
2.8.2 Dynamic and Stochastic VRP . 19

2.9 Performance Evaluation . 20
2.10 Benchmarks . 21
2.11 Problem Variations . 22

2.11.1 Dynamic Travelling Salesman Problem (DTSP) 22

ix

x CONTENTS

2.11.2 Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) . . . 22
2.11.3 Multiple Depots Dynamic Vehicle Routing Problem (MDDVRP) 23
2.11.4 Dynamic Capacitated Arc Routing Problem (DCARP) 23

2.12 Summary . 24

3 Algorithms 25
3.1 Introduction . 25
3.2 Solution Methods . 25

3.2.1 Exact Methods . 25
3.2.2 Heuristic Methods . 26
3.2.3 Meta-Heuristic Methods . 26

3.3 Algorithms . 27
3.3.1 Hill Climbing Algorithm . 27
3.3.2 Simulated Annealing Algorithm . 27
3.3.3 Tabu-Search Algorithm . 31
3.3.4 Large Neighborhood Search . 33

3.4 Summary . 35

4 The ASAE Case-study 37
4.1 Introduction . 37
4.2 Food and Economic Security Authority (ASAE) 38

4.2.1 Economic Agent Inspection . 38
4.2.2 Optimising Inspections . 39

4.3 Big Data in food safety . 40
4.3.1 Data sources and data collection . 41
4.3.2 Big data infrastructure . 41
4.3.3 Data analysis . 41

4.4 Previous Work (IA.SAE) . 42
4.4.1 Problem Description . 42
4.4.2 System architecture . 43
4.4.3 Utility Function . 43
4.4.4 Algorithms . 44

4.5 Summary . 44

5 Problem and Proposed Solution 47
5.1 Problem Description . 47
5.2 Problem Formulation . 48
5.3 Utility Function . 49
5.4 Geo-referenced information . 50
5.5 Proposed solution . 50
5.6 Performance Evaluation . 51

6 Disruption Generator 53
6.1 Introduction . 53
6.2 Disruption Types . 53

6.2.1 Inspection Time Disruption . 53
6.2.2 Travel Time Disruption . 54
6.2.3 Vehicle Breakdown . 55
6.2.4 Inspection Breakdown . 56

CONTENTS xi

6.2.5 Utility Changes . 57
6.2.6 Emergency Inspection . 58

6.3 Summary . 59

7 Implementation 61
7.1 Introduction . 61
7.2 Routing API - Project OSRM . 61
7.3 Map Visualisation . 62
7.4 Web Application . 62
7.5 Data Structures . 64

7.5.1 Solution representation . 64
7.5.2 Economic operator / Depot . 64
7.5.3 Travel Times . 65

7.6 Schedules . 66
7.6.1 Schedule Representation . 67
7.6.2 Schedule Generation . 67

7.7 Utility Function . 67
7.7.1 Economic Operator’s utility . 68
7.7.2 Solution similarity . 68
7.7.3 Average arrive time . 70
7.7.4 Unfeasible Solutions . 70

7.8 Solution Generation . 73
7.8.1 Hill Climbing Algorithm . 76
7.8.2 Simulated Annealing Algorithm . 76
7.8.3 Tabu-Search Algorithm . 80
7.8.4 Large Neighborhood Search . 84
7.8.5 Summary . 86

8 Results and Analysis 87
8.1 Introduction . 87
8.2 Algorithm Comparison . 89

8.2.1 Result analysis . 91
8.3 Disruption Types Comparison . 92

8.3.1 Result analysis . 93
8.4 Full Conditions Comparison . 95

8.4.1 Result analysis . 97
8.5 Summary . 98

9 Conclusions and future work 101
9.1 Work synthesis . 101
9.2 Conclusions and Results . 102
9.3 Limitations . 103
9.4 Future Development Perspectives . 103

A Economic Operators 105
A.1 Economic Operators distribution . 105

B Algorithms Code 107

xii CONTENTS

References 113

List of Figures

2.1 Evolution of published papers regarding DVRPs. [43] 9
2.2 Taxonomy on DVRP, proposed by Psaraftis (2016) [43] 13
2.3 Sampling examples, adapted from [38] . 20

4.1 ASAE’s organization chart . 39
4.2 ASAE’s Regional units . 40

5.1 Proposed solution scheme . 51

7.1 Distance matrix resulting from 3 different economic operators A, B, and C 62
7.2 Map visualisation of a solution with 5 brigades 63
7.3 Example schedule for one inspection route . 64
7.4 Parameters used to specify the disruptions to be generated 65
7.5 Representation of an economic operator’s schedule. 67
7.6 Example of different operations on a solution with 3 brigades and 13 economic

operators available; The numbers represent the economic operators’ ids, and the
colour red indicates the changes. 74

7.7 Example of different operations using the 2*-OPT on a solution with 2 brigades
and 13 economic operators available; The numbers represent the economic opera-
tors’ ids, and the colour red indicates the changes. 75

7.8 Hill Climb solutions utility throughout the search 77
7.9 Simulated Annealing solution utility throughout the search 80
7.10 Tabu-Search solution utility throughout the search 85

8.1 Schedule calculated for the initial solution with 4 inspection routes 89

xiii

xiv LIST OF FIGURES

List of Tables

7.1 Complex utility function used to calculate a singular economic operator’s utility . 68

8.1 4 Inspection Routes used for the testing . 90
8.2 Tests identification and parameters (Experiment 1) 90
8.3 Test Results (Experiment 1). UA - sum of economic operators utilities; Sim -

Similarity ratio; TS - search execution time; OP - number of economic operators;
ite - number of iterations . 91

8.4 Tests identification and parameters (Experiment 2) 94
8.5 Test Results (Experiment 2). UF - utility function; UA - sum of economic opera-

tors utilities; Sim - Similarity ratio; TS - search execution time; OP - number of
economic operators . 96

8.6 Tests identification and parameters (Experiment 3) 97
8.7 Test Results (Experiment 3). UF - utility function; UA - sum of economic opera-

tors utilities; Sim - Similarity ratio; TS - search execution time; OP - number of
economic operators . 98

xv

xvi LIST OF TABLES

Abbreviations

ALNS The Adaptive large neighbourhood search
ACS Ant Colony Systems
ADP Approximate Dynamic Programming
API Application Programming Interface
CIGESCOP Centro Inteligente de Gestão e Controlo Operacional da ASAE
CVRP Capacitated Vehicle Routing Problem
DDVRP Dynamic and deterministic Vehicle Routing Problem
DSVRP Dynamic and stochastic Vehicle Routing Problem
DVRP Dynamic Vehicle Routing Problem
GPU Graphics Processing Unit
HC Hill-Climbing algorithm
IA.SAE Inteligência Artificial na Segurança Alimentar e Económica
LNS Large Neighborhood Search
LIACC Intelligence and Computer Science Laboratory
MDDVRPTW Multi-depot Dynamic Vehicle Routing Problem with Time Windows
MDVRP Multi-depot Vehicle Routing Problem
NP-Hard Non-deterministic polynomial-time hardness
RTS Reactive Tabu search algorithm
SSD Solid State Drive
TS Tabu search
TOP Team Orienteering Problem
TSP Traveling Salesman Problem
VRP Vehicle Routing Problem
VRPPD Vehicle Routing Problem with Pickups and Deliveries
VRPTW Vehicle Routing Problem with Time Windows
VLSN Very Large Scale Neighborhood search

xvii

Chapter 1

Introduction

In this chapter, an introductory overview of the work is performed analysing several vital aspects:

the context, motivations, related project, and objectives. The document structure is also discussed.

1.1 Context

This work arises from a collaboration between the Artificial Intelligence and Computer Science

Laboratory (LIACC) and Autoridade de Segurança Alimentar e Económica (ASAE). It is related to

the route optimisation module in the project Centro Inteligente de Gestão e Controlo Operacional

da ASAE (CIGESCOP). Project CIGESCOP can be seen as the second iteration of a preliminary

project by the name of Inteligência Artificial na Segurança Alimentar e Económica (IA.SAE).

This project had the primary goal of improving ASAE’s operations by allying modern machine

learning techniques and artificial intelligent in an information system.

ASAE inspection scenario will be used as a case study for this work. ASAE is a Portuguese

authority specialised in the areas of food safety and financial supervision. ASAE is responsi-

ble for inspecting thousands of economic entities of the Portuguese territory and report or take

actions about non-compliance with the law. Their activities are of extreme importance as they

ensure competition fairness among all the economic entities and improve food safety. ASAE in-

spects the economic operators, both proactively (planned inspections) and reactively (unplanned

inspections). Agents are periodically inspected for non-compliance with the law or in the case of

investigations and inquiries, respectively. To serve this purpose, ASAE has a substantial amount

of vehicles and brigades to operate.

1

2 Introduction

1.2 Projects IA.SAE / CIGESCOP

Project IA.SAE is one of four projects financed by the Portuguese government in the context of

program Incode 2030.1 This program has an international scope and aims to improve Portuguese

compatibility capacities with digital competences. IA.SAE aims to promote food safety, consumer

protection and fair competition between the economic operators in the Portuguese territory. To

accomplish this, it relied on the development of risk assessment models combined with appropriate

machine learning and artificial intelligence techniques to select the most promising set of economic

operators to inspect. This selection is based on a complex utility function that gathers and weights

the ASAE databases’ information, for example, past complaints. This information was gathered

and combined using appropriate machine learning methodologies (both in data and text mining),

resulting in valuable knowledge extraction. The number of complaints targeted at a particular

economic operator, past crimes, and macro-risks forms examples of crucial factors taken into

account. Routes are then assigned in an optimised way to the respective vehicles and brigades,

maximising the utility function. IA.SAE is segmented in five distinct modules: a system to generate

and optimise the risk matrices, a system to analyse complaints and reports, a system to help in

the supervision of prices namely on promotions, a system to make an intelligent selection of

the economic operators to inspect and a system do visualise several performance metrics and

geoinformation.

IA.SAE was a exploratory project with scientific purposes, while CIGESCOP is a project that

aims to build an application to be launched in production. Project CIGESCOP has the main ob-

jective of optimising inspection processes by endowing brigades with tablets that generate infor-

mation and communicate with a centralized intelligent control system. Most of the preliminary

work will be adapted and improved in this new version of the system. Concerning this disserta-

tion, the route optimisation module is of significant importance. This module calculates the set of

optimised routes to visit several economic operators, maximising a utility function. The routes for

an operation day are calculated, and a plan is produced. The respective brigades then accomplish

this plan. The current approach does not take into account dynamic factors that are present in

the real world scenarios and might cause disruptions. As any system that operates in a real-life

scenario, ASAE brigades are subject to factors that might delay or preclude the precalculated oper-

ation plan. These factors will be named disruptions, and some examples are delays on inspections,

vehicle breakdown, close roads, and traffic intensity.

1.3 Motivation

The contributions and approach proposed by this work can be used in a panoply of scenarios and

institutions that operate in a similar way, improving the already implemented approaches on each

case. Addressing dynamic factors in a particular environment will further optimise the vehicle

routes, as disruptions will no longer threaten the static route plan. A static route plan can become

1Project Incode2030 - Metas, available at https://www.incode2030.gov.pt/metas, accessed on 2021-01-02

1.4 Objectives 3

unfeasible if specific disruptions are not addressed. For example, a vehicle breakdown will prevent

unserved customers from remaining unvisited if the plan is not revised.

The current pandemic scenario also plays as motivation, since the market share for deliver-

ies has considerably increased, and companies are demanding more intelligent vehicle routing

systems. A system capable of mutating the vehicle routes and create dynamic plans, compared

to the classic static plans will mean further optimisation in the vehicles’ routes, entailing all the

economic and environmental benefits.

Addressing dynamic elements will imply that real-time information must be collected during

the plan’s execution and used by the routing system to tackle the disruptions. Real-time informa-

tion systems are evolving, becoming considerably affordable and more portable.

One motivation behind this work, is to use ASAE as a case study, optimising and improving the

current ASAE’s inspection process. Optimising an organisation’s processes with such significant

importance to Portuguese citizens as ASAE will have many benefits to society. The economic

operators with a higher probability of non-compliance with the law will be assigned with a higher

weight on the utility function, increasing the inspection priority. Brigades will readily identify and

sanction infringements of the law.

The project will increase food security directly and indirectly. Legal sanctions taken against

specific economic operators will rectify wrong policies, and an "intelligent system" will discourage

economic operators from facilitating in certain aspects, respectively. Also, as the routes will be

optimised, more economic operators can be inspected on a day’s work. The vehicle’s ecologic

footstep will also be reduced.

Several entities that operate in a similar way with ASAE might also benefit from this work’s

contributions. The approach used to tackle the dynamic factors during the route execution can be

easily adapted to similar scenarios.

1.4 Objectives

This dissertation work proposes an approach that, by using real-time information, revises vehicle

route plans and makes the necessary changes to address dynamic factors. This work proposes a set

of algorithms capable of calculating new route plans, modifying previous calculated plans once a

disruptive event occurs, aiming to maintain the optimal plan. An objective function is proposed

as the optimisation criterion, calculating each customer’s utility upon visit. The utility function is

a complex function that depends on three different weighted domains to calculate the utility of a

particular solution.

The objectives for this thesis are also in the scope of ASAE, as it is used as a case study. The

routing module developed in the context of IA.SAE calculates the inspection routes before their

execution and does not implement the routes’ revision in real-time. Some delays and disruptions

will invalidate the precalculated routing plan as the current system cannot address these issues. The

existence of several systems for collecting data in real-time, such as the geographic coordinates of

each operating vehicle, facilitates route revision. Using the information provided by such methods,

4 Introduction

this work implements an approach that can revise and recalculate the routes in real-time once

disruptions occur. Dynamically optimising the routes in real-time leads to further optimisation

as the system takes advantage of opportunities to further optimise the routing. For example, if

an economic agent is closed, a static approach cannot immediately reroute the brigade to another

good inspection location.

This dissertation compares the performance of four algorithms proposed to solve this opti-

mization problem. Several system runs with specific test conditions will allow conclusions about

the efficiency of this approach in addressing all kinds of disruptions considered in this work.

1.5 Document Structure

This dissertation document is divided into eight additional chapters chapters. Chapter 1 gives a

brief introduction to this work, providing motivations and contextualising the work. It also gives

a brief insight into the case study that will be used during the development of this work.

The following three chapters pertain to the review on the state-of-the-art. Chapter 2 reviews

the state-of-the-art on Vehicle Routing Problems (VRPs), focusing on its dynamic variant, the Dy-

namic Vehicle Routing Problem (DVRP). Chapter 3 reviews the literature on the four optimization

algorithms later implemented on the proposed solution. This chapter gives a brief insight into the

fundamental concepts behind each algorithm and explores various improvements made to enhance

the performance of their basic implementations.

Chapter 4 explores the case study that will be used in this dissertation. It features the imple-

mentation previously done in the context of project IA.SAE, explaining the problem formulated

as a VRP. This chapter also reviews the use of artificial intelligence techniques in the food safety

context, focusing on the use of Big Data.

Chapter 5 describes the problem related to this dissertation work and proposes a solution ap-

proach based on the previous chapters. The next two chapters describe the implemented approach.

Chapter 6 concerns the Disruption generator module. It generates random disruptions to the in-

spection routes that the algorithms will later solve, outputting a new optimised plan. This chapter

will go into detail on the disruption types considered in this dissertation and their respective im-

plementation.

Chapter 7 is one regarding the implementation of the main part of the system. It describes

the routing application used to calculate the travel times between two economic operators and

the framework used for the map visualization. It then describes the web application developed

and how it shows the information coming from the other modules. This chapter also gives an

insight into the data structures used for representing several problem abstractions. The economic

operators’ schedules are described, and the method used for their generation is explained. This

chapter also describes the utility function used in this approach and the allowance of unfeasible

solutions with associated penalties. Finally, this chapter presents the solution generation methods

used by all the algorithms to progress in the search.

1.5 Document Structure 5

Chapter 8 regards the results and analysis over a set of experiments. The system ran in several

test configurations, and a series of metrics were registered and analysed. Additionally, a com-

parison between the several algorithms and disruptions types is performed based on the results.

Finally, in the last chapter, the conclusions and results of this work are briefly presented. Sev-

eral other considerations are explored, such as the limitations and future development perspectives

regarding this work.

6 Introduction

Chapter 2

Dynamic Vehicle Routing Problems
(DVRP)

This chapter will review the state-of-the-art on Dynamic Vehicle Routing Problems. Initially, a

brief definition of this problem’s static version, Vehicle Routing Problems (VRPs) will be dis-

cussed, and the differences between the two variants (static and dynamic). The chapter will also

review a taxonomy on DVRPs and different formulations and variations of this problem. Finally,

examples of solution methods and approaches will be reviewed.

2.1 Introduction

During the last decades, urban transportation experienced a rapid and significant evolution sup-

ported by several vital technologies’ emergence and development. On the other hand, the com-

puting hardware’s growth, supported by an increase in the number of transistors in dense circuit

boards. This resulted in approximately double the computational power every two years since

1975 (Moore’s Law1). Computational power also benefits from new computation paradigms such

as parallel computing. Specific portions of the code are executed in the Graphics Processing Unit

(GPU), massively boosting performance.2 Lastly, the Disk drive’s capacities increased, and their

performance massively increased with the rise of technologies like Solid State Drive (SSD). These

technologies and processes arise the opportunity to improve vehicle performance, mainly by op-

timising the vehicle’s routes. Several benefits can be accounted for: improved safety, less traffic

congestion, monetary savings, and environmental impacts [17]. The typical approach relies on

centralised control, having a control infrastructure communicating, and gathering vehicle data.

The control infrastructure combines vehicle data, leading to more efficient and intelligent route-

optimisations. Concerning dynamic environment factors, further optimisations can be achieved

by the use of algorithms that benefit from the information collected in real-time. The evolution

1Moore’s law - Computer science, available at https://www.britannica.com/technology/Moores-law, accessed on
2021-01-29

2What is Parallel Computing?, available at https://www.omnisci.com/technical-glossary/parallel-computing, ac-
cessed on 2021-01-29

7

8 Dynamic Vehicle Routing Problems (DVRP)

of communication mediums eases knowledge transference between the vehicle feet and the cen-

tralised control.

2.2 Vehicle Routing Problems (VRP)

With the optimisation of the vehicle routes, the vehicle fleet capacities are being explored to the

theoretical maximum, improving the balance between a particular utility function and the operat-

ing costs. Most common approaches so far pre-calculate the operations plan, taking into account

only the information available at the time. Routes are generated before the vehicle fleet executes

the plan, meaning state-of-the-art complex algorithms can be used to get a better solution. Com-

putational times are usually negligible in this case. The Vehicle Routing Problem (VRP) consists

of determining the set of routes to be traversed by a fleet of vehicles to serve a set of costumers or

to visit a set of locations [15]. It was first introduced by Dantzig and Ramser (1959) [13]. Since

then, multiple modulations of the problem and algorithms to approximate solutions were described

in the literature. The most straightforward and famous vehicle routing problem is the Traveling

Salesman Problem (TSP): Having a set of cities to visit, calculate the shortest path, starting from

an initial city, that visits each city exactly once and then returns to the starting city [22]. Several

variants of the VRP were proposed in the literature, such as Capacitated VRP (CVRP), VRP with

Time Windows (VRPTW), and Multidepot VRP (MDVRP).

VRP and all its variants are NP-Hard problems, as they cannot be solved in polynomial

time [15]. Heuristics and other algorithms are used to calculate the approximate solution when

this is sufficient. To the literature, the term VRP usually appears associated with static envi-

ronments. Static VRPs approximate the real-life scenario as they reduce the real problem to a

static setting. The obtained solution does not consider dynamic factors that can influence the pre-

calculated operations plan during its execution. The set of routes outputted when solving the VRP

might be impossible to execute as some unforeseen events happen. Also, there might be a win-

dow to optimise the pre-calculated operations plan further. The literature describes this uncertain

factors as disruptions: "the action of preventing something, especially a system, process, or event,

from continuing as usual or as expected".3 Several types of disruptions were addressed in the lit-

erature: vehicle breakdown disrupted links in the road network, variations in the supply of goods,

variations of customer demand [15], and service and travel times.

2.3 Dynamic Vehicle Routing Problems (DVRP)

Research on the field of vehicle routing has increased massively, with enterprises aiming to lower

their costs and increase their profits. This area attracted many researchers, mainly on the subject

of dynamic routing, especially in the last three decades [43]. Pillac, on his survey, catalogued 154

references on the topic, which confirms the trend. [38] (Figure 2.1).

3Cambridge Dictionary - disruption, available at https://dictionary.cambridge.org/dictionary/english/disruption, ac-
cessed on 2021-01-29

2.3 Dynamic Vehicle Routing Problems (DVRP) 9

Figure 2.1: Evolution of published papers regarding DVRPs. [43]

The hardware evolution plays an essential role in this trend, as previously referred. On the

other hand, the appearance of devices and systems that can gather and transmit vehicle data in

real-time foster new implementations of DVRPs. Dynamic vehicle routing relies on the system’s

capability to grasp and perceive the environment’s dynamic factor. The emergence of the Inter-

net provides a basis for easier information dissemination and provides a valuable framework for

connecting all the nodes involved in vehicle routing (vehicles, control system, external systems).

The Internet also allowed access to Application Programming Interfaces (API), that provide useful

information to vehicle routing. Information such as traffic intensity, meteorology events that affect

vehicles, demand and production forecasts and factors that influence the vehicle operating costs.

Systems like Global Positioning System (GPS) also played a crucial role as they provide every ve-

hicle’s exact position in the fleet. Lastly, the dissemination of mobile devices like smartphones and

other devices capable of gathering essential data in real-time [38]. These technologies foster com-

munication among connected vehicles operating in the field, also allowing them to communicate

with a control facility. This subject is connected to the field of Big Data, which has drawn more

attention from operations researchers in recent times. Companies and enterprises gather massive

amounts of data as the numerous connected devices are more common and increasingly easier to

afford [43]. These devices can gather large data streams without human intervention, and are eas-

ier to correlate and interpret, as the computational power still grows exponentially. All these data

and systems can be used and combined in real-time to gather and create useful information that

will play a crucial role in optimising vehicle routes. They enhance and explain the decisions taken

in Dynamic Routing. Dynamic Vehicle Routing Problems (DVRP) were first described by Wilson

and Colvin (1997) [55]. They studied the dial-a-ride problem (DARP), where client requests ap-

pear dynamically during execution time. They used an insertion heuristic approach to obtain an

approximate solution with low computational effort [43]. DVRPs presuppose that the routes can

be continuously updated, adapting to the uncertain environment circumstances, maintaining their

optimality as far as possible.

In the literature, and as addressed below (Section 2.5) on the taxonomy proposed by Psaraftis [43],

10 Dynamic Vehicle Routing Problems (DVRP)

DVRPs are divided into two clusters: the Dynamic and deterministic VRP and the Dynamic and

stochastic VRP. Although both variants can be considered dynamic, they differ in the presence of

stochastic information about dynamic events. In Dynamic and stochastic VRPs, this information

is available beforehand and may be useful to plan future decisions.

2.3.1 Dynamic and Deterministic VRP

This set of problems involve dynamic scenarios where all the inputs are known with certainty; no

stochastic inputs. The inputs in this kind of problems are still dynamic, as they are unknown in

advance. The big difference from these types of problems compared to dynamic and stochastic

VRPs is that no stochastic information is known about a future event [43]. There are no probabili-

ties or probability distributions capable of predicting or weigh any upcoming event. For example,

there is no available data in a travelling repairman’s context that may infer how much time the

repairman will take on each customer service. The totality of information about an event is only

available upon it happens.

2.3.2 Dynamic and Stochastic VRP

Dynamic and stochastic VRP (DSVRP) are a particularly interesting problem variant as they

handle real-work scenarios more accurately [44]. Apart from handling the dynamic information

available over time, they consider stochastic knowledge to make decisions. Ritzinger et al. [44]

points the field of anticipatory optimisation as being related to dynamic decision making: a single

decision in a given a sequence of interdependent decisions impacts the entire decision process.

Ritzinger also refers the reader to the classification in two groups regarding different degrees of

anticipation concerning DSVRP: prepossessing decisions or online decisions.

Prepossessing decisions means solutions are computed before the route execution, while on-

line decision presupposes that solutions are computed whenever a dynamic event occurs. In the

first group, all the possible problem states need to be calculated based on future dynamic events

that might happen and the stochastic information about them. When executing the operations

plan, the states and policies previously defined work like "rules" that are used to tackle the dy-

namic events. An example of a "rule" is to always assign the routes of a broke-down vehicle to

the closest operating vehicle in the road network. A second variant of prepossessing decisions

works in a similar way, but instead of "rules", it attributes a value to states and their corresponding

decisions. During the execution phase, the system uses the precomputed values to make decisions.

Prepossessing decisions focus the intensive computation tasks before the route execution.

When using online decisions, a significant part of the computation is done when a dynamic

event occurs. [44] The solution is calculated during the execution phase of a precalculated static

plan. Whenever a dynamic event arises, the system uses the available stochastic information to

make decisions. Ritzinger refers to this process as a "rolling horizon" or "look-ahead". The

dynamic solutions are calculated by either re-optimising the plan or addressing specific situations,

outputting one decision upon a particular dynamic event. The system can also opt for a single

2.3 Dynamic Vehicle Routing Problems (DVRP) 11

greedy decision upon dynamic events, allowing for fast-responsiveness at lower computational

efforts [44]. The greedy interim solution is then further optimised in the background and is later

provided to the system.

2.3.3 Differences with Static Routing

DVRPs have more degrees of freedom than VRP, as they involve new factors that increase route

decisions’ complexity. The worthiness of a route plan is also harder to judge [38]. As a con-

sequence of dynamic factors, the system can deny requests either because they are unfeasible or

the penalisation of accomplishing them is too high. This process was referred to as service guar-

antee [24]. Dynamic routing usually has discrepancies and addictions to the objective functions.

Although maintaining the fundamental static routing objective of minimising the route costs, dy-

namic routing extends it to reducing the costs of recalculating a route. The cost of deviating from

the original plan can be hard to quantify. Deviation costs can be divided into two main clusters:

costs to the customers and costs to the drivers [15].

Customers plan their schedules to receive certain services or commodities at a particular time.

Deviations can cause them losses and increase their degree of dissatisfaction as the pre-determined

delivery time changes. For the drivers, deviations from the original plan can mean special pay-

ments or the use of overtime. Drivers may have personal costs, that arise because they might be

unfamiliar with a customer, process, or road network. This inexperience can lead to an increase in

service time when compared to the original plan [15].

The complexity of DVRP also derives from unforeseen factors not being known before their

manifest. Routes must be calculated close to real-time, while the vehicle fleet is operating, leaving

a small time window to perform the needed optimisations.

With the evolution of the Machine Learning domains and using the prediction capabilities

of nowadays state-of-the-art machine learning models, it is possible to produce predictions close

enough to reality. Systems can forecast disruptions and calculate the best set of routes according

to their forecasts, simulating a dynamic world. The routes would be calculated beforehand, which

allows them to use higher computational time algorithms that usually output better solutions. Al-

though this seems a feasible approach, Taniguchi presents convincing results that refute it on a

study of a VRP with time window (VRPTW) [53]. In this paper, two approaches are compared: a

forecasted VRPTW (VRPTW-F) and the implementation of a Dynamic VRP with time windows

(VRPTW-D). On their results, a 3.7% improvement on the costs is reported when using the dy-

namic problem formulation (VRPTW-D) compared with the VRPTW-F. They also refer that by

incorporating real-time information of the fleet travel times, they improved the customer service,

as the arrival times to the customers are better enclosure in the defined time-windows. This con-

tributes to reducing the delay penalties. Finally, the VRPTW-D is reported as more effective in

decreasing the vehicles’ running time when compared to the forecasted version. VRPTW-Ds can,

therefore, contribute to less road congestion and reduce the vehicles’ operating costs.

Dynamically calculating routes is not a trivial problem, increasing complexity with the number

of vehicles on the fleet, the number of customers to serve, and other problem-related restrictions.

12 Dynamic Vehicle Routing Problems (DVRP)

As vehicles are operating, routes need to be modified and recalculated in close to real-time once

a disruption appears. The time available can be too short for the use of complex state-of-the-art

algorithms. One approach to address this problem is to calculate the provisional operations plan

with the available information at a specific time. This plan is then revised once disruption occurs.

The concept of Disruption Management is to revise an operation plan in real-time once disruption

occurs dynamically [15]. It has major importance when the operations plan has been calculated in

advance, or its execution is vulnerable to significant disruptions.

2.4 Disruption Management

A formal definition of disruption management was present by Yu and QI (2004):

”At the beginning of a business cycle, an optimal or near-optimal operational plan

is obtained by using certain optimisation models and solution schemes. When such

an operational plan is executed, disruptions may occur from time to time caused by

internal and external uncertain factors. As a result, the original operational plan may

not remain optimal, or even feasible. Consequently, we need to dynamically revise the

original plan and obtain a new one that reflects the constraints and objectives of the

evolved environment while minimising the negative impact of the disruption. ” [58]

In his survey, Eglese clarifies four factors directly involved in disruption management [15].

The time available for the replanning and re-optimisation is usually limited. A particular

algorithm uses a portion of this time to output the revised plan; time limitations advise against

algorithms with high computational time. Authors also highlight the fact that the revised plan

needs to be communicated to the vehicle fleet. The time employed in the communication of a

revised plan should also be taken into account in the time available for replanning [15].

In disruption management scenarios, there is always access to the original pre-calculated oper-

ations plan. This plan is useful and serves as a starting point for calculating the disrupted plan, as

there is no need to recalculate everything from the start. Using a previously calculated operations

plan is a fundamental argument to stint the short time available for replanning [15]. Overall, the

optimality of the solution benefits from this approach. At an early step, a solution can be gen-

erated based on a static implementation of the VRP. As this solution is generated previously to

the operations plan’s execution, more expensive and complex algorithms might be used, generally

outputting a better solution. Once disruption occurs, the plan is revised and modified, but the

initially calculated plan serves as a starting point. For instance, an algorithm can calculate all the

vehicle routes for the whole workday during one night. This plan is then revised in real-time and

altered according to the occurrence of disruptions.

As the initially calculated plan will be modified and revised, the costs entailed by deviations

should also be taken into account. Therefore, Eglese refers that disruption management is often a

multi-objective problem, as the costs of modifying the plan should be added to the costs already

present on the original plan (operation and other costs) [15].

2.5 Taxonomy on DVRP 13

Figure 2.2: Taxonomy on DVRP, proposed by Psaraftis (2016) [43]

Concerning DVRP and its dynamic properties, new constraints might appear while a certain

operations plan is being executed. The model has to have the adaptability characteristics to adapt

and attach new constraint. A demonstrative yet straightforward example is vehicle breakdown.

Upon breakdown, the system can no longer rely on that vehicle to accomplish more requests,

meaning the fleet size constraint needs to be updated.

2.5 Taxonomy on DVRP

An important contribute to DVRP was made by Psaraftis et al. [43]. The work classified several

papers on the subject. It classified them using a proposed taxonomy with 11 criteria: type of

problem, logistical context, transportation mode, objective function, fleet size, time constraints,

vehicle capacity constraints, the ability to reject customers, the nature of the dynamic element, the

nature of the stochasticity (if appliable), the solution method. Although not wholly independent,

the 11 criteria provide an overview of the different approaches and constraints published in the

topic of DVRP (Figure 2.2).

2.5.1 Type of Problem

A VRP routing problem can be Static and deterministic (SD), Static and stochastic (SS), Dynamic

and deterministic (DD) and dynamic and stochastic (DS). This taxonomy used the definition of

"dynamic" proposed by Psaraftis (1988) et al.[42]. Psaraftis classifies a VRP as dynamic if the

problem inputs are continually received simultaneously with the route calculation. Contrarily, a

problem is classified as static if all the inputs are received forehand and do not change during the

routes’ execution. A problem is considered stochastic when its inputs are not known with certainty

and deterministic otherwise.

14 Dynamic Vehicle Routing Problems (DVRP)

2.5.2 Logistic Context

This criterion classifies the nature of the problem. VRPs can be divided in Either pick up or

delivery (P/D), Pickup and Delivery (P/D), Routing with Location/Inventory Considerations, and

Routing with Queuing Considerations [43].

2.5.3 Transportation Mode

The transportation mode influences the logistics of the VRP. The proposed taxonomy describes

four types of transportation modes referenced in the literature: Road, Maritime, Air and Walking.

Road transport accounted for the most described problem [43].

2.5.4 Objective Function

The Objective function is referred to as a criterion of significant importance. The authors are critics

about the objective functions described in the literature to solve DVRPs. Most objectives func-

tions are classified as "identical or quasi-identical to traditional static problems" [43], with some

exceptions. Two big sets of objective function clusters are defined: minimisation and maximisa-

tion objective functions. Some examples of minimisation problems on the literature are minimised

route cost, route distance, travel times, total lateness, number of vehicles, cost of service and cus-

tomer dissatisfaction. Two objective functions to maximise were documented: quality of service

and total profit. The authors propose the use of "throughput" and "per unit time" metrics; metrics

such as average unit time serviced customers, average time cost per unit, average client rejections

per unit time. They also suggest more complex objective functions that assign a higher weight to

close events compared to later ones [43].

2.5.5 Fleet Size

The fleet size respects the number of vehicles available in the fleet. Problems are classified in

single-vehicle, multiple and limited numbers of vehicles and infinite vehicles when their amount

is sufficiently large. The most common problems describe a fleet with multiple but limited vehicle

amount [43].

2.5.6 Time Constraints

Time constraints criterion concerns the type of time constraint in the requests and can be classified

in No time constraints, Hard time window, Soft time window or another type of time constraints.

In the case of DVRP, time constraints either do not exist or are considered soft. Soft time con-

straints are characteristic from problems were earliness or tardiness is penalised in the objective

function. Hard time windows on DVRP might make a problem instance infeasible as they need

to be respected even with disruptive events. Other types of time windows include time windows

dependent on the customers’ type, maximum ride time constraints or maximum route duration

constraints [43].

2.5 Taxonomy on DVRP 15

2.5.7 Vehicle Capacity Constraints

Most papers incorporate vehicle capacity constraints. On the other hand, problems where the

volume of goods is sufficiently small compared to the carrier vehicles’ capacity, can be considered

of infinite capacity. Problem variants, where a service is provided, instead of a physical good,

can also be considered infinite capacity. Infinite capacity means that any vehicles can serve any

number of customers [43].

2.5.8 Ability to Reject Customers

DVRP dynamic properties and associated uncertainty, usually presuppose the ability to Reject

customers. The taxonomy’s authors emphasise to the connection of this criterion with the time

constraints criterion. The presence of hard time windows usually means that one can reject indi-

vidual customers under the penalty of making the problem unfeasible. Depending on the problem,

customers can also be rejected if the cost to include them in the operations plan is too large [43].

2.5.9 Nature of Dynamic element

Dynamic elements are dynamic inputs that are unpredictable and will cause disruption of the pre-

calculated operations plan. This criterion classifies the different types of dynamic inputs in routing

problems: Dynamic customer requests, with customers altering or cancelling requests, and chang-

ing their location on the network; dynamic travel or service times, influenced by road congestion

or closed nodes on the network of roads; Dynamic vehicle availability or vehicle breakdowns [43].

2.5.10 Nature of Stochasticity (if any)

This criterion is only applicable to the DS and SS problems. Concerning its nature, stochastic

events can involve Stochastic customer locations, Stochastic demand quantity, Stochastic travel

times [43].

2.5.11 Solution Methods

As previously mentioned, on DVRPs, the time to obtain a solution is usually scarce, requiring

the use of fast solution time methods, such as heuristics-based approaches. Most of the methods

used to solve DVRP are the equivalent or adaptations of the ones used on solving static VRPs.

Possible solution methods are Tabu Search, Neighborhood Search algorithms, Insertion Methods,

Nearest Neighbor, Column Generation, Genetic Algorithms, Ant Colony Optimization, Particle

Swarm Optimization, Waiting-Relocation strategies, Markov Decision Processes and Queuing-

Polling Strategies. The taxonomy authors consider the four last methodologies with the tag of

"more dynamic" compared to the others. Remaining methodologies are just adaptations of the

ones used on static approaches. Concerning solution methods, the authors refer that the worst per-

formance case analysis has not much presence on the documented DVRPs. This metric calculates

the maximum distance a particular heuristic result can be to the optimal solution [43].

16 Dynamic Vehicle Routing Problems (DVRP)

2.6 Measuring the Dynamism

As before mentioned, distinct problems encompass dynamic elements of different natures. Dy-

namic elements can also be characterised in two dimensions propose by Ichoua (2007) et al. [25]:

frequency of changes and urgency of requests. Frequency of changes pertains to the rate at which

the information is updated and becomes available. The urgency of requests concerns the time dif-

ference between acknowledging a new request and the time expected to fulfil it [38]. To measure

an individual system’s dynamism, Lund (1996) et al. [30] proposed a simple metric defined as

the degree of dynamism (δ) (Equation 2.1). It encompasses the ratio of dynamic requests (reqdyn)

relative to the total amount of requests (reqtotal) [?]. The simple metric proposed does not consider

the times of the dynamic requests. Systems that receive a request at the beginning of the operations

plan are perceived as equivalents to the ones who received the request at the end of the planning

horizon [38].

δ =
reqdyn

reqtotal
(2.1)

Based on this problem, Larsen(2001) [28] proposed the effective degree of dynamism, an av-

erage of the disclosure times. As Larsen concluded, measures that seem promising for describing

one system’s dynamism might be inappropriate for other systems. Therefore, Larsen proposed the

former metric for both problems without time windows (edod) and problems with the presence of

time windows (edodTW) [28].

2.6.1 Absence of Time Windows

Assuming that the requests received before the beginning of the planning horizon have a disclosure

time of 0; the planning horizon ends in time T ; Ti is the disclosure time of the request i; R is the

set of requests; nimm is the total number of requests received in the planning horizon.

edod =
∑

nimm
i=1 (

Ti
T)

reqtotal
(2.2)

2.6.2 Time Windows

This metric was extended to problems with time windows. The temporal difference between the

time when a request is received (ti), and the latest time it should be satisfied (li) is classified as

reaction time. The metric beneath reflects that a planner would prefer requests with longer reaction

time as they give more room to insert other dynamic requests in the routes [28].

edod =
1

reqtotal

reqtotal

∑
i=1

(1− li− ti
T

) (2.3)

Several other factors that affect the system’s dynamism are not captured by any of the above

metrics: geographic distribution of the requests and travel times between the accomplishment of

requests [38]. The frequency of information updates has a significant impact on the time window

available for the optimisation [38].

2.7 Problem Formulations 17

2.7 Problem Formulations

The literature describes several DVRP formulations, depending on the application context and the

flexibility allowed in the revised operations plans. On its survey, Eglese, enumerates several essen-

tial considerations to be taken into account on Disruption management problem formulations [15].

Generally, in DVRP documented in the literature, goods are transported to customers at their

demands. Vehicles are assigned with routes to fulfil customers’ demands in the most optimised

way possible, bearing in mind the dynamic environmental factors. The commodities to be trans-

ported might be specific to individual customers, for instance, in the case of package delivery com-

panies. In this case, each customer can only be served by the vehicle that carries the commodities

he demanded. Contrarily, if the commodity is generalised to all the customers, any customer can

be served by any vehicle [15]. These constraints are vital as they maintain the problem’s feasibil-

ity. In the former case, when vehicle breakdown occurs, other vehicles must visit the breakdown

vehicle to pick up the individual goods and deliver them to the specific customers.

A second essential consideration mentioned by Eglese [15] is the degree of flexibility allowed

when calculating the revised plan. Some formulations imply that upon vehicle breakdown, the

remainder of the breakdown vehicle’s route must be completed by a singular vehicle. However, as

pointed out by the authors, there might be room for further optimisations; the remainder customers

can be distributed by multiple vehicles. The order and priority of the customers that remain to

satisfy also needs to be taken into account. Some formulations imply that this order is maintained

once disruption occurs, while others allow the optimal reorganisation of customers [15]. A certain

system might not desire this further optimisation, as some clients may need to be served with more

urgency than others.

Another important formulation detail is to specify when the vehicles can diverge from the

initial pre-calculated routes. In some formulations, the vehicles are required to finish their whole

schedule, meaning they must serve all the customers previously defined before they can be used to

tackle disruptions. Other problem formulations allow vehicles to be rerouted during the execution

of an operations plan. Depending on the communication methods between the fleet vehicles and

a centralised control centre, some formulations forbid vehicles to be redirected in the middle of a

trip’s execution (trip is the journey between two nodes on the road network). If the communication

between the vehicles and control centre is continuous, it is possible to reroute a particular vehicle

in the middle of a trip [15].

The last two considerations are related to the objective function. It is crucial to understand

if new vehicles and their respective crew are available at a depot to be allocated by the system.

In the presence of vehicles or crew shortage, the system should append the costs of hiring more

capacity to the objective function [15]. As enunciated by Psaraftis on their taxonomy classification

on DVRP [43], the ability to reject customers is an essential factor. Some formulations allow client

requests to be rejected when it is not profitable enough to visit them. Other formulations imply

that, even in case of disruption, all clients must be fulfilled. In this case, the system may serve

clients in a schedule utterly different from the one initially calculated.

18 Dynamic Vehicle Routing Problems (DVRP)

2.8 Solution Methods

As a priori mentioned, vehicle routing problems (VRP) are unanimously classified as NP-Hard.

Therefore, DVRPs are expected to be also of NP-HARD complexity [56]. Some papers con-

tain shreds of evidence of their formulations to be NP-HARD [15]. With few exceptions in the

literature, DVRPs are always solved using approximations or relaxing the real constraints from

the real-life problem. The planning horizon concept describes the time-window of the problem,

since the moment the first vehicle departures from the depot to the instant where the last returning

vehicle arrives at the depot. Regarding DVRP, essential and useful information is continuously

being inputted to the problem as the progress on the planning horizon evolves. The complete in-

stance of the problem is only known at the planning horizon’s finale. The literature documents

several solution approaches regarding DVRP. The solution methods available can be segmented

two clusters [38], representing the two types of dynamic vehicle routing problems defined in tax-

onomy [43]: dynamic and deterministic routing problems and dynamic and stochastic routing

problems.

2.8.1 Dynamic and Deterministic VRP

On the category of dynamic and deterministic VRP, the literature is divided into two possible

solution approaches: Periodic optimisation and continuous optimisation [38].

2.8.1.1 Periodic Optimisation

The periodic optimisation approach is based on the segmentation of the planning horizon in small

segments that are analysed and solved as a static VRP. The approach was first used by Psaraftis

in a problem without stochastic information [41]. The dynamic problem is divided into multiple

static instances, obtaining the most optimised routes in a particular timestamp. The static VRP is

solved every time a new disruption occurs or in predefined time intervals. This approach suffers

from the curse of dimensionality as it becomes too complicated and computationally costly for

large problem instances. Since the optimisation process optimises the routes from scratch, the

computational time will delay the communication of the revised plan to the vehicle fleet, ultimately

causing the problem to be unfeasible. Periodic optimisation has the clear advantage to allow

the use of algorithms already intensively studied and developed in the static VRP context [38]

. A paper by Montemanni proposed an developed an interesting use of this approach, to solve

a DVRP using Ant Colony Systems (ACS) [35]. They divided the planning horizon (a day) in

multiple slices of the same duration, ensuring equal computational effort for each time slice. At

the beginning of each time slice, the problem is solved with the available information at that

moment. Any request received during that time is ignored and will only be accounted for in the

next time slice. The requests studied in this paper were not urgent and allowed for the use of

the former methodology. They also proposed and developed an interesting enhanced to periodic

2.8 Solution Methods 19

optimisation, transferring promising solution characteristics between a time slice and the next.

The approach was used in a realistic case study [35].

2.8.1.2 Continuous Optimisation

Continuous optimisation is done continuously during the day upon a disruption. This approach

was first used by Gendreu (1999) et al. [18] with an adaptation of the parallel Tabu-Search algo-

rithm to solve a Dynamic VRP with time windows, motivated by courier services. The current

problem solution is maintained in memory, being updated continuously once the available prob-

lem information changes. A major disadvantage of this approach is due to the fact the routes are

being updated continuously, meaning each vehicle’s destination is only known once it finishes the

current request. This might be incompatible with the way some systems operate. Several imple-

mentations of continuous optimisation in the context of dynamic customer requests are based on

a route or solution pool. The pool contains a set of alternative solutions that are maintained in

memory. It is initially populated with a feasible solution, contains all the routing plans. When the

system receives a new customer request, it calculates if the request can be served. If the system

accepts the request, it appends it to the solution pool and solutions that are not compatible are

removed from the pool. A pool-update mechanism is responsible for guaranteeing that all the pool

solutions are coherent with the problem’s current state [38].

2.8.2 Dynamic and Stochastic VRP

Regarding Dynamic and stochastic VRP, possible solution approaches to track the problem are

divided into two categories: the ones based on sampling and those based on stochastic mod-

elling [38] .

2.8.2.1 Sampling

Typically, a DSVRP has few random variables that influence the decisions taken during the plan-

ning horizon. Sampling methods are based on the generation of new scenarios with distinct values

for these variables. Information like the probability of a certain customer to appear on a certain

area might be known prior. In this case, the algorithm can instantiate several customers on that area

according to the known stochastic information and adapt the routes to serve the dummy customers.

By adapting the routes to the dummy customers, one may think the system is losing its optimality,

as the routes have to consider customers that do not exist in the real problem. That is true, but

as the routes lose their optimality to the original static problem, they grow adaptability charac-

teristics to dynamic events [38]. In DVRPs, a robust solution needs to be assessed in dynamic

environments, meaning the algorithm does not know all the information prior to the plan’s execu-

tion. As the routes are calculated based on the stochastic information about problem variables, the

system will react better in dynamic events. Sampling suffers from the curse of dimensionality as

the number of scenarios needed to reflect the reality can be too large [38]. The following example

in Figure 2.3 can be used to illustrate sampling [38]:

20 Dynamic Vehicle Routing Problems (DVRP)

(a) Initial Optimal Plan (b) Optimal plan with dummy
customers

(c) Optimal plan, removing
dummy customers

Figure 2.3: Sampling examples, adapted from [38]

This example concerns a DSVRP with unknown customers location. Initially, an optimised

route plan is generated based on a particular objective function. The optimised plan is: A,B,E,D,C.

There is information available about where the customers are more likely to appear, represented

by the shades in Figure 2.3. It is important to note that this plan completely ignores one area where

customers are likely to appear. With available stochastic information, dummy clients X , Y and Z

are instantiated in promising areas. A tour to serve the dummy clients is calculated: (C, X , Y ,

B, A, Z, E, D). Finally, the dummy clients are removed, and the solution becomes: (C, B, A, E,

D). Although sub-optimal for the initial static problem, this solution is more adapted to the zones

where customers are likely to appear dynamically.

2.8.2.2 Stochastic Modelling

Approaches based on stochastic modelling integrate the stochastic knowledge analytically. Al-

though they better capture the stochastic nature of the problem compared to sampling, they have

very complex formulations [38]. The work done by Powell (1988) used stochastic modelling, for-

mulating a truckload problem as a Markov Decision Process (MDP) [40] [38]. Other examples of

this approach are the use of Approximate Dynamic Programming(ADP) and Linear Programming

algorithms adapted to dynamic and stochastic settings.

2.9 Performance Evaluation

Deriving from their complexity compared to static VRP, DVRP requires different metrics to ob-

tain a foolproof method’s performance. On his review on dynamic vehicle routing problems[38],

Pillac, points out two metrics that can assess a method’s performance: competitive ratio and value

of information. Sleator and Tarjan (1985) first introduced the competitive ratio on their systematic

study of online algorithms. The suggested metric compares the performance of an online algo-

rithm to an optimal offline algorithm [50]. An offline algorithm can access all the information,

both static and dynamic, available at the beginning of execution. Antagonistically, an online al-

gorithm receives its information piece-by-piece during execution time; the entire input set is not

available from the start[38]. An online algorithm can only perform as good as the offline version

of the problem. An online algorithm is classified as best-possible if another algorithm does not

2.10 Benchmarks 21

exist with lower competitive ratio [7].

Let P be a minimisation problem with the commonly used cost of the amount of time needed

to visit all the desired locations[38]. Let Co f f (P) be the cost of the optimum offline algorithm’s

solution and Con(P) the cost of the online algorithm’s final solution. Regarding the metric, an

algorithm is said to be c-competitive (with a competitive ratio of c), if there is a constant α that

satisfies the Equation 2.4

Con(P)≤ c ·Co f f (P)+α (2.4)

The main drawback of the competitive ration is the complexity and difficulty in proving the

inequality on real-world problems[38]. Another metric, the value of information proposed by

Mitrovic-Minic(2004) [34] is more flexible and practice for measuring the effectiveness of a DVRP

solution method[38]. This metric compares the solution returned by a particular algorithm on an

instance of a dynamic problem, with the solution obtained by the same algorithm on a static in-

stance of the same problem (with the dynamic information known beforehand). Let xd be the

optimal solution of the dynamic instance of a problem P and xs the optimal solution of the static

instance with the same objective function f . The value of information (V), when using the algo-

rithm α , is defined as Equation 2.5

Vα =
f (xd)− f (xs)

f (xd)
(2.5)

The above metric (Equation 2.5) measures an algorithm’s performance based on empiric re-

sults and does not require calculating optimal solution for the offline instance with other algorithms[38].

2.10 Benchmarks

Heretofore, very few benchmark problems were published and referenced for benchmarking of a

specific DVRP algorithm. As referenced before, DVRP presuppose that decision have to be taken

in real-time, meaning there is a small time-window available for optimisations. This restriction

recalls the use of methodologies and approaches that demand less computation power. The usual

approach is to attest a specific method’s validity by comparing it with a higher computational cost

algorithm. This approach was used in a problem where vehicle breakdown might occur during

the execution of a pre-calculated operations plan, a variation of the Team Orienteering Problem

(TOP) [33]. They propose a solution based on a heuristic. In this case, a more computationally

expensive Genetic algorithm was used to set the heuristic benchmarks.

Other papers, such as Chen(2006) [11], adapt the benchmarks published by Solomon (1987) [51]

for static VRP instances. The fifty-six problem benchmarks created by Solomon were adapted and

used to demonstrate and attest the proposed model’s validity [11].

22 Dynamic Vehicle Routing Problems (DVRP)

2.11 Problem Variations

DVRPs variations are similar to the Static VRP, but they consider some unpredictable elements

that influence the vehicles’ routes in real-time. In a real-world scenario, these events are in the

limit, infinite, as there is a panoply of factors that can more or less influence the vehicle routes.

As expected, the literature adapts the infinite dynamic problem and only addresses the elements

useful in their specific context. DVRPs variations must be seen as a base prototype model, as a

considerably amount of scenarios conjugate several models to propose the most adapted formu-

lation. For this purpose, the current section will approach the most common dynamic vehicles

routing problems and give examples of specific problems with a set of disruption types that will

be valuable to this work.

2.11.1 Dynamic Travelling Salesman Problem (DTSP)

The dynamic travelling salesman problem (DTSP) is the simplest variant of a DVRP [23]. The

TSP consists of discovering the most optimised routes a salesman needs to perform to visit a set

of cities. All cities must be visited precisely one time. The salesman must also return to the

initial city, which is usually called depot in case of VRPs. The DTSP is inserted in the dynamic

and stochastic VRP category, and it is considered to be of NP-Hard complexity. This problem is

defined on a graph, where the travelling times between nodes is previously known. Customers

demands are the dynamic element, as they arrive at each node following a Poisson of mean arrival

rate (lambda). The salesman serves these demands, spending a fixed time per demand on each

node [43]. In cases where (lambda) is extremely low, the DTSP is equivalent to a median problem,

where the optimal travelling time can be achieved using the policy to move a vehicle to the graph’s

median, anticipating the next demand [23].

2.11.2 Dynamic Vehicle Routing Problem with Time Windows (DVRPTW)

In a real-life scenario where a company does deliveries or other services to a set of customers, there

are always time-windows associated. Time-Windows commonly refers to the desired time to visit

and satisfy customers requests. The difference between this problem and its static version, the

Vehicle Routing Problem with Time Windows(VRPTW), is incorporating information received

dynamically in the decision process. The time window defined to an individual customer can

be hard or soft, as explained in section 2.5.6. Taniguchi [53] studied this problem with the

dynamic element being the traffic intensity. A set of trucks had to visit particular customers in the

predefined time windows. Soft time windows were specified, and earliness or tardiness in requests

was penalised in the objective function. They proposed a dynamic formulation of the problem and

compared it with a static version, where the traffic intensity was forecasted. Better solutions were

obtained in the DVRPTW formulation. Archetti [3] addresses a problem where customers are the

dynamic element and arrive in real-time to the system. This formulation allowed some requests

to be denied, incurring on penalty similarly to when the time window is violated. Pan [37],

2.11 Problem Variations 23

decomposed a DVRPTW in several static problems with the objective of maximizing customer

satisfaction. In this problem, vehicles that leave the depot have knowledge of static customer

requests to be served and routes are initially calculated and optimized for those requests. The

dynamic elements of this problem are customer requests, that can be added during the execution of

the optimal precalculated paths, and also the initial static customers’ orders that can be cancelled.

Again, serving a customer outside the desired time window will mean a penalisation.

2.11.3 Multiple Depots Dynamic Vehicle Routing Problem (MDDVRP)

This problem variant differs from others in the starting positions of each vehicle. Typically, DVRP

recognises a single depot from where all the vehicles departure. Concerning MDDVRP there are

several depots, to whom the vehicles need to return to replenish resources or after accomplish-

ing the routes. Fang proposed implementing a multi-objective, multi-depot, multi-type, dynamic

vehicle routing problem (MOMDMTDVRP) to manage the routes of emergence crews upon Ge-

ological disasters [16]. This formulation had multiple depots to serve customers spread in a large

area, in this context resource centres and disaster areas respectively. Each disaster event appears

dynamically and is given a priority according to the disaster severity. The solution approach was

based on a hybrid ant colony optimisation minimising the time taken to transport resources to the

disaster sites while respecting the disaster priorities (serve the higher priority customers first).

2.11.4 Dynamic Capacitated Arc Routing Problem (DCARP)

Dynamic Capacitated Arc Routing Problem (DCARP) is a problem widespread in real-life sce-

narios. A set of arcs (between two nodes in the roads graph) has an associated demand and needs

to be served by a fleet of vehicles, ensuring that the routes’ demand does not exceed the vehicles’

capacity. The vehicles are available at a single depot and have a finite capacity. The classic version

of the problem has typically two costs associated with each arc, one for serving it and another for

travel purposes only [52]. An example of a scenario that describes this behaviour are the snow-

ploughs. When these vehicles remove snow from the roads, they have lower speeds, leading to a

higher cost of travelling (service cost). However, they might need to use an arc just for travelling

purposes, moving faster and having a lower cost associated. Several dynamism sources to this

problem were explored in the literature: the appearance of new demands dynamically, dynamic

graphs, changes in the edge costs and vehicle breakdown.

Padungwech studied the influence that the number of iteration in a Tabu search algorithm has

on a DCARP solution [36]. Their problem had the objective of minimising the travelled distance,

but also the service times. The optimal policy to minimise only the travelling distance is simple,

just wait until the end of the planning horizon and solve the static problem (after all dynamic events

had happened) [36]. This DCARP required all dynamic requests to be fulfilled. The number of

iteration of the tabu search algorithm did not improve the solution, in opposition to a more frequent

schedule update and the method use to integrate new tasks.

24 Dynamic Vehicle Routing Problems (DVRP)

DCARP can also be time-dependent when the start time of service determines the service costs

on each arc. An example is a work by Tagmouti [52], addressing a DCARP with dynamic service

times in each arc due to weather report updates. Their solution is dividing the DCARP into new

static problems each time an information update is received. This approach is then compared to

a static version of the problem where the dynamic elements are known to prior. The dynamic

approach has better results since both problems were tested in dynamic settings.

2.12 Summary

DVRP are problems of major importance in any vehicle routing logistic context subject to internal

or external factors that might influence vehicle routes. These factors can cause the planned routes

to become unfeasible or sub-optimal at a certain point, which can incur costs or profit losses to the

companies. Dynamic environments raise a set of concerns to the routing system, as every business

context has its constraints, and dynamic factors might rise the need to soften them. A common

approach is to soften the constraints and penalize them on the objective function when they are not

totally fulfilled. This set of rules is problem-dependent, and some constraints cannot be relaxed,

for example, in ASAE’s context, the economic operators need to be visited in their work schedule.

DVRPs are considered NP-hard problems, meaning that exact methods are not promising in

achieving good results in a reasonable time. The literature mainly uses heuristic-based method-

ologies, aiming to get the best solution in the shortest time possible. The time taken to obtain

a solution is of significant importance on DVRP because the vehicle fleet cannot stop working

to wait for the system to calculate the new solution. Dynamic solutions must be achieved and

communicated to the fleet in very short time-windows, close to real-time. To achieve such results,

the system should initially calculate a provisional static operations plan that will be executed and

revised in real-time once disruptive events occur.

It is also essential to consider the use of stochastic information when it is previously available,

allowing the system to have some degree of prediction of disruptive events. The initial static plan

can be modified and adapted to tackle a disruptive event by accounting for stochastic information,

minimising its impact.

Chapter 3

Algorithms

This chapter will review the state-of-the-art concerning the four optimisation algorithms used in

this dissertation: Hill Climb, Simulated Annealing, Tabu Search and Large Neighborhood Search.

Along with a brief definition of each algorithm, this chapter also provides insights on several

approaches used in the literature combined with improvements to each base algorithm.

3.1 Introduction

As previously analysed, DVRP is an optimisation problem with NP-hard complexity. There are

three main approaches to solving this problem: exact, heuristic, and meta-heuristics approaches.

Depending on the complexity of each problem instance, the feasibility of each method can change,

and they have advantages and disadvantages in different aspects. Each method needs to be adapted

to the specific problem and analysed in several metrics, such as the quality of the solution found,

the time taken to achieve a solution, and the memory allocated during the search process. All these

approaches were intensively studied and used in real-life scenarios and refined to each problem

they solved. Some literature works compared several methods using a set of defined metrics, but

besides some conclusions over the respective problem instance, there are no conclusions of which

of the methods is the best overall.

3.2 Solution Methods

3.2.1 Exact Methods

Exact methods grant they find the best solution after they finish their execution. These methods

usually visit all the problem states, and deliberate all the possible solutions. Sometimes they crop

some areas in the search space where the best solution is granted absent.

This approach is often not suitable for more significant problem instances, with a lot of cus-

tomers or an extensive vehicle fleet, because the solution space is exponentially ample, and the

computational times become too substantial. Since this dissertation modulates the problem as a

25

26 Algorithms

DVRP, the computational times become even more important as the solution needs to be provided

in close to real-time, as the brigades are working and need valid routes.

The approach implemented by Barros [27] to solve the static instance of the problem described

by this work, analyses the performance of the branch and bound algorithm. This algorithm ex-

plores all the branches with possible solutions and interrupts the exploration of a branch if it

originates an unfeasible solution. This algorithm was implemented with a time execution limited

to 5 minutes and could solve problem instances with 24 economic operators for one brigade or 14

economic operators for eight brigades. These limitations are far from the real problem instance

and confirm that exact methods are not suitable to solve complex VRP problems. The DVRP

variant of this problem has increased complexity, mainly in the utility function. Therefore, it is

expected to be prohibitive for using such methods.

3.2.2 Heuristic Methods

In contrast to exact methods, Heuristic Methods don’t grant to find the best solution for the prob-

lem instance. This method doesn’t need to be optimal or rational but rather enough to reach an

approximation to the global maximum of the problem. Heuristic methods are usually designed

when exact approaches fail to deliver a solution in acceptable time intervals or to find an approxi-

mate solution to a problem instance when accurate methods fail to do so. A heuristic is a function

that calculates the utility of each search branch and, based on the available information, guides the

search throughout the most promising branches. The main objective of the heuristic is to solve a

certain problem in a time window that is reasonable, obtaining a solution that is arbitrary close to

the optimal. The literature describes trade-off criteria to decide when a problem should be solved

using a heuristic approach: Optimality, Completeness, Accuracy and precision, Execution time.

The Optimality criterion concerns problems with multiple solutions and if it is necessary to find

the best solution to solve the real-lie problem. The second criterion is completeness, and when a

problem has multiple solutions. In some scenarios it is demanded to get all the solutions, while

in others, only the best solution found matters (VRP case). The accuracy and precision criterion

deliberates if a certain heuristic can provide a confidence interval for the solution found and if

the error compared to the optimal solution is supported in the real-life problem. The last criterion

regards the execution time. Different heuristics have different converging curves, some converg-

ing faster than others; the balance between a fast converging heuristic and one that grants a better

solution is often a step of major importance when solving an optimisation problem.

3.2.3 Meta-Heuristic Methods

Similarly to the heuristic methods, these methods can find solutions arbitrarily close to the optimal

for significantly large problem instances (lots of customers and brigades). Meta-heuristics have

a substantially better precision and find better solutions when compared to heuristics methods

in similar time intervals. Metaheuristics search a large subset of solutions by sampling using a

certain methodology since this subset is too extensive to be explored entirely [9]. These algorithms

3.3 Algorithms 27

guide their search, tendentially exploring the most promising areas in the search space, finding

solutions in a reasonable execution time. Metaheuristics do not guarantee that the solution found

is the optimal global solution or close to its utility. These methods are non-deterministic and are

usually associated with stochasticity since the algorithm and the intermediate decisions rely on a

set of variables that are randomly generated [8]. The same metaheuristics can be used in different

problems with very few adaptations since they are not problem-specific.

Metaheuristics are classified according to several properties. Two essential properties are the

type of search and how many solutions are stored concurrently. The type of search property

ranks metaheuristics in local search or global search. Local search algorithms like Hill climbing

are used to find local optimums, and they can’t guarantee finding the optimal global solution.

These algorithms commonly use a greedy approach, and they can get easily trapped in a local

optimum. Global search metaheuristics improve the search and find better solutions, escaping local

maximums and searching in the whole solution space. Global search methods include simulated

annealing, tabu search, and iterative local search. The second main classification property regards

algorithms based on a single solution or a population. Single solution algorithms improve and

modify a single solution, while population-based approaches improve a set of candidate solutions.

A population is a set of candidate solutions controlled by a group of variables that influence the

size and the way the population evolves throughout the search. An example of this approach is the

Genetic algorithms, and an example of a single solution algorithm is the simulated annealing.

3.3 Algorithms

3.3.1 Hill Climbing Algorithm

The Hill-Climbing algorithm (HC) is a local search method typically used in optimisation prob-

lems. It is straightforward to implement and requires only to store the current solution state. As

with all the local search algorithms, HC fails to detect the unsolvability of a problem instance

and, if there is no solution available, the search will continue indefinetely [47]. The algorithm

starts with an initial solution and attempts to improve it iteratively as the search proceeds within

a predefined running time. In each iteration, a new neighbour solution is generated based on the

current one, and it is accepted if its utility is greater than the current best solution. Since worse

neighbours are discarded, the algorithm cannot go across less promising zones in the search space

and will get stuck in local maximums. This affects the algorithm precision, making it unlikely to

find the optimal global solutions.

3.3.2 Simulated Annealing Algorithm

Simulated annealing is a stochastic approach inspired by thermodynamics and is an analogy with

the annealing processes in metallurgy. These processes involve many efforts to control the an-

nealing temperatures to make the crystals bigger and have fewer defects. Simulated annealing is

a metaheuristic that performs a global search with a single-solution approach and can be used in

28 Algorithms

substantial problem instances, achieving a solution close to the global maximum with reasonable

execution times.

Similarly to the Hill-Climbing algorithm, simulated annealing starts with an initial solution

and generates new ones on each iteration. During the search, it stores two solutions: the candidate

solution and the best solution found so far. The candidate solutions are analysed in a particular

iteration and are given as input to a function that generates a new solution. The new solution

might be accepted as a candidate for the next iteration if it has a greater utility value or a certain

probability value. The algorithm also stores the best solution and updates it throughout the search;

this solution is returned by the algorithm when it finishes execution.

Contrarily to the previous Hill-Climbing algorithm, simulated annealing tries to escape the

local optima by allowing the acceptance of worse solutions, than can later conduce the algorithm

to the most promising zones. A new move is accepted if its utility is better than the current

solution’s utility or with the probability Pa shown in equation 3.1, where t and δutil the utility

difference between the current solution and the candidate solution. Accepting worse solutions is

done based on the current temperature of the system, being controlled by a cooling schedule that

adjusts the temperature along the algorithm’s executing time. Similarly to annealing processes in

metallurgy, initially, the system has more energy, meaning it can accept worse solutions with a

higher probability. During the algorithm execution, the temperature is lowered until it reaches a

minimum or a null value, meaning the algorithm will only accept solutions with a higher utility

than the previous one; this behaviour is similar to Hill-climbing. Any solution with a better utility

is accepted during the whole search.

Pa = ε
δutil

t (3.1)

3.3.2.1 Neighborhood Structure

A neighbour solution is one that can be obtained by applying an operator to a solution given as

input. The neighbourhood size is variable and always depending on the number of operators avail-

able and their specificity. Typically in simulated annealing implementations, the neighbourhood

size is defined at the start and remains unchangeable during the search process. Although not

as important or studied in the literature as the temperature, the neighbourhood size considerably

impacts the algorithm performance [57]. Larry [21] studied the impact of the choice of neigh-

bourhood size on the algorithm’s performance and the convergence speed. This paper studied a

SA algorithm applied to an instance of the TSP with uniform city distribution where the minimum

value of the cost function was known beforehand, running for a predefined number of iterations.

Larry [21] uses the concept of k-optimality, which says that a route has the most utility when com-

pared to all the routes composing the neighbourhood. Two routes are neighbours with a k value

of N if they can be obtained using an N-opt operator. The previous means that one route can be

broke in N or less different places, and after being connected, it can originate the other one. The

study concluded that the neighbourhood size influences performance differently among the same

3.3 Algorithms 29

problem instance tested with different amounts of cities. The choice k=3 seems the most reason-

able, considering all the scenarios and higher values of k for problems with a very high number of

cities. Since the algorithm had a predefined number of iterations to execute, it can be concluded

that the values of k that found a better solution are fasting the convergence of the method.

Another approach to the neighbourhood size is to dynamically adjust it during the algorithm

execution, maintaining the best value for each search stage. Such an approach was studied and

applied by Yao [57], where the temperature values control the current neighbourhood size. In the

exploration phase, the probability of accepting a "bad" or "good" move is higher, and thus a large

neighbourhood size is used to increase the exploration. When the temperature is lower or null,

a smaller neighbourhood size becomes more appropriate to exploit a smaller search area which

presumably contains a good solution. Yao [57] tested this approach in an instance of TSP with

equal parameters, comparing it with a SA algorithm with fixed neighbourhood size. Preliminary

results demonstrated the advantage of using a dynamic neighbourhood size during the search.

3.3.2.2 Cooling Schedule

Since the parameter of major importance is the temperature, the cooling schedule, which is re-

sponsible for manipulating the temperature, has been well studied in the literature with several

methodologies proposed. According to Atiqullah [4] three factors generalise the structure of a

cooling schedule: Temperature, Markov chains and Temperature decrement.

The temperature should be initialised to a high value that allows the algorithm to accept vir-

tually any new solution, even solutions with lower utility. In this stage, every configuration can

be accepted with a similar probability. The temperature must reach values close to zero or val-

ues low enough such that virtually no worse solution is accepted, guaranteeing the algorithm’s

convergence.

~∆C =
∑

nattempts
i=1 |∆Ci, j|

nattempts
(3.2)

Atiqullah [4] describes an approach to calculate the ideal initial temperature, based on both

cost increasing and cost decreasing moves. Using Equation 3.2, he estimates the expected change

in the utility function, the average difference in utility from solution A to solution B, a neighbour

of A. The element |∆Ci, j| represents the absolute value of the difference in the utility function

between the solutions i and j, and nattempts represent the number of neighbourhood configurations.

It is expected that the several neighbourhood configurations follow a normal distribution pattern

with a standard deviation of σ∆C.

t0 =
(~∆C+3σ∆C)

log(1
α0
)

(3.3)

The formula used by Atiqullah to calculate the initial temperature is presented in Equation

3.3. His experiments show that this formula performs around 50% better than other adaptative

schedules. The α0 represents the acceptance ratio, the percentage of moves that are expected to

30 Algorithms

be accepted at the initial temperature. An acceptance ratio of 0.9 means 90% of the neighbours of

the initial solution are expected to be accepted by the algorithm because they have higher utility

or by the stochastic acceptance rule.

The Markov chains can have variable lengths throughout the search, and its length corresponds

to the number of transitions attempted at a specific temperature value. A Markov chain is inter-

rupted when the algorithm accepts a new solution, updating the candidate solution. The majority

of the schedules adopt more minor temperature decrements both linearly and using complex func-

tions. Significant temperature decrements require longer Markov chains since more transactions

are needed to achieve the quasi-equilibrium state. It is essential to analyse the trade-off between

the temperature decrement and the Markov chains’ size because small temperature decrements

slower the algorithm’s convergence.

The work by Atiqullah [4] proposed a parametric cooling schedule that combines the simplic-

ity of the static and non-adaptative schedules with adaptative schedules that are guided to specific

problems. To understand the importance of a cooling schedule, it is essential to reflect on the three

distinct stages of a SA: global positioning, local search, and refine the solution. A good cooling

schedule should consider the previous three stages of the search. Initially, if the temperature drops

too rapidly, the algorithm can get stuck in a local maximum. During the middle part of the search,

the algorithm should slowly decrement the temperature and settle on a search area where a local

maximum is located. In the third search stage, the temperature should be kept at a low value so that

the algorithm can find the local maximum similar to a Hill-Climbing algorithm [3.3.1]. Atiqullah

proposes the Gaussian-like temperature decrement function during the entire search process, as

shown by Equation 3.4.

tk = t0×α
−[1

f]
b

(3.4)

b =
P
Q

(3.5)

P = log

(
log(t0

t f
)

log(a)

)
(3.6)

Q = log
(

1
f

)
(3.7)

The variable k is an increasing Markov chain counter; t0 and t f represent the starting and final

temperatures, respectively. The constants A and F are tunable and control the algorithm’s time in

high or low temperatures. If it is desired for the algorithm to spend less time in high temperatures,

the value of the constant A should be increased, or the value of F should be decreased. In his

paper, Atiqullah proposes a cooling schedule that will reduce half of the initial temperature in

around one-third of the number of Markov chains allowed. To achieve the previous, Atiqullah

used f = 1/3 and a = 2.

The stopping criteria of a SA implementation can vary in the specific problem and can be

as simple as a determined number of iterations or a limited execution time. In his proposed im-

3.3 Algorithms 31

plementation, Atiqullah defines the stopping criteria as a specific number of Markov chains. The

algorithm also terminates if one of three other criteria is met; the main criteria are the first two, and

the last is only used as a "last resource" stop condition. The first criterion terminates the algorithm

if there is no utility improvement in a defined number of Markov chains. The second criterion

ceases the search if the utility improvement after five iterations is below a specific value. The last

criterion is regarding the number of Markov chains. The algorithm will stop if the first two criteria

were not met and the maximum number was reached, which, according to the author, is a sign of

insufficient annealing.

3.3.3 Tabu-Search Algorithm

Tabu search (TS) is a metaheuristic, first introduced by Glover [19], that implements a local search

and can be used to solve complex optimisation problems. Local search methods tend to get trapped

in suboptimal regions as they accept only improving moves. Similarly to simulated annealing,

tabu search relaxes this rule and can accept worse moves when no improving move is available.

When the solution reaches a local maximum, the search doesn’t get stuck because the algorithm

then starts accepting worsening moves that will "unlock" new promising search regions. The tabu

search also has a prohibitive rule, not allowing moves to be repeated for a defined number of

iterations, discouraging the search to come back to solution regions already visited.

3.3.3.1 Tabu Moves

TS uses memory structures to keep track of the already visited solutions since they don’t need to

be revisited, or the search would be less efficient and could get trapped in a loop. Ideally, and

in theory, the algorithm would store all the solutions in memory and compare them to the new

ones. This approach can’t be used in most real-life problems as the number of possible solutions

is exponentially larger proportionally to the problem’s complexity (more vehicles and more cities

to visit) and would take too much memory space. Also, the computational time spent to verify if

a new solution was already explored is prohibitive to the algorithm’s execution. The solution to

these problems is to find alternative ways, tabu criteria, to approximately represent the recently

visited solutions and avoid returning to them for a predefined number of iterations.

Tabu tenure is the number of iteration that one move will remain tabu. The tabu list is a list that

contains all the tabu moves and their respective tabu tenures. To easily the implementation, the

memory structures store the iteration where a move will stop being tabu, so the memory doesn’t

have to be updated at each iteration. It is recommended to have tabu tenures that are dynamically

adjusted as the algorithm executes. A work by Wassan et al. [54] studied the use of a reactive tabu

search algorithm (RTS) in a vehicle routing problem with pickups and deliveries (VRPPD). They

dynamically adjust the tabu tenures based on two mechanisms that react with the repetition of

solutions. The first mechanism increases the tabu tenure when solutions are repeated and reduces

the search spaces that don’t need long tabu tenures. The second mechanism diversifies the search

when it is confined to a zone in the solution space. Wassan’s approach performed better when

32 Algorithms

compared to previous literature’s algorithms applied to benchmark problems, finding new best

solutions for some of the problem instances.

3.3.3.2 Diversification / Intensification

Tabu search is often implemented with additional strategies to improve the basic algorithm. Glover

et al. [20], in his guide to tabu search, describes intensification and diversification as "additional

ingredients in order to behave as an intelligent search technique."

Intensification is a strategy based on the assumption that after visiting few "good" solutions, it

is possible to relate them and find common properties. These properties can then be used during

the algorithm execution to change the neighbourhood generation, favouring solutions that verify

them. This strategy creates a bias and indirectly controls the solution structure according to such

properties and discourages them from being violated. This strategy can use new memory struc-

tures, such as frequency-based memory that stores the frequency of specific solution attributes

or moves performed during the search. Elite solutions or parts of them can also be stored and

compared to the new solutions.

A basic implementation of the tabu search can get stuck in certain areas of the search place

if the solutions are very similar. The diversification strategy tries to conduct the search to other

unexplored areas by modifying the objective function while the algorithm is running. The utility

function is adapted to favour solutions that contain less frequent attributes and penalise solutions

with elements that appeared in other solutions visited. Another possible approach for diversifica-

tion is the use of random restarts, where the algorithm is restarted using different solutions.

3.3.3.3 Aspiration Criterion

Since it is impossible to store all the solutions explored by the search, the moves that originated

such solution become tabu and cant be used for a defined number of iterations. A tabu criterion

is never exact, which means that some unexplored solutions might be considered tabu. Therefore,

the algorithm might consider a solution that would improve the best solution as tabu, skipping it.

An aspiration criterion is a rule that allows the algorithm to perform a tabu move if this move

is guaranteed to generate a solution that was never visited during the search. The most straight-

forward aspiration criterion is to check if a new solution is the new best solution. In this case, this

solution was never explored. If all moves are considered tabu, an aspiration criterion can choose

the one with the highest utility value, even being a tabu move. More complex aspiration criteria

involve the solution’s utility. When the tabu-list is updated with a new tabu move, the solution’s

utility generated by that move could also be stored in the tabu-list. Therefore, when a new solution

is rejected for being tabu, the algorithm can check if its utility is similar to the one stored in the

tabu-list. If these two utilities don’t match, the new solution was never visited and should then be

accepted, even though it is considered tabu by the tabu criterion.

3.3 Algorithms 33

3.3.4 Large Neighborhood Search

Large Neighborhood Search (LNS) is a metaheuristic proposed by Shaw [48] in 1998 that grad-

ually improves an initial solution by segmenting and later repairing it. The LNS is typically

scheduled to stop after a defined number of iterations have passed [46]. This particular heuristic

belongs to the heuristic class named Very Large Scale Neighborhood search (VLSN) algorithms

[39]. VLSN are algorithms that search large neighbourhoods, and it usually results in finding

better local optima. Although this approach is expected to return better solutions, searching an

extensive neighbourhood is often too expensive as both the time and computational power needed

can be prohibitive.

A good approach, and the one used by LNS, is to restrict the search space to a size that can be

efficiently searched. The LNS narrows the neighbourhood by a destroy and repair method. The

destroy method destroys a portion of the solution in a stochastic way so that different elements

composing the solution are destroyed in each method invocation, originating different solutions.

The repair method is used to rebuild the solution. The neighbourhood of a solution is defined as

the set of new solutions that can be reached after consecutively applying the destroy and repair

method [39]. An example of a destroy method applied to a solution in a TSP instance can be

randomly removing N customers from the solution and reconnect all the routes with the remaining

ones. The repair method could use a greedy approach to re-insert these customers, starting with

those whose insertion costs are lower. In a problem with 100 cities, there are C(100,15) ways of

selecting the customers to remove and many ways to repair the solution for each of them. Different

combinations of removed customers can result in the same solution after repairing.

The destroy and repair method can be interpreted as fixing and optimising operations [46]. The

fixing part consists of sticking part of the solution, meaning it won’t be changed or optimised, leav-

ing a smaller portion of the solution. This smaller portion will be optimised by a defined method

that will improve its utility without changing the components from the fixed part. Hopefully, the

new solution generated after repairing will have a better utility compared to the initial solution.

This search method uses three distinct variables: one storing the best solution found during the

search process, another to represent the current solution and the last one stores a temporary solu-

tion that can be rejected or assigned as the current solution. The LNS is used with other heuristics

that will do a local search in the new neighbourhood, allowing the heuristic to navigate quickly

and easily throughout the solution space. After the heuristic returns the best solution found, the

repairing method is called, generating a new solution. The new solution’s utility is evaluated and

accepted according to an acceptance function for the next LNS iteration.

3.3.4.1 Acceptance function

The literature described several acceptance functions, and the simplest one only accepts a solution

if it has a higher utility than the current solution’s utility. Always accepting the best solution can

34 Algorithms

cause the algorithm to get trapped in a local minimum [46]. Ropke et al. [46] proposes an accep-

tance function inspired by the SA where a worse solution can be accepted with a certain prob-

ability. The algorithm starts with an initial temperature, Tstart , and the temperature is decreased

linearly along with the iteration counter. Since the initial temperature is problem-dependent, their

approach calculates it by analysing the initial solution and picking the value, leading to 50% of

the worse solutions being accepted.

3.3.4.2 Destroy method

According to Ropke et al. [39], the destroy method is an important part of the LNS heuristic, being

the degree of destruction the choice with more importance. If the degree of destruction is lower (a

small portion of the solution is destroyed), the algorithm might have trouble when exploring the

search space because a large section of the neighbourhood was lost. Antagonistically, when a large

part of the neighbourhood is removed, the algorithm will behave similarly to a search in a large

neighbourhood having the same computational time problems or give rise to poor quality solutions.

To overcome these problems, the authors refer to two methodologies proposed in the literature:

progressively increase the degree of destruction during the algorithm execution or choosing it

randomly, in each iteration, from a range of defined values. The importance of selecting a suitable

destruction method relies on the fact that all the search space should be reachable or, in the limit,

the search space where the best solution is expected to be located. Hence, the selected method has

to be capable of destroying different parts of the solution every time it’s called.

3.3.4.3 Repair method

There is much freedom when it comes to select the repair method, and the first dilemma is choosing

between an optimal that grants the best solution constructed from the partial solution or a heuristic

method that tried to construct a good solution from the partial one [39]. While the optimal repair

methods might be computationally slower than the heuristic ones, they usually provide better

solutions in few iterations. Ropke et al. [39] also refers that optimal repair methods are less

attractive from the diversification point of view as they will provide solutions with identical values

for the cost function; the algorithm may get stuck in some valleys of the search space.

3.3.4.4 Adaptive large neighborhood search

The Adaptive large neighbourhood search (ALNS) was proposed by Ropke et al. [46] as a heuristic

that extends the LNS for solving a VRPTW. This approach differs from the basic LNS, allowing

different destroy and repair methods during the same search, called sub-heuristics [39] [46]. The

sub-heuristics are selected with a frequency according to their past performance [46]. Using differ-

ent sub-heuristics indicates that distinct neighbourhoods are being generated and chosen based on

their past performance to find a better solution. After they finish execution and return a solution, a

score value (weight-θ) is assigned for both destroy and repair methods. This score θ is computed

using a formula with four distinct values determined by the utility of the solution returned by the

3.4 Summary 35

two methods: V1 if the solution is a new global best, V2 if the solution is better than the current

one, V3 if the solution was accepted and V4 if the solution was rejected. The values are defined

taking into account the inequality 3.8, and a higher value of θ corresponds to a more successful

sub-heuristic. The distinct sub-heuristics are selected using the roulette wheel principle, and the

weights associated with each sub-heuristics will define the probability of the respective heuristics

to be picked. This approach will reward sub-heuristics that will progress in the search (find bet-

ter solutions) and discourage heuristics that tend to generate rejected solutions and consume an

iteration for no value add up.

V1 ≥V2 ≥V3 ≥V3 ≥ 0 (3.8)

3.4 Summary

The optimisation problem analysed by this dissertation is an instance of the DVRP and its of

NP-Hard complexity, meaning it can’t be solved exactly in polynomial time. For this reason,

exact methods should be discarded, especially for more significant problem instances with many

customers to visit or many vehicle routes. Exact methods cannot be used to solve the ASAE’s

routing problem, especially its dynamic version, as the inspection routes need to be updated in

close to real-life. Instead, approaches based on meta-heuristics can be used since they allow a

solution to be progressively improved over time. The algorithms keep a valid solution during the

search that can either be further optimised or sent to the brigades operating in the field.

The Hill-climbing method is the most straightforward to implement and the fastest one of the

four to converge to a solution. However, this method is the one more suitable to get stuck in the

local maximum. The other methods accept lower utility solutions during the search and can escape

the local maximum when correctly implemented.

36 Algorithms

Chapter 4

The ASAE Case-study

This chapter studies how economic and food safety is managed both in Portugal and on interna-

tional context. The chapter also explains how artificial intelligence and state-of-the-art data mining

techniques can optimise current processes in these two domains. In Portugal, ASAE is the govern-

ment institution responsible for these two domains. Their system is currently becoming outdated

and thus can be greatly improved on the context of Incode2030.1 Further optimisation can be

achieved by allying real-time information captured by nowadays devices with machine learning in

data and text mining and artificial intelligence approaches.

This chapter will also review the system implemented in the purpose of Project IA.SAE, focus-

ing on the route optimisation module. The proposed problem formulation and the utility function

used to calculate each economic operator’s utility will be reviewed. It will then provide an overall

look at the system architecture and the algorithms used to solve the VRP. Finally, a brief descrip-

tion of the previous work’s conclusions is provided.

4.1 Introduction

Economic and food security are two factors with significant importance in any developed country.

The actual pandemic context of COVID-19 emphasised their importance [14].

Regarding food security, the European Commission implemented an integrated Food Safety

policy in the European Unit (EU) to regulate the alimentary products "from farm to fork". These

policies aim to protect consumers while guaranteeing the smooth operation of a single market.2

Food safety describes operation from handling and preparation to storage of alimentary products,

preventing contamination by agents that cause illnesses. These three domains must be present in

1Project Incode2030 - Metas, available at https://www.incode2030.gov.pt/metas, accessed on 2021-01-02
2Food safety - Europe, available at https://eur-lex.europa.eu/summary/chapter/food_safety.html?root_default=SUM

_1_CODED%3D30&locale=en, accessed on 2021-01-02

37

38 The ASAE Case-study

all the processes since the product or its raw materials are cultivated until the final consumer con-

sumes it.3 Both national and international organisations have published norms and regulations to

prevent behaviours and attitudes than risk public health. Several organisations, including ASAE

in Portugal’s territory, are responsible for inspecting the economic agents operating in Portuguese

territory for non-compliance with the law. These organisations will benefit from the enormous

amount of data collected nowadays that can be processed with machine learning techniques re-

trieving useful knowledge. The knowledge will be used by artificial intelligence approaches to

generate systems capable of optimising the already implemented inspection processes.

Economic monitoring is the set of processes that monitors the economic agents’ financial

activities. This brings fairness among different economic agents operating in the same economic

environment. Regulated business practices will also benefit the final consumer.

4.2 Food and Economic Security Authority (ASAE)

Autoridade de Segurança Alimentar e Económica (ASAE) is the Portuguese entity responsible

for inspecting economic operators in Portuguese territory for non-compliance with the law. This

institution was created in 2005 and resulted from the fusion of several departments previously

operating separately. It is currently responsible for the areas of food safety and financial audit-

ing. ASAE is part of the criminal police and remits to the Ministry of economics, assessing and

communicating risk in the food chain and economic practices. It contemplates four areas of inter-

vention: food safety, tourism and commercial practices, products and facilities safety, intellectual

and industrial property.4 On their plan of activities for 2021 [14], ASAE analyses the current pan-

demic situation as something with no parallel precedents. This situation arrives new challenges as

the public health risk massively increases.

ASAE’s organisation is composed of five nuclear and centralised units and three decentralised

units (Diagram 4.1). The three last units have their operation encapsulated in regional areas and

are subdivided in twelve regional Operation Units (4.2) [14].

4.2.1 Economic Agent Inspection

In the scope of this dissertation, closer attention will be given to ASAE inspection methods. ASAE

currently has no intelligent system that can define priorities on which economic agents to inspect.

Inspections are currently performed following an inspection plan calculated at the beginning of

defined periods (three times a year). The national operations planning unit’s precalculated plan and

uses a series of macro-factors to assign priority to specific groups of economic agents. Specialists

define sectors and activities of higher priority to inspect at the beginning of the year coordinated

with the available logistic and human resources. As the priorities are only defined for sectors or

activities, it becomes hard to plan which individual economic agents will prioritise inspections.

3Food Safety - European Commission, available at https://ec.europa.eu/food/overview_en, accessed on 2021-01-26
4Autoridade de Segurança Alimentar e Económica., available at https://www.asae.gov.pt, accessed on 2021-01-31

4.2 Food and Economic Security Authority (ASAE) 39

Figure 4.1: ASAE’s organization chart

4.2.2 Optimising Inspections

Further optimisations to ASAE’s inspections can be done in two different areas of action. First,

by improving the utility of the economic agents to visit in a particular day and then by choosing

the set of routes, vehicles and crew that are most optimised for a particular inspection day. Routes,

vehicles and crew must be flexible and dynamically adapt to disruptions, characteristics of the

dynamic environment operated by ASAE.

ASAE has databases that are continuously collecting data about their operations. This data is

originated from their inspection reports and complaints written by consumers. Project IA.SAE,

resulting from a cooperation between LIACC and ASAE, implemented means to process this data

and extract valuable knowledge from it. State-of-the-art machine learning approaches, both in data

and text mining domains, were used to process the data, finding patterns and extracting knowledge.

The valuable knowledge was used to assign a utility value to economic agents, reflecting how

promising they are to have non-compliances with the law. The utility function used to calculate

the utilities was based on factors such as past complaints.

Project IA.SAE made substantial signs of progress on optimising the inspection routes. Routes

are calculated maximising the total utility of the economic agents to visit while minimising the

allocated resources for those operations. Total travel time, vehicle wear and human resources are

examples of resources to be minimised when calculating inspection routes.

40 The ASAE Case-study

Figure 4.2: ASAE’s Regional units

4.3 Big Data in food safety

“The massive rise of Big Data generated from smartphones, social media, Internet of

Things (IoT), and multimedia, has produced an overwhelming flow of data in either

structured or unstructured format. Big Data technologies are being developed and im-

plemented in the food supply chain that gather and analyse these data. Such technolo-

gies demand new approaches in data collection, storage, processing and knowledge

extraction. [26]

In a world where collecting data becomes more accessible and at fewer costs, the opportunity

to use this data to acquire useful knowledge is encouraging and promising. Big data is a field

of studies that aims to analyse and extract valuable information from vast and complex data-sets

which would be impossible for traditional data-processing software.

Although in an embryonic state, the application of big data and artificial intelligence ap-

proaches to Food safety domains is very promising and has gathered considerable attention in

the past years. A review of Big data in food security by Jin, reviewed and categorised 113 relevant

papers in this topic. "Data sources and collection", "big data infrastructure" and "data analysis"

are three essential steps in the big data framework [26].

4.3 Big Data in food safety 41

4.3.1 Data sources and data collection

Numerous and different types of data that can generate useful knowledge on the food safety do-

main are obtained from several sources such as online databases, Internet, mobile phones and so-

cial media [32]. There are some challenges associated with collecting and processing this data, for

instance, with non-traditional data sources like social media. Social media data is not structured,

and is mostly composed of free text, difficulting the knowledge extraction process [32]. There are

also data in a highly structured format that can be easily extracted and stored in a database [26].

Platforms like Twitter, Facebook or Youtube are gathering the attention of the domain of big

data. Questionnaires, public discussions, trends or opinions published on these social media can

be seen as a valuable source of data for food safety [26]. A work by Chung [12], was one of the

pioneers to empirically investigate the influence of a company’s apologies during a crisis and its

influences in online sentiments. This work analysed the evolution of online sentiments towards

a company in a food crisis. A large data set of tweets was used (over 2.6 million) concerning a

food poison case in 2015/16. Using a supervised machine learning approach learning from the

Tweets dataset, they concluded that the company’s apologies did not remove the public concerns

about food safety caused by the crisis. Similarly, Internet webpages can provide essential data

related to food safety, mainly using web crawling techniques [32], where a program can navigate

the Internet autonomously and find relevant information about a subject.

Online databases are public databases that can be considered relevant data sources as they

contain pieces of information related to food safety. Example of relevant information are threat

alerts given by monitoring programmes and chemical analysis, exposure data gathered from con-

sumer databases and reports on animal and pants diseases [32]. Smartphone sensors can also be

a useful data source for several purposes like quality control, food inspection, behaviour manage-

ment and communication of food safety-relevant information [32]. Satellite imagery can also be

a fundamental data tool for assessing and improving products’ quality, mainly on the cultivation

phase [26].

4.3.2 Big data infrastructure

Supercomputing is necessary to process Big data and its respective challenges derived from its

dimensionality and complexity [26]. European Union, United States of America and China have

deployed several cloud computing and high computing infrastructures to process Big data, and

they are also being used on the food safety area, supporting decisions that improve public health.5

4.3.3 Data analysis

Data analysis is the step where valuable knowledge is extracted from the data and is the core step

in data processing [26]. Marvin [32] refers to two methods for Data analysis regarding big data

on food safety: recommendation systems and machine learning.

5SAIC High Performance Computing Contributes to Healthy Lives, available at https://www.saic.com/features/high-
performance-computing-at-FDA-keeps-foods-safe, accessed on 2021-01-05

42 The ASAE Case-study

Recommendation systems are a subclass of information filtering systems to predict the rating

or preferences of a group or target user to a specific item. Organisations use these systems to

advise their customers based on information such as best seller products, customers’ location, and

products bought by the customer [32]. However, not a very common approach in the food safety

area, these systems were proposed by Singh [49]. A recommendation system based on Twitter

data for issue detection in the supply chain management of food industries was proposed. This

system allowed for decision making supported by customer feedback and reported issues in food

products’ quality [49].

Machine learning encompasses algorithms that learn knowledge from data. These algorithms

can be used to build models that can predict or make decisions in the food safety area [49]. As the

models are learned from vast amounts of data, specific patterns are captured, that would otherwise

be invisible for the human interpretation. Several Machine learning algorithms are standard in the

food safety context, such as Bayesian networks, Neural Networks Random Forests and Decision-

Trees [49]. Machine learning algorithms are used in the food safety context to tackle problems

in 3 different domains: food quality assessment and management, using computer vision and

deep learning methods; identify, monitor and forecast risks in food safety; extract food safety

information from digital text data [49]. An alarm system was proposed by Chang [10], using

machine learning to extract valuable knowledge from nearly 100 million labelled invoices. The

system could prevent a food crisis in oil manufacturing. Both Random forest and decision tree

methods were used in this approach.

4.4 Previous Work (IA.SAE)

This dissertation will use the real-world example of ASAE operation scenario to implement, test

and compare the proposed methods to modify the vehicles’ routes in real time. ASAE inspections

can be formulated as a DVRP, as unpredictable disruptive events will influence the routes. There

are several depots from where the vehicles are dispatched, and these vehicles are assigned routes

to visit multiple economic operators during the workday. Work previously made by Telmo Barros

in the context of IA.SAE will be used as a starting point for the proposed approach [27] [6] [5].

This dissertation will also include the constraints involved in ASAE operations scenario.

4.4.1 Problem Description

Previous work on the context of IA.SAE Project implemented the route calculation module using

several artificial intelligence algorithms, such as exact methods like Branch and Bound and meta-

heuristics like Genetic algorithms, Hill climbing, and Simulated Annealing [27]. The work formu-

lated the problem as a Multi-depot Vehicle Routing Problem with Time Windows (MDVRPTW).

Several other restrictions were added to the inherent on this type of problem, to respect the con-

straints on ASAE inspections. The calculated routes are not revised in real-time or changed once

a disruptive event occurs; the problem was simplified to a static state. As the ASAE operations

environment has numerous factors that might influence these routes, they need to be recalculated

4.4 Previous Work (IA.SAE) 43

and revised in real-time to achieve further optimality. Not revising the routes in real-time, might

also mean that the solution previously calculated can become unfeasible, as the initial resources

and assumptions might not remain during the plan’s execution.

As previously stated, ASAE comprises three decentralised units subdivided into twelve dis-

tinctive operation units. The sixteen units were manually identified and localised geographically

in the map using geocoding tools. A fundamental constraint on ASAE context is that each oper-

ational unit has a limited territory to conduct the inspections. Different geographical areas were

created for each operational unit, thus assigning each economic operator the respective operation

unit responsible for the inspection.

4.4.2 System architecture

The system’s architecture comprises a MySql database, a web application, and a Rest API for

route generation. The developed Rest API performs requests to the Open Source Routing Ma-

chine (OSRM) to calculate the routes. OSRM is an open-source routing app developed in C++

and designed to use the OpenStreetMap’s data. To calculate the shortest paths and distances,

OSRM uses an implementation based on contraction hierarchies and multilevel Djirksa, reducing

the computational times compared to other approaches using A* algorithm.6 The routing app is

used to calculate the shortest path between several points in the map, in terms of distance or du-

ration. As a free, open-source platform, OSRM has a limit in the number of requests that can be

made to this API. This application can be installed locally, thus removing the request limit.

Each inspection must be done during the working period of the economic operators. Never-

theless, this information is not available in ASAE’s system and is described by collaborators as

volatile and hard to obtain. For the purpose of the work developed by T. Barros, the schedules

were randomly generated using a set of predefined possible ones. Telmo proposed a future imple-

mentation to automatically gather each economic operator’s schedule using Google Place Details

API to tackle this issue. The same inspection can start and end in different days, demanding a

two-day representation of the schedule.

4.4.3 Utility Function

The utility of each economic agent is of significant importance in the calculation of the overall

inspection route. ASAE was defined as a maximisation problem, aiming to maximise the overall

utility of the inspection routes. Each economic operator’s utility is calculated based on the past

denouncements (complaints) and using a complex function. The function 4.1 approximates a

logarithmic function and returns values between 0 and 1. Every economic operator has a minimum

utility of 0.05, even in the abscence of complaints, as it might not be compliant with the law. The

maximum utility of 1 is given when an economic operator has more than 20 complaints. The

6Project Open Source Routing Machine (OSRM), available at http://project-osrm.org/, accessed on 2021-01-31

44 The ASAE Case-study

utility function implementation allows additional parameters that might also influence economic

operators’ utility. 

0.05 Complaints = 0
Complaints

10 0 <Complaints < 10
Complaints−10

100 +0.9 10≤Complaints < 20

20 Complaints≥ 20

(4.1)

4.4.4 Algorithms

The storage and representation of the calculated routes are identical between all algorithms. As

each algorithm iterates and further optimises, the current calculated routes and economic operators

to inspect are saved in memory. Finally, the set of routes outputted by the algorithms in the last

iteration needs to be manually accepted, being saved on a database. To calculate the optimised

set of routes, the user must select the algorithm to be used. For comparison purposes, the set of

algorithms used in this work have the same input parameters. The parameters used were: unidade,

to specify the corresponding operational unit; entidades, a list representing each economic opera-

tor (ID, name, schedule, location, utility, etc.); durations, a matrix with all the distances from the

operational unit and each of the economic operators, n_fleet, the number of brigades to be taken

into account in the solution, max_durations, the maximum work time of each brigade, in seconds;

start_secs, the time each brigade will start working; objective_f, either 0 or 1 to maximise the total

sum of utilities of the selected economic operators or maximise the number of economic operators

to visit respectively. Several other parameters have been specified, but those are of less importance

as they refer to parameters used to tune the algorithms.

The use of Branch and Bound’s exact method was discarded and concluded to be of high time

complexity when used in VRPs. Factors like the number of brigades, number of vehicles, and

economic operators influence this algorithm’s computational time, making it unfeasible to use in

a reasonable time. Hill Climbing was the most promising method regarding the meta-heuristics,

delivering the best utility solution with less computation time than the others.

4.5 Summary

The ASAE case study will be important to this work’s development as it will serve as an example

of a use case for the proposed approach, allowing it to be field-tested. Using real data from the

ASAE’s operation environment, the approach will be tested in fundamental factors, like solution

optimality and the time taken to obtain a solution. This case study will also allow to empirically

verify the benefits of using algorithms capable of revising and modifying vehicle routes in real-

time.

Previous work on project IA.SAE statically tackled the problem, calculating the routes before

their execution, using a set of optimization algorithms. Their conclusions and approach can be

4.5 Summary 45

used to calculate a set of optimized routes previously to an inspection day. The vehicle fleet then

executes this provisory plan, and the system revises and modifies it in real-time once disruptions

occur.

46 The ASAE Case-study

Chapter 5

Problem and Proposed Solution

This chapter provides an overall view of the problem, taking into account the concepts gathered

from studying state of the art. A general formulation to the problem is proposed, as well as specific

constraints specific to ASAE context. A solution methodology is also proposed, suggesting both

constraints that need to be taken into account upon the route calculating and algorithms that can

be used to obtain a solution.

5.1 Problem Description

Although this dissertation is involved with CIGESCOP project and will have the ASAE scenario

as a case study, the work will go beyond that. The proposed methodology is expected to be of

possible use in other similar scenarios. Essentially, the problem consists of calculating routes for a

vehicle fleet that take into account the existence of dynamic environment factors that will influence

the vehicles’ routes. The operations plan needs to be continuously updated during the planning

horizon and revised in real-time, with the help of systems capable of transmitting data in real-time.

Regarding the current pandemic context, vehicle routing problems gathered special attention in

the last year since they have an essential role in many companies that now work mostly remotely,

delivering their packages to the customers instead of selling them on physical stores. Companies

need to maximise their profits by adopting an optimised set of routes that can serve their customers

at acceptable times. The routes can be calculated and optimised using information available from

sources such as road maps, expected travelling time between two rode nodes, expected service

times, and vehicle capacity. Although this information allows for calculating optimised routes,

it makes the wrong assumption that one route will maintain its optimality along with the plan’s

execution. Dynamic factors will influence the optimality of the routes, but might also make the set

of routes unfeasible; some clients’ demands will be unsatisfied. The extra profit of achieving the

optimality of the routes and avoiding the costs of an unfeasible route plan are two big motivations

to solve the dynamic variant of VRP.

47

48 Problem and Proposed Solution

5.2 Problem Formulation

The problem is formulated as a Multi-depot Dynamic Vehicle Routing Problem with Time Win-

dows (MDDVRPTW). This formulation describes the vast majority of vehicle routing problems

in the real world. From delivery companies to institutions that perform inspections such as PSP,

ASAE and DGAV in Portugal, they usually have several depots from where the vehicles are routed.

Time windows are essential, as clients may have specific times to receive a delivery, or in the case

of inspection, economic operators’ schedules must be respected. The dynamic factors in the real-

world environment that might influence the routes cannot be modulated in a single problem, as

they are almost infinite.

For this work’s purpose, six disruptive elements will be considered: dynamic inspection times,

dynamic travel times between two sites, vehicle breakdowns, inspection breakdowns, utility changes

and emergency inspections. Inspection times pertain to the time taken for a brigade to inspect one

economic operator thoroughly, and this time is continuously variable and cannot be precisely pre-

dicted. The vehicle travel time is the time vehicles take to navigate between two nodes in the road

network. This time might be influenced by factors such as traffic intensity, closed links in the net-

work (closed roads) or other factors that can condition the vehicles speed. Vehicle breakdown will

modify the constraints of the problem as the broken-down vehicle can no longer be used. Inspec-

tion breakdowns are disruptions that can happen during the service time, during the inspection in

ASAE’s context, and will invalidate a particular brigade from continuing its work. Utility changes

are changes in the value of each economic operator in the system, meaning it must re-optimise the

whole schedule to find the new combination of routes with the best utility. Emergency inspections

are unpredicted and known in the runtime and must be performed until the end of the workday.

A solution that doesn’t inspect the economic operators considered an emergency is an unfeasible

solution. All these disruptive events will condition the optimality of the routes and demand them

to be revised and recalculated.

The problem addressed in this dissertation is a maximization problem, aiming to find the best

feasible solution according to the defined utility function (refer to Section 7.7). In the real-life

scenario, there are numerous constraints with higher and lower importance, some that can’t even

be perceived or translated to the system. This dissertation modulated the problem with a finite

number of constraints perceived from the real-life scenario and validated by ASAE collaborators.

The following are the most relevant ones:

• The inspection brigades have a defined time to leave the initial depot (operational unit) and

arrive at the same place when the workday ends and at a specified timestamp.

• One inspection can only occur if the economic operator is opened (its schedule is available)

when the inspection will start.

• The same economic operator can only be inspected a single time during the whole opera-

tional plan (among all the different inspection routes).

5.3 Utility Function 49

• There must be an available path between all the economic operators in one inspection route

when respecting its sequence.

• Each inspection brigade can only inspect one economic operator at a time.

• The next inspection in the route sequence can only start when the brigade gets to its location.

• A vehicle or brigade that has suffered a breakdown is no longer available for inspection

tasks in that workday.

• A brigade must finish an inspection if it starts and no disruption happens.

5.3 Utility Function

The utility function responsible for calculating each customers’ utility must be dynamic and allow

for changes depending on the context or selections made by a business expert. A customer/eco-

nomic operator’s utility is seen as the company’s utility gain when visiting and serving it. This

utility can be monetary profit or anything that maximises and contributes to the company reason

of existence. Customer satisfaction also plays a fundamental role in the utility function of specific

business models, for instance, in newspaper delivery services. When a newspaper is not delivered,

the customer complains to the help call-centres and may cancel the subscription, both incurring

in monetary losses [38]. The function needs to allow a customer utility bias, as some recurrent

customers need to be given higher priority as they bring more value to the company and need to be

kept satisfied. Even if a particular order of those customers is of lower utility (for instance, a small

demand order), the utility function must consider a "premium" customer and increase the utility

of that order accordingly. Contextualising with the ASAE scenario, several macro elements might

influence each economic operators’ utility. These factors can be regional, enclosed in a specific

business area or a combination of both. For instance, one district might have a severe problem in

food safety on the butcheries. All the butcheries in that district need to be given a higher utility re-

gardless of other factors in the utility function. Contributing to ASAE’s primary goal of increasing

food safety in Portugal, economic operators with a more significant number of complaints must

be given a higher utility. By inspecting them, ASAE will tend to find more non-compliances with

the law and take measures to increase food safety.

This dissertation proposes a complex utility function based on three domains that can be

weighted by a business expert, changing the influence of each component in one solution’s final

utility. The complex utility function aims to maximise the total utility gathered by visiting all the

economic operators composing the operational plan, to increase the solution similarity (between

the initial solution and the one obtained after addressing disruptions), and decrease the average

arrival time to the depot at the end of a workday.

50 Problem and Proposed Solution

5.4 Geo-referenced information

All the vehicles on the fleet must have their localisation regularly monitored and communicate

it in real-time to the control centre. Every economic operator considered in the system must

also be geo-referenced in the system’s map. With all the entities geo-referenced, the system can

adequately track each vehicle route and detect disruptions, both on travel times and service times,

but also in case of breakdown. The system will measure the vehicle’s operations’ delays and

compared those to the current execution plan. If the delay is above a defined threshold, the set of

routes needs to be revised and optimised. The geo-reference of the entities will be managed using

an approach similar to the one used by Barros in IA.SAE [27], based on OSRM. This open-source

tool will be responsible for determining the optimal path between two positions on the map.

5.5 Proposed solution

The solution in the context of DVRP must be obtained in a reasonable time, as they are taken in

real-time. The revision of the plan must be performed and communicated to the currently operating

vehicles in close to real-time. Two time windows need to be taken into account for the solution: the

time available for the algorithms to optimise and output a revised solution and the time window

necessary to communicate the solution to the vehicles. This last time window, respecting the

communication methods, is outside the scope of this dissertation and will be considered instant

for simplicity purposes. As the vehicles are in constant operation during the day, the time taken

to calculate the problem’s dynamic solution will reduce the profits or incur extra losses. For this

purpose, exact methods will be discarded as they fail to give an acceptable solution in reasonable

times with an increasing number of nodes and vehicles. The solution will contemplate meta-

heuristic methods that can obtain a reasonably decent solution with shorter computational times.

These methods also benefit from several tunable parameters, such as the number of iterations and

the number of individuals in a population (for Genetic Algorithms), that can be adjusted to regulate

the trade-off between the solutions optimality and the computational time needed to obtain it. For

this dissertation, four optimization algorithms will be implemented and studied: Hill-Climbing,

Simulated Annealing, Tabu-Search and Large Neighborhood search.

The solution will be based on a continuous optimisation methodology, storing the current

solution to the problem in memory and modifying it periodically (Figure 5.1). The initial solution

will be calculated using static VRP methodologies, providing a more accurate base solution with

the information available at that time. The algorithms implemented by T. Barros [27] will serve

this purpose.

The concept of solution during this dissertation will be the same as the operational plan. An

operational plan is a set of inspection routes that are scheduled for execution in a specific workday.

Each brigade in the system will be in charge of one inspection route, and all the economic opera-

tors that compose it will be inspected if no disruption happens. To simulate a system that works

and addresses disruptions in real-time, a disruption Generator module was created. This module

5.6 Performance Evaluation 51

Figure 5.1: Proposed solution scheme

will randomly generate disruptions based on certain parameters and applies them to the inspec-

tion routes, updating the problem restrictions and needed variables. To simulate the real-time, a

timestamp was created that can determine the current simulation time. The current simulation

time indicates which action in the operational plan each of the brigades is. A very simplistic web

application was developed to allow the user to control several input parameters and see helpful

information such as schedules and maps.

5.6 Performance Evaluation

The approach and the proposed algorithms will be tested and compared using several performance

metrics. Several heuristic-based algorithms will be compared using the trade-off between the time

taken to obtain the solution and its optimality. The optimality of a solution is directly propor-

tional to the total amount of utility generated by satisfying the operations plan (accomplish all the

routes, inspecting all the economic operators). Since this problem concerns a DVRP instance, the

similarity between the initial solution and the one obtained after addressing disruptions will be

considered. Inspection routes that keep similarities to the initial solution will generate a solution

of higher utility. The solution optimality is also dependent on the resources used to accomplish

the calculated routes. These costs include the costs of the vehicle fleet operation (fuel and vehicle

wear), costs of each brigade’s crew, distance travelled by the total of vehicles and total inspections

time. For the purpose of this work, these costs will not be taken into account.

52 Problem and Proposed Solution

Chapter 6

Disruption Generator

6.1 Introduction

Disruptions occur in real-time and influence one or more inspection routes, meaning they can

become unfeasible, or there might be room for further improvement of their utility. This work

proposes and implements a system that tackles disruptions in real-time, but for the purpose of this

work, the "real-time" had to be simulated to allow testing the proposed approach. The Disruption

Generator was the solution found to artificially generate disruptions that could be addressed by the

algorithms the same way as they would be in a real-life scenario.

The disruption Generator composes an essential module of this work, responsible for generat-

ing disruptions to inspection routes following several disruptions templates fine-tuned by a set of

parameters. It receives an operational plan corresponding to the set of inspection routes for one

working day and returns a new operational plan with disruptions in the inspection routes.

6.2 Disruption Types

This dissertation used feedback gathered from ASAE’s inspectors, developing a disruption gener-

ator that tries to mimic the conditions and disruptions occurring in a real-life scenario as closely

as possible. Six major disruptions were identified: Disruption of the inspection times, disrup-

tion of travel times, vehicle breakdowns, inspection breakdowns, utility changes and emergency

inspections.

6.2.1 Inspection Time Disruption

Asae inspects economic operators from several business areas that can be classified into ten main

clusters. Although one can reasonably predict the inspection time necessary to inspect an eco-

nomic operator from a specific cluster, many factors can influence these times. The most obvious

one is the presence of non-compliance with the law, which may require the application of fines,

detentions and shut down the operation. This, allied with other factors, can delay the inspection

and therefore threaten the inspection route’s feasibility. The system uses a Gauss distribution to

53

54 Disruption Generator

sample a new inspection time, simulating a disruption of the predicted inspection time. The two

parameters to calculate the gauss curve are the predicted inspection time, assigned to the distri-

bution’s mean, and a deviation factor that the user can customise. The deviation factor adjusts

the severity of the disruption, where higher deviation values lead to higher differences between

the original and the new inspection times. The disruption severity increases proportionally with

the inspection time, meaning that longer inspections will tend to generate a more significant time

difference. The code used to generate the new inspection times can be found in listing 6.1.

6.2.2 Travel Time Disruption

Travel time disruptions regard the disruptions caused by varying travel times between economic

operators and between them and the depot. These variations can be caused by a panoply of exter-

nal elements, such as road conditions, traffic conditions or simple changes in the vehicle’s velocity,

always impacting the estimated travel times. Travel time disruptions are usually associated with

delays, where a certain brigade took more time than expected to reach its next destination, an eco-

nomic operator or the final depot. Similarly to the inspection time disruptions, these are calculated

using a Gauss distribution where the mean is the travel time returned by the OSRM server, and

the deviation is a parameter specified by the user. The disruption severity increases proportionally

with the travel time, meaning that longer travel times will tend to generate a more significant time

difference. The code used to generate the new travel times can be found in listing 6.1.

1 first_travel = True

2 for i, step in enumerate (route_solution):

3 if step[0] == ’Travel’:

4 if travel_time_bol and random.randint(1, 100) <= travel_time_prob: #

Modifies the travel time

5 travel_time = step[1][1]-step[1][0]

6 new_travel_time = float(getGaussNumber(travel_time, travel_time/

travel_time_gauss))

7 if not first_travel:

8 step[1] = [route_solution[i-1][1][1], route_solution[i-1][1][1]

+ new_travel_time]

9 else:

10 step[1] = [step[1][0], step[1][0] + new_travel_time]

11 first_travel = False

12 elif i != 1:

13 travel_duration = step[1][1] - step[1][0]

14 step[1] = [route_solution[i-1][1][1], route_solution[i-1][1][1] +

travel_duration]

15 elif step[0] == ’Inspection’:

16 if inspection_time_bol and random.randint(1, 100) <=

inspection_time_prob: #Modifies the inspection time

17 inspection_time = step[1][1]-step[1][0]

18 new_inspection_time = float(getGaussNumber(inspection_time,

inspection_time/inspection_time_gauss))

6.2 Disruption Types 55

19 step[1] = [route_solution[i-1][1][1], route_solution[i-1][1][1] +

new_inspection_time]

20 else:

21 inspection_duration = step[1][1] - step[1][0]

22 step[1] = [route_solution[i-1][1][1], route_solution[i-1][1][1] +

inspection_duration]

23 elif step[0] == ’Wait’:

24 final_wait_time = step[1][1] #wait time

25 if route_solution[i-1][1][1] >= final_wait_time:

26 del(step) #doesnt need to further wait

27 else:

28 step[1] = [route_solution[i-1][1][1], final_wait_time]

29 elif step[0] == ’Depot’ and i == len(route_solution) - 1:

30 step[1] = [route_solution[i-1][1][1]]

Listing 6.1: Method used to generate stochastic inspection and travel times.

6.2.3 Vehicle Breakdown

This disruption type is common in most VRPs and concerns the fleet vehicles in operation. Any

vehicle in operation can suffer a breakdown, caused by various reasons and prevents that vehi-

cle’s brigade from proceeding the corresponding inspection route, meaning that that same brigade

won’t visit the economic operators that were not inspected. In some problems that involve cus-

tomers, upon a vehicle breakdown, the remaining customers still need to be served, so they are

usually distributed by the other operating vehicles in the most optimised way possible. As ASAE

doesn’t have customers of this type, meaning they don’t prepare their inspections (any brigade can

inspect any economic operator), the system can simply re-optimise the whole operation schedule

searching for the best solution. Since there is one less vehicle available, the system must update

its restrictions and delete, from the solution, the route corresponding to that vehicle. The operators

in the broken-down vehicle’s inspection route might be inspected by other brigades or forgotten if

the system doesn’t include them in the best solution found. Vehicle breakdowns can only happen

when the vehicle is in circulation (from destination to destination), and all the inspections com-

pleted by that vehicle’s brigade are not influenced. The code used to generate a vehicle breakdown

disruption can be found in listing 6.2.

1 vehicle_breakdown = random.randint(1, len(solution[1:-1])) #selects a random

travel action

2 vbreakdown = False

3 last_operator_visited = -1

4 if vehicle_breakdown_bol and random.randint(1, 100) <= vehicle_breakdown_prob:

5 disruptions_generated.append(’Vehicle Breakdown’)

6 i = 0

7 for j, step in enumerate(route_solution):

8 if step[0] == ’Inspection’:

56 Disruption Generator

9 if vbreakdown:

10 route_solution[j] = [’Fail_Inspection’, ’Cant visit’, step[2],

step[3]]

11 else:

12 last_operator_visited = step[3][’id’]

13 if step[0] == ’Wait’:

14 if vbreakdown:

15 route_solution[j] = [’Wait’, [’-’,’-’]]

16 if step[0] == ’Depot’:

17 if vbreakdown:

18 route_solution[j] = [’Depot’, [’-’,’-’]]

19 if step[0] == ’Travel’:

20 i += 1

21 if vbreakdown:

22 route_solution[j] = [’Travel’, [’-’,’-’]]

23 elif i == vehicle_breakdown:

24 vbreakdown = True

25 breakdown_time = random.randint(int(step[1][0]), int(step

[1][1]))

26 step[1] = [step[1][0], breakdown_time]

27 log = {’type’: ’Vehicle Breakdown’, ’operator’: last_operator_visited}

Listing 6.2: Method used to generate the vehicle breakdown.

6.2.4 Inspection Breakdown

This disruption is very particular to ASAE’s operations scenario and regards problems and un-

foreseen events during inspections. Contrarily to the vehicle breakdown, inspection breakdowns

can only happen while a particular brigade is inspecting an economic operator. Inspection break-

downs happen when one brigade is forced to stop inspecting an economic operator for some reason

or catastrophic failure and cannot proceed with its inspection route. Similarly to Vehicle Break-

downs, the unvisited economic operators don’t necessarily need to be inspected and may or may

not be distributed by the other operating brigades in the system, searching for the most optimised

solution.The code used to generate an inspection breakdown disruption can be found in listing 6.3.

1 if inspection_breakdown and random.randint(1, 100) <= inspection_breakdown_prob

:

2 disruptions_generated.append(’Inspection Breakdown’)

3 i = 0

4 for j, step in enumerate(route_solution):

5 if step[0] == ’Depot’:

6 if ibreakdown:

7 route_solution[j] = [’Depot’, [’-’,’-’]]

8 if step[0] == ’Travel’:

9 if ibreakdown:

10 route_solution[j] = [’Travel’, [’-’,’-’]]

6.2 Disruption Types 57

11 if step[0] == ’Wait’:

12 if ibreakdown:

13 route_solution[j] = [’Wait’, [’-’,’-’]]

14 if step[0] == ’Inspection’:

15 i += 1

16 if ibreakdown:

17 route_solution[j] = [’Fail_Inspection’, ’Cant visit’, step[2],

step[3]]

18 elif i == breakdown_inspection:

19 ibreakdown = True

20 breakdown_time = random.randint(int(step[1][0]), int(step

[1][1]))

21 step[1] = [step[1][0], breakdown_time]

22 else:

23 last_operator_inspected = step[3][’id’]

24 log = {’type’: ’Inspection Breakdown’, ’operator’: last_operator_inspected}

Listing 6.3: Method used to generate an inspection breakdown.

6.2.5 Utility Changes

Each economic operator has an associated fixed utility that is retrieved from the database and used

in the utility function to calculate the most optimal set of routes. In the real-world scenario, the

utility values of the economic operators can change due to micro and macro factors. For instance,

discovering several butcheries that sell meat that does not follow the required safety parameters

might indicate a localised problem. Therefore, the butcheries’ utility in that area needs to be

updated because they seem to be a greater chance to be non-compliant with the law. This work

uses ASAE’s ten cluster divisions of several economic activities to simulate such behaviour: the

user inputs an activity code, and all the economic operators belonging to that code get their utility

increases by a certain value. The code used to generate new utility values can be found in listing

6.4.

1 if utility_changes_bol and random.randint(1, 100) <= utility_changes_prob:

2 random_activity = random.choice([’I’, ’II’, ’III’, ’IV’, ’V’, ’VI’, ’VII’,

’VIII’, ’IX’, ’X’])

3 schedule = []

4 for operator in operators:

5 if operator[’CODIGOS_ACTIVIDADE’] != None:

6 code_array = operator[’CODIGOS_ACTIVIDADE’].split(’,’)

7 codes = []

8 for code in code_array:

9 codes.append(code.split(’.’)[0])

10 if random_activity in code_array:

11 operator[’utility’] += random.random(1,2) #adds a random

utility value

58 Disruption Generator

Listing 6.4: Method used to generate utility changes in specific classes of economic operators.

6.2.6 Emergency Inspection

An emergency inspection is one inspection that is of top priority and must be performed, or the so-

lution will be unfeasible. These types of inspections appear when the operations plan is already in

execution and are assigned with a very high utility compared to the maximum of 1 unity for all the

other economic operators. The problem restrictions are also updated, and it becomes mandatory

to perform all the emergency inspections. To simulate an emergency inspection, the disruption

generator selects randomly one economic operator from all the existent ones not present in the

initial operational plan. The chosen economic operator is labelled as emergency inspection and

appended in a random place in an inspection route. However, emergency inspections can be per-

formed by any brigade, and any brigade is able to perform multiple emergency inspections; what

matters is that the whole operational plan performs all of them. The new economic operator is

selected from the same operational unit as the inspection route. Therefore, it is usually close to the

brigade’s area, making it easier to schedule its inspection. This disruption is the one with the most

complex implementation among the several disruption types. Adding a new economic operator to

an existing inspection route involves recalculating all the timestamps from every route action and

calculating the new paths between the new operator and the one before and after.The code used to

generate an emergency inspection can be found in listing 6.5.

1 operator_to_add = []

2 operator_to_add_index = 0

3 if emergency_inspection_bol and random.randint(1, 100) <=

emergency_inspection_prob:

4 disruptions_generated.append(’Emergency Inspection’)

5 economic_operators = getEconomicOperators(’UO3’) #MUDAR ESTA HARDCODED

6 random_operator = solution[0][’id’]

7 while random_operator in visited_operators:

8 random_operator = random.choice(economic_operators)

9 random_operator[’utility’] = EMERGENCY_INSPECTION_VALUE

10 operator_to_add = random_operator

11 log = {’type’: ’Emergency Inspection’, ’operator’: random_operator[’id’]}

12 #coordinates = getGeoCordinates(random_operator)

13 emergency_inpection_index = random.randint(1, len(solution[1:-1]) + 1)

14 operator_to_add_index = emergency_inpection_index

15 index = 0

16 for j, step in enumerate(route_solution):

17 if step[0] == ’Travel’:

18 index += 1

19 if index == emergency_inpection_index:

20 operator_before = solution[index-1]

6.3 Summary 59

21 operator_after = solution[index]

22 travel_time_before = getTravelTime({’lat’:operator_before[’lat’

], ’lng’:operator_before[’lng’]}, {’lat’:random_operator[’

lat’], ’lng’:random_operator[’lng’]}) #gets the travel time

23 travel_time_after = getTravelTime({’lat’:random_operator[’lat’

], ’lng’:random_operator[’lng’]}, {’lat’:operator_after[’

lat’], ’lng’:operator_after[’lng’]}) #gets the travel time

24 if route_solution[j-1][0] == ’Depot’:

25 list_before = [’Travel’, [route_solution[j-1][1][0],

route_solution[j-1][1][0] + travel_time_before]]

26 else:

27 list_before = [’Travel’, [route_solution[j-1][1][1],

route_solution[j-1][1][1] + travel_time_before]]

28 current_inspection = [’Inspection’, [list_before[1][1],

list_before[1][1] + INSPECTION_TIME], {’utility’:

random_operator[’utility’]}, {’id’: random_operator[’id’]}]

29 list_after = [’Travel’, [current_inspection[1][1],

current_inspection[1][1]+travel_time_after]]

30 del(route_solution[j])

31 route_solution.insert(j, list_after)

32 route_solution.insert(j, current_inspection)

33 route_solution.insert(j, list_before)

34 break

Listing 6.5: Method used to generate a new emergency inspection

6.3 Summary

The disruption generator module was developed to artificially generate disruptions on inspection

routes, simulating the dynamic behaviour of the real-life scenario. Consulting ASAE’s chief in-

spectors, this dissertation implemented six different disruption types: travel times disruptions, in-

spection time disruptions, vehicle breakdowns, inspection breakdowns, utility changes, and emer-

gency inspections. These disruptions are generated based on specifiable parameters and are ap-

plied to the inspection routes with a defined probability. After the disruption generation, the new

operational plan can become unfeasible, being impossible to execute if no changes are made.

60 Disruption Generator

Chapter 7

Implementation

7.1 Introduction

This dissertation proposes an approach and implements a system to address operational-plan dis-

ruptions, modifying the inspection routes in real-time, maintaining optimality. The solution was

developed mainly in Python, as it is an object-oriented, high-level programming language with a

syntax that prioritizes readability, therefore reducing the maintenance costs. Python also supports

a panoply of modules and packages that can be helpful and used to solve specific tasks in a sys-

tem. Python is also a powerful language to work with optimization algorithms and programs that

involve a large amount of data and in different forms. The approach used in this dissertation is

composed of three main modules: the Disruption Generator responsible for generating artificial

disruptions, the module responsible for solving the optimization problem, and a middle module

responsible for connecting the two previous ones.

7.2 Routing API - Project OSRM

Bearing in mind the conclusions by Barros [27] in the topic of routing and map visualisation, the

the Project OSRM [31] was used as the API to calculate the distances, travel times and optimal

path between two locations in the system. Each economic operator is georeferenced in the system

by its geographic coordinates, latitude and longitude, which are used as an input to the OSRM

API. The system developed in this dissertation uses an OSRM image running in a local docker

container with the Portuguese map provided by the Open Street Map [1]. This dissertation uses

the OSRM "table service" to obtain the travel times between all the available economic operators

in the system. This method receives a polyline and returns a matrix containing the travel times

between the combination of every location, as shown in Image 7.1. The polyline is built with

coordinates pairs of a set of sites. A problem instance with N economic operators will generate

N2 entries in the table; the table’s main diagonal is always 0, as the distance between a place

and itself is 0. The path between two locations is irrelevant; since the algorithms don’t consider

the roads but one single step between two locations, the travel times being the only information

61

62 Implementation

Figure 7.1: Distance matrix resulting from 3 different economic operators A, B, and C

needed to solve the optimisation problem. Later, and for visualisation purposes, more requests are

made to the OSRM API to get the path between every economic operator composing the solution.

This approach saves much computational time, as the path is only calculated for the economic

operators that were used in the solution. Generating the path between two locations can be costly,

with increasing complexity depending on the distance in-between.

7.3 Map Visualisation

This work used the Leaflet [2] library to create a user-friendly map that could display the OSRM

API’s outputs. The leaflet is the leading open-source lightweight JavaScript library for interactive

maps, with a vast amount of mapping features. This library was used in the web application

to display a certain solution, drawing the inspection routes of the whole operational plan. The

Marker plugin and some customisations were used to signalise significant landmarks, such as the

economic operators and the depots. The map provided by this library is interactive, meaning the

user can freely move the camera throughout all the world maps and zoom on interesting areas.

Figure 7.2 is an example of a map displaying an operational plan composed of five brigades.

7.4 Web Application

Within the scope of this dissertation, a web application was developed to both visualise infor-

mation and allow the user to interact with the developed application. The web application was

developed using Python combined with the Flask [45], a python’s library oriented to web de-

velopment. The application contains four separate pages, and its development was focused on

the functionality aspects, allowing the user to view and interact with important information and

metrics from the backend.

The first page is a simple page that lists all the available brigades in the system’s database.

This page allows the user to choose which routes will compose the operational plane that will be

7.4 Web Application 63

Figure 7.2: Map visualisation of a solution with 5 brigades

solved dynamically by the proposed approach. This user selection will dictate how many brigades

will be available in the system and their initial schedule, which can later suffer disruptions.

After selecting the brigades for the operational plan, a page displays a table with the schedule

for each considered brigade. The table shows all the economic operators’ Ids one brigade is

scheduled to inspect, such as the timestamps for the beginning and finish of every operation in

the route: leaving the depot, inspections, waiting for an economic operator to open, travelling

and arriving at the depot. The timestamps are given in milliseconds starting from midnight of the

current day [Figure 7.3]. Likewise, the utility of every economic operator, the total utility of each

route and the utility of the complete operational plan are shown on the page. A widget with a

map displays the locations of every point of interest. The black marker represents the initial depot,

which in this problem is the operational unit. The map also shows the geographic location of each

economic operator with the same colour for each of the available inspection routes. The exact path

covered by the brigades is identified on the map using a line with the same colour as its economic

operators. Lower on the page, the user can specify the parameters of the Disruption generator. It

is possible to select the types of disruptions to be generated and the probabilities associated with

each one [Figure 7.4]; all the disruptions are generated and applied to the current operational plan.

Following the generation of disruptions, the system recalculates the schedule and respective

timestamps for each brigade composing the operational plan. This process is not a re-optimisation,

but a simple recalculation of the timestamps, considering the same inspection schedule will be

maintained after disruptions. Depending on the severity and type of the disruptions, the schedule

can often become unfeasible and therefore not compliant with all the problem constraints. The

disruptive schedule is represented in a table, and the inspection routes are on a map, similar to

the previous page. Lower on the page is it possible to define the parameters of the optimisation

solver. The user needs to select one of the four available optimisation algorithms: Hill-Climbing,

Simulated Annealing, Tabu search, and Large neighbourhood search. The three different weights

in the utility function are specified and used to calculate the solution’s utility during the selected

algorithm. Lastly, the current simulation time needs to be filled in milliseconds, indicating the

timestamp of the day where the simulation should begin.

The last page concerns the dynamic vehicle routing problem solution. The DVRP instance

will be solved by the algorithm and with the settings selected by the user. The system will then

output the best solution found by the algorithm addressing all the disruptions generated previously.

64 Implementation

Figure 7.3: Example schedule for one inspection route

The information is represented similarly to the previous two pages; there is a map containing the

representation of all the inspection routes in the operational plan and a schedule table showing all

the actions and intermediate timestamps of an inspection route

7.5 Data Structures

7.5.1 Solution representation

From all the data structures used, the most important one was the one adopted to store and represent

the solutions for the problem. A solution represents the set of inspection routes to be performed

in one working day, and it has to accumulate enough information for the system to compute each

of the intermediate timestamps for each action (calculate the predicted schedule). The solution is

represented by a list of lists for this work’s purpose, taking advantage of python’s list capacities

and primitives. The outside list represents the operational plan, and the lists inside represent each

inspection route. Each inspection route contains all the steps, both economic operators and depots,

one brigade has to cover to accomplish the work predicted for one day. Each inspection route can

leave the initial depot at a different time interval, starting to work at different times of the day. The

time one brigade starts working is defined in milliseconds and stored in a list. The values of each

list index correspond to the start time of the inspection route with the same index in the solution.

Different economic operators might require distinct times intervals for inspection because of the

type of economic activity they belong to, their geographic location, their operation size, and others.

The required inspection times are stored in a Python dictionary, where the keys are the economic

operator’s identifiers, and the values are the expected time intervals to inspect them.

7.5.2 Economic operator / Depot

The economic operators are the places with the potential for inspection, while depots, or opera-

tional units, concern the location where the brigades depart and arrive at the start and end of the

workday, respectively. Both economic operators and depots are represented using the same data

structure and with minor differences. For the purpose of this section, depots will be treated as

economic operators. The operators are defined as a python’s dictionary, making it easy to access

all their information fields. A name and a unique ID identify each economic operator, but only

the unique ID is considered in this dissertation. Each economic operator also contains a pair of

coordinates (latitude, longitude) with its respective location on the map; these are used to calculate

7.5 Data Structures 65

Figure 7.4: Parameters used to specify the disruptions to be generated

the distances between two economic operators. There is an associated utility with every economic

operator, represented by a decimal number between 0 and 1 and in the case of depots, this value is

0 (there is no utility gain when visiting a depot). Each economic operator is associated with eco-

nomic activity, from the ten activities categorised by ASAE and a CAE (activity code). Finally,

each economic operator has information about their schedule for all the weekdays, indicating what

periods it will be opened and for how long.

7.5.3 Travel Times

Computing the travel times and path between two locations in the system can be time-consuming

and impossible to compute during the execution of one algorithm since the utility function run a

considerably large amount of times in concise periods. The approach used calculates the travel

times previously from the algorithm execution, avoiding awaits during the execution of the utility

function. This is possible because the available places on the map, economic operators and depots,

don’t change in real-time. When the system starts running, it calculates the travel times from every

economic operator or operational unit to all others and stores it in a two-dimensional matrix. The

developed approach uses OSRM’s primitive table service to achieve such a result, as it returns a

table with all the distances from a coordinates string (latitude and longitude) representing places

in the map received as an argument. The indexes of the rows and columns represent the index

in the argument string, and the cells contain the time taken from index x in the row to index

y in the column. An indexing list was created, indexing each economic operator’s ID with its

66 Implementation

corresponding index in the matrix, facilitating its use. Each time the system needs to compute the

travel time between two points in the map, it retrieves it from the matrix in polynomial time.

7.6 Schedules

In a real-life scenario, each economic operator has an operating schedule associated that may be

different for each day of the week and when compared to other economic operators. The working

schedule provides information about what days of the week it will be opened and for what periods

of time. Schedules are very important for the inspections as one inspection can only begin if

the economic operator is open and the brigade can enter. In most VRPs with working schedules

described in the literature, the vehicle has to arrive at a site when it is available and finish its

service before it closes. ASAE, as a government institution, doesn’t need to respect an economic

operator’s schedule fully. After an inspection starts, the economic operator must stay open until the

brigade finishes the inspection and takes necessary measures, even if it goes against their schedule.

The approach implemented allows the user to choose between the two scenarios: a brigade can

inspect an economic operator if it started when the operator is open and if the service time doesn’t

surpass its close time [Listing B.2]; a brigade can inspect an economic operator as long as the

inspection starts when the operator is open [Listing B.1].

Algorithm 1 Function used to check a hard schedule. Returns the start time of an inspection or
False if the economic operator can’t be inspected. Code used available in Listing B.2

for turn in schedule do
temp← current_time+ inspection_time
if (schedule_start ≤ temp)∧ (schedule_end ≥ temp) then

if (current_time≥ schedule_start) then Inspection_start() . Inspection can start now
end if

else if current_time < schedule_start then
temp← schedule_start + inspection_time
if temp≤ schedule_end then Inspection_start() . Inspection can start later
end if

end ifInspectionFailed() . Failed to inspect
end for

Algorithm 2 Function used to check a soft schedule. Returns the start time of an inspection or
False if the economic operator can’t be inspected. Code used available in Listing B.1

for turn in schedule do
if (current_time≤ schedule_start) then WaitToOpen() . Waits for economic operator to

open
else if (schedule_start ≤ current_time) ∧ (schedule_end ≥ current_time) then

Inspection_start() . Inspection can start now
end if

InspectionFailed() . Failed to inspect
end for

7.7 Utility Function 67

Economic operator’s Schedules have paramount importance because they are one of the several

restrictions in this problem. Nevertheless, this information is not available in ASAE’s system

and is described by collaborators as "volatile and hard to obtain". [27] For the purpose of the

work developed by Barros [27], the schedules were randomly generated using a set of pre-defined

possible ones. Barros proposed a future implementation to automatically gather each economic

operator’s schedule using Google Place Details API to tackle this issue. The same inspection can

start and end on different days, demanding a two-day representation of the schedule.

7.6.1 Schedule Representation

In this dissertation, the time unit used was the second, and a schedule is represented by a python

dictionary containing all days of a week. Each day of the week includes a list with pairs (start,

finish) indicating the time in milliseconds when an economic operator will open and close. A

specific place can open and close doors multiple times a day, accounting for the lunch and dinner

pause and other needed pauses. A day starts at millisecond 0 and finishes at 86400. Figure 7.5

shows the example of a weekly schedule for a specific economic operator.

7.6.2 Schedule Generation

This dissertation, and to generate the economic operator’s schedules, implements an approach sim-

ilar to Barros’s but considers the division in ten main areas of activity. Twenty different schedules

corresponding to random economic operators in ASAE’s database were manually extracted using

Google Places. These schedules were then processed and transformed into the implemented sched-

ule data structure; two economic operators were selected from each of the ten types of economic

activities. The approach used to generate a schedule for all the database’s economic operators was

to choose one of the two schedules available for that operator’s corresponding type of economic

activity. Some economic operators belong to more than two types of economic activities, and in

these cases, their schedule is generated randomly from all the template schedules corresponding

to the operator’s economic activities.

Figure 7.5: Representation of an economic operator’s schedule.

7.7 Utility Function

The utility function used in this work contemplates three different domains. The utility of a par-

ticular solution is obtained by weighing the total sum of all economic operators’ utilities, the

similarity between the initial solution and the solution obtained after solving the disruption, and

68 Implementation

the average time each brigade arrives at the depot at the work day’s end. This utility function priv-

ileges the routes that visit the economic operators with the most utility combined and where the

brigades arrive at the depot earlier while keeping the solution close to the original plan, avoiding

massive changes. The proposed utility function is flexible, allowing the user to set each of the

components’ desired weight in the final utility.

7.7.1 Economic Operator’s utility

The approach developed by Barros [27] was used to calculate the utility of each economic agent

in the system. Each economic operator in the database system has an individual utility value asso-

ciated that determines how desirable it is to be inspected, the value it brings to ASAE’s inspection

system. This value ranges from 0 to 1 and is calculated based on each economic operator’s past

complaints registered on ASAE’s system. The attribution of a utility to each economic operator

follows the complex function illustrated in Table 7.1, proposed and implemented in the system

developed by IA.SAE. No economic operator is assigned with a null value of utility as the absence

of past complaints does not guarantee that one establishment is compliant with the law. For this

purpose, a minimum value of 0.05 is assigned to all economic operators. The economic operators

who have a number of past complaints between 1 and 9 are set with a function that has a more sig-

nificant slope than the one used to assign economic operators between 10 and 19 past complaints.

This function targets the majority of the economic agents in the system (economic operators with

less than 20 complaints), accounting for 99.87% of the population of economic operators in the

system. Economic operators with more than 20 complaints in the system are assigned a maximum

utility value of 1.

Table 7.1: Complex utility function used to calculate a singular economic operator’s utility

NPastComplaints Utility

0 0.05

< 10 NPastComplaints
10

< 20 0.9+ NPastComplaints−10
100

≥ 20 1.0

7.7.2 Solution similarity

A key element in a dynamic vehicle routing problem is the magnitude of the changes in the routes

once disruption occurs compared to the routes initially calculated. These changes entail added

costs that may sometimes outcome the savings achieved by re-optimising the routes once disrup-

tions occur; these costs can be hard to quantify. In this problem’s context, few domains were

7.7 Utility Function 69

considered to quantify the changes applied to the initial plan. Each route composing a specific

solution is performed by a singular vehicle, and the measurement of the changes was encapsulated

inside each route, meaning that any similarity between different routes in the same solution is not

captured (ex: exchange of operators between two routes is not considered as a similarity in this

problem). To output the utility of a new solution, the systems stores the problem’s initial solution

and compares it to the new solution, calculating a similarity ratio. The average similarity between

each corresponding routes in two solutions is used to determine the similarity between two dif-

ferent solutions, meaning that the routes are compared respectively between the initial solution

and the solution obtained after addressing the disruption. The similarity between the two routes

increases as they encompass the same number of economic operators, and the economic operators

visited by the corresponding routes in the initial and posterior solution are equal. Each brigade’s

order to inspect the several economic operators composing one route influences their similarity.

Although not as important as the same number of inspections or similar economic operators to

be inspected, each inspection’s order also influences the solution’s added costs, especially to the

human brigades. Brigades might have appointed or scheduled special events, like lunch or other

intermediate stops that can become impossible with the new routes. These "field" restrictions are

not considered when calculating the solutions, but they cant be disregarded as they occur in real-

life scenarios. In this work, "field" restrictions are getting considered because similar solutions

that satisfy more the "field" restrictions have a higher utility value. The code used to calculate the

similarity between two routes is shown in Listing 7.1.

1 routeAIDs = []

2 routeBIDs = []

3 for op in routeA[1:-1]:

4 routeAIDs.append(op[’id’])

5 for op in routeB[1:-1]:

6 routeBIDs.append(op[’id’])

7

8 if(len(routeAIDs) < len(routeBIDs)):

9 temp = routeAIDs

10 routeAIDs = routeBIDs

11 routeBIDs = temp

12

13 n_operator_equal = 0

14 n_order_diff = 0

15

16 for i, op in enumerate(routeAIDs):

17 if op in routeBIDs:

18 n_order_diff += abs(i-routeBIDs.index(op))

19 n_operator_equal += 1

20 max_len = max(len(routeAIDs), len(routeBIDs))

21

22 #Calculates the order difference ratio

70 Implementation

23 ratio_1 = (1 - (n_order_diff / (max_len * (max_len - 1)))) * (n_operator_equal

/ max_len)

24 #Calculates the different operators ratio

25 ratio_2 = n_operator_equal / max_len

26 similarity_ratio = ratio_1 * OPERATOR_ORDER_SIMILARITY_RATIO + ratio_2 *

DIFFERENT_OPERATOR_RATIO

27 return similarity_ratio

Listing 7.1: Calculation of two inspection routes similarity

7.7.3 Average arrive time

The last parameter in the utility function is the time each brigade arrives at the depot at the end of

the workday. This approach benefits solutions that arrive earlier than solutions that use a greater

portion of the available time. The potential utility of a certain solution increases as the brigades

arrive later to the depot at the end of the workday. The higher utility of the inspected economic

operators shouldn’t be seen blindly as a better solution. The solution with the higher sum of the

economic operator’s utility might entail that the brigades arrive too close to the maximum allowed

time. In a real-life scenario, coming too close to the allowed time can arise problems as disruptions

in the last steps of the plan’s execution can cause one or more brigades to get late. Getting late to

the depot means the human workers work above the pre-defined time, which may incur extra crew

costs—maximising the total utility gained by inspecting all the economic operators while at the

same time, benefiting solutions that arrive earlier may lead to a solution that performs better in a

real-life environment.

7.7.4 Unfeasible Solutions

This dissertation work explored unfeasible solutions as they might accelerate discovering new

solutions on some algorithms and contributing to a faster convergency to a better solution. Unfea-

sible solutions are solutions that do not fulfil one or more of the problem’s restrictions. Therefore,

they are impossible to apply to real-world problems as they will lead to the reach of impossible

states. On the other hand, unfeasible solutions allow for a faster cover of the solution space, as they

allow to cross the unfeasible regions to reach other feasible regions potentially containing better

solutions. The utility of an unfeasible or viable solution is calculated similarly using the complex

utility function described in section 7.7. In order for the algorithm to distinguish and weight each

solution, unfeasible solutions have to be penalised in the utility function, so they are considered

worse. Independently of the solution’s utility, the algorithm will always output a feasible solution

in case that exists.

7.7.4.1 Penality Types

For the purpose of this work, six types of penalties were taken into account, addressing all the

problem’s constraints. The penalty is a decimal value ranging from 0 to infinite to represent how

7.7 Utility Function 71

far a solution is from the feasible space. The final penalty value results in the sum of all the

penalties resulting from the restrictions some solution is violating. The penalty value also scales

proportionally to the severity of the non-fulfilment of specific constraints, meaning the farthest a

particular solution is from the feasible space, the more penalty value the system will add to that

solution.

Penalty Only_Inspect: One of the constraints respects the time a specific inspection route

has to be completed, the time the brigade is allowed to arrive at the operational unit at the end

of an inspection route. A penalty is applied to the solution if, ignoring the travel time between

each economic agent and the depots, a particular inspection route cannot inspect all the economic

operators in reasonable time and respecting their time schedules.

Penalty Impossible_Operators: The number of operators impossible to inspect (their sched-

uled inspection ends after the allowed timestamp) influences the value of the penalty to be added;

more impossible operators mean higher values of penalty. This methodology allows to quickly

assess and penalise a solution that will never be possible to accomplish, as after adding the travel

times, it will be more unfeasible. To be successfully inspected, the economic operators must be

opened on that day of the week. A certain penalty is added for each operator in one inspection

route with no available schedule on the corresponding weekday.

Penalty Repeated_Operators: This penalty regards solutions that visit the same operator mul-

tiple times: to accomplish a successful inspection, only one of the brigades needs to visit the

economic and a single time. The system adds a penalty for each economic operator visited more

than once during the whole operation plan. In the case of the disruptive event where an emergency

inspection is requested, there is a constraint that this new selected economic operator must be in-

spected in that operation plan by any composing inspection routes. For each emergency inspection

not accomplished, an increasing value of penalty is added, meaning that solutions that fail more

emergency stops should be further penalised.

Penalty Path_Error: The OSRM API calculates the several paths and distances between the

economic operators and depots, returning everything in a matrix. These individual paths might be

impossible if no available path (sequence of roads) connect the two nodes. A route is unfeasible

if there is no known path between two consecutive elements of a route (depot or economic opera-

tors). The penalty added in this case is proportional to the number of discontinuities in each route

composing the operation plan.

Penalty Last_Time: This penalty is probably the most complex one to calculate and respects

to the timestamp where the brigades have to reach the depot at the end of the day. This times-

tamp is customisable and fixed during the algorithm execution, and any brigade that arrives at

the depot after that will produce an unfeasible solution. The calculation of this timestamp is very

complex and requires much computation. The system needs to iterate through all inspection routes

composing a solution, calculating all the times in one solution. Travel times between locations,

operational schedule from the economic operators to be inspected and inspection time for each of

the operators. After computing all the intermediate steps to execute one solution, the system can

infer all the last_time (when the brigade reaches the depot at the end of the day) for each inspection

72 Implementation

route. The system applies these penalties to an unfeasible solution, using the sum of times from

each route after the last allowed timestamp. This approach will further penalise solutions above

the maximum workload limit for the day and play the most important penalty role, as otherwise, a

solution would be infinite (as any new operator always adds a positive value of utility).

Penalty Operator_Schedule: This last penalty regards the operator’s schedule. Inspecting an

operator means its schedule must be available at the time of inspection; the operator has to be open.

The system calculates the time required to travel and inspect all the economic operators in the same

order as the solution’s sequence. It then checks if the operator is available at the time necessary.

The system will compute the expected inspection time and proceed to the next inspection when

it is available. In the cases where the operator isn’t available, there are two possible cases: either

the system waits until the operator opens (it generates a solution where the brigade will have

to wait for the operator to open, in cases where there will be an available schedule later on) or

the solution is unfeasible (there is no free schedule later on that day). The second case entails

penalising each operator who couldn’t be inspected during the prediction of the whole operational

plan. This penalty shouldn’t be misunderstood with penalising operators that are not available on a

certain day. Being available on a particular day (operating on that day) doesn’t mean the operator

can be inspected; the operators scheduled to be inspected former can cause impossibilities in the

inspections upstream.

7.7.4.2 Penalty techniques

Long [29] studied penalty functions applied to constrained optimisation problems on their work

involving particle swarm optimisation. They propose a momentum-type particle swarm optimisa-

tion (PSO) method to enhance both the computational efficiency and the solution accuracy com-

pared to the base PSO. This work also suggests a continuous non-stationary penalty function

to punish solutions that don’t fulfil the problem’s constraints. There are two groups of penalty

functions: stationary and non-stationary; this work will apply a non-stationary penalty function.

Contrarily to the stationary penalty functions, a non-stationary penalty function changes dynami-

cally throughout the search and typically depends on the iteration number. Non-stationary penalty

functions were developed and described in the literature as almost always superior in getting the

best results when compared to stationary.

This dissertation adopted and implemented the non-stationary penalty techniques studying and

implemented by Long. The complex penalty function 7.1 is divided into two functions: a dynamic

function f (x)[7.2] and a continuous assignment function H(x)[7.3] that can address both linear

and non-linear constraints.

F(x) = f (x)−C(k)H(x) (7.1)

The equation 7.1 was adapted to the maximisation problem studied with this dissertation. This

equation returns the new utility value after applying the respective penalty values to unfeasible

solutions that don’t fulfil one or more of the problem’s restrictions. The new utility values are

7.8 Solution Generation 73

used as normal with the respective solution in the algorithms’ execution. The f (x) is the utility

value of a specific solution calculated used the utility function described in section 7.7.

C(k) = (c× k)α (7.2)

The dynamic function 7.2 depends on the iteration number k and increases as the search pro-

gresses. c and α are two problem-dependent constants manually tuned to the values of 0.05 and

1, respectively.

H(x) =
m

∑
i=1

[θ(qi(x))×qi(x)ρ(qi(x))] (7.3)

The function H(x)[7.3] represents the penalty factor. This function will be the sum of all the

penalties types applied to a particular solution meaning a solution that violates more constraints

is more likely to get a higher value of penalty and therefore a lower utility. The function qi(x) is

a numeric value representing how far a solution is from the feasible space for one penalty type.

Function ρ(qi(x)) adjusts the violating function and is set either for the value one when a solution

is near the feasible space, or two otherwise.

θ(qi(x)) = a× (1− 1
εqi(x)

)+b (7.4)

The function θ(qi(x))[7.4] is a continuous assignment function also adapted from Long’s

work. In this dissertation, a and b are problem-dependent constants that were adjusted for the

values of 150 and 1, respectively.

7.8 Solution Generation

The implemented algorithms imply using methods to generate new solutions based on solutions

provided as input. For the purpose of this work, six different operators were implemented as

shown in Figure 7.6 and 7.7. Depending on the chosen algorithm, these operators are selected and

used both in a randomised or sequential way (to balance the way new solutions are generated in a

certain iteration). The operators share the common task of taking a solution as input, and output

a new solution after changing one or more inspection routes. All the operators used to generate a

new solution concern the level of economic operators as these are the blocks that will be moved

and changed in place to originate a new different solution. Each operator involves stochastic

decisions to select for which route the operation will be applied and which economic operators

will be selected. It is important to note that the operators are only responsible for generating

a new solution, they don’t consider the utility values, and the new solution can be unfeasible.

Some of the operators can fail to execute if the solution given as input isn’t compliant with some

operator’s rules. In these cases, and if the operators are being chosen randomly, the system will

randomly pick an operator until the chosen one doesn’t fail to execute. Otherwise, if the operators

74 Implementation

Figure 7.6: Example of different operations on a solution with 3 brigades and 13 economic oper-
ators available; The numbers represent the economic operators’ ids, and the colour red indicates
the changes.

are chosen sequentially, the system will ignore that operator and execute the next one until the

selected operator executes without failure.

The first operator (Figure 7.6) consists in exchanging two economic operators in the same

inspection route chosen randomly; all the inspection routes maintain the same length.

The second operator (Figure 7.6) changes one economic operator, scheduled to be inspected

by one of the brigades, to one in the complete list of economic operators; the inspections routes

maintain the same length.

The third operator (Figure 7.6) removes one economic operator selected randomly from an

inspection route. This operator only executes successfully if the inspection route contains at least

one economic operator scheduled for inspection; the inspection route will decrease one economic

operator in length.

The fourth operator (Figure 7.6) adds a new economic operator to one of the inspection routes.

7.8 Solution Generation 75

Figure 7.7: Example of different operations using the 2*-OPT on a solution with 2 brigades and 13
economic operators available; The numbers represent the economic operators’ ids, and the colour
red indicates the changes.

The new operator is chosen from the complete list of economic operators; one of the inspection

routes increases its length by one economic operator.

The fifth operator (Figure 7.7) exchanges one economic operator between two inspection

routes selected randomly; all the inspection routes keep the same length, and the same list of

economic operators will be inspected (by different brigades).

The sixth and last operator, called 2*Opt, is the most complex and can be subdivided into three

other operators, one chosen randomly each time the parent operator gets executed. It’s called the

2*Opt because instead of operating in blocks of one economic operator, it uses a sublist of two

consecutive ones. The 2*Opt implies that the selected inspection routes have at least two economic

operators; otherwise, this operator will fail to execute. The first sub operator exchanges two

sublists in the same inspection route, maintaining the same number of economic operators. The

second sub operator consists in exchanging a sublist from two inspection routes selected randomly.

The third operator is similar to the second, but it exchanges the sublists without eliminating them

in the original inspection route; the operators will be doubled.

76 Implementation

7.8.1 Hill Climbing Algorithm

The Hill-climbing algorithm has the most straightforward implementation and only needs one

variable to save the current solution, which is also the best solution found so far; the corresponding

utility of that solution is also stored in memory. The first part of the code is common to every

algorithm and selects the day of the week a particular solution represents. This day is used to grab

each economic operator’s schedule when it is needed to calculate its availability for an inspection.

The algorithm starts with a preliminary solution that can be feasible or unfeasible, representing

the several inspection routes composing an operational plan. The algorithm calculates its utility

and admits that solution as the best one found so far by the search. The algorithm follows the

same logic in each following iteration, first generates a new random solution based on the current

one, using one of the operators described in section 7.8, and then evaluates its utility using the

utility function described in section 7.7. The current solution is updated to the new solution if a

null or higher utility improvement was verified. The pseudocode for the algorithm can be found

in algorithm section 3.The python code used to implement the algorithm is shown in Listing B.3

Algorithm 3 Hill-Climbing Algorithm

best_sol← initial_solution
best_sol_utility, penality← SolutionUtility(best_sol) . Calculate the solution utility
while i≤ Nsteps do

new_sol← GenerateNewSolution(best_solution) . Generate New Solution
new_sol_utility, penality← SolutionUtility(new_sol) . Calculate new solution utility
if penality > 0 then

new_sol_utility← new_sol_utility−PenalityFunction(penality, i) . Apply penality
end if
if new_sol_utility≥ best_sol_utility then . Updates best solution

best_sol_utility← new_sol_utility
best_sol← new_sol

end if
i← i+1

end while

Figure 7.8 illustrates the evolution of the Hill-Climbing search. The yellow line represents

the best solution in the current iteration. Unfeasible solutions were removed from the graph to

allow a more straightforward understanding of the algorithm. The algorithm generates solutions

with different utilities throughout the search, but only the better ones are updated as the current

solution.

7.8.2 Simulated Annealing Algorithm

The SA algorithm is an algorithm that allows the acceptance of worse solutions during the search

phase, and hopefully, avoid getting trapped in local maximums. This dissertation implements a

method that calculates the initial temperature and a cooling schedule inspired by the literature. The

algorithm’s initial temperature is chosen using a method adapted from Atiqullah [4]. This method

7.8 Solution Generation 77

Figure 7.8: Hill Climb solutions utility throughout the search

creates a normal distribution of ten thousand neighbours and calculates the standard deviation to

be later used in the equation. The neighbours are generated stochastically using the operators

described in section 7.8 over the initial solution. The approach used in this dissertation specified

an initial acceptance ratio of 90%, meaning 90% of the neighbours are expected to be accepted at

the initial temperature.

1 sol_utility, last_time, penality = algorithms_functions.solution_utility(

inspection_times, solution, solution, indexes, travel_times, starting_times

, weekday, utility_function, emergency_operators)

2 utilitydiff_data = []

3 cnt = 0

4 for i in range(10000):

5 new_solution, new_sol_utility = algorithms_functions.generateSolutions(

inspection_times, solution, solution, operators, indexes, travel_times,

starting_times, weekday, 0, utility_function, emergency_operators)

6 utilitydiff = abs(sol_utility - new_sol_utility)

7 utilitydiff_data.append(utilitydiff)

8 cnt += utilitydiff

9

10 h = sorted(utilitydiff_data) #sort

11 fit = stats.norm.pdf(h, np.mean(h), np.std(h))

12 acceptance_ratio = 0.9

13 standard_deviation = np.std(h)

14

15 delta_C = cnt/len(utilitydiff_data)

16 temp_0 = (delta_C + 3*standard_deviation)/np.log(1/acceptance_ratio)

17 return temp_0

78 Implementation

The colling schedule used in this implementation is an adaptation of the parametric cooling

schedule used by Atiqullah [4]. In Equations 3.4, the final temperature was set to 0.0001, and the

values for the constants a and b were assigned to a = 2 and b = 1/3. Two new temperature rules

were implemented to complement the proposed cooling schedule and based on the two phases of a

SA search, global positioning, and solution refinement. In the first iterations of the algorithm, the

global positioning phase, the temperature remains at its max for a defined number of iterations.

The number of iterations where the temperature remains unchangeable was defined as 5% of the

total number of iterations allowed. Maintaining a high temperature for several iterations allows the

algorithm to better cover and explore remote areas of the search space without being trapped. The

approach developed in this dissertation also adapts the cooling schedule to the solution refinement

phase. To better address this search phase, the temperature is set to a null value, meaning the

algorithm will behave like an HC algorithm, only accepting the best solutions; it is expected that

the algorithm will easily find the local maximum located in the current search area.

The stopping criteria used for the algorithm results from the combination of a defined number

of iterations and a defined number of chains without improvement. The algorithm is scheduled and

will always execute for a certain number of iterations. After that number of iterations is completed,

the algorithm will run indefinitely, while for one hundred Markov chains, there is an improvement

above a defined threshold.

Since the SA is a stochastic algorithm, it is not guaranteed always to find the same solution

or solutions of the same utility. By repeating the algorithm execution over the same solution, the

probabilities of finding a better solution increase, as the steps during the search will be different

and lead to a different outcome. This dissertation implements a reheating method that restarts the

search process a defined amount of times, with the initial solution and temperature. In each reheat,

the best solution found is stored and compared to the best global solution from all the reheats; if

the solution from one reheat was better, the best global solution is updated.

The pseudocode for the simulated annealing implementation can be found in algorithm section

4.The python code used to implement the algorithm is shown in Listing B.4

This implementation of the SA algorithm uses a neighbourhood of six solutions instead of the

typical one solution neighbourhood. A new python function was created to generate six neighbours

from the current solution in the current search iteration [B.5]. This function uses the complete list

of operators one single time each to produce at most six new solutions: It is vital to notice that

an operator can fail and return no solution; in such cases, the neighbourhood will have a size

smaller than six. This function generates the new solutions and calculates their respective utility,

returning the one with the highest utility among the neighbourhood. This procedure will help the

algorithm analyse several neighbours and increase the chance of selecting a solution that belongs

to the feasible zone. The probabilities of all the operators to generate an unfeasible solution is

lower than by visiting a single neighbour each iteration.

Figure 7.9 illustrates one execution of the Simulated Annealing algorithm. The blue line rep-

resents the current solution at a certain and the yellow line the best solution found. In this graph,

it is possible to see the several search phases characteristic of this algorithm. In the first iterations,

7.8 Solution Generation 79

Algorithm 4 Simulated Annealing Algorithm

best_sol← initial_sol
best_sol_util← initial_sol_util) . Calculate the solution utility
temp←CalculateInitialTemp(initial_sol) . Calculate the initial temperature
while reheat < REHEAT _MAX do

i← 0
current_sol← initial_sol
current_sol_util← initial_sol_util
no_update← 0
while i < MAX_MARKOV _CHAIN∧no_update < IMPROV _T RESHOLD do

new_sol,new_sol_util← GenerateNewSol(current_sol) . Generate New Solution
util_di f f erence← new_sol_util curent_sol_util
if random()≤ ε

util_di f erence
temp then . Accepts candidate solution

current_sol← new_sol
current_sol_util← new_sol_util
if util_di f f erence≤MIN_IMPROV EMENT then . Updates nº iterations without

improvement
no_update← 0

else if
thenno_update← no_update+1

end if
i← i+1
if current_sol_utility > best_sol_utility then . Updates best solution

best_sol_utility← current_sol_utility
best_sol← current_sol

end if
end if

end while
end while

Algorithm 5 Function used to select the best neighbours from a neighbourhood generated with 6
solutions. Code available in Listing B.5

for i in range(6) do
new_solution← GenerateNewSol(current_sol, i) . Generates solution, different operators
if new_solution == False then . Failed to generate solution

Continue
end if
new_sol_util← SolutionUtility(new_solution)
if new_sol_util > best_solution_util then . Check if it is the best solution found

best_solution_util← new_sol_util
best_solution← new_sol

end if
end for

80 Implementation

Figure 7.9: Simulated Annealing solution utility throughout the search

it is visible that any solution is accepted no matter its utility, as there are iterations of higher and

lower utility, but the solution’s utility average remains the same. In the central part of the search,

the algorithm keeps having higher and lower utility iterations, but the overall utility average tends

to increase, and the algorithm finds new best solutions more often than in the initial phase. In the

third and last phase, the solution refinement phase is visible, where the algorithm accepts almost

exclusively solutions of higher utility.

7.8.3 Tabu-Search Algorithm

The Tabu-search proposed in this dissertation is complex, resulting from the combination of dis-

tinct implementations and methods regarding Tabu-search analysed in the literature. The improve-

ments done to the basic implementation of the TS algorithm were reportedly improving its search

performance. This algorithm also requires a new method of generating new solutions with differ-

ent operators compared to the past two methods: Hill-Climbing and Simulated Annealing. This

implementation contains strategies to address the diversification, where the solutions will be gen-

erated prioritising less frequent solution elements, and intensification phases, where the search

might restart from an elitist solution.

The proposed implementation comprises three different memory structures: two short-term

memory structures (tabu-lists) to store the tabu operations for the next N-iterations and one long-

term memory structure to store the frequency of solution elements. These structures are initialised

with the algorithm and updated during the search phase. The tabu list size used was equal to half

of the size of the complete list of economic operators; this represents how many iterations a certain

operation will be tabu. The implementation of the two tabu lists was due to the two operation types:

exchange economic operators and add/remove operations. The first list, a two-dimensional matrix,

will store the tabu moves regarding exchanges and the second tabu-list, a one-dimensional list, the

moves regarding add/remove of economic operators. Every time two operators are exchanged to

obtain a new solution, the corresponding table entry is updated with the current iteration summed

with the tabu list size. This methodology avoids the need to update the iteration counter inside

7.8 Solution Generation 81

the tabu lists in every iteration; when a new move is selected, the algorithm only checks the corre-

sponding cell in the matrix, and, if the current iteration is greater than that cells’ value, that move is

considered valid. If a sequence of two operators is exchanged (2*-OPT), two entries are updated,

the one corresponding to the two first elements and the two second elements of both sequences.

Every time a new entry is to be updated, a method sorts the two economic operator’s ids, such that

the same cell is always updated, in cases like A exchanging with B and B exchanging with A.

When a new operator is added or deleted from an inspection route, the entry corresponding to its

ID is updated in the tabu-list with the current iteration counter plus the tabu-list size. The frequen-

cies table is updated every time the algorithm updates the current solution, using the economic

operators’ ids composing the solution; the update consists in summing one unity to the current

frequency of each economic operator. If two operators are removed or added (2*-OPT), the two

corresponding entries are updated in the tabu list.

1 def buildTabuLists(indexes): #Build tabu lists

2 tabus = dict()

3 temp_list = [[0,0] for i in range(len(indexes))]

4 tabus[’change’] = [temp_list.copy() for i in range(len(indexes))]

5 tabus[’add’] = temp_list.copy()

6 return tabus

7

8 def buildFrequencyTable(indexes): #Build Frequency table

9 frequency_table = np.zeros((len(indexes),), dtype=int)

10 return frequency_table

11

12 def updateFrequencyTable(frequency_table, solution, indexes): #Update frequency

table

13 for route in solution:

14 for op in route[1:-1]:

15 frequency_table[indexes[op[’id’]]] = frequency_table[indexes[op[’id’]]]

+ 1

16 return 0

17

18 def setTableValue(id_line, id_col, indexes, tabus, value, objective_function):#

Update tabu-list exchange

19 if id_line > id_col: #Sort the Ids

20 temp = id_line

21 id_line = id_col

22 id_col = temp

23 line = indexes[id_line]

24 col = indexes[id_col]

25 tabus[line][col] = [value, objective_function]

26 tabus[col][line] = [value, objective_function]

27 return 0

28

29 def setTableValueAdd(id_line, indexes, tabus, value, objective_function):#Update

tabu-list add/delete

82 Implementation

30 line = indexes[id_line]

31 tabus[line] = [value, objective_function]

32 return 0

Listing 7.2: Methods to create and update the tabu-lists and frequency tables

The solution generation method had to be changed for this algorithm. This new method gen-

erates and evaluates the utility of a neighbourhood with 100 elements obtained randomly from the

current solution using a set of operators. Six operators are used with an equal frequency for this

purpose. The solution generator doesn’t always generate 100 new solutions because some opera-

tors might fail to execute. Every successful operator generates a new solution even if it performs

a move that is considered tabu. The algorithm signalises solutions generated by tabu moves, and

they can only be selected as the best neighbour if they fulfil one aspiration rule. The algorithm will

choose the solution with the highest utility from all the valid solutions generated; valid solutions

are not originated by a tabu move or fulfil an aspiration criterion. After choosing the best solution,

the tabu-lits are updated with the move performed to create that solution and the frequency table

with the economic operators composing that solution. Although the operators remain the same,

they had to be changed and adapted to the TS algorithm. The operators used in the HC and SA

algorithms don’t change the complete list of operators. For example, when the fourth operator

is used on a solution, a random inspection route gets scheduled with an extra-economic operator

from the complete list of economic operators. This economic operator isn’t removed from the list

of operators, meaning future moves on other routes can use it and, although unfeasible and with a

penalty, a solution could inspect the same economic operator by the same or different inspection

routes. In the TS algorithm, each economic operator only appears once in the system, either in

one of the inspection routes or in the complete list of economic operators. Operations like adding

an economic operator to one of the routes remove the same economic operator from the full list

of economic operators; the complete list of economic operators behaves almost like an inspection

route, with all the economic operators in the database that are not scheduled for inspection by one

of the brigades in the current solution.

Algorithm 6 Tabu-Search solution generation from the Neighbourhood. Code available in Listing
B.6

for i in range(NEIGHBOURS) do
selected_operator← i%DIFF_OPERAT IONS
new_solution← GenerateNewSol(current_sol,selected_operator) . Generates solution
if new_solution == False then . Failed to generate solution

Continue
end if

end for

The algorithm considers a new solution valid if it was not generated using a tabu move or

fulfils one of the Aspiration criteria. In this dissertation, two Aspiration criteria were implemented

and allow for tabu moves to be accepted [7]. The first Aspiration criterion accepts a tabu solution

7.8 Solution Generation 83

if its utility is higher than the best solution’s utility. The second Aspiration criterion verifies if

the utility of a new solution generated by a tabu move is higher than the utility of the solution

generated by the same move in a past iteration of the search. For this purpose, when updating the

tabu-lists, one must store the utility value of the solution corresponding to that move.

Algorithm 7 Tabu move verification and use of the Aspiration criteria. Code used available in
Listing B.7

if (!was_tabu)∨ (new_sol_util > best_sol_util)∨ (new_sol_util > old_tabu_sol_util) then .
Checks if a move is accepted

if new_sol_util > best_neighbor_util then . checks if it is the best neighbor found
best_neighbor_util← new_sol_util
best_neighbor← new_sol

end if
end if

The algorithm will enter the diversification phase during the search process if it doesn’t find

a new best solution for a defined number of iterations. In this implementation, this number was

set to 30000 iterations. When this threshold is reached, the algorithm changes the utility value

of every solution generated in a neighbourhood. A discount will be subtracted to every solution’s

utility depending on how frequent the economic operators composing it. The frequency table is

used to obtain the economic operator’s frequency. The discount is calculated by dividing the sum

of frequencies of one solution by the table’s total frequencies [7.3].

1

2 def getOperatorsFrequency(frequency_table, solution, indexes):

3 total_frequency = 0

4 for route in solution:

5 for op in route[1:-1]:

6 total_frequency += frequency_table[indexes[op[’id’]]]

7 return total_frequency

8 ##

9 #(...)

10 #Calculate Utility According to frequencies

11 solution_combined_frequency = getOperatorsFrequency(frequency_table,

new_solution, indexes) #Gets the frequency sum

12 solution_combined_frequency = solution_combined_frequency / sum(

frequency_table) #Gets the frequency ratio

13 new_solution_utility = new_solution_utility - solution_combined_frequency

#Subtracts the frequency

14 new_solution_utility = new_solution_utility - penality #apply penality when

violating contraints

15 #(...)

Listing 7.3: Implementation of the Diversification phase using the frequency table

84 Implementation

This implementation considers both feasible and unfeasible solutions. The search can some-

times get stuck in the unfeasible region, and it might be hard or time-consuming to get back to the

feasible search space. This dissertation used an intensification strategy based on elitist solutions

to address the previous problem [7.4]. Elitist solutions are solutions that were explored and save

in long-term memory for later use. After being for a defined number of iteration in the unfeasible

region, the algorithm can restart its search from one of the elitist solutions kept in memory. Elitist

solutions are always feasible solutions, meaning that by restarting the search, the algorithm will

be back to the feasible region. The approach developed consists of storing ten elitist solutions, and

the search will restart from one if, during 20000 iterations, the search couldn’t leave the unfeasible

region. Every time a new best solution is found, it is added to the elitist solution list. When there

are ten elitist solutions, the next ones are added, and the old ones are deleted. Elitist solutions are

selected randomly but weighted according to the utilities of each elitist solution.

1 def addElitistSolution(elitist_solutions, solution, solution_utility):

2 if len(elitist_solutions) >= 10: #Allows 10 elitist solutions

3 elitist_solutions.pop(0)

4 elitist_solutions.append([solution, solution_utility])

5 return 0

6

7 def selectElitistSolution(elitist_solutions):

8 #elitist_solution = [solution, solution_utility]

9 total_utility = 0

10 solution_weights = []

11 for solution in elitist_solutions:

12 total_utility += solution[1] #gets the total utility

13 for solution in elitist_solutions:

14 solution_weights.append(solution[1]/total_utility)

15 solution = random.choices(elitist_solutions, weights=solution_weights,

cum_weights=None, k=1)[0]

16 #The solution is selected randomly according to the weights

17 return solution[0]

Listing 7.4: Implementation of the Diversification phase using the frequency table

Figure 7.10 represents the search evolution of the Tabu-Search method. Since this method

selects the best solution out of the neighbourhood of the current solution, worse solutions can

be accepted. The graph shows the utility of the current solution throughout the search, and it is

possible to see negative utility variations. The total best solution is always kept in memory and is

updated with the current solution if a new best solution has been found.

7.8.4 Large Neighborhood Search

The Large Neighborhood Search (LNS) was implemented jointly with a Tabu-search implemen-

tation. This algorithm minimises a large neighbourhood of solutions into a small neighbourhood

7.8 Solution Generation 85

Figure 7.10: Tabu-Search solution utility throughout the search

by fixing specific parts of the solution. Search methods tend to be less efficient and precise over

large neighbourhoods as the search space is more extensive, increasing the possibility of getting

stuck into a local maximum. In this problem’s context, the building blocks of a solution are the

inspection routes since they are independent. A solution can be easily divided into its composing

inspection routes.

In each iteration, the algorithm fixes a number of inspection routes, meaning they will not take

part in the optimisation process in that iteration. Only two inspection routes will be optimised

in each algorithm’s iteration, significantly reducing the neighbourhood’s size and facilitating the

search for problems with many brigades [7.5]. For this purpose, the individual utility of all the

routes composing one solution is calculated using the utility function described in section 7.7.

These inspection routes are then sorted based on their utility, and the ones with the two lower

utilities are selected to be optimised. The optimisation process uses the implementation of the

tabu search described in section 7.8.3. The Tabu-search algorithm optimises and solves an artificial

problem instance with only two inspection routes and returns the best solution found during the

search. Ten thousand iterations are used as the stopping criterion for the Tabu-search execution.

The solution returned by the TS (two inspection routes) is then appended with the remaining

routes that were fixed for that LNS iteration rebuilding the original solution. The new solution’s

utility doesn’t need to be evaluated as it is guaranteed to be at least as good as the solution before

optimisation; the tabu-search never returns a worse solution compared to the initial solution.

This LNS implementation always starts with a feasible solution. The initial solution is tested

on its feasibility and, if it fails, a feasible solution needs to be found before the LNS can start.

If the initial solution is feasible, the algorithm will start its execution. Otherwise, a tabu search

algorithm will optimise the initial solution for a defined number of iterations hoping to find a

feasible solution. If no feasible solution is found in N iterations, the search terminates.

1 def optimiseNeighborhood(...):

2 min_objective_value_index = dict()

86 Implementation

3 min_objective_values = []

4

5 for i, route in enumerate(current_solution):

6 current_solution_utility, last_time, penality = algorithms_functions.

solution_utility(...) #calculates the inspection routes utility

7 min_objective_values.append(current_solution_utility)

8 min_objective_value_index[current_solution_utility] = i

9

10 min_objective_values.sort() #sorts the inspection routes according to their

utility

11 index1 = min_objective_value_index[min_objective_values[0]] #route 1 to

improve

12 index2 = min_objective_value_index[min_objective_values[1]] #route 2 to

improve

13

14 neighborhood = [current_solution[index1], current_solution[index2]] #

neighborhood to optimise

15 neighborhood_start_time = [starting_time[index1], starting_time[index2]] #

neighborhood start times

16

17 best_utility, new_neighborhood_solution, best_penality, new_operators =

tabu_search.algorithm(...) #tabu search algorithm

18

19 current_solution[index1] = new_neighborhood_solution[0] #builds the new

solution

20 current_solution[index2] = new_neighborhood_solution[1] #builds the new

solution

21

22 current_solution_utility, last_time, penality = algorithms_functions.

solution_utility(...) #calculates new solution’s utility

23 return current_solution, current_solution_utility, new_operators

Listing 7.5: LNS shrinks one solution’s neighbourhood and solves a minor optimisation problem.

7.8.5 Summary

All the implementation steps described in this chapter originated a system capable of generating

disruptions to a set of inspection routes, composing an operational plan for one workday. The

operational plan is optimised using four optimisation algorithms, subject to a utility function ad-

justable by a business expert. All the disruption prototypes considered in this work represented

the real-world scenario of ASAE’s inspection operations and were proposed and validated by busi-

ness experts. The following chapter contains several experiments to test and compare the system’s

capabilities in solving the disruptions, with results and conclusions.

Chapter 8

Results and Analysis

8.1 Introduction

To obtain results, conclusions and other relevant pieces of information about the system developed

in this dissertation’s scope, it was tested in a series of controlled scenarios. The main objective

of this approach is to analyse how the different algorithms react to the different disruption types

and smaller or larger disruptions. It is also an objective to obtain conclusions about each method

performance and scalability with an increasing number of inspection routes. The execution time

of each method will also be analysed, searching which one delivers the best solution in less time

interval, making it more suitable to use in the real-life scenario. The utility function will also be

tested with different weights between its three components and how each algorithm reacts to it.

This dissertation will perform all the executions in the same problem instance, explained next

and adapted from a real-life scenario. The problem instance analysed can be considered a sub-

problem of the real-life environment with fewer inspection routes and economic operators. The

initial depot used for all the runs will be the same operational unit, and all the economic opera-

tors considered for the executions belong to its area of operation (this operational unit is the one

responsible for their inspections in the real-life scenario) and encapsulated in a smaller area of the

Portuguese territory. The previous will indirectly encapsulate the problem in a smaller Portuguese

region, where the economic operators are located. The fixed problem instance used for all the

system runs can be defined as follows:

• The operational unit considered is the Unidade Operacional III - Mirandela, belonging to

the district of Bragança, county of Mirandela, parish of Carvalhais. Its located in Quinta

do Valongo, Vila Nova das Patas with the postal code 5370-087. It is georeferenced in

ASAE’s databases with the coordinates (41.5140871, -7.1835093), latitude and longitude,

respectively.

• All the economic operators used in this system belong to the previous operational unit and

correspond to the complete list of economic operators stored in the database with the needed

87

88 Results and Analysis

parameters filled with valid information. Removing the economic operators that don’t sat-

isfy the requirements, this problem instance considered 532 different economic operators

with distinct pairs of coordinates and corresponding utilities. Table A.1 shows the distribu-

tion of economic operators among the distinct locations.

• The brigades start working at 8:00 in the morning (28800 seconds) and finish at 18:00

(64800 seconds). The brigades work for 10 hours in a row, starting and arriving at the

depot (operational unit) at the end of the workday. The work is continuous, meaning this

simulation doesn’t allow any breaks, for example, lunch breaks. The simulation takes time

on a Wednesday, 8 September 2021.

• In some experiments, the economic schedules are randomly generated, as explained in sec-

tion 7.6. Other executions use an artificially generated schedule for all the system’s eco-

nomic operators. This schedule represents an economic operator that is opened 24/7.

• As the initial solution, four inspection routes will be considered for all the test cases. The

initial inspection routes were generated by Barros [27] approach using several metaheuristic

based methods. These inspection routes compose an operational plan, and before disruptions

are generated, this plan is always feasible. Information about the inspection routes can

be found in Table 8.1. The initial schedule forecasted for this solution can be found in

Image 8.1, where each table indicates the predicted steps for each inspection route with the

respective timestamps.

• All tests used an inspection time of 1 hour (3600 seconds) for all the economic operators in

the system. The disruption Generator can generate disruptions that will affect these inspec-

tion times.

Since the algorithm implementations generate different neighbourhood sizes in each iteration,

using the iteration counter as the stopping criteria for the algorithms won’t be fair. One iteration of

the hill-climbing algorithm only generates one neighbour, while an iteration from tabu-search can

generate at most one hundred neighbours. The approach used to perform a fair comparison among

the algorithms set the stopping criteria as a defined target execution time. Contrarily to the other

algorithms, the simulated annealing doesn’t accept the execution time as the stopping condition

because its execution relies on the cooling schedule. The temperature decrement rule used in this

dissertation involves the number of Markov chains, which is a stochastic variable and can change

depending on each execution. Instead of using the execution time as the stopping condition, the

iteration counter was used. A value for the target iterations was manually selected to keep the

execution time close to the target of the other algorithms. The Large neighbourhood search can

have execution times larger than the target for the test since the current iteration cant be stopped

in the middle. Therefore the algorithm will finish the current iteration and return the best solution

after.

After the execution of every test scenario, a solution is produced. Several metrics are measured

and registered: the average utility of economic operators inspected by that solution (avg_UA),

8.2 Algorithm Comparison 89

Figure 8.1: Schedule calculated for the initial solution with 4 inspection routes

the utility of economic operators in the best solution found (max_UA), the average value of the

utility function (avg_UF), the utility function value of the best solution found (max_UF), the

average similarity ratio between the initial and final solutions (avg_Sim), the maximum similarity

ratio (max_Sim), the average time to get the best solution (avg_TS), the minimum time to get the

best solution(min_TS) the average iteration counter to get the best solution (avg_ite), the average

number of economic operators in the complete solution (avg_OP).

The tests were executed using an Intel i7 8700, with 16 GB RAM, running the latest stable

version of Windows 10.

8.2 Algorithm Comparison

This first test case has the main objective to make a raw comparison between the four algorithms.

For these purposes, the schedule used will be an artificially generated schedule corresponding to

an operator that is always open. The utility function used in this test will be merely the economic

operator’s utility [Section 7.7.1], and the other utility function components will be given a weight

of 0%. The simulation time used was the same as the inspection routes start time, 28800 seconds.

The only disruptions generated for these tests were travelled time and inspection time disruptions,

always using a Gaussian distribution with the same standard deviation (σ = current travel time

90 Results and Analysis

Table 8.1: 4 Inspection Routes used for the testing

Inspection
Route ID

Start Time Total Utility Nº Econ. Operators Last Time

7 28800 0.495 6 62012.5
8 28800 0.39 4 47055.3
9 28800 0.25 3 59013.09
10 28800 0.115 3 47862.0

Table 8.2: Tests identification and parameters (Experiment 1)

ID Algorithm Stop Condition Stop Value
1-HC-30 2-HC-30 3-HC-30 Hill-Climb Execution Time 0.5
1-SA-30 2-SA-30 3-SA-30 Simulated Annealing Markov Chains variable
1-TS-30 2-TS-30 3-TS-30 Tabu-Search Execution Time 0.5
1-LNS-30 2-LNS-30 3-LNS-30 Large Neighborhood Search Execution Time 0.5
1-HC-2 2-HC-2 3-HC-2 Hill-Climb Execution Time 2
1-SA-2 2-SA-2 3-SA-2 Simulated Annealing Markov Chains variable
1-TS-2 2-TS-2 3-TS-2 Tabu-Search Execution Time 2
1-LNS-2 2-LNS-2 3-LNS-2 Large Neighborhood Search Execution Time 2
1-HC-4 2-HC-4 3-HC-4 Hill-Climb Execution Time 4
1-SA-4 2-SA-4 3-SA-4 Simulated Annealing Markov Chains variable
1-TS-4 2-TS-4 3-TS-4 Tabu-Search Execution Time 4
1-LNS-4 2-LNS-4 3-LNS-4 Large Neighborhood Search Execution Time 4

/ 9). In this experiment, the independent variables are the execution time and the number of

inspection routes. The execution time used was thirty seconds, two and five minutes, while the

number of brigades was two, three and four. The execution with two brigades used inspection

routes 7 and 8, the execution with three brigades used inspection routes 7,8,9, and the execution

with four brigades used inspection routes 7,8,9,10. All the tests and corresponding parameters

are shown in Table 8.2. A string identifies each test. The first sub-string identifies the problem

instance, the second represents the algorithm used, and the last represents the execution time. The

problem instance 1,2, and 3 illustrates a setup with 2, 3, and 4 inspection routes, respectively. The

experiment using the Large Neighborhood Search with two inspection routes was discarded since

the results were expected to be the same as the Tabu-search; the destroy method wouldn’t select a

smaller portion of the neighbourhood but the same two inspection routes.

This first experiment consisted of 36 different test instances with three executions for each

test instance. The system implemented in this dissertation has been executed a total of 108 times,

and the results can be found in Table 8.3. The SA was tested with 12 neighbours and TS with

100 in all test instances. LNS used 50 neighbours in the 30 seconds and 2 minutes executions,

while 100 in the four minutes run. Regarding the SA, the stopping criteria used was the number

of Markov chains. These number was adjusted to 200000, 400000, and 900000 in the problem

instances scheduled for an execution time of 30 seconds, 2 minutes and 4 minutes, respectively.

8.2 Algorithm Comparison 91

Table 8.3: Test Results (Experiment 1). UA - sum of economic operators utilities; Sim - Similarity
ratio; TS - search execution time; OP - number of economic operators; ite - number of iterations

ID avg_UA max_UA avg_TS min_TS avg_OP avg_ite
1-HC-30 7.87 8.28 11.45 5.92 17.67 669271.62
1-SA-30 8.25 8.30 21.83 17.16 17.33 162320.48
1-TS-30 8.24 8.30 13.33 4.95 17.00 8575.27
1-LNS-30 - - - - - -
1-HC-2 7.28 7.78 17.16 9.37 18.00 2309964.81
1-SA-2 8.22 8.29 66.87 65.35 16.33 775867.34
1-TS-2 8.30 8.30 10.50 4.17 18.00 34136.96
1-LNS-2 - - - - - -
1-HC-4 7.26 7.58 37.49 3.95 18.33 5533169.67
1-SA-4 8.29 8.29 194.38 117.59 17.00 1479542.20
1-TS-4 8.30 8.30 25.60 2.13 17.67 52362.12
1-LNS-4 - - - - - -

2-HC-30 9.90 10.66 22.74 22.06 27.67 501589.01
2-SA-30 10.69 10.72 29.15 22.06 25.00 155668.92
2-TS-30 10.53 10.60 19.23 9.87 27.00 6410.68
2-LNS-30 10.53 10.61 32.84 31.33 26.00 2.34
2-HC-2 10.52 10.71 34.78 11.61 27.00 1504300.34
2-SA-2 10.75 10.76 100.43 81.63 25.00 669831.17
2-TS-2 10.79 10.83 35.49 20.09 26.33 27399.83
2-LNS-2 10.72 10.87 104.57 77.31 26.00 8.76
2-HC-4 10.19 10.30 31.39 13.96 28.00 4108895.56
2-SA-4 10.74 10.76 147.56 133.57 25.00 1062071.23
2-TS-4 10.77 10.83 141.06 102.23 25.67 54383.74
2-LNS-4 11.50 12.77 153.64 97.35 28.33 8.72

3-HC-30 12.46 12.58 19.85 15.43 37.33 405880.32
3-SA-30 12.91 13.03 33.95 30.02 35 143106.28
3-TS-30 12.71 12.86 20.58 18.79 35.33 5336.56
3-LNS-30 12.80 12.91 32.44 31.74 35 2.00
3-HC-2 12.83 13.08 78.32 50.42 36.33 1699673.92
3-SA-2 12.93 12.99 109.19 101.01 33.66 520236.81
3-TS-2 12.81 12.87 33.50 23.76 36.00 19717.53
3-LNS-2 12.95 12.99 95.07 77.82 34.33 8.67
3-HC-4 12.53 12.58 78.81 13.39 36.00 3456250.65
3-SA-4 13.17 13.28 148.90 146.28 35.33 805707.45
3-TS-4 12.97 13.20 202.92 163.66 35.33 42549.12
3-LNS-4 13.92 15.66 116.60 31.70 34.33 7.33

8.2.1 Result analysis

All the algorithms performed relatively well in all the problem instances using all the running

times defined. The solutions obtained by each algorithm were close in their utility, without any

92 Results and Analysis

algorithm performing significantly worse than the others.

Regarding the run times, the simulated annealing algorithm performs the worse since it spends

a significant time in the exploratory phase, where the algorithm jumps in the search space without

investing its time finding a local optimum. The algorithm has low-temperature values in the last

iterations, and only then it improves the current solution, finding the nearby local maximum.

Therefore the time taken to find the best solution is usually the same as the execution time. The

Hill-Climbing algorithm finds the best solution in the shortest execution time, scoring the best

execution time in five out of nine tests. This algorithm is the one that converges to a solution

faster. The shorter average time to find a solution is explained because the algorithm gets trapped

in a local maximum and cant improve the solution further. The Tabu-Search comes next, scoring

the best execution time in four out of nine tests.

Since during this experiment, the utility function was only dependent on the utility values,

this is the primary metric that will be taken into account for the quality of a solution. Since this

approach targets consistency in finding the best solution, the metric average solution utility is

more important than finding the best solution during the three runs. The algorithm that performs

the worse in terms of solution quality is the Hill-Climbing having the lowest average solution

utility in eight out of the nine tests. Besides that, Hill-Climbing can still find reasonable solutions

since its execution depends on stochasticity, and it can sometimes get trapped in a good local

maximum. For problem instances with two inspection routes, the TS algorithm best finds the

highest utility solutions and the highest average solution utility. For larger problem instances

with more inspection routes, the LNS revealed to be the best algorithm to find the best solutions

consistently.

The number of operators composing a solution was also analysed for each algorithm, given

that it contributes to the quality of one solution; an operational plan with fewer inspections is

expected to be less vulnerable to disruptions. The simulated annealing is the algorithm that can

output a good solution utility wise compared to the others but using fewer inspections. SA finds

the solutions with fewer inspections in eight out of the nine tests instances. The Hill-Climbing

is the algorithm that needs more economic operators, performing the worse in all the tests, even

delivering solutions with less utility when compared to the others.

By analysing the results, it can be concluded that longer run times produce solutions of higher

utility. The only exception is the Hill-Climbing algorithm that appears to converge in a shorter time

period, which means that more iterations won’t affect the outcome. The LNS is the algorithm that

takes the most advantage of additional computational time. The difference between the solution

found by two and four minutes of execution is close to one unit of utility value.

8.3 Disruption Types Comparison

This section aims to test how the different algorithms react to the various disruptions considered

in this work. The schedule used for the tests was artificially generated and is equivalent to an

economic operator that is always opened. The utility function was composed of two components:

8.3 Disruption Types Comparison 93

a weight of 0.66 for the utility sum of all the inspected operators (Section 7.7.1) and 0.33 for the

solution’s similarity (Section 7.7.2). The simulation time used was the same as the inspection

routes start time, 8:00 AM (28800 seconds). For the tests executed in this section, the algorithms

execution time was topped at four minutes, and the simulated annealing was manually adjusted

to run in this same time interval. The operational plan was equal for all the tests and composed

of four inspection routes, with Ids 7, 8, 9,10. All the disruption types were tested in this section:

the inspection and travel times disruptions were generated using a δ =Current_Travel_Time/5,

the vehicle and inspection breakdowns were set to one occurrence in the whole operational plan,

the utility changes took action over the economic operators belonging to classes ‘III’, ‘V’, ‘VI’,

and the emergency inspections were set to two occurrences in the whole operational plan. The

new economic operators that will be part of the emergency inspection are selected randomly in

all the tests. Since they belong to the same geographic area, it is expected for the algorithms to

include them in the routes with similar effectiveness. All the tests and corresponding parameters

are shown in Table 8.4. The first digit identifies the experiment number, the second digit identifies

the algorithm, and the third represents the test number.

This section consisted of 24 different test instances with the average values gathered from

three executions for each test instance. The metrics analysed in this section are: the average

utility function values, the max utility function value, the average utility sum of all the economic

operators, the max economic operator’s utility sum, the average similarity ratio, the best similarity

ratio, the average time to find the best solution and the average economic operator’s quantity in the

complete solution. The similarity ratio (Section 7.7.2) indicates how similar the initial operational

plan is to the new one after the re-optimisation. This ratio represents the average similarity between

each route in the final solution and its corresponding route on the initial solution.

The approach proposed was executed 72 times, and the results are shown in Table 8.5. The

SA was tested with 12 neighbours, and the TS and LNS algorithms with 100 neighbours in all test

instances.

8.3.1 Result analysis

The generality of the algorithms solved all the problem instances with reasonably similar solutions

utility wise, indicating that good quality solutions are being found. The only algorithm that failed

to deliver a solution was the hill climb in the emergency inspection disruption type.

All the methods besides the SA reacted well with the utility function that also depends on the

similarity ratio. They provide solutions with similar utility function values, which come from the

combination of the similarity ratio and the utility gathered by inspecting all the economic opera-

tors composing the operational plan. Contrarily, the SA doesn’t provide solutions with a similarity

ratio. The only positive similarity ratio was on the emergency inspection test, but this is due to

the emergency inspections themselves since they have to be accomplished for the solution to be

feasible. It is therefore expected for these economic operators to be both in the initial and the

reoptimized solution. This behaviour has to do with the first two phases of SA search. Since the

algorithm can accept worse solutions, the economic operators composing the initial solution are

94 Results and Analysis

Table 8.4: Tests identification and parameters (Experiment 2)

ID Algorithm Disruption Type Dis Param Value
HC-IT HC Inspection Time Disruption Strength 5
SA-IT SA Inspection Time Disruption Strength 5
TS-IT TS Inspection Time Disruption Strength 5
LNS-IT LNS Inspection Time Disruption Strength 5
HC-TT HC Travel Time Disruption Strength 5
SA-TT SA Travel Time Disruption Strength 5
TS-IT TS Travel Time Disruption Strength 5
LNS-IT LNS Travel Time Disruption Strength 5
HC-VB HC Vehicle Breakdown Nº Vehicles 1
SA-VB SA Vehicle Breakdown Nº Vehicles 1
TS-VB TS Vehicle Breakdown Nº Vehicles 1
LNS-VB LNS Vehicle Breakdown Nº Vehicles 1
HC-UC HC Utility Changes Econ. Operator class III,V,VI
SA-UC SA Utility Changes Econ. Operator class III,V,VI
TS-UC TS Utility Changes Econ. Operator class III,V,VI
LNS-UC LNS Utility Changes Econ. Operator class III,V,VI
HC-IB HC Inspection Breakdown Nº Inspections 1
SA-IB SA Inspection Breakdown Nº Inspections 1
TS-IB TS Inspection Breakdown Nº Inspections 1
LNS-IB LNS Inspection Breakdown Nº Inspections 1
HC-EI HC Emergency Inspection Nº Inspections 2
SA-EI SA Emergency Inspection Nº Inspections 2
TS-EI TS Emergency Inspection Nº Inspections 2
LNS-EI LNS Emergency Inspection Nº Inspections 2

removed. The 0.33 weight given to the similarity ratio in the utility function is not enough for

this algorithm to find them back instead of adding others with higher utility values. As expected,

this algorithm has the higher values for the economic operators’ utility component of the utility

function in all the tests since having no similarity ratio creates a search bias to gather the most

utility possible. Other algorithms balance the utility gathering with keeping the solution relatively

similar to the initial operational plan. The similarity ratio of the other algorithms, rounding the

30% similarity, could also be higher in a real scenario. The routes used as the initial solution

were generated and stored in the database using a different approach with different algorithms

and economic operators. The system used in this dissertation uses a higher quantity of economic

operators, meaning the routes from the initial solution are sub-optimised. Therefore, this imple-

mentation will further optimize the inspection routes at the cost of losing some similarities. The

similarity weight could also be adjusted, giving more utility to solutions closer to the original op-

erational plan. Regarding the average time to get the solution, the Hill-Climbing is the algorithm

that quickly finds the best solution, while the simulated annealing is the one that performs worse

on this metric. The Tabu-search and the Large neighbourhood search have similar average time

intervals to find the best solution.

8.4 Full Conditions Comparison 95

The tests that have the most relevant results are the ones involving emergency inspections.

The Hill-Climbing failed to solve two out of the three problem instances, outputting unfeasible

solutions with associated penalties. The algorithm seems to get stuck in the initial solution, having

difficulty progressing in the search. The similarity values support this conclusion since an average

of 0.69 indicates that the solutions didn’t advance much from the initial solution (test HC-EI).

The emergency inspections can sometimes be far from the initial route course and, therefore,

difficult to be added to an inspection route while maintaining the feasibility of the operational

plan. An algorithm like Hill-Climbing is not suitable to solve such disruption since it doesn’t allow

worse solutions, not allowing the emergency inspections to be readjusted freely in the plan. An

unfeasible solution might be needed so that the algorithm can reach the feasible solution space. All

the tests with emergency inspections have a substantially higher utility since the two emergency

inspections alone represent 200 of utility value. The solutions obtained in these tests also have a

higher similarity ratio, as the two emergency operators have to be kept in the solution.

Inspections and vehicle breakdowns will condition the inspection routes, and no further oper-

ator can be inspected by that route, implying that no extra utility value can be gathered. The tests

containing these types of disruptions have a lower utility since only three brigades are working,

not the usual four from the other tests. The results show that tests ran with the influence of util-

ity changes disruption have a higher utility average when compared to the other ones, similarly

for all the four algorithms. Since this disruption type consists of increasing the utility of certain

economic operators which belong to a predefined class, it is expected for the algorithms to find

a solution with higher utility. The solutions obtained by solving a problem instance with utility

changes usually contain more economic operators belonging to the affected economic operators’

classes.

The current implementation of the LNS can influence the algorithm’s performance to solve

emergency inspection disruptions. LNS reduces the solution’s neighbourhood to only two inspec-

tion routes, optimizing them using a TS algorithm. The two inspection routes with less utility

value are selected from the operational plan, meaning only two routes can be optimized concur-

rently. The economic operators corresponding to the emergency inspections cannot be exchanged

between routes as easily compared to other implementations. Depending on the new inspection

location, it might be better if this inspection is moved from one route to another, for instance, if it

is close to the path of an existing inspection route. As expected, the results from the LNS over an

emergency inspection disruption are sightly worse when compared to the TS and HC approaches.

These results are expected to be worse when using more inspection routes and emergency inspec-

tions.

8.4 Full Conditions Comparison

This third section has the main objective of testing the complete approach developed in this dis-

sertation by running the system in several tests. This section uses the schedule generation method

implemented, randomly generating the schedule for each economic operator, considering its type

96 Results and Analysis

Table 8.5: Test Results (Experiment 2). UF - utility function; UA - sum of economic operators
utilities; Sim - Similarity ratio; TS - search execution time; OP - number of economic operators

ID avg_UF max_UF avg_UA max_UA avg_Sim max_Sim avg_TS avg_OP
HC-IT 13.09 13.24 11.55 11.77 0.22 0.29 51.96 34.33
SA-IT 12.88 12.97 12.88 12.97 0.00 0.00 160.38 34.33
TS-IT 13.51 13.67 11.15 11.26 0.34 0.35 111.09 34.00
LNS-IT 14.27 15.90 12.62 15.06 0.24 0.35 91.32 33.33
HC-TT 12.93 13.08 11.48 11.69 0.21 0.24 83.53 33.00
SA-TT 12.98 13.07 12.98 13.07 0.00 0.00 150.86 33.67
TS-TT 12.99 13.05 10.66 10.80 0.33 0.36 121.86 31.67
LNS-TT 13.04 13.31 10.80 11.03 0.31 0.33 75.69 32.00
HC-VB 10.74 10.89 9.67 10.30 0.20 0.39 18.96 25.00
SA-VB 10.76 10.87 10.76 10.87 0.00 0.00 133.48 25.33
TS-VB 10.72 10.84 9.30 9.51 0.270 0.32 35.07 24.33
LNS-VB 10.64 10.83 9.96 10.27 0.21 0.37 92.73 24.00
HC-UC 10.47 10.77 9.88 10.22 0.11 0.13 34.54 24.33
SA-UC 10.90 10.94 10.90 10.94 0.00 0.00 125.70 26.00
TS-UC 10.80 10.90 9.69 10.04 0.21 0.26 103.47 25.00
LNS-UC 10.70 10.79 9.47 9.780 0.23 0.28 77.47 24.33
HC-IB 13.57 13.95 11.75 12.51 0.26 0.291 55.49 32.67
SA-IB 12.89 12.98 12.89 12.98 0.00 0.00 184.32 34.00
TS-IB 13.77 13.94 11.58 11.62 0.31 0.33 110.72 33.33
LNS-IB 13.56 13.72 11.10 11.84 0.35 0.41 87.42 31.33
HC-EI -44.00 212.71 204.67 211.51 0.69 0.96 6.57 28.33
SA-EI 212.94 213.29 212.43 212.77 0.07 0.07 205.08 35.00
TS-EI 212.98 213.13 210.60 210.88 0.34 0.42 94.58 32.33
LNS-EI 211.99 212.44 209.37 210.42 0.37 0.54 41.81 30.00

from the ten cluster list. The utility function specified for the tests was the same used for the

previous tests in Section 8.3 – a weight of 0.66 for the utility sum of all the inspected operators

and 0.33 for the solution’s similarity. All the routes considered in this test start at 8:00 AM (28800

seconds), and the simulation time used was 40000 seconds, meaning the optimization will take

action in the fraction of the total solution following this timestamp. In all the tests, the algorithm’s

execution time threshold was kept at a maximum of two minutes. The same operational plan was

used for the complete test set, composed of four different inspection routes with Ids 7, 8, 9, and 10.

Each algorithm was tested with the four different disruption types: vehicle breakdown, inspection

breakdown, utility changes, and emergency inspection.

Along with these disruptions, and in every test, travel time and inspection time disruptions

were generated with a δ = Current_Travel_Time/5. The parameters used for each test are de-

scribed in Table 8.6. The operators used for the emergency inspection were randomly selected

from the nearby area. Since the simulation time was set to a higher value than the routes’ start

times, the solutions were partial executed, and for these tests, only the utility gathered after the

8.4 Full Conditions Comparison 97

simulation time start will be considered. Therefore, it is expected that these solutions are of lower

quality when compared to the experiment in Section 8.3. The emergency inspections can be gen-

erated anywhere in the routes, and sometimes, this can happen before the simulation time. If the

previous happens in these tests, the system already inspected the emergency economic operator,

and its utility won’t be captured in the results.

This section comprised 16 tests, with results gathered from 48 executions since each test results

from an average of three runs. This section uses the following metrics to compare the results: the

average utility function values, the max utility function value, the average utility sum of all the

economic operators, the max economic operator’s utility sum, the average similarity ratio, the best

similarity ratio, the average time to find the best solution and the average economic operator’s

quantity in the complete solution.

Table 8.6: Tests identification and parameters (Experiment 3)

ID Algorithm Disruption Type Dis Param Value
HC-VB HC Vehicle Breakdown Nº Vehicles 1
SA-VB SA Vehicle Breakdown Nº Vehicles 1
TS-VB TS Vehicle Breakdown Nº Vehicles 1
LNS-VB LNS Vehicle Breakdown Nº Vehicles 1
HC-UC HC Utility Changes Econ. Operator class III,V,VI
SA-UC SA Utility Changes Econ. Operator class III,V,VI
TS-UC TS Utility Changes Econ. Operator class III,V,VI
LNS-UC LNS Utility Changes Econ. Operator class III,V,VI
HC-IB HC Inspection Breakdown Nº Inspections 1
SA-IB SA Inspection Breakdown Nº Inspections 1
TS-IB TS Inspection Breakdown Nº Inspections 1
LNS-IB LNS Inspection Breakdown Nº Inspections 1
HC-EI HC Emergency Inspection Nº Inspections 3
SA-EI SA Emergency Inspection Nº Inspections 3
TS-EI TS Emergency Inspection Nº Inspections 3
LNS-EI LNS Emergency Inspection Nº Inspections 3

8.4.1 Result analysis

The results of each test execution are shown in Table 8.7

The analysis of this experiment’s results makes clear that every algorithm is effective in solving

this DRPV. The conclusions of these tests are similar to the previous experiments regarding both

the algorithms and disruptions types considered. The overall utility of the solutions obtained is

lower because of the simulation time used, as explained before. The exception is the emergency

inspection disruption, which is now considering three emergency inspections instead of two.

Since the simulation time was selected in the middle of the route, the optimizable part of the

inspection routes is now more minor, meaning that the solution similarity becomes an index with

greater importance. It is easier to maintain similarity as fewer operators are to be exchanged. As

98 Results and Analysis

explained in Section 8.3.1, the Simulated Annealing doesn’t perform well in keeping the solution

similarity. Therefore, and in this experiment, this algorithm performed the worse for all the test

cases. The best performing algorithm was the LNS, consistently delivering the best solutions

among the implemented algorithms in all the test conditions.

Similarly to the previous sections, the Hill-Climbing was the algorithm that converges faster

to the best solution, although it often gets stuck in local maximums. This algorithm wasn’t able to

solve the emergency inspection disruptions, finding only unfeasible solutions.

The average solution similarity is more significant when compared to the previous experiments

since the optimizable part of the solution is lesser, meaning it’s easier for the new solution to be

similar to the initial one. The average number of economic operators composing each solution was

lower since only the ones used in the optimization procedure were considered. The ones already

inspected before the simulation time aren’t considered in the results.

Table 8.7: Test Results (Experiment 3). UF - utility function; UA - sum of economic operators
utilities; Sim - Similarity ratio; TS - search execution time; OP - number of economic operators

ID avg_UF max_UF avg_UA max_UA avg_Sim max_Sim avg_TS avg_OP
HC-VB 8.18 8.72 6.43 6.60 0.33 0.42 13.68 17.67
SA-VB 7.61 8.01 7.61 8.01 0.00 0.00 59.95 17.00
TS-VB 8.62 8.97 6.58 7,24 0.39 0.5 67.24 17.33
LNS-VB 8.75 8.95 7.68 8.51 0.20 0.41 14.91 18.33
HC-UC 8.42 8.56 7.24 7.77 0.22 0.27 10.55 18.33
SA-UC 7.69 8.08 7.69 8.08 0.00 0.00 71.59 17.33
TS-UC 8.55 8.71 6.13 6.71 0.46 0.55 31.47 16.67
LNS-UC 8.85 9.09 7.34 8.50 0.28 0.42 31.23 18.33
HC-IB 10.76 11.54 8.22 9.49 0.36 0.44 6.37 23.00
SA-IB 9.67 10.19 9.67 10.19 0.00 0.00 105.69 24.33
TS-IB 10.96 11.44 7.42 8.10 0.50 0.56 45.42 22.00
LNS-IB 12.74 13.53 11.79 12.69 0.14 0.18 14.82 23.67
HC-EI -201.71 -123.34 201.01 201.15 0.89 0.94 0.00 21.00
SA-EI 309.71 309.82 308.39 308.46 0.19 0.21 106.50 23.67
TS-EI 275.28 309.83 271.14 306.20 0.59 0.80 22.07 21.00
LNS-EI 310.15 310.27 308.16 308.49 0.28 0.31 21.95 22.33

8.5 Summary

By analysing the results globally, almost every algorithm performed as initially expected and de-

livering optimised solutions after addressing the disruptions generated by the disruption generator

(except the HC algorithm). The different test scenarios allowed the analysis of particular aspects

of the implementation and the respective conclusions regarding each algorithm.

The Hill-Climbing algorithm is the one that converges faster, delivering a reasonable solution

to the problem instance relatively quickly when compared to the other algorithms. However, the

8.5 Summary 99

solutions found by HC are sub-optimal when compared to the remaining algorithms, as the search

usually gets stuck in local maximums. This algorithm couldn’t solve the emergency inspection

disruption, only finding a solution that was unfeasible.

Due to its implementation and temperature decrement rules, the Simulated Annealing is the

algorithm that takes more time to return the best solution. This algorithm usually finds its best

solution in the last iterations. Comparatively to the HC algorithm, the quality of the solutions

found by this method is higher. Nevertheless, this algorithm has trouble keeping the solution

obtained after addressing the disruptions close to the initial solution. The solutions obtained by

this method have none or lower similarities compared to the initial solution.

The tabu search algorithm has the best performance balancing the most utility in the final

solution with the time to find it. The solutions obtained by this algorithm to every problem instance

are the best or close to the best discovered by the best performing algorithm. This algorithm also

delivers solutions that are similar to the solutions before the disruption was generated.

The Large Neighborhood Search is the method with the best performance in most test in-

stances, almost always delivering the best solution utility compared to the other methods. This

algorithm provides solutions with higher solution similarity. Nevertheless, it uses more compu-

tation time on average to find the best solution when compared to the TS algorithm. LNS was

concluded to perform poorly compared to SA or TS when solving the emergency inspection dis-

ruption since minimizing the neighbourhood is inefficient in solving this type of disruption. It is

also expected that this algorithm cant solve several emergency inspection disruptions due to the

previous problem, although this was not verified in any of the tests.

100 Results and Analysis

Chapter 9

Conclusions and future work

9.1 Work synthesis

Previously to the implementation of the approach proposed by this dissertation, a profound revi-

sion to the state-of-the and also previous work done in the scope of this project were performed. In

a preliminary phase, and to better understand DVRP optimization problems, several problem for-

mulations in the literature were analysed. Problem’s restrictions were also adapted from different

DVRPs and incorporated into the approach here proposed.

After the problem understanding, and based on the state-of-the-art research, four optimization

algorithms were selected: Hill-Climbing, Simulated Annealing, Tabu Search and Large Neighbor-

hood search. These algorithms were proven to be valid and efficient in solving routing problems.

Several improvements to the algorithms were explored and incorporated in each corresponding

implementation to improve the performance and ability to navigate through the search space more

intelligently.

Barros [27] explored and analysed the problem concerning this dissertation and proposed an

approach to solving its static version. The static version of this problem doesn’t consider disrup-

tions and generates routes based on a utility function that maximises the amount of utility gathered

by inspecting all the economic operators in the operational plan. Barros’s approach was studied

and used as an inspiration for this work. The following step was to get familiarized with the

system developed in the context of project IA.SAE, especially the route generation module. All

the system was studied, including the databases that provided the needed data to be used in this

dissertation.

The OSRM routing app was selected based on state-of-the-art research by Barros on routing

applications. This application was used to calculate the routes and the travel times between the

several economic operators in the database system. This API’s documentation was studied, and

several functions were selected to be used in this approach. Alongside the routing app, the Leaflet,

a framework capable of displaying the routes on a map, was also analysed and implemented into

a simple web application.

101

102 Conclusions and future work

A Disruption Generator module was created and implemented capable of generating six differ-

ent disruption types to inspection routes and configurable using a set of defined parameters. After

generated, the disruptions are added to the system, and the needed constraints are updated.

A module capable of solving problem instances was developed, receiving an initial solution

with disruptions applied to it, outputting a new solution based on a utility function. This mod-

ule comprises four different optimization algorithms: Hill-Climbing, Simulated Annealing, Tabu

Search and Large Neighborhood search. These algorithms work exclusively, meaning that only

the selected one is used to solve the problem instance.

The system developed in this dissertation includes a web application build to display rele-

vant information about the routes and a map showing relevant sites’ geographic position. This

application receives data from ASAE’s database and also from the Disruption Generator and op-

timisation modules. Everything is also connected with the routing app that provides the needed

routing functionalities.

9.2 Conclusions and Results

The overall objectives were reached by analysing the work concerning this dissertation, culmi-

nating in implementing a system capable of generating disruptions to a set of vehicle routes and

addressing them, always keeping the solution as optimized as possible. Although not capturing

all the field constraints characteristic of ASAE’s operational environment, this dissertation pro-

poses a valid approach to tackle disruptions in a DVRP scenario. The disruptions and most of the

constraints applied were inspired by ASAE’s, meaning they are characteristic of systems where a

vehicle fleet provides a service to a set of customers.

This dissertation created a module capable of generating disruptions over a set of inspection

routes. These disruptions are generated using a set of parameters that control their intensity and

their frequency.

This work proposed a complex utility function weighted and based on three different compo-

nents, trying to capture the dynamic variant of the problem. The utility function depends on the

utility gathered by visiting one route’s economic operators, the similarity between the initial and

the new solutions, and the average time each brigade gets to the depot at the end of the workday.

Another result of this dissertation was the comparison between four optimization algorithms

used to solve similar instances of the problem. Overall, the algorithms provided reasonable so-

lutions to almost the totality of the tests performed with few exceptions. The Hill-Climbing al-

gorithm was concluded to have the fastest convergency, although it offers lower-quality solutions

since it gets stuck in local maximums. This algorithm also fails to address the emergency inspec-

tion disruption. The Simulated Annealing offered a better solution quality when compared with

HC, being able to solve all types of disruption. However, SA fails to deliver solutions with higher

solution similarity. Returning solutions different from the initial ones will increase the operational

costs, as explained in the literature review. The Tabu Search algorithm offered an outstanding

balance between finding the best solution and in the shortest amount of time. TS also solved

9.3 Limitations 103

all problem instances and returned solutions similar to the initial ones when the utility function

benefits such behaviour. The Large Neighborhood Search algorithm was the one that consistently

offered a better solution quality when compared to the others. Nevertheless, due to its imple-

mentation, this algorithm is sub-optimal compared to the SA and TS when solving the emergency

inspection disruption.

9.3 Limitations

The approach developed simulated the generation of disruptions over operational plans and was

not tested in a real-life scenario where the system is running, and disruptions happen in real-

time. Several unexpected elements and possible weaknesses of this approach might be visible in

the real-life scenario and influence its performance. Once a disruption happens, it is sent to the

routing system, recalculating the whole operational plan. While the routing system is solving the

optimization problem, all the brigades are in the terrain, either working or waiting for instructions.

This dissertation didn’t study the impacts of the computational time taken by the algorithms in the

system. Therefore, this work can’t make conclusions about the efficiency of a specific method in

a real-life scenario.

This dissertation didn’t study the scalability of the proposed approach. The solution was tested

and reviewed over a problem instance with at most a dozen brigades and considered close to

one thousand economic operators. The actual scenario of the problem has millions of economic

operators located over the whole country. The possibility of a different routing system for each

operation unit seems reasonable, but even that situation has a different level of magnitude than the

one studied in this dissertation.

9.4 Future Development Perspectives

The approach used to generate the schedules, although based on real time tables, doesn’t corre-

spond to the real-life scenario. Future development could be implementing a way to gather the

real schedules for all the economic operators in the system, either by using an existing API or by

developing a method to collect the schedules in a semi-automatic way. The system implemented

by this dissertation can adapt to the new schedules as long as they maintain the representation

presented in section .

A further enhancement of the process can be obtained by dividing the solution optimisation

once a disruptive event occurs in two processes. Firstly, an algorithm with less computational

times (adjusting the tunable parameters) can be used to obtain a reasonably acceptable solution in

a short time. This solution will be readily communicated to the vehicle fleet, and vehicles will start

satisfying the new set of routes. After transmitting the solution, the system keeps optimising it by

running more iterations and using more complex parameters. The solution will later be transmitted

to the fleet in the case of new optimisations that may not have been accounted for in the primary

solution. This approach would be similar to the one documented by Ritzinger. [44]

104 Conclusions and future work

Some contexts may also benefit in using stochastic information, which is often provided by

external elements such as the media or market trends. Useful stochastic information can also be

provided by machine learning algorithms using data from the past. Stochastic information can

be used to adapt further the initial solution to dynamic elements that are likely to happen during

the execution of the planned routes. Methods such as Sampling 2.8.2.1, can be used to generate

dummy instances of dynamic variables occurring in the problem’s context.

Since this dissertation concerns a problem instance in a dynamic environment, other informa-

tion could be incorporated to represent the real-life scenario more accurately and provide addi-

tional route rearrangement tools. Information like traffic patterns at a particular time of the day

or on specific days of the week or access could provide a more accurate calculation of the travel

times in the route network. Weather information could also be incorporated, reducing the average

speed of the vehicles in the system in adverse meteorologic conditions.

This dissertation used a fixed inspection time of one hour if no disruption happens. In a

real-life scenario, inspection times will depend on several factors: the type of economic operator

inspected, its size, or other macro and micro-factors. This information could be used to forecast

an inspection time closer to reality, increasing this approach’s efficiency in a real-life scenario.

Appendix A

Economic Operators

A.1 Economic Operators distribution

Location Quantity Location Quantity
CARVALHAIS - MIRANDELA 1 VILA NOVA DE FOZ CÔA 6

BRAGANCA 2 COTAS 1

LAMEGO 41 VILARINHO DOS FREIRES 1

VILA REAL 73 VILAR DE MAÇADA 1

VILA NOVA DE FOZ COA 2 REBORDAINHOS 1

GOSTEI 1 SESULFE 1

SÃO TOMÉ DO CASTELO 2 CONSTANTIM VRL 1

VILA CHÃ DE BRACIOSA 1 SANTA CRUZ-TRINDADE 1

CHAVES 46 VINHAIS 6

MIRANDELA 33 TORGUEDA (VILA REAL) 1

SANTA MARIA MAIOR 1 FAILDE 1

VIMIOSO 3 MADALENA 1

VILA FLOR 11 CARVIÇAIS 1

CARRAZEDA DE ANSIÃES 8 CARRAGOSA 1

ARMAMAR 13 TORRE DE MONCORVO 3

MURÇA 5 SABROSO DE AGUIAR 1

NUMÃO 1 LALIM 1

PESO DA RÉGUA 14 CARVA 1

SENDIM 4 VENDA NOVA 1

MACEDO DE CAVALEIROS 15 CARRAZEDA DE ANSIAES 1

VALPAÇOS 15 FREIXO ESPADA A CINTA 3

ALIJO 7 SAO JOAO DA PESQUEIRA 1

BRAGANÇA (SÉ) 1 TORRE DONA CHAMA 1

MOGADOURO 8 TABUACO 2

105

106 Economic Operators

BRAGANÇA 41 MONCORVO 2

PESO DA REGUA 6 VILARINHO DE AGROCHÃO 1

ALIJÓ 8 STA MARTA DE PENAGUIAO 1

SÃO JOÃO DA PESQUEIRA 5 VILARES 1

ALFÂNDEGA DA FÉ 1 FREIXO DE ESPADA À CINTA 1

CONSTANTIM 2 VIADE DE BAIXO 2

MOURA MORTA PRG 1 LAMEGO (SÉ) 1

PINHÃO 2 ANDRÃES 2

LODÕES 1 FERREIRIM LMG 1

ALFÂNDEGA DA FÉ 5 REBORDELO 1

GODIM 4 PAREDES DA BEIRA 2

MONTALEGRE E PADROSO 1 PENEDONO 1

VILA NOVA DAS PATAS 1 CARRAZEDO DE MONTENEGRO 2

TABUAÇO 4 CEDÃES 1

TAROUCA 11 MALHADAS 1

ADOUFE 2 VALE DA PORCA 1

MONTALEGRE 4 S. MAMEDE DE RIBATUA 1

SANTA COMBA DE VILARIÇA 1 LOUREIRO 1

SALTO 2 MOUÇÓS 1

CAÇARELHOS 1 FOLHADELA - VILA REAL 1

CANDEDO 1 MONDIM DA BEIRA 2

SABROSA 6 VALDANTA 1

ARGOZELO 1 MESÃO FRIO 2

SANTA MARTA DE PENAGUIÃO 1 MASCARENHAS 1

VILA POUCA DE AGUIAR 6 FONTES 1

MORAIS 1 GIMONDE 2

TORRE DE DONA CHAMA 2 VILARINHO DA RAIA 1

BOTICAS 2 REBORDÃOS 1

FAVAIOS 2 VIDAGO 1

ERVEDOSA DO DOURO 2 GONDESENDE 1

CASTELÃOS - MACEDO DE CAV-

ALEIR

1 FELGAR - TORRE DE MONCORVO 1

MIRANDA DO DOURO 7 FORNOS 1

VALE DE PRADOS 2 BRANGANÇA 1

SÃO MARTINHO DE ANTAS 2 TELÕES 1

PADORNELOS 2 IZEDA 1

TÓ 1

Appendix B

Algorithms Code

1 for turn in schedule:

2 if (current_time < turn[0]): #waits to open

3 return turn[0], 0, 0

4 elif((turn[0] <= current_time) and (turn[1] >= current_time)):

5 return current_time, 0, 0

6 ###Failed Inspection - schedule not available#####

7 return False, 0, 0

Listing B.1: Function used to check a soft schedule. Returns the start time of an inspection or

False if the economic operator can’t be inspected.

1 if HARD_SCHEDULE_CONSTRAINT:

2 for turn in schedule:

3 temp = current_time + inspection_time

4 if((turn[0] <= temp) and (turn[1] >= temp)):

5 if current_time >= turn[0]:#the inspection can start now

6 return current_time, 0, 0

7 elif(current_time < turn[0]):

8 temp = turn[0] + inspection_time

9 if(temp <= turn[1]): #inspects in the first available slot (wait)

10 return turn[0], 0, 0

11 ###Failed Inspection - schedule not available#####

12 return False, 0, 0

Listing B.2: Function used to check a hard schedule. Returns the start time of an inspection or

False if the economic operator can’t be inspected.

1 def algorithm(inspection_times, operators, indexes, travel_times, initial_solution,

starting_time, starting_date, utility_function, emergency_operators, debug =

False): #unfeasible, allows the use of unfeasible solutions

107

108 Algorithms Code

2 graph_x_values = []

3 graph_y_values = []

4 weekdays = [’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’, ’Friday’, ’Saturday’,

’Sunday’]

5 print(weekdays[starting_date.weekday()])

6 weekday = weekdays[starting_date.weekday()]

7 i = 0

8 best_solution_utility = 0

9 best_solution = []

10 best_solution = initial_solution

11 best_solution_utility, last_time, penalty = algorithms_functions.

solution_utility(inspection_times, initial_solution, best_solution, indexes

, travel_times, starting_time, weekday, utility_function,

emergency_operators) #calculates a solution’s utility

12 if penality > 0:

13 best_solution_utility = best_solution_utility-penality

14 while(i<=N_STEPS):

15 new_solution = algorithms_functions.generateNewSolution(best_solution,

operators)#generates a new solution

16 new_solution_utility, last_time, penalty = algorithms_functions.

solution_utility(inspection_times, initial_solution, new_solution,

indexes, travel_times, starting_time, weekday, utility_function,

emergency_operators)

17 if penality > 0:

18 new_solution_utility = new_solution_utility - (algorithms_functions.

func_C(i) * penality)

19

20 if(new_solution_utility >= best_solution_utility):

21 best_solution_utility = new_solution_utility

22 best_solution = new_solution

23 i += 1

24

25 return best_solution_utility, best_solution

Listing B.3: Hill-Climb Algorithm

1 weekdays = [’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’, ’Friday’, ’Saturday’,

’Sunday’]

2 weekday = weekdays[starting_date.weekday()]

3 best_solution_utility = 0

4 best_solution = []

5 reheat = 0 #reheat counter

6 p_const = np.log(np.log(TEMP_O/TEMP_F)/np.log(A))

7 q_const = np.log(1/F)

8 b_const = p_const/q_const

9 current_solution = initial_solution

10 cur_solution_utility, last_time, penality = algorithms_functions.

solution_utility(inspection_times, initial_solution, current_solution,

Algorithms Code 109

indexes, travel_times, starting_time, weekday, utility_function,

emergency_operators)

11 cur_solution_utility = cur_solution_utility - (algorithms_functions.func_C(1) *

penality)

12 temp = calculateInitialTemp(inspection_times, initial_solution, operators,

indexes, travel_times, starting_time, weekday, utility_function,

emergency_operators) #Calculates the initial temperature

13 stable_temperature_treshold = BASE_TEMPERATURE_PERCENTAGE * N_ITE_MAX #No

Iterations Initial Temperature

14 final_temperature_treshold = N_ITE_MAX - BASE_TEMPERATURE_PERCENTAGE *

N_ITE_MAX #No Iterations null Temperature

15 initial_solution_utility = cur_solution_utility

16 while reheat < REHEAT_MAX: #Reheat

17 current_solution = initial_solution

18 i = 0

19 cur_solution_utility = initial_solution_utility

20 markov_chain_number = 0

21 chains_without_update = 0 #Markov chains without update

22 while ((i < N_ITE_MAX or chains_without_update <

MARKOV_CHAIN_WITHOUT_IMPROVEMENT_TRESHOLD) and markov_chain_number<

K_MAX): #Stopping criteria

23 new_solution, new_solution_utility = algorithms_functions.

generateSolutions(inspection_times, initial_solution,

current_solution, operators, indexes, travel_times, starting_time,

weekday, i, utility_function, emergency_operators)

24 utility_diff = new_solution_utility-cur_solution_utility

25 prob = min (utility_diff/temp, 700)

26 if (random.random() <= math.exp(prob)): #acceptance condition

27 current_solution = new_solution

28 cur_solution_utility = new_solution_utility

29 if i >= N_ITE_MAX:

30 if utility_diff > MIN_IMPROVEMENT_CONSIDERED:

31 chains_without_update = 0

32 else:

33 chains_without_update += 1

34 markov_chain_number += 1

35 #########Cooling schedule#############

36 if i > stable_temperature_treshold:

37 temp = TEMP_O * pow(A, -1*pow(markov_chain_number/(F*K_MAX),

b_const))

38 elif i > final_temperature_treshold:

39 temp = 0

40 if cur_solution_utility > best_solution_utility: #Updates the best

solution

41 best_solution_utility = cur_solution_utility

42 best_solution = current_solution

43 i += 1

44 reheat += 1

45 temp = TEMP_O

110 Algorithms Code

46 return best_solution_utility, best_solution

Listing B.4: Simulated Annealing Algorithm

1 def generateSolutions(inspection_times, ...): #Generates 6 neighbours

2 best_solution = []

3 best_solution_utility = float(’-inf’)

4 best_penality = 0

5

6 for i in range(6):

7 new_solution = generateNewSolution(current_solution, operators, False, i) #

generates 1 solution

8 if new_solution == False:

9 continue

10 new_solution_utility, last_time, penality = solution_utility(

inspection_times, initial_solution, new_solution, indexes, travel_times

, starting_time, weekday, utility_function, emergency_operators)

11 new_solution_utility = new_solution_utility - (func_C(iter) * penality) #

apply penality when violating contraints

12 if new_solution_utility > best_solution_utility:

13 best_solution_utility = new_solution_utility

14 best_solution = new_solution

15 return best_solution, best_solution_utility

Listing B.5: Function used to select the best neighbours from 6 solutions in the neighbourhood

1 for i in range(neighbour_number):

2 selected_operation = i % different_operations #Operator index

3 new_solution, new_operators, ... = algorithms_functions.generateNewSolutionTabu

(...) #generates a new solution

4 if new_solution == False: #operator failed to generate solution

5 continue

6 new_solution_utility, last_time, penality = algorithms_functions.

solution_utility(...) #calculate solution utility

7 new_solution_utility = new_solution_utility - penality #apply penality when

violating contraints

Listing B.6: Tabu-Search Neighbourhood generation

1 if (not was_tabu) or (new_solution_utility > best_solution_utility) or (

new_solution_utility > old_tabu_solution_utility): #checks if a move should be

accepted

2 if new_solution_utility > best_neighbor_utility: #checks if a solution is the

best found so far

3 best_neighbor_utility = new_solution_utility

Algorithms Code 111

4 best_neighbor = new_solution

5 best_operators = new_operators.copy()

6 best_random_operator = random_operation

7 best_penality = penality

Listing B.7: Tabu move verification and use of the Aspiration criteria

112 Algorithms Code

References

[1] OpenStreetMap. Available at https://www.openstreetmap.org/, Accessed last time
in August, 2021.

[2] Vladimir Agafonkin. Leaflet — an open-source JavaScript library for interactive maps.
Available at http://www.leafletjs.com/,version 1.7.1, Accessed last time in August,
2021.

[3] Claudia Archetti, Francesca Guerriero, and Giusy Macrina. The online vehicle routing prob-
lem with occasional drivers. Computers and Operations Research, 127:105144, 2021.

[4] Mir M. Atiqullah. An efficient simple cooling schedule for simulated annealing. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 3045:396–404, 2004.

[5] T. Barros, A. Oliveira, H.L. Cardoso, L.P. Reis, C. Caldeira, and J.P. Machado. Generation
and optimization of inspection routes for economic and food safety. volume 2, pages 268–
278, 2020.

[6] Telmo Barros, Tiago Santos, Alexandra Oliveira, Henrique Lopes Cardoso, Luís Reis,
Cristina Caldeira, and João Machado. Interactive inspection routes application for economic
and food safety. pages 640–649. 05 2020.

[7] Dimitris Bertsimas, Patrick Jaillet, and Sébastien Martin. Online vehicle routing: The edge
of optimization in large-scale applications. Operations Research, 67(1):143–162, 2019.

[8] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J. Gutjahr. A survey
on metaheuristics for stochastic combinatorial optimization. Natural Computing, 8(2):239–
287, 2009.

[9] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Comput. Surv., 35:268–308, 01 2001.

[10] Wan Tzu Chang, Yen Po Yeh, Hong Yi Wu, Yu Fen Lin, Thai Son Dinh, and Iebin Lian. An
automated alarm system for food safety by using electronic invoices. PLoS ONE, 15(1):1–11,
2020.

[11] Huey Kuo Chen, Che Fu Hsueh, and Mei Shiang Chang. The real-time time-dependent vehi-
cle routing problem. Transportation Research Part E: Logistics and Transportation Review,
42(5):383–408, 2006.

[12] Siyoung Chung, Mark Chong, Jie Sheng Chua, and Jin Cheon Na. Evolution of corpo-
rate reputation during an evolving controversy. Journal of Communication Management,
23(1):52–71, 2019.

113

https://www.openstreetmap.org/
http://www.leafletjs.com/

114 REFERENCES

[13] G. B. Dantzig and J. H. Ramser. The Truck Dispatching Problem. Management Science,
6(1):80–91, 1959.

[14] Autoridade de Segurança Alimentar e Económica. Plano de Atividades ASAE- 2021,
November 2020.

[15] Richard Eglese and Sofoclis Zambirinis. Disruption management in vehicle routing and
scheduling for road freight transport: a review. Top, 26(1):1–17, 2018.

[16] Wan Fang, Guo Haixiang, Li Jinling, Gu Mingyun, and Pan Wenwen. Multi-objective Emer-
gency Scheduling for Geological Disasters, volume 105. Springer Netherlands, 2021.

[17] Wade Genders and Saiedeh N. Razavi. Impact of Connected Vehicle on Work Zone Net-
work Safety through Dynamic Route Guidance. Journal of Computing in Civil Engineering,
30(2):04015020, 2016.

[18] Michel Gendreau, François Guertin, Jean-Yves Potvin, and Éric Taillard. Parallel tabu search
for real-time vehicle routing and dispatching. Transportation Science, 33:381–390, 11 1999.

[19] Fred Glover. Paths for Integer Programming. Computers and Operations Research,
13(5):533–549, 1986.

[20] Fred Glover, Eric Taillard, and Eric Taillard. A user’s guide to tabu search. Annals of
Operations Research, 41(1):1–28, 1993.

[21] Larry Goldstein and Michael Waterman. Neighborhood size in the simulated annealing al-
gorithm. American Journal of Mathematical and Management Sciences, 8(3-4):389–407,
1988.

[22] Michael Hahsler and Kurt Hornik. TSP - Infrastructure for the traveling salesperson problem.
Journal of Statistical Software, 23(2):1–21, 2007.

[23] Psaraftis Harilaos N. Dynamic vehicle routing: status and prospects. Annals of Operations
Research, 61:143–164, 1995.

[24] Pascal Van Hentenryck and Russell Bent. Online Stochastic Combinatorial Optimization.
The MIT Press, 2006.

[25] Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. Planned route optimization for
real-time vehicle routing. In Dynamic Fleet Management, chapter 1, pages 1–18. 2008.

[26] Cangyu Jin, Yamine Bouzembrak, Jiehong Zhou, Qiao Liang, Leonieke M. van den Bulk,
Anand Gavai, Ningjing Liu, Lukas J. van den Heuvel, Wouter Hoenderdaal, and Hans J.P.
Marvin. Big Data in food safety- A review. Current Opinion in Food Science, 36:24–32,
2020.

[27] Telmo João Vales Ferreira Barros. IA.SAE – Geração e Otimização das Rotas de Fiscaliza-
ção. Master’s thesis, Faculdade de Engenharia da Universidade do Porto, Mestrado Integrado
em Engenharia Informática e Computação, July 2019. Supervisor: Luís Paulo Reis.

[28] Allan Larsen. The dynamic vehicle routing problem. PhD thesis, Technical University of
Denmark, Lyngby, Denmark, December 2000.

REFERENCES 115

[29] Jenn Long Liu and Jiann Horng Lin. Evolutionary computation of unconstrained and con-
strained problems using a novel momentum-type particle swarm optimization. Engineering
Optimization, 39(3):287–305, 2007.

[30] K. Lund, Oli Madsen, and Rygaard J.M. Vehicle routing problems with varying degrees of
dynamism. 01 1996.

[31] Dennis Luxen. Project open source routing machine (osrm). Available at http://
project-osrm.org/, Accessed last time in June, 2021.

[32] Hans J.P. Marvin, Esmée M. Janssen, Yamine Bouzembrak, Peter J.M. Hendriksen, and
Martijn Staats. Big data in food safety: An overview. Critical Reviews in Food Science
and Nutrition, 57(11):2286–2295, 2017.

[33] I. Minis, K. Mamasis, and V. Zeimpekis. Real-time management of vehicle breakdowns in
urban freight distribution. Journal of Heuristics, 18(3):375–400, 2012.

[34] Snežana Mitrović-Minić, Ramesh Krishnamurti, and Gilbert Laporte. Double-horizon based
heuristics for the dynamic pickup and delivery problem with time windows. Transportation
Research Part B: Methodological, 38(8):669–685, 2004.

[35] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati. Ant Colony System
for a Dynamic Vehicle. Journal of Combinatorial Optimization, 10(4):327–343, 2005.

[36] Wasin Padungwech, Jonathan Thompson, and Rhyd Lewis. Effects of update frequencies in
a dynamic capacitated arc routing problem. Networks, 76(4):522–538, 2020.

[37] Jing Pan, Min Huang, Qihuan Zhang, and Yang Yu. Dynamic Vehicle Routing Problem
Considering Customer Satisfaction. Chinese Control Conference, CCC, 2020-July:5602–
5606, 2020.

[38] Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L. Medaglia. A review of
dynamic vehicle routing problems. European Journal of Operational Research, 225(1):1–
11, 2013.

[39] David Pisinger and Stefan Ropke. Large neighborhood search. International Series in Op-
erations Research and Management Science, 272(September):99–127, 2019.

[40] Warren B. Powell, Yosef Sheffi, Kenneth S. Nickerson, Kevin Butterbaugh, and Susan Ather-
ton. Maximizing Profits for North American Van Lines’ Truckload Division: A New Frame-
work for Pricing and Operations. Interfaces, 18(1):21–41, 1988.

[41] Harilaos N. Psaraftis. Dynamic Programming Solution To the Single Vehicle Many-To-Many
Immediate Request Dial-a-Ride Problem. Transportation Science, 14(2):130–154, 1980.

[42] Harilaos N. Psaraftis. Dynamic vehicle routing problems. In Vehicle Routing: Methods and
Studies, pages 223–248. North-Holland, 1988.

[43] Harilaos N. Psaraftis, Min Wen, and Christos A. Kontovas. Dynamic vehicle routing prob-
lems: Three decades and counting. Networks, 67(1):3–31, 2016.

[44] Ulrike Ritzinger, Jakob Puchinger, and Richard F. Hartl. A survey on dynamic and stochastic
vehicle routing problems. International Journal of Production Research, 54(1):215–231,
2016.

http://project-osrm.org/
http://project-osrm.org/

116 REFERENCES

[45] Armin Ronacher. Flask (2.0.x). Available at https://flask.palletsprojects.
com/en/2.0.x/, Accessed last time in September, 2021.

[46] Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40(4):455–472,
2006.

[47] Bart Selman and Carla Gomes. Hill-climbing search. In Encyclopedia of Cognitive Science,
pages 333–336. 01 2006.

[48] Paul Shaw. Using constraint programming and local search methods to solve vehicle rout-
ing problems. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 1716, pages 417–431.
1999.

[49] Akshit Singh, Nagesh Shukla, and Nishikant Mishra. Social media data analytics to improve
supply chain management in food industries. Transportation Research Part E: Logistics and
Transportation Review, 114(June):398–415, 2018.

[50] DD SLEATOR and RE TARJAN. Amortized Efficiency of List. Communications of the
ACM, 28(2):202–208, 1985.

[51] Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35(2):254–265, 1987.

[52] Mariam Tagmouti, Michel Gendreau, and Jean Yves Potvin. A dynamic capacitated arc rout-
ing problem with time-dependent service costs. Transportation Research Part C: Emerging
Technologies, 19(1):20–28, 2011.

[53] Eiichi Taniguchi and Hiroshi Shimamoto. Intelligent transportation system based dynamic
vehicle routing and scheduling with variable travel times. Transportation Research Part C:
Emerging Technologies, 12(3-4 SPEC.ISS.):235–250, 2004.

[54] Niaz A. Wassan, A. Hameed Wassan, and Gábor Nagy. A reactive tabu search algorithm for
the vehicle routing problem with simultaneous pickups and deliveries. Journal of Combina-
torial Optimization, 15(4):368–386, 2008.

[55] N.H.M. Wilson and N.J. Colvin. Computer Control of the Rochester Dial-A-Ride System.
CTS report. Massachusetts Institute of Technology, Center for Transportation Studies, 1977.

[56] Haitao Xu, Pan Pu, and Feng Duan. Dynamic Vehicle Routing Problems with Enhanced Ant
Colony Optimization. Discrete Dynamics in Nature and Society, 2018:1–13, 2018.

[57] Xin Yao. Dynamic Neighbourhood Size in Simulated Annealing. Proc. of Int’l Joint Conf.
on Neural Networks (IJCNN’92), pages 1–7, 1992.

[58] Gang Yu and Xiangtong Qi. Disruption management: Framework, models and applications.
World Scientific, 08 2004.

https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Projects IA.SAE / CIGESCOP
	1.3 Motivation
	1.4 Objectives
	1.5 Document Structure

	2 Dynamic Vehicle Routing Problems (DVRP)
	2.1 Introduction
	2.2 Vehicle Routing Problems (VRP)
	2.3 Dynamic Vehicle Routing Problems (DVRP)
	2.3.1 Dynamic and Deterministic VRP
	2.3.2 Dynamic and Stochastic VRP
	2.3.3 Differences with Static Routing

	2.4 Disruption Management
	2.5 Taxonomy on DVRP
	2.5.1 Type of Problem
	2.5.2 Logistic Context
	2.5.3 Transportation Mode
	2.5.4 Objective Function
	2.5.5 Fleet Size
	2.5.6 Time Constraints
	2.5.7 Vehicle Capacity Constraints
	2.5.8 Ability to Reject Customers
	2.5.9 Nature of Dynamic element
	2.5.10 Nature of Stochasticity (if any)
	2.5.11 Solution Methods

	2.6 Measuring the Dynamism
	2.6.1 Absence of Time Windows
	2.6.2 Time Windows

	2.7 Problem Formulations
	2.8 Solution Methods
	2.8.1 Dynamic and Deterministic VRP
	2.8.2 Dynamic and Stochastic VRP

	2.9 Performance Evaluation
	2.10 Benchmarks
	2.11 Problem Variations
	2.11.1 Dynamic Travelling Salesman Problem (DTSP)
	2.11.2 Dynamic Vehicle Routing Problem with Time Windows (DVRPTW)
	2.11.3 Multiple Depots Dynamic Vehicle Routing Problem (MDDVRP)
	2.11.4 Dynamic Capacitated Arc Routing Problem (DCARP)

	2.12 Summary

	3 Algorithms
	3.1 Introduction
	3.2 Solution Methods
	3.2.1 Exact Methods
	3.2.2 Heuristic Methods
	3.2.3 Meta-Heuristic Methods

	3.3 Algorithms
	3.3.1 Hill Climbing Algorithm
	3.3.2 Simulated Annealing Algorithm
	3.3.3 Tabu-Search Algorithm
	3.3.4 Large Neighborhood Search

	3.4 Summary

	4 The ASAE Case-study
	4.1 Introduction
	4.2 Food and Economic Security Authority (ASAE)
	4.2.1 Economic Agent Inspection
	4.2.2 Optimising Inspections

	4.3 Big Data in food safety
	4.3.1 Data sources and data collection
	4.3.2 Big data infrastructure
	4.3.3 Data analysis

	4.4 Previous Work (IA.SAE)
	4.4.1 Problem Description
	4.4.2 System architecture
	4.4.3 Utility Function
	4.4.4 Algorithms

	4.5 Summary

	5 Problem and Proposed Solution
	5.1 Problem Description
	5.2 Problem Formulation
	5.3 Utility Function
	5.4 Geo-referenced information
	5.5 Proposed solution
	5.6 Performance Evaluation

	6 Disruption Generator
	6.1 Introduction
	6.2 Disruption Types
	6.2.1 Inspection Time Disruption
	6.2.2 Travel Time Disruption
	6.2.3 Vehicle Breakdown
	6.2.4 Inspection Breakdown
	6.2.5 Utility Changes
	6.2.6 Emergency Inspection

	6.3 Summary

	7 Implementation
	7.1 Introduction
	7.2 Routing API - Project OSRM
	7.3 Map Visualisation
	7.4 Web Application
	7.5 Data Structures
	7.5.1 Solution representation
	7.5.2 Economic operator / Depot
	7.5.3 Travel Times

	7.6 Schedules
	7.6.1 Schedule Representation
	7.6.2 Schedule Generation

	7.7 Utility Function
	7.7.1 Economic Operator's utility
	7.7.2 Solution similarity
	7.7.3 Average arrive time
	7.7.4 Unfeasible Solutions

	7.8 Solution Generation
	7.8.1 Hill Climbing Algorithm
	7.8.2 Simulated Annealing Algorithm
	7.8.3 Tabu-Search Algorithm
	7.8.4 Large Neighborhood Search
	7.8.5 Summary

	8 Results and Analysis
	8.1 Introduction
	8.2 Algorithm Comparison
	8.2.1 Result analysis

	8.3 Disruption Types Comparison
	8.3.1 Result analysis

	8.4 Full Conditions Comparison
	8.4.1 Result analysis

	8.5 Summary

	9 Conclusions and future work
	9.1 Work synthesis
	9.2 Conclusions and Results
	9.3 Limitations
	9.4 Future Development Perspectives

	A Economic Operators
	A.1 Economic Operators distribution

	B Algorithms Code
	References

