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Abstract—The Predictable Execution Model (PREM) is useful
for mitigating inter-core interference due to shared resources
such as the main memory. However, it is cache-agnostic, which
makes schedulabulity analysis pessimistic, via overestimation of
prefetches and write-backs. In response, we present cache-aware
schedulability analysis for PREM tasks on fixed-task-priority
partitioned multicores, that bounds the number of cache prefetches
and write-backs. Our approach identifies memory blocks loaded
in the execution of a previous scheduling interval of each task,
that remain in the cache until its next scheduling interval. Doing
so, greatly reduces the estimated prefetches and write backs. In
experimental evaluations, our analysis improves the schedulability
of PREM tasks by up to 55 percentage points.

I. INTRODUCTION

In critical real-time systems, predictable timing behavior is

crucial. PREM (“Predictable Execution Model”) [1], [2] and

cache-aware schedulability analysis techniques [3] both promote

timing predictability (in terms of guarantees derivable offline)

but have never been used in conjunction so far.

PREM tasks are sequences of predictable or compatible

scheduling intervals. The former are non-preemptible and consist

of separate regions for accessing memory (cache prefetching)

and processor computation. This rids worst-case execution time

(WCET) analysis of the pessimism resulting from uncertainty

about cache state (and hits or misses), since the data is in the

cache and cannot be evicted by preempting tasks.

For non-PREM tasks, cache analysis techniques can remove

some of the uncertainty (and pessimism) related to cache misses.

However, as we will show, even for PREM tasks, cache analysis

can still help achieve tighter WCET estimates. Indeed, if analysis

can show that some memory blocks need not be prefetched,

because they are already in the cache, this comensurately lowers

the estimates for prefetches (and resulting write-backs to main

memory, of evicted cache blocks). Our present work leverages

this principle and provides new cache-aware schedulability

analysis for PREM tasks, offering significant schedulability

improvement (up to 55 percentage points in our experiments).

This work was partially supported by National Funds through FCT/MCTES
(Portuguese Foundation for Science and Technology), within the CISTER
Research Unit (UIDP/UIDB/04234/2020); also by the Operational Competitive-
ness Programme and Internationalization (COMPETE 2020) under the PT2020
Partnership Agreement, through the European Regional Development Fund
(ERDF), and by national funds through the FCT, within project PREFECT
(POCI-01-0145-FEDER-029119); also by the European Union’s Horizon 2020 -
The EU Framework Programme for Research and Innovation 2014-2020, under
grant agreement No. 732505. Project ”TEC4Growth - Pervasive Intelligence,
Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-
FEDER000020” financed by the North Portugal Regional Operational Pro-
gramme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement.

Related work: The PREM model, originally proposed for

unicore systems [1], has since been extended to multicores [2],

[4], [5] and heterogeneous systems [6], [7]. While PREM enables

timing-predictable execution on non-predictable hardware, it

has some restrictive assumptions on the behavior of the local

memories, e.g., task-level partitioning of the outer cache [2],

[4], [5], use of software-controlled scratchpad memories [6], [7]

and the assumption of an unknown cache state at the start of

every scheduling interval of a task [1]. These assumptions limit

its applicability and cause overestimation of memory acceses.

Several cache analysis techniques [3], [8]–[10] can bound the

main memory access demand of tasks executing on a multicore

by accurately estimating the number of cache misses [8] and

write-backs [9]. However, such techniques had not yet been

applied to PREM tasks – which is what this work does.

II. SYSTEM MODEL

Hardware Platform: We assume a multicore platform com-

prising K identical timing compositional cores [11]. The cores

can have multiple cache levels, but we focus on the outer

cache – assumed to be evenly partitioned among cores. The

cache is direct-mapped1, unified, i.e., it can store both data and

instruction, and employ a write-back policy2, i.e., it postpones

writes to the main memory until the memory block holding the

data in cache is evicted by another memory block. Furthermore,

in case of a write-miss, we assume a write-allocate write-miss

(WAWM) policy, i.e., the memory block being written to is first

loaded in the cache and then a write is performed. The cache

is assumed to be physically-indexed and physically-tagged and

any set-based cache partitioning approach, e.g., provided by the

Intel Xeon E5-2600 family [13], can be used to partition it.

PREM-based Execution and Task Model: As in [1], tasks are

structured as a sequence of non-preemptive scheduling intervals.

PREM has two kinds of scheduling intervals, predictable and

compatible, but we only consider the former. A predictable

interval has two phases. In the initial memory phase, the CPU

accesses the main memory to prefetch cache lines and perform

write-backs (evictions). Data and instructions needed for the

subsequent execution phase are loaded during the memory phase,

therefore it incurs no last-level cache misses.

Task set τ has n independent sporadic tasks, i.e., τ =
{τ0, τ1, · · · , τn−1}. Each task τi has a unique priority κi ≥ 0

1Proposed analyses can be easily extended to consider set-associative Least-
recently-used (LRU) caches by building on the work in [12].

2Many embedded processors (e.g. Freescale MPC740, Infineon Tricore TC1M,
Renesas SH7750 and NEC V44181) support a write-back cache policy.



and all its instances, i.e., jobs, have a minimum inter-arrival

time Ti and a relative deadline Di ≤ Ti.

Let Ni denote the number of scheduling intervals of a task

τi and Ei = {Ei,0, Ei,1, · · · , Ei,Ni−1} the set of its scheduling

intervals themselves. A scheduling interval is modeled by

two parameters: the (worst-case) number of memory accesses

performed in its memory phase, i.e., µi,j , and the (worst-case)

length of its execution phase, i.e., Ce
i,j . The memory accesses

can be further divided into cache prefetches and write-backs.

The former correspond to the data and instructions loaded into

the cache for the subsequent execution interval. Recall that the

WAWM policy first loads the data into the cache, from the main

memory, in order to update its content in-place in the cache.

Therefore, a write-miss also generates a read memory access.

Under PREM, no memory accesses occur in the execution phase

of a predictable interval. It is assumed that the compiler predicts

such write memory locations in the static analysis and arranges

for their contents be loaded in the memory phase. Hence, we

treat them as prefetches. The write-backs write the data into

memory upon eviction of a cache block. Note that a prefetch may

evict the existing cache line, leading to a write-back memory

access. We assume that the worst-case memory access latency for

each memory request (prefetch or write-back), is upper bounded

by dmem. Then, each predictable scheduling interval Ei,j can

be modelled as {µR
i,j , µ

W
i,j , C

e
i,j}. Scalars µR

i,j and µW
i,j denote

estimates of prefetches and write-backs, respectively. We have

µi,j = µR
i,j+µW

i,j and the worst-case execution time of Ei,j , i.e.,

Ci,j , is given by Ci,j = µi,j×dmem+Ce
i,j . Similarly, on the task

level, we define total prefetches µR
i =

∑Ni−1
j=0 µR

i,j , total write-

backs µW
i =

∑Ni−1
j=0 µW

i,j , total memory accesses µi = µR
i +µW

i

and the worst-case execution time Ci =
∑Ni−1

j=0 Ci,j . Lastly,

hp(i), hep(i) and lp(i) denote the set of tasks with priorities

higher, higher or equal and lower than that of τi, respectively.

III. BACKGROUND AND PROBLEM FORMULATION

The schedulability analysis in [1], [2] does not rely on a cache

analysis, therefore, for safety, it treats each memory prefetch in

a predictable interval as a cache miss that causes a write-back.

This may lead to an overestimation of memory accesses, and

consequently, to conservative memory access overhead.

This work focuses on the analysis of the reuse of cache blocks

in subsequent predictable scheduling intervals of a given task, so

as to tightly bound the total number of memory accesses by it.

Consider a memory block m used by two scheduling intervals

Ei,j and Ei,j+1. If m is prefetched during the execution of Ei,j

and is not evicted before the start of Ei,j+1, then, an access to

m during the execution of Ei,j+1 will not incur a cache miss

(and the corresponding write-back). Every block reused between

Ei,j and Ei,j+1 therefore eliminates two memory accesses. An

example further illustrates the advantages of cache reuse:

Example: Task τi has 4 scheduling intervals, Ei,0 to Ei,3, that

load µR
i,0=µR

i,1=3, µR
i,2=4 and µR

i,3=3 cache lines. The model

in [1], [2] assumes unknown cache state at the start of each

interval. Hence, in the worst case, the number of write-backs

in each interval is: µW
i,0=µW

i,1=3, µW
i,2=4, µW

i,3=3; and overall:

µi=µR
i +µW

i =(3+3+4+3)+(3+3+4+3)=26 (see Figure 1a).
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Fig. 1: Different execution scenarios for a PREM task τi

However, if some cache blocks are re-usable (highlighted

in green in Figure 1b), the number of memory accesses may

be much smaller than the worst-case computed above. For

example, if there is no preemption during the execution of τi,

Ei,1 will not need to load memory block C that was previously

loaded from the main memory to the cache during the memory

phase of Ei,0 Similarly, Ei,2 may re-use memory blocks D

and E previously loaded during Ei,1; and Ei,3 may re-use

memory block G, previously loaded during the execution of

Ei,2. Considering the re-use of cache contents in Figure 1b,

the total number of memory prefetches for each scheduling

interval becomes µR
i,0=3, µR

i,1=µR
i,2=µR

i,3=2. Even if every such

prefetch causes a write-back, with cache re-use, the worst-

case number of memory accesses is µi=2×(3+2+2+2)=18.

This shows that accounting for cache re-use among scheduling

intervals of a task can significantly reduce the number of memory

accesses compared to the re-use-oblivious worst case. In fact, as

later shown in Section IV-B, further improvements may be had,

by tightening the upper-bound on the number of write-backs.

A. Definition of Re-usable cache contents

We formally define the re-use of cache contents and explain

how to compute the re-usable cache content between different

scheduling/predictable intervals of a task τi.

A memory block m that is in the cache at the end of

scheduling interval Ei,j of task τi is re-usable, if it is still in the

cache at the beginning of scheduling interval Ei,k, with k > j,

and is accessed in the latter. This is similar to the notion of

useful cache blocks (UCBs), defined in literature [14] as:

Useful Cache Block (UCB) [14]: A memory block m used

by a task τi during its execution is considered a useful cache

block w.r.t. a program point P , if (i) m may be cached at P
and (ii) m may be re-used at some program point reachable

from P without being evicted along the corresponding path.

The number of UCBs of a task at a program point P over-

estimates how many memory blocks may be re-used after P .



However, for the safety of the analysis we later propose, we

must only account for those ones that are guaranteed to be

re-used. Therefore, we introduce a slightly different notion from

UCBs, called definitely reused cache blocks (DRCBs).

Definitely Reused Cache Block (DRCB): A memory block m

used by a task during its execution is a definitely reused cache

block w.r.t. a program point P , if (i) m is cached at P and (ii)

in every path starting at P , m is re-used at some program point

P ′ without the eviction of m along the respective path.

The set of DRCBs of tasks can be computed similarly to

UCBs, e.g., using the analysis in [14]. However, one should

use the Must cache analysis [15] to compute DRCBs, instead

of the May cache analysis used for UCBs. Moreover, since a

PREM-compliant task τi can only be preempted at scheduling

interval boundaries, the DRCB analysis need only be applied

to program points at the end of every scheduling interval in τi.

Because a PREM task τi cannot be preempted when executing

a predictable scheduling interval, and the analysis presented in

the next section is done per scheduling interval, we restrict the

concept of a DRCB to a scheduling interval:

DRCBs per scheduling interval: A memory block m is a

DRCB w.r.t. a scheduling interval Ei,j if m is (i) cached at the

end point E of scheduling interval Ei,j−1 and (ii) re-used at

some program point F in Ei,j that is reachable from E without

eviction of m along all possible execution paths from E to F.

At first sight, one might think that every memory block that

may be accessed in Ei,j that is cached at the end of Ei,j−1 is

a DRCB w.r.t. Ei,j , but this may not be the case. For example,

consider the DRCBs w.r.t. Ei,3 in Figure 1b, i.e., memory block

G. Although, memory block F is also cached at the end of Ei,2,

however, only memory block G is categorized as a DRCB. This

can happen because there may be an execution path between

Ei,2 and Ei,3, where memory block F is not accessed (re-used).

We use DRCB i,j to denote the set of DRCBs w.r.t. Ei,j .

Because we assume a direct-mapped cache, to determine cache

conflicts between memory blocks of different tasks, it suffices

to track the indexes of the cache lines to which those memory

blocks are mapped. Therefore, DRCB i,j only holds the indexes

of the cache lines to which Ei,j’s DRCBs are mapped.

Handling Preemptions: So far, we only considered tasks

executing in isolation, i.e., assuming τi is the only task executing

on the core. However, τi can be preempted by any higher-priority

task τk at the boundary of its scheduling intervals. The higher-

priority task can then evict DRCBs of τi, leading to additional

memory accesses during τi’s execution. Figure 1c, illustrates

such a scenario, where DRCBs of τi in cache lines 3 and 4

(memory blocks D and E) are evicted due to preempting task τk,

which loads its memory blocks I and J in cache lines 3 and 4.

The evicted DRCBs of τi, in the absence of preemptions, would

be reused in Ei,2. Thus, when τi resumes it has to prefetch

them again from the main memory. In the literature, the impact

of preempting tasks on the cache content of a preempted task

is bounded using the notion of evicting cache blocks (ECBs):

Evicting Cache Blocks (ECBs) [16]: All memory blocks

accessed during the execution of a task.

Indeed, every memory block accessed by a preempting task

τk can cause an eviction of a block of a preempted task and

the evicted block may have to be written back. Furthermore,

the preempted task may have to fetch the evicted memory

block again upon resumption. Because our analysis in the next

section is done per scheduling interval, we define the notion

of ECBs w.r.t. each scheduling interval of a task τi. I.e., for

any scheduling interval Ei,j the set of cache lines holding

the ECBs in Ei,j is given by ECB i,j . Furthermore, we define

ECB i =
Ni−1
⋃

j=0

ECB i,j and µi,j ≤ 2× |ECB i,j |.

IV. CACHE-AWARE SCHEDULABILITY ANALYSES OF PREM

TASKS

We present two cache-aware schedulability analyses of PREM

tasks. The DRCB-only approach only considers the DRCBs

of tasks, i.e., it only accounts for the cache re-use between

scheduling intervals. The FDCB-DRCB approach (Section IV-B)

improves on that by carefully analyzing cache write-backs.

A. DRCB-only Approach

The example in Section III, shows that subsequent scheduling

intervals of the same task τi may reuse cache lines, i.e., DRCBs,

loaded during a previous scheduling interval of τi. This re-use

of cache lines results in reducing the number of main memory

accesses of τi. However, we also know that under PREM, task

τi can be preempted at the boundary of its scheduling intervals,

e.g., between intervals Ei,j−1 and Ei,j , by higher priority tasks.

Such preemptions can evict DRCBs of τi, that will impact the

memory access demand of its scheduling intervals. Therefore, to

bound the memory access demand of a scheduling interval Ei,j

of τi, we must first bound the number of DRCBs of τi that can

be evicted due to preemptions. Assume that, after completing its

interval Ei,j−1, task τi is preempted by a higher-priority task.

Upon resumption of τi, the memory phase of Ei,j will execute

and τi will load from main memory all cache lines required

during Ei,j . In the worst-case, the preemption by higher priority

tasks can evict the following set of DRCBs of Ei,j :

DRCB
E
i,j = DRCB i,j

⋂

{ ∪
∀k∈hp(i)

ECBk} (1)

The computation of DRCB
E
i,j (i.e., DRCBs of Ei,j evicted due

to preemptions) in (1) considers all higher-priority tasks. On

resumption of τi, the scheduling interval Ei,j has to prefetch

the following set of cache lines.

ECB
P
i,j = {ECB i,j \DRCB i,j}

⋃

DRCB
E
i,j (2)

Since the policy is write-back, every line in ECB
P
i,j may also

incur a cache write-back if it holds a dirty cache line. Therefore,

the worst-case memory access demand of scheduling interval

Ei,j of task τi is upper bounded by 2× |ECBP
i,j | × dmem.

Lemma 1. Under the DRCB-only approach, the worst-case

memory access demand of a scheduling interval Ei,j of task τi
is upper bounded by 2× |ECBP

i,j | × dmem.

Proof. By definition of ECBi,j and DRCBi,j , when a task τi
executes in isolation, in scheduling interval Ei,j , in the worst

case, it needs to load only the cache lines in ECBi,j\DRCBi,j .



However, when τi executes with other tasks in the system,

some of the DRCBs in DRCB i,j may also be evicted due to

preemptions. In the worst case, all higher priority tasks may

preempt τi between two scheduling intervals, thus DRCB
E
i,j

(1) upper bounds the set of cache blocks that may be evicted.

Hence, in the worst case, in Ei,j , τi must load the cache lines

in ECB
P
i,j = (ECB i,j \DRCB i,j) ∪DRCB

E
i,j .

Furthermore, in the worst-case, at the beginning of Ei,j , each

cache line in ECBP
i,j is dirty and must be written to main-

memory, because the cache uses a write-back policy.

Therefore, the worst-case memory access demand of schedul-

ing interval Ei,j is upper bounded by 2×|ECBP
i,j |×dmem.

Note that (1) assumes that all tasks in hp(i) will preempt τi
at the boundary of all its scheduling intervals. This assumption

is safe, but it can be refined by considering the actual arrivals

of higher priority tasks during the execution of τi.

Having bounded the worst-case memory demand of a schedul-

ing interval Ei,j of task τi using Lemma 1, the WCET of

scheduling interval Ei,j can be computed using (3) and the

total WCET of τi (a sum of its scheduling intervals) from (4):

Ci,j = (2× |ECBP
i,j | × dmem) + Ce

i,j (3)

Ci =

Ni−1
∑

j=0

Ci,j (4)

In addition to the WCET estimated in isolation, Ci also includes

the total memory access latency and overhead of all memory

reloads made due to preemptions from higher priority tasks.

Having the total WCETs of all tasks, we compute the worst-case

response time (WCRT) of each task via recurrence (5) [1], [17]

Rk+1
i = Bi + Ci +

∑

∀h∈hp(i)

⌈

Rk
i

Th

⌉

Ch (5)

Bi = max
∀l∈lp(i)

(
Nl−1
max
j=0

Cl,j) (6)

A task may be blocked due to non-preemptive execution of

predictable interval of a lower-priority task. The worst-case

blocking term for τi (Eq. 6) is the duration of the longest

predictable interval of all tasks with lower priority than τi.

B. FDCB-DRCB Approach

The DRCB-only approach assumes that a task τi in each of

its scheduling interval Ei,j will perform |ECBP
i,j | write-backs.

This assumption is safe but pessimistic because the number of

write-backs task τi may have to perform depends on the memory

writes of τi and of other tasks scheduled on the same core as τi.

The FDCB-DRCB approach removes some pessimism from the

DRCB-only approach. It relies on the concept of Final Dirty

Cache Block (FDCB) from the literature [9]:

Final Dirty Cache Blocks [9] at Task Level: Memory blocks

used by a task τi that may be written to during the execution

of τi, and may still be cached after the completion of τi.

Note that since each scheduling interval Ei,j of task τi is

executed in a non-preemptive manner, we only need to consider

cache blocks that are dirty at the completion of Ei,j . Therefore,

we define FDCB at scheduling interval level.

Final Dirty Cache Blocks at Scheduling Interval Level:

Memory block used by task τi that may be written to during the

execution of scheduling interval Ei,j , and may still be available

in cache after the completion of Ei,j .

Let FDCB i,j denote the set of cache lines where the FDCBs

of scheduling interval Ei,j are mapped and let FDCB i =
⋃Ni−1

j=0 FDCB i,j . Then, in the worst case, any element of this

set may still hold, at completion of τi, a FDCB of τi.

If a scheduling interval loads a memory block into a cache

line currently holding a FDCB (from previously completed

scheduling intervals of the same or other tasks), a write-back is

required. We determine a tighter upper bound on the number

of write-backs that each job of a task may have to make.

Let task τi be the task under analysis. The set of write-backs

that τi may need to perform WBtot
i,j , can be divided into two

1) WB
lp
i , i.e., the set of cache lines holding FDCBs of lower

priority tasks that need to be written-back by task τi.

2) WB
hep
i , i.e., the set of cache lines holding FDCBs of

either higher priority tasks or τi itself that need to be

written-back by task τi.

First, we derive a safe upper bound on WB
lp
i . In the PREM

model, no lower priority task is allowed to run after the arrival

of τi, except the task running at the time τi arrived, if any. In

that case, that task can run until the end of scheduling interval

being executed. Independently of whether there is such a task,

when τi starts executing, in the worst case, the set of FDCBs

of lower priority tasks that may be in the cache is given by
⋃

∀l∈lp(i) FDCB l. Thus, in the worst case τi will have to write-

back memory blocks in the following set:

WB
lp
i =

(

⋃

∀l∈lp(i)

FDCBl

)

⋂

ECBi (7)

We can further divide write-backs among τi’s scheduling

intervals. The set of cache lines that needs to be written-back

in scheduling interval Ei,j is given by:

WB
lp
i,j =

(

⋃

∀l∈lp(i)

FDCB l \
⋃

∀k<j

ECB i,k

)

⋂

ECB i,j (8)

The set subtraction in (8) ensures that an FDCB of a lower

priority task that is accounted as written-back in a scheduling

interval preceding Ei,j is not accounted again in WB
lp
i,j .

We now derive a safe estimate of WB
hep
i,j , i.e. of the cache

lines with FDCB left by either τi or higher priority tasks that

may be written-back in scheduling interval Ei,j . Remember

that DRCB
E
i,j ⊆ DRCB i,j (computed by (1)) gives the set of

Ei,j’s DRCBs that maybe evicted by preempting higher priority

tasks. In the worst-case, τi must write back each cache line

in DRCB
E
i,j in Ei,j , whereas the cache lines in DRCB i,j \

DRCB
E
i,j cause no write backs in Ei,j .

We now analyse the remaining cache lines that may be

accessed in ECB i,j , i.e. the cache lines in:

ECBR
i,j = (ECBi,j \DRCB i,j) \WB

lp
i,j (9)



Some cache lines in ECBR
i,j may have FDCBs of either τi

or of higher priority tasks. Access to each of those lines may

cause a write back. Thus, a safe estimate of WB
hep
i,j is:

WB
hep
i,j =

(

(

⋃

∀h∈hep(i)

FDCBh

)

⋂

ECBR
i,j

)

⋃

DRCBE
i,j

(10)

Finally, by definition of WBtot
i,j we have:

WBtot
i,j = WB

lp
i,j

⋃

WB
hep
i,j (11)

Consequently, the worst-case memory access demand of a

scheduling interval Ei,j of task τi is upper bounded by

(|WBtot
i,j |+ |ECBP

i,j |)× dmem.

Lemma 2. Under the FDCB-DRCB approach, the worst-case

memory access demand of a scheduling interval Ei,j of task τi
is upper bounded by (|WBtot

i,j |+ |ECBP
i,j |)× dmem.

Proof. By Lemma 1, in the worst case, in Ei,j , τi must load

the cache lines in ECB
P
i,j . Similarly, by construction WBtot

i,j

contains all lines that may require write-backs during Ei,j .

Because the worst-case main memory access time is dmem,

(|WBtot
i,j | + |ECBP

i,j |) × dmem upper bounds the worst-case

memory access demand of scheduling interval Ei,j .

Finally, the WCET of scheduling interval Ei,j is given by:

Ci,j = (|WBtot
i,j |+ |ECBP

i,j |)× dmem + Ce
i,j (12)

The WCRT of task τi is then computed using Eq. (4)-(6).

V. EXPERIMENTAL EVALUATION

Our experiments compare the performance of our proposed

cache-aware schedulability analysis for PREM tasks against the

state-of-the-art PREM analysis [1], [2] using synthetic task sets.

Our simulator, available on request, models a quad-core with

direct-mapped unified 64 KB outer cache (2048 cache sets, 32-

byte blocks) evenly partitioned to the cores. The worst-case time

for a cache line load from/write-back to the main memory is set

to dmem=100µsec. The default task set size is 32, with 8 tasks

per core. Task utilizations (Ui) are generated using UUnifast [18]

assuming equally utilized cores. Task inter-arrival times are log-

uniform-distributed in a 5 to 500 msec range. The number of

scheduling intervals of a task is randomly chosen between 2 to 8,

i.e., Ni = rand(2, 8). The scheduling interval utilizations (Ui,j)

are generated using UUnifast [18] for a task utilization Ui and Ni

scheduling intervals. Scheduling interval WCETs are computed

as Ci,j = Ui,j × Ti. Memory access demands of scheduling

intervals are set to µi,j = rand(0.1, 0.6)×Ci,j
3 The length of

computation phase of a scheduling interval Ei,j is then given

by Ce
i,j = Ci,j − µi,j × dmem. Obviously, Ci =

∑Ni−1
j=0 Ci,j .

The number of ECBs of a scheduling interval is generated

as |ECBi,j | =
µi,j

2 . and the number of its DRCBs and FDCBs

as |DRCBi,j | = rand(0.1, 0.3)×|ECBi,j | and |FDCBi,j | =
rand(0.1, 0.6)× |ECBi,j |. We assume that ECBs of tasks are

sequentially arranged in cache using priority ordering. The ECB

3This is in-line with the memory access demand to WCET ratio of most
benchmarks from the Mälardalen benchmark suite [19], [20].

indexes of each task start from the last cache line used by the

previous task +1 and may wrap-around the cache. DRCBs and

FDCBs are then chosen randomly from ECBs. Task deadlines

are implicit. Priorities are deadline-monotonic.

Task WCRTs are computed using (5). The number of cache

loads and write-backs is computed considering (i) an unknown

cache state at the start of every scheduling interval, i.e., the

cache-agnostic PREM [1], (ii) the DRCB-only approach that

only considers the improvement in cache misses due to cache

re-use between scheduling intervals, and (iii) FDCB-DRCB, that

additionally considers the improvement in cache write-backs

due to FDCB analysis. Comparisons are either by number of

schedulable task sets or by weighted schedulability4. A task set

is deemed schedulable only if Ri≤Di for all its tasks.

The first experiment varied the core utilizations from 0.05

to 1 in steps of 0.025, generating 1000 random task sets at

each point. Figure 2a shows the number of task sets deemed

schedulable by each approach. FDCB-DRCB performs best

because it tightly bounds both cache line loads and write-backs.

The DRCB-only analysis only slightly outperforms the cache-

agnostic state-of-the-art, because it only considers cache re-use

between intervals and overestimates the write-backs.

Next, we varied the number of cores, using default values for

other parameters (Figure 2b). With more cores, fewer task sets

are deemed schedulable, for all approaches. This is because the

number of tasks increases comensurately, and the cache size per

core decreases. This causes more cache conflicts between tasks,

and, in turn, more cache line loads/write-backs. The cache-aware

approaches again outperform the state-of-the-art.

In Figure 2c, we varied the last-level cache size from 16 to

512 KB, using the defaults for other parameters. Small caches

smother performance differences between the approaches. With

larger caches, cache-awareness pays off, as the the cache re-use

between scheduling intervals increases (i.e., DRCBs) and fewer

cache conflicts (i.e., write-backs) occur between tasks.

To evaluate the impact of cache re-use on performance, we

varied the DRCB-ECB ratio of tasks (i.e., fraction of a task’s

ECB that are also its DRCBs) from 10% to 80%, using the

defaults for other parameters (Figure 2d). For a lower DRCB-

ECB ratio, the performance difference between our proposed

approaches and the state-of-the-art is small but it increases

with higher ratios. Since the state-of-the-art is cache-agnostic,

its performance is unaffected by this parameter. We similarly

varied the FDCB-ECB ratio (Figure 2e). As only the FDCB-

DRCB approach accounts for FDCBs, only its performance

is impacted by higher FDCB-ECB ratios. Intuitively, as the

number of FDCBs increases, the potential cache write-backs

also increase, negatively impacting schedulability.

Finally, we varied the relative memory demand, i.e., the

ratio of the memory access demand of a task to its WCET

(Ci), from 10% to 80%, uniformly in its scheduling intervals

(Figure 2f). When the memory phases are relatively small, the

4This metric [21] condenses three-dimensional plots to two-dimensional
ones by eliminating the axis of task set utilization. Let Sy(τ, p) be the result
of a schedulability test y for task set τ whose utilization is U(τ) with an
input parameter p. Then the weighted schedulability is defined as Wy(p) =∑

∀τ
(U(τ)× Sy(τ, p))/

∑
∀τ

U(τ).
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Fig. 2: Weighted Schedulability ratio of proposed approaches by varying no. of cores, cache size, DRCBs, FDCBs and µi,j .

difference between cache-aware approaches and the state-of-

the-art is also small. Smaller values of µi,j also imply smaller

ECB, DRCB and FDCB sets. For higher µi,j values, the sizes

of those sets also increase, and the performance of FDCB-

DRCB significantly improves. The trend is less pronounced for

the DRCB-only approach, because, with increasing memory

demand, the number of tasks’ ECBs also increases alongside

their DRCBs. Therefore, the conflicts between tasks’ ECBs

and DRCBs also increases. Naturally, the performance of the

cache-agnostic state-of-the-art does not vary with this parameter.

VI. CONCLUSIONS

We ported established cache analysis techniques to the

schedulability analysis of PREM tasks, and proposed two

approaches that tightly estimate cache line loads and write-

backs. Our DRCB-only approach exploits cache reuse among

scheduling intervals to reduce the number of loads. Our FDCB-

DRCB approach improves on that by carefully analyzing

cache write-backs. Experiments performed by varying different

parameters show that our approaches can significantly improve

the schedulability success ratio by up to 55 percentage points.
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