
ALMA: ALgorithm Modeling Application

NUNO ANDRÉ LAPA OLIVEIRA
julho de 2022

ALMA: ALgorithm Modeling Application
Research Group on Intelligent Engineering and Computing for Advanced Innovation and

Development, Porto School of Engineering

2021/2022

Nuno André Lapa Oliveira
1170793

Thesis Jury

President:

Dr. Carlos Fernando da Silva Ramos

Full Professor, Polytechnic of Porto - School of Engineering

Vocals:

Dr. Luı́s Paulo Gonçalves dos Reis

Associate Professor, University of Porto - Faculty of Engineering

Dr. Isabel Cecı́lia Correia da Silva Praça Gomes Pereira

Coordinator Professor, Polytechnic of Porto - School of Engineering

Porto, June 2022

II

ALMA: ALgorithm Modeling Application
Research Group on Intelligent Engineering and Computing for Advanced Innovation and

Development, Porto School of Engineering

2021/2022

Thesis submitted for the

Master’s Degree on Artificial Intelligence Engineering

authorship of

Nuno André Lapa Oliveira
1170793

supervised by

Prof. Dr. Isabel Cecı́lia Correia da Silva Praça Gomes Pereira
Coordinator Professor, Polytechnic of Porto - School of Engineering

Prof. Dr. Nuno Alexandre Pinto da Silva
Coordinator Professor, Polytechnic of Porto - School of Engineering

IV

”I have no special talent.

I am only passionately curious.”

Albert Einstein

VI

ACKNOWLEDGEMENTS

I would like to start to thank the Polytechnic of Porto - School of Engineering (ISEP), especially

the people behind the construction of the Master’s Degree on Artificial Intelligence Engineering

(MEIA), namely Prof. Carlos Ramos, for making such an important step towards the develop-

ment of Artificial Intelligence in our country, providing means to learn these sort of technologies

through formal training in higher education.

I also wish to show my gratitude to the Research Group on Intelligent Engineering and Comput-

ing for Advanced Innovation and Development (GECAD) for being my home for the last two and

a half years and for granting me the opportunity me to work on several challenging international

research projects over the course of this period.

To my supervisors, Prof. Isabel Praça and Prof. Nuno Silva, I am also grateful for their help

throughout the development of this thesis. I strongly appreciate all the meetings we had at both

GECAD and B419. Trust me, they were not in vain.

Furthermore, I must also not forget to thank Prof. Orlando Sousa, for having believed in me

and marked the start of my teaching career with the Post-Graduation in Information Security,

Cybersecurity and Privacy (PG-SICP) at ISEP.

And, finally, I would like to thank my family, friends and girlfriend for being my support and

foundation.

VII

VIII

ABSTRACT

As of today, the most recent trend in information technology is the employment of large-scale

data analytic methods powered by Artificial Intelligence (AI), influencing the priorities of busi-

nesses and research centers all over the world. However, due to both the lack of specialized talent

and the need for greater compute, less established businesses struggle to adopt such endeavors,

with major technological mega-corporations such as Microsoft, Facebook and Google taking the

upper hand in this uneven playing field. Therefore, in an attempt to promote the democratization

of AI and increase the efficiency of data scientists, this work proposes a novel no-code/low-code

AI platform: the ALgorithm Modeling Application (ALMA). Moreover, as the state of the art

of such platforms is still gradually maturing, current solutions often fail into encompassing se-

curity/safety aspects directly into their process. In that respect, the solution proposed in this

thesis aims not only to achieve greater development and deployment efficiency while building

machine learning applications but also to build upon others by addressing the inherent pitfalls of

AI through a ”secure by design” philosophy.

Key-Words: Artificial Intelligence; Machine Learning; No-code/Low-code;

AutoML; Secure Artificial Intelligence

IX

X

RESUMO

Atualmente, a tendência mais recente no domı́nio das tecnologias de informação é a utilização

de métodos de análise de dados baseados em Inteligência Artificial (IA), influenciando as prior-

idades das empresas e centros de investigação de todo o mundo. No entanto, devido à falta de

talento especializado no mercado e à necessidade de obter equipamentos com maior capacidade

de computação, negócios menos estabelecidos têm maiores dificuldades em realizar esse tipo de

investimentos quando comparados a grandes empresas tecnológicas como a Microsoft, o Face-

book e a Google. Deste modo, na tentativa de promover a democratização da IA e aumentar a

eficiência dos cientistas de dados, este trabalho propõe uma nova plataforma de no-code/low-

code: “THe Algorithm Modeling Application” (ALMA). Por outro lado, e visto que a maioria

das soluções atuais falham em abranger aspetos de segurança relativos à IA diretamente no seu

processo, a solução proposta nesta tese visa não só alcançar maior eficiência na construção de

soluções baseadas em IA, mas também abordar as questões de segurança implı́citas ao seu uso.

Key-Words: Inteligência Artificial; Aprendizagem Máquina; No-code/Low-code;

AutoML; Inteligência Artificial Segura

XI

XII

CONTENTS

Abstract IX

Resumo XI

List of Figures XVII

List of Tables XIX

List of Code XXI

Acronyms XXIII

1 Introduction 1

1.1 Problem Statement . 1

1.2 Objectives . 3

1.3 Research Questions . 3

1.4 Contributions . 4

1.5 Outline . 4

2 Motivations 5

2.1 Introduction to Artificial Intelligence . 6

2.2 Large-Scale Adoption . 7

2.2.1 Historical Overview . 8

XIII

2.2.2 Impact of Artificial Intelligence . 9

2.2.2.1 Industry Advances . 9

2.2.2.2 Academic Advances . 10

2.2.2.3 Socioeconomic Indicators . 12

2.3 Democratization . 14

2.3.1 Human Capital . 15

2.3.2 Computing Power and Data . 15

2.4 Secure Artificial Intelligence . 15

2.4.1 Trustworthiness . 16

2.4.2 Robustness . 17

2.4.3 Transparency and Explainability . 17

2.4.4 Fairness and Bias . 18

2.4.5 Accountability . 19

2.4.6 Privacy . 19

2.5 Summary . 20

3 Machine Learning 21

3.1 Overview . 21

3.2 Lifecyle . 22

3.3 Actors . 25

3.4 No-code/Low-code Platforms . 25

3.4.1 Taxonomy . 25

3.4.2 No-code/Low-code AI . 27

3.4.2.1 Comparison . 27

3.4.3 AutoML . 29

3.4.3.1 Comparison . 30

3.5 Summary . 32

4 Proposed Solution 33

4.1 Conceptualization . 33

4.1.1 Type of Data . 34

4.1.2 Target Audience . 34

4.1.3 Operational Phases . 34

4.1.4 Security Concerns . 35

4.1.5 Requirements . 36

XIV

4.2 Proof of Concept . 37

4.2.1 Use Cases . 38

4.2.2 Domain Model . 39

4.2.3 Design . 41

4.2.3.1 Logic View . 41

4.2.3.2 Process View . 42

4.3 Summary . 44

5 Demonstration 47

5.1 Case Studies . 47

5.1.1 Website Phishing . 47

5.1.2 Laptop Prices . 49

5.2 Execution . 50

5.2.1 Data Ingestion . 50

5.2.2 Preprocessing . 51

5.2.3 Modeling . 52

5.2.4 Hyperparameter Tuning . 52

5.2.5 Evaluation . 53

5.2.6 Results . 54

5.3 Discussion . 55

5.4 Summary . 57

6 Conclusion 59

6.1 Summary of Results . 59

6.2 Objectives Overview . 60

6.3 Research Questions Overview . 60

6.4 Limitations and Further Work . 61

6.5 Final Remarks . 63

References 65

A Generated Code 79

A.1 Prologue . 79

A.2 Data Ingestion . 80

A.3 Preprocessing . 80

A.4 Modeling . 81

XV

A.5 Hyperparameter Tuning . 82

A.6 Evaluation . 82

A.7 Epilogue . 83

XVI

LIST OF FIGURES

2.1 AI job postings by country . 12

2.2 Global corporate investment in AI . 13

2.3 Private investment in AI by geographic area . 13

3.1 AI lifecycle generic reference model . 22

4.1 Domain Model . 39

4.2 Logic view at container level . 41

4.3 UC4 - Process view at container level . 43

4.4 UC10 - Process view at container level . 44

5.1 ALMA platform - Main Dashboard . 50

5.2 ALMA platform - Add New Dataset . 51

5.3 ALMA platform - Build Pipeline - Preprocessing Step 51

5.4 ALMA platform - Build Pipeline - Modeling Step 52

5.5 ALMA platform - Build Pipeline - Hyperparameter Tuning Step 53

5.6 ALMA platform - Build Pipeline - Evaluation Step 54

5.7 ALMA platform - Build Pipeline - Results Step 54

5.8 ALMA platform - Build Pipeline - Feature Importance 55

XVII

XVIII

LIST OF TABLES

3.1 No-code/Low-code AI platforms comparison 28

3.2 AutoML methods comparison . 31

4.1 High-level requirements of the proposed solution 36

4.2 Technical User’s use cases . 38

4.3 Administrator’s use cases . 39

5.1 Results for website phishing classification . 55

5.2 Results for website phishing classification . 56

XIX

XX

LIST OF CODE

A.1 Import statements . 79

A.2 Data ingestion code . 80

A.3 Data preprocessing code . 81

A.4 Modeling code . 81

A.5 Hyperparameter tuning code . 82

A.6 Evaluation code . 82

A.7 Pipeline export code . 83

XXI

XXII

ACRONYMS

A2PM Adaptative Perturbation Pattern Method

AI Artificial Intelligence

ALMA ALgorithm Modeling Application

AMR Autonomous Mobile Robot

ATARC Advanced Technology Academic Research Center

AutoML Automated Machine Learning

CLEVER Cross-Lipschitz Extreme Value for nEtwork Robustness

CNN Convolutional Neural Network

CV Computer Vision

DL Deep Learning

DNN Deep Neural Network

DT Decision Tree

ENISA European Union Agency for Cybersecurity

FGSM Fast Gradient Sign Method

GLC Global Lipschitz Constant

GPU Graphical Processing Unit

GUI Graphical User Interface

IDE Integrated Development Environment

XXIII

IoT Internet of Things

ISP Interface Segregation Principle

IT Information Technology

JSMA Jacobian-based Saliency Map Attack

KNIME Konstanz Information Miner

KNN K-Nearest Neighbors

MAE Mean Absolute Error

MAS Multi-Agent System

ML Machine Learning

MSE Mean Squared Error

NAS Neural Architecture Search

NIST National Institute of Standards and Technology

NLP Natural Language Processing

PCA Principal Component Analysis

PoC Proof of Concept

PSO Particle Swarm Optimization

Q&A Question and Answering

R2 R-squared

RC Reading Comprehension

RNN Recurrent Neural Network

RQ Research Question

SaaS Software as a Service

SFH Server From Handler

SMBO Sequential Model-Based Optimization

SRP Single Responsibility Principle

TL Transfer Learning

UC Use Case

UML Unified Modeling Language

ViT Visual Transformer

XAI Explainable Artificial Intelligence

XGBoost eXterme Gradient Boosting

XXIV

CHAPTER 1

INTRODUCTION

This chapter performs a brief overview of the problem addressed in this thesis, providing both

contextual information and preliminary motivations. The main research questions and objectives

of the work are also presented along with the document’s outline.

1.1 Problem Statement

It is well known that technological endeavors substantially impact overall society. In what regards

to digitalization, many domains of social life were restructured around digital communication and

media infrastructures, benefiting from enhanced efficiency and reliability [1].

Nowadays, the most recent trend is the employment of different advanced technology-embedded

business analytics tools in combination with Artificial Intelligence (AI), resulting into substantial

gains in decision-making, innovation and performance [2]. As a matter of fact, AI was a catalyst

of the data revolution that is now being experienced, with its impact being noticeable in many

levels of our society [3, 4]. Moreover, the large-scale adoption of such technology is no surprise

due to mature developments in the field that took place in recent times. In particularly, Deep

Learning (DL), a sub-field of AI, has experienced several breakthroughs in domains such as Nat-

1

CHAPTER 1. INTRODUCTION

ural Language Processing (NLP) [5, 6] and Computer Vision (CV) [7, 8], gathering the attention

of business all over the world. More precisely, according to Forbes [2], 76% of them prioritize

AI over other Information Technology (IT) initiatives [9].

On the other hand, data science is often described as the process of leveraging AI methods to

grasp insights from data, being data scientists the workers who engage in technical activities

such as data cleaning and algorithm modelling [10]. As ”post-Moore” (modern) AI is heavily

dependent in DL, a domain that still remains unexplored to a certain extent, new endeavors typ-

ically rely on people that go through formal training (e.g., PhD). This kind of talent is rather

scarce and, thus, usually expensive [11]. Additionally, both computing power and quality data

have been considered key ingredients for AI applications, contributing to higher levels of per-

formance [12]. Since richer firms have deeper pockets, they are in a better position to make the

necessary investments, creating an oligopoly around AI, where technological mega-corporation

such as as Amazon, Apple, Google, and Tesla are in control of the main resources that impact

the development of AI [13].

In an attempt to mitigate damages on a societal level, as the potential of such technology can

exacerbate already existing inequalities and lead to marginalization [11], researchers and poli-

cymakers have been defending the ”democratization” of AI i.e., making AI widely and easily

available at a lower cost. A way of doing so, can be the development of interactive tools and

dashboards to support AI development, providing intuitive, visually rich experiences to guide

novice developers via graphical user interfaces (GUIs) [14]. Furthermore, developing and vali-

dating AI algorithms takes a lot of time, effort, and skill and, although the adoption of Python

programming language as the lingua franca for AI development contributed to improve develop-

ment productivity, the process is still time-consuming and abundant in fine-grained tasks such as

coding and debugging [15, 16].

A possible solution for the aforementioned problems can relate to no-code/low-code AI, that

allows users to build codeless Machine Learning (ML) pipelines effortlessly through simple in-

terfaces [14]. In fact, no-code/low-code AI can not only help developers to focus on higher-value

activities [17, 18], such as tackling domain-specific challenges through the high-level analysis of

business requirements and extensive exploratory data analysis, but also contribute to the democ-

ratization of AI by making the art of algorithm engineering more easily accessible.

However, although these technologies seem highly attractive, their inherent pitfalls concerning

algorithm’s trustworthiness in terms of robustness, transparency, ethics, non-bias and governance

must be taken into account [19]. This fragility opens new avenues for improvement in current

no-code/low-code AI systems by considering the adoption of auditing and trustworthiness mech-

2

ALMA: ALGORITHM MODELING APPLICATION

anisms when designing and implementing new development platforms, adopting a ”secure by

design” approach [20].

1.2 Objectives

Although the main purpose of this work is to develop of a novel solution for no-code/low-code

AI, several objectives were define to guide this thesis, ranging from the state of the art analysis

to design and implementation. These can be defined as follows:

• O1: Investigate the main factors that currently endanger the democratization of AI.

• O2: Clarify the meaning of the terms: no-code, low-code and AutoML (Automated Ma-

chine Learning).

• O3: Study the state of the art in no-code/low-code AI and related technologies.

• O4: Identify the main flaws of current platforms and propose a new solution.

• O5: Implement a Proof of Concept (PoC) and demonstrate it in real case studies.

These subjects will be subsequently addressed over the remaining chapters of this document.

1.3 Research Questions

In order to better guide the research under the scope of this thesis, three main Research Questions

(RQs) were formulated:

• RQ1: What is the current state of AI democratization?

• RQ2: What is the current landscape of no-code/low-code AI?

• RQ3: What are the main flaws of current no-code/low-code AI platforms?

The first question, RQ1, addresses the current oligopoly around AI development, requiring fur-

ther investigation on how to contradict contemporary de-democratization tendencies. On the

other hand, RQ2 requires the investigation of the existing no-code/low-code AI platforms, de-

tailing how they differ from one another and which technologies they use. Finally, RQ3 aims at

identifying the flaws of modern no-code/low-code AI platforms, leading to the proposal of a new

solution.

3

CHAPTER 1. INTRODUCTION

1.4 Contributions

From this thesis, several contributions can be appointed:

• C1: A taxonomy to define the domain of no-code/low-code AI.

• C2: A survey about the state of the art of no-code/low-code AI.

• C3: A survey about the state of the art of AutoML.

• C4: The definition of high-level requirements to guide the development of novel no-

code/low-code AI platforms in a way that mitigates the flaws of existing solutions.

• C5: A functional PoC that was demonstrated in two real case studies.

1.5 Outline

This thesis is organized into multiple chapters that can be described as follows:

• Chapter 1 provides an overview of the social and technological aspects that motivated

this work as well as a brief description of this its objectives, the research questions to be

addressed and the overall contributions of this work.

• Chapter 2 describes in greater detail the main motivation behind this thesis, namely the

large-scale adoption of AI, the need for AI democratization and the security/safety issues

intrinsic to AI use.

• Chapter 3 provides an overview of the overall ML process as well as a comparison between

existing no-code/low-code AI applications. Moreover, AutoML frameworks are also pre-

sented and compared since it is strongly related to no-code/low-code AI.

• Chapter 4 describes the conceptualization behind the proposed solution along with the

description of the high-level design decisions made while developing the first version of

the ALMA platform.

• Chapter 5 showcases the usage of ALMA’s PoC in two practical use cases, performing the

benchmark of different ML algorithms for both classification and regression tasks.

• Chapter 6 provides a summary of the main findings of this work, appointing research lines

to be explored in the future.

4

CHAPTER 2

MOTIVATIONS

The rapid, yet turbulent, advances in AI over the years contributed to a great shift in the techno-

logical strategies of many business and research centers word-wide [3]. However, the large-scale

adoption of AI in recent years did not come without some challenges to be addressed, such as

democratization, auditing, trustworthiness, ethics and non-bias [19].

This chapter does not make an attempt to point out the inherent problems of AI use, much less

does it attempt to provide an utopic viewpoint on the future of AI. Instead, this chapter’s goal is to

provide the main motivations behind this thesis i.e., the key factors that make the work developed

in the context of this thesis relevant and up-to-date. Therefore, the following motivations will take

the shape of subsections for further understanding:

1. Large-Scale Adoption: Attempts to answer questions such as ”How do we stand now in

terms of the usage of AI?” or ”What is its relevance to the business/academic world?”.

2. Democratization: Addresses the inherent oligopoly created around the usage of AI and

the need to make this technology widely available at a lower cost.

3. Auditing and Trustworthiness: Questions the secure use of AI and how concepts such as

robustness, transparency, ethics, non-bias, and governance are commonly disregarded.

5

CHAPTER 2. MOTIVATIONS

2.1 Introduction to Artificial Intelligence

Over the course of the years, many great philosophers, such as Plato and Aristotle in the classical

years or Descartes, Hume and Kant, in the age of enlightenment, have studied the origins of in-

tellect and knowledge, central pieces to the understanding of the human mind [21]. However, and

despite being so thoroughly studied, theses terms are still used vaguely and without well-defined

boundaries. Nevertheless, it is safe to say that ”Intelligence” is an anthropocentric concept in

nature, being often employed to describe human intellectual capabilities [22].

Differently, and according to the Britannica Encyclopedia, ”Artificial Intelligence” is ”the ability

of a digital computer to perform tasks usually associated with sentient beings, such as expressing

human-like reasoning or learning from past experience”. Moreover, AI is considered as part of

computer science, an epistemological domain that studies computers and computing, including

their underlying theoretical and algorithmic foundations.

AI encompasses several sub-fields, that are often mentioned interchangeably and not mutually

exclusive (e.g., ML and NLP). Some of them can be described as follows:

• Computer Vision: CV focuses in the processing of visually rich data such as images

or videos. Some of the main tasks under the domain of CV are object detection, facial

recognition, action/activity recognition and human pose estimation [23].

• Expert Systems: Expert Systems use a knowledge-based approach, where domain infor-

mation, provided by an expert in the field, is used by a knowledge engineer to populate a

knowledge base. The content of such knowledge base is then used by an inference engine

to derive meaningful conclusions [24].

• Machine Learning: ML emerged as a disruptive sub-field of AI, introducing a new paradigm

for designing intelligent systems. With ML, algorithms can discover predictive rules from

patterns in labeled data on their own, without being explicitly programmed for a given

task. On the other hand, DL is arguably the most promising branch of ML, introducing

new algorithms that perform a mimic of the way the human brain works and is structured

[11, 16, 25].

• Multi-Agent Systems (MAS): A MAS is a type of distributed AI composed of several

autonomous entities designated as agents. Agents are able to perceive their surrounding

environment and work collaboratively with each other to interact with it [26].

• Natural Language Processing: NLP uses computational techniques to learn, understand

and produce contents in human language with respect to several levels of linguistic analysis

6

ALMA: ALGORITHM MODELING APPLICATION

(e.g., lexical, syntactic and semantic) [27].

• Planning/Optimization: Planning/Optimization aims for the maximization or minimiza-

tion of a given value obtained through a function of the problem’s variables and constraints.

There are several optimization methods, with some of them resorting to analytic methods

and others to heuristics and meta-heuristics [28, 29].

• Robotics: The domain of Robotics is usually associated to physical machines with certain

degrees of autonomy. These are able to adapt to their ever-changing environments through

continuous loops of actions such as perceiving, planning and executing, many times re-

sorting to intelligent mechanisms [30].

• Speech Recognition: The Speech Recognition domain encompasses methods for auto-

matic speech processing. These methods can be used to provide better ways of interfacing

with computers by modeling speech signals into continuous series of words [31].

The interconnectivity of some of these branches is evidenced by several works in the literature.

More precisely, N. Sousa et al. in [26], applied a MAS for coordinating several Autonomous Mo-

bile Roots (AMRs) in tasks such as transporting and dispatching raw materials, finished products

and tools in the manufacturing ecosystem, merging the branches of Multi-Agent Systems and

Robotics. Similarly, N. Oliveira et al. in [32], applied RoBERTa [33], a DL algorithm for natu-

ral language comprehension in the context of scientific search engines, combining the branch of

NLP with DL, a sub-field of Machine Learning. The same happens with Planning/Optimization

and Machine Learning in [34], where N. Oliveira et al. applied a genetic algorithm to optimize

the hyperparameters of a Convolutional Neural Network (CNN) architecture.

2.2 Large-Scale Adoption

The work discussed in this thesis aims to ease the access to AI algorithms without presenting high

technical barriers and while tackling auditing and trustworthiness issues that typically remain

unaddressed. One of the main reasons that justify the need for these developments is the large-

scale adoption of AI by both industry and academia [3, 35].

Nonetheless, firstly, after diving deep into the present and future of AI it is important to under-

stand its historical context. In truth, history provides a better understanding of the present and

can be key to decode what follows next, due to it’s cyclic nature.

7

CHAPTER 2. MOTIVATIONS

2.2.1 Historical Overview

In spite of modern technological trends, from its emergence until now, AI was not always a

strategic priority in terms of funding and support. In fact, since 1950, when Alan Turing first

questioned the concept of machine intelligence in its magnum opus, ”Computing Machinery and

Intelligence” [36], AI endured two main periods of major funding drought, typically designated

as AI Winters [37].

After the first conference on AI, the Dartmouth Summer Research Project on Artificial Intelli-

gence (1956), where the ownership of the term ”Artificial Intelligence” was officially attributed to

John McCarty and the first AI program 1 presented [39], AI development prospered, with several

landmarks being developed such as the perceptron learning algorithm [40], foundation element

of modern-day Deep Neural Network (DNN) architectures and ELIZA [41], the first questioning

and answering (Q&A) system able to attempt the Turing Test.

However, in mid 70s, AI utility for real-world applications was questioned by several private and

public institutions with some scientific publications, such as those of James Lighthill [42] and

Richard Karp [43], reinforcing such doubts. The first, James Lighthill, published a report com-

missioned by the British Science Research Council stating that common-sense reasoning would

always be beyond the understanding of machine intelligence and that an AI, in the context of

strategic games, such as chess, would only be able to reach the level of an ”experienced am-

ateur”. On the other hand, the second, Richard Karp, addressed the problem of combinatorial

explosion, where the computing time necessary to solve a given problem exponentially increases

as a function of the input size, thus proving that with the available hardware at the time, contem-

porary AI solutions could not be scaled up into useful real-life applications. This chain of events

triggered the start of the first AI Winter which last until early 80s [44].

The revival of AI technology was catalysed by a new robust approach with roots in the Carnegie

Mellon University: expert systems. With such approach, researchers decided to narrow down

machine intelligence to specific areas of expertise in order to utilize domain-specific knowledge

for stronger reasoning. A canonical example of such a system is DENDRAL [45], created at

Stanford University to infer molecular structures from mass spectrometry data.

Nonetheless, expert systems also present serious drawbacks such as ineffectiveness in areas that

do not lend themselves to specific formalization (e.g. object recognition) and laborious/expensive

knowledge maintenance [44]. These limitations allied to the unwillingness of hardware manu-

1The Logic Theorist was the first program designed to mimic human problem-solving abilities in order to demon-

strate propositional calculus theorems. It was able to demonstrate 38 out of the 52 of the theorems presented in the

”Principia Mathematica”, a three-volume work on the foundations of mathematics [38].

8

ALMA: ALGORITHM MODELING APPLICATION

factures to keep up with the requirements of expert system’s specialized needs, stroke another

blow at the AI industry, originating the second, and arguably the last, of AI Winters [46].

In early 90s, new hopes for AI shaped again with the introduction of reinforcement learning and

the re-adoption of sub-fields such as MAS, Robotics, NLP and CV, fuelled by large availability

of data and significant advances in ML [44]. This resurgence of AI became clear in 1997 when,

”Deep Blue”, a chess-playing AI developed by IBM [47], defeated the world champion, Garry

Kasparov, in a chess match with live broadcast on public television. Later on, in 2015, AI domi-

nance in the context of strategic games became undeniable with ”AlphaGo” [48], by DeepMind,

beating the world champion of Go, a substantially more complex game than chess [37].

Recently, DeepMind published two works regarding consecutive iterations of ”AlphaGo”, namely

”AlphaZero” [49] in 2017 and ”MuZero” [50] in 2020, with the objective of generalizing the

strategic reasoning of their predecessor for other games. The latter, ”MuZero”, achieved new

state of the art results when evaluated on 57 different Atari games as well as superhuman perfor-

mance in the likes of chess, Shogi and Go [50].

These achievements in the context of game theory are but a representative fraction of the most re-

cent advances in modern-day AI. Thanks to the parallel processing convergence, higher memory

capacity and massive data collection resulting from the big data revolution [51], AI has expe-

rienced a steady upward climb since the early 2020s. This is supported by several facts such

as the growth of global investment in AI-based startup companies, the increase in the number

of peer-reviewed AI articles per year and the significant rise in the number of attendees to AI

conferences world-wide [44].

2.2.2 Impact of Artificial Intelligence

As of today, the pervasiveness of AI is undeniable, with large-scale data collection and analytics

fuelled by intelligent algorithms impacting all levels of our society [4, 52]. This becomes even

clearer when performing a deeper analysis of the following aspects: (i) latest innovations at

industrial level; (ii) state of the art of AI algorithms in many of its sub-fields such as game

theory, computer vision and natural language processing; (iii) socioeconomic indicators.

2.2.2.1 Industry Advances

According to Müller et al. in [53], big data analytics has transformed the way business compete.

It allows the extraction of hidden patterns from raw data, thus uncovering useful information that

is key to improve decision making, enhance productivity and generate new knowledge [51]. In

practice, industries with good data foundation such as finance, healthcare, automotive and media

9

CHAPTER 2. MOTIVATIONS

took great benefit of the most mature developments of AI [52].

One of the biggest breakthroughs in the automotive industry is autonomous driving, a product

resulting from the integration of new generational information technologies such as Internet of

Things (IoT) and AI. By combining several information related to pedestrian activity and road

conditions (collected through multiple sensors) with advanced algorithms that are continuously

fed with such data, the vehicle’s routes and control plans are optimized automatically with al-

most no need for human interaction [54]. On the other hand, financial marketing has also benefit

from AI in tasks such as intelligent risk control, intelligent consulting and market forecasting.

As an example, financial institutions employ ML methods to manage financial risks, integrating

multiple data sources to provide real-time risk warning [52]. Similarly, the healthcare industry is

not indifferent to the advent of AI. As healthcare systems all across the world face huge problems

such as lack of access, high cost, waste and older population, AI is appointed as both a critical en-

abler of healthcare simplification and a bedrock for the development of intelligent care systems.

In this context, recent developments show promising results into multiple sectors such as drug

discovery, clinical trials and patient care [55]. Furthermore, in the media industry, intelligent

social media platforms (e.g., Facebook) combine contemporary events, public opinion and per-

sonal profiles to study media delivery and delivery rules. These are then used to suggest/generate

content that users are likely to read as well as to optimize the dissemination of advertisements

[52, 56]. For the social sciences point of view, these platforms also end up as serving as some

sort of virtual laboratories for conducting social and psychological experiments (through data

analytics) to acquire novel insights on human behaviour [3].

Fundamentally, AI systems have taken place in a wide variety of industries with many other

works appointing its use in domains such as smart homes [57], to monitor and control home

activities for convenience, energy, for energy consumption forecasting [58] and electricity market

negotiation [59], and cybersecurity, for enhanced real-time threat detection in intrusion detection

systems [60] and cyber-physical alert correlation [61].

2.2.2.2 Academic Advances

The aforementioned industrial advances were only possible due to recent mature developments

in AI sub-fields such as ML. The ”State of AI Report”, published by Benaich et al., points

out the most significant achievements of 2021 in several tasks such as object detection, audio

recognition, structural biology, game-play, image generation and code generation. Some of them

can be described as follows [62]:

• ViT: The introduction of the ”Transformer” architecture in [63], motivated several inno-

10

ALMA: ALGORITHM MODELING APPLICATION

vations in the context of NLP such as BERT [5], RoBERTa [33] and GPT-3 [6]. This

approach disregards recurrence and convolutions from the usual encoder-decoder mod-

els and, instead, it uses several types of attention mechanisms, leading to a new state of

the art in the field of Reading Comprehension (RC) [32]. In 2021, Google applied this

same concept to the field of CV, achieving a top-1 accuracy (90.45%) on ImageNet [64],

a widely accepted benchmark for image classification. This new algorithm, ViT (Visual

Transformer) [7], despite being later dethroned by CoAtNet (90.88%) [8], which uses both

convolution and attention layers, successfully marked the adoption of this architecture in

the context of CV, overcoming other well-establish algorithms.

• MuZero: In the domain of game theory, Deep Mind has launched MuZero [50], matching

the performance of its predecessor, AlphaZero [49], in the games of Go, chess and Shogi,

and outperforming all existing models on the Atari benchmark while learning solely within

a world model. This benchmark, Atari, comprises a suit of visually complex games which

have been beyond the reach of model-based systems. However, MuZero is able to model

only what is relevant for its decision making (from the whole scope of the game dynamics),

allowing it to scale well for complex games [62].

• DALL-E: For the task of generating images from natural language prompts, OpenAI in-

troduced a novel algorithm, DALL-E [65], which is in fact, a 12 billion parameter version

of the GPT-3 model that was trained on text-image pairs. The authors illustrated the algo-

rithm’s potential by exhibiting a series of interactive visuals generated from a great variety

of sentences that explore the compositional structure of language. CLIP [66] was used to

select the best images in order to avoid manual cherry-picking that could potentially induce

bias into the demonstration.

• Codex: OpenAI also applied GPT-3 to the domain of code generation through it’s spe-

cialised offspring, Codex [67]. The algorithm was fine-tuned on publicly available code

from GitHub and evaluated on HumanEval, a new evaluation set (also of OpenAI’s au-

thorship) to measure functional correctness for synthesizing programs from docstrings. It

was proven that although showing promising results, Codex still lacks the ability to reason

about docstrings that describe long chains of operations and binding operations to vari-

ables. Nevertheless, after breaking down a complex problem into more contained tasks,

a developer can utilize Codex to map these tasks into existing code (libraries, APIs, or

functions) automatically [62].

11

CHAPTER 2. MOTIVATIONS

2.2.2.3 Socioeconomic Indicators

The AI Index Report 2021 [35], published by Zhang et al., aims to provide an unbiased and

rigorously vetted overview of the state of AI in the world. The report is organized into multiple

chapters with attention to several viewpoints in many domains such as the economy, education,

ethics and diversity. For the scope of this chapter, the economy should be the main focus, with

emphasis on AI hiring, labour demand and corporate investments.

Regarding AI hiring, data collected from the LinkedIn platform suggest that the hiring rate has

been increasing across all sample countries in 2020, being Brazil, India, Canada, Singapore and

South Africa the countries with the most prominent growth in AI hiring from 2016 to 2020.

On the other hand, with respect to the AI labour demand, calculated through Burning Glass, an

analytics firm that collects postings from over 45,000 online job sites of United States, United

Kingdom, Canada, Australia, New Zealand, and Singapore, it is possible to conclude that the

share of AI job postings among all job postings in 2020 is more than five times larger than in

2013. The study also pointed out that the United States is the only country who experienced

a decrease in AI job postings from 2019 to 2020 (first drop in six years), with the COVID-19

pandemic and the country’s considerably mature AI labor market appointed as possible reasons

for such drop.

Figure 2.1 presents the percentage of all job postings by country.

Figure 2.1: AI job postings by country [35].

A similar growing trend is visible in the context of global AI investments, where all private invest-

ment, public offerings, merger/acquisition and minority stakes, increased by 40% in 2020 when

compared to 2019, representing a sum of 67.9 billion U.S. dollars. Moreover, several high-profile

acquisitions took place in 2020, such as the NVIDIA’s acquisition of Mellanox Technologies and

12

ALMA: ALGORITHM MODELING APPLICATION

Capgemini’s of Altran Technologies.

Figure 2.2 provides an overview of all global corporate investment in AI.

Figure 2.2: Global corporate investment in AI [35].

When further inspecting the topic of private investment in AI, it is well noticeable that the United

States have clear dominance over China and the European Union. Nevertheless, these numbers

can be misleading as China has strong public investments in AI by both the central and local

governments. Figure 2.3 presents the total amount of private investment in AI by geographic

area (expressed in U.S. dollars).

Figure 2.3: Private investment in AI by geographic area [35].

13

CHAPTER 2. MOTIVATIONS

2.3 Democratization

In the early days, specialist engineers had to be hired to operate electric generators in situ at

homes just to use simple light bulbs. As much as this idea may seem perplexing as of today, it

was due to great minds, mature business opportunities and much patience that it was possible

to convert electricity into a mere utility which is now often taken for granted [68]. On the other

hand, when we turn to AI, some may argue that we are on the verge of taking full utilitarian value

out of it as the field seems to be continuously maturing over the course of the years. Nowadays,

its impact is already well noticeable on both economy and labor landscape, and as of such, AI

and ML, are appointed as an integral portion of the Fourth Industrial Revolution [69].

However, while the world’s population is currently over 7 billion people, only about 10 thousand

people are working in the code for all of AI [70]. In fact, the vast majority of AI development

comes from a few technology mega-corporations such as Microsoft, Google and Amazon. As the

concentration of power can lead to marginalization and severe inequalities [68], this oligopoly of

centralized mega-corporations is in position to shape the developments of AI to suit the interests

of their own stakeholders. On the flip side of the coin, companies from all over the world that

lack proper capital struggle to develop their own AI services, creating an uneven playing field

which favours inequality and can lead to negative implications for humanity in general [13].

In order to ensure that the benefits of AI are not limited to a small group of people, thus avoid-

ing the exacerbation of already existing social inequalities, regulatory governments and agencies

across the globe are formulating national policies and laws around these technologies to simul-

taneously protect and empower national citizens [11, 71]. Moreover, concepts such as ”Inclusive

AI” and ”AI for Social Good” have been recently advocated by researchers and policymakers,

evidencing a growing consensus towards the ”democratization” of AI [14, 68].

According to the Britannica Encyclopedia, the epistemological origins of the word ”democracy”

remotes to its Greek counterpart, dēmokratia. Coined after dēmos (people) and kratos (rule) it

stands for ”rule by the people” or ”government by the people” which is dissimilar to oligarchy,

the ”government by the few” (oligos). Therefore, and being democratization the act of making

something democratic, the democratization of AI aims to lower the entry barriers for the ”world

of AI” in terms of both resources and knowledge. On the academic level, democratizing AI

translates into having more researchers working in the filed, which can lead to new research

challenges (and opportunities), that can, consequentially, inspire more frequent breakthroughs.

On the other hand, at the industry side, it means the production of more value, materialized in

the form of new products and services, as well as greater market competition [72].

14

ALMA: ALGORITHM MODELING APPLICATION

Per contra, this viewpoint may seem rather utopic when facing fashionable evidences of both

unequal/unfair access to computing power (compute divide) and de-democratization. In [11],

Ahmed et al. argue that private technological corporations such as Amazon, Apple, Google, and

Tesla have too great of an advantage over the main resources that influence the development of

post-Moore AI: human capital, computing power and data.

2.3.1 Human Capital

As modern AI depends heavily in DL, a domain not yet fully understood, innovation often relies

on people that undergo formal training such as PhD and/or many years of work experience [11].

Due to both the mist around DL and the disparity in terms of demand/supply for AI-related talent,

deep scarcity is noticeable in the field. This demand for qualified people makes human capital

to be rather expensive and, as of such, richer companies take the upper hand when it comes

to provide higher remunerations [73]. Furthermore, recent reports concerningly point out to the

large-scale recruitment of faculty members of North American universities by large technological

companies as well as the acquisition of dozens of startups with the primary purpose of talent

acquisition [74, 75].

2.3.2 Computing Power and Data

Computing power has been considered an important ingredient for current AI since it was demon-

strated that increased compute is complementary to DL algorithms and typically leads to in-

creased performance [12, 76]. Nevertheless, to obtain such level of compute, investments have

to be made so that appropriate infrastructure such as GPUs (Graphical Processing Units) can be

acquired. Hence, similarly to what happens in the context of human capital, richer firms have

greater margin to make this sort of investments [11]. Moreover, these same mega-corporations

have been developing their own specialized hardware as well as producing software thoroughly

optimized for it, taking them even further ahead than the competition [77]. Finally, to add up to

the technocracy, it has been proven by recent studies that Facebook, Google, Amazon and other

technology giants have an advantage in AI research due to their own proprietary data. This data,

allows them to produce high-quality datasets, contributing to more accurate algorithms [78, 79].

2.4 Secure Artificial Intelligence

As society in general increasingly relies in digital media, cybersecurity plays a major role in

safeguarding sensitive user and corporate information that is constantly shared over network in-

frastructures [25]. For this purpose, AI, in particular ML, has been applied successfully with

15

CHAPTER 2. MOTIVATIONS

many works, such as [24], [25], [34], [60] and [61], demonstrating the potential of such applica-

tions. However, it was only until recently that the secure use of AI has started to be questioned by

the scientific community [80, 81]. In fact, it was proven that ML algorithms can be solely just as

vulnerable as the same systems they were designed to protect in the first place, with several ex-

ploits being identified in both core phases of the learning process, training and inference [80]. In

the first phase, carefully manipulated data can be inserted in the training dataset to intentionally

sabotage the algorithm’s training, as it is the case of poisoning attacks [82]. On the other hand,

in the second phase, attackers can perform evasion attacks to manipulate test samples, deceiving

the model into performing wrong predictions [83].

Thus, despite the adoption of AI presenting an unmatched opportunity for socioeconomic growth,

its potential remains unfulfilled without proper methods for securing (and regulating) these sort

of technologies [81]. For this reason, several works have recently being published by the com-

munity, addressing a plethora of subjects around the secure use of AI [84, 85, 86, 87, 88]. While

some are focused in exploring both attack and defence mechanisms for ML algorithms directly

[84], others aim to provide an holistic approach for AI trustworthiness assessment [85]. More-

over, as some are more technological [86], discussing mathematical and algorithmic explainabil-

ity methods, others are more deontological [87], raising questions about the ethical grounds/fun-

damentals of AI.

In the context of no-code/low-code AI, where less technically educated audiences are empow-

ered to build and train AI algorithms on their own [14], these kind of security issues take an

even higher degree of importance, as the use of such platforms can either contribute to enhanced

security by implementing strong measures or lead to insecure intelligent systems through neg-

ligent/unprotected use [19]. Hence, for the scope of this work, it is important to understand

the underling security/safety aspects of AI. Furthermore, and as the domain is broad, the most

relevant aspects were selected from the literature, shaping the remaining of this section.

2.4.1 Trustworthiness

Stanton et al., from the National Institute of Standards and Technology (NIST), in a freshly

published report [85], points out that common software customers, although having unclear un-

derstanding about the usage of AI, happen to deem trust in such systems at a certain extent.

Furthermore, and although other works have tried to address the topic of trust in a system-centric

way by formulating a series of requirements, trust is appointed to be, fundamentally, a psycho-

logical trait of the user who uses the system.

In the same line of thoughts, the authors indicate that, ever since our evolutionary beginnings,

16

ALMA: ALGORITHM MODELING APPLICATION

trust and distrust have been used as mechanisms to mange the risks of social interaction. Ad-

ditionally, although the reliance on another individual can bring many advantages, it simultane-

ously opens new avenues for exploitation and deceit, with cognition taking a fundamental part for

making such judgements. The role of cognition is, therefore, not to be disregarded when aiming

for AI trustworthiness. As a matter of fact, while from the engineering point of view, a system

is deem trusted if it meets certain technical characteristics such as Security, Explainability, Ac-

countability and Privacy, it is, ultimately, the perception of the available technical information

that shapes the user’s trust in the system, contributing for better human-AI collaboration.

2.4.2 Robustness

Szegedy et al., in [89], first found that DNNs can be exploited by means of thoroughly crafted

samples, misleading algorithms into making wrong predictions in the inference phase. This

venture has broken new ground in AI security, motivating the research of attack methods such as

Fast Gradient Sign Method (FGSM) [90] and Jacobian-based Saliency Map Attack (JSMA) [91].

As a result, and given the existence of adversarial attacks, the concept of adversarial robustness

has started to be adopted as a measurement of a DNN’s resilience against such attacks [84].

Furthermore, novel developments have also started to take place in an attempt to mitigate these

type of threats. Either by proposing new defense mechanisms against adversarial attacks, which

is the case of adversarial training [92, 93], or by introducing more accurate ways of measuring

robustness, as the Global Lipschitz Constant (GLC) or CLEVER-score (Cross-Lipschitz Extreme

Value for nEtwork Robustness).

2.4.3 Transparency and Explainability

As stated by R. Schmelzer in [88], the landscape of the AI market is gradually shifting from

model building to model consuming, by means of Software as a Service (SaaS). Hence, due to

this increased dependency on external sources, questions are starting to be placed on whether

consumers should blindly trust the algorithms they are provided with, as there is zero to none

visibility on what is happening behind the scenes. Furthermore, in the case of ML, these kind of

issues are particularly sensitive, as algorithms are not code per se and depend on a series of iter-

ations (and approximations) to become more accurate. So, in that sense, users don’t have much

control over the process of model rebuilding and, even more concerningly, fail to comprehend on

why the model is performing poorly due to the lack of transparency.

With the objective of assessing ML model transparency, the Advanced Technology Academic Re-

search Center (ATARC) has produced a document [94] pointing out five factors of transparency:

17

CHAPTER 2. MOTIVATIONS

• Algorithm Explainability: Addressing the need to understand how a given algorithm has

reached a certain conclusion. Although some algorithms are naturally explainable, such as

Decision Trees (DTs), others behave as complete black boxes, as it is the case with DNNs.

Nevertheless, although a lot of research has been made in order to improve the explainabil-

ity of such methods [86, 95], the field of XAI (Explainable Artificial Intelligence) is not

mature enough for a widespread adoption to be witnessed.

• Dataset Bias: In this context, dataset bias does not imply poor quality data, but, instead, it

refers to lack of representativeness in the training set, causing algorithms to make decisions

based on preconceived notions 2. This subject is explored further in the next section.

• Data Sources: This factor is mainly concerned with the origin of the data used to train the

algorithm: where did it came from or how was it cleaned.

• Data Selection: While there can be a huge amount of data available, engineers often

apply selection methods before training ML algorithms. Thus, this dimension attempts to

comprehend what transformations have been made: if only a portion of data was used,

what were the features selected for the training procedure or if any data augmentation

method was employed.

• Model Versioning: As ML models should be iterated on for improved performance,

full transparency should also be obtained over versioning operations. Not always freshly

trained algorithms perform better than their predecessors, so, it is important to have control

over spontaneous model versioning. For example, having the ability to select older model

versions if a more recent one exhibits poorer performance.

The final result of the proposed framework is a radar chart where each component can take a

score ranging from 1 to 5 (e.g., scoring ”1” in explainability means that the algorithms solely

behaves as a black box).

2.4.4 Fairness and Bias

The wide spread adoption of big data analytics has made several organizations argue about the

potential of computational algorithms to introduce informational bias and discrimination in au-

tomated decisions, appointing the way that such digital systems are structured and used as one

of the main reasons [97]. In fact, studies such as those presented by Bolukbasi et al. [98] and

2Cathy O’Neil, in the book ”Weapons of Math Destruction” [96], popularised the idea of mathematical tools

fostering bias against certain groups of people. These algorithms are said to be opaque and unregulated, taking the

potential to amplify already existing social inequalities through computational scalability.

18

ALMA: ALGORITHM MODELING APPLICATION

Koenecke et al. [99], have shown empirical examples of such assumptions. The first, discovered

that one well accepted algorithm in NLP, ”word2vec”, inadvertently encodes social biases such

as gender stereotypes, while, the second, found that the automated speech recognition systems of

major tech companies (Amazon, Apple, Google and Microsoft) have a higher error rate for Afro-

American speakers when compared to white speakers. Moreover, the lack of inclusive training

data is said to take a part into the performance gap between racial groups [11].

The White House has advocated, in an official report, for ”equal opportunity by design” as a

guiding principle for domains such as credit scoring. However, and according to Hardt et al. in

[97], ”a vetted methodology for avoiding discrimination against protected attributes in machine

learning is lacking”, with the authors, in that same work, introducing a novel solution based on

the principle of ”oblivious”. Furthermore, both the naive approach of ”fairness through unaware-

ness” i.e, ignoring all protected attributes (race, color, gender), and the more thoughtful approach

of demographic parity were systematically criticised.

2.4.5 Accountability

According to Busuioc in [100], accountable AI is a complex subject, since AI-related challenges

strike at the very own heart of accountability procedures. As at its core, accountability is about

”answerability”, it becomes hard to judge and interrogate algorithmic outcomes when they usu-

ally present themselves as opaque or fail to exhibit substantial evidences of the decision-making

process. In this respect, the author points out to transparency as a fundamental but insufficient

condition for accountability. Not only should the industry adopt such good practices, but there is

also a need for policy makers and regulators to enforce them. Moreover, as a practical scenario,

the employment of black-box models in the public sector is questioned, especially in domains

such as criminal justice where decisions with high individual stakes can be endangered by pro-

prietary or uninterpretable algorithms. Ultimately, there is an urgency for regulatory efforts, as

they are indispensable to ensure that AI comes-forward without striking a blow at our very own

core institutions: justice, law enforcement and education.

2.4.6 Privacy

AI works on the basis of data and while it has already been proven that large amounts of data

usually contributes to better algorithm performance [12], there is, simultaneously, an urgent need

to prevent the right of individual privacy from eroding. According to [101], in current times,

gathering personal data has become dangerously easier, with major companies like Facebook

and Google running data-centric businesses. These same companies collect, on a daily basis,

19

CHAPTER 2. MOTIVATIONS

huge amounts of user information to exploit psychological traits for their own benefit (enhanced

advertisement, marketing and sales). Additionally, as there are people who voluntarily share

personal information on social media platforms, there are others who struggle to conceal delicate

subjects, since there is no alternative way of searching for information online without introducing

a series of terms into someone else’s search box. In that same sense, the introduction of those

so-called ”digital assistants” such as Amazon’s Alexa and Google Home adds up to ”persistent

surveillance”, as the continuously collected data can either serve the purpose of the product or

just as easily be used to observe individuals in ways that are unknown to them.

2.5 Summary

As the general attention to AI drastically fluctuated over the years, constantly dangling back and

forth to serious funding droughts, this technology became, as of today, a priority for both modern-

day companies and research centers [3, 44, 52]. This shift of paradigm was mainly caused by the

most recent unprecedented advances in its several sub-fields, with high emphasis on DL [62].

However, the adoption of AI requires great costs for businesses such as the acquisition of special-

ized talent (which there is shortage) and powerful hardware for data storage and preprocessing.

Therefore, an oligopoly is created around AI, where the richer and most established corporations

continue to improve themselves with the most recent algorithms while the less established ones

struggle to make profit out of such technology [11]. A way to contradict this oligopoly is the

democratization of AI i.e., making AI widely available at lower cost [13, 68].

Nevertheless, the democratization of AI, in terms of providing easier access to complex algo-

rithms with lower technical barriers, also comes with its own pitfalls. With aspects such as

robustness, transparency, ethics, non-bias and governance [19] to be addressed, there is demand

for a solution that can not only deliver this kind of simplified access to the technology but that can

also take into account the inherent security/safety issues. This is the gap that ALMA platform

expects to fill.

20

CHAPTER 3

MACHINE LEARNING

This chapter provides a quick overview of ML and all phases of its lifecycle. Additionally, a

common taxonomy regarding low-code AI, no-code AI and AutoML, that will be used consis-

tently over the course of this thesis, is presented. Finally, an overview of the state of the art in

the domains of both no-code/low-code AI and AutoML is performed along with a comparison of

the most relevant applications/methods.

3.1 Overview

ML is a disruptive subdomain of AI that comprises three main learning paradigms: supervised

learning, unsupervised learning and reinforcement learning [102]. In supervised learning, al-

gorithms obverse many examples of input-output pairs and learn a function that maps inputs to

outputs as intended. Supervised Learning is mainly used for two main tasks, classification and

regression. In the first, the output variable, or target, is one of a finite set of values (e.g., sunny,

cloudy or rainy) while in the second, the output is expected to be a continuous numerical variable,

such as temperature or atmospheric pressure. Differently, in unsupervised learning, algorithms

learn patterns from data without explicit feedback. This paradigm is usefull for other types of

21

CHAPTER 3. MACHINE LEARNING

tasks such as clustering, identifying groups of similar data points, or dimensional reduction, used

to reduce the size of a given dataset’s feature space. On the other hand, in reinforcement learning,

algorithms learn through a series of rewards and/or punishments depending on its decisions (and

their consequences) within a given environment. For each of the introduced paradigms, there are

different possible algorithms such as Decision Trees and eXtreme Gradient Boosting (XGBoost)

for the supervised, K-means clustering and Principal Component Analysis (PCA) for the unsu-

pervised, and finally, Deep-Q learning for the reinforcement learning paradigm. Furthermore,

advances in other paradigms such as semi-supervised learning, have contributed to solve prob-

lems where a few expensive labeled samples are available and abundant unlabeled samples are

effortlessly obtained [103].

3.2 Lifecyle

As the domain of AI is broad, and, therefore, requires a structured and methodical approach to

understand its different facets, the European Union Agency for Cybersecurity (ENISA) proposed

a generic reference model for a functional overview of typical AI systems [104]. Nevertheless,

due to the vast range of intricacies (technologies, techniques and algorithms) involved in these

systems, mapping their entirety in a single AI lifecycle model is arguably too ambitious. For

this reason, the reference model proposed by ENISA, Figure 3.1, is geared towards ML, as the

particularities of the many sub-fields of AI demand for the generation of specific target models

and ML has been spearheading the explosion of AI in the last ten years.

Figure 3.1: AI lifecycle generic reference model [104].

22

ALMA: ALGORITHM MODELING APPLICATION

The lifecycle of an AI system foresees several interconnected phases that address its design,

development, installation, deployment, operation, maintenance and disposal. These should be

followed by any organization that intends to benefit from the employment of AI techniques (with

emphasis in ML algorithms). All phases presented in Figure 3.1, can be briefly described as

follows [104]:

• Business Goal Definition: Before deciding to carry on with the development of an AI

system, one should first fully understand the business context of its application as well as

the required data. Furthermore, appropriate metrics must be defined to determine to which

the degree the business goals have been achieved.

• Data Ingestion: In the data ingestion phase, data is obtained from multiple heterogeneous

sources for immediate use or storage. Furthermore, and based on the AI system specifi-

cation, data can be ingested in real-time (streaming) or periodically, in batches, with the

possibility of requiring annotations before being further processed by algorithms.

• Data Exploration: In the data exploration phase, insights are gathered from collected data,

identifying variable types and multimedia data such as images, audio or video. Addition-

ally, several plots are usually produced along with descriptive statistic measures to verify

if data fits simple parametric distributions (e.g., Gaussian).

• Data Preprocessing: Raw ingested data, typically, can not be used directly to train AI

algorithms, it first requires a series of preprocessing steps to cleanse, integrate and trans-

form the data. This phase aims to improve data quality, contributing to better performance

and efficiency of the AI system. Some preprocessing steps can be the conversion of cate-

gorical data to equivalent numerical representation and the handling of missing/null values

through interpolation and augmentation.

• Feature Selection: In the feature selection phase, the less significant features of a dataset

are discarded or condensed to achieve denser representations. These denser representa-

tions, use the features which are believed to be most meaningful to be processed by the

AI algorithms, contributing to the reduction of the overall computational cost and more

accurate models.

• Model Selection / Building: At this stage, candidate AI algorithms are selected to be

trained, evaluated and compared against each others. This is a difficult task, often subjected

to trial and error, since there is a whole plethora of possible algorithms, within several

23

CHAPTER 3. MACHINE LEARNING

paradigms, to be considered, requiring deep knowledge of the different techniques to make

the right decisions.

• Model Training: After selecting the best candidate algorithms, these must be trained and

benchmarked to determine how well they can fulfill the business requirements. In the

context of supervised ML, in the training phase algorithms are fed with batches of input

vectors, using a given learning function to adjust their internal parameters (e.g., weights

and bias) based on a measure of the difference between the output of the model and the

ground truth. On the other hand, in the inference phase, a portion of the dataset saved for

testing is used to make predictions and compute multiple evaluation metrics (e.g., accuracy

and precision).

• Model Tuning: Although model tuning strongly overlaps with model training, ENISA

opted to separate the two stages to highlight the specificities in terms of functional oper-

ations. Algorithms usually have high-level settings that can not be learned by the input

data. These hyperparameters have to be manually set up and are typically tuned to obtain

enhanced performance. For this process, many optimization methods can be used (e.g.,

Random Search and Grid Search) to compare the performance of multiple hyperparameter

combinations, making use of a validation set or k-fold cross validation for an unbiased

evaluation.

• Transfer Learning: In this phase, a pre-trained AI model is used as a starting point for

further training. Transfer learning can be a good option when there is few data available

for training or when the task to be done shares strong similarities with other well-known

models. This process is, many times, considered to be part of the model training.

• Model Deployment: Deployment is the phase where a trained model, that fulfills the

business objectives, is made available to users.

• Model Maintenance: AI algorithms require continuous monitoring and maintenance to

deal with potential concept drifts/changes that can arise during their operation. To deal

with model maintenance several techniques such as window-based relearning or back test-

ing can be employed. In the first, new models are systematically created from the most

recent data points while, in the second, the performance of the deployed model is contin-

uously monitored in order to understand when retraining is required, detecting potential

performance drops.

• Business Understanding: In the business understanding phase, companies gather insights

24

ALMA: ALGORITHM MODELING APPLICATION

on the impact of AI on their business with the objective of maximizing their possibility of

success while accounting for the cost of the development process.

3.3 Actors

According to ENISA, in [104], multiple actors can be actively engaged on the entirety of the

AI lifecycle. These include AI application designers and developers that work closely with data

scientists to design and create completely integrated AI systems. On the other hand, data sci-

entists mainly work in the design and development of AI models, interpreting data, extracting

high-level insights, training algorithms and analysing results. In turn, these rely on data engi-

neers to manage and optimize the flow of data, collecting it from difference sources, cleaning,

standardizing and storing it. Differently, other important actors, such as data owners, are the ones

who actually own the datasets that are used to build the AI systems. These can also take the role

of data providers (or brokers), monetizing different types data for multiple purposes. Similarly,

there are also model providers, who provide already tuned models (e.g., through cloud services),

and third-party providers, that deliver third-party software frameworks and libraries to be used

by AI developers. Eventually, there are also the end users, that benefit from a given AI system’s

functionalities, such as specific companies or the general public.

3.4 No-code/Low-code Platforms

The concept behind no-code/low-code platforms has been around for decades, far long before the

term was officially used [105]. However, there is currently an increasing trend in what concerns

to the development of this sort of technology [17]. Particularly, in the context of AI, the no-

code/low-code landscape is gradually maturing as new platforms emerge at a vigorous pace,

contributing to enhance development productivity as well as promoting the democratization of

AI [106].

Fundamentally, this section aims to clarify how ALMA positions itself in comparison with other

already existing applications. For that, a predefined set of metrics was selected and employed to

better understand how different no-code/low-code AI platforms relate to one another.

3.4.1 Taxonomy

Nowadays, there still seems to exist some misconceptions in what concerns the terms ”no-code”

and ”low-code”, leading to different interpretations (and wrong employment) of such concepts

[107]. Hence, for the scope of this thesis, there is a need to establish a proper taxonomy, providing

25

CHAPTER 3. MACHINE LEARNING

better and cleared organization of the no-code/low-code AI landscape.

According to Outsystems, one of the biggest players of the low-code market for application

development [108], the terms can be defined as follows [107]:

• No-code: Distinctively to low-code, the targets of no-code platforms are people lacking

formal development training i.e., non-technical people that may not know any actual pro-

gramming language but want to develop a given application for some specific purpose. The

major downside to no-code is ”shadow IT”, when people develop some sort of application

without proper understanding of it’s implications (e.g., security issues, performance issues,

increased technical debt).

• Low-code: Low-code can be described as a way for developers of all skills to build ap-

plications with minimum effort by taking advantage of intuitive visual interactions such

as the dragging and dropping of blocks into more complex workflows that are represen-

tative of an application’s intended behaviour. This allows developers to focus in higher

value activities, leaving fine-grained work to be performed by the low-code development

platform.

In the context of AI development platforms, another term often mistaken with no-code/low-code

is AutoML, or Automated Machine Learning. As stated by Rosaria Silipo in [109], principal data

scientist at KNIME [110], AutoML is an entirely different business from low-code AI.

While in a low-code development platform users are fully engaged on the data transformation

steps, algorithm hyperparameters and many other aspects that define an AI pipeline, in an Au-

tomated Machine Learning application, users are confined to predefined default settings that

automatically generate the intended pipeline, lacking customization and often falling short when

presented with non-trivial use cases [109]. Furthermore, AutoML solutions frequently emerge as

programming language libraries, which is the case of TPOT [111] and PyCaret1 [112] for Python.

However, AutoML and low-code are not mutually exclusive since the latter can embed AutoML

functionalities, benefiting both from simpler and optimized solutions for well-conditioned prob-

lems and sufficient customization to cover use cases that require a higher level of personalization.

Since ALMA can also benefit from such endeavors, investigating about the state of the art of Au-

toML frameworks is also important for this thesis.

1Although PyCaret positions itself as a ”low-code” machine learning library, such categorization will not be con-

sidered under the scope of this thesis. According to the adopted definition of the term, and as PyCaret requires actual

coding, without presenting intuitive visual interactions to assist the developer, it cannot be considered as low-code.

26

ALMA: ALGORITHM MODELING APPLICATION

3.4.2 No-code/Low-code AI

The no-code/low-code AI landscape is still an up-growing market, with many applications shar-

ing similar traits, ultimately, making it rather difficult to draw the line of when an application

ends and another starts. Some of these position themselves in broad domains such as NLP and

CV while others are more focused in specific use case management [106]. Moreover, some

software such as KNIME (Konstanz Information Miner) [110] and RapidMiner [113] have been

around for a long time, 2006 and 2001 respectively, providing integrated development platforms

for data science development. Others, are more contemporary and focus on specific tasks such

as Obviously.ai [114], created in 2018 for predictive analysis in tabular data, and Levity [115],

as recent as 2020, for image and text processing applications. Furthermore, there is a thin line,

dependent on interpretation, when it comes to decide whether a given platform is more related to

no-code than low-code (or vice versa)2.

3.4.2.1 Comparison

In the context of this work, the following parameters were selected to compare existing platforms:

• Designation: The name of the company/product that serves as a mean of identification.

• Year: The year in which the platform was first introduced.

• Category: A classification of the platform, taking either the value of no-code or low-code.

When such platform shares characteristics of both domains, primary value proposition is

used to decide between the two possible categories.

• Targets: List of target domains that are under the scope of the platform. These correspond

to, but are not limited to, data types such as structure/tabular data, text (NLP) or images

(CV). In the case of general-purpose Integrated Development Environments (IDEs) (e.g.,

KNIME), the value ”General-purpose” is used to identify its targets.

• AutoML: A ”Yes” or ”No” parameter that identifies if there are any Automated Machine

Learning functionalities embedded into the application.

Table 3.1 provides a summary of the considered no-code/low-code applications.

2There are two main reasons that particularly contribute to make this categorization somewhat difficult: (i) many

no-code applications provide additional customization features that require technical expertise, entering the domain

of low-code; (ii) some of the presented applications represent commercial products that cannot be experimented for

free or require booked demonstrations.

27

CHAPTER 3. MACHINE LEARNING

Table 3.1: No-code/Low-code AI platforms comparison.

No-Code/Low-code AI Landscape Summary

Designation Year Category Target AutoML

RapidMiner [113] 2001 Low-code General-purpose Yes

Peltarion AI [116] 2004 Low-code Tabular, Text, Images, Video,

Audio, Multi-Modal

Yes

KNIME [110] 2006 Low-code General-purpose Yes

Teachable Machine [117] 2017 No-code Images No3

Obviously.ai [114] 2018 No-code Tabular Yes

Google AutoML [118] 2017 No-code Tabular, Text, Images Yes

Levity [115] 2020 No-code Text, Images Yes

Trinity [119] 2021 No-code Images Yes

A brief description of the introduced platforms can be provided as follows:

• RapidMiner [113]: RapidMiner is an IDE for data science introduced in 2001, with roots

in the Technical University of Dortmund, that supports end-to-end data science, including

ML and DL. It was developed on an open core model and it is used for both industry and

research. Some of RapidMiner’s biggest customers are Land Rover/Jaguar, Michellin and

CEPSA.

• Peltarion AI [116]: Peltarion AI is a Swedish company that provides a low-code platform

to build, train and evaluate DL models. Some of Peltarion’s customers are companies like

Tesla, BMW or HP.

• KNIME [110]: KNIME, with foundations in the University of Konstanz, is a low-code

platform for data science. Through it’s ”Building Blocks of Analytics” concept, users

can take advantage of intuitive visuals to build data science pipelines. KNIME has two

complementary tools: KNIME Analytics Platform, which is open source and can be used

to create data science workflows; KNIME Server for taking data science workflows into

production.

• Teachable Machine [117]: Teachable Machine is a Google’s web-based no-code AI plat-

form designed to effortlessly apply AI algorithms for image-related data. It works on the

3Google’s Teachable Machine works by using Transfer Learning (TL), i.e, adapting powerful general-purpose pre-

trained models for specific use cases through re-training. It is unclear if any AutoML is used to further optimize the

resulting neural network architecture.

28

ALMA: ALGORITHM MODELING APPLICATION

basis of Transfer Learning and provides a way of downloading created models into one’s

machine.

• Obviously.ai [114]: Obviously.ai is a tool that enables non-technical business people to

run predictions on their historical data, enhancing decision making. It is mostly used for

tabular data and supports use cases such as fraud detection, sales prediction and credit risk

scoring.

• Google AutoML [118]: Google’s AutoML platform is a cloud service that allows users

to build upon algorithms distributed by Google, tailoring them to the needs of their own

business. It supports integration with custom-made software.

• Levity [115]: Levity is a no-code web-based platform built upon the belief that AI should

not be solely the privilege of tech companies that hire and build data science teams. It

provides access to algorithms for image tagging, text classification and others. It works

mainly with unstructured data.

• Trinity [119]: Trinity is a recent no-code platform developed by Apple. It allows both

machine learning researchers and non-technical geospatial domain experts to experiment

with domain-specific signals and datasets. Trinity is composed of an intuitive user inter-

face, a feature store, hosting derivatives of complex feature engineering, a deep learning

kernel and a scalable data processing mechanism.

3.4.3 AutoML

AutoML is a sub-field of ML dedicated to the study of algorithmic methods that provide certain

degrees of automation in all the stages of ML systems design. It’s main purpose lies on increasing

the efficiency of data scientists by reducing the need for human-in-the-loop in multiple steps that

compose a ML pipeline [120]. This topic is therein of the upmost importance, as the world is

experiencing both large-scale data collection and shortage of AI expertise required to work with

such data [11],

Although AutoML could be in theory applied to any ML use case, most of the research is per-

formed under supervised learning [121], so, in that respect, and for the scope of this thesis, de-

spite the valiant efforts in unsupervised [122] and semi-supervised learning [123], the subsequent

comparison of AutoML approaches will address only the most dominant paradigm. Addition-

ally, there are different notions on the scope of AutoML [124], leading to distinct viewpoints.

For example, the concept of ”full models” [125, 126], implies that an AutoML system should

mandatorily address all the necessary processes for building a supervised learning model, while,

29

CHAPTER 3. MACHINE LEARNING

in fact, any task that automates machine learning design can, ultimately, be considered AutoML

- which is the case of hyperparameter optimization [127] and Neural Architecture Search (NAS)

[128].

In order to systematize the view of this work on AutoML, and with so many aspects to be con-

sidered, there is the need to establish a proper taxonomy on the levels of automation provided

by such systems. Despite several publications presenting different unifying views [120, 129],

the three-tiered framework of Liu et al. [121, 129] will be used in the scope of this thesis. The

considered levels can be described as follows:

1. α (alpha-level): Addresses the task of defining a specific mapping (by means of a function)

between inputs and outputs. For instance, choosing hard-coded models based on if-then

rules or manually setting algorithms hyperparameters for a particular task.

2. β (beta-level): This level of automation is two-fold: it includes, firstly, methods that are

able to find the most appropriate hyperparameters for a given classifier by means of auto-

matic exploration of the search space and, secondly, others with the ability to explore the

space of all estimators from a limited set of learning algorithms. Examples of such level

of automation are PSMS [126] and Auto-Weka [130].

3. γ (gamma-level): The γ-level involves meta-learning algorithms. These methods use a

knowledge base of tasks-solutions to learn how to recommend β -level algorithms for new

tasks. Some examples of γ-level methods are surrogate models [131], Auto-sklearn [124]

and older approaches based on algorithm recommendations from a predefined set of op-

tions [132].

3.4.3.1 Comparison

In [121], Escalante performed a review of the most relevant methodologies and works on Au-

toML from 2006 to 2020. These were categorized by the author into three major waves of

developments. The first, between 2006-2010, focused on ”full model” building and laid the foun-

dations for AutoML, with some approaches based on Particle Swarm Optimization (PSO) being

presented. The second, between 2010-2016, was mainly marked by the adoption of Bayesian

Optimization / Sequential Model-Based Optimization (SMBO) as the de facto optimizer for Au-

toML and the identification of meta-learning as a cornerstone of future endeavors. The third,

from 2017 up until today, mainly features NAS, the employment of AutoML to the disruptive

trend of DL [11]. Table 3.2 was adapted from [121] and provides a chronological overview of

30

ALMA: ALGORITHM MODELING APPLICATION

the main AutoML methods4.

Table 3.2: AutoML methods comparison.

AutoML Landscape Summary

Designation Year Wave Level Approach

PSMS [125, 126] 2006 1st β Particle Swarm Optimization

Auto-WEKA [130] 2013 2nd γ Sequential Model-Based Optimization

Auto-sklearn [124] 2015 2nd γ Sequential Model-Based Optimization

TPOT [111] 2016 2nd β Genetic Programming

NAS1 [133] 2017 3rd γ Evolutionary Algorithms

NAS2 [134] 2017 3rd γ Reinforcement Learning

A brief description of each method can be provided as follows:

• PSMS [125, 126]: Particle Swarm Model Selection addresses the problem of full pipeline

generation by finding the best combination of data preprocessing, feature selection and

classification methods. The algorithm works by encoding candidate solutions into vector-

based representations that undergo trough PSO in order to find those who are more likely

to obtain optimal performance.

• Auto-WEKA [130]: Auto-WEKA considers both the problem of finding an optimal learn-

ing algorithm as well as the setting of its hyperparameters by applying Bayesian Opti-

mization. Its performance was tested on several datasets such as MNIST and CIFAR-10,

obtaining significant gains when compared to standard hyperparameter selection methods.

• Auto-sklearn [124]: Auto-sklearn builds upon the Python’s ML library of scikit-learn by

providing an AutoML wrapper. It works by taking into account past performance indica-

tors on similar datasets and by building ensembles of models that were evaluated during

the optimization process. Auto-sklearn won six out of ten phases of the first ChaLearn

AutoML challenge [135].

• TPOT [111]: TPOT introduces the novel concept of tree-based pipeline optimization. This

method, when tested on a series of benchmark datasets, showed that, without requiring any

input or prior knowledge from its user, is able to achieve similar or even better degrees of

performance when compared to standard ML analysis.

4Although the already mentioned PyCaret [112] being a well accepted AutoML framework, it was not included in

the comparison as it was not possible to obtain a clear understanding of its underlying mechanics

31

CHAPTER 3. MACHINE LEARNING

• NAS1 [133]: Real et al., applied evolutionary algorithms for NAS in the context of image

classification problems. From the presented results, it was possible to conclude that, using

simple evolutionary techniques and non-insignificant amounts of computational resources,

it is possible to achieve competitive results within the state of the art for benchmarks such

as the CIFAR-10 (95.6%) and CIFAR-100 (77.0%) datasets.

• NAS2 [134]: Zoph et al. from Google Brain, trained a controller Recurrent Neural Net-

work (RNN) with reinforcement learning to generate descriptions of neural network archi-

tectures. The model, while starting from scratch, is able to design architectures that rivals

with the best human-invented ones for both the CIFAR-10 (image classification) and the

Penn Treebank (character language modeling) datasets.

3.5 Summary

Despite no-code/low-code AI platforms being quite complex and hard to categorize [106], it

was possible to perceive that several products such as KNIME [110] and RapidMiner [113] have

been around for a long time, even before the term ”low-code” was officially coined and used [17].

Additionally, and unsurprisingly, since low-code became a disruptive trend [17], many platforms

have been developed in recent years (e.g., Levity [115] and Trinity [119]). Another tendency

highlighted through the provided comparison is the adoption of AutoML by the majority of the

applications, solely demonstrating the importance of this technology for no-code/low-code AI.

In the case of ALMA platform, it can be described as a low-code application that does not require

high-technical background for it’s use. However, although ALMA aims to fully engage typical

users in all steps of the data science process, advocating for transparency and raising awareness

to security/safety issues, it also intends to provide alternative paths for a less educated audience

through the encompass of AutoML features.

32

CHAPTER 4

PROPOSED SOLUTION

This chapter provides an overview of the conceptualization behind ALMA. At first, a new no-

code/low-code AI application is envisioned and proposed with the main purpose of tackling

pitfalls of current platforms. Secondly, the overall requirements of this solution are presented

and organized by different levels of priority. And, finally, the design of the implemented PoC is

described along with additional implementation details.

4.1 Conceptualization

ML is a broad domain comprising several learning paradigms and algorithms [102]. Further-

more, the lifecycle of a ML-based solution is rather complex, comprising multiple interconnected

phases that are hard to completely categorize and describe [104]. This partially explains why the

current landscape of no-code/low-code AI is so convoluted, with many applications sharing sim-

ilar traits. Some, such as KNIME [110] or RapidMiner [113] attempt to model the whole data

science process, without a specific emphasis on ML, while, oppositely, others, as it is the case

of Google’s Teachable Machine [117], focus solely on the processing of a specific type of data

trough ML algorithms. This variety of platforms offers different levels of granularity and use

33

CHAPTER 4. PROPOSED SOLUTION

cases, serving both experienced data scientists and less technically educated individuals. How-

ever, recent concerns [19, 136] claim for greater transparency and security in this kind of solu-

tions. Therefore, and motivated by the increasing use of ML, the need for greater democratization

and current security concerns, this thesis envisions the development of a novel no-code/low-code

platform, ALMA. To move from a hypothetical solution to a full-scale, production-ready appli-

cation, functional and non-functional requirements should be well-defined, discussed and prior-

itized. In that sense, and with respect to both the overall ML process and existing applications,

four main topics were selected for discussion: type of data; target audience; operational phases;

and security concerns. The aim of ALMA on all of these topics clarifies its position in the state

of the art and helps to define high-level requirements.

4.1.1 Type of Data

Some existing no-code/low-code AI platforms position themselves according to the type of data

on which they operate [117], while others target all types of data in an undifferentiated way [110].

The later, although being powerful and highly configurable platforms, are harder to use due to

the vast amount of scenarios that cover, losing on practicality and usability when compared to

more context-specific solutions. In that sense, ALMA was designed mainly for tabular data, as it

is still the most used form of data [137]. For this reason, and although the possibility of including

other types of data in the future should not be completely discarded, these were not be considered

to build the list of requirements.

4.1.2 Target Audience

Similarly to what happens for the type of data, there are no-code/low-code AI platforms for all

kinds of users. Therefore, ALMA aims to provide support for both technical and non-technical

operators, adjusting the level of configuration required to setup the ML process depending on the

user’s expertise. This way, more prolific users, such as data scientists, are able to fine tune the

ML pipeline, benefiting from greater flexibility and transparency. Simultaneously, less technical

individuals can still benefit from ALMA by using more straightforward interfaces, where the ML

process is mostly controlled by AutoML.

4.1.3 Operational Phases

The overall ML development process is complicated and hard to categorize [104], being even

harder when considering the implementation details of the distinct learning paradigms. Addi-

tionally, since these allow the modelling of completely different tasks, requiring differentiated

34

ALMA: ALGORITHM MODELING APPLICATION

and fine-grained configurations, supporting all paradigms would most likely contribute to a con-

voluted system. Therefore, and as supervised learning is still the most dominant ML paradigm

[138], ALMA was designed to support it, allowing both classification and regression use cases.

On the other hand, and with respect to the ML lifecycle reference model proposed by ENISA in

[104], Figure 3.1, ALMA addresses the phases of Data Ingestion, Data Exploration, Data Prepro-

cessing, Feature Selection, Model Training, Model Tuning, Model Deployment and Model Main-

tenance. These, although comprising the technical intensive core of the ML development process,

are expected to suffer conceptual changes throughout the system design for greater practicality

and increased usability1. The remaining phases were left apart for multiple reasons: Business

Goal Definition and Business Understanding correspond to phases that occur outside the scope

of the application (e.g., high-level discussions in team meetings); and Transfer Learning, as it

is mostly used for images and text (that is not addressed by ALMA), does not have yet much

applicability for tabular data, being still an underdeveloped subject [139].

4.1.4 Security Concerns

Nowadays, AI security is a topic of paramount importance, since, without addressing current

concerns [80], the potential of such technology will remain unfulfilled [81]. Furthermore, when

it comes to no-code/low-code AI, security issues can be either reduced, by providing users proper

security measures within the development process, or increased, through negligent/unprotected

use by less-technical individuals [19]. Similarly, another contemporary concern lies on the lack

of explainability and transparency, as many no-code/low-code platforms provide zero to none

details on what happens under the scenes. This makes the adoption of no-code/low-code AI to

be lesser than it could, as businesses are reluctant to provide a ML-based solution to a customer

without fully understanding its implications [136].

To mitigate such problems, ALMA aims to provide counter-measures against adversarial at-

tacks, such as different means of adversarial training to increase the overall robustness of algo-

rithms. Additionally, regarding model-based explainability, ALMA encompasses functionalities

that help to better understand the internal functioning of algorithms. Some of these can rely

on feature importance measures, prediction-level explanations or global model explainability.

Finally, to address the problem of limited transparency, this thesis proposes a code generation

approach, where the configurations made by users of the platform are directly converted into ex-

ecutable code that can be later downloaded for further inspection. This allows users to have full

1ENISA’s proposed ML lifecycle reference model attempts to provide an holistic view of the whole ML domain,

while ALMA addresses only one of its subfields, supervised learning. Therefore, the initial reference model was

refactored to reflect this narrower viewpoint, aggregating some of its phases with little taxonomy changes

35

CHAPTER 4. PROPOSED SOLUTION

perception of ALMA’s inner workings, potentially increasing their trust in the system.

4.1.5 Requirements

Having described the positioning of ALMA in several topics, it is now possible to understand

not only how this solution compares to existing platforms, but also how it intends to tackle the

general weaknesses of the state of the art in no-code/low-code AI. Therefore, to provide a more

systematic overview of the proposed solution, a list of functional requirements was elaborated.

These were prioritized into three levels, low, medium and high, so that it is easier to select

which requirements should first be addressed in subsequent development iterations. Although

all requirements appear to be similarly important, there is no point in addressing some of them

without having others implemented first. For example, there is no point in providing access to

different adversarial training methods if the platform does not yet support the modeling of a

traditional ML pipeline. The list of high-level requirements is presented in Table 4.1.

Table 4.1: High-level requirements of the proposed solution.

Identifier Requirement Priority

R1 Users must be able to upload tabular datasets into the system. High

R2 Users must be able to create, execute and evaluate ML pipelines,

for classification or regression, using an uploaded dataset.

High

R3 Users must be able to advance with a given ML pipeline for the

production phase.

High

R4 Users must be able to consult records from an uploaded dataset. Medium

R5 Users must be able to download the code associated to a given ML

pipeline.

Medium

R6 Users must be able to visualize insightful explanations about a

given ML pipeline operation.

Medium

R7 Users must be able to use current adversarial training methods to

improve the robustness of their ML pipelines.

Medium

R8 New users must be allowed to register themselves in the system. Medium

R9 Users must be able to edit their personal information as well as

delete their own account from the system.

Low

These requirements can still be further dissected. For example, the main, and only actor men-

tioned in Table 4.1 is the User, but, as previously stated, each user can be associated to a different

technical level. For this reason, the User is further divided into two profiles, the Technical User

36

ALMA: ALGORITHM MODELING APPLICATION

and the Non-technical User. Depending on the profile, R1, R2, R3 and R7 are expected to be

addressed differently. In particularly, R2 requires further detailing as it is arguably one of the

most important requirement:

• R2.1: Technical Users must be able to specify feature-level preprocessing operations such

as feature imputation (e.g., replacing missing values by the mean) and encoding (e.g.,

ordinal encoding or one-hot encoding).

• R2.2: Technical Users must be able to specify dataset-level preprocessing operations such

as feature selection (e.g., recursive feature elimination or PCA) and normalization (e.g.,

min-max normalization).

• R2.3: Technical Users must be able to select specific algorithms to be used as a final step

of the classification/regression ML pipeline.

• R2.4: Technical Users must be able to perform hyperparameter tuning with different opti-

mization strategies (e.g., grid search or random search).

• R2.5: Technical Users must be able to select evaluation metrics to be computed when

executing a given ML pipeline (e.g., accuracy or f1-score).

• R2.6: Non-technical Users must be able to have the required configurations to build a

given ML pipeline abstracted through AutoML.

The same logic applies for requirements R1, R3 and R7. While a Technical User is expected to

be provided with greater flexibility and customization, a Non-technical User requires a higher

level of abstraction to keep the overall process rather simple, possibly requiring the application

of distinct methods to perform the same task. Furthermore, there is also to note that all sub-

requirements inherit the priority of the parent, high, with the exception of those related to Non-

technical Users, which are classified with medium priority-level.

4.2 Proof of Concept

Taking into account the time constraints implicit to the development of this thesis, attempting to

fully implement the proposed solution would end up being an overly ambitious attempt. There-

fore, instead, only a fraction of the introduced requirements was addressed, producing a working

PoC. These were selected according to the priority level, R1 to R6, with some simplifications

being made for this first iteration. For each requirement, the introduced simplifications can be

described as follows:

37

CHAPTER 4. PROPOSED SOLUTION

• R1: The data ingestion functionality of the system was constrained only to tabular data

files, disregarding other means such as SQL or NoSQL databases.

• R2: Only Technical Users were considered and the system was only expected to support

classical ML algorithms and basic preprocessing steps.

• R3: For the deployment phase, integration with cloud or API generation was considered,

however, for now, only the trained model was expected to be provided as a downloadable

serialized file. This file can later be used as part of another system that, somehow (e.g.,

REST API), exposes the model’s capabilities.

• R4: For the PoC, the user should only be able to consult a small sample of a dataset’s

records, not allowing for more complex query and visualization mechanisms.

• R5: This requirement was expected to be fully addressed, as the ALMA approach to no-

code/low-code is based on code generation.

• R6: For now, only the importance measure of the dataset’s features should be provided as

an explainability functionality.

4.2.1 Use Cases

After selecting the subset of requirements to be addressed for the PoC and identifying the list

of simplifications required to comply with the time constraints, it was necessary to detail these

high-level requirements into fine-grained Use Cases (UCs) to steer the remaining design and

implementation. The Technical User’s use cases are presented in Table 4.2.

Table 4.2: Technical User’s use cases.

Identifier Use Case

UC1 As a Technical User, I should be able to upload tabular datasets.

UC2 As a Technical User, I should be able to consult the list of datasets.

UC3 As a Technical User, I should be able to see a sample of records from an uploaded dataset.

UC4 As a Technical User, I should be able to create a ML pipeline.

UC5 As a Technical User, I should be able to consult the results of a ML pipeline.

UC6 As a Technical User, I should be able to consult the importance of a dataset’s features.

UC7 As a Technical User, I should be able to download the code related to a given ML pipeline.

UC8 As a Technical User, I should be able to download a trained model in serialized format.

38

ALMA: ALGORITHM MODELING APPLICATION

When performing this process, new problems emerged, such as how would the system manage

the available algorithms and metrics that Users employ when configuring a given ML pipeline.

One option would be to statically define a predefined set of resources supported by the platform.

However, that solution is rather limiting as it would make it difficult to expand the number of

algorithms and metrics in the future. Therefore, the need to create and manage these kind of

resources was identified, along with a new actor, the Administrator. The Administrator’s use

cases are presented in Table 4.3.

Table 4.3: Administrator’s use cases.

Identifier Use Case

UC9 As an Administrator, I should be able to define new algorithm types.

UC10 As an Administrator, I should be able to configure new algorithms.

UC11 As an Administrator, I should be able to configure new metrics.

4.2.2 Domain Model

With the use cases and their respective actors identified, a domain model was developed to pro-

vide a better understanding of the business domain addressed by the PoC, revealing the main

concepts and their relationships through a series of interconnected constructs. The proposed

domain model is presented in Figure 4.1.

Figure 4.1: Domain Model.

39

CHAPTER 4. PROPOSED SOLUTION

In the presented domain model, 5 different contexts were identified, that is, the definition of

tangible boundaries of the sub-domains presented in the global model. These couple strongly

related constructs together, providing a better overview of the business. For each context, the

relationship between concepts can be briefly described as follows:

• Dataset: The dataset represents a set of tabular data that was uploaded into the system.

This data comprises one label (e.g., the classes we are trying to make a given ML model

recognise) and a subset of features. In turn, each feature is of a given data type, either

categorical or numerical. The proper identification of the data types is required to decide

upon the most suitable preprocessing operations.

• Algorithm: An Algorithm does not represent exclusively ML algorithms for classification

or regression. It is an abstraction of, ultimately, any algorithmic operation, being it either

a ML model or an optimization algorithm for hyperparameter tuning. This distinction is

performed through the association between the Algorithm and Algorithm Type concepts.

Furthermore, an Algorithm can comprise several hyperparameter i.e, degrees of freedom

that influence its behaviour. The different values a given hyperparameter can take are

constrained by Possible Values. These can be of different types, as for example, if an

hyperparameter is exclusively categorical (e.g., distance formula to be used by KNN), then

its possible values are constrained to a specific list of designations. On the other hand, if a

hyperparameter requires a numerical value, it can be constrained between a minimum and

a maximum.

• Metric: An evaluation Metric represents a given mathematical formula to measure the

deviation between a set of predictions and the ground truth. Depending on the Metric Type,

classification or regression, different metrics are applied (e.g., accuracy for classification

and mean absolute error for regression).

• Pipeline: The Pipeline is a concept that represents the configuration of multiple operations,

Algorithms, such as preprocessing operations, ML models and meta-heuristic algorithms

for hyperparameter tuning, to be performed over a given Dataset. The Pipeline, when it

considers hyperparameter tuning, makes use of a Metric to serve as an objective function

that is maximized/minimized during the optimization process. Additionally, a Pipeline

originates an Executable Model, that can be used for deployment, and matches an Ex-

ecutable i.e, the result of transforming a given Pipeline into executable code to provide

increased transparency.

40

ALMA: ALGORITHM MODELING APPLICATION

• Result: When a Metric is applied to evaluate the final (tuned) version of a Pipeline, it

originates a Result. This concept represents, fundamentally, a score that evaluates a given

Pipeline according to a specific Metric.

This domain model was the foundation for the subsequent design, which included the represen-

tation of the business concepts (and logic) as a given set of objects and the separation of concerns

through the adoption of a service-oriented approach. It is also worth nothing that the domain

model does not provide, on its own, the full overview of all the implementation details required

to materialize the use cases presented in Tables 4.2 and 4.3.

4.2.3 Design

To provide an overview of the employed design, a combination of the 4+1 architectural view

model [140] and C4 model [141] was used to categorize all diagrams throughout the following

section. These foresee 4 + 1 different views of the software system with 4 levels of abstraction,

respectively. However, in this thesis, only two views will be addressed, the logic view and

the process view, at the second level of abstraction (container level). Furthermore, the Unified

Modeling Language (UML) [142] formalism was also used for all graphical views of the system.

4.2.3.1 Logic View

The logic view, at the container level, represents the different individual blocks of the system and

their interaction. In the context of ALMA’s PoC, the system is comprised by 5 containers with

limited responsibilities to assure greater maintainability and fault isolation. The logic view at

container level is presented in Figure 4.2.

Figure 4.2: Logic view at container level.

41

CHAPTER 4. PROPOSED SOLUTION

The responsibilities of each container presented in Figure 4.2 can be described as follows:

• ALMA Core: This container is responsible for managing the building blocks of ML

pipelines, such as algorithms and metrics. ALMA Core provides two conceptually dis-

tinct interfaces, Core REST API and Admin REST API. The Core REST API is mainly

used for data consulting and validation by ALMA Visualization, while the Admin REST

API provides access to the Administrator’s use cases. As it would not be viable to imple-

ment a distinct GUI for the Administrator in the PoC, its use cases are triggered through

this API at the first start of the system, populating ALMA CoreDB with the supported

algorithms and metrics.

• ALMA Config: This container is responsible for managing both datasets and pipelines. It

provides a single interface, Config REST API, which is used by ALMA Visualization, and

consumes the Filesystem API for file input/output operations.

• ALMA Visualization: Finally, ALMA Visualization is the container responsible for han-

dling the interaction with the Technical User through a GUI.

The remaining containers, ALMA CoreDB and ALMA ConfigDB, do not require further details

as their name is quiet self-explanatory, representing the data stores used by ALMA Core and

ALMA Config for persistence purposes. The choice of splitting the overall system into smaller

containers can be justified by the Single Responsibility Principle (SRP), the ”S” of the SOLID

design principles mnemonic [143]. This principle states that every system component should

have only one responsibility. Similarly, with respect to ALMA Core, two distinct client-specific

interfaces are provided by the container instead of a single general-purpose one. This design

follows the Interface Segregation Principle (ISP), the ”I” in SOLID.

Regarding technology-specific choices, both ALMA Core and ALMA Config were implemented

using the Python programming language [144], while ALMA Visualization was implemented

using Vaadin [145], a web application platform for Java [146]. For the container’s databases,

ALMA ConfigDB and ALMA CoreDB, MongoDB [147] was selected as the database manage-

ment program.

4.2.3.2 Process View

The process view, at the container level, describes the interactive process of the system when

processing a specific use case. In this thesis, one use case of each actor was selected to be show-

cased, UC4 (as a Technical User, I should be able to create a ML) and UC10 (as an Administrator,

42

ALMA: ALGORITHM MODELING APPLICATION

I should be able to configure new algorithms). For UC4, the process view, at container level, is

presented in Figure 4.3.

Figure 4.3: UC4 - Process view at container level.

The interaction presented in Figure 4.3 describes the process of creating a new ML pipeline. For

this, the Technical User interacts with ALMA Visualization, sequentially performing a series of

configurations relative to each ML phase: preprocessing, modelling, hyperparameter tuning and

evaluation. ALMA Visualization, in turn, fetches data from specific sources, ALMA Config and

ALMA Core, for each step of the pipeline. Finally, when the Technical User finishes the config-

uration of the evaluation phase, the last step of the pipeline, ALMA Visualization commands the

creation of the ML pipeline to ALMA Config, which responds with the correspondent evaluation

43

CHAPTER 4. PROPOSED SOLUTION

results. There is also to note that calls 27 and 28 were condensed for visualization purposes. Al-

though conceptually there is only one call, in practice, several calls are made to ALMA Config,

ordering the creation of the pipeline, its conversion into executable code and the execution itself.

On the other hand, the Administrator’s use case is substantially more simple to follow, requiring

only a single call to the ALMA Core container, using the Admin REST API. The UC10 process

view, at container level, is presented in Figure 4.4.

Figure 4.4: UC10 - Process view at container level.

In the diagram presented in Figure 4.4, as the development of an interface for the Administrator

was not considered for the PoC, the actor is, in truth, another system that triggers its use cases

at the first start of the application, populating ALMA with the supported algorithms and met-

rics. Furthermore, for simplification purposes, the two database containers, ALMA CoreDB and

ALMA ConfigDB were not represented in the process view, although being consistently used in

the majority of the use cases for data query and persistence purposes.

4.3 Summary

The field of no-code/low-code AI is gradually maturing, with many platforms being produced

over the last few years [106]. Nevertheless, there is yet room for improvement in current so-

lutions, especially when it comes to security/safety aspects such as robustness, explainability,

trustworthiness and transparency [19, 136].

However, to move from a hypothetical solution to a de facto no-code/low-code AI platform,

there is much work to be done. Hence, this chapter made a step towards that goal, providing a

detailed description on how ALMA positions itself according to the type of data, target audience,

targeted ML operational phases and AI security concerns - distinguishing factors in the state of

the art. Furthermore, a list of high-level requirements was produced to systematize what should

be addressed in a future implementation, guiding the design of subsequent platforms.

Evidently, for this thesis, aiming to implement the full system would be a too ambitious attempt.

44

ALMA: ALGORITHM MODELING APPLICATION

Therefore, only a subset of requirements was chosen to be partially addressed in a PoC, with

the main objective of testing the applicability of the proposed solution in real case studies. The

high-level design decisions required to build this software system were also described throughout

the remaining of the chapter, providing an overview of the overall architecture at container level.

45

CHAPTER 4. PROPOSED SOLUTION

46

CHAPTER 5

DEMONSTRATION

To demonstrate the applicability of the proposed platform, two publicly available datasets were

selected as benchmark for comparing several classification and regression algorithms. In this

chapter, these datasets are described along with the configuration steps required to perform the

comparative study, being the experimental results presented and discussed. All the necessary

implementation was carried out exclusively using ALMA’s features.

5.1 Case Studies

As ALMA supports both classification and regression, one dataset was chosen for each of those

tasks. These datasets were extracted from Kaggle, being the first one related to website phishing

detection [148, 149] and the second one to laptop price forecasting [150].

5.1.1 Website Phishing

Website phishing can be described as the practice of mimicking a given trusted website to obtain

sensitive user information. Thus, due to the massive amount of online transactions performed on

a daily basis, this topic is of paramount importance for securing the online community [148].

47

CHAPTER 5. DEMONSTRATION

The selected website phishing dataset comprises 10 high-level features related to 1353 websites

of different sources, holding three possible categorical values, legitimate, suspicious and phishy,

that have been replaced for 1, 0 and -1, respectively. The value of each feature was determined

based on predefined if-then-rules. The dataset’s features can be briefly described as follows

[148, 149]:

• Server From Handler (SFH): When a user submits information on a given website, this

will transfer it to a server for further processing. If the SFH is ”about: blank” or empty,

the website is considered to be phishy, while if the server transfers the information to a

different domain it is suspicious and, otherwise, legitimate.

• Pop-up Window: Evaluates the existence of pop windows with forms, as in legitimate

websites users are, typically, not asked to submit their credentials via popup windows.

• SSL Final State: Verifies if the HTTPS protocol is legitimate and is offered by a trusted

issuer such as GeoTrust or VeriSign.

• Request URL: As webpages consist of text and multimedia objects such as images or

videos, these are usually loaded from the same server of the webpage. Hence, this feature

evaluates if these objects are loaded from a different domain other than the one typed in

the URL address bar.

• URL of Anchor: If the links within the page lead to domains different from the one

displayed in the URL address bar.

• Website Traffic: Phishing websites usually have much lower website traffic than legiti-

mate ones, as they are expected to have a relatively short life.

• URL Length: Since phishers can hide the suspicious part of a URL to redirect user infor-

mation to untrusted domains, long URLs are considered to be suspicious or phishy.

• Age of Domain: Websites that are online only for a short period of time can be deemed as

phishy.

• Having IP Address: If the domain name of the URL uses an IP address, sometimes pre-

sented in hexadecimal notation, then the website is most likely to be phishy.

• Result: It’s the dataset’s target variable, labeling each website as either legitimate, suspi-

cious or phishy.

48

ALMA: ALGORITHM MODELING APPLICATION

5.1.2 Laptop Prices

For the regression task, a laptop price forecasting dataset was selected from Kaggle [150]. This

dataset comprises 11 laptop-related features, such as the product description, laptop type (e.g.,

notebook or gaming), inches, screen resolution, CPU, RAM, memory, GPU, operating system

and weight that can be used to predict the dataset’s target variable, the price in euros. Differently

from the website phishing dataset, as these features are quite straightforward to understand, there

is no need for a more thorough description. However, since the dataset is not originally as clean

as the phishing one, it requires some operations to be done before being uploaded into ALMA for

further processing. To simplify the cleaning operation, the same procedure employed by Ruslan

in [151] was implemented resorting to the Python programming language. The most significant

steps that were performed can be described as follows:

1. Firstly, duplicated records were discarded from the dataset. These include situations where

all features are the same but the laptop price varies.

2. Then, records where the laptop price belonged to the 95 percentile of the probability dis-

tribution were also removed, avoiding probable outliers.

3. The RAM column was preprocessed (e.g., ”GB” was removed) and directly converted as a

numerical feature, removing rows that only occurred once (24 and 32GB).

4. Regarding the operating system, ”mac os x” was replaced by ”macos” and ”windows 10

s” by ”windows 10”. The single record related to the ”android” operating system was

removed.

5. From the screen resolution feature, more significant high-level features were extracted:

width, height and the resolution category, such as ”full hd” and ”4k ultra hd”.

6. Similarly, the CPU, GPU and memory features were split according to the unique occur-

rence of their values (e.g., intel or amd for cpu, intel, nvidia or amd for gpu and ssd, hdd

or flash for the memory feature).

7. Finally, all column names were normalized, being converted to lower case and have each

word split by ” ”, before exporting the transformed dataset.

The resulting laptop price dataset comprises 26 features (including price), being uploaded to

ALMA just like the website phishing one.

49

CHAPTER 5. DEMONSTRATION

5.2 Execution

After describing the chosen datasets, one can now upload them into ALMA to create/configure

distinct ML pipelines for both classification and regression, assessing their predictive capabil-

ities in any of these benchmarks. In particularly, for this work, four ML algorithms, Decision

Tree, XGBoost, Random Forest and K-Nearest Neighbors (KNN), were selected, implemented

and compared for both tasks solely by using ALMA’s features1. Furthermore, and to assure an

unbiased comparison, several rules, accounting the best practices of ML development, were de-

fined and strictly followed, being materialized as simple configurations in ALMA’s GUI. The

code generated by the application for the presented example is provided in Appendix A.

5.2.1 Data Ingestion

Having downloaded the datasets from Kaggle, they can be uploaded into ALMA platform by

selecting the ”Add New” button in the main dashboard, Figure 5.1.

Figure 5.1: ALMA platform - Main Dashboard.

Afterwards, a dialog will pop-up, prompting the user to select the dataset file, automatically

filling in the display name on upload, and allowing further editing. The user should also select

the label column and specify the percentage of data that must be reserved for the test set (or

upload a new test file entirely if the dataset is split beforehand), Figure 5.2.

1Although these four algorithms were specifically selected for the demonstration, ALMA supports the vast ma-

jority of algorithms that are implemented in Python and compatible with scikit-learn [15]. New algorithms can be

configured in the system without having to rewrite any code, requiring only the execution of UC10 and small config-

urations in a JSON file.

50

ALMA: ALGORITHM MODELING APPLICATION

Figure 5.2: ALMA platform - Add New Dataset.

The procedure illustrated by Figures 5.1 and 5.2, was equally applied for both web phishing and

laptop prices datasets.

5.2.2 Preprocessing

In the preprocessing step, one of the uploaded datasets should be selected along with the task to

be done (classification or regression). Then, in the table bellow, for each column of the selected

dataset, some information is displayed and basic preprocessing steps regarding features imputa-

tion and feature encoding can be configured. Figure 5.3 presents the employed preprocessing for

the laptop prices dataset.

Figure 5.3: ALMA platform - Build Pipeline - Preprocessing Step.

51

CHAPTER 5. DEMONSTRATION

For this experience, regarding imputation, ”Mode Imputer” was employed for categorical fea-

tures, replacing potentially missing values of a given feature by the most frequent one, and ”Mean

Imputer” was employed for numerical features, replacing missing values by the mean of all other

values of that given feature. On the other hand, for the encoding, that applies only to categorical

variables, one hot encoding was used, as there wasn’t any ordinal features and the number of

distinct values of each categorical feature is considerably small (otherwise, as it would result in

sparse and large feature spaces, other strategies such as binary encoding could be preferred).

5.2.3 Modeling

In the modeling step, three select boxes are displayed, allowing the configuration of feature

scaling, dimensional reduction and the final predictive algorithm. Regarding the first, min-max

normalization was employed only for the KNN, as the algorithm usually underperforms when

the input data presents different scales (e.g., tens vs thousands). The remaining algorithms, being

tree-based, do not suffer from the same problem, and as of such, don’t require normalization to

be performed. Differently, dimensional reduction was not employed for any algorithm, since the

input feature space is already small enough to be processed directly. For the laptop prices dataset,

the configuration of min-max normalization and KNN regressor is presented in Figure 5.4.

Figure 5.4: ALMA platform - Build Pipeline - Modeling Step.

5.2.4 Hyperparameter Tuning

After the modeling step, hyperparameter tuning can be performed to determine the best con-

figuration of each algorithm before making the final evaluation in the test set. For this, k-fold

52

ALMA: ALGORITHM MODELING APPLICATION

cross validation (5 folds) was employed along with grid search, optimizing the Mean Absolute

Error (MAE) for regression and accuracy for classification. As both datasets are relatively small

(1.1 to 1.3 thousand records) and hyperparameter grids comprised only 12 different combina-

tions, the bruteforce solution was feasible to be computed in a short amount of time (around 1

or 2 minutes). For large datasets, different choices are advised to keep the computational time

of the experience manageable, such as using a validation set instead of performing k-fold cross

validation and/or applying a random search (or other heuristic/meta-heuristic) instead of grid

search. Figure 5.5, presents the configuration of the hyperparameter tuning process for the KNN

regressor in the context of the laptop prices dataset.

Figure 5.5: ALMA platform - Build Pipeline - Hyperparameter Tuning Step.

To prevent one algorithm to be benefited over other, all employed hyperparameter grids had

12 possible combinations of parameters. Furthermore, the same grid of hyperparameters was

employed for the same algorithm for both tasks, regression of laptop prices and website phishing

classification. The exception was the split criterion of tree-based algorithms i.e., the function that

measures the quality of a split, which has different implementations depending on the task (e.g.,

gini/entropy for classification and squared error/absolute error for regression).

5.2.5 Evaluation

In the evaluation phase, the metrics to be computed through the comparison between the model’s

predictions in the test set with the ground truth can be selected. For the website phishing, ac-

curacy, precision, recall and f1-score were selected to determine the classification performance,

while for the laptop prices, MAE, Mean Squared Error (MSE) and R-squared (R2) were utilized

53

CHAPTER 5. DEMONSTRATION

to measure the regression capabilities. By default, accuracy and MAE are selected in ALMA’s

GUI for classification and regression, respectively. In Figure 5.6, the selection of the regression

metrics for the KNN algorithm is presented.

Figure 5.6: ALMA platform - Build Pipeline - Evaluation Step.

5.2.6 Results

After performing all configurations, ALMA platform will generate the source code, execute it

and display a result grid with the computed evaluation metrics. Figure 5.7, presents the results

for the KNN in the laptop prices dataset.

Figure 5.7: ALMA platform - Build Pipeline - Results Step.

54

ALMA: ALGORITHM MODELING APPLICATION

In that same layout, there are three additional buttons, one to download the generated source

code (”Source”), another to download the already trained model in a serialized format (”Model”)

and, finally, one to visualize the dataset’s feature importance i.e., the relevance of each feature to

predict the target variable (”Feature Importance”).

In the context of the laptop prices dataset, the five most important features are the ”typename”,

”hdd value”, ”memory ssd”, ”full hd” and ”inches”, as seen in Figure 5.8.

Figure 5.8: ALMA platform - Build Pipeline - Feature Importance.

To perform the intended study, this whole process was performed 8 times, one for each algorithm

for each dataset, with respect to the aforementioned specifications. The obtained results are

presented and discussed in the following section.

5.3 Discussion

Having used ALMA to configure and execute each ML pipeline, the experimental results were

stored in order to compare the performance of distinct algorithms for both tasks. Table 5.1

presents the obtained evaluation measures for the website phishing classification task.

Table 5.1: Results for website phishing classification.

Algorithm Accuracy Precision Recall F1-score

Decision Tree 0.85 0.78 0.74 0.76

Gradient Boosting 0.91 0.85 0.92 0.87

Random Forest 0.91 0.89 0.87 0.88

K-Nearest Neighbors 0.86 0.78 0.81 0.80

55

CHAPTER 5. DEMONSTRATION

From the presented results, it is possible to conclude that the Decision Tree is the worst per-

forming algorithm for all metrics, slightly surpassed by the KNN in term of accuracy, recall

and f1-score. Although both algorithms present an accuracy score above the 80% mark, 85%

and 86%, respectively, the ensemble-based algorithms have proven to be even more reliable to

identify phishy websites, achieving an equal accuracy score of 91%. Nevertheless, the Random

Forest, presents a higher f1-score, 88%, when compared to XGBoost, 87%, partially justified

by the greater balance between its precision and recall scores, 89% and 87%2. Ultimately, the

choice between Gradient Boosting and Random Forest, for this particular scenario, relies on the

business objectives and the metric to be optimized. If precision is preferred over recall, Random

Forest should be chosen, while, on the other hand, if recall is more important than precision,

XGBoost is the best option.

Considering the second task, laptop prices forecasting, the situation is somewhat similar. The

experimental results are presented in Table 5.2.

Table 5.2: Results for laptop prices forecasting.

Algorithm MAE MSE R2

Decision Tree 235.46 111415.79 0.58

Gradient Boosting 159.83 47654.29 0.83

Random Forest 159.50 49565.63 0.83

K-Nearest Neighbors 208.53 80689.83 0.73

As evidenced by the table above, the Decision Tree has obtained poor results when forecasting

laptop prices, achieving a MAE of 235.46, a MSE of 111415.79 and a R2 of 0.58. Differently,

the KNN has achieved reasonable results, improving upon the Decision Tree for all measures.

Nonetheless, the tree-based ensembles has showed to be, once again, significantly superior to

both algorithms. While tied on R2, 0.83, the Random Forest achieves the lowest MAE, 159.50,

against 159.83 presented by the XGBoost. In turn, the later has shown greater resilience against

larger errors than the Random Forest, achieving an MSE of 47654.29. Once more, it is hard to

decide between both ensembles, with XGBoost taking the upper hand if having a slightly lower

MAE is preferred over the risk of making large prediction errors sporadically3.

2F1-score can be described as the harmonic mean between precision and recall [25].
3As MSE first squares the errors before being averaged, it penalizes greater deviations from the ground truth.

56

ALMA: ALGORITHM MODELING APPLICATION

5.4 Summary

From the presented practical demonstration, it is possible to showcase that ALMA platform pro-

vides a practical abstraction over the process of creating classical ML pipelines, which often

requires time consuming tasks such as coding or debugging, while assuring great transparency

over what is happening under the hood. Through this example, it was possible to testify the ap-

plicability of ALMA, performing a complete study on two publicly available datasets, where all

necessary steps of typical ML development were set through an intuitive GUI and the desired ex-

perimental results obtained without having to perform fine-grained tasks. Furthermore, both the

generated code and the already trained models were made available to download, contributing to

greater transparency and potentially increasing the trustworthiness of the user on the overall sys-

tem. With the same objective, XAI was also addressed, providing greater insights on the dataset’s

features through a feature importance functionality.

57

CHAPTER 5. DEMONSTRATION

58

CHAPTER 6

CONCLUSION

This chapter presents the main conclusions drawn from this work, appointing future research and

development directions to further enhance the described solution.

6.1 Summary of Results

As AI became such an important technology for both modern-day companies and research cen-

ters, fueled by the recent advances in several subfields, such as ML, there is an increasing need

to promote its democratization, making it widely available at a lower cost. With the high costs

of capturing specialized talent, no-code/low-code platforms, can be a solution to provide easier

access to complex algorithms, lowering the technical barriers of its use and evening the playing

field between organizations of different sizes. Nevertheless, allowing less technically educated

users to build intelligent systems can be a disaster in terms of security if such aspects are not

properly addressed by the no-code/low-code platform being used. In that sense, ALMA was

designed to fill the gap of existing platforms, providing a simply way to build complex ML

pipelines while addressing the security concerns behind the use of these technologies, such as

explainability, robustness and trustworthiness.

59

CHAPTER 6. CONCLUSION

In this thesis, the high-level requirements for a working PoC were defined, leading to the design

and implementation of a first version of ALMA that can be further expanded in the future to

encompass additional functionalities. This PoC was showcased in a practical setting comprising

two publicly available datasets, abstracting the implementation of ML pipelines through an intu-

itive GUI and producing the desired experimental results without having to perform fine-grained

task such as coding and debugging. Furthermore, all generated code and trained models were

made available trough download buttons in ALMA’s interface along with greater insights on the

feature importance of each dataset.

6.2 Objectives Overview

The objectives introduced in Chapter 1, section 1.2, were all fulfilled over the course of this

thesis. O1 (investigate the main factors that currently endanger the democratization of AI) was

addressed in Chapter 2, section 2.3, with a discussion on the current state of AI democratization

being performed. O2 (clarify the meaning of the terms: no-code, low-code and AutoML) and

O3 (study the state of the art in no-code/low-code AI and related technologies) were tackled in

Chapter 3, section 3.4, with the proposal of a novel taxonomy and a description of the state of

the art in both no-code/low-code AI and AutoML. Finally, O4 (identify the main flaws of current

platforms and propose a new solution) and O5 (implement a PoC and demonstrate it in real case

studies) were answered in Chapters 4 and 5. For the first, section 4.1 provides an overview over

the main flaws of current solutions and proposes a new approach for no-code/low-code AI, while,

for the second, section 4.2, presents an overview of the PoC’s design and implementation, being

its demonstration described throughout Chapter 5.

6.3 Research Questions Overview

In Chapter 1, section 1.3, the main research questions to be addressed in this thesis were defined,

with possible answers being provided throughout the remaining of the document. An overview

of the main conclusions drawn for each research question can be provided as follows:

• RQ1: What is the current state of AI democratization?

– Although experts have been starting to advocate the democratization of AI [14], this

technology is not yet, at the hands of the majority of people, with mega-firms such

as Facebook and Google having great influence over its future [11]. This is largely

caused due to their control over the main resources that influence the developemnt of

AI: human capital, computing power and data.

60

ALMA: ALGORITHM MODELING APPLICATION

– RQ1 is mainly addressed in Chapter 2, section 2.3.

• RQ2: What is the current landscape of no-code/low-code AI?

– The no-code/low-code AI market is still growing, with the recent introduction of

many similar applications, making it hard to categorize and describe. There are plat-

forms such as KNIME [110], that have been around for a long time, and others, such

as Levity [115], which were more recently introduced. Furthermore, while some at-

tempt to model the whole data science process, [113], others focus on specific use

cases such as predictive analysis [114] or image processing [117].

– RQ2 is mainly addressed in Chapter 3, section 3.4.

• RQ3: What are the main flaws of current no-code/low-code AI platforms?

– While current solutions provide answers to many use cases, there is still work to do in

the domain of no-code/low-code AI. According to recent concerns [19, 136], the main

aspects to improve rely into providing greater transparency and explainability, as the

”black-box” approach prevents many business from taking full utilitarian value out of

existing platforms. Furthermore, and with respect to the danger of adversarial attacks

[82, 83], no-code/low-code can also serve as a mean for introducing security controls

directly into the development process (e.g., adversarial training), contributing to more

secure AI-based solutions.

– RQ3 is mainly addressed in Chapter 4, section 4.1.

6.4 Limitations and Further Work

Although this work’s objectives were achieved, with the implementation and demonstration of

a working PoC in a practical setting, ALMA must undergo further developments before being

suitable to be used in a real production environment. In that regard, four major topics can be

appointed for future research and development: (i) large datasets; (ii) deep learning; (iii) explain-

ability; and (iv) robustness. These can be described as follows:

• Large datasets: Although ALMA was designed to support and operate over datasets of

various sizes, it currently works in a single-threaded environment. This implies that the

user must wait for the ML pipeline to process before making additional interactions in

the application. Since, nowadays, most applications of AI are deeply related to big data

technologies, the support for larger datasets should be enhanced for ALMA to be used

61

CHAPTER 6. CONCLUSION

in a real production environment. This limitation can be tackled by attaching a state to

each pipeline (e.g., in progress, finished) and executing them in separate threads, having

their state updated upon finishing. In turn, the user would make use of a pipeline listing

functionality to keep track of all pipelines that were built, identifying the ones still under

processing. Finally, strategies regarding distributed processing and resource management

should be considered to assure scalability, as multiple pipelines can be executed at the

same time by different users.

• Deep learning: For now, only classical ML algorithms are supported in ALMA, allowing

for many different pipelines to be built. However, being DL such as disrupting trend,

there is a need to also support such algorithms. This implies providing an abstraction over

modern programming libraries, such as Tensorflow [152] or Pytorch [153], and allowing

the use of GPUs, as these are typically required to train neural networks efficiently.

• Explainability: Some times, in domains such as healthcare or cybersecurity, explainabil-

ity is an essential requirement when developing an AI-based solution. Furthermore, the

ability to understand why an algorithm reached a certain conclusion increases the level of

transparency on what is happening under the scenes, potentially making the user to aug-

ment his trust on the overall system. For the first iteration of ALMA, XAI was tackled

by implementing a feature importance functionality that provides insights on the impact of

each feature of a given dataset. Nevertheless, further developments can be made to provide

both global (overall model) and local (prediction-based) explanations, potentially resort-

ing to well established programming libraries, which is the case of LIME [154] or SHAP

[155].

• Robustness: As of today, adversarial attacks represent a serious threat to overall AI se-

curity. Therefore, ALMA would benefit from providing not only a simplified access to

contemporary defense mechanisms, such as adversarial training, but also to appropriate

robustness measures, so that the resilience of trained algorithms against such attacks can

be properly judged. The implementation of such functionalities can make less technically

educated users more aware about the blind use of AI, mitigating security risks from an

early stage of development. For further iterations of ALMA, the Adaptative Perturbation

Pattern Method (A2PM) [156] should be considered, as it provides a way of creating co-

herent data perturbations for tabular data. This way, it is possible to encompasses domain

constraints into the data perturbation algorithm so that it doesn’t generate unrealistic ad-

versarial examples i.e., samples that can’t exist within a given domain.

62

ALMA: ALGORITHM MODELING APPLICATION

6.5 Final Remarks

This thesis demonstrated that, although AI being an essential technology for many organizations

all over the world, its use is not yet at the access of everyone. In fact, there is a need to democ-

ratize AI, preventing a privileged group of mega-corporations to shape its development in way

that mostly suits the interests of their own stakeholders. On the other hand, as the dependency

of the overall society on digital media only tends to increase, disregarding cybersecurity aspects

when creating new products can be a costly act. This also applies to data-based solutions, with

much research being done to understand the true implications of adopting AI at a large scale

while lacking appropriate security controls. Therefore, in its very own essence, this work aims

to raise awareness for these subjects, making a step forward to promote change by proposing a

new approach to no-code/low-code AI.

63

CHAPTER 6. CONCLUSION

64

REFERENCES

[1] M. Abou-foul, J. L. Ruiz-Alba, and A. Soares, “The impact of digitalization and servitiza-

tion on the financial performance of a firm: an empirical analysis,” Production Planning

& Control, vol. 32, no. 12, pp. 975–989, 2021.

[2] S. Chatterjee, R. Chaudhuri, and D. Vrontis, “”Does data-driven culture impact innovation

and performance of a firm? An empirical examination,” Annals of Operations Research,

2021.

[3] F. Emmert-Streib, “From the Digital Data Revolution toward a Digital Society: Perva-

siveness of Artificial Intelligence,” Machine Learning and Knowledge Extraction, vol. 3,

no. 1, pp. 284–298, 2021.

[4] R. Kitchin, The Data Revolution: Big Data, Open Data, Data Infrastructures and Their

Consequences. SAGE Publications, 2014.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirec-

tional Transformers for Language Understanding,” ArXiv, vol. abs/1810.04805, 2019.

[6] T. B. Brown et al., “Language Models are Few-Shot Learners,” ArXiv, vol.

abs/2005.14165, 2020.

65

REFERENCES

[7] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recog-

nition at Scale,” ArXiv, vol. abs/2010.11929, 2021.

[8] Z. Dai, H. Liu, Q. V. Le, and M. Tan, “CoAtNet: Marrying Convolution and Attention for

All Data Sizes,” ArXiv, vol. abs/2106.04803, 2021.

[9] L. Columbus, “76% Of Enterprises Prioritize AI & Machine Learning In 2021

IT Budgets,” https://www.forbes.com/sites/louiscolumbus/2021/01/17/76-of-enterprises-

prioritize-ai–machine-learning-in-2021-it-budgets/?sh=3ec07eed618a, Forbes, Jan 2021,

accessed: 08 Jan 2022.

[10] A. X. Zhang, M. Muller, and D. Wang, “How do data science workers collaborate? roles,

workflows, and tools,” Proc. ACM Hum.-Comput. Interact., vol. 4, no. CSCW1, May

2020. [Online]. Available: https://doi.org/10.1145/3392826

[11] N. M. Ahmed and M. Wahed, “The De-democratization of AI: Deep Learning and the

Compute Divide in Artificial Intelligence Research,” ArXiv, vol. abs/2010.15581, 2020.

[12] N. M. Shazeer et al., “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-

of-Experts Layer,” ArXiv, vol. abs/1701.06538, 2017.

[13] G. A. Montes and B. Goertzel, “Distributed, decentralized, and democratized artificial

intelligence,” Technological Forecasting and Social Change, vol. 141, pp. 354–358, 2019.

[14] C. T. Wolf, “Democratizing AI? experience and accessibility in the age of artificial intel-

ligence,” XRDS: Crossroads, The ACM Magazine for Students, vol. 26, no. 4, pp. 12–15,

2020.

[15] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of machine learn-

ing research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[16] S. Raschka, J. Patterson, and C. Nolet, “Machine Learning in Python: Main

Developments and Technology Trends in Data Science, Machine Learning, and

Artificial Intelligence,” Information, vol. 11, no. 4, 2020. [Online]. Available:

https://www.mdpi.com/2078-2489/11/4/193

[17] B. Atkins, “The Most Disruptive Trend Of 2021: No Code / Low Code,”

https://www.forbes.com/sites/betsyatkins/2020/11/24/the-most-disruptive-trend-of-

2021-no-code–low-code/?sh=2dd31a666570, November 2020, accessed: 08 Jan 2022.

[18] “No-code AI in 2021,” https://levity.ai/blog/no-code-ai, accessed: 28 September 2021.

66

ALMA: ALGORITHM MODELING APPLICATION

[19] “Trustworthiness: An even greater challenge for the ”no-code” AI models,”

https://trustilio.com/blog/trustworthiness-an-even-greater-challenge-for-the-no-code-

ai-models/, Aug 2021, accessed: 31 December 2021.

[20] J. C. S. Santos, K. Tarrit, and M. Mirakhorli, “A catalog of security architecture weak-

nesses,” in 2017 IEEE International Conference on Software Architecture Workshops (IC-

SAW), 2017, pp. 220–223.

[21] A. Demetriou, G. Spanoudis, and M. Shayer, “Developing intelligence: Is a comprehen-

sive theory possible?” Intelligence, vol. 41, pp. 730–731, 09 2013.

[22] P. Wang, “On Defining Artificial Intelligence,” Journal of Artificial General Intelligence,

vol. 10, pp. 1–37, 01 2019.

[23] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for

computer vision: A brief review,” Computational intelligence and neuroscience, vol. 2018,

2018.

[24] T. Dias, N. Oliveira, N. Sousa, I. Praça, and O. Sousa, “A Hybrid Approach for an Inter-

pretable and Explainable Intrusion Detection System,” ArXiv, vol. abs/2111.10280, 2021.

[25] N. Oliveira, I. Praça, E. Maia, and O. Sousa, “Intelligent cyber attack detection and classi-

fication for network-based intrusion detection systems,” Applied Sciences, vol. 11, no. 4,

p. 1674, 2021.

[26] N. Sousa, N. Oliveira, and I. Praça, “A Multi-Agent System for Autonomous Mobile

Robot Coordination,” ArXiv, vol. abs/2109.12386, 2021.

[27] L. Zhao et al., “Natural Language Processing (NLP) for Requirements Engineering: A

Systematic Mapping Study,” ArXiv, vol. abs/2004.01099, 2020.

[28] M. N. Zafar and J. Mohanta, “Methodology for path planning and optimization of mobile

robots: A review,” Procedia computer science, vol. 133, pp. 141–152, 2018.

[29] M. Nazari-Heris, B. Mohammadi-Ivatloo, and G. Gharehpetian, “A comprehensive review

of heuristic optimization algorithms for optimal combined heat and power dispatch from

economic and environmental perspectives,” Renewable and Sustainable Energy Reviews,

vol. 81, pp. 2128–2143, 2018.

[30] J. Andreu-Perez, F. Deligianni, D. Ravi, and G.-Z. Yang, “Artificial Intelligence and

Robotics,” ArXiv, vol. abs/1803.10813, 2018.

67

REFERENCES

[31] A. V. Haridas, R. Marimuthu, and V. G. Sivakumar, “A critical review and analysis on

techniques of speech recognition: The road ahead,” International Journal of Knowledge-

Based and Intelligent Engineering Systems, vol. 22, no. 1, pp. 39–57, 2018.

[32] N. Oliveira, N. Sousa, and I. Praça, “A Search Engine for Scientific Publications: A Cy-

bersecurity Case Study,” in Distributed Computing and Artificial Intelligence, Volume 1:

18th International Conference, K. Matsui, S. Omatu, T. Yigitcanlar, and S. R. González,

Eds. Cham: Springer International Publishing, 2022, pp. 108–118.

[33] Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach,” ArXiv, vol.

abs/1907.11692, 2019.

[34] N. Oliveira, N. Sousa, J. Oliveira, and I. Praça, “Anomaly Detection in Cyber-Physical

Systems: Reconstruction of a Prediction Error Feature Space,” arXiv, vol. abs/2112.14821,

2021.

[35] D. Zhang et al., “The AI Index 2021 Annual Report,” CoRR, vol. abs/2103.06312, 2021.

[36] A. M. Turing, “I.— Computing Machinery and Intelligence,” Mind, vol. LIX, no. 236, pp.

433–460, 10 1950.

[37] M. Haenlein and A. Kaplan, “A Brief History of Artificial Intelligence: On the Past,

Present, and Future of Artificial Intelligence,” California Management Review, vol. 61,

no. 4, pp. 5–14, 2019.

[38] A. N. Whitehead and B. Russell, Principia Mathematica. Cambridge University Press,

1925–1927.

[39] A. Newell and H. Simon, “The logic theory machine–A complex information processing

system,” IRE Transactions on Information Theory, vol. 2, no. 3, pp. 61–79, 1956.

[40] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Orga-

nization in The Brain,” Psychological Review, pp. 65–386, 1958.

[41] Weizenbaum, Joseph, Computer Power and Human Reason: From Judgment to Calcula-

tion. USA: W. H. Freeman & Co., 1976.

[42] J. Lighthill, “Artificial Intelligence: A General Survey,” Artificial Intelligence: a paper

symposium, 1973.

[43] R. M. Karp, Reducibility among Combinatorial Problems. Boston, MA: Springer US,

1972, pp. 85–103.

68

ALMA: ALGORITHM MODELING APPLICATION

[44] A. Toosi, A. Bottino, B. Saboury, E. L. Siegel, and A. Rahmim, “A brief history of AI:

how to prevent another winter (a critical review),” PET clinics, vol. 16 4, pp. 449–469,

2021.

[45] E. Feigenbaum, B. Buchanan, and J. Lederberg, “On generality and problem solving: A

case study using the DENDRAL program,” Machine Intelligence, vol. 6, 09 1970.

[46] L. Floridi, “AI and its New Winter: From Myths to Realities,” Philosophy and Technology,

vol. 33, no. 1, pp. 1–3, 2020.

[47] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial intelligence, vol. 134,

no. 1-2, pp. 57–83, 2002.

[48] D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,”

Nature, vol. 529, pp. 484–489, 01 2016.

[49] ——, “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning

Algorithm,” ArXiv, vol. abs/1712.01815, 2017.

[50] J. Schrittwieser et al., “Mastering Atari, Go, chess and shogi by planning with a learned

model,” Nature, vol. 588, no. 7839, p. 604–609, Dec 2020.

[51] P. Maroufkhani, M.-L. Tseng, M. Iranmanesh, W. K. W. Ismail, and H. Khalid, “Big

data analytics adoption: Determinants and performances among small to medium-sized

enterprises,” International Journal of Information Management, vol. 54, p. 102190, 2020.

[52] C. Zhang and Y. Lu, “Study on artificial intelligence: The state of the art and future

prospects,” Journal of Industrial Information Integration, vol. 23, p. 100224, 2021.

[53] O. Müller, M. Fay, and J. vom Brocke, “The Effect of Big Data and Analytics on Firm

Performance: An Econometric Analysis Considering Industry Characteristics,” Journal of

Management Information Systems, vol. 35, no. 2, pp. 488–509, 2018.

[54] R.-X. Ding et al., “Large-Scale decision-making: Characterization, taxonomy, challenges

and future directions from an Artificial Intelligence and applications perspective,” Infor-

mation Fusion, vol. 59, pp. 84–102, 2020.

[55] M. Y. Shaheen, “Applications of Artificial Intelligence (AI) in healthcare: A review,”

ScienceOpen Preprints, 2021.

69

REFERENCES

[56] M. R. Benabdelouahed and C. Dakouan, “The Use of Artificial Intelligence in Social Me-

dia: Opportunities and Perspectives,” Expert Journal of Marketing, vol. 8, pp. 82–87,

2020.

[57] X. Guo, Z. Shen, Y. Zhang, and T. Wu, “Review on the Application of Artificial

Intelligence in Smart Homes,” Smart Cities, vol. 2, no. 3, pp. 402–420, 2019. [Online].

Available: https://www.mdpi.com/2624-6511/2/3/25

[58] T. Pinto, I. Praça, Z. Vale, and J. Silva, “Ensemble learning for electricity consumption

forecasting in office buildings,” Neurocomputing, vol. 423, pp. 747–755, 2021.

[59] I. Praça, C. Ramos, Z. Vale, and M. Cordeiro, “MASCEM: a multiagent system that simu-

lates competitive electricity markets,” IEEE Intelligent Systems, vol. 18, no. 6, pp. 54–60,

2003.

[60] J. Carneiro, N. Oliveira, N. Sousa, E. Maia, and I. Praça, “Machine Learning for Network-

based Intrusion Detection Systems: an Analysis of the CIDDS-001 Dataset,” in Interna-

tional Symposium on Distributed Computing and Artificial Intelligence. Springer, 2021,

pp. 148–158.

[61] I. Macedo, S. Wanous, N. Oliveira, O. Sousa, and I. Praça, “A tool to support the in-

vestigation and visualization of cyber and/or physical incidents,” in World Conference on

Information Systems and Technologies. Springer, 2021, pp. 130–140.

[62] N. Benaich and I. Hogarth, “State of AI Report 2021,” https://www.stateof.ai/, 2021, ac-

cessed: 06 January 2022.

[63] A. Vaswani et al., “Attention Is All You Need,” ArXiv, vol. abs/1706.03762, 2017.

[64] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale

hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern

Recognition, 2009, pp. 248–255.

[65] A. Ramesh et al., “Zero-Shot Text-to-Image Generation,” ArXiv, vol. abs/2102.12092,

2021.

[66] A. Radford et al., “Learning Transferable Visual Models From Natural Language Super-

vision,” ArXiv, vol. abs/2103.00020, 2021.

[67] M. Chen et al., “Evaluating Large Language Models Trained on Code,” ArXiv, vol.

abs/2107.03374, 2021.

70

ALMA: ALGORITHM MODELING APPLICATION

[68] S. Ahmed, R. Mula, and S. S. Dhavala, “A Framework for Democratizing AI,” ArXiv, vol.

abs/2001.00818, 2020.

[69] K. Schwab, The Fourth Industrial Revolution. USA: Crown Publishing Group, 2017.

[70] L. Shen, “Former U.S. CTO: The ‘Robot Apocalypse’ Could Happen. Here’s How You

Stop It,” https://fortune.com/2017/11/14/megan-smith-cto-robot-apocalypse-elon-musk/,

Nov 2017, accessed: 04 January 2022.

[71] “Portugal AI Strategy Report,” https://knowledge4policy.ec.europa.eu/ai-watch/portugal-

ai-strategy-report en, Jun 2019, accessed: 05 January 2022.

[72] M. Riedl, “AI Democratization in the Era of GPT-3,” The Gradient, 2020.

[73] C. Matez, “Tech Giants Are Paying Huge Salaries for Scarce A.I. Talent,”

https://www.nytimes.com/2017/10/22/technology/artificial-intelligence-experts-

salaries.html, Oct 2017, accessed: 05 January 2022.

[74] M. Gofman and Z. Jin, “Artificial Intelligence, Human Capital, and Innovation,” SSRN

Electronic Journal, 2019.

[75] J. B. Dina Bass, “Big Tech Swallows Most of the Hot AI Startups,”

https://www.bloomberg.com/news/articles/2020-03-16/big-tech-swallows-most-of-

the-hot-ai-startups, Mar 2020, accessed: 05 January 2022.

[76] J. Hestness et al., “Deep Learning Scaling is Predictable, Empirically,” ArXiv, vol.

abs/1712.00409, 2017.

[77] N. C. Thompson and S. Spanuth, “The Decline of Computers as a General Purpose Tech-

nology,” Commun. ACM, vol. 64, no. 3, p. 64–72, feb 2021.

[78] J. Traub, J.-A. Quiané-Ruiz, Z. Kaoudi, and V. Markl, “Agora: Towards An Open

Ecosystem for Democratizing Data Science & Artificial Intelligence,” ArXiv, vol.

abs/1909.03026, 2019.

[79] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in 2015 53rd Annual

Allerton Conference on Communication, Control, and Computing (Allerton), 2015, pp.

909–910.

[80] L. Mauri and E. Damiani, “STRIDE-AI: An Approach to Identifying Vulnerabilities of

Machine Learning Assets,” in 2021 IEEE International Conference on Cyber Security and

Resilience (CSR), 2021, pp. 147–154.

71

REFERENCES

[81] A. Oseni, N. Moustafa, H. Janicke, P. Liu, Z. Tari, and A. Vasilakos, “Security and Privacy

for Artificial Intelligence: Opportunities and Challenges,” ArXiv, vol. abs/2102.04661,

2021.

[82] C. Wang, J. Chen, Y. Yang, X. Ma, and J. Liu, “Poisoning attacks and countermeasures

in intelligent networks: Status quo and prospects,” Digital Communications and

Networks, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S235286482100050X

[83] B. Biggio et al., “Evasion Attacks against Machine Learning at Test Time,”

Lecture Notes in Computer Science, p. 387–402, 2013. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-40994-3 25

[84] Y. Dong et al., “There is Limited Correlation between Coverage and Robustness for Deep

Neural Networks,” ArXiv, vol. abs/1911.05904, 2019.

[85] B. Stanton and T. Jensen, “Trust and Artificial Intelligence,” 2021-03-02 05:03:00 2021.

[Online]. Available: https://tsapps.nist.gov/publication/get pdf.cfm?pub id=931087

[86] A. Adadi and M. Berrada, “Peeking Inside the Black-Box: A Survey on Explainable Arti-

ficial Intelligence (XAI),” IEEE Access, vol. 6, pp. 52 138–52 160, 2018.

[87] R. Blackman, “A Practical Guide to Building Ethical AI ,” Oct 2020, accessed: 27

January 2022. [Online]. Available: https://hbr.org/2020/10/a-practical-guide-to-building-

ethical-ai

[88] R. Schmelzer, “Towards A More Transparent AI,” May 2020, accessed: 27 January 2022.

[Online]. Available: https://www.forbes.com/sites/cognitiveworld/2020/05/23/towards-a-

more-transparent-ai/?sh=65352afd3d93

[89] C. Szegedy et al., “Intriguing properties of neural networks,” ArXiv, vol. abs/1312.6199,

2014.

[90] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing Adversarial Ex-

amples,” ArXiv, vol. abs/1412.6572, 2015.

[91] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The Limi-

tations of Deep Learning in Adversarial Settings,” arXiv, vol. abs/1511.07528, 2015.

[92] A. Shafahi et al., “Adversarial Training for Free!” ArXiv, vol. abs/1904.12843, 2019.

72

ALMA: ALGORITHM MODELING APPLICATION

[93] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial train-

ing,” ArXiv, vol. abs/2001.03994, 2020.

[94] ATARC, “Machine Learning (ML) model transparency,” 2020, accessed: 28 January

2022. [Online]. Available: https://atarc.org/project/information-technology-artificial-

intelligence-machine-learning-ml-model-transparency/

[95] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI: A Review of

Machine Learning Interpretability Methods,” Entropy, vol. 23, no. 1, 2021.

[96] C. O’Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threat-

ens Democracy. USA: Crown Publishing Group, 2016.

[97] M. Hardt, E. Price, and N. Srebro, “Equality of Opportunity in Supervised Learning,”

ArXiv, vol. abs/1610.02413, 2016.

[98] T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai, “Man is to Computer

Programmer as Woman is to Homemaker? Debiasing Word Embeddings,” ArXiv, vol.

abs/1607.06520, 2016.

[99] A. Koenecke et al., “Racial disparities in automated speech recognition,” Proceedings of

the National Academy of Sciences, vol. 117, no. 14, pp. 7684–7689, 2020.

[100] M. Busuioc, “Accountable Artificial Intelligence: Holding Algorithms to Account,” Pub-

lic Administration Review, vol. 81, 08 2020.

[101] C. Bartneck, C. Lütge, A. Wagner, and S. Welsh, Privacy Issues of AI. Cham: Springer

International Publishing, 2021, pp. 61–70.

[102] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Prentice

Hall, 2010.

[103] Z. Song, X. Yang, Z. Xu, and I. King, “Graph-based semi-supervised learning: A compre-

hensive review,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21,

2022.

[104] and European Union Agency for Cybersecurity, A. Malatras, and G. Dede, AI cyberse-

curity challenges : threat landscape for artificial intelligence. European Network and

Information Security Agency, 2020.

[105] T. C. Lethbridge, “Low-Code Is Often High-Code, So We Must Design Low-Code Plat-

forms to Enable Proper Software Engineering,” in Leveraging Applications of Formal

73

REFERENCES

Methods, Verification and Validation, T. Margaria and B. Steffen, Eds. Cham: Springer

International Publishing, 2021, pp. 202–212.

[106] G. Keil, “Mapping the no-code AI landscape,” May 2021, accessed: 08 January 2022.

[Online]. Available: https://levity.ai/blog/no-code-ai-map

[107] F. Alexander, “Low-Code and No-Code: What’s the Difference and When to

Use What?” Jan 2021, accessed: 08 January 2022. [Online]. Available: https:

//www.outsystems.com/blog/posts/low-code-vs-no-code/

[108] K. Talesra and G. Nagaraja, “Low-code platform for application development,” Interna-

tional Journal of Applied Engineering Research, vol. 16, no. 5, pp. 346–351, 2021.

[109] R. Silipo, “Low Code Data Science Is Not the Same as Automated Machine

Learning,” Dec 2021, accessed: 08 January 2022. [Online]. Available: https:

//www.knime.com/blog/low-code-analytics-platform

[110] M. R. Berthold et al., “”KNIME: The Konstanz Information Miner”,” in Data Analysis,

Machine Learning and Applications, C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and

R. Decker, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 319–326.

[111] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation

of a Tree-based Pipeline Optimization Tool for Automating Data Science,” in

Proceedings of the Genetic and Evolutionary Computation Conference 2016, ser.

GECCO ’16. New York, NY, USA: ACM, 2016, pp. 485–492. [Online]. Available:

http://doi.acm.org/10.1145/2908812.2908918

[112] M. Ali, PyCaret: An open source, low-code machine learning library in Python, July

2020, pyCaret version 2.3. [Online]. Available: https://www.pycaret.org

[113] “RapidMiner,” 2021, accessed: 09 January 2022. [Online]. Available: https:

//rapidminer.com/

[114] “Obviously.ai,” 2021, accessed: 09 January 2022. [Online]. Available: https:

//www.obviously.ai/

[115] “Levity.ai,” 2021, accessed: 09 January 2022. [Online]. Available: https://levity.ai/

[116] “Peltarion AI,” 2021, accessed: 09 January 2022. [Online]. Available: https:

//peltarion.com/

74

ALMA: ALGORITHM MODELING APPLICATION

[117] “Teachable Machine,” 2021, accessed: 09 January 2022. [Online]. Available:

https://teachablemachine.withgoogle.com/

[118] “Google Cloud AutoML,” 2021, accessed: 09 January 2022. [Online]. Available:

https://cloud.google.com/automl

[119] C. V. K. Iyer et al., “Trinity: A No-Code AI platform for complex spatial datasets,” ArXiv,

vol. abs/2106.11756, 2021.

[120] S. K. Karmaker, M. M. Hassan, M. J. Smith, L. Xu, C. Zhai, and K. Veeramachaneni,

“AutoML to Date and Beyond: Challenges and Opportunities,” ACM Computing Surveys

(CSUR), vol. 54, no. 8, pp. 1–36, 2021.

[121] H. J. Escalante, “Automated Machine Learning – a brief review at the end of the early

years,” ArXiv, vol. abs/2008.08516, 2020.

[122] G. Poulakis, “Unsupervised AutoML: a study on automated machine learning in the con-

text of clustering,” Master’s thesis, University of Piraeus, 2020.

[123] Y.-F. Li, H. Wang, T. Wei, and W.-W. Tu, “Towards Automated Semi-Supervised Learn-

ing,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp.

4237–4244, Jul. 2019.

[124] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter, Auto-

sklearn: Efficient and Robust Automated Machine Learning. Cham: Springer Interna-

tional Publishing, 2019, pp. 113–134.

[125] H. J. Escalante, M. Montes, and L. Sucar, “Particle Swarm Model Selection,” Journal of

Machine Learning Research, vol. 10, pp. 405–440, 01 2009.

[126] H. J. Escalante, M. Montes, and L. E. Sucar, “Particle Swarm Model Selection,” J. Mach.

Learn. Res., vol. 10, p. 405–440, jun 2009.

[127] Y. Wang, H. Zhang, and G. Zhang, “cPSO-CNN: An efficient PSO-based algorithm for

fine-tuning hyper-parameters of convolutional neural networks,” Swarm and Evolutionary

Computation, vol. 49, pp. 114–123, 2019.

[128] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A Survey,” ArXiv,

vol. abs/1808.05377, 2019.

75

REFERENCES

[129] Z. Liu et al., “Overview and unifying conceptualization of automated machine learning,”

in Proceedings of the Automating Data Science Workshop, Wurzburg, Germany, vol. 20,

2019.

[130] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: Combined

Selection and Hyperparameter Optimization of Classification Algorithms,” in Proceedings

of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, ser. KDD ’13. New York, NY, USA: Association for Computing Machinery,

2013.

[131] D. Gorissen, T. Dhaene, and F. D. Turck, “Evolutionary Model Type Selection for Global

Surrogate Modeling,” J. Mach. Learn. Res., vol. 10, p. 2039–2078, dec 2009.

[132] R. Vilalta and Y. Drissi, “A Perspective View And Survey Of Meta-Learning,” Artificial

Intelligence Review, vol. 18, 09 2001.

[133] E. Real et al., “Large-Scale Evolution of Image Classifiers,” ArXiv, vol. abs/1703.01041,

2017.

[134] B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement Learning,” ArXiv,

vol. abs/1611.01578, 2017.

[135] I. Guyon et al., Analysis of the AutoML Challenge Series 2015–2018. Cham:

Springer International Publishing, 2019, pp. 177–219. [Online]. Available: https:

//doi.org/10.1007/978-3-030-05318-5 10

[136] F. Candelon, M. Courtaux, and G. Nahas, “You can now put A.I. tools in the hands of all

your employees. But should you?” https://fortune.com/2022/06/03/artificial-intelligence-

ai-democratization-no-low-code, June 2022, accessed: 18 June 2022.

[137] V. Borisov, T. Leemann, K. Sessler, J. Haug, M. Pawelczyk, and G. Kasneci, “Deep Neural

Networks and Tabular Data: A Survey,” ArXiv, vol. abs/2110.01889, 2021.

[138] M. Smolaks, “The current state of AIś three main learning paradigms, and why they

need to change,” https://aibusiness.com/document.asp?doc id=761214, February 2020,

accessed: 18 June 2022.

[139] V. Borisov, T. Leemann, K. Sessler, J. Haug, M. Pawelczyk, and G. Kasneci, “Deep neural

networks and tabular data: A survey,” ArXiv, vol. abs/2110.01889, 2021.

76

ALMA: ALGORITHM MODELING APPLICATION

[140] P. Kruchten, “The 4+1 View Model of architecture,” IEEE Software, vol. 12, no. 6, pp.

42–50, 1995.

[141] S. Brown, “Software Architecture for Developers: Volume 2 ,” 2015.

[142] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language,

3rd ed., ser. Object Technology Series. Boston, MA: Addison-Wesley, 2003. [Online].

Available: https://www.safaribooksonline.com/library/view/uml-distilled-a/0321193687/

[143] R. Martin, J. Rabaey, A. Chandrakasan, J. Newkirk, B. Nikolić, and R. Koss,

Agile Software Development: Principles, Patterns, and Practices, ser. Alan Apt

series. Pearson Education, 2003. [Online]. Available: https://books.google.pt/books?id=

0HYhAQAAIAAJ

[144] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor Wiskunde

en Informatica Amsterdam, 1995.

[145] “Vaadin: The modern web application platform for Java,” https://vaadin.com/, 2022, ac-

cessed: 22 June 2022.

[146] K. Arnold, J. Gosling, and D. Holmes, The Java programming language. Addison Wesley

Professional, 2005.

[147] K. Chodorow and M. Dirolf, MongoDB: The Definitive Guide, 1st ed. O’Reilly Media,

Inc., 2010.

[148] A. Noor, Mohamedmohiy, A. Elsherbiny, and N. Mostafa, “Website Phishing Dataset,”

https://www.kaggle.com/datasets/ahmednour/website-phishing-data-set, May 2019, ac-

cessed: 05 May 2022.

[149] N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection based Associative

Classification data mining,” Expert Systems with Applications, vol. 41, no. 13, pp.

5948–5959, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0957417414001481

[150] M. Varli, “Laptop Price,” https://www.kaggle.com/datasets/muhammetvarl/laptop-price,

May 2020, accessed: 05 May 2022.

[151] L. Ruslan, “EDA, XGBoost and RF Laptop Price,”

https://www.kaggle.com/code/leoruslan/eda-xgboost-rf-laptop-price, May 2021, ac-

cessed: 05 May 2022.

77

REFERENCES

[152] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous

systems,” 2015, software available from tensorflow.org. [Online]. Available: https:

//www.tensorflow.org/

[153] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning

Library,” in Advances in Neural Information Processing Systems 32. Curran Associates,

Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-

pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[154] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”: Explaining the

Predictions of Any Classifier,” in Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August

13-17, 2016, 2016, pp. 1135–1144.

[155] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”

in Advances in Neural Information Processing Systems 30, I. Guyon et al.,

Eds. Curran Associates, Inc., 2017, pp. 4765–4774. [Online]. Available: http:

//papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

[156] J. Vitorino, N. Oliveira, and I. Praça, “Adaptative perturbation patterns: Realistic

adversarial learning for robust intrusion detection,” Future Internet, vol. 14, no. 4, 2022.

[Online]. Available: https://www.mdpi.com/1999-5903/14/4/108

78

APPENDIX A

GENERATED CODE

In the normal operation of ALMA, when a ML pipeline is configured, it must then be converted

into executable code to obtain the corresponding evaluation results. In that sense, the proposed

solution works by generating code dynamically, supporting a large number of alternatives. Fur-

thermore, by implementing a different code generation mechanism it is possible to perform a

model-to-text translation to a different programming language. For the current iteration, a Python

translation module was implemented as this language is largely used by the AI community [16].

In this appendix, in order to provide provide greater details about the inner workings of ALMA,

the code generated from the ML pipeline described in Chapter 5 is presented and discussed.

A.1 Prologue

The first lines of the generated Python file contain imports of objects and methods that are used

for the remaining implementation. Some of them are common to multiple pipelines, 1-5, while

the others, are dynamically generated according to user selections, 7-15. These lines are pre-

sented in Listing A.1.

1 import joblib

79

APPENDIX A. GENERATED CODE

2 import pandas as pd

3

4 from sklearn.pipeline import Pipeline

5 from sklearn.compose import ColumnTransformer

6

7 from sklearn.model_selection import train_test_split

8 from sklearn.impute import SimpleImputer

9 from sklearn.preprocessing import OneHotEncoder

10 from sklearn.preprocessing import MinMaxScaler

11 from sklearn.neighbors import KNeighborsRegressor

12 from sklearn.model_selection import GridSearchCV

13 from sklearn.metrics import mean_squared_error

14 from sklearn.metrics import mean_absolute_error

15 from sklearn.metrics import r2_score

Listing A.1: Import statements

A.2 Data Ingestion

For the provided example, the laptop price forecasting dataset was chosen as benchmark to test

the performance of regression algorithms. This dataset is first loaded in line 19, then, in lines 20

and 21 the label is separated from the remaining features and, finally, in line 23 the train and test

set are split according to the percentage specified by the user when registering the dataset into

the system. Listing A.2 provides an overview of the data ingestion code.

18 # read data and split train and test data

19 data = pd.read_csv("res/datasets/laptop_price.csv")

20 X = data.drop("price_euros", axis =1)

21 y = data["price_euros"]

22

23 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size =0.3)

Listing A.2: Data ingestion code

A.3 Preprocessing

For the preprocessing step, two distinct transformers were defined. The first, ”transformer 0”

(lines 29-38), applies mode imputation and one hot encoding to the dataset’s categorical features,

while the second, ”transformer1” (lines 40-48), applies mean imputation to the numerical fea-

tures. These are then appended to form the preprocessing pipeline, ”preprocessor” (lines 51-53).

Listing A.3 provides an overview of the data preprocessing code.

80

ALMA: ALGORITHM MODELING APPLICATION

26 # define preprocessing pipeline

27 tr_list = []

28

29 transformer_0 = Pipeline(

30 steps=[

31 ("mode_imputer", SimpleImputer(strategy=’most_frequent ’)),

32 ("one_hot_encoder", OneHotEncoder(handle_unknown=’ignore ’)),

33]

34)

35

36 tr_list.append(

37 ("transformer_0", transformer_0 , [’company ’, ’typename ’, ’opsys’])

38)

39

40 transformer_1 = Pipeline(

41 steps=[

42 ("mean_imputer", SimpleImputer(strategy=’mean’)),

43]

44)

45

46 tr_list.append(

47 ("transformer_1", transformer_1 , [’inches ’, ’ram’, ’weight ’, ’width’,

’height ’, ’touchscreen ’, ’ips’, ’full_hd ’, ’4k_ultra_hd ’, ’quad_hd ’, ’

ghz’, ’cpu_intel ’, ’cpu_amd ’, ’gpu_intel ’, ’gpu_nvidia ’, ’gpu_amd ’, ’

memory_ssd ’, ’memory_hdd ’, ’memory_flash ’, ’ssd_value ’, ’hdd_value ’, ’

flash_value ’])

48)

49

50

51 preprocessor = ColumnTransformer(

52 transformers=tr_list , remainder="drop"

53)

Listing A.3: Data preprocessing code

A.4 Modeling

In the modelling step, the final pipeline is created, appending the previously created preprocess-

ing pipeline, min-max scaler and the KNN regression algorithm (lines 55-61). The modeling

code is presented in Listing A.4.

55 pipeline = Pipeline(

81

APPENDIX A. GENERATED CODE

56 steps=[

57 ("preprocessor", preprocessor),

58 ("min_max_normalization", MinMaxScaler ()),

59 ("k_nearest_neighbors_regressor", KNeighborsRegressor ()),

60]

61)

Listing A.4: Modeling code

A.5 Hyperparameter Tuning

For hyperparameter tuning, the parameter grid is defined in lines 64-68, being used to optimize

the final regression pipeline with grid search k-fold cross validation in lines 69-73. Listing A.5

provides an overview of the hyperparameter tuning code.

63 # perform hyperparameter tuning

64 parameters = {

65 "k_nearest_neighbors_regressor__n_neighbors": [4, 8, 16],

66 "k_nearest_neighbors_regressor__weights": [’uniform ’, ’distance ’],

67 "k_nearest_neighbors_regressor__metric": [’euclidean ’, ’manhattan ’],

68 }

69 cv = 5

70

71 clf = GridSearchCV(pipeline , parameters , cv=cv , scoring="

neg_mean_absolute_error")

72

73 clf.fit(X_train , y_train)

Listing A.5: Hyperparameter tuning code

A.6 Evaluation

To obtain the evaluation results, predictions are made for the testing set in line 76. These same

predictions are used in the subsequent lines, 78-83, to compute all evaluation metrics selected by

the user. The evaluation code is presented in Listing A.6.

75 # determine results

76 y_pred = clf.predict(X_test)

77

78 mae = mean_absolute_error(y_test , y_pred)

79 print("mae: " + str(mae))

80 r2 = r2_score(y_test , y_pred)

82

ALMA: ALGORITHM MODELING APPLICATION

81 print("r2: " + str(r2))

82 mse = mean_squared_error(y_test , y_pred)

83 print("mse: " + str(mse))

Listing A.6: Evaluation code

A.7 Epilogue

In the final step of the generated Python file, the trained ML pipeline is exported as joblib file so

that it can be downloaded by the user through ALMA’s GUI and used for production purposes.

The pipeline export code is presented in Listing A.7.

85 # export ML pipeline

86 joblib.dump(clf , "res/serialized/laptop_price_7.joblib")

Listing A.7: Pipeline export code

83

APPENDIX A. GENERATED CODE

84

