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Resumo

Os métodos espectrais estão entre os candidatos modernos mais promissores no que toca à
implementação de algoritmos de escalamento linear O (N) para a simulação de transporte
quântico e propriedades electrónicas. O objectivo desta tese é estender o seu alcance e a
aplicabilidade em várias áreas do transporte quântico.

Nos primeiros dois capítulos, começo por abordar o estado da arte e por analisar com
detalhe alguns aspectos importantes dos métodos espectrais que vão ser relevantes para o
resto da tese, tal como a decomposição de Chebyshev e a avaliação estocástica do traço.

O capítulo seguinte é dedicado a uma das principais ideias originais desta tese: o primeiro
cálculo exacto do operador auto-energia devido a desordem, com recurso a uma avaliação
extremamente precisa da função de Green desordenada média. Graças a isto, conseguimos
ver fenómenos não perturbativos de baixa energia no operador de auto-energia que podem
estar relacionados com a robustez dos modos de energia nula no grafeno.

O quarto capítulo foca-se no cálculo da resposta óptica não linear com métodos espec-
trais. Usando o formalismo de Keldysh, desenvolvo um esquema diagramático perturba-
tivo que pode ser usado directamente por métodos espectrais, estendendo a abordagem de
Weisse à condutividade AC. Este método é usado para estudar o efeito de vários tipos de
desordem no grafeno e no h-BN.

No capítulo 5, aplico uma avaliação estocástica do traço para calcular a corrente fora-de-
equilíbrio entre dois reservatórios através de uma amostra. Isto torna linear a complexidade
do cálculo da corrente de Landauer.

No capítulo final, apresento uma variação do formalismo de Chebyshev-Bogoliubov-de
Gennes que usa vectores aleatórios para calcular o parâmetro de ordem em supercondu-
tores. Isto é aplicável a impurezas dilutas e remove uma grande porção da complexidade
numérica deste tipo de cálculos.

Todos estes métodos foram implementados por mim no projecto open-source KITE, num
pacote a ser lançado numa versão futura.
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Summary

Spectral methods are among the most promising modern candidates to implement large
scale linear scaling O (N) algorithms for quantum transport and electronic properties sim-
ulations. The goal of this thesis is to extend their scope and applicability in several areas
of quantum transport.

In the first two chapters, I begin by addressing the state of the art and by analyzing in
detail some important aspects about spectral methods which are going to be relevant for
the remainder of the thesis, such as the Chebyshev decomposition and the stochastic trace
evaluation.

The next chapter is devoted to one of the main original ideas of this thesis: the first exact
calculation of the disorder self-energy operator in graphene, with resort to an extremely
finely resolved disorder-averaged Green’s function. This reveals previously unseen low-
energy nonperturbative momentum dependency of the self-energy operator which could be
related to the robustness of zero-energy modes in graphene.

The fourth chapter is centered around the calculation of the nonlinear optical response
with spectral methods. Using the Keldysh formalism, I develop a diagrammatic pertur-
bation scheme directly usable by spectral methods, to extend Weisse’s approach to linear
AC conductivity. This is used to study the effect of different kinds of disorder in graphene
and h-BN.

Chapter 5 sees the application of a stochastic trace evaluation to calculate the out-of-
equilibrium current through two leads across a sample. This turns the complexity of the
calculation of the Landauer current into a linear scaling one.

In the final chapter, I present a variation of the Chebyshev-Bogoliubov-de Gennes formal-
ism which uses random vectors to compute the order parameter in superconductors. This
is applicable to dilute impurities and removes a large portion of the numerical complexity
of this kind of calculation.

All of these methods have been implemented by myself in the KITE open-source software,
in a package that will be released in a future version.
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1 Introduction

Quantum transport is a very complex subject. While the macroscopic classical concept of
current flowing through a wire is simple to understand intuitively, the microscopic quantum
reality of electron transport is much more complicated. Electrons are subject to a plethora
of classical and quantum effects, which makes a realistic description of quantum transport
a massive undertaking.

Based on our understanding of the macroscopic world, several concepts have been in-
troduced to help break down the several effects that are going on and to characterize the
transport regime. Classically, the ballistic regime is the simplest one - electrons behave
like bullets subject only to Newton’s laws and largely unimpeded by scattering events.
However, a purely classical description of ballistic transport leads to infinite conductivi-
ties. Instead, the electrons were assumed to be in a diffusive regime, bouncing around
scatterers but otherwise behaving like gas particles in a container. This led naturally to
the use of the Boltzmann transport equation to describe them. Scattering due to defects
and impurities was treated as a phenomenological term for this equation.

In the 50s, the quantum revolution was well under way, and it was becoming clear that
disorder had a more fundamental role in quantum transport than to just mediate diffusion.
In 1957, Anderson showed that if disorder is sufficiently strong, no transport at all can take
place [10], in stark contrast to what’s expected from a diffusive behavior. This new behavior
marked a localized regime, where the wavefunctions of the system were confined to finite
regions in space and charge propagation was only possible through quantum tunneling.

Diagrammatic formulation of disorder

The formulation of a diagrammatic treatment of disorder in quantum mechanics marked an
important step in our modern understanding of electronic structure and quantum trans-
port. Kohn’s work in 1957 [11] marked one of the first uses of configurational disorder
averaging to put disorder on the same quantum mechanical ground as the rest of the sys-
tem. At that time, the Boltzmann equation was the main tool to study quantum transport
and this work put the collision term on a rigorous ground under a controlled perturba-
tive approximation. In the following year, Edwards showed how the same rationale used
in Feynman’s diagrams could also be used to study disordered one-point and two-point
correlation functions [12], paving the road for our modern approach to diagrammatics in
disordered systems. From this point on, all the powerful tools from quantum field theory
could also be used to study disordered systems.

This opened up the door for the treatment of disorder in a fully quantum mechanical
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fashion. This method also brings other benefits: it allows us to build up our intuition
on the nature of scattering events by realizing which are the most relevant diagrams for
the processes at hand. In its simplest form, this procedure is subject to the limitations
of perturbation theory and its rather common zero radius of convergence. This is why
several nonperturbative techniques exist, such as the T-matrix, self-consistent T-matrix
approximation (SCTMA), self-consistent Born approximation (SCBA). Even these ad-
vanced techniques capture just a subset of diagrams, so they might be missing something
out. Notorious elements missing from all these techniques are the crossing diagrams, which
represent quantum interference processes. In the semiclassical limit of high energies and
momenta, these should be negligible [13]. However, under some circumstances, they can
play a dominant role, such as the case of zero-energy modes existing in graphene with
vacancies. This shortcoming was evaded by using field-theoretical tools [14–16], which
correctly predicted the divergence of the DoS, but its correct scaling law is still being
debated.

The disorder self-energy Σ is the mathematical object which is able to encapsulate the
complete statistical properties of disorder in quantum systems at the level of two-point
correlation functions. It appears naturally within the context of diagrammatics as the
set of one-particle irreducible diagrams, and explains the broadening of spectral lines as
complex shifts of the poles of the correlators. While precise, this mathematical definition
hides its relation to the mean free path of electron transport. This connection appears
when considering the dominant subset of terms contributing to diffusive transport, and
matches the collision term appearing in Boltzmann’s equation. This is why the disorder
self-energy can be used to estimate the mean free path ℓ of electrons as Σ ∼ ivF /ℓ where
vF is the Fermi energy.

Steady state transport

The Kubo formula [17–19] marked the first fully quantum-mechanical formula for quantum
transport, in the sense that it could include disorder in the Hamiltonian. Despite being
exact to linear order, it was difficult to use for practical calculations, and in its early years
it merely served as a validation for Boltzmann’s equation. Before it was of mainstream
use, it required several simplifying iterations. In the next year, Greenwood applied it
to independent electrons, in what is now called the Kubo-Greenwood formula [20], and
by 1965 Kubo had developed his formula into a fully fledged formalism [21] to study
galvanomagnetic effects at very strong fields. Also in the same topic, Bastin [22] and
Streda [23] formulated it in terms of Green’s functions, which is the form best known today.
Further improvements were made by separating the Kubo formula into several distinct
contributions, in the Kubo-Streda formula [24] and still to this day new decompositions
are being developed [25].

At around the same time as Kubo’s formula was published, Landauer proposed that
conduction could be interpreted as a transmission problem [26] and described through a
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transmission probability T (E). This brings the physically intuitive picture of two probes
(or leads) connected to a sample which scatters electrons travelling from one lead to the
other. Later, Büttiker [27] generalized this setup to a multiprobe scenario. The very same
problem was approached from a different point of view by Caroli [28]. Motivated by recent
experimental results on tunneling currents through two metals separated by a thin oxide
layer [29, 30] and Bardeen’s initial theoretical work on that aspect [31], Caroli used the
machinery of the recently developed non-equilibrium Keldysh formalism [32] to develop a
formula for the current across two contacts in terms of Green’s functions. This was made
possible thanks to Keldysh’s seminal work, because a current flowing across two leads
cannot be described in terms of just equilibrium Green’s functions.

Caroli’s formula required knowledge of the surface Green’s functions of the leads and the
full Green’s function of the device. In the 80s, a very efficient means of calculating each of
these objects was developed. Sancho utilized an extremely efficient decimation method to
compute the surface Green’s functions [33], while MacKinnon [34] utilized the Recursive
Green’s Function method (RGF) to recursively construct the device’s Green’s function out
from one lead to the other. Originally, this method was used as a means to obtain the
localization length, but later it made its way into the Caroli formula, having further been
generalized to more complicated lattices [35].

As years progressed, and as devices became ever smaller, it became important to un-
derstand exactly what was going on with the current inside the device, not just across it.
Interest started shifting towards the local current profile. In the late 90s, Nonoyama [36]
used Keldysh’s formalism to study the local current profile inside a constricted sample for
the first time. A few years later, Cresti [37] applied it to a disordered sample inside a
magnetic field, providing some beautiful numerical evidence for the random path followed
by the current and solidifying the formalism. This work was part of a generalized renewed
interest in the field motivated by experimental results using a scanning probe microscope
to map the spatial profile of the current in a 2D electron gas. Later works by Nikolic and
Zârbo extended this mapping procedure to spin currents [38] and to Dirac materials when
graphene was discovered [39].

At around the same time, interest was also growing in obtaining not just the steady state
current but also the full current in time, a field pioneered by Jauho and Wingreen [40] using
the Keldysh nonequilibrium Green’s function in the 90s. Several numerical schemes were
invented to deal with the resulting equations, among which Croy’s [41–43] which sets up
an equation of motion for the current matrices in terms of the self-energies and is among
the most efficient ones. This has been used to study the emergence of Bloch oscillations
[44, 45] in a two-probe system.

In all of these situations, infinite leads were a requirement. The continuous spectrum of
the leads is responsible for the steady state of the current for long times. It is also this
requirement that is responsible for the kinds of methods used to calculate the current across
a sample. If the leads were finite, one could simply perform a unitary time evolution of the
system and read off the current when it reaches the steady state, opening up a plethora
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of different methods. Therefore, this begs the question: just how large do the leads need
to be? This question was approached for the first time in 2004 [46–49] in the context of
time-dependent Density-Matrix Renormalization Group (DMRG). Later, this method was
applied to quantum transport along 1D chains and analyzed in detail by Pires [50]. Due to
the finite nature of the leads, the steady state cannot last forever and is instead understood
as a quasi-steady state.

Optical transport

Frequency-resolved measurements such as the optical conductivity provide yet another
probe into the materials’ electronic and transport properties. The advent of the laser in
1960 marked the beginning of intense investigation in both the linear and the nonlinear
optical response of materials. The intense electric fields provided by the laser took the
optical response away from the linear regime and into the realm of nonlinear optics. From
this point on, the flood gates were open. In 1961, P. Franken [51] was able to experimentally
demonstrate second harmonic generation (SHG), in 1962 Bass [52] demonstrated optical
rectification, and even higher order phenomena were demonstrated in 1967 by New and
Ward [53]. A systematic theoretical study of the field ensued, and it was quickly realized
that the higher-order terms in the susceptibility tensor calculated perturbatively were
plagued by zero-frequency divergences. This is to be expected in a metal treated without
scattering mechanisms, but semiconductors were suffering from the same fate. It was later
realized that these kinds of divergences were unphysical and could be eliminated through
a clever manipulation of the formulas in some particular cases [54]. The unphysical nature
of these divergences was identified as coming from the interband contribution of filled
bands to the optical conductivity, and this was the motivating reason for the development
of a formalism which separated both contributions from the start [55]. This work was
motivated by the first numerical full-band studies of the nonlinear optical conductivities
of ZnSe, ZnTe and CdTe crystals, which started appearing in the 90s [56].

Graphene brought upon this field a surge of renewed interest because of its very strong
nonlinear response and potential optical applications such as frequency multiplication [57–
59]. The first numeric studies utilized the Dirac approximation [60, 61] but the strong
nonlinearities and discrepancy with experiments demanded a better approach, which in-
cluded band effects. Conflicting analytical results between the length and velocity gauges
in the literature motivated the first time-resolved full-band simulations [62], free from any
spurious perturbative artifacts. Subsequently, in a series of papers by Ventura and Passos
[63, 64], it was made clear how to make both gauges compatible to any order.

The characterization of disorder in optical conductivity is much less developed than its
clean counterpart. The first studies in disordered systems were done using scaling argu-
ments [65, 66], but the first numerical AC signatures of the Anderson transition began
in the 90s with direct diagonalization [67] and later using the forced oscillator method of
solving the Schrödinger equation [68]. The behavior close to ω = 0 was notoriously difficult
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to study because it requires it requires optical transitions between energy levels which are
very close. Computational limitations at the time, as well as level repulsion made this a
difficult task, limited to very small systems (≈ 303). In 2004, Weisse developed a linear
scaling basis-independent algorithm for the computation of the linear optical conductiv-
ity [69, 70] which, coupled with the relentless increase in computational efficiency at the
time, enabled the unprecedented simulation of lattices of size 1003. Since then, optical
conductivity applications were largely based on Weisse’s work for the real part of the op-
tical conductivity [71, 72]. The next methodological leap came by João in 2019 [2], which
set up the framework to extend Weisse’s work to the complex optical conductivity and to
higher orders in the perturbation extension. Most recently, this method has been used to
investigate the relevant parameters to nonlinear optical responses [73].

Superconductivity

The history of superconductivity starts in the Netherlands in H. K. Onnes’ lab when, for the
first time in history, liquid Helium was produced on 10th of July of 1908 at a temperature
of just 4K. Being able to produce and store liquid Helium at these temperatures opened
up the possibility to test physical theories on materials at their extreme limits. In the
years that followed this breakthrough, many experiments were performed to obtain data
at this new range of temperatures. One of the most noticeable of these was the discovery
in 1911 (also by Onnes) of superconductivity [74]. The liquefaction of liquid Helium and
its consequences earned Onnes the 1913 Nobel prize.

Superconductivity is arguably one of the most striking and important effects in Con-
densed Matter Physics. Since 1911, a tremendous amount of effort has been put into its
explanation, among which the highly successful phenomenological Ginsburg-Landau the-
ory and the microscopic BCS theory [75] (1957) (Nobel 1972). The advance in theoretical
understanding of the superconductivity phenomenon since its discovery was shaped by
several key experiments which provided some clues into what’s going on in a microscopic
level.

1. The exponential decay of the specific heat at low temperatures was one of the very
first indications that the new state had a gap in the energy spectrum

2. In 1933, Meissner discovered that the superconductor repelled magnetic flux below
the critical temperature, the so-called Meissner effect, making it a perfect diamagnet.
This couldn’t be explained by perfect conductivity alone, so perfect conductivity
couldn’t be the fundamental mechanism driving the microscopic phenomena.

3. Another key observation was the isotope effect in 1950. Experiments carried out on
various isotopes of mercury showed a very characteristic dependence of the critical
temperature on the isotope mass, Tc ∼ M−1/2. In a stationary lattice, the mass of
the ions shouldn’t affect the electronic and transport properties of the material, so
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this was an indication that lattice vibrations - phonons - were playing a critical role
in the formation of the superconducting state [76–78].

In the same year, H. Fröhlich put forward a theory explaining how an effective attraction
between electrons may arise from their interaction with the underlying lattice [79]. Now we
know that the main mechanism is an attractive interaction between electrons mediated by
phonons: as electrons move through the medium, they attract the atoms in the material,
which causes an effective positively charged electric field around the electron and which
attracts other electrons. This causes pairing between time-reversed electrons (the Cooper
pairs) and opens an energy gap, which explains the robustness.

The superconducting state is very sensitive to thermal agitation. Once the thermal ex-
citations exceed a certain threshold, the Cooper pairs are broken up and the material loses
its superconductivity, so superconductivity typically happens at extremely low tempera-
tures near absolute zero. For a while, it was thought that there was a theoretical maximum
critical temperature of 40K for superconductivity within the BCS picture [80], attainable
by alloys. In 1986, research by Bednorz and Müller [81] (Nobel 1987) into copper oxides
revealed unconventional superconducting phases with critical temperature above 35K. In
the next year, the BCS prediction had already been shattered. Nowadays, superconductors
with Tc above 250K exist, albeit under very high pressures (170 GPa). These materials
are dubbed unconventional superconductors because they cannot be explained by the BCS
theory alone. The latest surprise came in 2018 when it was found that twisted bilayer
graphene could display superconductivity [82].

Understanding high temperature superconductivity is still one of the major challenges
of modern Condensed Matter Physics. Several other mechanisms have been proposed as
being responsible for superconductivity, such as plasmon-mediated superconductivity [83]
and the Resonating Valence Bond theory put forward by Anderson [84], but this is still
a topic of huge debate. A lot of work is also being developed in the study of disordered
superconductors, as it is hoped that understanding the mechanisms that destroy super-
conductivity may shine some light on the physics behind it. One of the most important
experimental techniques for this is scanning tunneling microscopy (STM), which allows
probing of the local density of states (LDoS) in a material. In the late 90s and early 2000s,
STM studies [85] carried out around impurities in superconductors brought the theoretical
necessity to describe the LDoS of inhomogeneous superconductors in an efficient manner.

From the theoretical side, several approaches have been developed to tackle inhomo-
geneous superconductors. In [86] the authors use the Coherent Potential Approximation
(CPA) to obtain the disordered self-energy as a stepping stone for the calculation of other
quantities. They use an alloy disorder - a local energy εA with a certain concentration c

or εB with concentration 1 − c. The innovation in this paper comes from using an order
parameter that may be different in a A site or B site and imposing self-consistency condi-
tions on both. This method is unable to capture interference between impurities as it relies
on the CPA, and the self-consistency is only satisfied on average. The authors improve
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on this method by considering a cluster approach in another paper [87] and are able to
adequately obtain a resonance near E = 0 in the DoS, just like in Pan’s STM studies [85].
In this paper, they allow the self-energy to vary in discrete steps in the first Brillouin zone
(FBZ). In fact, a lot of the work developed at this time relied on very elaborate schemes
to perform the self-consistent calculation of the Bogoliubov-de Gennes (BdG) equations in
the presence of disorder, obtain the self-energy and then the DoS and LDoS.

More recently, spectral methods have begun to be used instead in the numerical inves-
tigations [71, 72, 88–91], allowing not only the computation of the DoS immediately, but
also (and very importantly) the LDoS and the attention of research has converged in this
direction. This is the recurring theme of this thesis: because spectral methods avoid the
need for an exact diagonalization by sacrificing the fine details of the spectrum, a large
computational improvement is achieved. Superconductors benefit from this greatly, be-
cause the order parameters no longer need to be calculated with exact diagonalization.
Self-consistency still has to be enforced for the order parameter at every point in space,
and that remains one of the main sources of computational complexity in these problems.

The need for larger simulations

A common thread here is the growing trend towards equations amenable to numerical
computations - not analytical ones, which was made possible thanks to the exponential
increase in computational resources in the last decades. In the late 1800s, scientists would
work in their labs, experiments in tandem with theory. Nowadays, computers have become
the numerical laboratory for theoreticians, where their theories can be tested and simulated
in unpredecented scales, before even making it into the real experimental laboratory. The
search is two-fold, as it becomes increasingly important to look not just for useful theories,
but also efficient algorithms with which to test them.

For this reason, the numerical scaling of the methods is critical. For example, the
numerical complexity of the RGF method for the conductance scales as LW 3, where L is the
length of the sample and W is its cross section area (or width in the 2D case), enabling very
efficient computations for long systems but not so much so for wide ones. While Sancho’s
[33] and MacKinnon’s [34] contributions from the 80s were instrumental to increase the
performance of the method, they are still bounded by this scaling. Under some specific
circumstances, it is possible to reduce the scaling to LW 2, but in exchange for a very large
RAM consumption [92, 93]. Ideally, one would like a LW scaling, making it a linear scaling
algorithm (order O (N)) in line with those used with Kubo’s formula and its derivates as
done by Weisse [3, 5, 69, 94, 95]. Recent steps towards this goal have already been taken.
With regards to the lead-sample-lead setup, if the number of transport channels of the
leads is small comparatively to the number of sites in the sample, a continued fraction
of the sample’s Green’s function can be performed for each matrix element between the
leads [96]. Each of these matrix elements is an order O (N) computation. Alternatively,
the Green’s function can be evaluated with the Chebyshev Polynomial Green’s Function
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(CPGF) method [5, 94] for the same effect.

KPM and Spectral methods

In this thesis, I want to specifically focus on one kind of numerical applications to not only
quantum transport but also some electronic properties - spectral methods. In one way or
another, the investigations described in the previous paragraphs converged to the usage of
spectral methods, and this has revealed to be one of the most promising numeric fields at
the current time for large-scale quantum transport simulations.

This field was effectively started in 1984 by Tal-Ezer and Kosloff [97] as an efficient way
to evolve the quantum states in time, an alternative to Euler’s method or second-order
Taylor approximations of the time-evolution operator. The Chebyshev expansion of the
time-evolution operator led to a massive increase in stability and efficiency. They have
devoted a lot of work into numerical methods to evolve both time-independent and time-
dependent Hamiltonians [98]. In 1994, Silver [99], seemingly unaware of Tal-Ezer’s work,
also applied the idea of Chebyshev expansion to the Dirac delta operator in the density
of states Tr [δ (ε−H)], convolving the pathological operator with a kernel to regularize
it. By itself, this already represents a fundamental shift in ideology. Instead of requiring
perfect knowledge of the position of every single eigenvalue, the usage of a regularized
kernel smoothens the Dirac delta, introducing an effective resolution. This also allows the
usage of the full Hamiltonian, including disorder.

The efficient tradeoff between numerical resolution and numerical efficiency is one of
the ingredients that makes the Kernel Polynomial Method (KPM) so powerful. The trace
itself was calculated with a novel method at the time - the Stochastic Evaluation of the
Trace (STE), which was being used to compute moments of operators. The innovation here
was using Chebyshev polynomials, with much greater convergence properties. Instead of
calculating all the matrix elements for the trace, random vectors were used. In average, the
result is the same, and the efficiency gain from using random vectors is immense, despite
their stochastic nature. Both these ingredients represent a shift in numerical simulations
nowadays: Chebyshev expansion of operators and STE.

Weisse’s work [69] for the optical conductivity marked another leap for KPM, as the
optical conductivity required a double Chebyshev expansion, one for each of the Dirac
deltas in the formula, and it was the first application to response functions. In the mean
time, Chebyshev expansions, STE and KPM (henceforth collectively called Spectral Meth-
ods) have found applications in many places [100], ranging from nonperturbative disorder
phenomena [16, 94], topological materials [6, 101, 102], superconductivity [71, 72, 89] and
many more.

Goal of the thesis

In this thesis, I am going to bring spectral methods into several new areas and extend
them in others. I’m going to begin with an introduction to spectral methods in Chap-
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ter 2. In Chapter 3, I develop one of the main original ideas of this thesis: the first
complete calculation of the disorder self-energy operator in graphene, with resort to an
extremely finely resolved disorder-averaged Green’s function. This reveals previously un-
seen low-energy nonperturbative momentum dependency of the self-energy operator which
could be related to the robustness of zero-energy modes in graphene. Chapter 4 is de-
voted to the development of a diagrammatic formalism based on the Keldysh formalism
to obtain higher-order optical conductivity tensors compatible with spectral meth-
ods. In Chapter 5, I followed Pires [50] and generalized the computation of the nonlinear
Landauer conductance with finite leads for arbitrary lattices and dimensions, introducing
STE to compute the current and Chebyshev expansions to compute the Fermi and time-
evolution operators, turning it into an order O (N) process to calculate the conductance
in real space. In the final Chapter 6, motivated by Moradian’s paper and the imposition
of self-consistency on average, the main goal of this chapter is to develop a new method of
average self-consistency that takes into account a lot more detail about the order param-
eters around the impurities. I developed a new way to treat disorder in superconductors,
by isolating the regions of highest variation of the order parameters and establishing a
self-consistent equation for the average between them. All of these have been implemented
by myself in the KITE open-source software [3], in a package that will be released in a
future version.

Preliminaries

Figure 1.1: Structure of a generic unit cell.

All of the systems explored in the course
of this thesis are described in the tight-
binding framework and assume a uni-
form underlying regular lattice (finite, with
or without periodic boundary conditions).
This structure is used to specify the Hamil-
tonian, which is then used to calculate
Green’s functions, time evolution opera-
tors, etc. To calculate all of these opera-
tors, the most essential and common oper-
ation required is the successive product of
the Hamiltonian matrix by a certain vector
within the Hilbert space, that is, a matrix
vector multiplication (MVM). Naturally, it
is of critical importance to make this operation as efficient as possible. Since we are only
interested in sparse Hamiltonians of relatively regular lattices, we decided to implement
a rigid lattice structure upon which disorder is added which does not interfere with the
lattice structure, such as vacancies, local disorder and bond disorder. This predictability
removes all the redundancy of storing the Hamiltonian in memory and simplifies the par-
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1 Introduction

allelization process as well. This section intends to unify and clarify the description of all
the systems explored in this thesis.

The smallest building block is the unit cell (see Fig. 1.1), which is codified by specifying
the primitive vectors and can contain several sites inside. For the remainder of this thesis,
we shall refer to the degrees of freedom inside the unit cells as “orbitals”. This denomination
encompasses sites at different positions, spin and orbital (in the proper atomic sense)
degrees of freedom. The unit cell is repeated along every direction a certain number of
times. Let n be the number of orbitals per unit cell, and Ni be the number of times the
unit cell is repeated in each direction ai, for a total of N =

∏
iNi unit cells. Periodic

boundary conditions may be utilized in any set of directions.

Figure 1.2: Structure of a generic lattice constructed with the previous unit cell. This
particular 2D lattice has periodic boundary conditions along the 1 direction,
but open boundary conditions along the 2 direction.

The many-body Hamiltonian is defined with this lattice structure in mind:

H =


c†1
c†2
...
c†n


T 

H11 H12 · · · H1n

H21 H22 · · · H2n

...
...

. . .
...

Hn1 Hn2 · · · Hnn




c1

c2
...
cn

 =
n∑
ij

c†iHijcj

where each Hij is a sparse N ×N matrix and c†i (ci) is a vector of creation (annihilation)
operators in orbital i, also of dimension N . The Hamiltonian can be written out explicitly
as

H =
n∑
ij

∑
RR′

HRR′
ij c†R,icR′,j

10



where R and R′ index the unit cells and i and j index the orbitals of those cells, respectively.
Here, c†R,i (cR,i ) creates (annihilates) an electron in orbital i at unit cell R.

Disorder is described with this structure in mind. For the purposes of this thesis, only
disorder which preserves this structure is considered. This includes vacancies (which sim-
ply remove some sites, but otherwise leaves the lattice intact), local (Anderson) disorder
and bond disorder. Coincidentally, these are precisely the kinds of disorder implemented
in KITE. The strict regularity of this description allows for some impressive numerical
performance gains and for more straightforward parallelization schemes. For example, the
predictability of the Hamiltonian allows it to be stored in memory by simply specifying
how each unit cell connects to the next. Vacancies are stored as individual positions (a
small number compared to the size of the Hilbert space). The only thing that has to be
stored explicitly is the local disorder.
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2 Introduction to spectral methods

There is a recurring theme in this thesis: the usage of random vectors to calculate transport
quantities usually incurs in impressive performance gains because it allows the quantities
to be calculated with simple matrix vector multiplications (MVM). This is formalized
under the name “Spectral Methods”, and the point of this chapter is to provide a broad
overview of their usage while particularizing for the cases that are going to be studied in
the remainder of the thesis.

2.1 General overview

To get a better grasp of the usefulness of spectral methods, let’s begin by analyzing a
simple example. Suppose we want to calculate the density of states (DoS) of a 3D tight-
binding cubic lattice, associated with a single-particle Hamiltonian H. For concreteness,
let’s assume periodic boundary conditions and a lattice of dimensions Nx × Ny × Nz for
a total Hilbert space of dimension N . The DoS is normalized to one and is calculated as
such:

ρ (ε) =
1

N

∑
n

δ (ε− εn) ,

where εn is the eigenenergy associated with the eigenvector |n⟩ of H. We have several op-
tions to compute the DoS. The most straightforward way is to diagonalize the Hamiltonian
and to build the histogram of the eigenvalues. It is also the most inefficient, because the
numerical complexity of this process is O

(
N3
)

using standard diagonalization algorithms.
For translation-invariant systems, the Hamiltonian is easily diagonalizable, and the DoS
can be expressed as an integral over the First Brillouin Zone (FBZ):

ρ (ε) = Vc

∫
FBZ

d3k

(2π)3
δ (ε− ε (k))

where ε (k) is the dispersion relation and Vc denotes the volume of the 3-dimensional unit
cell. For these kinds of purposes, the Dirac delta is resolved as the imaginary part of a
Green’s function, and this integral has to be repeated for every energy. What if we have a
large system without translation invariance? Under these circumstances, one of the most
efficient ways to compute the DoS is through a stochastic evaluation of the trace in real
space.

13



2 Introduction to spectral methods

Let’s begin by expressing the DoS as a trace:

ρ (ε) =
1

N
Tr [δ (ε−H)]

or, choosing a basis of positions R in real space,

ρ (ε) =
1

N

∑
R

⟨R| δ (ε−H) |R⟩ .

The first problem that we have to solve is how to calculate these matrix elements. A direct
evaluation of the Dirac delta matrix is out of the question because it requires going into
the eigenbasis of H, so an alternative is required. Thus, the Dirac delta is expanded as a
polynomial series of the Hamiltonian that composes it 1:

δ (ε−H) =

∞∑
n=0

∆n (ε)Tn (H) .

where ∆n (ε) is a coefficient and Tn (H) is the n-th order Chebyshev polynomial. Any set
of orthogonal polynomials can be used, but Chebyshev polynomials are especially useful
because of their convergence properties. In practice, the sum is carried out to finite order
M once the desired accuracy has been achieved. Since these are polynomials, their action
on |R⟩ is easy to calculate, unlike δ (ε−H). Therefore, the problem now comes down to
evaluating ⟨R|Tn (H) |R⟩ for all R and n.

This sum over R can be avoided by resorting to random vectors. Let |ξ⟩ be a vector
defined in the whole Hilbert space with random independent entries ξR, as

|ξ⟩ = 1√
N

∑
R

ξR |R⟩ ,

where each ξR is taken from a distribution of average zero and variance 1. Then, ρ can be
obtained as an average:

ρ (ε) =
M∑
n=0

∆n (ε) ⟨ξ|Tn (H) |ξ⟩

where the line above denotes average over random vectors and ⟨ξ|Tn (H) |ξ⟩ is defined as
the n-th order Chebyshev moment µn. Later, we will see that the number NR of random
vectors required to have a statistically significant DoS is very small; in some cases only one
is needed.

We are now in conditions to understand why KPM is so powerful. First, let’s look at the
product Tn (H) |ξ⟩ more carefully. Chebyshev polynomials satisfy a recurrence relation.
Let |ξn⟩ = Tn (H) |ξ⟩ be the result of the n-th Chebyshev operator acting on the random
vector. Then, thanks to the recurrence relation of these polynomials, we can also establish

1Later we will see why this is justified, but for now one can imagine the Dirac delta being approximated
by a Lorentzian, which can then be expanded.
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2.2 Chebyshev polynomials of the first kind

a two-step recurrence relation between all the |n⟩:

|ξ1⟩ = H |ξ⟩

|ξn+1⟩ = 2H |ξn⟩ − |ξn−1⟩ .

This means that to get to |ξM ⟩, we only need to operate with the Hamiltonian M times.
If the Hamiltonian is sparse, then this is an operation of complexity O (N). Overall,
the numerical effort to compute all the required Chebyshev momenta is an operation of
complexity O (NNRM). The final step is to sum the momenta for all the energies

ρ (ε) =

M∑
n=0

∆n (ε)µn,

which is an operation of complexity O (NEM), where NE is the number of energy points.
Using the fact that typically NR ≈ 1 and that the final step of resuming the DoS is very
quick and model-independent, we arrive at the final complexity of O (NM). This is valid
for sparse but otherwise arbitrary Hamiltonians, even in the presence of disorder. Part of
the extraordinary efficiency of this method is due to the Chebyshev moments not depending
on energy.

In the next sections, I want to delve deeper into several of the properties shown here.

2.2 Chebyshev polynomials of the first kind

Chebyshev polynomials of the first kind feature in some of the most efficient numerical
methods available. They can be defined most simply by

Tn (cos (θ)) = cos (nθ) , (2.1)

or, equivalently,

Tn (x) = cos (n arccos (x))

and so are only defined in the domain −1 ≤ x ≤ 1. Since n is an integer, this expression
can be simplified to simple polynomials in x. The first few polynomials are:

T0 (x) = 1 T3 (x) = 4x3 − 3x

T1 (x) = x T4 (x) = 8x4 − 8x+ 1

T2 (x) = 2x2 − 1 T5 (x) = 16x5 − 20x3 + 5x

and are represented in Fig. 2.1.

Because of eq. 2.1, Chebyshev polynomials have a deep connection to Fourier series and
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2 Introduction to spectral methods

Figure 2.1: First few Chebyshev polynomials.

most of their properties derive precisely from them. For example, the cosine property

cos ((n+ 1) θ) + cos ((n− 1) θ) = 2 cos (nθ) cos (θ)

is directly responsible for their recurrence relation

Tn+1 (x) = 2xTn (x)− Tn−1 (x)

where x can be recognized as T1 (x). The orthogonality between cosines

∫ π

0
dθ cos (nθ) cos (mθ) =

π

2
δnm (1 + δn0)

is responsible for the orthogonality relation between Chebyshev polynomials

2

π

∫ 1

−1

dx√
1− x2

Tn (x)Tm (x) dx = δnm (1 + δn0) .

The orthogonality relation is what allows us to expand any integrable function defined in
the −1 ≤ x ≤ 1 domain as a series of Chebyshev polynomials:

f (x) =

∞∑
n=0

anTn (x) (2.2)

where

an =
2

π

1

1 + δn0

∫ 1

−1

dx√
1− x2

Tn (x) f (x) . (2.3)

Another common way to express this expansion is by factoring out the square root, for
the so-called b coefficients

f (x) =
1√

1− x2

∞∑
n=0

bnTn (x) (2.4)
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2.3 Convergence

where

bn =
1

1 + δn0

2

π

∫ 1

−1
Tn (x) f (x) . (2.5)

Both are equally valid and the choice of which to use comes down to a matter of convenience
to find the coefficients.

2.3 Convergence

With regards to pointwise convergence, if f is differentiable at x, then the sum 2.2 con-
verges. If f has a jump discontinuity but has right and left derivatives, then the sum
converges to the average of f at the jump. However, it may not converge at the same rate
for every point, and the series will in general converge slower in points closer to where its
derivative is not continuous, or at discontinuities. This discrepancy in convergence speed
is the origin of Gibbs oscillations when the sum is truncated at a finite number of terms
M .

Gibbs oscillations are a manifestation of the lack of uniform convergence, and the condi-
tions for their mitigation are important in several fields2. One of the simplest modifications
that can be done to the truncated series is to tweak the expansion coefficients by the use
of weights gn, as such:

fKPM (x) =

N∑
n=0

gNn anTn (x) (2.6)

This Chebyshev approximant fKPM can be expressed as a convolution of f (x) with a kernel
K (x, y), and so in this sense the kernel polynomial method is understood as a controlled
approximation: we know the exact form of the function that is being approximated. This
kernel can be calculated by replacing the expression for an back into eq. 2.6 and factoring
out the original function:

fKPM (x) =

∫ 1

−1

[
2

π

1√
1− t2

∞∑
n=0

gNn
Tn (t)Tn (x)

1 + δn0

]
f (t) dt.

The quantity inside brackets is the kernel

K (t, x) =
2

π

dt√
1− t2

∞∑
n=0

gNn
Tn (t)Tn (x)

1 + δn0

and provides a way to calculate the approximant:

fKPM (x) =

∫ 1

−1
K (t, x) f (t) .

2In the late 1800s, when analytical machines were used to sum Fourier series, they would often overshoot
the curves they were supposed to represent because of the Gibbs phenomenon, but since this wasn’t
understood, it was instead attributed to malfunctioning.
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2 Introduction to spectral methods

Different choices of weights gNn give rise to different kernels and therefore different approx-
imants. The most common weights are the following

Dirichlet gND,n =

1 if n ≤ N

0 if n > N
(2.7)

Féjer gNF,n = 1− n/N (2.8)

Jackson gNJ,n =
(N − n+ 1) cos

(
πn
N+1

)
+ sin

(
πn
N+1

)
cot
(

π
N+1

)
N + 1

(2.9)

Lorentz gNL,n =
sinh (λ (1− n/N))

sinh (λ)
(2.10)

The Dirichlet weight is the one implicitly used when truncating the series at N . The
Féjer weight [103] is of historical importance because its introduction to the partial sum
ensures uniform convergence of the series if the function is continuous, and gets rid of the
Gibbs oscillations at discontinuities. It is not necessarily the most useful one for KPM. In
order to approximate the DoS, for example, the Féjer weight results in considerable tails
from one peak to the other, so the Jackson weight is preferable. It ensures positivity and
minimizes the tails of the peaks. The Lorentz weight is especially useful to approximate
Green’s functions, but since we are considering an explicit broadening instead of the more
pathological i0+ limit, it is of no use here. See [95] a detailed analysis of the weights and
the resulting kernels. In the next sections, we will proceed with a numerical analysis of
the several weights in the relevant functions being approximated.

2.3.1 Comparison with Taylor series

To really appreciate the power of Chebyshev expansions, it is interesting to compare them
against another popular expansion approach, the Taylor series. Consider the Cauchy curve
f (x) defined between −1 and 1 as defined by

f (x) =
1

x2 + σ2

with σ = 1/2. This curve has poles in the complex plane when x = ±iσ, which means
that the Taylor series around x = 0 has radius of convergence σ. This is problematic if
we want to accurately approximate f (x) in the whole domain. Chebyshev series have no
such problem, as can be seen from Fig. 2.2.

The Chebyshev series is able to accurately describe the Cauchy curve despite of its poles,
unlike the Taylor series which is only able to do so within the radius of convergence. On the
flip side, Chebyshev expansions are confined to the real axis. Attempting to approximate
f (z) at points outside of the real axis between −1 and 1 results in divergence, as shown
in Fig. 2.3.

This example was specifically chosen for the Taylor series to fail, but the Cauchy curve
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2.4 Chebyshev expansion for operators

Figure 2.2: Comparison between a Taylor expansion and a Chebyshev expansion using
N = 100 polynomials for each.

is simply the imaginary part of the resolvent, so this is actually of practical importance for
the calculation of the Green’s functions. A similar problem would happen for discontinuous
functions like the zero-temperature Fermi-Dirac distribution, since they are not analytical
at the discontinuity.

2.4 Chebyshev expansion for operators

So far, the discussion has been focused on functions defined on the domain −1 ≤ x ≤
1, which is where the Chebyshev polynomials are defined. For applications in quantum
mechanics, we want to be able to extend this notion to operators. Namely, we want to
express a function f of an operator H as a series of Chebyshev polynomials of this operator:

f (H) =

∞∑
n=0

fnTn (H) .

Usually, this operator is going to be the Hamiltonian, so we can assume that it is hermitian
and diagonalizable. Then, we can use its eigenbasis |a⟩ with eigenvalues εa to understand
how to perform this decomposition. In this basis,

f (H) =
∑
a

∞∑
n=0

fnTn (εa) |a⟩ ⟨a| (2.11)

and so the same Chebyshev expansion that was used for regular functions can also be
used for matrices, so long as their spectrum is real and within the interval −1 < εa < 1.
Hermiticity makes sure that εa is real, but we have to rescale the matrix to ensure the
bounds are correct. Let’s assume that the smallest and the largest eigenvalues of the
matrix are εA and εB, respectively. Usually, one has an estimate for these bounds, but
if not, they can be found in a relatively efficient fashion with a Lanczos procedure. The
spectral half-width is ∆ = (εB − εA) /2, and their average is δ = (εA + εB) /2. Then, the
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2 Introduction to spectral methods

Figure 2.3: Comparison between a Taylor expansion and a Chebyshev expansion in the
complex plane for different numbers of polynomials.

rescaled matrix
H̃ =

H − δ

∆

has all eigenvalues between −1 and 1, necessarily including the boundaries. The boundaries
are to be avoided, because small numerical instabilities can place the eigenvalues outside
this interval, and compromising the Chebyshev expansion. Therefore, one should always
use a slightly larger value for ∆, defined as ∆ = (εB − εA) /2 + ε, where ε should be a
small number, of the order of 0.01. This ensures that the spectrum lies within −1 + ε and
1− ε.

To see how this rescaling works in practice, let’s analyze what happens to the Fermi
operator. Let’s assume that we want to compute the trace of the Fermi operator at a given
inverse temperature β and chemical potencial µ for a Hamiltonian H that is to be rescaled:

Tr (fβ,µ (H)) = Tr
[

1

1 + exp (β (H − µ))

]
.

Let the tilde ∼ denote the rescaled quantities and define µ̃ = (µ− δ) /∆ and β̃ = ∆β as
the rescaled chemical potential and inverse temperatures, respectively. Then, the previous
expression is equivalent to

Tr (fβ,µ (H)) = Tr

 1

1 + exp
(
β̃
(
H̃ − µ̃

))
 = Tr

(
fβ̃,µ̃

(
H̃
))

which is the expression that should be expanded in Chebyshev polynomials.
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2.5 Chebyshev expansion for known functions

2.5 Chebyshev expansion for known functions

In this section, I want to explain the Chebyshev expansions that are going to be required
for the remainder of the thesis and go into some detail about their convergence properties.

2.5.1 Dirac delta

The Dirac delta is required in most of the spectral applications of KPM, like the DoS and
the various variations of the Kubo formula. Let us look for an expansion of the form

δ (x− y) =
∞∑
n=0

∆n (x)Tn (y) (2.12)

Applying the orthogonality condition 2.3 and using the properties of the Dirac delta, we
immediately find

∆n (x) =
2

π
√
1− x2

Tn (x)

1 + δn0
. (2.13)

The alternative expansion is found in a similar way, but using 2.5

δ (x− y) =
1√

1− y2

∞∑
n=0

∆b
n (x)Tn (y)

∆b
n (x) =

2

π

Tn (x)

1 + δn0
.

The only difference between the two is that the square root has a different variable in it.
For applications to quantum mechanics, the first expansion is the most useful, because y is
to be replaced by an operator. While a polynomial of this operator is simple to calculate,
the inverse of the square root is not.

2.5.2 Complex exponential

The complex exponential features in the time evolution operator of time-independent
Hamiltonians. We want to find the following decomposition

eizx =
∞∑
n=0

un (z)Tn (x) (2.14)

for complex z. The un can be determined as per usual, using 2.2 alongside the change of
variable x = cos (θ) and identifying the integral as the definition of the Bessel function,
but there is another way. Consider the expansion of plane waves of wave vector k into
cylindrical ones

eik·r =
∞∑

n=−∞
inJn (kr) e

inθ
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2 Introduction to spectral methods

where k · r = kr cos (θ). Letting z = kr and using J−n (t) = (−1)n Jn (t), we get the
Jacobi-Anger expansion

eiz cos(θ) = J0 (t) + 2
∞∑
n=1

inJn (z) cos (nθ)

or

eiz cos(θ) =
∞∑
n=0

2

1 + δn0
inJn (z) cos (nθ)

which is actually valid for complex z. From here, defining x = cos (θ), this expression
immediately provides the desired Chebyshev expansion, where

un (z) =
2

1 + δn0
inJn (z) .

The properties of this expansion coefficient are therefore provided by the Bessel functions.
Taking z to be real, we obtain the Chebyshev expansion of the imaginary exponential.

2.5.3 Green’s function

The Green’s function is very closely related to the previous two. Let z be a complex
number and x a real number. We want to find the following expansion:

g (z) =
1

z − x
=

∞∑
n=0

gn (z)Tn (x) .

where the coefficients gn (z) can be found through

gn (z) =
2

π

1

1 + δn0

∫ 1

−1

dx√
1− x2

Tn (x)
1

z − x
.

=
1

π

1

1 + δn0

∫ π

−π
dθ

cos (nθ)

z − cos (θ)
.

This integral can be solved using the Residue Theorem, but here I want to present a
different approach, which does not require knowledge of complex anaysis. This integral
can also be recognized from the Green’s function of an infinite 1D tight-binding chain
with hopping parameter t = 1/2. Let ε (k) = cos (k) be its dispersion relation, with
eigenfunctions indexed by k

|k⟩ = 1√
N

∑
k

eikn |n⟩

where −π ≤ k < π. Since these functions are not normalizable, we can keep a finite
number N os sites and take it to infinity in the end of the calculation. The matrix element
of the Green’s function which connects site 0 to site n, ⟨0| (z −H)−1 |n⟩ can be expressed
in the eigenbasis of H as

G0,n = ⟨0| 1

z −H
|n⟩ =

∫ π

−π

dk

2π

e−ikn

z − cos (k)
=

∫ π

−π

dk

2π

cos (nk)

z − cos (k)
.
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2.5 Chebyshev expansion for known functions

The last equality holds because the imaginary part of exp (−ikn) integrates to zero. There-
fore, upon the identification of θ as k, the relation can be established as

gn (z) =
2

1 + δn0
G0,n.

From this point on, Dyson’s equations can be used to find G0,n algebraically, avoiding
integration in the complex plane which is quite cumbersome. To proceed, let’s begin by
labeling the lattice points from −∞ to ∞ and separating the lattice into the right side,
from site n to +∞ and the left side, from −∞ to n− 1. This naturally defines a left and a
right Hamiltonian HL and HR, which are connected by a hopping t connecting site n− 1

to n, encapsulated in an operator V . Let H0 = HL+HR be the disconnected Hamiltonian.
The total Hamiltonian is therefore H = H0 + V . Let G and G0 be the Green operators of
H and H0, respectively. Then, Dyson’s equation tells us that

G = G0 +G0V G

which becomes

G0,n = G0
0,n−1Vn−1,nGn,n. (2.15)

The expression for Gn,n is easy to obtain because it is proportional to the density of states
due to the translation invariance of H, that is,

Gn,n =
1√

z2 − 4t2
.

G0
0,n−1 is the Green’s function which connects a site at the surface (n− 1) to a site in the

interior (0) of the truncated lattice. Let’s call it g0,n−1. Then, what we need to find is

G0,n = g0,n−1t
1√

z2 − 4t2

To find the formula for g0,n−1, let Hn be the Hamiltonian of the single site at n, and
redefine H0 and H such that H0 = HL +Hn and H = H0 + V . With these new Hamil-
tonians, Dyson’s equation retains the exact same form as before (2.15), but now G refers
to the new H and G0 to the new H0. With this identification, we recognize that G0,n is
the Green’s function which connects a site at the surface (n) to a site in the interior (0)

of the lattice truncated at n, and G0,n−1 is the Green’s function which connects a site at
the surface (n − 1) to a site in the interior (0) of the lattice truncated at n − 1. That is,
g0,n and g0,n−1 respectively. We have thus established a recursive relation between these
functions:

g0,n = g0,n−1tgS

where gS = Gnn = G0
n−1,n−1 is the surface Green’s function. Repeating this argument
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2 Introduction to spectral methods

until we reach g0,0 = gS , we obtain

g0,n = gS (tgS)
n .

The last ingredient needed to calculate the Chebyshev coefficient is the surface Green’s
function gS of the truncated lattice. To get it, let’s consider the same H0 and H but let’s
look at different matrix elements of Dyson’s equation, namely:

Gnn = G0
n,n +G0

n,nVn,n−1Gn−1,n

Gn−1,n = G0
n−1,n−1Vn−1,nGn,n

Combining these together and again identifying gS = Gnn = G0
n−1,n−1, we obtain a second

order equation for gS

gS =
1

z
+

1

z
(tgS)

2

which has the two solutions

gS =
z ±

√
z2 − 4t2

2t2
.

The negative solution must be chosen to ensure gS → 0 when |z| → ∞. Putting everything
together and setting t = 1/2, we get

gn (z) =
−2i

1 + δn0

(
z − i

√
1− z2

)n
√
1− z2

(2.16)

which are exactly the coefficients obtained in [94]. For practical purposes, it’s useful to
define separate coefficients for the advanced and retarded Green’s functions:

gσ,ηn (ϵ) = − 2σi

1 + δn0

e−niσ arccos(ϵ+iση)√
1− (ϵ+ iση)2

(2.17)

where σ = +1 corresponds to the retarded and σ = −1 to the advanced Green’s func-
tions and η is the finite positive number corresponding to the broadening of the Green’s
function, such that z = ε+ iση.

Convergence

Given that the Green’s function varies very rapidly around its poles, it’s useful to have an
estimate of the number of polynomials required to accurately resolve it. The main factor
responsible for the convergence rate of the series expansion is η, the imaginary part of z.
Figure 2.4 shows how the Chebyshev expansion of the Green’s function depends on η and
the number of polynomials.
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2.5 Chebyshev expansion for known functions

Figure 2.4: Convergence properties of the Chebyshev expansion of the Green’s function,
as a function of the number of polynomials used to expand it. Each curve
represents a different value of the broadening parameter η.

The y axis is the maximum difference between the exact Green’s function (centered at
ε = 0) and the expansion, that is,

max
ε

(
1

ε+ iη
−

M∑
n=0

gn (ε+ iη)Tn (0)

)
.

As a final note, it is common to expand the Green’s function assuming the imaginary part
of z to be an infinitesimal, and then to use the Lorentz weight to regularize the expansion.
Since we have access to the expansion coefficients for a general complex z and since the
convergence is more favorable for finite η, we decide not to use the Lorentz weight and
to instead use the expansion for a small, but finite η. This is the core of the Chebyshev
Polynomial Green’s Function (CPGF) method [3, 94].

2.5.4 Fermi-Dirac distribution

The Fermi-Dirac distribution at finite temperature and chemical potential also allows an
expansion in terms of Chebyshev polynomials

fβ,µ (ε) =
1

1 + eβ(ε−µ)
=

∞∑
n=0

fn (β, µ)Tn (ε) (2.18)

but this expansion is not so common in the literature. More commonly, its expansion is
avoided by convoluting it with the Dirac delta

fβ,µ (x) =

∫ ∞

−∞
dεfβ,µ (ε) δ (ε− x)

and expanding the Dirac delta instead. In this section, I want to analyze the direct
expansion of the Fermi-Dirac distribution.
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2 Introduction to spectral methods

For finite temperature, there is no known closed form expression, but at zero temper-
ature, there is. At zero temperature, the Fermi-Dirac distribution reduces to the shifted
Heaviside function. The coefficients are given by

fn (∞, µ) =
2

π

1

1 + δn0

∫ µ

−1

dx√
1− x2

Tn (x) .

Let cos (θ0) = µ and use the standard change of variable x = cos (θ). Then, the integral
becomes easy to calculate

fn (∞, µ) =
2

π

1

1 + δn0

∫ π

θ0

dθ cos (nθ)

and yields

fn (∞, µ) =

 2
πn [sin (nπ)− sin (n arccos (µ))] n > 0

1− arccos(µ)
π n = 0

Because of the discontinuity, the Jackson weight is added to regularize the expansion.
Figure 2.5 shows the effect of different weights on the approximant to the Fermi function
at a cutoff of 100 polynomials and 1000 polynomials (top). The Gibbs phenomenon is
clearly visible in the absence of a regularization (Dirichlet weight). On the bottom, con-
vergence is analyzed more carefully at three different energy points, close and away from
the discontinuity. The Jackson weight is clearly superior in every circumstance.

At finite temperature, the integral

fn (β, µ) =
2

π

1

1 + δn0

∫ π

0
dθ cos (nθ) f (cos (θ))

has to be evaluated numerically. The function is smooth everywhere, so a Gauss-Chebyshev
quadrature method should give a good estimate for this integral. However, for smaller
temperatures, the function varies very quickly close to the Fermi energy, and so it may be
useful to split the integration domain into three sections to better capture this variation:
one of them from −1 to µ − 1/β, another from −1/β to 1/β and another from 1/β to 1.
An alternative to this is to express the Fermi function as a Matsubara sum and to use
contour integration.

Effective temperature

Since the Fermi-Dirac distribution has a discontinuity at zero temperature, Gibbs oscilla-
tions are to be expected. For this reason, a kernel should be used to mitigate them, which
will smoothen the discontinuity into a steep ramp. The size of this ramp can be interpreted
as a Fermi-Dirac distribution at finite temperature. To estimate the size of the ramp, we
can use the results we already have about the Dirac delta. The introduction of the Jackson
kernel widens the Dirac delta into a gaussian-like curve of standard deviation σ = π/N ,
where N is the number of Chebyshev polynomials being used to approximate the curve.

26



2.5 Chebyshev expansion for known functions

Figure 2.5: Convergence properties of the Fermi function of chemical potential µ = 0.2 at
zero temperature.

The integral of this broadened Dirac delta is exactly the Fermi-Dirac distribution for the
same number of polynomials and the same kernel. Therefore, the characteristic size of the
ramp is also π/N , defining βeff ≈ N/π as the effective temperature of this approximation.

Position of the eigen energies

As was noted in the beginning of this section, convergence around points of discontinuity
is much slower. Coming back to the operator form of eq. 2.18,

f
(
H̃
)
=

N∑
n=0

fn

(
β̃, µ̃

)
Tn

(
H̃
)
,

this can become problematic when there are eigenvalues of H̃ close to µ̃. To see this more
clearly, let’s use the eigenbasis of H̃ to express f

(
H̃
)

in terms of the eigenenergies ε̃m:

f (H) =
N∑
n=0

fn

(
β̃, µ̃

)∑
m

Tn (ε̃m) |m⟩ ⟨m| .

Each term
∑N

n=0 fn

(
β̃, µ̃

)
Tn (ε̃m) represents the approximation to f (ε̃m) with N Cheby-

shev polynomials. The closer the eigenenergy is to µ̃, the slower the convergence. Therefore,
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2 Introduction to spectral methods

the convergence of this series depends on the closest eigenvalue to µ̃. As a consequence,
it becomes very easy to converge when µ is in a gap of the Hamiltonian’s spectrum, but
it can be very problematic when µ lies inside a band, where in the thermodynamic limit
there are states arbitrarily close to µ.

2.6 Stochastic trace evaluation

At the heart of KPM is the stochastic trace evaluation, which is ultimately responsible for
the efficiency of the method. Assume that we want to compute the trace of a hermitian
matrix A of dimensions N ×N in a given basis |n⟩

T = Tr (A) =
∑
n

⟨n|A |n⟩ =
∑
n

Ann.

This is a sum of many terms, and the usage of random numbers can in some allow us
to perform many of these computations at once. Let ξ be a random number (possibly
complex) taken from a certain distribution, with the only requirements being zero average
ξ = 0, unit variance |ξ|2 = 1. An independent collection of N of these numbers satisfies
ξ∗nξm = δnm and can be used to define a random vector in the basis |n⟩:

|ξ⟩ =
N∑
n=1

ξn |n⟩ .

This vector gives us an estimator t for the trace

t = ⟨ξ|A |ξ⟩ =
∑
nm

ξ∗mξn ⟨m|A |n⟩ . (2.19)

It is easy to see that on average t = T , in virtue of the properties imposed on the random
numbers:

t =
∑
nm

ξ∗mξn ⟨m|A |n⟩ =
∑
n

⟨n|A |n⟩ = T.

Since A is hermitian, t will be a real number. While the value of the average t does not
depend on the basis being used nor the distribution, the variance does. The average of the
square can be calculated by considering all the correlations of four random numbers:

t2 =
∑
abcd

ξ∗aξbξ
∗
c ξdAabAcd.

The first thing to notice is that there can be no correlators with an odd number of terms
because that would necessarily leave one correlator with just one term, and that is zero
by construction. Therefore, we have to consider all the possible ways to correlate an even
number of terms, and it is useful to separate into cases.

The first is the case a = b ̸= c = d, which correlates the first two and the last two
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2.6 Stochastic trace evaluation

numbers, but since these pairs are necessarily different, their correlation is zero:∑
a̸=c

ξ∗aξaξ
∗
c ξcAaaAcc =

∑
a̸=c

ξ∗aξa ξ
∗
c ξcAaaAcc

Since every random number follows the same distribution, the correlators factor out and
we are left with a sum over a and c ̸= a. This sum can be simplified by summing over a
and c without restriction and then removing the case a = c, leading to

∑
a̸=c

ξ∗aξaξ
∗
c ξcAaaAcc = ξ∗ξ ξ∗ξ

[∑
a

Aaa
∑
c

Acc −
∑
a

A2
aa

]

which finally simplifies to∑
a̸=c

ξ∗aξaξ
∗
c ξcAaaAcc = Tr (A)−

∑
a

A2
aa.

A similar reasoning can be used for the other two possibilities with two pairs. When
a = c ̸= b = d,

∑
a̸=b

ξ∗aξbξ
∗
aξbAabAab =

∣∣∣ξ2∣∣∣2
∑
a,b

A2
ab −

∑
a

A2
aa


and when a = d ̸= b = c,∑

a̸=b

ξ∗aξbξ
∗
b ξaAabAba = Tr

(
A2
)
−
∑
a

A2
aa.

Finally, when all the indices are the same, we get∑
a

ξ∗aξaξ
∗
aξaAaaAaa = |ξ|4

∑
a

A2
aa.

This exhausts all the possibilities for correlations. Putting this all together, the variance
is

σ2t = Tr
(
A2
)
+
∣∣∣ξ2∣∣∣2 Tr

(
ATA

)
+

[
|ξ|4 − 2−

∣∣∣ξ2∣∣∣2]∑
a

A2
aa. (2.20)

At this point, it is worth noticing that if the complex random vector is chosen to lie on
the unit complex circle, then ξ2 = 0, |ξ|4 = 1 and the expression simplifies to

σ2t = Tr
(
A2
)
−
∑
a

A2
aa (2.21)

which is the more well-known form [95]. If the random vector is chosen to be real, then
the expression also simplifies

σ2t = Tr
(
A2
)
+ Tr

(
ATA

)
+
[
ξ4 − 3

]∑
a

A2
aa.
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2 Introduction to spectral methods

This derivation was done assuming the trace estimator t to be real. Were this not the
case, σ2t would be a complex number and would not have the intended meaning. In the
more general case, instead of t2, one could look into |t|2. One important thing to notice
about 2.20 is that it depends on the basis chosen to write the random vector |ξ⟩. In the
extreme case, if we use complex unit vectors in a basis where A is diagonal, eq. 2.21 tells
us that σ2t = 0. This is already obvious in eq. 2.19, because t = T in virtue of the fact that
ξ∗aξa = 1 for all a and the inexistence of nondiagonal elements. This would not happen
for other distributions and seems to indicate that complex unit vectors have the optimal
variance for sparse matrices. This is the same conclusion reached by Iitaka [104]. Indeed
for many of the usual applications, they do yield the smallest variance, but this is not
always the case. As we will see in chapter 5, using complex unit vectors for the stochastic
evaluation of the expectation value of the current gives rise to a variance which can be
upwards to 50 times larger than by using real vectors. This is such an example where the
derivation for the variance used here is not valid, because the matrix being used is not
hermitian.

Lastly, the most important property of the stochastic evaluation of the trace is the
following. Assuming that the matrix is sufficiently sparse, the variance will scale as N , as
will the trace. For this reason, the relative error σt/t will scale as 1/

√
N . The same scaling

will happen with the number NR of random vectors due to the central limit theorem.
Therefore, we can expect

σt
t

∼ 1√
NRN

(2.22)

and this is really what makes KPM so powerful. The relative error goes down not just
with NR but also with N . The larger the system, the smaller the relative error, regardless
of whether or not it has translational symmetry. For very large systems, the number of
random vectors can be made as small as 1. In general, if the matrix is not sparse, however,
then the first two terms of 2.20 should contribute as N2 and eq. 2.22 no longer holds.

2.6.1 Variance of Chebyshev moments

While the previous section is true for matrices A in general, this brings up an apparent
inconsistency. In practice, the matrix which is getting traced over is a Chebyshev polyno-
mial of the Hamiltonian. A sufficiently high-order polynomial should therefore be a dense
matrix, so how does 2.22 hold? The answer to this subtle point lies with some proper-
ties of the Chebyshev polynomials and the fact that the spectrum is limited to the range
−1 ≤ x ≤ 1.

The first term can be expressed in the eigenbasis of H. Since the eigenvalues εn are
limited to the aforementioned range, ε2n ≤ 1 and so we get that

Tr
(
T 2
m (H)

)
=
∑
n

cos2 (m arccos (εn)) ≤
∑
n

1 ≤ N

and the first term actually contributes as N , regardless of the sparsity of the matrix.
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2.7 Applications to quantum transport

The second term contributes in a similar manner. Its absolute value is actually bounded
by the first term. Using the Cauchy-Schwartz inequality for the Frobenius norm |A| =√∑

ij |Aij |
2 we get

∣∣Tr
(
ATA

)∣∣ =
∣∣∣∣∣∣
∑
ij

A2
ij

∣∣∣∣∣∣ ≤
∑
ij

|Aij |2 =
∑
ij

AijA
∗
ij = Tr

(
A2
)

and so it also contributes as N . The last term follows a similar pattern∣∣∣∣∣∑
a

A2
aa

∣∣∣∣∣ =∑
a

∣∣A2
aa

∣∣ ≤∑
ab

|Aab|2 = Tr
(
A2
)

where we have used the fact that Aaa is real in virtue of A being Hermitian. Therefore,
σ2t always scales as N when A is a Chebyshev matrix, even though it is in general a dense
matrix.

2.7 Applications to quantum transport

The first known application of KPM in its current form was in 1994 by Silver [99], even
though gaussian random vectors had already been used to compute polynomial moments
of operators before [105–107]. Silver used it to calculate the DoS just like what was done in
the beginning of this chapter. 10 years later, Weisse [69] applied it to response functions,
using the Kubo formula for the real part of the optical conductivity:

σ (ω) =
∑
nm

|⟨n| Jx |m⟩|2

ωLd
[f (Em)− f (En)] δ (ω − (En − Em)) .

For the first time, this required a double Chebyshev expansion, but it was not obvious how
to make the transition from here to a form suitable to expansion. The trick consisted on
defining an auxiliary object

j (x, y) =
1

Ld

∑
nm

⟨m| Jx |n⟩ δ (x− En) ⟨n| Jx |m⟩ δ (x− Em)

such that now the conductivity could be written as an integral over this object:

σ (ω) =
1

ω

∫ ∞

−∞
j (x, x+ ω) [f (x)− f (x+ ω)] dx.

Now, each Dirac delta could be expanded in Chebyshev polynomials, defining a Chebyshev
moment matrix, in analogy to the Chebyshev moments of the DoS. To make this clearer,
note that j (x, y) can be written as a trace

j (x, y) =
1

Ld
Tr [Jxδ (x−H) Jxδ (x−H)]

31
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and each of the Dirac deltas can be expanded as in eq. 2.12,

Tr [Jxδ (x−H) Jxδ (x−H)] =
∑
ab

∆a (x)∆b (y)Tr [JxTa (H) JxTb (H)]

where the terms of the trace are defined as the Chebyshev moments

µab =
1

Ld
Tr [JxTa (H) JxTb (H)] .

The full current can be reconstructed from these

σ (ω) =
∑
ab

µab

∫ ∞

−∞
∆a (x)∆b (x+ ω)

f (x)− f (x+ ω)

ω
dx.

This was the first second-order Chebyshev expansion of the sort, and it enjoys several of
the advantages that we’ve seen before. The calculation of µab is done with random vectors
and is the most complicated part, but it does not depend on the frequency ω, the inverse
temperature β nor the chemical potential µ. Once µab has been computed, the calculation
for all these parameters becomes very quick. Just like what happened to the DoS, the
optical conductivity has been factorized by the Chebyshev expansion. This marked the
first use of spectral methods in modern transport equations and has set the trend for the
future.

Expansions of the same sort have now been used in the several variants of Kubo’s formula.
One of the main issues while going from Kubo’s formula to its KPM-ready form is how
to express it as a trace. Terms like δ (ω − En + Em), which depend on two energies, can
become problematic because they cannot directly be expressed in terms of the Hamiltonian
matrix. The trick to deal with them is to factor out one of the energies with an auxiliary
Dirac delta, as Weisse did in the example above. Defining ε = En, the Dirac delta can be
expressed in terms of a convolution:

δ (ω − En + Em) =

∫ ∞

−∞
dεδ (ε− En) δ (ω − ε+ Em)

or, in terms of the Hamiltonian,

δ (ω − En + Em) =

∫ ∞

−∞
dε ⟨n| δ (ε−H) |n⟩ ⟨m| δ (ω − ε+H) |m⟩ .

Each of the Dirac deltas can now be expanded accordingly and this is the procedure
responsible for the double expansion. This procedure is formalized in chap 4 for the
nonlinear optical response.

2.7.1 Reducing the price of a double expansion

The double Chebyshev expansion is able to bring spectral methods to a broader class of
problems by turning the numerical algorithm into complexity O (N). In fact, let us be more
precise and introduce the average lattice coordination Z. The complexity is therefore more
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2.7 Applications to quantum transport

accurately captured as O (NZ)- Despite being of linear complexity in the Hilbert space, this
characterization hides the fact that a double Chebyshev expansion is numerically costly.
In this subsection, I want to get into some more detail about this process and when it’s
worth doing. Consider the Kubo-Greenwood formula at zero temperature, written as a
trace

σxx =
eℏ
Ld

Tr [vxδ (εF −H) vxδ (εF −H)] (2.23)

where εF is the Fermi energy. The numerical evaluation of this trace with KPM would
have complexity O

(
NZM2

)
, where M − 1 is the highest order of Chebyshev polynomials

being used to expand the Dirac deltas. Notice that the number of Fermi energies does
not change the complexity of the algorithm. The resolution of this expansion with the
Jackson kernel is roughly π/M , so attempting to obtain fine resolutions can rapidly incur
in prohibitive numerical costs. With access to enough RAM, this can in part be mitigated.
Suppose we want to calculate all the Chebyshev moments µnm = ⟨ξ| vxTn (H) vxTm (H) |ξ⟩
up to n = m = M − 1. Let |ξ′⟩ = vx |ξ⟩, |n⟩ = Tn (H) |ξ⟩ and |n′⟩ = Tn (H) |ξ′⟩. The
moments can be written simply as

µnm =
〈
n′
∣∣ vx |m⟩

where both the vectors on the left and the vectors on the right satisfy the recursion relation

|m+ 1⟩ = 2H |m⟩ − |m− 1⟩∣∣n′ + 1
〉

= 2H
∣∣n′〉− ∣∣n′ − 1

〉
when n′,m > 1. The case = 0 is omitted for simplicity and does not change the argument.
Because of the double-step recurrence, only two vectors are required to be kept in memory
at any given time, |m⟩ and |m− 1⟩. Then, for every |n′⟩, all the |m⟩ have to be calculated
every time in order to build the matrix µnm. Immediately, we see a source of redundancy
here. The process of calculating the |m⟩ is being repeated!

Suppose now that, as we calculate the |m⟩ from 0 to M − 1, we store every single vector
in a matrix Tim, where i is the Hilbert space index and m is the Chebyshev index. This
matrix has N ×M entries and requires the exact same complexity as the usual Chebyshev
recursion scheme, so the numerical complexity to calculate T is O (NMZ). The exact
same process can be repeated for the vector on the left. Let T ′

ni be this matrix. The
calculation of both T and T ′ adds up to a complexity of O (2NMZ) and takes up RAM
of order O (2NM). Finally, the matrix µnm is built of these two matrices as

µnm =
∑
i

T ′
niTim,

which is matrix product on dense matrices, of complexity O
(
NM2

)
but which is highly
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vectorizable and does not depend on Z. Thus, given enough RAM, we are able to reduce
the complexity of the algorithm from O

(
NZM2

)
to O

(
2NMZ +NM2

)
, while keeping

in mind that the second part is much more efficient. Of course, this would have to be
repeated for every random vector.

In practice, for very large systems, one will not have sufficiently RAM to store all these
vectors, and so instead of two large T and T ′ matrices of dimensions N ×M , one could
instead store just D vectors and construct µnm by blocks. Suppose for the sake of the sim-
plicity that D divides M . Then, each block of size D2 would have constructed individually
and there are (M/D)2 such blocks. Since the first part of the algorithm would have to
be repeated for every block, its complexity would be O

(
2NDZ

(
M
D

)2). The second part
would also have to be repeated for every block, but the matrices would be of dimension
N × D, so the overall complexity O

(
ND2

(
M
D

)2) is be unchanged. Assuming that the
computation time can be factored in each of the two parts (τA for the first and τB for the
second), the total computational time can be decomposed into two parts

τCPU = 2NDZ

(
M

D

)2

τA +NM2τB = NM2

(
τA

2Z

D
+ τB

)
which makes it clear that the larger the amount of memory D, the better. However, if τA
and τB are comparable, and Z is of the order of unity (as in graphene, for example, where
Z = 3), then going for massive memory increases will not decrease the computational time
below the limit given by τB.

In conclusion, storing D vectors in memory incurs into a larger memory footprint, but
also allows for potentially large performance increases. If the algorithm is dominated by
the first part, then the computational time is inversely proportional to D.

2.7.2 Avoiding a double expansion

One the of the great advantages of a Chebyshev expansion is the fact that once the momenta
have been calculated, they do not have to be recalculated for different Fermi energies
or frequencies or temperatures. However, if one is only interested in one single set of
parameters, this can reveal to be counterproductive. For example, in the previous section, if
we are only interested in calculating the Kubo-Greenwood 2.23 formula at zero temperature
for a small number NF of Fermi energies, then it might be more favorable to avoid the
double expansion altogether. To see how this can be done, consider again the Chebyshev
expansion of the Kubo-Greenwood formula for one random vector

σxx =
eℏ
Ld

⟨ξ| vx
[∑

n

∆n (εF )Tn (H)

]
vx

[∑
m

∆m (εF )Tm (H)

]
|ξ⟩ .
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Using the notation of the previous section,

|R⟩ =
∑
m

∆m (εF ) |m⟩

|L⟩ =
∑
n

∆n (εF )
∣∣n′〉,

the conductivity can be expressed in terms of these two vectors

σxx =
eℏ
Ld

⟨L| vx |R⟩ .

For a given Fermi energy, each of these vectors can be calculated by accumulating the
sum of Chebyshev vectors sequentially, and so it has complexity O (NMZ). The final
product ⟨L| vx |R⟩ contributes with 2NZ. Therefore, the overall complexity of computing
the conductivity for a set of NF Fermi energies is dominated by the first part and is
O (2NMZNF ). In contrast to the original double expansion, one factor of M is replaced
by 2NF . So, if the number of Fermi energies to calculate is small, this route is preferable
[94].

2.8 Further applications

Spectral methods have been used in several other contexts. The rest of this thesis is
devoted to applying spectral methods in new scenarios, like the calculation of the disorder
self-energy, linear-scaling computation of the conductance, nonlinear optical conductivity
and a new efficient implementation for superconductivity.
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3 Diagrammatics in disordered systems

As mentioned in the Introduction, the self-energy is an important object in the theory
of quantum transport and it is the central object in disorder-averaged two-point correla-
tion functions. It is also a complicated object to calculate. The diagrammatic methods
discussed in the Introduction can be used to evaluate it perturbatively in the disorder
strength, or nonperturbatively within some approximation. Notably, quantum interfer-
ence processes are absent from these common approximation schemes due to the difficulty
in evaluating these terms. In most cases of interest, these terms are not important, as they
are subdominant for larger energies, but sometimes they can play a dominant role. In this
chapter, we want to show that it is possible to calculate this operator exactly in a numeri-
cal fashion, and that the contribution coming from quantum interference can be extremely
important in the correct context such as the Gade singularity problem in graphene.

To build towards this result, we will start with an intuitive introduction to diagrammat-
ics, focusing exclusively on the two-point correlation functions required for the spectral
function and discussing the importance of disorder averaging. Through the example of
the spectral function of a disordered system, we want to intuitively justify the need and
usefulness of diagrammatic methods while preserving the simplicity. From this point of
view, the self-energy will appear naturally as the analytical object which describes the
complete effect of disorder at the level of two-point correlation functions. This sets the
stage for the main point of this chapter: the exact calculation of the disordered self-energy
operator. Along the way, the approximation techniques mentioned in the Introduction
will be explained. Once the method for the exact calculation of the disordered self-energy
operator has been shown, it will be compared to these techniques in both graphene and
the complex oxide perovskite SrRuO3 (SRO).

3.1 Intuitive introduction to the disorder self-energy

To start our discussion, let’s begin by exploring a simple model where the disorder self-
energy appears naturally. Suppose that we want to obtain the spectral function of a simple
one-dimensional tight-binding model (1D TB), described by a Hamiltonian H. Apart for
some factors, the spectral function at wavevector k and energy ε can be expressed in terms
of the retarded Green’s functions

A (k, ε) ∝ Im ⟨k|GR (ε) |k⟩ . (3.1)
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3 Diagrammatics in disordered systems

This is a straightforward calculation to do if the system has translation invariance:

A (k, ε) ∝ Im
1

ε− εk + i0+
(3.2)

where εk is the dispersion relation of this one-band model. In the absence of translation
invariance, however (such as a disordered system), eq. 3.2 is no longer valid and we have to
find another way to evaluate eq. 3.1. One obvious way is through a Chebyshev expansion
of the Green’s function, which although simple and exact, does not provide much insight
into the disorder-induced processes which lead to the modification of the spectral function.

At the same time, we notice that the physical manifestation of disorder in the spectral
function is through a broadening and shift of the spectral lines (see Fig. 3.1), which can
be represented as

A (k, ε) ∝ Im
1

ε− εk +ΣR (k, ε)
(3.3)

through the introduction of the complex-valued function ΣR (k, ε), the retarded disorder
self-energy. Here, ΣR (k, ε) is a scalar, but later we will see how to define it in general.
This dependency on k and ε means that the spectral function does not get modified in the
same way everywhere. Figure 3.1 shows this clearly for the 1D TB model with Anderson
disorder, as the spectral line gets broadened and shifted considerably more near the band
edges.

Figure 3.1: Spectral function of the 1D TB model of hopping t and lattice constant a,
for several Anderson disorder strengths. The yellow dashed line represents the
dispersion relation for the clean model.

The diagrammatic approach to disorder [11, 12] introduces a systematic way to compute
this object, as well as providing insight about the processes at play. The self-energy is the
central object of this chapter and so the next sections are devoted to understanding its
relation to the disorder-averaged Green’s function and to understanding the approximation
schemes typically employed in its computation.
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3.2 Self-energy and the disorder averaged Green’s function

3.2 Self-energy and the disorder averaged Green’s function

The diagrammatic approach to disorder relies on one crucial property: while a disordered
system does not have translation symmetry, a disorder-averaged one does. Intuitively, since
we expect the result not to depend on the specific realization of disorder, this procedure
also makes physical sense.

It is important to be clear about the meaning of the term “disorder average” in this
context, as well as the kind of disorder that we are talking about. To be concrete, only
two kinds of disorder are going to be treated:

• Impurities/vacancies with a given concentration n (dilute disorder), where averaging
over configurations of disorder means averaging over all possible impurity/vacancy
positions with a fixed given concentration n, and

• Anderson disorder of strengthW , where it means averaging over all possible Anderson
disorder landscapes with strength W .

To proceed, let’s assume that the Hamiltonian is composed of two parts: a translation
invariant Hamiltonian H0 and the disordered part V , such that H = H0 + V . Let

g (z) =
1

z1̂−H0

be the clean Green’s function, where z = ε + iη is defined for notational simplicity. If
η = 0+, g is a retarded Green’s function. If η = 0−, it is an advanced Green’s function.
The disorder-averaged Green’s functionG (z) is obtained by averaging the complete Green’s
function

G (z) =
1

z1̂−H
,

over all possible configurations of disorder. The self-energy operator is defined with respect
to the disorder-averaged Green’s function as such

Σ (z) = g−1 (z)−G (z)
−1

and therefore contains all the information about disorder that G (z) does. It is also a
function of the energy ε and the broadening η, through the complex variable z. Just
like with the Green’s functions, if η = 0+,Σ (z) becomes the retarded self-energy, and if
η = 0−,it becomes the advanced self-energy, that is,

Σ
(
ε+ i0+

)
= ΣR (ε)

Σ
(
ε+ i0−

)
= ΣA (ε)

which are both only functions of the energy, not η. If we know how to compute G (z),
we can in principle invert it and use it to calculate the self-energy. Analytically, this is
a difficult calculation to do, but it can be done perturbatively or with resort to some
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3 Diagrammatics in disordered systems

approximation with diagrammatic methods. Later in this chapter, we will show how the
self-energy can be obtained numerically without any approximation.

3.3 Diagrammatics

The starting point for a diagrammatic treatment of disorder is the complete Green’s func-
tion G (z). Using H = H0 + V , the Green’s function can be written as

G =
1

g−1 − V
=
[
g−1

(
1̂− gV

)]−1
=

1

1̂− gV
g

where the dependency on z inG and g has been omitted for the sake of notational simplicity.
This expression can be readily expanded as a harmonic series

G = g + gV g + gV gV g + · · · .

In momentum space, using the simplified notation Gαβ (k,k
′) = ⟨k, α|G |k′, β⟩ for all

operators, the above expression can be cast as

Gαβ
(
k,k′) = gαβ (k) δk,k′ +

∑
α1α2

gαα1 (k)Vα1α2

(
k,k′) gα2β

(
k′)

+
∑
k1

∑
α1α2α3α4

gαα1 (k)Vα1α2 (k,k1) gα2α3 (k1)Vα3α4

(
k1,k

′) gα4β

(
k′)+ · · ·

where k, k′ label the momentum vectors and α, β label the remaining degrees of freedom
unrelated to translation. Since g has the full translational symmetry of H0, it does not
connect different momentum vectors, hence gαβ (k,k′) = gαβ (k) δk,k′ .

Let us now introduce the diagrammatic representation of this expansion. Figure 3.2
represents the expansion up to third order in V , and the first three diagrams correspond
to the first three terms on the right-hand side the expression above. The solid lines with
arrows and indices represent the clean Green’s function g,and the dashed lines with a cross
at the end represent the disorder insertions V . The internal indices and labels are assumed
to be summed over (that is, everything except k, k′, α, β).

Figure 3.2: Diagrammatic representation of the disordered Green’s function, before aver-
aging over disorder configurations.
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3.3 Diagrammatics

As mentioned before, we are not interested in the properties of a particular system, so
let’s average over disorder realizations:

G = g + gV g + gV gV g + · · · . (3.4)

Note that correlations are introduced because of terms with several disordered operators
such as V gV . If we wanted to calculate these first few terms explicitly, the next step
would be to choose a basis and evaluate the correlators. This would provide a controlled
approximation, perturbative in the disorder strength (in the case of Anderson disorder) or
in the concentration (in the case of impurities or vacancies). Even though this is not the
most efficient way to compute as many terms as possible, it is still instructive to see how
this evaluation is done. It will be useful later on and will clarify 1) how the translation
invariance is reobtained and 2) how correlated disorder activates different matrix elements
in the self-energy.

3.3.1 Correlators with Anderson disorder

For concreteness, let’s see how to evaluate the averages V and V gV when V represents
Anderson disorder in a regular tight-binding lattice. In this situation, the disordered
operator V is a diagonal operator in the position basis

V =
∑
Rα

VR,α |R, α⟩ ⟨R, α| ,

where the VR,α are a set of uncorrelated random numbers, each taken from a box distri-
bution of average 0 and width W . Each realization of disorder is a different set of these
numbers (see Fig. 3.3).

Figure 3.3: Example of different Anderson disorder configurations for a square lattice. The
color represents the value of the local potential.

The moments of this distribution are

vn =

 1
n+1

(
W
2

)n if n even

0 if n odd
.
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3 Diagrammatics in disordered systems

For the sake of generality, let’s assume that the average can be nonzero. Now let’s define
the momentum basis as follows:

|k, α⟩ = 1√
N

∑
R

eik·R |R, α⟩

where N is the number of unit cells, that is, the number of elements in the sum over R.
In this basis, V has the following form:

⟨k, α|V
∣∣k′, β

〉
=

1

N

∑
R

VR,αe
i(k′−k)·Rδαβ.

The average of V in this basis can be obtained from the statistics of the distribution

⟨k, α|V |k′, β⟩ =
1

N

∑
R

VR,αe
i(k′−k)·Rδαβ

= v1
1

N

∑
R

ei(k
′−k)·Rδαβ

= v1δk,k′δαβ.

For the next applications, we’re going to require the correlator of the disorder between two
sites. Using the fact that the disorder is uncorrelated,

VR,αVR′,β =

v2 if R = R′ and α = β

v21 otherwise
,

the average of a product of disorder operators becomes

⟨k1, α1|V |k2, α2⟩ ⟨k3, α3|V |k4, α4⟩ (3.5)

=
1

N

(
v2 − v21

)
δk2−k1,k3−k4δα3α4δα1α2δα1α3 + v21δk2k1δα1α2δk3k4δα3α4 .

The first term is composed of the second cumulant and consists of a single restriction on
the momenta, while the second term has two restrictions on the momenta. This specific
form was due to the fact that the disorder is uncorrelated by construction.

Let’s now look at what happens when some correlation is allowed. In general, if the
disorder is correlated, then a correlation matrix has to be defined for all unit cells and
orbitals: VR,αVR′,β = CαβRR′ . For the purposes of this thesis, however, we will only consider
disorder which correlates different orbitals within the same unit cell, so we can consider
the following, simpler correlation matrix:

VR,αVR′,β =

Cαβ if R = R

v21 otherwise
.
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3.3 Diagrammatics

With this in mind, the previous expression gets modified slightly to

⟨k1, α1|V |k2, α2⟩ ⟨k3, α3|V |k4, α4⟩

=
1

N

(
Cα1α3 − v21δα1α3

)
δk2−k1,k3−k4δα3α4δα1α2 + v21δk2,k1δk3,k4δα1α2δα3α4 . (3.6)

The only difference relative to the previous expression is the presence of Cα1α3 instead of
v2δα1α3 . The existence of this correlation may be a mechanism behind disorder-enabled
processes by activating off-diagonal matrix elements of the self-energy. This will be useful
to understand the structure of the self-energy matrix in section 3.7.2.

3.3.2 Correlators with impurity disorder

For the purposes of this subsection, let’s define impurity disorder as a set of NI sites
ΩI = {Ri : i = 1, · · · , NI} in the lattice which have a different value for the local energy
than the rest of the lattice. The disordered operator V for this kind of disorder is

V =
∑
α

∑
Ri∈ΩI

εi,α |Ri, α⟩ ⟨Ri, α|

where the sum is over all impurity sites Ri and orbital degrees of freedom within that site.
Each configuration of disorder consists of a different set of NI impurity sites Ω′

I (see top
row of Fig. 3.4).

Figure 3.4: Different configurations of mutually exclusive impurities (top row) and non-
mutually exclusive impurities (bottom row) in a square lattice. Sites in yellow
(red) have local energy ε (2ε). The remaining sites have local energy zero.

For the sake of generality, we can allow hoppings between orbitals in the impurity sites,
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3 Diagrammatics in disordered systems

defining the more general operator

V =
∑
αβ

∑
Ri∈ΩI

hαβ |Ri, α⟩ ⟨Ri, β| .

Defining the structure factor

ϱq =
1

N

∑
Ri∈ΩI

eiq·Ri ,

we express the matrix element in momentum space as

⟨k, α|V
∣∣k′, β

〉
= hαβ

1

N

∑
Ri∈ΩI

ei(k
′−k)·Ri = hαβϱk′−k.

Consequently, it becomes clear that ϱ is the object that needs to be averaged over. The
averaging procedure is done by averaging over all possible positions for the NI impurities
and therefore it is important to understand exactly how this is done. The first option is
to force there to be exactly NI impurities in the lattice which cannot be in the same place
(top row of Fig. 3.4). The second option is to lift this restriction and allow impurities
to be in the same position. If these impurities consist of a change to local energies, then
two impurities in the same place would each contribute with an identical change to the
local energy, doubling it (bottom row of Fig. 3.4). If n = NI/N is the concentration
of impurities, this is a correction proportional to n2, but it could become relevant when
higher-order processes are taken into account. In the case of vacancies, which in many
cases can be assumed to be infinite local energies, this would be essentially the same as
having a variable number of vacancies. For illustrative purposes, let’s calculate the average
of ϱq and ϱqϱq′ in both situations.

Mutually exclusive impurities

If the impurities are not allowed to be in the same position, then this imposes a restriction
R1 ̸= R2 ̸= · · · ≠ RNI

. The average that needs to be evaluated is

ϱq =

1
NI !

∑
R1 ̸=R2 ̸=···̸=RNI

1
N

[
eiq·R1 + eiq·R2 + · · ·+ eiq·RN

]
1
NI !

∑
R1 ̸=R2 ̸=···̸=RNI

1

where the sum
∑

R1 ̸=R2 ̸=···̸=RNI
stands for aNI individual sums over unit cells R1, · · · ,RNI

such that R1 ̸= R2 ̸= · · · ̸= RNI
. The denominator is simply the number of combinations

of NI objects in N slots

1

NI !

∑
R1 ̸=R2 ̸=···̸=RNI

=
N (N − 1) · · · (N −NI + 1)

NI !
=

N !

NI ! (N −NI)!
.
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3.3 Diagrammatics

The numerator simplifies because every term in the sum of exponentials will contribute
identically (this can be seen by rearranging the indices)

1

NI !

∑
R1 ̸=R2 ̸=···̸=RNI

1

N

[
eiq·R1 + eiq·R2 + · · ·+ eiq·RN

]
=
NI

N

1

NI !

∑
R1 ̸=R2 ̸=···̸=RNI

eiq·R1

so all that is left is to separate the sum over R1 from the rest. Fixing R1, there will be
N − 1 slots to put the remaining NI − 1 objects, so the expression becomes

1

NI !

∑
R1 ̸=R2 ̸=···̸=RNI

eiq·R1 =
(N − 1)!

NI ! (N −NI)!

∑
R1

eiq·R1 =
N !

NI ! (N −NI)!
δq,0.

Putting it all together, the average of ϱq is proportional to the concentration of impurities:

ϱq =

1
NI !

NI
N δq,0

N !
(N−NI)!

N !
NI !(N−NI)!

=
NI

N
δq,0 = nδq,0.

Next, we need to calculate the first correlator ϱqϱq′ following the same ideas. The result
is

ϱqϱq′ =
n

N
(1− n) δq+q′,0 + n2δq,0δq′,0, (3.7)

which is valid in the thermodynamic limit NI , N ≫ 1.

Non mutually exclusive impurities

Assuming that multiple impurities can occupy the same place, the calculation is slightly
different, but simpler. The sums over positions are now unrestricted

ϱq =

∑
R1

· · ·
∑

RNI

1
N

[
eiq·R1 + eiq·R2 + · · ·+ eiq·RN

]∑
R1

· · ·
∑

RNI
1

.

The denominator immediately becomes NNI and the numerator is calculated in a similar
fashion. All the exponentials contribute in the same way, and the sums can now be factored

∑
R1

· · ·
∑
RNI

1

N

[
eiq·R1 + eiq·R2 + · · ·+ eiq·RN

]
= NNI−1NI

N

∑
R1

eiq·R1

= NNI−1NI

N
Nδq,0

= NNInδq,0.
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3 Diagrammatics in disordered systems

Putting it together, we get the same result as before

ϱq =
NNInδq,0
NNI

= nδq,0.

However, the similarities end here, because the correlator ϱqϱq′ has a slight difference

ϱqϱq′ =
n

N
δq+q′,0 + n2δq,0δq′,0. (3.8)

Comparing eqs. 3.7 and 3.8, we note that when impurities cannot be in the same position,
the correlator is affected by a correction of order n2. If one is only interested in results
which are correct up to linear order in n, then this difference is irrelevant. Such is the case
for the T-matrix approximation, which will be discussed later in section 3.5.3. However, if
higher orders in n are required, then this difference has to considered. This would affect,
for example, the self-consistent T-matrix approximation.

With this in mind, here are the lowest-order contributions to all the correlators:

ϱq1 = nδq1,0

ϱq1ϱq2 =
n

N
δq1+q2,0 +O

(
n2
)

ϱq1ϱq2ϱq3 =
n

N2
δq1+q2+q3,0 +O

(
n2
)

· · ·

ϱq1 · · · ϱqM =
n

NM−1
δq1+···+qM ,0 +O

(
n2
)
. (3.9)

These will be useful when evaluating the T-matrix approximation. Finally, let’s see what
the product of disorder matrix elements look like after averaging over impurity positions.
The average of one matrix element is

⟨k1, α1|V |k2, α2⟩ = hα1α2ϱk1−k2 = hα1α2nδk1,k2

and the average of the product of two matrix elements is

⟨k1, α1|V |k2, α2⟩ ⟨k3, α3|V |k4, α4⟩ (3.10)

= hα1α2hα3α4

[ n
N

(1− n) δk2−k1,k3−k4 + n2δk1,k2δk3,k4

]
.

Comparing with the previous case of Anderson disorder, the average of disorder matrix
elements 3.6, we see that the general structure is still the same: there is a term which
imposes k2−k1 = k3−k4 and another which imposes k2 = k1 and k3 = k4. The particular
numerical prefactors depend on the type of disorder and on the presence of correlations.
It is worthwhile to notice that none of the numerical prefactors to the Kronecker deltas
depends on k. This happened because we chose the disorder not to connect different unit
cells. Were this not the case, an additional momentum dependency would exist. Therefore,
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for the remainder of this chapter, we will keep assuming that the average of products of
matrix elements follows the form

⟨k1, α1|V |k2, α2⟩ = Aα1α2δk1,k2

for one single matrix element of V ,

⟨k1, α1|V |k2, α2⟩ ⟨k3, α3|V |k4, α4⟩

=
1

N
Bα1α2α3α4δk2−k1,k3−k4 +Aα1α2Aα3α4δk1,k2δk3,k4

for the product of two, and so on. This form will be assumed for any operator V used in
the remainder of this chapter. The specific form of the objects A and B will be the only
difference between them.

3.3.3 Diagrammatic representation

Now that we know how to evaluate the correlators, let’s go back to the disorder average
of the expansion of the full Green’s function (eq. 3.4). The first term is trivial, but the
second term of this expression becomes

⟨k, α| gV g
∣∣k′, β

〉
=

∑
α1α2

gαα1 (k) ⟨k, α1|V |k′, α2⟩gα2β

(
k′)

=
∑
α1α2

gαα1 (k)
[
Aα1α2δk,k′

]
gα2β (k)

which is diagonal in k-space in virtue of the disorder average. The diagrammatic repre-
sentation of this process is shown in diagram a2 of Fig. 3.5. When the disorder average
is performed, the crosses become circles that connect several disorder insertions and the
combinations of these connections represent all the possible correlations between opera-
tors. In this particular case, there is only one disorder operator and so no correlations
exist between operators. The vertical line connecting the circle to the main horizontal line
means that a term Aα1α2 representing the vertex is to be inserted into the equation in the
middle of the two clean Green’s functions and summed over its indices. The only momen-
tum dependency of this object comes trivially from the external propagators gαα1 (k) and
gα2β (k).
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3 Diagrammatics in disordered systems

Figure 3.5: Diagrammatic representation of the process of disorder averaging with one dis-
order insertion (left) and two disorder insertions (right).

The next term in eq. 3.4 has a more interesting structure

⟨k, α| gV gV g
∣∣k′, β

〉
=

∑
α1α2α3α4

gαα1 (k)Bα1α2α3α4

 1

N

∑
k1

gα2α3 (k1)

 gα4β (k)

+
∑

α1α2α3α4

gαα1 (k)Aα1α2gα2α3 (k)Aα3α4gα4β (k)

and accordingly, its diagrammatic representation (shown in diagrams b2 and b3 of Fig.
3.5) is more complex than the previous case. As before, the disorder average is represented
by turning the crosses into circles, but the correlations are now represented by the way in
which the dashed lines connect to each other. The second term in the expression above
is represented by diagram b3, with the same interpretation as in diagram a2. Since the
term factors into a product of terms, the diagram is called reducible, meaning that it can
be pictorially separated into two diagrams like a2 by “cutting” it in the middle.

The first term of the expression above correlates two disordered operators, and therefore
its diagram (b2) connects the two lines. The circle going into two lines gives rise to a term
Bα1α2α3α4 which is to be summed over all its indices. This forms an internal loop which
represents the integral over k1. Unlike the other diagram, this one cannot be factorized,
and is called a one-particle irreducible diagram.

Note that, like before, all the momentum dependency for this term comes trivially from
the external propagators. This time, there is also a different momentum label inside the
expression, but since it is integrated over, it becomes independent of momentum.

Higher-order terms follow a similar pattern, and all the possible correlations are obtained
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by combining the crosses into circles in all possible ways. Different kinds of disorder have
different expressions for the vertices (that is, different forms for the objects A, B, etc), but
the diagrams all have the same structure.

Finally, some of the diagrams simplify, because if V = 0, then all the diagrams with
circles which only have one line coming out of them will not contribute. If the average
of an odd product of V operators is zero, all the diagrams with an odd number of lines
coming out of the circles will also be zero. Such is the case for Anderson disorder, but not
for dilute impurities or vacancies.

3.3.4 Fourth order diagrams

Diagrammatics allows us to do calculations in systems with disorder through objects de-
fined in momentum space. The diagrams discussed so far are particularly easy to calculate,
but if we keep going to higher orders, we will come across diagrams which provide a serious
challenge. For example, the disorder average of the fourth order term

⟨k, α|V gV gV gV
∣∣k′, β

〉
(3.11)

produces several subterms with different correlations between the V , just as happened
for the second order case. For simplicity, let’s assume that we’re dealing with Anderson
disorder and all the odd moments of the disorder distribution are zero. Figure 3.6 shows
all the nonzero diagrams in this case.

Figure 3.6: Diagrams appearing in fourth order when the odd moments are zero.

Diagrams b), c) and d) have an easy expression to calculate, but diagram a) is special.
Its expression is

Diagram a) =
∑
α1···α8

Bα1α2α5α6Bα3α4α7α8gαα1 (k)×

× 1

N2

∑
k1

∑
k3

gα1α2 (k1) gα4α5 (k3 + k1 − k) gα6α7 (k3) gα8β (k)

which involves two sums, and the summand depends explicitly on k. This is a manifestation
of the two lines crossing and the impossibility of untangling them. These integrals cannot
be factorized, making this a potentially complicated term to evaluate. For large momenta
and energies, this diagram (and crossing diagrams like it) is negligible [13], but it can play
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a big role at low energies as we will see later. For the kinds of disorder that are being
considered in this thesis, this diagram represents the lowest-order instance of a nontrivial
momentum dependency on the disorder-averaged Green’s function. The trivial momentum
dependency comes from the external propagators gαα1 (k) and gα8β (k), which is always
present in every diagram, but the explicit momentum dependency on k inside the summand
is responsible for a nontrivial contribution.

This momentum dependency means that the summand has to be evaluated once for every
single value of k that we want to analyze. Furthermore, the double sum over momenta
makes this a rather heavy calculation. Spectral methods can offer an alternative way to
compute this diagram by making explicit use of the correlation between operators.

3.4 Diagrammatics with spectral methods

To get the previous expression with spectral methods, we need to evaluate eq. 3.11 while
making sure that the first disorder operator only correlates with the third and that the sec-
ond disorder operator only correlates with the fourth. To achieve this, define the operators
V and V ′, taken from the same distribution. Then, evaluating the average gV gV ′gV gV ′g

automatically produces the desired correlations. The diagram can be evaluated at each
individual k as such:

Diagram a) = ⟨k, α|V gV ′gV gV ′ |k, β⟩

and averaging over realizations of disorder V and V ′.
In a similar spirit, other contributions can be estimated in the same way, simply by

changing the positions of the V ′ and V operators. In practice, though, the other contri-
butions do not require a double sum over the momenta, and so it is not useful to pursue
this method. One exception to this is diagram 3.6d), which correlates all four operators.
It can be obtained indirectly by using V everywhere and subtracting the other terms:

V gV gV gV − V gV ′gV gV ′ − V ′gV ′gV gV − V ′gV gV gV ′.

However, if one wants to go to higher order terms, things can get very complicated easily
and so it becomes imperative to find more efficient ways to proceed. This is the purpose
of the next section.

3.5 Self-energy and approximation techniques

The expansion of G (z) in powers of V can be carried out to any desired order given enough
computational time, but there are better ways of summing this series. The first point to
notice is that there is a lot of redundancy in calculations of the previous sections. Many
terms can in fact be factorized by looking just at the irreducible diagrams. These form the
self-energy Σ (z). It is the sum of all one-particle irreducible diagrams without external
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3.5 Self-energy and approximation techniques

propagators, represented in Fig. 3.7 a). Then, the exact disorder-averaged Green’s function
G (z) can be expressed as a sum over these objects as in Fig. 3.7 b). This is no more than
a reordering of the series of G (z).

Figure 3.7: Self-energy operator (a) as a sum of one-particle irreducible diagrams, and the
disorder-averaged Green’s function as a sum over self-energy operators (b).
Note that these diagrams do not have the external propagators.

Mathematically, this can be seen as a self-consistent equation (the explicit dependency
of Σ on z has been omitted, in conformity with g and G)

G = g + gΣg + gΣgΣg + · · · = g + gΣG

which can be formally summed as a geometric series:

G = g
1

1̂− Σg
=

1

g−1 − Σ
.

It then becomes clear that the real part of Σ is responsible for the shift of the original
Green’s function’s poles and the imaginary part is responsible for their broadening. This
gives direct access to the quasiparticles’ lifetimes and herein lies the usefulness of the
self-energy operator.

For the reasons stated in the beginning of section 3.2, the average over disorder also
renders the self-energy diagonal in k-space. Therefore, the previous equation can be written
in the subspace spanned by the subbasis |k, α⟩, for all α:

G (k, z) =
1

z1̂−H0 (k)− Σ (k, z)
,

where H0 (k) is the momentum representation of the translation invariant part of the
Hamiltonian, H0 and all these three objects are understood to be matrices in this subspace
of momentum k.

By construction, each term of Σ that has been calculated translates into an infinite series
of terms calculated for G. By doing approximations on Σ instead of on G directly, we get
a much better and more efficient approximation for G. In the following subsections, a
few useful approximation schemes will be described before showing a way to compute Σ

exactly.
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3 Diagrammatics in disordered systems

3.5.1 Born approximation

The simplest and most used approximation is the Born approximation, which consists of
keeping just the triangle diagram (Fig. 3.8 a)).

Figure 3.8: a) Born approximation (BA), b) Self-consistent Born approximation (SCBA),
c) T-matrix approximation (TMA) and d) self-consistent T-matrix approxima-
tion (SCTMA). The thin lines with arrows represent the clean Green’s function
g and the thick lines with arrows the disorder-averaged complete Green’s func-
tion G.

The expression for the self-energy under the Born approximation is

ΣBA
αβ (k, z) = ⟨k, α|V g (z)V |k, β⟩ = Aαβ

1

N

∑
k1

gαβ (k1, z) . (3.12)

In the case of Anderson disorder with zero mean, (with Aαβ = v2δαβ for uncorrelated disor-
der and Aαβ = Cαβ for correlated disorder), this approximation is actually the lowest order
approximation to the self-energy. We can see immediately that correlation is responsible
for activating the nondiagonal elements of the disorder self-energy, at least at the level of
the Born approximation.

For the case of dilute impurities and vacancies, or a type of disorder with V ̸= 0, the
lowest order term would actually be just a single circle with one line coming out. This
term may possess some matrix structure, but no momentum or energy dependency, and is
just usually ignored. While this is justified when it has a scalar structure (as its real part
can be absorbed into the definition of the Fermi energy), this is not the case for a more
general structure. In any case, this term is not included in the Born approximation - that
is reserved for the triangle diagram.

3.5.2 Self-consistent Born approximation

A much better approximation can be done by choosing a specific subset of diagrams for
the self-energy, the nonintersecting diagrams that only have two lines coming out of each
circle, corresponding to ignoring higher-order correlators. This is represented in Fig. 3.8
b) as a self-consistent equation. The Green’s function used in this self-energy is the one
determined by this self-energy, thus establishing a self-consistent equation to determine
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3.5 Self-energy and approximation techniques

both Σ and G:

G
SCBA

(k, z) =
1

z1̂−H0 (k)− ΣSCBA (k, z)
(3.13)

and

ΣSCBA
αβ (k, z) = Aαβ

1

N

∑
q

G
SCBA
αβ (q, z) . (3.14)

This is the self-consistent Born approximation (SCBA). Even though there is a momentum
label in the self-energy operator of the two previous equations, it actually does not depend
on k, as the momentum of the disorder-averaged Green’s function is being integrated.
Therefore, eqs. 3.13 and 3.14 can be solved simultaneously by replacing 3.14 in 3.13, and
repeating the procedure to convergence. This procedure takes into account every single
diagram which does not have crossings or higher-order correlators.

3.5.3 T-matrix

The T-matrix approximation (TMA) consists of the sum of all single-impurity scattering
diagrams and is a very good approximation in the dilute limit. In fact, it is exact in
the limit of a single impurity. Perturbatively, it is the linear order term in the impurity
concentration n. Diagrammatically, this is represented in Fig. 3.8 c) as a sum over all
diagrams with just one circle. In some particular cases, it is possible to find a closed form
expression for the T-matrix. Such is the case for dilute impurities. To see this, let’s begin
by writing the T-matrix self-energy ΣT as a sum of one-impurity diagrams (the diagrams
with just one circle, denoted by an overline with a T)

ΣT
αβ (k, z) = ⟨k, α|V T |k, β⟩+ ⟨k, α|V gV T |k, β⟩+ · · · .

As we have seen in sec 3.3.2, the average falls onto the structure factor ϱ. Defining ĥ as
the operator constructed from hαβ (the hoppings associated with the impurity) as

hαβ = ⟨k, α| ĥ
∣∣k′, β

〉
,

the T-matrix approximation can be expressed as

ΣT
αβ (k, z) = ⟨k, α| ĥ

∣∣k′, β
〉
ϱ0

T +
∑
q

⟨k, α| ĥg (q) ĥ
∣∣k′, β

〉
ϱq−kϱk−q

T + · · · .

The structure factors we need were already specified in eq. 3.9, and when the sum of the
momenta is zero q1 + · · ·+ qM = 0 (such as in this case), they simplify to

ϱq1 · · · ϱqM

T =
n

NM−1
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3 Diagrammatics in disordered systems

and so the expression for the self-energy simplifies

ΣT
αβ (k, z) = ⟨k, α| ĥ |k, β⟩n+ ⟨k, α| ĥ

[
1

N

∑
q

g (q)

]
ĥ
∣∣k′, β

〉
n+

+ ⟨k, α| ĥ

[
1

N

∑
q

g (q)

]
ĥ

[
1

N

∑
q

g (q)

]
ĥ
∣∣k′, β

〉
n+ · · · .

Because of the sums over internal momenta q, the operator
∑

q g (q) does not depend on
the momentum. For notational simplicity, let Ĝ = 1

N

∑
q g (q). then, the self-energy takes

the form
ΣT
αβ (k, z) = n ⟨k, α| ĥ

(
1̂+ Ĝĥ+

(
Ĝĥ
)2

+ · · ·
)
|k, β⟩

which can be summed as a harmonic series

ΣT
αβ (k, z) = n ⟨k, α| ĥ 1

1̂− Ĝĥ
|k, β⟩ .

Just like in the previous sections, the self-energy does not depend on k. Under certain
circumstances, assuming that ĥ is very large and invertible, the previous equation becomes

ΣT
αβ (k, z) = −n ⟨k, α| Ĝ−1 |k, β⟩ . (3.15)

This typically happens when ĥ represents vacancies. Finally, note that by replacing g with
the disorder-averaged Green’s function determined by the TMA, we can get an even better
approximation, the self-consistent T-matrix approximation (SCTMA)). The SCTMA takes
into account every single diagram without crossings.

3.5.4 T-matrix in graphene with vacancies

In order to apply the previous section to graphene with vacancies, one extra step needs
to be done. In a tight-binding description, graphene can be described in terms of two
sublattices, and there can be vacancies in either of them. This does not fit the previous
framework well, but it can be fixed at the level of the first order in the concentration of
vacancies. Consider VA (VB) to be the operator which describes vacancies in sublattice A
(B). In this description, vacancies are expressed as local impurities with a very large local
energy ε≫ 1:

VA =
∑

Ri∈ΩA

ε |Ri, A⟩ ⟨Ri, A|

where the sum is over the set ΩA of unit cells which have vacancies in the sublattice A.
VB has an identical definition. Then, the full Hamiltonian is

H = H0 + VA + VB.
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3.5 Self-energy and approximation techniques

The fact that two operators are required instead of just one makes the analysis slightly
more complicated. Just like in sec. 3.3.2, define the structure factors for the impurities in
each sublattice:

ϱAq =
1

N

∑
Ri∈ΩA

eiq·Ri

ϱBq =
1

N

∑
Ri∈ΩB

eiq·Ri .

The vacancies’ positions in different sublattices are uncorrelated, so that automatically
means that ϱBq ϱAq′ = ϱBq ϱ

A
q′ and also that VAVB = VA VB. Let nA (nB) be the concentration

of vacancies in sublattice A (B). To keep the computation of ΣT to first order in the
concentration of vacancies, we can never get a product of VA and VB. Each of these would
be proportional to nA and nB, respectively, and if both are comparable, then this would
be of order n2A. This means that in a term like

⟨k, α|V gV T |k, β⟩ = ⟨k, α| (VA + VB) g (VA + VB)
T |k, β⟩ ,

the only surviving terms to first order are

⟨k, α|VAgVA
T |k, β⟩+ ⟨k, α|VBgVB

T |k, β⟩ .

The same can be said of any term, so in fact we get a separate T-matrix approximation
for each sublattice:

ΣT
αβ (k, z) = nA ⟨k, A| ϵ 1

1̂− Ĝϵ
|k, A⟩ δαAδβA + nB ⟨k, B| ϵ 1

1̂− Ĝϵ
|k, B⟩ δαBδβB.

Considering nA = nB = n and letting ε → ∞, we get a very simple formula for the
T-matrix

ΣT
αβ (k, z) = −n ⟨k, A| Ĝ−1 |k, A⟩ δαAδβA − n ⟨k, B| Ĝ−1 |k, B⟩ δαBδβB.

Because the matrix elements are identical, the formula simplifies even further:

ΣT
αβ (k, z) = −n ⟨k, A| Ĝ−1 |k, A⟩ δαβ. (3.16)

Therefore, we find that the T-matrix approximation for the self-energy in graphene is a
diagonal matrix. As we will learn in the next section, this is not the complete picture. The
T-matrix approximation is a very powerful tool, but it is only able to capture one subset
of diagrams.
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3 Diagrammatics in disordered systems

3.5.5 A different T-matrix for graphene

Upon reading these previous four sections, the reader might come under the impression that
the approximations existing in the literature are incapable of dealing with a k-dependent
self-energy. This is the case for the purposes of this thesis because all the disorder types
considered here make it so, but this is not the case in general. If the disorder connects
different unit cells, then a momentum dependency automatically appears.

One particularly interesting case is an alternate way to describe vacancies. Instead of a
very high local energy, vacancies can also come from removing all the hoppings to a given
site. In practice, this translates to a disordered operator with symmetrical hoppings to
those of the clean Hamiltonian H0, which when summed to H0, puts those hoppings to
zero. Since this can connect different unit cells, a k-dependency appears already at the
level of the Born approximation. For practical purposes, though, this also makes it more
difficult to find a closed form expression for the T-matrix approximation. Another point
that has to be kept in mind is the fact that this kind of description cannot be accurate to
higher order in the concentration of vacancies.

To understand this, imagine the effect of putting two of these vacancies together. Then,
all the hoppings to those sites get cancelled out except the ones that connect the two sites,
which get subtracted twice. The result is a set of two sites connected among themselves
but isolated from the rest of the lattice. The probability of this happening is of order n2.
Furthermore, if several disorder sites are allowed to sit in the same place like in section
3.3.2, then the hoppings get subtracted several times and this no longer describes a vacancy.
This is also an effect of order n2.

3.6 Exact calculation of the self-energy operator

Up until this point, the self-energy has been calculated with resort to a diagrammatic
expansion, which at best can provide the sum of an infinite subset of diagrams, but a
complete sum of all the diagrams is hopeless. In particular, crossing diagrams are notori-
ously difficult to calculate because of the multiple integrals over the FBZ. Furthermore, all
the popular techniques described so far fail to capture any kind of k dependency on the
self-energy. In order to better understand the processes (diagrams) which are relevant or
not, it is important to have a more flexible approach to getting the self-energy, with which
we can compare the approximations above. In order to do this, we have to go back to the
definition of the self-energy:

Σ (k, z) = g−1 (k, z)−G (k, z)
−1
.

The first term g−1 (k, z) is simply z − H0 (k), but the second has to be done with care.
Starting with the exact Green’s function, with disorder included, we begin by evaluating
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3.6 Exact calculation of the self-energy operator

it in the subspace of momentum k

⟨k, α|G (z) |k, β⟩ . (3.17)

At this point, it should be pointed out that G is not diagonal in k−space, and so inverting
the matrix in this subspace is meaningless. However, averaging over disorder, we know
that translation invariance is recovered, and so G (k, z) is diagonal and can be inverted
safely within this k−subspace. To achieve this goal, one can evaluate eq. 3.17 for a
given realization of disorder, and then repeat the process for other configurations until
the average converges to desired precision. Under these circumstances, the direct matrix
inversion of the matrix 3.17 is justified.

Alternatively, instead of performing many averages over disorder, one may use larger
systems. This has two advantages: 1) mitigates finite-size effects and 2) reduces statistical
fluctuations of the underlying process of evaluating the exact Green’s function. At first, it
may be unclear why this self-averaging property exists, but we justify it through a thorough
convergence analysis later on and an analytical proof for a few particular cases, which can
be found in the appendix 8.1.

3.6.1 Numerical procedure

In this section, more detail is given about the numerical procedure used to calculate the
exact self-energy operator, highlighting some important aspects along the way. We begin
by using the CPGF method to expand the full Green’s function as a series of Chebyshev
polynomials

G (z) =

∞∑
n=0

gn (z)Tn (H)

where the expression for gn is found in section 2.16. Recall that a small but finite η is
required for numerical convergence. The smaller the η, the more Chebyshev polynomials
are required for convergence. Then, evaluate all the matrix elements αβ for a given k. This
defines the matrix G (k,k) in the k-subspace, as defined previously. Each of these matrix
elements has to be calculated individually through this Chebyshev expansion, and the
corresponding Chebyshev moments are codified in the momenta matrix T (k, n), defined
as Tαβ (k, n) = ⟨k, α|Tn (H) |k, β⟩

Gαβ (k,k) =

∞∑
n=0

gn (z) ⟨k, α|Tn (H) |k, β⟩ =
∞∑
n=0

gn (z) Tαβ (k, n) . (3.18)

or, more compactly,

G (k,k) =

∞∑
n=0

gn (z) T (k, n) . (3.19)
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Starting with |k, β⟩, all the higher-order moments can be calculated through the Chebyshev
recursion

|k, β, 1⟩ = T1 (H) |k, β⟩ = H |k, β⟩

|k, β, n+ 1⟩ = Tn (H) |k, β⟩ = 2H |k, β, n⟩ − |k, β, n− 1⟩

As each |k, β, n⟩ is calculated, a whole column of T (k, n) can be obtained at once by
projecting this vector into every ⟨k, α|. This has to be repeated for every β. Therefore, for
a unit cell with No orbitals, there are N2

o matrix elements to be calculated, but only No

operations are required. Even though this method is closely related to the stochastic trace
evaluation (STE) as discussed in 2.6, there are no random vectors here. The only source of
randomness comes from the realization of disorder. It is very important to make sure that
the same realization of disorder is used for every matrix element of T (k, n). Otherwise,
the self-energy matrix will have a much larger error bar.

Once T (k, n) has been calculated for every n, the matrix elements of the Green’s function
can be reconstructed using eq. 3.18. Then, the process is repeated for several realizations
of disorder to get G (k, z) and the self-energy is directly obtained by inverting it:

Σ (k, z) = z −H0 (k)−G (k, z)
−1
.

If the system possesses self-averaging properties, then G (k, z) is very well approximated
by G (k,k), that is to say that only one average is required to get a satisfactory result.
Consequently, instead of performing averages over disorder, one can instead spend the
computational effort into simulating larger systems. Besides mitigating finite-size effects,
this has the added bonus of further decreasing the error bar. All the cases studied in this
chapter possess this property.

Before showing the power of this method and its applications to some interesting physical
problems, it is important to keep in mind some considerations on convergence.

3.6.2 Considerations on convergence

The process of subtracting G (k, z)
−1

from g−1 can yield a very small result if the disorder
is weak. This means that any imprecision in calculating G (k,k) can propagate towards a
big imprecision in Σ (k, z). A careful convergence analysis is therefore warranted for every
self-energy operator that is calculated. The main points to keep in mind are the following:

1. For a given η, the number of polynomials used must be enough to ensure the complete
convergence of not just G but also Σ. Even if G seems completely converged, Σ might
not be because of the propagation of small imprecisions. This is why in the examples
shown below, a convergence analysis was performed on Σ and not G.

2. For self-averaging systems, it has to be checked that the system is sufficiently large
for the self-averaging to take place. When this happens, we expect the error bar of
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3.7 Self-energy in SRO

Σ to be proportional to D−1/2, where D is the size of the Hilbert space.

3. The small broadening η has to be sufficiently small for G (z) to accurately represent
the exact Green’s function, for η = 0±. As we will see in the next examples, this is
not always an easy task and G (z) might not be an accurate representation across
the entire spectrum.

3.7 Self-energy in SRO

As a first application of the exact calculation of the self-energy operator, it’s important to
compare it against the known approximation schemes [5]. The model should have a suffi-
ciently complicated band structure for the matrix structure of the self-energy to become rel-
evant.

Figure 3.9: SrRuO3 embedded in a SrTiO3

matrix.

We expect the exact calculation to match
the approximation schemes for weak dis-
order, but to deviate from them when
disorder becomes sufficiently strong. For
this purpose, we chose to analyze the self-
energy matrix of the spin-polarized two-
dimensional electron gas that is formed in
SrRuO3 embedded in a SrTiO3 [108] ma-
trix (see Fig. 3.9) due to the effect of 1)
Anderson disorder and 2) vacancies.

The complex oxide perovskite SrRuO3

(also known as SRO) [109, 110] has been
studied extensively for the last fifty years,
having originated well over one thousand
papers on the subject by now. It is chemically inert and is one of the oxide materials with
the highest conductivity, but it is especially famous for its itinerant ferromagnetism and
unusual transport properties without the need for doping.

At the same time, the prospect of two-dimensional ferromagnetic conductors whose
properties can be activated by magnetic and electric fields has led to considerable interest
in this area. Even though SRO loses its ferromagnetic properties when its thickness goes
below three unit cells, it has been proposed [111, 112] and subsequently experimentally
verified [108] that an atomically thin layer of SRO embedded in a SrTiO3 matrix can
display these properties.

Despite the theoretical and experimental advances, the role of disorder in this complex
interfacial behavior remains essentially unexplored. In what follows, we analyze the effect
of vacancies and Anderson disorder by modeling the emergent two-dimensional electron gas
with a first-principles parameterized multi-orbital TB model, as found in the supplementary
material of [113]. The lattices used had dimensions 4096 × 4096, and 16384 Chebyshev
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polynomials were used for all the simulations.

3.7.1 Tight-binding Hamiltonian and band structure

The underlying lattice for this model is a square lattice, which supports a six-orbital tight-
binding Hamiltonian comprising of the spinful 4d orbitals of Ru in the SRO layer. This
Hamiltonian is composed of four terms:

H = H1 +H2 +H3 +H4.

The first term represents the nearest neighbor interaction in the x and y directions, sepa-
rately,

H1 =
∑

a,σ,⟨ij⟩x

ta,xd†iaσdjaσ +
∑

a,σ,⟨ij⟩y

ta,yd†iaσdjaσ,

with t1,x = t2,y = t2, t2,x = t3,x = t1,y = t3,y = t1. The operator d†iaσ creates an electron
in site i orbital a (yz = 1, xz = 2, xy = 3) and spin σ. The notation ⟨i, j⟩x(y) indicates
nearest neighbors in the x (y) direction. The second term

H2 =
∑

a,b,σ,⟨⟨i,j⟩⟩

fabij d
†
iaσdjbσ +

∑
a,σ,⟨⟨i,j⟩⟩

gad†iaσdjaσ

represents the second-nearest-neighbor interaction with g1 = g2 = t3, g3 = t4 and f12ij =

f21ij = f if i and j are along a diagonal and f12ij = f21ij = −f if they are along an anti-
diagonal. The terms H3 and H4 represent the Zeeman interaction and spin–orbit coupling
(SOC), respectively, with the following expressions:

H3 = −m
∑
a,σ,,i

τ zσσd
†
iaσdiaσ

H4 = iλ
∑

a,σ,σ′,i

εabcτ cσσ′d
†
iaσdiaσ′ .

Here, m is the amplitude of the Zeeman interaction, λ is the amplitude of the SOC, τ i

is a Pauli matrix and εabc is the Levi-Civita symbol. The SOC term was calculated by
evaluating the matrix elements L̂ · Ŝ in the angular momentum basis with ℓ = 2 restricted
to the Cartesian set xy, xz, yz.

In momentum space, the Hamiltonian is [114]

H =
∑
k

[
εakσδabδσσ′ + fabk δσσ′ + iλεabcτ cσσ′

]
d†kaσdkbσ
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Figure 3.10: Band structure (left) and density of states (right) of SRO.

where

ε1=yzkσ = −2t1 cos (ky)− 2t2 cos (kx)− 4t3 cos (kx) cos (ky)−mτ zσσ

ε2=xzkσ = −2t1 cos (kx)− 2t2 cos (ky)− 4t3 cos (kx) cos (ky)−mτ zσσ

ε3=xykσ = −2t1 (cos (kx) + cos (ky))− 4t4 cos (kx) cos (ky)−mτ zσσ

f12k = −4f sin (kx) sin (ky)

f21k = f12k

This model possesses a rich band structure. In Fig. 3.10, the band structure is shown
along the path ΓXMΓ. In the absence of SOC, nodal loops are formed when the minority
and majority bands intersect. The majority and minority spin bands are hybridized when
SOC is included, leading to a modulation of the equilibrium k-space spin-polarization
density and an enhanced Berry curvature near the avoided anti-crossings [115].

3.7.2 Anderson disorder

The first model of disorder under consideration is Anderson disorder. The on-site energies
εi for every orbital in each unit cell are taken from a uniform distribution of average 0 and
width W .

In other words, this means that the on-site disorder is locally correlated since the local
energies are identical for all the 4d orbitals within each unit cell, but different among dif-
ferent unit cells. This puts us exactly in the situation of section 3.3.1, where the Anderson
correlator is given by eq. 3.6. Every matrix element of the correlation matrix Cαβ be-
comes identical to the second moment of the box distribution and so has the simple form
Cαβ = v2 for all α,β = 1, · · · , 6. At the level of the Born approximation 3.12

ΣBA
αβ (k, z) = v2

1

N

∑
q

gαβ (q)
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Figure 3.11: Independent matrix elements of the self-energy operator for weak correlated
Anderson disorder of strength W = 0.1eV in SRO. Each matrix element is
color coded. The complete matrix is displayed on the right. Matrix elements
with the same color are related to each other by a factor of 1,−1, i or −i.

we expect all matrix elements to be allowed, but only those stemming from the matrix
structure of the clean Green’s function will appear. In this section, and the next, what is
represented is the self-energy as a function of the energy ε, not the complex variable z =

ε+ iη. Figure 3.11 shows the matrix elements of the disorder self-energy for weak disorder
W = 0.1eV evaluated at the k = Γ point, compared with the Born approximation (BA)
and the self-consistent Born approximation (SCBA). The agreement is perfect for every
matrix element, showing that the exact calculation of the self-energy is able to reproduce
the self-energy obtained by diagrammatic approximations. The energy resolution is set to
η = 1meV and excellent spectral convergence is reached at 16384 Chebyshev polynomials.
These results challenge conventional wisdom, which considers the self-energy as a scalar:
Σ ≈ −iΓ. Not only is it not a scalar, it is not even diagonal. The direct access to the full
matrix structure allows one to make more controlled approximations to this operator.

Increasing the W to 0.5eV, some deviations to the BA and SCBA should start to appear.
The BA is only valid up to order W 2, but the SCBA is nonperturbative. It contains
diagrams up to any order, but already fails to capture two of the three diagrams at order
W 4. Therefore, we expect the SCBA to be a better, despite limited, approximation.
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3.7 Self-energy in SRO

Figure 3.12: Three selected matrix elements of the self-energy operator for stronger corre-
lated Anderson disorder of strength W = 0.5 eV in SRO. The other matrix
elements have been omitted for clarity, and the self-energy matrix still follows
the same structure as in Fig. 3.11.

Figure 3.13: Independent matrix elements of the self-energy operator for uncorrelated An-
derson disorder W = 0.2 eV in SRO.

Looking at Fig. 3.12, the SCBA does in fact seem to provide a better approximation,
but it is not able to capture the finer details of the exact self-energy such as the dip close
to ε = 0. Ultimately, all methods still agree reasonably well on a quantitative scale.

Next, let’s try a different kind of Anderson disorder. This time, the on-site energies are
also uncorrelated among different orbitals, which results in a correlation matrix Cαβ =

δαβv2. At the level of the Born approximation, the self-energy is diagonal

ΣBA
αβ (k, z) = v2δαβ

1

N

∑
q

gαβ (q) .
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3 Diagrammatics in disordered systems

This is exactly what we see in the exact self-energy. Repeating the first analysis, we get
Fig. 3.13. As predicted from section 3.3.1, only the diagonal matrix elements are nonzero.
This was only proven at the level of the Born approximation, but the pattern seems to
hold even at stronger disorders, which is indicative of a deeper connection.

3.7.3 Vacancies

Vacancies can be thought of as very strong correlated impurities. When a lattice site is
vacant, then all the orbitals of that site disappear, so this kind of disorder correlates all
the orbitals.

Figure 3.14: Independent matrix elements of the self-energy operator at k = M for a 0.1%
concentration of vacancies in SRO.

Figure 3.15: Comparison between the T-matrix approximation (normalized to the concen-
tration of vacancies) and the exact self-energy operator for two concentrations
of vacancies (0.1% and 6%) in SRO.
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3.8 Self-energy in graphene with vacancies

Just like the correlated Anderson disorder case, we expect there to be no restriction
on the self-energy matrix elements. Since this is a kind of dilute disorder, the T-matrix
approximation is the most natural approximation scheme for this case, and should provide
a very good approximation when the concentration of vacancies is low.

Figure 3.16: dyz↑dyz↑ component of the self-
energy as a function of concen-
tration for several values of the
energy in SRO (dotted lines in
Fig. 3.15).

In the language of section 3.5.3, vacan-
cies can be expressed with hαβ = εδαβ for a
very large ε. This matrix is invertible, and
so eq. 3.15 is valid. Figure 3.14 shows that
the T-matrix is a fantastic approximation
for small concentrations and the same ma-
trix elements as before are activated, when
correlated Anderson disorder was used.

When the concentration of impurities be-
comes sufficiently large, the T-matrix ap-
proximation starts to deviate significantly
from the exact self-energy (Fig. 3.15). In
broad terms, the self-energy is proportional
to the concentration of impurities in ac-
cord with the T-matrix result, but at higher
concentrations, we start to see discrepan-
cies which scale as ∼ c−1.4 near the peak
(Fig. 3.16), which signals the onset of non-
perturbative disorder corrections. We note
that such peaks cannot be attributed to van
Hove singularities because they are absent at low defect concentration and there is no corre-
lation between the position of the peaks and the position of the singularities. We attribute
them to resonances induced by multi-vacancy clusters, which only start to form at higher
defect concentrations.

3.8 Self-energy in graphene with vacancies

This next example is one case where diagrammatics fail on a more fundamental level.
Intuitively, the diagrammatic approach is expected to be valid for low concentrations of
impurities/vacancies, where the self-energy is constant in the FBZ. What we will see in
this section challenges this notion. In graphene, the self-energy is found to have a very
strong momentum dependency and a nontrivial matrix structure, neither of which can be
captured with any of the diagrammatic approaches discussed so far.

As a relatively new material, graphene has originated a flurry of research since its first
successful isolation in 2004 [116–118]. The possibility of a condensed matter realization
of two-dimensional Dirac fermions made graphene a strong candidate for a wide variety
of exotic phenomena, such as Klein tunneling, the anomalous integer quantum Hall effect
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3 Diagrammatics in disordered systems

and exceptional higher-harmonic generation [117].

For these phenomena to be experimentally relevant, it is important to understand
whether they are robust to defects, which arise naturally in the fabrication process. Va-
cancy defects in graphene are one particularly interesting kind of disorder to look at,
because they preserve the sublattice symmetry of the lattice. Vacancies can arise directly
from missing lattice sites, but effective vacancies also appear in other situations. For ex-
ample, in graphene, an adsorbed hydrogen atom can increase the local potential so much
that electrons no longer hop to that site. Adsorbed molecules can also bind chemically to
the carbon atoms, changing the sp2 hybridization to sp3 and removing one pz orbital from
the pz band which comprises the TB model of graphene [119, 120].

A lot of research has been done on the effect of vacancies in graphene [121], but of
particular interest is the effect they have around the Dirac point. If the disorder is weak
and preserves the chiral symmetry, this model represents a special universality class of
the Anderson localization behavior, characterized by the existence of extended states at
the band center accompanied by a divergence in the density of states [14, 15]. Vacancies
are part of this class of disorder, but they cannot be considered to be weak scatterers. A
nonperturbative analysis of the same model [122] finds that the low-energy DoS scaling
predicted by Gade [14] gets modified from

ρ (ε) ∼ 1

ε exp
(
|log (ε)|−1/x

)
to the stronger diverging

ρ (ε) ∼ 1

ετn |log (ετn)|3/2

at even lower energies. Here, τn ∼ 1/n is simply a time scale related to the vacancy concen-
tration. Both these regimes have been verified numerically [16] and compared against the
SCTMA. Concretely, the SCTMA allowed the evaluation of the self-energy in two specific
limits in the continuum and predicts a scalar self-energy [123]

ImΣ (ε) ∝

Γ ε≪ Γ

−n/ |ε| log(|ε|) ε≫ Γ

where Γ = Λ
√

−n/log (n), n is the concentration of vacancies and Λ is a cutoff. The
SCTMA should provide a good approximation for large energies ε ≫ Γ because the di-
agrams representing quantum coherent multiple scatterings are negligible in this regime
[13]. Since the SCTMA ignores multi-impurity scattering events, quantum-interference
processes are absent, and so it was unable to capture the DoS divergence when ε ≪ Γ.
One might wonder if the continuum approximation could be a limiting factor here, but
an analysis using the exact lattice Green’s functions does not change the qualitative pic-
ture as will be shown later on. This analysis shows that so far, a reliable way to capture
quantum-interference processes with diagrammatics remained elusive.

66



3.8 Self-energy in graphene with vacancies

From the transport point of view, these zero-energy modes (ZEM) are predicted to
possess remarkable properties: their conductivity at zero temperature is independent of
the concentration of vacancies and is equal to the universal value σ0 = (4/π) e2/h [94]. This
striking property is just another piece of the puzzle which is the nature of the ZEM. The
self-energy is an object of particular interest because it codifies the statistical properties
of the disorder, and so it might provide clues into the nature and properties of the ZEM if
the quantum interference processes are able to be included in it.

To tackle this problem with our method, we begin by specifying the graphene Hamilto-
nian

H = −
∑
⟨i,j⟩

tijc
†
icj

Figure 3.17: Graphene lattice
with vacancies.

where c†i (ci) creates (removes) an electron at the i-th
site and ⟨i, j⟩ denotes nearest-neighbors. If both sites
i and j are regular sites, then tij = t. If at least one of
them is a vacancy, then tij = 0. Figure 3.17 shows the
lattice setup. The red arrows are the primitive vectors
and the highlighted blue diamond is the unit cell. The
region inside the black dashed diamond represents the
whole lattice, which is repeated with periodic bound-
ary conditions. The lattices used for this section con-
sist of systems with several millions of unit cells. With
this model, we simply apply the prescription of section
3.6.1: we use CPGF to obtain the exact green’s func-
tion and invert it to get the self-energy. All the ensuing
graphs were produced with a lattice of 107 sites and a
Green’s function resolved with M = 65536 Chebyshev polynomials, for a sub-meV resolu-
tion of η = 0.8 meV.

3.8.1 Self-energy

The self-energy was computed for several values of k, specified by color in the FBZ depicted
in Fig. 3.18. Panel a) represents the imaginary part of the low-energy AA component of
the self-energy for a 0.3% vacancy concentration. Panel b) is the same, but for the AB
component. The first striking feature here is the prominent momentum dependency. While
the TM predicts a divergence, our method reveals that Σ appears bounded and surprisingly
seems to go to zero at ε = 0 at the Dirac point k = K, where the Gade singularity is
located. The divergence is in fact a set of twin peaks. The second striking feature is the
realization that Σ does not have a scalar structure, in disagreement to what the TM and
SCTM predict. This rich structure is present for the majority of the FBZ, where both
components are of comparable size, but near the Dirac point Σ becomes a scalar. Panels
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3 Diagrammatics in disordered systems

c) and d) show the same qualitative picture still holds for a 1% vacancy concentration.

Figure 3.18: Components of the imaginary part of the self-energy operator as a func-
tion of energy for a vacancy concentration of 0.3% (top) and 1% (bottom)
in graphene. Each color represents a different point in the Brillouin zone
(bottom right hexagon). The T-matrix and the self-consistent T-matrix ap-
proximations are represented by black curves.

This rich behavior becomes even more interesting when one analyzes Σ as a function of
the concentration at the Dirac point in Fig. 3.19. Instead of being proportional to the con-
centration (as a TMA would suggest), the self-energy instead displays a highly anomalous
behavior with the concentration. The curves seem to be collapsing into one main curve as
the concentration is increased. Remarkably, Σ approaches zero at ε = 0, regardless of the
concentration (see next section for a scaling analysis). This exceedingly large quasiparticle
lifetime in the long wavelength limit sheds new light into the “mysterious” ZEM resilience
observed in large-scale simulations of the dc conductivity [94]. The last panel shows that
the self-energy can be approximately collapsed into one curve by following the scaling law
Σ (ε) = cαf (εcα) with α = 0.56± 0.02.

This analysis suggests a classification into three regimes: 1) large energies, where the
TMA provides an excellent approximation and Σ is k-independent. 2), an intermediate
region where Σ follows the scaling law and 3) the region near ε = 0 where Σ is independent
of the concentration. The anomalous behavior at zero energy coincides with the region with
the strongest momentum variation, which seems to indicate that both effects stem from
higher-order multi-impurity scattering processes. These are precisely the kinds of processes
which cannot be captured by either the TMA or the SCTMA and which are typically
ignored in the semiclassical limit where the crossing diagrams have a small contribution.
In this case, they seem to be dominant.
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3.8 Self-energy in graphene with vacancies

Figure 3.19: AA component of the imaginary part of the self-energy operator at the Dirac
point for several concentrations in graphene. The right panel shows the col-
lapsed self-energy matrix using the anzats Σ (ε) = cαf (εcα) with α ≈ 0.56.

3.8.2 Convergence study

As noted in section 3.6.2, it is important to ascertain the convergence of the self-energy
matrix, and several factors have to be carefully assessed:

1. The phenomenological broadening η used for the numerical resolution of the Green’s
functions has to be as small as possible to accurately capture the singular nature of
the Green’s functions.

2. For any η, the number of polynomials has to be sufficiently large for the series to
converge, keeping in mind that a converged Green’s function does not necessarily
mean a converged self-energy.

3. The (linear) system size L has to be large enough for the mean-level spacing to be
smaller than the resolution being used.

4. The statistical fluctuations due to the variations in vacancy positions from one real-
ization of disorder to the other have to be low enough for the results to be meaningful.
Due to the self-averaging properties of the disorder in this case, a larger system size
will also mean a smaller error bar.

5. The simulations of this section relied heavily on the assumption of self-averaging.
This also has to be checked. A system with self-averaging properties should yield an
error bar which scales as D−1/2, where D is the size of the Hilbert space. In this
case, since D = 2L2, the error bar should scale as 1/L.

In this section we address each of these points in detail for a 0.3% vacancy concentration
with the help of Fig. 3.20. The inset is the self-energy at ε = 0 as a function of the
broadening, indicating that Σ (ε = 0) = 0. Panel b) shows the standard deviation of
Im (ΣAA) as a function of the system size for several energies. The slope is −1, indicating
self-averaging behavior. Now let’s address each of the previous points:
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3 Diagrammatics in disordered systems

Figure 3.20: Convergence study for the imaginary part of the AA component of the disorder
self-energy operator in graphene.

1. The phenomena tackled in the previous section are characterized by fine features that
require a very small resolution to be accurately resolved. Furthermore, due to the
singular nature of the Green’s functions at zero energy, convergence with η is very
difficult to achieve in that region. This is evident from Fig. 3.20a), where the curves
seem close to convergence for |ε| > 5 meV, but far from that otherwise. Nevertheless,
the tendency can be estimated. The inset shows the self-energy at zero energy as a
function of η and it is well fitted by ImΣ = η2/3 (orange line), which extrapolates to
zero at η = 0.

2. The curves no longer change when the number of polynomials is increased. This has
been checked by doubling and halving the number of polynomials and indicates that
both the Green’s function and the self-energy have converged.

3. Figure 3.20 a) displays Σ for two different system sizes and several values of η. The
colored curves have L = 36864, and the superimposed black dashed curves have
L = 18432. Close to zero energy where the focus of previous section lies, the curves
do not change at all when L is changed, corroborating that the mean level spacing is
very small due to the diverging DoS. In contrast, for larger energies, the discreteness
of the spectrum becomes visible for η ≲ 1 meV, which is very close to the estimated
mean level spacing of 1.4 meV

4. Figure 3.20 b) shows that for several energies, the error bar follows the self-averaging
behavior 1/L. The black dashed lines have slope −1.

5. Figure 3.20 b) also shows that the statistical fluctuations are very small, of the order
of 2meV when L = 18432 and therefore do not influence our results.
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4 Nonlinear optical conductivity

In this chapter, a general perturbation procedure is developed to deal with non-interacting
fermion systems at finite temperature coupled to a time-dependent external field. In [69],
Weisse proposed an advanced Chebyshev expansion method to compute linear response
functions. This Chapter comes as the next logical step, by providing the generalization to
all orders in perturbation theory. Through careful categorization of all these contributions,
we provide a systematic procedure to find the objects needed to calculate the conductivity
at any order. These objects are expressed with no reference to a specific basis. The
critical point here is that the mathematical objects provided by our perturbation expansion
are precisely the ones required by the numerical spectral methods we use. This fact,
combined with our diagrammatic approach, provides a straightforward way to implement
the numerical calculation of the nonlinear optical conductivity for a wide range of materials.

4.1 Keldysh Formalism

The Keldysh formalism [32] is a general perturbation scheme describing the quantum
mechanical time evolution of non-equilibrium interacting systems at finite temperature. It
provides a concise diagrammatic representation of the average values of quantum operators.
This formalism does not rely on any particular basis, which is a critical feature for this
Chapter. In this section we will introduce the definitions of the objects used throughout
the Chapter and show how to expand the Green’s functions for fermions [124] with this
formalism.

4.1.1 Definitions

Green’s functions

To use the Keldysh formalism for fermions, we need the definitions of the time-ordered,
lesser, greater and anti-time-ordered Green’s functions. Respectively,

iGTab
(
t, t′
)

=
〈
T
[
ca (t) c

†
b

(
t′
)]〉

(4.1)

iG<ab
(
t, t′
)

= −
〈
c†b
(
t′
)
ca (t)

〉
(4.2)

iG>ab
(
t, t′
)

=
〈
ca (t) c

†
b

(
t′
)〉

(4.3)

iGT̃ab
(
t, t′
)

=
〈
T̃
[
ca (t) c

†
b

(
t′
)]〉

. (4.4)
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4 Nonlinear optical conductivity

Figure 4.1: Diagrammatic representation of the expected value of the current operator in
Fourier space. The horizontal straight line ending in a circle is the lesser Green’s
function and the wavy line beginning in a circle represents the current operator.

All the creation and annihilation operators are in the Heisenberg picture and the la-
bels a and b denote states belonging to a complete single-particle basis. T is the time-
ordering operator and T̃ the anti-time-ordering operator. The average ⟨· · · ⟩ stands for
Tr [ρ(t0) · · · ] /Tr [ρ(t0)] in the grand canonical ensemble, ρ is the density matrix and t0

denotes the time at which the external perturbation has been switched on. These are the
building blocks of the Keldysh formalism. The advanced and retarded Green’s functions
are a simple combination of the previous objects:

GR = GT −G<

GA = −GT̃ +G<.

The non-perturbed versions of these Green’s functions are denoted by a lowercase g.

Expected value of an operator

The expected value of the current J (t) (or any one-particle operator) may be evaluated
with resort to these Green’s functions by tracing over its product with the perturbed lesser
Green’s function:

J (t) =
〈
Ĵ (t)

〉
= −Tr

[
Ĵ (t) iG< (t, t)

]
. (4.5)

The Fourier transform 1 of J (t) is shown diagrammatically in Fig. 4.1. The circles
stand for the full, perturbed operators in the presence of an external field.

Conductivity

We use the same definition for the nonlinear optical conductivity as in [63, 64]:

Jα (ω) = σαβ (ω)Eβ (ω) +

∫
dω1

2π

∫
dω2

2π
× (4.6)

σαβγ (ω1, ω2)E
β (ω1)E

γ (ω2) 2πδ (ω1 + ω2 − ω) + · · ·

where Eα is the component of the electric field along the α direction and the repeated
indices are assumed to be summed over. The coefficients of this expansion are the con-

1Fourier convention: f (t) = (2π)−1 ∫ dωe−iωtf̃ (ω), where the tilde is used to denote the Fourier trans-
formed function.
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4.1 Keldysh Formalism

ductivities at each order in the expansion. The next section is devoted to finding the
perturbation expansion of G<. In this chapter we are dealing with tight-binding models,
in which case the current operator will itself be a power series of the external field.

4.1.2 Non-interacting electronic systems

Our system is described by the many-particle time-dependent Hamiltonian

H (t) = H0 +Hext (t) .

where H0 is an Hamiltonian that we can solve exactly and Hext (t) is the time-dependent
external perturbation. Here we restrict ourselves to non-interacting Hamiltonians since
we’re dealing with non-interacting electrons. These operators are expressed in terms of
their single-particle counterparts as

Hext (t) =
∑
ab

[Hext (t)]ab c
†
a (t) cb (t)

H0 =
∑
ab

[H0]ab c
†
a (t) cb (t) .

The expansion of the perturbed lesser Green’s function G< will be expressed in terms
of the unperturbed Green’s functions g>, g<, gR and gA in Fourier space (denoted with
tildes):

ig̃< (ω) = −2πf (ℏω) δ (ω −H0/ℏ) (4.7)

ig̃> (ω) = 2π [1− f (ℏω)] δ (ω −H0/ℏ)

ig̃R (ω) =
i

ω −H0/ℏ+ i0+

ig̃A (ω) =
i

ω −H0/ℏ− i0+
,

where f (ϵ) =
(
1 + eβ(ϵ−µ)

)−1 is the Fermi-Dirac distribution, β is the inverse temperature
and µ is the chemical potential. The Keldysh formalism and Langreth’s rules provide the
perturbation expansion of G< [125]. Defining V (t) = (iℏ)−1Hext (t), the zeroth-order term
in the expansion is

iG̃<(0)(ω) =

∫
dω1ig̃

<(ω1)δ(ω)

and the first-order one is

iG̃<(1)(ω) =

∫
d3ω123

(2π)3
(2π)2 δ(ω1 − ω2 − ω3)δ(ω + ω3 − ω1)

×
[
ig̃R(ω1)Ṽ (ω2)ig̃

<(ω3) + ig̃<(ω1)Ṽ (ω2)ig̃
A(ω3)

]
.
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= +

+

+ + +

Figure 4.2: Diagrammatic representation of the lesser Green’s function.

∫
dnω1···n is a shorthand for

∫
· · ·
∫

dω1 · · · dωn. The second-order term is

iG̃<(2)(ω) =

∫
d5ω1···5

(2π)5
(2π)3 δ(ω5 + ω − ω1)×

δ(ω1 − ω2 − ω3)δ(ω3 − ω4 − ω5)×[
ig̃R(ω1)Ṽ (ω2)ig̃

R(ω3)Ṽ (ω4)ig̃
<(ω5)

+ig̃R(ω1)Ṽ (ω2)ig̃
<(ω3)Ṽ (ω4)ig̃

A(ω5)

+ig̃<(ω1)Ṽ (ω2)ig̃
A(ω3)Ṽ (ω4)ig̃

A(ω5)
]
.

Diagrammatically, the expansion of iG< (ω) is represented by Fig. 4.2. Each wavy line
ending in a circle represents an external perturbation Ṽ . There are three different types of
Green’s functions that may appear in these expansions, with a certain regularity: a lesser
Green’s function g̃<, which is always present, retarded Green’s functions g̃R and advanced
Green’s functions g̃A. Diagrammatically, g̃< is represented by a dashed line while the
solid lines represent retarded or advanced Green’s functions. To identify whether a line
represents a retarded or advanced Green’s function, one needs to read the diagram and
identify the position of the lesser Green’s function and the outgoing line. Reading clockwise
(anti-clockwise) until finding the outgoing line, there can only be advanced (retarded)
Green’s functions. In each intersection, the corresponding external perturbation Ṽ is
inserted. An exception is made for the intersection with the line representing ω, as it
still needs to be contracted.

If the external perturbation were a simple external field E (t), then the coupling would
be Hext (t) = eE (t) · r and the previous expressions coupled with eq. (4.5) would suffice.
Now we will turn to tight-binding Hamiltonians, for which the external coupling is actually
an infinite series of operators due to the way the electromagnetic field is introduced. This
affects not only the V operators but also the expression for the current operator.
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4.2 Tight-binding Hamiltonian with external electric field

4.2 Tight-binding Hamiltonian with external electric field

Tight-binding models provide a simple framework with which to calculate transport quan-
tities. This framework can be used to express structural disorder in the system, whilst
Peierls’ substitution [126] adds an electromagnetic field as an external perturbation. De-
spite the simplicity of this procedure, the addition of an electromagnetic field through a
phase factor yields an infinite series of Hext. In this section, we obtain the expression for
Hext and show how the expansions of the previous sections may be used to obtain the non-
linear optical conductivity. This is entirely analogous to the way the external perturbation
is introduced with the velocity gauge in the work of Passos et al [63].

4.2.1 Series expansion

Let’s consider the following tight-binding Hamiltonian:

H0 =
∑

Ri,Rj

∑
σ1,σ2

tσ1σ2 (Ri,Rj) c
†
σ1 (Ri) cσ2 (Rj) . (4.8)

The Ri represent the lattice sites and the σi the other degrees of freedom unrelated to the
position, such as the orbitals and spin. The electromagnetic field is introduced through
Peierls’ substitution:

tσ1σ2 (Ri,Rj) → e
−ie
ℏ

∫Ri
Rj

A(r′,t)·dr′
tσ1σ2 (Ri,Rj) . (4.9)

To introduce both a static magnetic field and a uniform electric field, we use the following
vector potential:

A(r, t) = A1(r) +A2(t).

The electric and magnetic fields are obtained from E(t) = −∂tA2(t) and B(r) = ∇ ×
A1(r). The introduction of the magnetic field only changes the tσ1σ2 (Ri,Rj) without
introducing a time dependency. Therefore, we may assume that a magnetic field is always
present without any loss of generality for the following discussion while keeping in mind
that its introduction broke translation invariance. Since the magnetic field only affects
the hopping parameters, from now on, the term in the vector potential that provides the
electric field will be denoted by A (t). The external perturbation is obtained by expanding
the exponential in eq. 4.9 and identifying the original Hamiltonian.

Expansion of the external perturbation

Expanding the exponential in eq. 4.9 yields an infinite series of operators for the full
Hamiltonian:

HA (t) = H0 +Hext (t)
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= + + + ...

Figure 4.3: Diagrammatic representation of the external perturbation.

from which we identify, after a Fourier transform,

Ṽ (ω) =
e

iℏ
hαÃα (ω) +

e2

iℏ
hαβ

2!

∫
dω′

2π

∫
dω′′

2π
×

Ãα
(
ω′) Ãβ (ω′′) 2πδ (ω′ + ω′′ − ω

)
+ · · · .

Repeated spatial indices are understood to be summed over. We have defined

ĥα1···αn =
1

(iℏ)n
[r̂α1 , [· · · [r̂αn , H0]]] (4.10)

where r̂ is the position operator. In first order, ĥα is just the single-particle velocity
operator. Under periodic boundary conditions (PBC), the position operator r̂ is ill-defined
but its commutator with the Hamiltonian is not. In real space, this commutator is simply
the Hamiltonian matrix element connecting the two sites i and j multiplied by the distance
vector dij between them. If we define this distance vector as the distance between neighbors
instead of the difference of the two positions, it will be well defined in PBC. Using this
strategy, all the ĥ operators may be evaluated in position space by assigning to each bond
the Hamiltonian matrix element multiplied by the required product of difference vectors
hα1···αn
ij = (iℏ)−nHijd

α1
ij · · · dαn

ij .

In Fig. 4.3, we see how the diagrammatic representation of the external perturbation
unfolds into an infinite series of external fields. The wavy line represents Ã and the number
of external fields connected to the same point is the number of commutators in eq. 4.10.

Expansion of the current

The current operator is calculated directly from the Hamiltonian, using Ĵα = −Ω−1∂H/∂Aα

(Ω is the volume of the sample), which also follows a series expansion due to the presence
of an infinite number of A (t) in Hext:

Ĵα (t) = − e

Ω

(
ĥα + eĥαβAβ (t) +

e2

2!
ĥαβγAβ (t)Aγ (t) + · · ·

)
.

Figure 4.4 depicts the diagrammatic representation of this operator in Fourier space.

The complexity of this expansion becomes clear. In eq. 4.5, both the current operator
and the Green’s functions follow a perturbation expansion. Furthermore, each interaction
operator in every one of the terms in the Green’s function expansion also follows a similar
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= + + + ...

Figure 4.4: Diagrammatic representation of the current operator. The single small circle
is to be understood as a Dirac delta.

expansion. We now have all the objects needed for the perturbative expansion of the
conductivity.

4.2.2 Perturbative expansion of the conductivity

In the previous sections we laid out the expressions for each individual operator in our ex-
pansion and represented their corresponding diagrammatic depictions. In this subsection,
we put together all the elements of the previous sections to provide the full diagrammatic
representation of the first and second-order conductivities. This expansion closely resem-
bles that of [127] but has several differences due to the usage of these specific Green’s
functions. The only thing left to do is to replace the perturbed objects in the diagram-
matic representation of the expected value of the current operator by their expansions. It
is straightforward to see how the diagrams fit together in Fig. 4.5, which shows all the
contributing diagrams up to second order.

+ +

++

+ + +

+ +

a)

b)

Figure 4.5: Expansion of the expected value of the conductivity in (a) first and (b) second
order.
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Obtaining the conductivity from the current is a matter of expressing the frequencies
ω′, ω′′ and ω′′′ in terms of ω1, ω2 and ω and using E (ω) = iωA (ω). The Dirac delta in
eq. 4.6 simply means that ω is to be replaced by the sum of external frequencies entering
the diagram. Thus, the n-th order conductivity may be found using the following rules:

1. Draw all the diagrams with n wavy lines coming in the diagram, one going out and
one dashed interconnecting line. Integrate over the internal frequencies and ignore
the conservation of momentum in the vertex containing ω, as that is already taken
into account by the Dirac delta in the definition of the conductivity.

2. Reading clockwise starting from the vertex containing ω, insert, by order, a gener-
alized velocity operator hα1···αk at each vertex and a Green’s function at each edge.
Each αi is the label of a frequency line connecting to the vertex. If the edge is a
dashed line, the Green’s function is ig<. All the edges before that correspond to igR

and the ones after it to igA. Trace over the resulting operator.

3. Multiply by Ω−1en+1
∏n
k=1 (iωk)

−1 (iℏ)1−N , where n is the number of dashed lines
and N is the number of interconnecting lines. For each vertex, divide by the factorial
of the number of outgoing lines.

Following these rules and replacing ig< by eq. 4.7, the first-order conductivity is found:

σαβ (ω) =
ie2

Ωω

∫ ∞

−∞
dϵf(ϵ)Tr

[
ĥαβδ (ϵ−H0) +

1

ℏ
ĥαgR (ϵ/ℏ+ ω) ĥβδ (ϵ−H0)

+
1

ℏ
ĥαδ (ϵ−H0) ĥ

βgA (ϵ/ℏ− ω)

]
.

Similarly, for the second-order conductivity:

σαβγ (ω1, ω2) =
1

Ω

e3

ω1ω2

∫ ∞

−∞
dϵf(ϵ)Tr

[
8∑
i=1

Oαβγ
i (ω1, ω2)

]
(4.11)

where

Oαβγ
1 (ω1, ω2) =

1

2
ĥαβγδ (ϵ−H0)

Oαβγ
2 (ω1, ω2) =

1

ℏ
ĥαβgR (ϵ/ℏ+ ω2) ĥ

γδ (ϵ−H0)

Oαβγ
3 (ω1, ω2) =

1

ℏ
ĥαβδ (ϵ−H0) ĥ

γgA (ϵ/ℏ− ω2)

Oαβγ
4 (ω1, ω2) =

1

2ℏ
ĥαgR (ϵ/ℏ+ ω1 + ω2) ĥ

βγδ(ϵ−H0)

Oαβγ
5 (ω1, ω2) =

1

2ℏ
ĥαδ (ϵ−H0) ĥ

βγgA (ϵ/ℏ− ω1 − ω2)

Oαβγ
6 (ω1, ω2) =

1

ℏ2
ĥαgR (ϵ/ℏ+ ω1 + ω2) ĥ

βgR (ϵ/ℏ+ ω2) ĥ
γδ (ϵ−H0)

Oαβγ
7 (ω1, ω2) =

1

ℏ2
ĥαgR (ϵ/ℏ+ ω1) ĥ

βδ (ϵ−H0) ĥ
γgA (ϵ/ℏ− ω2)

Oαβγ
8 (ω1, ω2) =

1

ℏ2
ĥαδ (ϵ−H0) ĥ

βgA (ϵ/ℏ− ω1) ĥ
γgA (ϵ/ℏ− ω1 − ω2) .
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4.3 Spectral methods

The procedure is exactly the same for the n-th order conductivity, which will have
2n−1 (n+ 2) diagrams. The higher-order expansions will not be obtained because a realis-
tic computation of physical quantities with those formulas using spectral methods would
require tremendous computational power. This point will be further explained in the next
section.

4.3 Spectral methods

From the previous section, it becomes clear that the only objects needed to calculate the
conductivity up to any order are the retarded and advanced Green’s functions, Dirac deltas
and the generalized velocity operators. As we have seen in chapter 2, both the Dirac deltas
and the Green’s functions can be expanded in terms of Chebyshev polynomials, and then
the trace evaluated using STE. The Green’s function expansion can be done either with
the Lorentz weight 2.10 or with a finite imaginary part η. We choose the latter because
the approximation is better controlled, even though both must yield the same result in the
limit of infinite polynomials. For a finite η, the function is no longer singular and so we can
expect the expansion to converge within a given accuracy after enough polynomials have
been added. In this chapter, we will use the exact decomposition of the Green’s function
2.17 in terms of Chebyshev polynomials in order to be able to evaluate the convergence of
our method. The term ℏ/η may also be interpreted as a phenomenological relaxation time
due to inelastic scattering processes and therefore may be adjusted to reflect this fact.

4.3.1 Expansion in Chebyshev polynomials

The Dirac deltas are expanded using 2.13 and the advanced and retarded Green’s functions
using 2.17. As is typical with this kind of expansions, the operator part has been com-
pletely separated from its other arguments. All the Dirac deltas and Green’s functions may
therefore be separated into a term with only Chebyshev polynomials of H0 and another
with only coefficients which encapsulate the frequency and energy parameters. The trace
in the conductivity now becomes a trace over a product of polynomials and ĥ operators,
which can be encapsulated in a new object, the Γ matrix:

Γα1,··· ,αm
n1···nm

=
Tr
N

[
h̃α1Tn1 (H0) · · · h̃αmTnm (H0)

]
.

The upper indices in bold stand for any number of indices: α1 = α1
1α

2
1 · · ·α

N1
1 . Here

we have used h̃α1 = (iℏ)N1 ĥα1 rather than ĥ to avoid using complex numbers when the
Hamiltonian matrix is purely real in our numerical simulations.
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4 Nonlinear optical conductivity

It’s very important to keep in mind that these new operators are no longer hermitian.
The commas in Γ separate the various h̃ operators. N is the number of unit cells in the
sample being studied and ensures that Γ is an intensive quantity. Some examples are:

Γα,βγnm =
Tr
N

[
h̃αTn (H0) h̃

βγTm (H0)
]

Γαβn =
Tr
N

[
h̃αβTn (H0)

]
Γα,β,γnmp =

Tr
N

[
h̃αTn (H0) h̃

βTm (H0) h̃
γTp (H0)

]
.

The Γ matrix only depends on the physical system itself as it is merely a function of
the Hamiltonian and the h̃ operators. The coefficients of the Chebyshev expansion may
similarly be aggregated into a matrix, which we denote by Λ. Some examples:

Λn =

∫ ∞

−∞
dϵf (ϵ)∆n (ϵ)

Λnm (ω) = ℏ
∫ ∞

−∞
dϵf (ϵ)

[
gRn (ϵ/ℏ+ ω)∆m (ϵ) + ∆n (ϵ) g

A
m (ϵ/ℏ− ω)

]
Λnmp (ω1, ω2) = ℏ2

∫ ∞

−∞
dϵf (ϵ)

[
gRn (ϵ/ℏ+ ω1 + ω2) g

R
m (ϵ/ℏ+ ω2)∆p (ϵ)

+gRn (ϵ/ℏ+ ω1)∆m (ϵ) gAp (ϵ/ℏ− ω2)

+∆n (ϵ) g
A
m (ϵ/ℏ− ω1) g

A
p (ϵ/ℏ− ω1 − ω2)

]
.

In terms of these new objects, the conductivities become

σαβ (ω) =
−ie2

Ωcℏ2ω

[∑
n

Γαβn Λn +
∑
nm

Λnm (ω) Γα,βnm

]
in first order and

σαβγ (ω1, ω2) =
ie3

Ωcω1ω2ℏ3

[
1

2

∑
n

ΛnΓ
αβγ
n +

∑
nm

Λnm (ω2) Γ
αβ,γ
nm

+
1

2

∑
nm

Λnm (ω1 + ω2) Γ
α,βγ
nm +

∑
nmp

Λnmp (ω1, ω2) Γ
α,β,γ
nmp

]

in second order. Ωc is the volume of the unit cell.

4.3.2 Considerations on the numerical storage of Γ

Naturally, one cannot expect to sum the entire Chebyshev series, so it has to be truncated
at a certain number of polynomials Nmax. Each of the entries in a Γ matrix represents a
complex number. Numerically, this is represented as two double-precision floating-point
numbers, each taking up 8 bytes of storage. The amount of storage needed to store a Γ

matrix of dimension n is 16Nn
max. The number of Chebyshev polynomials needed to obtain
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4.4 Numerical results

a decent resolution depends heavily on the problem at hand, but a typical number may
be Nmax = 1024. A one-dimensional Γ matrix would take up 16 KiB of storage, a two-
dimensional matrix 16 MiB and a three-dimensional matrix 16 GiB. Three-dimensional
matrices appear in the second-order conductivity. The third-order conductivity would
require a four-dimensional matrix and as such, 16 TiB of storage. Numbers like these
make it unrealistic to go beyond second order conductivity.

4.4 Numerical results

In this section we showcase several examples, of increasing complexity, to compare our
formalism with the literature. Starting with graphene, we compute the linear optical
conductivity and verify that it agrees perfectly with the k-space formalism. Breaking
the sublattice symmetry with gapped graphene, we are able to obtain the second-order
conductivity and check that it too agrees perfectly. This proves that our method is able
to accurately reproduce the existing results. Then, we show two examples that cannot
be reproduced easily with the k-space formalism: second harmonic generation in gapped
graphene with Anderson disorder and vacancies of varying concentration. Finally, the
convergence properties are evaluated and the efficiency of the method is discussed.

4.4.1 Linear optical response in graphene

Let a be the distance between consecutive atoms in the honeycomb lattice. Then, the
primitive vectors between unit cells are (see Fig. 4.6)

a1 = a
(√

3, 0
)

a2 = a

(√
3

2
,
3

2

)

and the distance vectors between nearest neighbors are

δ1 =
a

2

(√
3,−1

)
δ2 = a (0, 1)

δ3 =
a

2

(
−
√
3,−1

)
.

The area of the unit cell is Ωc = 3
√
3

2 a2. Starting from eq. 4.8, the graphene Hamil-
tonian is obtained by invoking translational invariance of the unit cell tµν (Rm,Rn) =

tµν (Rm −Rn) and

tAB (δ1) = tAB (δ2) = tAB (δ3) = −t.
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Figure 4.6: Honeycomb lattice and choice of primitive vectors.

The remaining non-zero hopping integrals are found by using tAB = tBA. The on-site
energies tAA (0) and tBB (0) are taken to be zero. A factor of two is included due to spin
degeneracy.

These parameters were used to obtain the first-order optical conductivity for graphene,
as seen in Fig. 4.7. We used a lattice with 4096 unit cells in each direction and 2048

Chebyshev moments in the expansion. The resulting plot is compared to the results ob-
tained in [64] through k-space integration of a translation-invariant system. The curves
are indistinguishable.

4.4.2 Gapped graphene

The only difference relative to regular graphene is found in the on-site energies. Let
tAA (0) = ∆/2 and tBB (0) = −∆/2. With the opening of a sizeable gap, the effects of
excitons become relevant. In this simplified model, we ignore these effects to focus on the
intrinsic second-order respose of the material. In these conditions, the one- and three-
dimensional Γ matrices are identically zero2, so the second-order conductivity may be
calculated resorting only to two-dimensional Γ matrices. The calculation is thus simplified
tremendously because the second-order conductivity reduces to

σαβγ (ω1, ω2) =
ie3

Ωcω1ω2ℏ3

[∑
nm

Λnm (ω2) Γ
αβ,γ
nm +

1

2

∑
nm

Λnm (ω1 + ω2) Γ
α,βγ
nm

]
.

The indices n,m are understood to be summed over. The photogalvanic effect may be
reproduced from this formula by setting ω1 = ω = −ω2 and the numerical results are shown
in Fig. 4.4.2. Again, we used 4096 unit cells in each lattice direction and 2048 Chebyshev
moments and compare the results with the ones obtained by integrating in k-space, just

2These matrices were explicitly calculated in the k basis and shown to be exactly zero.
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4.4 Numerical results

Figure 4.7: First-order longitudinal yy conductivity for graphene in units of σ0 = e2/ℏ.
Hopping parameter: t = 2.33eV, temperature: T = 2.33mK, chemical poten-
tial: µ = 0.466eV, broadening parameter: η = 38.8meV, number of Chebyshev
moments used: M = 2048, lattice size: L = 4096× 4096. The solid curves rep-
resent the optical conductivity obtained by KITE (real part in green, imaginary
in blue). The superimposed dashed lines are obtained in [64].

like in the previous subsection. For convenience, we define the constant σ2 = e3a/4tℏ [128]
in terms of the hopping integral t and the lattice parameter a.

This particular example benefits considerably from the cancellation of the most compli-
cated objects that needed to be calculated. In the next section, we present an example
with less symmetry that confirms the complete agreement between our method and the
k-space formalism.

4.4.3 Sublattice displacement

The calculation of the photogalvanic effect for gapped graphene was very efficient due to
the cancellation of the three-dimensional Γ matrices. In this appendix, we provide an extra
example, which does not benefit from that property. By changing the relative position of
the two sublattices, we are able to obtain non-zero values in all the Γ matrices, which
enables us to test the remainder of the formula. All the hopping parameters in this system
are exactly the same as in regular gapped graphene. The only difference is in the distance
between atoms, which changes the velocity operators while keeping the Hamiltonian intact
(See Fig. 4.9).
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4 Nonlinear optical conductivity

Figure 4.8: Second-order yyy photogalvanic effect for gapped graphene. Hopping param-
eter: t = 2.33eV, temperature: T = 0K, chemical potential: µ = 0eV, gap
∆ = 7.80eV broadening parameter: η = 39meV, number of Chebyshev mo-
ments used: M = 2048, lattice size: L = 4096 × 4096. The imaginary part
disappears after the result is properly symmetrized.

The primitive vectors are identical, but the nearest-neighbor vectors are different:

δ1 = a

(√
3

2
,−1

)

δ2 = a

(
0,

1

2

)
δ3 = a

(
−
√
3

2
,−1

)
.

One of the sublattices was translated in the y direction by a/2. The second-order xxx
conductivity remains zero, but now the xxy photogalvanic effect is no longer zero and can
be seen in Fig. 4.4.3. The lattice size and number of polynomials used was reduced to 1024

and 512 respectively, due to the greatly increased computational cost. At lower frequencies,
the results start to diverge because there are not enough polynomials to resolve this region.
The results are in great agreement with the ones obtained by k-space integration. The small
oscillations in the imaginary part are expected to disappear as the number of polynomials
is increased.
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Figure 4.9: Displaced honeycomb lattice and choice of primitive vectors.

4.4.4 Photogalvanic effect in gapped graphene with Anderson disorder

Our formalism does not rely on translation invariance, and so may be used to study dis-
ordered systems. To show this, we now introduce to gapped graphene a simple model
for disorder by letting each atomic site have a random local energy taken from a uniform
distribution [−W/2,W/2] (Anderson disorder [10]):

HW =
∑
R

∑
σ

Wσ (R) c†σ (R) cσ (R)

where R is the position of the unit cell and σ labels the atoms inside each unit cell. The
presence of disorder is expected to smooth out the sharp features of the optical response. As
disorder increases, we should see a decrease in conductivity due to Anderson localization.
This is the exact behavior that is seen in Fig. 4.11 where we plot the photogalvanic
effect in gapped graphene in the presence of Anderson disorder of varying strength. Some
fluctuations exist at the features, which are expected to disappear as the system size
approaches the thermodynamic limit.

As expected, the introduction of Anderson disorder produces a broadening of the sharp
features of the nonlinear optical conductivity. This broadening also means that there will
be a larger response to the external electric field at frequencies smaller than the gap.

The large oscillations near the origin reveal something interesting about the numerical
details of our formalism. Equation 4.11 is comprised of a complicated sum of several terms.
Individually, some of these terms may be very large, but there may be cancellations among
them. For each of these terms, the Chebyshev expansion is exact in the limit of infinite
polynomials. For a finite number of polynomials, there will be slight differences between
the exact result and the expansion, and if the exact result is very large, this difference
will be considerable. It is highly unlikely that this difference will be the same for each
term, and so their sum may not cancel out in the end. This is the typical behavior at
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4 Nonlinear optical conductivity

Figure 4.10: Second-order xxy photogalvanic effect for displaced gapped graphene. Hop-
ping parameter: t = 2.33eV, temperature: T = 0K, chemical potential:
µ = 0eV, gap ∆ = 7.8eV broadening parameter: η = 39meV, number of
Chebyshev moments used: M = 512, lattice size: L = 1024× 1024.

the lower-frequency regime that is related to the singularities that plagued the velocity
gauge approach. This has been discussed since the early work of Sipe and challenged for a
long time the equivalence between the velocity and length gauges [55, 63, 64]. This effect
could be fully mitigated by greatly increasing the number of polynomials, but here we are
interested in the finite frequency behavior.

4.4.5 Second-harmonic generation of gapped graphene with vacancies

In realistic samples, vacancies and impurities may exist due to imperfections in the fabri-
cation process, as well as other more complex structural defects. In this section, we show
that our method allows us to obtain the second-harmonic generation of a system with
structural disorder. Using eq. 4.11, we show in Fig. 4.12 the effect of vacancies of varying
concentration in the SHG of gapped graphene. Unlike Anderson disorder, the addition of
vacancies to the system does not change the gap. Their most noticeable effect is to flatten
the features of the second-harmonic generation. As discussed in the previous section, the
lower frequencies are dominated by oscillations and would require many more polynomials
to fully converge. Therefore, we omit that region and only represent the remaining regions,
which have already converged within the desired accuracy.

4.4.6 Considerations on convergence and accuracy

In this section, we briefly discuss some convergence properties of our method. For a more
thorough discussion, see [95]. The convergence to the exact value depends on several
factors:

1. Spectral methods rely on the self-averaging properties of random vectors, yielding an
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4.4 Numerical results

Figure 4.11: Photogalvanic effect for gapped graphene in the presence of Anderson disor-
der of varying strength W and a broadening parameter of η = 23meV. The
parameters are the same as for Fig. 4.4.2 except for the number of polynomi-
als, which is M = 512. The dashed lines represent the imaginary part of the
conductivity.

associated variance. The error bar decreases as 1/
√
NRN , where NR is the number

of random vectors and N is the size of the sample, as described in section 2.6.

2. In the thermodynamic limit of an infinite lattice, the spectrum becomes continuous
and so we expect the conductivity curve to be smooth. However, the systems used
in simulations are finite and so have a typical energy level spacing, which we denote
by δε. This has important consequences for the resolution. Details characterized by
a smaller energy scale than that of δε are meaningless because they cannot be distin-
guished from the contribution of individual energy levels. The maximum resolution
is therefore limited by the energy level spacing. For our concrete examples with the
honeycomb lattice, we use δε = 3πt/L, the energy level spacing at the Dirac point
in graphene for a system of linear dimension L.

3. The resolution may be controlled through η, the broadening parameter of the Green’s
functions. Energy differences smaller than λ become indistinguishable from one an-
other. On the one hand, a small λ is required in order to resolve the sharp features
of the curve accurately. On the other hand, when η ≲ δε, the discrete nature of
the spectrum starts to become visible through the roughness of the curve. For suf-
ficiently small η, the expected sharp features of the curve become indistinguishable
from the contributions of the individual energy levels. If these issues are not solved,
they become a major source of systematic error in the final results. Therefore, if we
want to see the expected thermodynamic limit, we have to ensure η ≳ δε.

In Fig. 4.13, the yy optical conductivity of graphene is represented for several values of
η. In this example, δε = 5.3meV. As η is decreased, the curve becomes sharper, but
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4 Nonlinear optical conductivity

Figure 4.12: Second-harmonic generation in gapped graphene for a varying concentration
of vacancies and η = 2.3meV. The blue (red) curves represent the real (imagi-
nary) part of the conductivity. The darker curves have a higher concentration
of vacancies. System size: L = 2048, number of polynomials: M = 512. All
the other parameters are the same as in Fig. 4.11.

when η = 2.3meV the discreteness of the spectrum starts to become noticeable through
the roughness of the curve. It is starting to diverge from the expected smooth curve of the
thermodynamic limit.

In the lower inset, we study the convergence as a function of the number of polynomials
at ℏω = 4.66eV, a region of rapidly changing conductivity. The smaller the η, the more
polynomials are required in order to have a fully converged result. Within the accuracy
δσ/σ0 ≃ 0.1, all the curves have already converged at 1.6 × 104 polynomials. These
calculations were repeated for several different initial random vectors. In the plot we show
only one of these calculations. The error bar associated with the random vectors is too
small to be distinguished from the curves themselves.

In the upper inset, we do the same thing, but now in a very small region around ℏω =

2.33eV, a region of slowly increasing conductivity. The plot shows three sets of curves
with different colors. Inside each set, we represent a collection of frequencies, ranging from
ℏω = 2.3300eV to ℏω = 2.3316eV. The darker curves correspond to higher frequencies.
The main graph shows that all these curves have converged to the same value in a region
of slowly increasing conductivity. The inset, however, shows a different picture. The red
(η = 23meV) and black (η = 230meV) sets of curves show a variation consistent with the
expected increasing conductivity. If one zooms in to those sets of curves, it is possible to
check that they are indeed increasing in value as ω increases. The green curve (η = 2.3meV)
is not only changing in a scale much larger than expected, but it is also decreasing. This
variation comes from the individual contribution of the energy levels, not from features
of the conductivity and is therefore artificial. Within the accuracy δσ/σ0 ≃ 10−3 each of
these curves has completely converged at 1.6× 104 polynomials but this level of accuracy
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is meaningless for η = 2.3meV. The error bars are not shown for clarity, but their values
are the following: at η = 230meV, δσ/σ0 = 10−3; at η = 23meV, δσ/σ0 = 3 × 10−3;
at η = 2.3meV, δσ/σ0 = 5 × 10−3. At this scale, the error bars are comparable to the
variation due to the number of polynomials and to the value of η.

These frequencies were chosen to compare the conductivity in a place where it is expected
to converge quickly and another where it is expected to converge slowly. Looking at these
graphs, it is possible to estimate how many polynomials are required to converge to the
final value of the conductivity for the specified parameter η within a given accuracy. A
rough estimate of the scaling is given by N ∼ η−1.

In sum, given a fixed resolution η, the number of polynomials should be large enough to
ensure that the curves have converged, and the system size L should be large enough to
ensure that the discreteness of the spectrum cannot be seen.

A similar analysis may be done for the second-order conductivity. We will not present
it here for two reasons. Firstly, the main points of the previous paragraphs remain the
same. Secondly, we cannot do such an analysis because the computational cost would be
tremendously higher.

Figure 4.13: First-order optical yy conductivity per spin of graphene for M = 16384 and
L = 2048 now as a function of the broadening parameter η. The remaining
parameters remain the same as for Fig. 4.7. The solid (dashed) curves rep-
resent the real (imaginary) part of the conductivity. The legend shows the
values for the broadening parameter. The lower inset shows the evolution of
the value of the conductivity for each η as the number of polynomials is in-
creased for ℏω = 2.33eV. The upper inset shows the same thing but for several
very close frequencies around ℏω = 4.66eV. The darker curves correspond to
higher frequencies.
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4.4.7 Considerations on efficiency

Our formalism provides a very general framework with which to compute the nonlinear
optical response up to any order. Once the formulas were obtained, we chose to use spectral
methods to perform the computation. This is not always the most efficient approach: for
systems with translation invariance and periodic boundary conditions, we can specify the
formulas for k-space and then perform the explicit integration. Then, for a given set of
parameters (temperature, broadening, Fermi energy) the computation time will scale as
LDNω where LD is the number of points in the Brillouin zone (which is also the number
of lattice sites), D is the dimensionality and Nω is the number of frequencies we want to
compute. For each k and each frequency, this method comes down to diagonalizing the
Bloch Hamiltonian Hk, and then summing over the whole set of k points. This method is
extremely efficient at computing the optical conductivity at any order using the velocity
gauge.

Using spectral methods, the computation is split into the calculation of the Chebyshev
moments and the final matrix product of the Γ matrices with the Λ matrices. The first
part is the most demanding and is independent of the parameters mentioned above. Its
computation time scales as LDNn+1, where n is the order of the conductivity and N

is the number of Chebyshev polynomials. More concretely, if we want to calculate the
conductivity for a certain η, using N ∼ λ−1 ∼ Nω, we find that the k-space calculation
scales much more favorably.

If the system has no translation invariance, k-space integration is no longer useful and
we would need to numerically diagonalize the full Hamiltonian. This method scales as
L3DNω which is highly unfavorable and because of that we would be limited to very small
systems. In this context, spectral methods become the preferred choice.

For the examples used in this chaper, the computation of the second-order conductiv-
ity with the k-space formalism in a system with L = 2048 took around 2 minutes on a
Xeon E5-2650 with 16 threads. In comparison, the same computation took 3 hours for
translation-invariant gapped graphene with 2048 polynomials, and 70 hours for gapped
graphene with Anderson disorder/vacancies and 512 polynomials. Despite the discrep-
ancy in computational efficiency, we know of no other more efficient way to compute the
nonlinear optical conductivity for disordered systems.
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In this chapter, we will see how to compute the conductance of a sample attached to
finite leads by using a unitary time evolution. This process is numerically very different
from the standard techniques to obtain the conductance. Using finite leads brings the
problem down to a conceptually simple unitary time evolution which nevertheless yields the
correct Landauer plateau as a quasi steady-state. Following Pires [50], we have generalized
the method to higher dimensions and arbitrary lattices, and introduced the average over
cross sections. This average allows us to express the current across the device as a trace
over several sites, which then becomes amenable to using random vectors for a stochastic
evaluation of the trace. Just like what was done for Kubo’s formula, this single process
brings the algorithm’s complexity down to O (N) and is highly parallelizable in real space.
Since the object of study is the time-dependent current, transient and optical processes
are able to be studied naturally. Besides the study of time-dependent processes, this also
brings up the possibility of simulating real diffusive regimes in a wider range of disorder
parameters. The open source code for this is on github and is also implemented in KITE
[3], to be publicly released in a later version.

5.1 Setup

To begin exploring the problem, we first need to characterize the system and calculate some
preliminary objects. Ultimately, we want to determine the current across a sample which
is connected to two leads. The leads are understood as perfectly periodic metallic contacts
that connect to the sample, and the sample is the system we want to study. This could
be, for example, a graphene flake, a quantum dot, etc. For simplicity though, we always
assume that both the sample and the leads are part of the same underlying lattice and that
the width (cross-section) is always the same across the whole system. The more general
case of arbitrary leads and sample is obtained through a straightforward generalization but
will not be treated here. Unless stated otherwise, the leads are finite but sufficiently large
for the results not to depend on their size.

This is intrinsically a non-equilibrium process, driven by a perturbation applied to a
system in thermal equilibrium. The formal treatment of this setup is typically done in one
of two different ways:

1. The partition-free (see Fig. 5.1), where the chemical potential is fixed across the
whole system. The perturbation is an applied static electric field which manifests
itself as a local electric potential in the Hamiltonian.
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5 Stochastic conductance

2. The partitioned approach, where each lead is initially detached from the sample
and has a different chemical potential (see Fig. 5.2). The perturbation consists of
connecting the leads to the sample.

Both approaches yield the same equilibrium current [50], but the transient regimes are
different. In this section both will be briefly discussed, but only the partition-free one will
be used throughout the chapter for the sake of simplicity.

5.1.1 Partition-free

In equilibrium, there is no electric field applied to the sample and the net current through
the sample is zero. This does not necessarily mean that the local current is zero (for
example, the presence of a magnetic field would change this picture), it only means that
there is no net charge flux from one lead to the other. The Hamiltonian of this unperturbed
system does not need to discriminate between leads and sample and is in general

H0 =
∑
ij

H0
ijc

†
icj

where i, j can either be part of the sample or the lead. Fixing the chemical potential µ
and working in the grand canonical ensemble defines the density matrix of the system (or
the lesser Green’s function at equal times, in the formalism of chapter 4)

ρji (t) =
〈
c†i (t) cj (t)

〉
.

where the average ⟨· · · ⟩ is understood to be done with respect to H0. At time t = 0 the
electric field is suddenly switched on (see Fig. 5.1).

Figure 5.1: Partition-free setup.

It is included through a local electric potential term Vi. in the Hamiltonian The full
Hamiltonian takes the form

H = H0 +
∑
i

Vic
†
ici.

The corresponding single-particle counterpart is H = H0 + V and the time evolution
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operator from t0 to t is done with the full Hamiltonian

U (t, t0) = exp

(
− i

ℏ
H (t− t0)

)
which includes the perturbation, but the average is done with respect to the Hamiltonian
at time t < 0, which does not include the perturbation. Therefore, it is useful to introduce
two changes of variables. The first moves from the real-space basis {|n⟩} to the eigenbasis
of H, composed of states {|ψm⟩} and the corresponding set of operators {dm}:

cj =
∑
m

⟨j|ψm⟩ dm

which takes care of the time evolution

cj (t) =
∑
m

⟨j|ψm⟩ dm (t) =
∑
m

⟨j| e−iHt/ℏ |ψm⟩ dm.

The other changes from the eigenbasis of H to that of H0, composed of states {|ϕb⟩} and
corresponding set of operators {γb}

dm =
∑
b

⟨ψm|ϕb⟩ γb

which takes care of the thermal average:〈
γ†aγb

〉
= δabf

(
ε0a
)
= ⟨ϕb| f (H0) |ϕa⟩ = ρ0ab

where ε0a is the eigenvalue corresponding to eigenstate |ϕb⟩ of H0 and f is the Fermi
function. This defines the initial density matrix ρ0. With these ingredients, it’s easy to
show that the expectation value becomes

〈
c†i (t) cj (t)

〉
= ⟨j| e−iHt/ℏρ0eiHt/ℏ |i⟩ = ⟨j| ρ (t) |i⟩ .

As expected, when V = 0, H = H0 and f (H0) commutes with the time evolution
operators, rendering the whole expression time-independent. ρ (t) can be interpreted as
the density matrix in time t in the Schödinger Picture.

5.1.2 Partitioned

In the partitioned approach, we have to separate the unperturbed Hamiltonian into the
left lead, the right lead and the sample (see Fig. 5.2):

H = HL +HR +HS
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Figure 5.2: Partitioned setup. The chemical potential is not specified inside the sample
because it is not needed. In effect, the sample can be considered to be deprived
of particles initially.

where

HL =
∑
ij∈L

HL
ijc

†
icj

HR =
∑
ij∈R

HR
ij c

†
icj

HS =
∑
ij∈S

HS
ijc

†
icj

are the corresponding Hamiltonians of each section. All these Hamiltonians commute with
one another and before the perturbation is turned on, each can have a different chemical
potential. This defines the density matrix as the direct sum of the density matrices of each
subspace. No current can flow from one lead to the other because they are disconnected.
The perturbation is simply the connection between each lead and the sample

V =
∑

i∈L,j∈S
V L
ij c

†
icj +

∑
i∈S,j∈R

V R
ij c

†
icj .

V L
ij connects states i of the left lead to states S of the sample, and V R

ij connects states i of
the sample to states j of the right lead. The time evolution of the density matrix has the
same formal expression as the partition-free case, just with different operators. This is the
setup used by Caroli [28].
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5.2 Nonlinear local current

5.2 Nonlinear local current

Let us now focus only on the partition-free approach. The starting point of this discussion
is the notion of a local current. We want to build up to the concept of current across a
sample, so this is the smallest building block we can use towards that goal. In a tight-
binding setup described by a general Hamiltonian H

H =
∑
ij

Hijc
†
icj ,

the local current is measured as the amount of charge that gets transferred from one state
i to another adjacent state j. By adjacent in this context, we mean that i and j are
geometrically close and that there is a nonzero Hamiltonian matrix element between them:
Hij ̸= 0. The number of electrons in state i at time t is,

⟨Ni⟩ = q
〈
c†ici

〉
keeping in mind that i actually stands for a superindex which can include spin, sublattice
and orbital degrees of freedom. Using the equation of motion for Ni, we find the rate at
which electron density changes in state i:

d

dt
Ni =

i

ℏ
[H,Ni] = − iq

ℏ
∑
j

[
Hijc

†
icj −H∗

ijc
†
jci

]
(5.1)

Defining the current from site i to j as

Iij =
iq

ℏ

(
Hijc

†
icj −H∗

ijc
†
jci

)
,

equation 5.1 is better understood as a continuity equation Ṅi = −
∑

j Iij . The sign has
been chosen as such for the following reason. When ⟨Ni⟩ is increasing, charge is moving
from j to i. Since Iij is defined as current from i to j, it has to be negative in this situation.
The minus sign ensures that a negative Iij contributes positively to ⟨Ni⟩. Let’s define the
single-particle local current operator from site i to j as

Ii→j =
iq

ℏ
(
Hij |i⟩ ⟨j| −H∗

ij |j⟩ ⟨i|
)

so that
Iij =

∑
kl

(Ii→j)kℓ c
†
kcℓ

defines a more natural operator which can be traced over in the end. The expectation
value of this many-body operator as a function of time can be expressed in terms of the
density matrix

⟨Iij (t)⟩ = Tr [Ii→jρ (t)] = Tr
[
Ii→je

−iHt/ℏf (H0) e
iHt/ℏ

]
. (5.2)

95



5 Stochastic conductance

So far, this result is exact. The time evolution operators and the Fermi operator can be
expanded in Chebyshev polynomials (eqs. 2.18 and 2.14) with the corresponding Hamil-
tonians H and H0 respectively, and the full nonlinear current across a bond is obtained.
This is usually the starting point for the Kubo, Keldysh and Landauer formalisms. In the
Kubo formalism, linear response is assumed.

For practical purposes, the whole trace does not need to be calculated, as the local
current only has support on a very small region of the Hilbert space. In fact, only states
|i⟩ and |j⟩ will contribute. Therefore, the current can be obtained as follows:

⟨Iij (t)⟩ = ⟨i| Ii→j |j⟩ ⟨j| ρ (t) |i⟩+ ⟨j| Ii→j |i⟩ ⟨i| ρ (t) |j⟩ .

Furthemore, noting that the second term is the complex conjugate of the first, we get

⟨Iij (t)⟩ = 2Re ⟨i| Ii→j |j⟩ ⟨j| ρ (t) |i⟩ = 2Re ⟨i| Ii→jρ (t) |i⟩ ,

effectively reducing the process of evaluating the trace to a single computation. The
numerical complexity of calculating this formula is O (ZDNP (NF +NT )) where NP is the
number of points in time where the current is observed, NF is the number of Chebyshev
polynomials to expand the Fermi operator, NT is the number of Chebyshev operators to
expand the time evolution operator from two consecutive current time observation points,
D is the size of the Hilbert space and Z is the coordination of the lattice.

5.3 Linear local current

Just like in chapter 4, the linear current can be obtained more easily in the Interaction
Picture (IP), since the time evolution of the wave functions is given by the perturbation
V . In the IP, the wavefunctions, operators and density matrix are

|ψI (t)⟩ = eiH0t/ℏ |ψ (t)⟩

AI (t) = eiH0t/ℏAe−iH0t/ℏ

ρI (t) =
∑
ψ

pψ |ψI (t)⟩ ⟨ψI (t)| .

The Schrödinger equation for the wavefunctions is

iℏ
∂

∂t
|ψI (t)⟩ = VI (t) |ψI (t)⟩

and can be integrated to first order in VI

|ψI (t)⟩ = |ψI (0)⟩+
1

iℏ

∫ t

0
dt′VI

(
t′
) ∣∣ψI (t′)〉 .

Plugging this into the expression of the density matrix and keeping terms only up to first
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order in V , we get

ρI (t) = ρ0 +
1

iℏ

∫ t

0
dt′
[
eiH0t′/ℏV ρ0 − ρ0V e

−iH0t′/ℏ
]
.

Finally, the expectation value of the local current operator, to first order in V is

〈
I lin
ij (t)

〉
= Tr [ρ0Ii→j ] +

+
1

iℏ

∫ t

0
dt′Tr

[
eiH0t/ℏIi→je

iH0(t′−t)/ℏV ρ0 − ρ0V e
−iH0(t′−t)/ℏIi→je

−iH0t/ℏ
]
.

This can be simplified further by realizing that without the perturbation there is no current,
so the first term vanishes 1. The two next terms are complex conjugates of each other, so

〈
I lin
ij (t)

〉
=

2

ℏ

∫ t

0
dt′ImTr

[
ρ0e

iH0t/ℏIi→je
iH0(t′−t)/ℏV

]
.

Finally, with a change of integration variables and rotating the trace we get the final form:

〈
I lin
ij (t)

〉
=

2

ℏ

∫ t

0
dτ ImTr

[
Ii→je

−iH0τ/ℏV eiH0t/ℏρ0

]
. (5.3)

This linearized version of 5.2 can also be obtained directly from the Kubo formula. This
formula has one big advantage in comparison to the previous one: the current operator is
on the left-most side of the trace and the density matrix is on the right-most side. The first
property means that only two terms of this trace will contribute, i and j, and the second
property means that the Fermi operator only needs to be evaluated once for all times. The
only downside is the need to perform an integral in time, but given the computational cost
of the Fermi operator and the fact that several times have to be computed anyway, this is
not a big problem.

With regards to numerical complexity, this formula is much simpler to compute. To
calculate NP time points with this method, one would require N2

P /2 evaluations of the
integrand, each requiring one Chebyshev expansion for each time evolution operator, for a
total scaling of N2

PNT +NF . However, there is redundancy here, because integrating over
τ requires calculating the same thing several times. This redundancy can be eliminated,
bringing down the numerical complexity to O (ZD (2NPNT +NF )). Because NF is no
longer multiplied by NP , the scaling is much more favorable than the nonlinear case.

5.4 Comparison with other formalisms

Equations 5.2 and 5.3 have a close resemblance to the starting point of the Kubo, Keldysh
and Landauer formalisms. In fact, the Landauer formula can be obtained from the Keldysh
formalism by using eq. 5.2 in the partitioned setup.

1For a time-dependent perturbation such as the electric field in the velocity gauge, this cannot be disre-
garded. A nonzero magnetic field also changes this picture.
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5.4.1 Landauer formula

For further reference, it is useful to get a clear picture of all the objects involved in the
Landauer formula. For a detailed technical derivation, see [124]. We begin with the leads
disconnected from the sample, each lead in equilibrium with a particle reservoir at chemical
potential µ and no applied external electric field. The left (right) lead is characterized
by a Hamiltonian HL (HR) and both are characterized by a Fermi function as usual
f (ε) = (1 + exp (β (ε− µ)))−1. See Fig. 5.2 for a visual reference. Let’s assume that the
leads are noninteracting 2 and define HL and HR as the single-particle counterparts of
HL and HR, respectively. The retarded surface Green’s functions grL and grR are defined
at this point as the submatrix of the retarded Green’s matrix at the last slice before the
sample. The disconnected sample (with Hamiltonian HS) sits in the middle of both leads.
For completeness, it can be assumed to be connected to a particle reservoir at chemical
potential µ too, but this is largely irrelevant. In here we are also going to assume the
sample to be noninteracting, so we can define HS as the single-particle counterpart of HS .

When an electric field E is applied only between the leads, a potential energy drop ∆V

can be defined between them. At this point, they are not yet connected to the sample,
but the effect of the electric field can be taken into account by raising the energy of the
right lead and right reservoir by ∆V/2 and that of the left lead and reservoir by −∆V/2.
This adds a constant term to each Hamiltonian but also shifts the Fermi function because
the reservoirs were also changed. We can thus define the Fermi function of the left lead
fL (ε) = f (ε+∆V/2) and of the right lead fR (ε) = f (ε−∆V/2). The particle reservoir
of the sample can be disregarded because the Keldysh relation [124] allows us to write the
steady-state value of the sample’s density matrix in terms of that of the leads’. Physically,
this means that, while the transient regime depends on the specific details of the initial
distribution of states of the sample, the steady state does not. It is completely determined
by the leads’ reservoirs. For this reason, we can simply ignore it.

Coming back to the full picture, these Fermi functions define the initial density matrix
ρ0 which makes no mention to the sample and only has matrix elements within each of the
leads separately:

ρ0 = f

(
HL +

∆V

2
1̂L

)
+ f

(
HR − ∆V

2
1̂R

)
.

Here, 1̂L and 1̂R represent the identity operators restricted to the left and right leads,
respectively.

The initial distribution of states is now completely described and the system is in thermal
and chemical equilibrium with the respective reservoirs. Next, we turn on the perturbation
V by connecting the leads to the sample at t = 0. The connection to the left (right) lead
is described by the perturbation VL (VR) such that V = VL + VR.

2This is a reasonable assumption, since the leads are assumed to be metallic.
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This perturbation defines the leads’ self-energies

ΣrL (ε) = VLg
r
L (ε)V

†
L

ΣrR (ε) = VRg
r
R (ε)V †

R

which define the level-width functions

ΓL,R (ε) = i
(
ΣrL,R (ε)− Σr†L,R (ε)

)
.

After a transient regime, the current across the sample will achieve a steady state given
by the Landauer formula

I =
e

2πℏ

∫ ∞

−∞
dε (fL (ε)− fR (ε))T (ε) (5.4)

where T (ε) is interpreted as the transmission probability from one lead to the other and
is given by

T (ε) = Tr [ΓL (ε)Gr (ε) ΓR (ε)Ga (ε)]

and Gr (Ga) is the retarded (advanced) Green’s function of the entire system. In this
formulation, the potential drop is included inside the Hamiltonian. The linearized version
of the Landauer formula at zero temperature does not depend on the particular shape of
the electric potential drop inside the sample and is given by

Ilin =
e∆V

2πℏ
T (µ) (5.5)

which defines the conductance by Ilin = σ∆V .

5.4.2 Bulk Kubo’s formula

The Kubo formula for the conductivity is a bit different; the operator being estimated is
not the local current but the total current operator, and the perturbation is an electric
field inside the sample. Since no accumulation of charge is assumed, the current across
each cross section should be the same, so this can be thought of as an average over cross
sections. Done in this fashion, the Kubo formula is proven to yield the same result for the
conductance as the Landauer formula [129]. This is not quite the same thing as usually
found in numerical simulations of the Kubo formula for the conductivity. The sample is
extended to be the whole system (no leads), which is then made periodic, and the Kubo
formula is specified for a perturbation which consists of a uniform vector potential. This
vector potential is responsible for the uniform electric field across the sample. It is clear
that this bulk formulation cannot yield the same thing as the one with leads because in
the perfectly clean limit, the physical picture is that of Bloch oscillations in the sample,
not steady-state ballistic transport. Bloch oscillations are very sensitive to disorder, so
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it is expected that the introduction of even the smallest amount of disorder break these
oscillations. Furthermore, since this formula speaks of a conductivity, it is also expected
that the system be in a diffusive regime.

5.5 Time-dependent current across a tight-binding chain

Before moving on, it is instructive to explore the time-dependent current in one of the
simplest examples: the one-dimensional tight-binding chain (1D TB chain) [50]. Despite
its simplicity, the 1D TB chain will allow us to see the quasi-stationary current developing
and competing with the Bloch oscillations. The unperturbed Hamiltonian reads

H0 = t
N−1∑
i=0

[
c†ici+1 + c†i+1ci

]
where c†i (ci) creates (annihilates) an electron in site i. The perturbation is

V =

N−1∑
i=0

Vic
†
ici

such that

Vi =


∆V
2 if i ≤ S

∆V
2 + S−i

R−S−1∆V if S < i < R

−∆V
2 if i ≥ R.

S is the left-most site belonging to the sample and R is the left-most site belonging to the
right lead. This potential generates an electric field which is zero in the leads but uniform
inside the sample and pointing left, so the electrons will move to the right (increasing
i). Now we just need to select a bond over which to calculate the nonlinear local current
⟨Iij (t)⟩ (eq. 5.2) as a function of time. Since we expect a uniform current to develop
across the sample, we can choose i to be a site in the middle of the sample and j to be the
site to its right, that is j = i+ 1. The results are summarized in Fig. 5.3.

In this simple example, without disorder, we see a general trend. At t = 0, the per-
turbation is turned on and a transient regime develops while the current ramps up. The
larger the drop in potential, the faster the current ramps up, but it achieves a steady state
in the same amount of time (Fig. 5.3 a)). The value of the current at the steady state is
exactly the one obtained from the nonlinear Landauer formula from eq. 5.4 (black dashed
lines), which is not surprising because they measure the same thing. As the potential drop
is increased further, the agreement is still perfect, but a secondary plateau develops before
the main one (panel b)). The value of the current at this intermediary plateau is given by
the linear Landauer formula from eq. 5.5 (red dashed line).

For large drops in potential across the leads (larger than the bandwidth 4t), it is no
longer possible to connect states from one lead to the other. Instead, the strong electric
field localizes the eigenstates into Wannier-Stark states which are responsible for the Bloch
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Figure 5.3: Current as a function of time for a 1D TB model with different values of the
potential drop. The (red) black dashed lines represent the (linear) nonlinear
Landauer current.

oscillations [44, 45] that start developing (Fig. 5.3 b). These partial Bloch oscillations
develop into full Bloch oscillations once the drop is sufficiently large (Fig. 5.3 c)). Fixing
the electric field and changing the sample size, we can see more clearly that reminiscing
Bloch oscillations are the transient regime for the Landauer current. For all intents and
purposes, the leads in these three examples are infinite, in the sense that the results do
not change if the leads’ size (4096) is further increased.

While the development of a steady-state current into Bloch oscillations is expected, one
interesting aspect remains to be explained - the secondary plateau seen at ∆V = 3t. In light
of Fig. 5.3 b) and c), the secondary plateau develops as part of a partial Bloch oscillation,
and its value corresponds exactly to the linearized Landauer value for the current. A
clearer picture appears when we look at the charge density as a function of time at each
point of the system (Fig. 5.4) for a chemical potential of µ = 0.3t.

With Fig. 5.4 in mind, the electric field is uniform and applied only inside the sample,
so the immediate effect in the charge density is to accumulate charge near the interface
between the leads and the sample. This charge accumulation is propagated into the leads
as time progresses and happens for every value of ∆V .

To understand the next effect, it is useful to divide the charge inside the sample into
several bits, each of which gets affected by the electric field. Under the semiclassical picture
of Bloch oscillations, each of these bits tries to develop into a Bloch oscillation of amplitude
A = 4t/eE [43]. Let’s try to analyze what happens to the current qualitatively:

• If the electric field E is small, then the amplitude of oscillation is large, and once this
portion of charge hits the right lead, it gets absorbed and is not allowed to oscillate.

• For stronger electric fields, when A < LS/2 (or ∆V > 2t), the pieces of charge inside
the sample that are closest to the leads can perform a half-oscillation but get absorbed
by the left lead when they come back. This portion of charge that is going into the
left lead instead of the right lead may be the reason why a secondary plateau develops
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Figure 5.4: Charge across different parts of the system as a function of time, for several
values of the potential drop across the leads. The region between the red dashed
lines represents the sample. The chemical potential is µ = 0.3t. The points
within the two red lines have a higher resolution than the ones outside.

at the current given by the linear Landauer formula. Before it changes direction, it is
contributing to the current going to the right. Since the linear Landauer formula is
valid for very small values of ∆V , a good “impedance matching” is expected between
the sample and the leads, and all the charge going through the center of the sample
will go through the leads. After this portion of charge inverts direction, it stops
contributing to the linear Landauer current, and the nonlinear current will be the
one to accurately describe it.

• For stronger fields still, the amplitude of oscillation becomes shorter, and the pieces
of charge further away from the leads are allowed to start oscillating. When this
amplitude of oscillation is equal to the length of the sample, then Bloch oscillations
are allowed because the portion of charge in the middle of the sample can now
complete a full oscillation. This happens when ∆V = 4t. As the electric field
becomes increasingly stronger, more and more portions are allowed to oscillate and
the Bloch current develops into a perfect sinusoidal shape.

While this analysis is able to capture the main phenomena going on in Fig. 5.4, it is unable
to accurately describe the energy scales at which they start to appear. For example, at
intermediate electric fields, the half Bloch oscillation should start to appear only when
∆V > 2t, but we see it already at ∆V = 1.5t. This might be attributable to the dispersion
of these charge packets, but further investigation would be required to justify it.
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5.5.1 The role of the leads

In the previous section, we saw that meaningful currents can be obtained by using suffi-
ciently large leads. By sufficiently large, it is meant that the results no longer change when
the lead size is further increased. On the one hand, we want the leads to be as large as
possible to achieve this. On the other hand, larger leads mean a larger Hilbert space which
makes the numerical simulations more costly. If this method is to become a useful tool in
the calculation of the conductance, the leads cannot be arbitrarily large. In this section,
we want to clarify what happens when the leads are finite.

Figure 5.4 provides the first clue for the role of the lead size. The charge density wave
propagates at the Fermi velocity vF inside the leads and gets reflected at the boundaries
of the leads. If we wait long enough, the current will invert. Therefore, we want to fix
our time observation window such that the reflected current never reaches the sample.
The maximum observation time Tmax should then be smaller than the time that it takes
for the charge wave to return, that is 2L/vF , where L is the lead size. More precisely,
the reflected current should arrive at T1 = (2L+ LS/2) /vF , taking into account the time
that the most advanced portion of charge takes to reach the middle of the sample after
reflecting, assuming that’s the observation point. The inversion process stops once the
reflected current has traversed the whole sample, at T2 = T1 + LS/vF . Fig. 5.5 shows
precisely this behavior. The dashed lines represent T1 and the dot-dashed lines T2.

Figure 5.5: Current as a function of time for several Fermi energies, small leads and a
sufficiently large time observation window to be able to see the reflected current
arrive at the center of the sample.

There is another, small but nontrivial effect that happens due to the finite size of the
leads. If we zoom closely into the current plateau, it is not entirely constant. It actu-
ally oscillates, with a frequency proportional to the potential drop (Fig. 5.5.1 a) and an
amplitude inversely proportional to the lead size (Fig. 5.5.1 b), that is I (t) − Iplateau ≈
∆V L−1 sin (∆V t/ℏ). This is a very fine effect that requires a much higher numerical reso-
lution to see than the previous graphs shown. While the plateau can be adequately resolved
with around 2× 103 Chebyshev polynomials in the expansion of the Fermi function, these
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oscillations require at least 5× 104 polynomials to converge.

Figure 5.6: Close-up of the current at the plateau. On the left, the drop in potential is
fixed to ∆V = 0.02t and the lead size is varied. On the right, the lead size is
fixed to 960 and the drop in potential is varied. In both cases, the current has
been rescaled by ∆V .

Despite their appearance, these oscillations should not attributed to some sort of remi-
niscent Bloch oscillations. They are artificial in the sense that for sufficiently large leads,
the oscillations are negligible. Instead, they are more likely to be related to the discrete-
ness of the momentum basis describing the states of each lead. This is similar to the
approximation of a square wave by its Fourier transform. In the limit of an infinite sum,
the plateau is perfectly flat, but if only a finite amount of terms is kept in the sum, the
oscillations are still visible.3

Interestingly, these oscillations only show up when the numerical resolution is sufficiently
large and typically requires an order of magnitude better resolution to resolve than the
plateau. Since they are physically artificial anyway, then one should use enough resolution
to resolve the plateau completely, but not more than that, lest the nonphysical oscillations
be resolved.

5.6 Generalization to cross sections

When the system is one-dimensional, the local current immediately provides the current
across the system. The generalization to higher dimensions is straightforward when we
think about the physical system being studied. We think of a sample connected to two
leads, and current flowing from one lead to the other. The generalization to higher dimen-
sions consists of a sum of the local currents across any cross section of the leads or the
sample (see Fig. 5.7). Let J be this current and let ⟨ij⟩ be the set of bonds which connects
both sides of the cross section, such that i is on one side of the cross section and j is on

3This is not related to the Gibbs phenomenon because it is not at the discontinuity.
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Figure 5.7: Two different cross sections across an armchair graphene nanoribbon. The first
cross section only crosses horizontal bonds, but the second cross section crosses
more generic bonds. i and j denote a site to the left and to the right of one of
the cross sections, respectively.

the other. Consequently, the generalization is simply

J =
∑
⟨ij⟩

⟨Iij (t)⟩ =
∑
⟨ij⟩

Tr [Ii→jρ (t)] . (5.6)

This generalization is still able to reproduce the Landauer plateau, even in more complex
lattices. Figure 5.8 shows the current across a cross section of a graphene nanoribbon, with
the contribution from each individual bond shown as well. Since the total current across
the cross section is normalized by the drop in potential, it is perfectly quantized in units of
the conductance quantum defined as σ0 = e2/h. The graphs on the right show the current
across a cross section of the nanoribbon which crosses only horizontal bonds and agree
perfectly with the linear Landauer formula as calculated with KWANT [92]. The current
across each individual bond at these cross sections are shown in the graphs on the left.

5.6.1 Consideration on scaling

When thinking about practical applications for this method, it is important to see how
it fares against other known ways to do the same thing. Our long-term goal with this
method is to obtain a clear picture of a diffusive regime where one can meaningfully speak
of a conductivity. The diffusive regime is reached when the mean free path is considerably
smaller than the localization length. In two-dimensions, the localization length can be
very large, so one might have to compute the conductance of very large samples, both
in length L and in cross section C. The Landauer formula can be evaluated with help
from the Recursive Green Function method (RGF) [35], which scales as LC3 because of
the matrix inversions of matrices with dimensions C × C. In contrast, our method scales
as LC2. One factor of LC comes from the size of the Hilbert space and is required for
the computation of even just one local current, but the extra factor of C comes from the
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5 Stochastic conductance

Figure 5.8: Current across an armchair graphene nanoribbon of width 4 (metallic, top)
and width 5 (non-metallic, bottom). The cross-section over which the current
is being calculated is shown in Fig. 5.7. The graphs on the left show the current
across each individual bond, and the graphs on the right represent the total
current.

sum across the cross section. Clearly, the scaling is advantageous in this situation, but the
RGF method isn’t the only way to compute the current across a sample. KWANT uses
the nested dissection algorithm [130] which enables this calculation with the same scaling
of LC2 thanks to a reorganization of the matrix elements. In this current formulation, the
only advantage of our method in relation to this algorithm is the fact that this is easily
parallelizable in the sum across the cross section, but we can still do better. This is the
subject of the next sections.

5.7 Stochastic current

As mentioned in section 5.6.1, the main shortcoming of the sum of local currents across
a cross section was its LC2 scaling. In this section, we will see how to bring this scaling
down to LC with the help of random vectors. To see how, let’s go back to the current
across the cross section (eq. 5.6) and begin by writing out the trace explicitly

J =
∑
k

⟨k| ICρ (t) |k⟩
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where IC is defined as the sum of local current operators across the cross section:

IC =
∑
⟨ij⟩

Ii→j .

Like before, the sum over k simplifies to the sum over the set of states Ω in the support of
IC . Furthermore, using the real part allows us to consider only the set of states ΩL that
lie to just to the left of the cross section. Therefore, the current is evaluated with

J = 2Re
∑
k∈ΩL

⟨k| ICρ (t) |k⟩ . (5.7)

Up until now, we have not gained anything by doing this manipulation - it still requires
computing each k ∈ ΩL individually. However, using random vectors, this can be made
simpler, in a similar fashion to the STE. Let

|ξΩ⟩ =
∑
k∈ΩL

ξk |k⟩ (5.8)

be a random vector defined in ΩL with random numbers ξk taken from a distribution such
that ⟨ξ∗kξk′⟩ = δkk′ , just as discussed in Chapter 2. Then, the current may be evaluated
as simply the average over these random vectors

J = 2Re⟨ξΩ| ICρ (t) |ξΩ⟩. (5.9)

One key difference from the results of Chapter 2 is that this random vector is only defined
in a cross section, rather than the whole system.

5.7.1 Average over cross-sections

One of the main arguments of Chapter 2 was that larger system sizes gave rise to smaller
variance in the estimator of the trace, so it is reasonable to think the same would apply
here. All we would need to do is to average eq. 5.7 over cross sections. Then, the random
vector 5.8 would be nonzero in several cross-sections, effectively increasing the number of
random vectors. However, in this circumstance, averaging over cross sections is actually
not advantageous. To see why, let’s analyze one of the terms of the variance formula 2.20
applied to the operator A = ICρ, where the time dependency of ρ (t) has been omitted for
brevity:

Tr
(
(ICρ)

2
)
=
∑
ij

∑
kℓ

ICikρkjI
C
jℓρℓi. (5.10)

Since IC is a very sparse matrix, the sum over k and ℓ is always limited to a very small
number of terms, so this sum does not scale with the system size or the number of cross-
sections being used. The sum over i and j is restricted to states on one side of the
cross-section, so it does not scale with the number of cross-sections.
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5 Stochastic conductance

Now suppose that IC is averaged over several cross-sections. Define

Iav =
1

NC

∑
C

IC

as the average current over NC cross-sections. Applying eq. 5.10 to Iav, the argument for
the sum over k and ℓ remains identical due to the sparseness of Iav. The sum over i and j
is now no longer limited to a single cross-section, and scales as N2

C . This exactly cancels
the 1/N2

C coming from the definition of Iav and we are left with something very similar
to eq. 5.10. Therefore, it is not advantageous to average over cross-sections and for the
remainder of this chapter we shall not do so.

Nevertheless, it is interesting to see how this notion of averaging over cross-sections
connects to the idea of the Kubo formula, as the average value of the velocity operator.
Let’s analyze the case of a one-band two-dimensional tight-binding square lattice in the
shape of a nanoribbon along the x direction, with lattice constant a. The vector R =

anx̂+amŷ indexes any site in the lattice. Let Ωav be the set of sites in the support of Iav.
Then, the current J can be expressed as an average of the local currents:

J =
1

Nc

∑
n

Jn = Tr

 1

Nc

∑
R,R+x∈Ωav

IR→R+xρ (t)


where the sum runs over all the sites in Ωav. Let Iav be this average operator

Iav =
1

Nc

∑
R,R+x∈Ωav

IR→R+x.

It is interesting to unpack the definition of Iav to see its underlying structure. It can be
expressed in terms of the vectors inside Ω′

Iav =
1

Nc

iq

ℏ
∑

R,R+x∈Ωav

(
HR,R+x̂ |R⟩ ⟨R+ x̂| −H∗

R+x̂,R |R+ x̂⟩ ⟨R|
)
,

which is closely related to the velocity operator. To make this evident, define the projector
PΩav into the sites Ωav as

PΩav =
∑

R∈Ωav

|R⟩ ⟨R| .

Then, Iav can be expressed as

Iav =
1

Nc

q

a
PΩav

∑
R

(
ita

ℏ
|R⟩ ⟨R+ x̂| − ita

ℏ
|R+ x̂⟩ ⟨R|

)
PΩav .

The sum is unrestricted, allowing the introduction of the velocity operator along x

Iav =
1

Nc

q

a
PSvxPS .
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This provides an interpretation of J as an average of the projected velocity operator,
similarly to the Kubo formula for the conductivity. Although this seems obvious, this
should not be taken as a general statement. The identification of Iav as the average
projected velocity operator was only possible because of the square structure of this specific
lattice. Because of this, both the velocity operator and the local current always connect
adjacent horizontal bonds with the same matrix element. The same does not happen
for more complex lattices such as the honeycomb lattice, for which the velocity operator
along x could connect adjacent sites with a factor of cos (30◦) if they are not connected
horizontally.

5.7.2 Choice of random vectors

So far, the only condition imposed upon the random vectors is that their components
satisfy ξ∗i ξj = δij . Just like in section 2.6, the choice of random vectors can have significant
consequences for the random fluctuations of the method, and so they must be carefully
chosen. In this section we will look into the effect of the distribution, and whether or not
complex random vectors should be used.

In equilibrium, we expect there to be no current flowing from one lead to the other, that
is J (t = 0) = 0, even in the presence of a magnetic field. Complex random vectors pose
a problem here, because complex vectors carry current. On average, this contribution is
zero, but it adds to the variance. This is confirmed by Fig. 5.9, where the current across
a very small finite graphene armchair nanoribbon is calculated using random vectors. The
dimensions in terms of unit cells are: width= 2, sample length= 4, lead size= 64.

Each curve in this Figure is the current calculated with a different random vector and
each panel uses a different distribution. Since the curves are transparent, the shade of
green gives us an idea of their distribution (for the detailed distribution of the uniform
case, see Fig. 5.11). Notably, the curves in panel a) were calculated with complex random
vectors with elements defined in the unit complex circle and have a standard deviation so
large that they appear as flat lines.

The flatness of these curves also gives us an indication that for each random vector,
the value of the current at every time is highly correlated. We can use this correlation to
reduce the noise. By subtracting the value at t = 0 (which we know has to be zero), we
get panel b), where the standard deviation has been substantially reduced. We also know
that the large variance is caused by the complex nature of the random vectors. Taking
their real part, we get panel c). Of course, we can simply use uniformly distributed real
random vectors, yielding panel d).

The differences between each method is quantified more clearly in Fig. 5.10. Panel
a) is the result of averaging over the random vectors, compared against the same result
calculated exactly. The last panel plots the standard deviation of each of the methods as
a function of time. As expected, using random vectors yields the correct result on average
(panel a)), but the standard deviation (panel b)) is not very different for each of them.
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5 Stochastic conductance

Figure 5.9: Current across a very small armchair graphene nanoribbon calculated using
random vectors with different distributions.

Since there is no clear benefit in using either of the three distributions, for the next sections
the uniform distribution is going to be used for simplicity.

5.7.3 Operator order

As previously discussed, one major shortcoming of calculating the nonlinear current in
time is that the Fermi operator has to be evaluated once for every point in time where we
want to observe the current. Using random vectors defined in the whole system, eq. 5.9
becomes a trace, so we can rotate the operators to something like

J = ⟨ξ| eiHt/ℏICe−iHt/ℏf (H0) |ξ⟩

with the understanding that |ξ⟩ is now defined in the whole Hilbert space rather than the
subset Ω. This has one major advantage: the Fermi operator only needs to be evaluated
once for each random vector |ξ⟩. However, we still need to compare the standard deviation
of both methods.

To gain an intuition about this, let’s analyze the variance at time t = 0, so that we
can focus only on the simpler operator ICf (H0). Since IC only has nonzero elements
inside of Ω, it is clear that the contributions of |ξ⟩ to ⟨ξ| ICf (H0) |ξ⟩ coming from Ω, the
complement of Ω, will necessarily have zero average. Concretely, let |ξΩ⟩ be the projection
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5.7 Stochastic current

Figure 5.10: Statistical analysis of the current calculated with 2000 random vectors and
different random vector distributions (blue - complex exponential minus initial
current, orange - cosine distribution, green - uniform distribution). Panel a)
shows the average current as a function of time for each distribution and panel
b) shows the standard deviation of the stochastic current for each method.

of |ξ⟩ onto Ω and
∣∣ξΩ〉 the projection onto Ω, such that |ξ⟩ = |ξΩ⟩+

∣∣ξΩ〉. In symbols,

⟨ξ| ICf (H0) |ξ⟩ = ⟨ξΩ| ICf (H0) |ξΩ⟩

and

〈
ξΩ
∣∣ ICf (H0)

∣∣ξΩ〉 = 0.

Now, since the matrix elements between these two subspaces are nonzero:

⟨ξΩ| ICf (H0)
∣∣ξΩ〉 ̸= 0

but its average is zero
⟨ξΩ| ICf (H0)

∣∣ξΩ〉 = 0,

this means that region Ω does not contribute to the current, but adds to the variance.
In general, region Ω is much larger than Ω, so a lot of variance will be coming from this
region, bringing the usefulness of this particular approach into question.

Thus, we expect the variance of this approach to be much larger, at least for small times,
and a trade-off occurs between variance and the number of times that f (H0) is required
to be evaluated. Figure 5.11 shows the histograms resulting from both approaches after
the current plateaus, at T = 80ℏ/t in Fig. 5.10. Clearly, the standard deviation of the
stochastic current evaluated with the rotated operators (right) is much higher than the non-
rotated counterpart (left). The distribution is also different. The former approximates an
exponential distribution for larger values of the current, while the latter has a gaussian
profile. The factor of 30 relating both standard deviations indicates that 302 more random
vectors would be required to achieve the same error bar. Therefore, the rotated version of
the stochastic current only becomes more efficient than its alternative when the number
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of observation points is approximately of this order.

Figure 5.11: Histogram of the stochastic current normalized by the potential drop ∆V with
and without the rotated trace.

5.8 Stochastic vs exact

To prove the usefulness of this method, we have to go to larger lattices and see how
the variance of the stochastic current changes with the size of the cross-section. Ideally,
for sufficiently large cross-sections, only one random vector would be required to have a
sufficiently small error bar. Figure 5.12 shows the average current as a function of time
across a sample in a 2D TB lattice, as well as the standard deviation of this stochastic
variable (blue shaded area). As the cross-section width W increases, the relative error
of the current decreases. When W = 1024, the standard deviation is already very small
compared to the value of the current at the plateau.

Figure 5.12: Current across a sample estimated through random vectors for different cross-
section widths W . Each sample is a square of dimensions W×W . The 2D TB
lattice has length Lx = 16384 (which includes both leads and sample length).

This method requires the exact same computational effort to compute the local current
across a bond as to compute the stochastic current for one random vector, so it will be
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advantageous for larger cross-sections. In order to quantify this, let us suppose that the
statistical error is reasonable when the relative error is below 1%. Let us also suppose that
for a fixed cross-section width W , the standard deviation of the method is σW and the
current is JW . Assuming the central limit theorem is valid, an average over NR random
vectors would yield a standard deviation of σW /

√
NR for this average value. Then, the

number of random vectors required to get the desired accuracy can be estimated as

√
NR = 100

σW
JW

.

Next, suppose that
√
WσW is relatively constant and approximately equal to a value σ̃,

which is reasonable if the current does not change considerably across the cross-section. It
is also reasonable to assume that the current across a sample is roughly proportional to the
cross section, such that JW ≈ WJ̃ . Then, for sufficiently large W , we have the following
estimate for NR:

NR =
1

W

(
100σ̃

J̃

)2

.

In contrast, we have to perform W calculations to get the current across the sample as a
sum of local currents across the cross-section. Therefore, the stochastic evaluation of the
current becomes the most efficient method when NR < W , that is, when

W >
100σ̃

J̃
.

Coming back to Fig. 5.12, we can estimate σ̃ ≈ 0.7 and J̃ ≈ 0.8, indicating that for
cross-sections of the order of W ≈ 100, it’s more efficient to use random vectors than to
sum over the local currents.

5.9 Further optimizations and limitations

There are two main sources of inefficiency for the stochastic evaluation of the current. The
first is the need to evaluate the Fermi function for every point in time where the current
is being observed. We saw that rotating the order of the operators could help in principle,
but the added increase in variance made it unappealing. One way around this is to use
the linearized version of the stochastic current, which does not have this problem. But if
we are actually interested in the nonlinear current, a more careful choice of observation
points can be useful. If we have an estimate for how long the current takes to stabilize,
we can use a coarser grid of times during that period, and a finer one after that, to ensure
stabilization. Alternatively, we can simply read off its value at one single time after the
stabilization, thus requiring only one observation.

The second source of inefficiency is the need for very long leads. If there are resonances
inside the sample, some states can bounce around long enough inside the sample for the
reflected current wave to reach it before they have escaped into the leads. One way to
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prevent this is to slow down this wave through the use of smooth boundary conditions
inside the leads [131]: the farther away from the sample, the smaller the hoppings in the
leads. The intuition behind this is the following: if we look back at the Landauer formula
5.4, we realize that all of the contribution to the current comes from states in an energy
window of size ∆V around the Fermi energy εF . If we wanted twice the resolution inside
this energy window, we would have to double the size of the leads, which would also increase
the resolution in the remainder of the spectrum. This wasted resolution can be put to use
by changing the spectrum of the leads to lie within this energy window. This increases the
number of states around the Fermi surface considerably.

Figure 5.13: The effect of modulated hoppings in the stationary current plateau (left) and
modulation profile (inset). The region between the vertical dashed lines in
the inset represents the sample.

To see this in action, we can apply a modulation profile to the hoppings of the whole
system and shift the energies to place the Fermi energy at zero. We applied the following
hopping profile (see inset of Fig. 5.9):

t (n) =
t−∆V/2√
1 +

(
2n−LS

2σ

)4 +
∆V

2

to the 1D TB chain of lattice parameter a. Here, nis the position along the nanoribbon
length, LS is the length of the sample and σ is an adjustable parameter to tune how quickly
the hopping changes. In this model, this has shown to bring considerable improvements to
the plateau’s longevity (see Fig. 5.9). The introduction of a hopping modulation through a
Cauchy-like curve increases the reflection time by a factor of around 4, while still providing
the same stationary current inside the sample.
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5.10 Further applications

The unitary evolution of the stochastic current in time with finite leads appears here
as a promising alternative to the more standard infinite leads approach and is a truly
complexity O (N) method. Its linear scaling means that one is now able to study very
wide samples connected to leads in a fully parallelized fashion. While this chapter was
largely exploratory, this technique promises a new avenue to study localization phenomena
at weaker disorders.
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6 Spectral methods in superconductors
with dilute impurities

Disordered superconductors are an intrinsically difficult system to study. On the one
hand, one has to include interactions, which greatly increases the computational complexity
of the problem. On the other hand, the absence of translation invariance means that
the momentum basis cannot be used to simplify the problem. While a full treatment of
interactions is currently out of practical reach for these kinds of problems, a mean-field
approximation to interactions is a useful way to simplify the problem while still keeping
the most important features. In the case of superconductivity, Cooper pairs are responsible
for the superconducting state. Being a bound state of two electrons, a mean-field theory
has to include terms which create two electrons explicitly.

Several mechanisms have been proposed as mediators for these Cooper pairs, from
phonons to plasmons [79, 83], but the overall effect is the same: an effective attractive
electron-electron interaction. In this Chapter, we will not concern ourselves with the
particular mechanism behind the superconducting effect. Our starting point will be the
existence of this interaction, which will then be treated as a mean-field theory subject to
a self-consistency condition. The purpose of this chapter is to develop a new way to treat
the self-consistency equation in superconductors with dilute impurities that greatly reduces
the computational cost of this procedure. Its effectiveness is shown for plasmon-mediated
superconducting graphene [132].

6.1 Interacting Hamiltonian

The starting point of our discussion is an effective Hamiltonian which treats the supercon-
ducting effect simply as an electron-electron interaction (see [133] for a similar derivation).
Let’s start with generality and let the indices ijkℓ run over the whole single-particle Hilbert
space. Each of them runs from 1 to 2N , the 2 being there for convenience because of spin.
The general many-body interacting Hamiltonian can be written as

H =
∑
ij

tijc
†
icj +

1

2

∑
ijkℓ

Vijkℓc
†
ic

†
jckcℓ.

In virtue of being a many-body operator, V has the following properties

Vijkℓ = −Vjikℓ = −Vijℓk = V ∗
ℓkji = V ∗

kℓij .

117



6 Spectral methods in superconductors with dilute impurities

Treating interacting Hamiltonians directly is very complicated, so we want to approximate
this Hamiltonian by an effective non-interacting Hamiltonian Heff which nevertheless is
able to capture some key properties of the interacting one. As we will see, the price to pay
for this process is that we will be left with a complicated self-consistent equation to solve.

To simplify the analysis, and because we are only going to study superconductivity at
zero-temperature, we want to obtain the best possible non-interacting approximation |Φ0⟩
to the many-body ground state, described as

|Φ0⟩ =
∑
n<N

d†n |0⟩

for a set of states d†n to be determined. Let ⟨· · · ⟩ = ⟨Φ0| · · · |Φ0⟩ denote the expectation
value with respect to this ground state. To get the best approximation to the ground state,
we want to find the set of states d†n which minimize the expectation value of the interacting
Hamiltonian:

⟨H⟩ = ⟨Φ0|H |Φ0⟩ =
∑
ij

tij

〈
c†icj

〉
+

1

2

∑
ijkℓ

Vijkℓ

〈
c†ic

†
jckcℓ

〉
and this can be done with resort to the Hartree-Fock approximation. Since the average is
done with respect to a non-interacting Hamiltonian, Wick’s theorem applies

〈
c†ic

†
jckcℓ

〉
=
〈
c†ic

†
j

〉
⟨ckcℓ⟩ −

〈
c†ick

〉〈
c†jcℓ

〉
+
〈
c†icℓ

〉〈
c†jck

〉
and the expectation value factorizes into

⟨H⟩ =
∑
ij

tij

〈
c†icj

〉
+

1

2

∑
ijkℓ

Vijkℓ

[〈
c†ic

†
j

〉
⟨ckcℓ⟩ −

〈
c†ick

〉〈
c†jcℓ

〉
+
〈
c†icℓ

〉〈
c†jck

〉]
.

We want to minimize this expectation value with respect to small variations in the basis,
so after some simplification using the properties of V , we get

δ ⟨H⟩ =
∑
ij

tijδ
〈
c†icj

〉
+

1

2

∑
ijkℓ

[
Vijkℓ ⟨ckcℓ⟩ δ

〈
c†ic

†
j

〉
+ V ∗

ijkℓ

〈
c†kc

†
ℓ

〉
δ ⟨cicj⟩

]
+2
∑
ijkℓ

Vijkℓ

〈
c†jck

〉
δ
〈
c†icℓ

〉
For notational convenience, let

∆ij =
∑
kℓ

Vijkℓ ⟨ckcℓ⟩ (6.1)

Uij = 2
∑
ℓk

Viℓkj

〈
c†ℓck

〉
(6.2)

118



6.1 Interacting Hamiltonian

which casts the previous expression into

δ ⟨H⟩ =
∑
ij

(tij + Uij) δ
〈
c†icj

〉
+

1

2

∑
ij

∆ijδ
〈
c†ic

†
j

〉
+

1

2

∑
ij

∆∗
ijδ ⟨cjci⟩ .

Now consider the following effective Hamiltonian:

Heff =
∑
ij

t̃ijc
†
icj +

∑
ij

[
∆̃ijc

†
ic

†
j + ∆̃∗

ijcjci

]
,

which is in fact the most general form of a quadratic Hamiltonian. The fact that it
is quadratic means that a single-particle counterpart can be obtained, and its spectrum
calculated with the help of the Bogoliubov transformation explained in the next section.
For now, we can assume that its spectrum and eigenvectors are known. If a ground state
|Φ0⟩ is constructed with these states, then it is obvious that any variation to it will have
a larger expectation value on Heff. Taking t̃ij = tij + Uij and ∆̃ij = 1

2∆ij , we see that
δ ⟨Heff⟩ = δ ⟨H⟩ and thus choosing a ground state state composed of the first (lowest energy)
states of Heff ensures ⟨H⟩ is minimized. This sets a self-consistent equation, because Heff

depends on U and ∆, which themselves depend on Heff through the expectation values.
The Uij potential is usually disregarded, because it is obtained via a sum over the Fermi
sea, rather than the Fermi surface like ∆, thus its effect on superconducting excitations is
minimal. Therefore, we have found the basis of states which provide the best approximation
to the ground state of H, and these define the effective Hamiltonian Heff which will be
used in the remainder of the Chaper.

6.1.1 The Bogoliubov-de Gennes Hamiltonian

To proceed, we will represent the effective Hamiltonian in a different way, by putting the
creation and annihilation operators under a single operator. Define T = t+U for notational
simplicity. Then, the effective Hamiltonian can be put in the following form

Heff =
1

2

∑
i

Tii +
1

2

∑
ij

Tijc
†
icj +

1

2

∑
ij

(−Tji) cic†j +
1

2

∑
ij

∆ijc
†
ic

†
j +

1

2

∑
ij

∆∗
ijcjci.

The matrix form becomes more obvious when considering the particle and hole subspaces
individually. Let (

c

c†

)
=
(
c1 c2 · · · cN c†1 c†2 · · · c†N

)T
represent the creation and annihilation in a compact way. Then, the Hamiltonian can be
written as

Heff = ε0 +
1

2

(
c† c

)[ H ∆

∆† −H∗

](
c

c†

)
,
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where ε0 = 1
2

∑
i Tii. Define

Ω =

[
H ∆

∆† −H∗

]
as the single-particle Bogoliubov-de Gennes (BdG) Hamiltonian. The fermionic nature of
the creation and annihilation operators dictates that ∆T = −∆. While the original single-
particle Hamiltonian matrix was a 2N ×2N matrix, this one is 4N ×4N because the basis
has been doubled. This means that the eigenvectors cannot be considered as independent
and that there must be a symmetry in this matrix. Let sy be the y Pauli matrix defined
in the particle-hole space, that is:

sy = i

[
02N×2N −12N×2N

12N×2N 02N×2N

]
That symmetry is

syΩsy = −Ω∗

or, defining the conjugation operator as CAC−1 = A∗ such that C−1 = C and T = syC,

TΩT = −Ω.

This means that if one is able to find an eigenvector ψ with eigenvalue E, then Tψ is also
an eigenvector, but with eigenvalue −E. Let us then search for the 2N -dimensional vectors
un and vn such that [

H ∆

∆† −H∗

](
un

vn

)
= En

(
un

vn

)
.

In elements:

∑
j

Hijujn +
∑
j

∆ijvjn = uinEn∑
j

(
∆†
)
ij
ujn +

∑
j

(−H∗)ij vjn = vinEn.

This suggests the definition of the matrices u, v and the diagonal matrix E such that

Hu+∆v = uE

∆†u−H∗v = vE

Since this combination composes an eigenvector of energy En, then

T

(
un

vn

)
= syC

(
un

vn

)
= i

[
0N×N −1N×N

1N×N 0N×N

](
u∗n

v∗n

)
= i

(
−v∗n
u∗n

)
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6.1 Interacting Hamiltonian

has eigenvalue −En. Now this set of vectors can be organized into a matrix to compose
the matrix of change of basis Pin = ⟨i|n⟩

P =

[
u −v∗

v u∗

]
.

The condition P †P = 1 imposes some restrictions on the matrices u and v:

u†u+ v†v = 1N×N

vTu = uTv

or in terms of the eigenvectors i and j∑
k

(u∗kiukj + v∗kivkj) = δij∑
k

(vkiukj − ukivkj) = 0

its action on the BdG Hamiltonian is

P

[
H ∆

∆† −H∗

]
P † =

[
E 0

0 −E

]

This is the Bogoliubov transformation that can be used to diagonalize the BdG Hamil-
tonian, but it is usually cast in a different way in nonmagnetic materials. This will be
shown in the next section, but first we need to include spin explicitly in our computations.
At this point it is useful to introduce the bra-ket notation for these objects. Let |e, i⟩
denote the usual (electron) state i and |h, i⟩ the hole state i. The previous objects have
the representation

⟨e, i|Ω |e, j⟩ = Hij

⟨e, i|Ω |h, j⟩ = ∆ij

⟨h, i|Ω |e, j⟩ = ∆∗
ji

⟨h, i|Ω |h, j⟩ = −H∗
ij

which will become useful later on.

6.1.2 Spin, symmetry and types of superconductors

Spin plays the central role in superconductivity, so it is useful to write it out explicitly
in the Hamiltonian. The matrices H and ∆ get further split into their spin components.
From now on, let’s consider spin separately, so the indices i now run from 1 to N to
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6 Spectral methods in superconductors with dilute impurities

represent all the non-spin degrees of freedom. The Hamiltonian takes the general form

H = ε0 +
1

2

(
c†↑ c†↓ c↑ c↓

)


H↑↑ H↑↓ ∆↑↑ ∆↑↓

H↓↑ H↓↓ ∆↓↑ ∆↓↓

∆†
↑↑ ∆†

↓↑ −H∗
↑↑ −H∗

↑↓
∆†

↓↑ ∆†
↓↓ −H∗

↓↑ −H∗
↓↓




c↑

c↓

c†↑
c†↓

 .

Hermiticity imposes H↓↑ = H†
↑↓ and the fermionic nature of the pairing terms imposes the

following conditions on the blocks:

∆T =

[
∆↑↑ ∆↑↓

∆↓↑ ∆↓↓

]T
= −

[
∆↑↑ ∆↑↓

∆↓↑ ∆↓↓

]
= −∆.

More explicitly, ∆T
↑↑ = −∆↑↑ ,∆T

↓↓ = −∆↓↓ and ∆T
↓↑ = −∆↑↓. The structure of this

matrix determines the symmetry of the superconducting state [134–136]. The matrix ∆

can be written in an alternative way using the vector of matrices d⃗ = (dx,dy,dz) [135]

∆ =

[
−dx + idy dz +∆s

dz −∆s dx + idy

]
where

∆s =
1

2
(∆↑↓ −∆↓↑)

dx =
1

2
(∆↓↓ −∆↑↑)

dy =
1

2i
(∆↓↓ +∆↑↑)

dz =
1

2
(∆↑↓ +∆↓↑) .

When the superconducting state is a singlet, d⃗ = 0 and when it is a triplet, ∆s = 0.
For a 1-band translational invariant square lattice with nearest neighbor hoppings and
pairings, s-wave superconductivity would have the order parameter in k-space ∆k = ∆0,
which is isotropic and has the same symmetry as s-orbitals. p-wave superconductivity
may be characterized by an order parameter like ∆k = ∆0 (sin (kx)− i sin (ky)) which at
low momenta is ∆k ∼ kx − iky, which is proportional to the (ℓ,m) = (1,−1) spherical
harmonic, or in terms of atomic orbitals, px − ipy. As a last example, one could also
have for d-wave superconductivity, ∆k = ∆0 (cos (kx)− cos (ky)) ∼ k2x − k2y which has the
same symmetry as the dx2−y2 orbitals. The kind of pairing that appears depends on the
interaction mechanism. Phonon-mediated e-e attraction favors s-wave superconductivity,
but the mechanism behind the other (unconventional) superconducting states is still a point
of debate. Several theories have been but forward, such as resonating Valence Bond Theory
(RVB), which states that electrons bound in valence bonds can act as mobile Cooper pairs,
and others which replace the bosonic phonon modes by plasmons and spin fluctuations.
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6.1 Interacting Hamiltonian

d-wave superconductivity is typically favored when the electron interaction is repulsive at
short range but attractive at longer distances, thus benefiting from the lobules of the d
orbitals being farther away from each other [136].

These symmetry classifications don’t make a lot of sense in the lattice because the angular
momentum is not a good quantum number, but they still correspond to the nomenclature at
small momenta. The nomenclature is nevertheless useful to distinguish them because these
symmetries have an effect in the response to disorder. Because of its robustness to disorder,
s-wave superconductivity was the first to be discovered and was the main actor of the BCS
theory. Shortly after the microscopic mechanism had been discovered, Anderson proved
that this new condensed state was robust to impurities so long as they were non-magnetic.
The possibility of a p-wave type superconducting state has been proposed shortly after
Anderson’s theorem [137, 138] and it was found to be very sensitive even to nonmagnetic
impurities and so very clean samples would be required to see this state.

6.1.3 Nonmagnetic materials

So far, this approach has been general, but now we want to use this information to study
the specific kinds of Hamiltonian that interest us for this Chapter. These are the ones
whose noninteracting term is spin independent and whose interacting term only connects
different spins. In the BdG form, this is

H = ε0 +
1

2

(
c†↑ c†↓ c↑ c↓

)


H 0 0 ∆

0 H −∆T 0

0 −∆∗ −H∗ 0

∆† 0 0 −H∗




c↑

c↓

c†↑
c†↓

 .

This Hamiltonian is block diagonal, which is made clear by swapping the second and fourth
lines and columns

H = ε0 +
1

2

(
c†↑ c↓ c↑ c†↓

)


H ∆ 0 0

∆† −H∗ 0 0

0 0 −H∗ −∆∗

0 0 −∆T H




c↑

c†↓
c†↑
c↓

 .

Remarkably, the upper-left block is exactly of the form presented before and the lower-
right block is its negative complex conjugate. Since the lower block is related to the upper
block, it is useful to consider only the first one, so let’s define the 2N × 2N matrix Ξ to
be the upper-left block:

Ξ =

[
H ∆

∆† −H∗

]
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6 Spectral methods in superconductors with dilute impurities

and the operator vectors

ψ =

(
c↑

c†↓

)
and ψ∗ =

(
c†↑
c↓

)
which is just ψ under the operation of the conjugation operation. Then the Hamiltonian
can also be expressed in the form

H = ε0 +
1

2
ψ†Ξψ − 1

2

(
ψ†Ξψ

)∗
.

Defining the excitation operators through the aforementioned matrix of change of basis,

ψ = P

(
γ↑

γ†↓

)
and ψ∗ = P ∗

(
γ†↑
γ↓

)
defines the Bogoliubov transformation which diagonalizes this Hamiltonian

H = ε0 +
1

2

(
γ†↑ γ↓ γ↑ γ†↓

)


E 0 0 0

0 −E 0 0

0 0 −E 0

0 0 0 E




γ↑

γ†↓
γ†↑
γ↓

 .

Finally, writing this explicitly yields

H =
1

2

∑
i

Hii −
1

2

∑
iσ

Ei +
∑
iσ

Eiγ
†
iσγiσ,

where H is the single-particle counterpart of H. The expectation values in the eigenbasis
are easily found to be 〈

γ†iσγiσ

〉
= f (Ei)〈

γiσγ
†
iσ

〉
= f (−Ei)

and can be used to find all other correlators〈
c†icj

〉
= ⟨j| f (H) |i⟩ (6.3)

and the whole computation comes down to the evaluation of several matrix elements of
f (H). In terms of the u and v matrices, this is more commonly written as

⟨ci↑cj↑⟩ = ⟨ci↓cj↓⟩ = 0

⟨ci↑cj↓⟩ =
∑
n

univ
∗
nj [1− f (En)]−

∑
n

unjv
∗
nif (En)〈

c†i↑cj↓

〉
= 0〈

c†i↑cj↑

〉
=

〈
c†i↓cj↓

〉
=
∑
n

u∗niunjf (En) +
∑
n

vniv
∗
nj [1− f (En)]

The last thing we need to do is to express the Fermi operator in terms of something easier
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6.2 Dealing with inhomogeneities

to calculate, which can be done in the same way as with the optical conductivity. For
example, expressing it in terms of the Dirac delta operator or, similarly, the retarded
Green’s function

⟨j| f (H) |i⟩ =
∫ ∞

−∞
dεf (ε) ⟨j| δ (ε−H) |i⟩ = − 1

π
Im
∫ ∞

−∞
dεf (ε) ⟨j|GR (ε) |i⟩ , (6.4)

it’s now possible to treat it in exactly the way described in 2.16, by expanding it in a series
of Chebyshev polynomials. The only difference is that no random vectors are required. This
is the basis for the Chebyshev-Bogoliubov-de Gennes formalism (CBdG) [88–91]. Within
the mean-field approximation, this is numerically exact for inhomogeneous systems and
can be used to study rather large systems, of the order of 104 atoms.

6.1.4 Consideration on numerical efficiency

The main limiting factor here is nevertheless the same: the order parameter ∆ and the
Hartree-Fock potential U need to be evaluated at every point in space (or pair of points
if the interaction connects different sites), and so one individual simulation is required for
each. And since this is a self-consistent equation, it has to be repeated to convergence,
adding on top of the numerical inefficiency.

6.2 Dealing with inhomogeneities

As explained in the introduction, several methods exist in order to deal with inhomo-
geneities. It is clear that inhomogeneity is a severe limiting factor in the efficiency of the
numerical methods and can arise in several situations. Boundary effects and impurities
are among the most interesting ones in superconductors. Under certain circumstances,
evaluating eq. 6.3 at every point in space is not necessary. Fluctuations in the order pa-
rameter can be neglected if the coherence length is much higher than the lattice spacing
[86, 139]. In these cases of relative homogeneity away from impurities and boundaries, it
is redundant to evaluate eq. 6.3 at every point. One possible way to reduce numerical
complexity is to compute these equations in a regular mesh, and then interpolate ∆ and
U from there, while refining the mesh closer to sources of inhomogeneity.

Another closely related possibility is to take these to be uniform away from the inhomo-
geneities, and then to allow them to vary when close to impurities. This requires complete
computation around the impurity, but only requires one computation away from the impu-
rity. This reduces the numerical complexity considerably, to something which scales with
the concentration of impurities, but we can go further. If we look at the order parameter
around individual impurities, we do not expect much variation from one impurity to the
next. This is the inspiration for the next step. We impose that the order parameter modu-
lation around each impurity is an average of the modulations around every impurity. And
now that we’re talking about averages, we can again use random vectors. This reduces
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6 Spectral methods in superconductors with dilute impurities

the numerical complexity tremendously. Instead of calculating the order parameter around
every impurity, now the numerical cost is the same as doing it just for one impurity.

To better understand the validity of this procedure, it is necessary to get a better grasp
of the exact spatial variation of the order parameters around impurities. Friedel oscillations
are considerable in 1D, where they span several hundreds of unit cells [140]. While both
the s-wave and p-wave superconducting order parameters get modified in 1D, only the
s-wave order parameter oscillates. In 2D, both oscillate, but they only span a couple of
unit cells. This is the green light for our method: the smaller the region around which the
order parameter varies, the more efficient the method becomes, so it is expected to fare
well in 2D.

To understand the method in its generality, it’s useful to begin with an illustrative
example in 1 dimension. Consider the simple 1D tight-binding chain with a Hubbard
interaction

H =
∑
ij

tij

(
c†i↑cj↑ + c†i↓cj↓

)
+ V

∑
i

c†i↑c
†
i↓ci↓ci↑.

Without impurities, the hopping matrix tij is t if i and j are nearest neighbors, and zero
otherwise. In the presence of impurities, tii is allowed to be nonzero when i is an impurity
site. For the sake of simplicity, we consider only nonmagnetic impurities, so tii does not
depend on spin. Let I be the set of sites with impurities, such that tii = ε0 when i ∈ I.
Plugging this interaction operator in eqs. 6.1 and 6.2, the mean-field matrices are

∆i↑j↓ = V ⟨ci↓ci↑⟩ δij = ∆iδij

Ui↑j↑ = 2V↑↓↓↑

〈
c†↓c↓

〉
= Ui↑δij

Ui↓j↓ = 2V↓↑↑↓

〈
c†↑c↑

〉
= Ui↓δij .

For the reasons stated above, the term U is ignored. The effective Hamiltonian becomes

Heff =
∑
ij

tij

(
c†i↑cj↑ + c†i↓cj↓

)
+
∑
i

[
∆ic

†
i↑c

†
i↓ +∆∗

i ci↓ci↑

]
,

which after the Bogoliubov transformation leads to

(
uni

vni

)
En =

∑
j

(
tij − µδij ∆jδij

∆∗
jδij −

(
t∗ij − µδij

) )( unj

vnj

)
. (6.5)

The self-consistent equations that describe ∆i are

∆i = V ⟨e, i| 1− 2f (H) |h, i⟩ . (6.6)

After solving the self-consistent equations, the order parameter is expected to have some
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6.2 Dealing with inhomogeneities

variation around the impurities. In 1D, this variation can have very long tails before
reaching the homogeneous value, of the order of hundreds of nanometers [140], but this
behavior is highly suppressed in higher dimensions. In what follows, we will assume that
the impurities are sufficiently far apart that the ∆i attain their homogeneous value between
each impurity. In 1D, this represents an extremely dilute scenario because of the long tails,
but in 2D this is not the case. It is also reasonable to expect that ∆i around an impurity
doesn’t change appreciably from one impurity to the next (refer to Fig. 6.1). Let Ra be the
site where the a-th impurity is located. Then, mathematically, for i around any impurity
site Ra ≈ i, this is expressed as

∆i ≈ g (i−Ra)

for some function g. This is only valid in the vicinity of the impurity, where ∆i varies

Figure 6.1: Representation of the order parameter around several impurities.

appreciably. Let z be a cutoff distance where this relation is expected to hold, imposing
|Ra − i| < z. When |Ra − i| > z, ∆i should return to a homogeneous value ∆∗ yet to be
determined as well (not necessarily the same as the case without impurities)

∆i ≈ ∆∗.

The next question is obvious: how to determine both ∆∗ and the function g? This is the
next step of the approximation: we choose g (i) to be the average of ∆i around every single
one of the Na impurities, that is:

g (i) =
1

Na

∑
{Ra}

∆i+Ra ,

while making sure that |i| < z. The advantage of this becomes clear when g is expressed
as a sum of matrix elements

g (i) = V
1

Na

∑
{Ra}

⟨e, i+Ra| 1− 2f (H) |h, i+Ra⟩ .
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6 Spectral methods in superconductors with dilute impurities

Next, to avoid calculating each matrix element individually, we can employ a similar trick
to KPM. Let |ξi, h⟩ and |ξi, e⟩ be random vectors defined in the hole and electron sectors,
respectively, with random entries only on sites Ra + i:

|ξi, h⟩ =
1√
Na

∑
{Ra}

ξRa |h, i+Ra⟩

|ξi, e⟩ =
1√
Na

∑
{Ra}

ξRa |e, i+Ra⟩ .

The random numbers ξi have zero average and satisfy ξ∗i ξj = δij , where the average is
taken with respect to a sample of random vectors. This casts the previous expression into

g (i) = V ⟨ξi, e| 1− 2f (H) |ξi, h⟩.

Finally, to avoid calculating the Fermi function, this is written as

g (i) = V

∫ ∞

−∞
dε [1− 2f (ε)] ⟨ξi, e| δ (ε−H) |ξi, h⟩ (6.7)

which closely resembles the expression for the KPM calculation of the density of states. A
similar procedure is followed for ∆∗. Its value is the average of ∆i away from the impurities.
Let B be the set of sites i such that |Ra − i| > z for every Ra . Then, ∆∗ is calculated
with

∆∗ = V

∫ ∞

−∞
dε [1− 2f (ε)] ⟨ξB, e| δ (ε−H) |ξB, h⟩ (6.8)

where

|ξB, h⟩ =
1√
Na

∑
j∈B

ξj |h, j⟩

|ξB, e⟩ =
1√
Na

∑
j∈B

ξj |e, j⟩ .

Now that both g and ∆∗ have been determined, we can finally determine the parameters
that go inside the Hamiltonian for the next self-consistent step. Instead of 6.5 where the
exact order parameter ∆i is used, we define the averaged order parameter

∆i =

g (i−Ra) if |i−Ra| < z

∆∗ otherwise

to get

Hij =

(
tij − µδij ∆iδij

∆
∗
i δij −

(
t∗ij − µδij

) ) . (6.9)

It’s worth to emphasize that ∆i still retains spatial variation around the impurities, but
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it’s now the same around every impurity, by construction. The parameter z controls how
much variation is allowed. A smaller z means that ∆i is only allowed to vary in a very
small region around each impurity, while a larger z allows a wider region for ∆i to vary.
Consequently, the larger the z, the more values of g need to be calculated, and the higher
the computational cost.

6.2.1 Considerations on the choice of z

There are three competing length scales here: 1) the length ℓ0 around the impurity such
that order parameter varies considerably, 2) the length z used in this method and 3) the
mean distance between impurities, which depends on the concentration n, dn. Ideally, we
want to be in a situation where ℓ0 ≪ dn so that we can safely set z such that ℓ0 < z < dn,
without risk of overlapping regions. In 1D, ℓ0 is of the order of several hundreds of nanome-
ters, which imposes a very dilute limit of less than n = 0.2% impurity concentration. In
2D, the scales are typically very different, and we can expect ℓ0 of the order of a few
nanometers, imposing a concentration smaller than around n = 4%. In 3D, assuming the
value of ℓ0 is similar to 2D, then n = 0.8%. Thus, this method should be more useful in
two dimensions than in one or three.

Even if the condition ℓ0 < z < dn is met, it is still possible that two impurities lie close
to each other, since this is only a condition on the average distance between impurities.
The probability of this happening is ≈ z2n2 and so for smaller concentrations and values
of z, it is unlikely to happen. One way to avoid this explicitly is to choose a distribution
of impurities such that this never happens. For simplicity, this is the approach followed in
section 6.3, but we can still briefly discuss what could be done were this not the case.

When two impurities are close together, nothing needs to be done to eqs. 6.7 and 6.8.
The function g and the parameter ∆∗ can be calculated in exactly the same way. However,
now the claim that ∆i ≈ g (i−Ra) when |i−Ra| < z no longer holds. By evaluating
eqs. 6.7 and 6.8 in this way, a small fraction of the sumands contributing to g will contain
information about the double impurities. For sufficiently small concentrations, this fraction
should be small and no noticeable change should happen. If the concentration is higher, it
should start becoming relevant, and will impose a change on every order parameter through
∆i, even in places without double impurities. A better alternative would be to treat these
situations individually. In the vicinity of double impurities, the order parameter would be
calculated directly with eq. 6.6, that is, ∆i = ∆i, instead of through the means of function
g. While this would incur in a performance penalty, the number of such cases should be
small enough for this not to be an issue.

6.2.2 Higher dimensions and further generalization

In the previous section, we focused on the 1D tight-binding lattice for illustrative purposes,
but everything that has been discussed can easily be extended to higher dimensions and
more complicated lattices. The generalization to higher dimensions is the simplest: the
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6 Spectral methods in superconductors with dilute impurities

indices i, j as well as the impurity sites Ra get promoted to vectors, and the length z

becomes a radius.
More complicated lattices and interactions originate more complicated pairing terms,

which can connect several unit cells. The reasoning remains the same, though. The pairing
term is calculated with eq. 6.3 and it is expected to be approximately the same around
every impurity. This can be encapsulated in a straightforward generalization of function g

∆Rα,R′β ≈ gαβ
(
R−Ra,R

′ −Ra

)
. (6.10)

For notational simplicity, both the spin and the other (orbital) degrees of freedom are
encapsulated in the superindices α and β, while the unit cell position is in i and j. It is
also expected to attain a homogeneous value away from the impurities,

∆Rα,R′β ≈ ∆∗
αβ

(
R−R′) .

These are more complicated than before because in addition to the previous complexity,
now they also have to be evaluated for all α,β and R −R′. One last point that deserves
to be mentioned is the subtle change to the random vectors required. For example, a term
in eq. 6.10 such as

1

Na

∑
{Ra}

⟨eα,R+Ra| f (H)
∣∣hβ,R′ +Ra

〉
can be evaluated with the following random vectors:

|ξR′ , hβ⟩ =
1√
Na

∑
{Ra}

ξRa

∣∣hβ,R′ +Ra

〉
|ξR, eα⟩ =

1√
Na

∑
{Ra}

ξRa |eα,R+Ra⟩

to yield the simple expression

⟨ξR, eα| f (H) |ξR′ , hβ⟩

which is going to be useful for later.

6.3 Superconducting graphene

The method described so far can be used to study the effect of impurity scattering in su-
perconducting doped graphene. For concreteness, we focus on monolayer graphene, whose
leading superconducting instabilities as a function of doping include chiral p-wave pairing
states. This kind of superconductivity has caused great excitement because it provides a
platform to realize Majorana zero modes that are insensitive to local perturbations and
thus can be used to construct topological qubits [141]. It is therefore important to un-
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derstand how disorder can affect each kind of superconductivity. Conventional s-wave
superconductivity is in general robust to nonmagnetic impurities due to Anderson’s the-
orem [142], but it can be detrimental to unconventional superconducting states when the
impurities violate the pairing symmetry. However, there are exceptions to this. In d-wave
cuprates, disorder is known to enhance the critical temperature through the appearance of
superconducting islands around the impurities [143]. It might be the case that something
similar could happen with graphene and p-wave superconductivity.

p-wave superconductivity is normally associated with spin triplets, which forces the
angular momentum component of the superconducting wavefunction to be odd in virtue
of the total antisymmetry of its fermion wavefuction. However, the same spatial behavior
can be achieved with spin singlets if the wavefunction has an extra degree of freedom, such
as a sublattice degree of freedom. Such is the case of graphene, which therefore is able
to support a p-wave type pairing [132]. In [132], the authors show that in a competition
between s-wave and p-wave, the p-wave state is favorable if the on-site electron-electron
interactions are repulsive

This model of superconductivity is described by the normal graphene Hamiltonian

H0 = −µ
∑
i

(
a†isais + b†isbis

)
− t

∑
⟨ij⟩s

a†isbjs − t
∑
⟨ij⟩s

b†isajs

to which a Hubbard interaction HI is added, both on-site and nearest-neighbor

HI =
g0
2

∑
is

[
a†isaisa

†
is̄ais̄ + b†isbisb

†
is̄bis̄

]
+ g1

∑
⟨ij⟩ss′

a†isaisb
†
js′bjs′ .

Using the prescription of the previous section, this interaction term is decoupled into the
pairing Hamiltonian

HP = E0 + g0
∑
i

(
∆0
i,aa

†
i↑a

†
i↓ +∆0

i,bb
†
i↑b

†
i↓

)
+ HC + g1

∑
⟨i,j⟩

∆1,ij

(
a†i↑b

†
j↓ − a†i↓b

†
j↑

)
+ HC

or, in the form of the last section,

ψ†Ξψ =
1

2

(
a†↑ b†↑ a↓ b↓

)


−µ t ∆0,A ∆1

t† −µ ∆1 ∆0,B

∆†
0,A ∆†

1 µ −t∗

∆†
1 ∆†

0,B −tT µ




a↑

b↑

a†↓
b†↓


with the other block being trivially related to this one. The superconducting order

parameters being given by

∆0
i,a = ⟨ai↓ai↑⟩

∆0
i,b = ⟨bi↓bi↑⟩

∆1
ij = ⟨ai↓bj↑ − ai↑bj↓⟩
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and the condensation energy by E0 = −g0∆2
0 − 3g1∆

2
1. The form of ∆1 is specifically

chosen as to only keep the p-wave structure.

Before adding the impurities, let’s briefly discuss what happens in the homogeneous case.
The Hamiltonian Ξ restricted to the first block in momentum space is

ψ†Ξψ =
1

2

∑
k

(
a†k↑ b†k↑ a−k↓ b−k↓

)


−µ tγk ∆0 ∆1γk

tγk −µ ∆1γ
∗
k ∆0

∆†
0,A ∆1γk µ −tγk

∆1γ
∗
k ∆†

0,B −tγ∗k µ




ak↑

bk↑

a†−k↓
b†−k↓


where γk = eik·δ1 + eik·δ2 + eik·δ3 is the usual graphene structure factor which close to the
Dirac point takes the form γk ≈ kx + iky. The important factor to notice here is that the
p-wave superconducting ∆1γk is proportional to γk and therefore has the expected p-wave
structure symmetry as discussed earlier. In this case, this is made possible because of the
existence of two sublattices. The order parameters become determined by the equations

∆0 = −
∑
k,s

(g0∆0 + s |γk| g1∆1)
tanh (βωks)

2ωks

∆1 = −
∑
k,s

|γk| (g1∆1 |γk|+ sg0∆0)
tanh (βωks)

6ωks
.

This system displays different superconducting phases depending on the chemical potential
and the values of the coupling constants g0 and g1 (see [132]). At half-filling, there are
several regions of distinct symmetry. Away from half filling, every region is of mixed
symmetry but p-wave dominates when the onsite interaction is more repulsive, and s-wave
dominates when the nearest neighbor interaction is more repulsive. The important point
here is that for the right values of the coupling constants, p-wave can be the dominant
pairing symmetry.

To this model, we added a non-magnetic impurity term (see Fig. 6.2):

HI = ∆t
∑

⟨ij⟩:i∈{RA}

a†isbjs +∆t
∑

⟨ij⟩:j∈{RB}

a†isbjs + HC

where the RA (RB) correspond to a set of impurity sites located in sublattice A (B) and
∆t represents the change in the hopping from the impurity site to its nearest neighbors,
such that the new hopping becomes t′ = ∆t + t when this term is added to the clean
Hamiltonian. This is a special kind of impurity, which does not change the local energy at
the impurity sites but weakens the bonds around the impurity sites. Locally, this has the
same C3 symmetry as the graphene lattice and the p-wave interaction term.

In what follows, we used z = 3a0, where a0 is the graphene carbon-carbon distance,
∆t = −0.3t and the concentration of impurities was chosen as 5%. Since we already know
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6.3 Superconducting graphene

Figure 6.2: Graphene lattice with symmetric bond impurities. The red lines represent the
bonds that have been modified from t to t′. The green circles have radius z
and correspond to the area where the order parameters are allowed to vary.

the main superconducting phases in each region of the phase diagram, the interesting
quantity to analyze is the change to the order parameters for each value of the pair g0, g1.
Furthermore, we want to analyze what happens to the superconductor as a whole and not
just around the impurities, so we want to look at the order parameters away from the
impurities, that is ∆∗

0 and ∆∗
1. This is what is represented in Fig. 6.3 a) through the use of

a two-dimensional color scale. The redder (greener) the regions, the more positive change
to ∆∗

0 (∆∗
1) and the yellow region represents a positive change to both.

Figure 6.3: Change to the bulk superconducting order parameters ∆∗
0 and ∆∗

1.

These impurities tend to weaken the bonds, making both the superconducting couplings
larger in comparison. Therefore, it is not surprising that the net effect of this kind of
impurities is to increase the order parameters. To make this statement more concrete, let’s
imagine that the impurities cover the whole lattice, effectively changing t to t′. Then, we
can imagine that the energy scales get modified accordingly, supposing ε→ ε[1+αt/t′] for
some α dependent on the concentration. Using α = 1.15, we get panel b), indicating that
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6 Spectral methods in superconductors with dilute impurities

some of the qualitative features of panel a) can be attributed to this renormalization of
the clean case. This renormalization fails to explain the increase of the order parameters
for smaller (in absolute value) of the coupling constants. This feature could have its origin
in the appearance of superconducting islands around the impurities, but this has not been
checked.

The most striking property of panel a) is the discontinuity of colors, which can be
made quantitative by plotting the order parameters across it (panel c)). The discontinuity
seems to be present at arbitrarily small concentrations, but it disappears in the absence of
impurities. Interestingly, ∆∗

0 is close to its clean value for less attractive onsite interactions
(more positive g0), and ∆∗

1 is close to its clean value for more attractive onsite interactions
(more negative g0), which seems to indicate that for most of the diagram, impurities seem
to favor only one superconducting phase. In the region where both phases are favored, this
behavior can be explained by a simple renormalization of the energy scales.

Wrapping up, the main message of this section is that it is possible to selectively increase
p-wave superconductivity in the phase diagram of superconducting graphene due to the
effect of impurities. One important issue that should be addressed in more realistic realiza-
tions of this model is the simplicity of the interacting potential. HI may suffer considerable
changes around impurities, and this could change the qualitative picture of this analysis.

134



7 Conclusion

Spectral methods have existed for almost 30 years now [95, 97, 99], but the ever-growing
numerical capabilities of modern computers have brought them to the spotlight as some of
the most efficient ways to simulate large-scale lattices. In this thesis, I presented several
new ways to use spectral methods in different contexts.

The exact calculation of the disordered self-energy operator opens up a new way to look
at numerical diagrammatics. On a fundamental level, the self energy is connected to the
four-point vertex functions of linear response theory through exact symmetry relations
known as Ward identities [144–146], and thus the knowledge of all its matrix elements is
essential to obtain physically sensible transport equations. Because our approach provides a
systematic way to accurately evaluate the disorder self energy of arbitrarily complex model
Hamiltonians, regardless of the type and strength of disorder, it could provide new insights
into the array of rich interfacial magnetic phenomena beyond the reach of diagrammatic
calculations.

In the field of nonlinear optics, we applied the Keldysh nonequilibrium Green’s function
formalism to develop a basis-independent perturbation expansion to higher orders in the
electric field. These expressions are in a form directly applicable to spectral methods, thus
enabling the study of the nonlinear response of disordered systems or systems under a
magnetic field. The numerical application of these formulas requires a triple Chebyshev
expansion, which is the main limiting factor in practical terms. For systems with trans-
lation invariance, a k-space integration is very quick and is preferred over our method. If
the systems do not have this property, spectral methods become the most efficient way
to calculate the second-order conductivity with disorder. At this point, the viability and
validity of a perturbative approach comes back into question, and it might be more numer-
ically efficient to perform the full Hamiltonian time evolution with a Chebyshev expansion
of the time-ordered time-evolution operator [98].

In this same line, time-resolved numerics are becoming increasingly popular in several
fields. While their most interesting application is certainly the transient regime, they
can also be used as an efficient tool to compute steady-state properties. We developed an
order O (N) algorithm to compute the Landauer current through a unitary time-evolution,
casting this problem into the realm of spectral methods.

In the field of superconductivity, unconventional superconductors continue to be one of
the biggest puzzles in modern Condensed Matter Physics, and inhomogeneous supercon-
ductors provide a fertile ground in which to test new ways to explore their properties.
Alongside the development of powerful new methods to treat disorder, the numerical tool-
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7 Conclusion

box available to physicists also continues to enlarge, as software becomes more powerful
and more available to the general public. Spectral methods are now firmly part of any
such toolbox and hopefully this chapter proved that even in the supereconducting context,
they are a very flexible set of tools that can be used to provide large gains in numerical
performance. In [88, 91], it is already possible to study superconducting tight-binding
lattices of the order of 105 atoms with the help of GPU processing to speed up the sparse
matrix products. Here we reach 106 atoms with CPU processing in a highly parallelized
environment. At this point, this method is tailored to dilute impurities, making explicitly
use of the fact that the order parameters don’t vary in an arbitrary fashion. The under-
lying point here is that is may not be required to find the order parameters everywhere.
Sometimes, it’s enough to do it at just a smaller number of points. Moving forward, it
would be interesting to see how this method could be adapted close to boundaries or how
it could be used with an adaptive mesh of points to avoid the need to calculate the or-
der parameter everywhere. For completeness, it should also be compared against other
standard approximation schemes like the T-matrix or CPA within superconductivity.

All of these advancements were made possible thanks to the modern computational
power we enjoy, and the KITE open-source initiative [3] has been instrumental as a de
facto numerical laboratory to test these methods.
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8 Appendix

8.1 Self averaging property

The self-averaging behavior of the disorder self-energy yields highly converged results in
a computationally efficient manner and so it must be justified. While a rigorous general
proof is beyond the scope of this thesis, we show below that under some rather general as-
sumptions, the matrix elements Gαβ (k, z) = ⟨α,k|G (z) |β,k⟩ (and hence the quasiparticle
self-energy) satisfy the self-averaging lemma

[ImGαβ (k, z)]
2 − ImGαβ (k, z)

2

ImGαβ (k, z)
2 ∝ 1

D

where ⟨...⟩ indicates disorder (configurational) averaging and D is the Hilbert space di-
mension of the lattice model that scales with the volume (a similar expression holds for
the real part of the matrix elements). To simplify the discussion, we specialize to single-
orbital models and thus omit the orbital index α, β hereafter. Let ξk = Im ⟨k|G (z) |k⟩
denote the imaginary part of the matrix element that will be used to determine the self-
energy. The dependency on z is left implicit. It is implied that G (z) = (z −H)−1 with
H = H0 + V and z = ε + iη, for a small η. H is the full Hamiltonian, which includes
the clean (translation-invariant) Hamiltonian H0 and the disorder operator V . The clean
Green’s function is defined as g (z) = (z −H0)

−1.

Specifically, we want to show that ξk displays self-averaging behavior, that is var ξk ≡
ξ2k − ξk

2 ∝ D−1. The argument is identical for the real part of ⟨k|G (z) |k⟩. We consider
two common classes of problems for lattice models defined on arbitrary number of spatial
dimensions: (i) systems characterized by perturbative (weak) disorder effects; and (ii)
systems possessing exponentially localized single-particle states in their spectrum. Finally,
we provide a numerical evidence to our claim.

8.1.1 Weak disorder

If the diagrammatic expansion of the Green’s function is convergent, then we can use an
expansion in powers of V , the disorder potential:

ξk =

∞∑
n=0

Im ⟨k| g (V g)n |k⟩
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a) b) c) d)

e) f) g)

Figure 8.1: Feynman diagrams that contribute to the variance of ImGk up to second order
in V̂dis.

to evaluate the disorder average ξkξk, keeping in mind that the term ξk ξk will remove all
the terms in the diagrammatic expansion which do not connect both Green’s functions.
Defining gk = ⟨k| g (z) |k⟩ for convenience (with the dependency on z left implicit again)
and using ⟨R|k⟩ = D−1/2eiR·k to express the disorder potential in real space, we obtain

ξk = Imgk + Imgk

(∑
R

1

D
VR

)
gk +

+ Imgk
∑
q

∑
RR′

1

D2
ei(R−R′)·(q−k)VRgqVR′gk + · · ·

We get a factor of 1/D from every disorder insertion VR and also a factor of D due to
the sum over R. We assume that VR is an uncorrelated disorder potential with Gaussian
statistics, i.e. VR = 0, VRVR′ ∝ δRR′ , VRVR′VR′′ = 0, etc. As explained below this
assumption is not essential, but it substantially simplifies the analysis. The configurational
average introduces correlations between the disorder insertions as Kronecker deltas δRR′

between different positions. Each δRR′ effectively contributes with an additional factor of
1/D. Lastly, each loop in the diagrams (representing integrations over internal momenta)
contributes with another factor of D.

Figure 8.1 shows the diagrams that contribute to the variance up to fourth order in V .
Counting all the powers of D, one can check that each term is associated with a factor of
1/D except for diagram (b). Instead, this diagram is proportional to (D − 1)/D, but the
constant term gets cancelled precisely by ξk ξk and what is left is again proportional to
1/D. At higher orders in V , similar arguments can be made. If the upper branch of the
diagrams is not connected to the lower branch, then it will get almost completely cancelled
by ξk

2, leaving only the 1/D contribution. If both branches are connected, the number of
loops is not large enough to destroy the 1/D dependency.

While we have only strictly presented our argument for uncorrelated disorder, we argue
that a generalization to correlated disorder should also possible provided the correlation
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length is finite. In such a scenario, averaging over disorder would introduce asymptotically
decreasing functions of the distance between R and R′ in lieu of Kronecker deltas. In any
case, a sum over the position (which would contribute with a factor of D as noted in the
previous paragraph) now contributes with a factor of order unity, effectively having the
same effect as the Kronecker delta for the purposes of self averaging.

8.1.2 Localized states

Next, we analyze an important class of problems where diagrammatic methods break down
[147]: strongly disordered systems with localized states in their spectrum. We assume that
the value of ε is such that all the states in an energy window η around ε are localized, with
a maximum localization length of ζ. We begin by expressing ξk in terms of the eigenstates
with energies {εα} resolved in space

ξk =
1

D
Im

∑
RR′α

eik·(R
′ −R) ⟨R|α⟩ ⟨α|R′⟩

z − εα
=

1

D
Im
∑
R

gR,k

where gR,k represents the contribution to ξk from the sites around R. By assumption,
these states are localized, so, for each R, only localized states with localization center
within a distance 2ζ around R contribute. Let S be this region. This means that gR,k and
gR′,k have appreciable correlation only if |R−R′| < 2ζ. It is important to note that gR,k
is independent of the system size, since the percentage of localized states is assumed to
be an intensive property. This is a key assumption in the proof and fundamentally relies
on the existence of a mobility edge. Note that gR,k is a random variable with a finite
maximum absolute value because only a finite number Ne of elements contribute to both
the sum over R′ and the sum over α. Using the triangle inequality,

|gR,k| ≤
∑
R′α

|⟨R|α⟩| |⟨α|R′⟩|
(ε− εα)

2 + η2

≤ η−2
∑
R′α

|⟨R|α⟩| |⟨α|R′⟩|.

For both sums, Ne is the number of degrees of freedom inside a d-dimensional sphere of
radius 2ζ. Therefore, the sum D−1

∑
R gR,k can be seen as a sum of bounded random

variables which are only correlated within a distance |r| < 2ζ of one another. Thus ξk
follows the central limit theorem and so var ξk ∼ D−1/2, hence proving the self-averaging
property. We note the only assumptions made in this derivation were the locality of the
localized wave functions and that only localized wave functions have relevant spectral
weight in ⟨k|G (z) |k⟩.
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