
Integration of an Automatic Fault
Localization Tool in an IDE and its
Evaluation

JOÃO MANUEL MADUREIRA DE LEÃO
Julho de 2022

Integration of an Automatic Fault
Localization Tool in an IDE and its

Evaluation

João Leão

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Software Engineering

Supervisor: Professor Alberto Sampaio
Co-Supervisor: Professor Isabel Sampaio

Porto, July 1, 2022

iii

Dedicatory

To my parents, my girlfriend Ester, my good friends Nuno and José whom without this
journey wouldn’t be possible. And finally, to my supervisors, whose feedback and help were
crucial to the thesis development.

v

Abstract

Debugging is one of the most demanding and error-prone tasks in software development.
Trying to address bugs has become overall more expensive as the software complexity and
size have increased. As a result, several researchers attempted to improve the developers’
debugging experience and efficiency by automating as much of the process as possible.
Existing auto-finding tools will assist developers in automatically detecting bugs, however,
they are not yet widely available to software engineers. Making such tools available to
developers can save debugging time and increase the productivity.

Subsequently, the main goal of this dissertation is to incorporate an automatic fault
localization tool into an Integrated Development Environment (IDE). The selected IDE was
Visual Studio Code, a source-code editor developed by Microsoft for Windows, Linux, and
macOS. Visual Studio Code is one of the most used IDEs and is known for its flexible API,
which allows nearly every aspect of it to be customized. Furthermore, the chosen automatic
fault localization tool was FLACOCO, a recent fault localization tool for Java that supports
up to the most recent versions.

Nonetheless, this document contains a full overview of several fault localization method-
ologies and tools, as well as an explanation of the complete planning and development process
of the produced Visual Studio Code extension. After the development and deployment were
completed, an evaluation was carried out. The extension was evaluated through a user study
in which thirty Java professionals took part. The test had two parts: the first involved users
using the extension to complete two debugging tasks in previously unknown projects, and
the second had them filling out a satisfaction questionnaire for further analysis.

Finally, the results show that the extension was a success, with the system being rated
positively in all areas. However, it may be revised in light of the questionnaire responses,
with the suggestions received being considered for future work.

Keywords: Fault Localization, Automated Debugging, Debugging, Fault Localization
Tools, Fault Localization Techniques

vii

Resumo

A depuração é uma das tarefas mais exigentes e propensas a erros no desenvolvimento
de software. Tentar resolver esses erros tornou-se mais dispendioso com os incrementos
de complexidade e tamanho do software. Deste modo, ao longo dos últimos anos, vários
investigadores tentaram melhorar a experiência de depuração e a eficiência dos desenvolve-
dores automatizando o máximo possível do processo. Existem ferramentas de localização de
defeitos que assistem os desenvolvedores na detecção automática de bugs, no entanto estas
ainda não se encontram amplamente disponíveis para os programadores. Tornar essas fer-
ramentas disponíveis para todos certamente iria resultar na redução do tempo de depuração
e no aumento da produtividade.

Assim sendo, o principal objetivo desta dissertação é incorporar uma ferramenta de local-
ização automática de defeitos num IDE. Em termos de IDE, o Visual Studio Code, um editor
de código-fonte desenvolvido pela Microsoft para Windows, Linux e macOS, foi selecionado.
Este IDE tem ganho bastante popularidade, sendo um dos IDEs mais utilizados mundial-
mente. Além disso, o Visual Studio Code é reconhecido pela sua API flexível, que permite
que quase todos os seus aspectos sejam personalizados. Adicionalmente, o FLACOCO,
uma ferramenta de localização de defeitos baseada em SFL que suporta até as versões mais
recentes do Java, foi escolhida como ferramenta de localização automática de defeitos.

Além do mais, esta dissertação contém um estudo sobre as técnicas de localização au-
tomática de defeitos e as suas ferramentas, bem como uma explicação do planeamento e
implementação da extensão criada para o Visual Studio Code. Após o término da imple-
mentação e a posterior implantação, foi efetuada a sua avaliação. Procedeu-se a um teste
de utilização com a participação de treze utilizadores proficientes na linguagem Java. O
teste foi composto por duas componentes: na primeira os utilizadores utilizaram a extensão
para completar duas tarefas de depuração em projetos por eles desconhecidos e na segunda
foi-lhes fornecido um questionário de satisfação para posterior análise.

Os resultados obtidos sugerem que a extensão foi um sucesso, sendo que o sistema foi
positivamente avaliado em todos os aspetos. No entanto a mesma poderá ser aprimorada
tendo em consideração o feedback obtido na secção de resposta livre do questionário, sendo
que o mesmo foi bastante valioso e as sugestões apuradas vieram a ser consideradas para
trabalho futuro.

ix

Acknowledgement

Before anything else, I must thank my family members, including those who have sadly
passed away but whose values have been passed down to me. Their unwavering love and
support enabled me to get to where I am today, personally, academically, and professionally.

Furthermore, I would like to thank my girlfriend and friends for always being there for
me and assisting me in maintaining a balance between my dedication to this thesis and my
personal life.

I also want to thank Alberto Sampaio, my thesis advisor, and Isabel Sampaio, my co-
advisor. They have always been able to provide valuable feedback in a timely manner and
have accompanied me throughout the entire process, ensuring that it is being guided in the
right direction.

Finally, I’d want to thank everyone who took the questionnaire. They were all very nice and
enthusiastically engaged, providing excellent feedback not just by answering the questions
but also by going a step further and provide additional feedback.

xi

Contents

List of Figures xv

List of Tables xvii

List of Source Code xix

List of Acronyms xxi

1 Introduction 1
1.1 Context . 1
1.2 Problem . 1
1.3 Objectives . 2
1.4 Approach . 2
1.5 Document Structure . 3

2 State of Art 5
2.1 Debugging . 5

2.1.1 Definition and Process . 5
2.1.2 Debugging Tools . 6

2.2 Error, Fault and Failure . 7
2.2.1 Definition . 7

2.3 Fault Localization . 7
2.3.1 Traditional Methods . 7

Program Logging . 7
Assertions . 8
Breakpoints . 8

2.3.2 Advanced Methods . 8
Slice-Based Techniques . 8
Program Spectrum-Based Techniques 10
Data Mining-Based Techniques 11
Machine Learning-Based Techniques 11
Mutation-Based Techniques . 12
Model-Based Techniques . 12
Program State-Based Techniques 13
Statistics-Based Techniques . 14

2.4 Fault Localization Techniques Comparison 15
2.5 Fault Localization Tools and Integrations 16

2.5.1 Aletheia . 16
2.5.2 CharmFL . 17
2.5.3 FLACOCO . 18
2.5.4 FLAVS . 19

xii

2.5.5 GZoltar . 20
2.5.6 MUSEUM . 21
2.5.7 Tarantula . 21
2.5.8 UnitFL . 22

2.6 Summary . 22

3 Value Analysis 25
3.1 Innovation Process . 25
3.2 New Concept Development . 26

3.2.1 Opportunity Identification . 26
3.2.2 Opportunity Analysis . 27
3.2.3 Idea Generation . 28
3.2.4 Idea Selection . 29
3.2.5 Concept Definition . 35

3.3 Value Analysis . 35
3.3.1 Customer Value . 35
3.3.2 Perceived Value . 35
3.3.3 Benefit vs Sacrifice . 36

3.4 Value Proposition . 36
3.5 Summary . 37

4 Analysis and Design 39
4.1 Selection Process . 39
4.2 Requirements . 39

4.2.1 Functional Requirements . 40
UC1: Open entry project folder 40
UC2: Execute FLACOCO tool . 41
UC3: Open suspicious classes . 41
UC4: Highlight suspicious lines of code 42

4.2.2 Non-Functional Requirements . 43
4.3 Design . 43

4.3.1 Architecture . 43
4.3.2 Deployment . 44

4.4 Summary . 45

5 Development 47
5.1 Visual Studio Code Extensions . 47

5.1.1 Creating an Extension . 47
5.1.2 Extension Structure . 47

Extension Manifest . 48
Entry File . 48
UX Guidelines . 48

5.2 Use Case Development . 49
5.2.1 UC1 - Open entry project folder 49
5.2.2 UC2 - Execute FLACOCO tool 50
5.2.3 UC3 - Open suspicious classes . 51
5.2.4 UC4 - Highlight suspicious lines of code 53

5.3 Other FLACOCO Extension Details . 54
5.3.1 Logo . 54

xiii

5.3.2 README . 55
5.3.3 Deploy . 55

5.4 Summary . 56

6 Evaluation and Experimentation 57
6.1 Goal and Research Question . 57
6.2 Hypothesis . 57
6.3 Study Planning . 57

6.3.1 Test Scenario . 57
6.3.2 Evaluation Indicators . 58
6.3.3 Participants . 58
6.3.4 Questionnaire . 59
6.3.5 Hypothesis Evaluation . 60

6.4 Preparation . 60
6.5 Results and Discussion . 61
6.6 Limitations . 63
6.7 Summary . 63

7 Conclusion 65
7.1 Achieved Goals . 65
7.2 Limitations . 66
7.3 Future Work . 66
7.4 Final Remarks . 66

Bibliography 69

Appendix A: User Study 75
A.1 Questions . 75

A.1.1 Introduction . 75
A.1.2 Demographic . 76
A.1.3 User Experience . 78

A.2 Results . 81
A.2.1 User Times . 81
A.2.2 Demographic . 82
A.2.3 User Experience . 84

xv

List of Figures

1.1 Design Science Research Methodology Steps 2

2.1 Debugging Steps . 6
2.2 Faulty code example . 9
2.3 An example showing the differences among Static, Dynamic, and Execution

Slicing . 9
2.4 Spectrum-based fault localization input example 10
2.5 Aletheia main components . 16
2.6 CharmFL ranking list output . 17
2.7 FLACOCO Architecture . 18
2.8 FLAVS flowchart . 19
2.9 GZoltar information flow . 20
2.10 UnitFL menu . 22

3.1 The three steps of the Innovation Process 25
3.2 The New Concept Development (NCD) Model 26
3.3 Hierarchical Decision Tree . 30
3.4 Multiplication of priority vector by the non-normalized priority matrix 32
3.5 Multiplication of priority matrix by the criteria priority vector 34

4.1 Use Case Diagram . 40
4.2 FLACOCO Component Diagram . 43
4.3 FLACOCO Deployment . 44

5.1 Visual Studio Code UX Guidelines . 49
5.2 Flacoco Extension View . 50
5.3 Flacoco Extension Run . 51
5.4 Flacoco Status Bar and Information Message 51
5.5 Flacoco Faulty Classes Tree . 52
5.6 Flacoco Highlight Example . 53
5.7 Flacoco Hover Message Example . 54
5.8 Flacoco Visual Studio Extension Icon . 54
5.9 VSCode Personal Access Token . 55

6.1 Relation between the number of subjects and number of usability problems
detected . 58

A.1 Questionnaire Questions Part 1 . 75
A.2 Questionnaire Questions Part 2 . 76
A.3 Questionnaire Questions Part 3 . 77
A.4 Questionnaire Questions Part 4 . 78
A.5 Questionnaire Questions Part 5 . 79

xvi

A.6 Questionnaire Questions Part 6 . 80
A.7 Questionnaire Questions Part 7 . 81
A.8 Demographic Question 1 Results . 82
A.9 Demographic Question 2 Results . 82
A.10 Demographic Question 3 Results . 83
A.11 Demographic Question 4 Results . 83
A.12 User Experience Question 1 Results . 84
A.13 User Experience Question 2 Results . 84
A.14 User Experience Question 3 Results . 85
A.15 User Experience Question 4 Results . 85
A.16 User Experience Question 5 Results . 86
A.17 User Experience Question 6 Results . 86
A.18 User Experience Question 7 Results . 87
A.19 User Experience Question 8 Results . 87

xvii

List of Tables

2.1 Evaluation of Fault Localization Techniques 15
2.2 Comparative Analysis of Fault Localization Tools 23

3.1 Fundamental scale . 30
3.2 AHP table for criteria comparison . 31
3.3 AHP table for criteria comparison . 31
3.4 Normalized criteria matrix . 31
3.5 Relative Priority of each criterion . 32
3.6 Random Consistency Index . 33
3.7 Comparison Matrix of Accuracy between Alternatives 33
3.8 Comparison Matrix of Reliability between Alternatives 33
3.9 Comparison Matrix of Performance between Alternatives 33
3.10 Normalized Matrix for Alternatives-Accuracy Comparison and Local Priority 34
3.11 Normalized Matrix for Alternatives-Reliability Comparison and Local Priority 34
3.12 Normalized Matrix for Alternatives-Performance Comparison and Local Priority 34
3.13 Criteria/Alternatives Classification Matrix and Composite Priority 34
3.14 Business Model Canvas . 37

4.1 Non-Functional Requirements . 43

6.1 Likert Scale . 59
6.2 Questionnaire’s User Experience Section 60

7.1 Thesis’ Objectives . 65
A.1 User Times . 81

xix

List of Source Code

5.1 Implementation of the method addToFaulty 52

xxi

List of Acronyms

NC Total number of test cases that cover a code
statement.

NF Total number of failed test cases.
NS Total number of successful test cases.
NU Total number of test cases that do not cover

a code statement.
NCF Number of failed test cases that cover a code

statement.
NCS Number of successful test cases that cover a

code statement.
NUF Number of failed test cases that do not cover

a code statement.
NUS Number of successful test cases that do not

cover a code statement.

AHP Analytic Hierarchy Process.

BP Back-Propagation.

DSRM Design Science Research Methodology.

FEI Front End of Innovation.
FFE Fuzzy Front End.

IDE Integrated Development Environment.

MBFL Mutation Based Fault Localization.

NCD New Concept Development.
NPD New Product Development.

RBF Radial Basis Function.

SFL Spectrum-based Fault Localization.

1

Chapter 1

Introduction

This chapter introduces the context and the problem under study. It also describes the
approach taken as well as the objectives for this dissertation work. Finally, it presents the
document structure, where the content of each chapter is summarized.

1.1 Context

As a result of the exponential growth of the software projects’ size and complexity, finding
faults has become a more burdensome and time-consuming activity. Such a process can be
error prone when done manually, hence, many researchers have tried to decrease the human
effort by reducing the amount of code that must be analysed before the software fault(s)
can be precisely located (F. P. d. Silva, H. A. d. Souza, and M. L. Chaim 2018).

That is where Automatic Fault Localization comes in, a software engineering technique
to assist programmers during a debug session by suggesting locations that are more likely to
contain a fault. Its goal is to point the programmer towards the right area of the program
that will enable them to find the relevant fault quicker. Without having to manually review
faults, it reduces the overall effort of software development making it more accurate and
efficient.

1.2 Problem

Whenever a fault is detected, it is necessary to trigger the debugging process. It is
known that debugging is a very time-consuming activity and when not carried out properly,
consequences can be dreadful (Adragna 2008). Therefore, one of the goals of research in
the field of software engineering has been to automate the debugging process. In addition,
there is the process of automatic repairing, which includes a fault location task, which is a
very difficult task in this process.

The results that have been obtained with the existing localization techniques and tools still
leave a great room for improvement in the fault finding task and its correction. Improvements
can be achieved not only in terms of existing techniques and tools, but also their availability
for everyday software development. Integrated development environments include several
tools that assist in locating the faults, but the localization task remained essentially manual
(Parnin and Orso 2011).

Existing auto-finding tools will allow the developer to automatically find faults, but they
are not yet easily acquirable by software engineers. Making such tools a developer’s tool can
result in reduced debugging time and increased productivity.

2 Chapter 1. Introduction

1.3 Objectives

The main objective of this dissertation is the inclusion of an automatic fault location tool
in an integrated development environment. This can be subdivided into:

1. Identify and describe existing automatic fault localization techniques and tools.

2. Identify the possible tools, and/or techniques, that show good results and can be
included in an Integrated Development Environment (IDE).

3. Integrate an existing tool into a chosen IDE. Integration may require adapting, or
improving, this tool.

1.4 Approach

This dissertation will be developed applying the Design Science Research Methodology
(DSRM).This is a rigorous process of designing artifacts to solve problems, assess what is
designed or what is working, and communicate results obtained (Knuth 2016).

DSRM consists of 6 steps, which are presented in the Figure 1.1, namely: Identify prob-
lem and motivate, define objectives of a solution, design and development, demonstration,
evaluation and communication.

Figure 1.1: Design Science Research Methodology Steps (based on Lawrence,
Tuunanen, and M. Myers 2010).

1. Identify problem and motivate: Having the problem defined, it begins a search for the
best solution, thus it is necessary to understand what already exists in the literature
of automatic fault localization tools and techniques, but it is also necessary to analyze
what are the flaws that are still present so we can choose the best ones to integrate
in an IDE.

2. Define objectives of a solution: Infer the goals of a solution from the problem defini-
tion and the knowledge of what is possible and feasible. The goals established for the
development of this work were:

(a) Identify and describe existing automatic fault localization techniques and tools.

(b) Identify the possible tools, and/or techniques, that show good results and can be
included in an IDE.

(c) Integrate an existing tool into a chosen IDE. Integration may require adapting,
or improving, this tool.

1.5. Document Structure 3

3. Design and development: Taking into account the automatic fault tool(s) selected
before, it is necessary to design an integration solution for the selected tool(s) and
to select an IDE. After, the integration of an automatic fault localization tool will be
carried out in the chosen IDE.

4. Demonstration: Application of the solution to the problem presented, through exam-
ples of applications with academic purposes.

5. Evaluation: The solution will be evaluated based on how useful it is to the developers
and how satisfied they are with it.

6. Communication: The communication is done through the completion of a document,
where it is presented all the details of the project (problem definition, state of art, value
analysis, design and implementation, evaluation, discussion of results and conclusion)
and the project presentation of this dissertation,

1.5 Document Structure

This document has the following structure:

1. Chapter 1 – Introduction: the context of this dissertation work is introduced as well
as the problem at hand. Furthermore, the approach methodology is presented and the
objectives of this dissertation are shown.

2. Chapter 2 – State of Art: the concepts used in this dissertation work are illustrated,
automated debugging techniques as well as tools are analyzed and described to check
the possibilities of including in an IDE.

3. Chapter 3 – Value Analysis: it is evaluated how this dissertation work can bring value
to the customer (developer). This comprehends items such as value for the customer
(developer) and perceived value. The New Product and Process Development is pre-
sented here in addition to the some value analysis definitions, the Analytic Hierarchy
Process and the Business Model Canvas.

4. Chapter 4- Analysis and Design: The IDE and tools of choice, as well as the require-
ments and goals for making the most of the integration, are discussed.

5. Chapter 5 – Development: It is shown how the chosen tool was integrated into the
IDE, going in detail how each use case was implemented.

6. Chapter 6 – Evaluation and Experimentation: the evaluation of the integration, as
well as the outcomes, are demonstrated and discussed.

7. Chapter 7 – Conclusion: delineates the dissertation’s conclusions, providing a concise
review of the findings and proposing some future work.

5

Chapter 2

State of Art

This chapter presents some concepts as well as the techniques and tools under the context
of automated debugging. It references the step 1 of the DSRM approach.

2.1 Debugging

When software developers seek to figure out why a program behaves the way it does, they
must translate their questions about the behavior into a sequence of questions about the
code, speculating on the reasons along the way. That is where debugging comes in action
(Ko and B. Myers 2008).

Even though the struggle of trying to understand a program’s behaviour has been known
for decades, debugging is still one of the most challenging and time consuming aspects of
software development. It often consumes more time than creating the piece of software
itself (Beller et al. 2018). This section presents the definition of debugging as well as the
concept of debugger.

2.1.1 Definition and Process

Debugging is the process of detecting faults in a computer software or a system, and
resolving them so that the program works correctly (Srivastva and Dhir 2017). These
software defects are commonly known as "bugs", hence the term "debugging".

This considered tedious and complex task called debugging can be divided into 5 steps
(Sayantini 2020) : identify the fault, find the fault location, analyze the fault, prove the
analysis and cover lateral damage (see Figure 2.1). Firstly, the developer should identify the
actual fault since a bad identification can lead into loads of wasted time, specially when the
fault can be deceiving. Secondly, the developer needs to find the exact spot of the fault.
After the correct exact spot of the fault was found, the third step is to analyse it in order
to fix it. While we analyse, we must take care to not cause any collateral faults. Now for
the fourth step, the developer should guarantee the problem doesn’t happen again and write
tests to cover this area of problem. Lastly, the developer should run all unit tests to make
sure no collateral faults were triggered by this change.

6 Chapter 2. State of Art

Figure 2.1: Debugging Steps (from Sayantini 2020)

2.1.2 Debugging Tools

During debugging, software engineers need to associate failures with its root defect. To
complete this step efficiently,they often need to acquire a deep understanding and build a
mental model of the software system at hand. This is where modern debugging tools come
in: they aid software engineers in observing the system’s dynamic behaviour (Beller et al.
2018).

Debugging tools or debugger is a program used to test and debug other programs. It helps
to identify the faults of the code at the various stages of the software development process.
Usually, debuggers offer a query processor, a symbol resolver, an expression interpreter, and
a debug support interface. They also offer more sophisticated functions such as running a
program step by step (single-stepping or program animation), stopping (breaking) (pausing
the program to examine the current state) at some event or specified instruction by using
what is called a breakpoint, and tracking the values of variables. Some debuggers also have
the ability to modify program state while it is running, or even to continue execution at a
different location in the program to bypass a crash or logical fault.

Nonetheless, there are different types of debuggers for different operating systems. For
Unix and Linux GDB is used as the standard debugger, for Windows OS the Visual Studio
is a powerful editor and debugger and lastly, for Mac OS LLDB is a high-level debugger.
These are just the most common for each operating system, but there is a wide variety of
choices in terms of debugging tools.

2.2. Error, Fault and Failure 7

2.2 Error, Fault and Failure

2.2.1 Definition

The terms error, fault (defect), and failure are defined, respectively, as “erroneous state of
the system”, “defect in a system or a representation of a system that if executed/activated
could potentially result in an error”, and “an externally visible deviation from the systems
specification” (ISO 2017).

The Standard IEEE (ISO 2017) also mentions that other synonym for a fault can be
"bug" and states that “a failure may be caused by (and thus indicate the presence of) a
fault” and “a fault may cause one or more failures”. Therefore, in this dissertation, it is used
this terminology to any computer program. In this environment, faults are bugs in the code,
and failures occur when the output diverges from what it was supposed to be.

Nonetheless, error detection is mandatory for fault localization. One should know some-
thing is wrong before locating the reasoning behind the fault. Failures are a basic form of
error detection, but many errors remain hidden and never lead to a failure. Failure detection
and array bounds checking are both examples of generic error detection mechanisms, that
can be applied without detailed knowledge of a program (Abreu, Zoeteweij, and A. J. v.
Gemund 2007a).

2.3 Fault Localization

When a software program fails it can be caused by many faults that may reside in the
program. To fix failures, faults should be located and corrected. That is where Fault
Localization is needed. Fault localization is, essentially, a search over the space of program
components (e.g. statements, variables, values, predicates) to find suspicious entities that
might have participated in a program failure. It often involves inspection of numerous
components and their interactions with the rest of system. Since there are many suspects in
a program for a failure, automated fault localization techniques attempt to assist developers
by refining and reducing the search space for faults.

According to Wong, Gao, et al. 2016, fault localization techniques can be divided into
two categories: the more intuitive, traditional methods and the more complex, advanced
ones. In the subsections that follows, these two categories will be described as well as its
techniques.

2.3.1 Traditional Methods

Traditional fault localization techniques are very popular amongst programmers since they
are the most intuitive and simple to perform. These include program logging, assertions and
breakpoints.

Program Logging

Print statements are often used to create program logging in a chaotic way in order
to monitor variable values and other information related to the current program state. If
any faulty behaviour is detected, developers need to check the program logs or the printed
run-time information to find the cause of such behaviours.

8 Chapter 2. State of Art

Assertions

"The primary goal in writing assertions is to specify what a system is supposed to do
rather than how it is to do it." (Rosenblum 1992). This means that developers can specify
assertions in their code as a condition to terminate the execution if the program is acting
erroneously, therefore it can also be used to detect any faulty behaviour at runtime.

Breakpoints

A breakpoint is a particular point in the program where the code will stop executing, allow-
ing the programmer to examine its current state. During this interruption, the programmer
can check whether or not the program is functioning as it should, either by modifying the
value of variables or just observing the progression of a bug.

2.3.2 Advanced Methods

Slice-Based Techniques

Program slicing has been proposed and applied to localize faults in the program. Essen-
tially, slicing is a technique whose purpose is to extract all statements that affect some set
of variables in the program. The set of all extracted statements is called a slice (Kusumoto
et al. 2002). This abstracts the program into a reduced form by deleting irrelevant parts
such that the resulting slice will still behave the same as the original program with respect
to certain specifications.

Slicing techniques have been usually divided into static slicing and dynamic slicing. A
program slice for a variable x at a statement n in program P ((x,n) is called slicing criterion).
This means a set of program statements and/or predicate expressions in P, which possibly
affect the value of x at n. The analysis result for all possible input data is called static slice
(Weiser 1984) , and that for a particular input with respect to a subset of selected variables,
rather than for all possible computations is called dynamic slice (Korel and Laski 1990).

Static Slicing basically applies all possible runs without making any assumptions about a
failing program run, therefore it has a crucial disadvantage. Since it contains all executable
statements, it might generate a dice with statements that should not be included. That
is where dynamic slicing is superior. Dynamic Slicing demands to be run with a specific
value slice in order to identify the statements that do affect this particular value observed
at a particular location. This surpasses Static Slicing, which has to analyse all the possible
computations. Still it has its limitations, one known limitation is that it cannot capture when
certain code should have been executed while it did not due to the error, this may cause
the execution of certain critical statements in a program to be omitted and thus result in
failures.

Furthermore, there is an alternative to static and dynamic slicing called execution slicing.
Execution Slicing uses the tests to locate program bugs, basically an execution slice with
respect to a given test case contains the set of statements executed by this test. The
example below can further show the differences between static, dynamic and execution slice.

2.3. Fault Localization 9

Figure 2.2: Faulty code example (Wong, Gao, et al. 2016)

Figure 2.3: An example showing the differences among Static, Dynamic, and
Execution Slicing (Wong, Gao, et al. 2016)

Using the code in figure 2.2 as the reference, assume it has the bug at s7. Figure 2.3
demonstrates the results of the different techniques.

The static slice for the product contains all statements that could possibly affect the value
of product. The dynamic slicing for product only contains the statements that do affect the
value of product with respect to a given test case when a = 2. The execution slice with
respect to a given test case contains all statements executed by this test.

10 Chapter 2. State of Art

Program Spectrum-Based Techniques

Spectrum-based Fault Localization (SFL) techniques propose several approaches to find
out exactly the faulty program entities. The majority of these techniques rank suspicious
entities by using ranking metrics or statistical techniques. Nonetheless, artificial intelligence
can also be applied to these techniques (H. Souza, M. Chaim, and Kon 2016). A program
spectrum, also known as code coverage, is a collection of data that provides a detailed view
on the behavior of software. This data is collected at run-time, and typically consist of
a number of counters or flags for the different parts of a program. Spectrum-based fault
localization uses information from this data executed by test cases to indicate entities more
likely to be faulty (Abreu, Zoeteweij, Golsteijn, et al. 2009). This program spectrum can be
something like what we see in figure 2.4. This constitutes a binary matrix, whose columns
correspond to N different parts of the program. The information that contains an error
constitutes another column vector, the error vector. This vector represents a hypothetical
part of the program that is responsible for all observed errors. So, fault localization consists
in identifying the column vector that resembles the error vector the most (Abreu, Zoeteweij,
and A. J. v. Gemund 2007b).

Figure 2.4: Spectrum-based fault localization input example (Abreu,
Zoeteweij, and A. J. v. Gemund 2007b)

Having these data chunks, we need to find the resemblances between the columns in
the matrix of program spectra.This can be achieved through similarity coefficients, which
quantify our data on how much resemblance exists. There are many similarity coefficients,
2.3.2 depicts the ones that will be discussed in this document.

However, here are some key terms in order to fully comprehend the equations to come dur-
ing this dissertation: Total number of test cases that cover a code statement (NC),Number
of failed test cases that cover a code statement (NCF),Number of successful test cases that
cover a code statement (NCS), Total number of failed test cases (NF),Total number of
successful test cases (NS),Total number of test cases that do not cover a code statement
(NU),Number of failed test cases that do not cover a code statement (NUF) and Number
of successful test cases that do not cover a code statement (NUS).

Dstar =
(NCF)

∗

NUF + NCS

Jaccard =
NCF

NCF + NUF + NCS

Ochiai =
NCF√

NF × (NCF + NCS)

2.3. Fault Localization 11

Tarantula =
NCF
NF

NCF
NF +

NCS
NS

WongII = NCS − NCF

Data Mining-Based Techniques

Similar to machine learning, data mining builds a model finding anomalies, patterns and
correlations from data. This can easily be used to fix fault localization problems since, usually,
it is needed to find the pattern of the statement execution that leads to failure.Due to the
huge amount of data that the complete execution trace has, reviewing it manually would
be an extremely time-consuming task and not cost efficient. That is why some researchers
tried to apply data mining in the fault localization field.

Firstly, in Cellier et al. 2011 it is combined two data mining techniques: Association
Rules and Formal Concept Analysis (FCA).These techniques use as input a binary relation
describing executions by subsets of program lines and verdicts.Then it tries to identify rules
that correspond these executions to the program failures.Later it is computed the failure
lattice for these rules. Quoting the definition given by the author, a failure lattice is "a
partial ordering of the elements of the traces that are most likely to lead to failures".This is
used to compute the ranking, which are needed afterwards to locate the faults.

Secondly, it was proposed another technique in Denmat, Ducassé, and Ridoux 2005.Here
was shown that the method Tarantula (Jones, Harrold, and Stasko 2002a) can be re-
interpreted as a data mining procedure. The data used in Tarantula are the executed state-
ments and the verdict of a set of test cases.That data was transformed into an adequate
form for data mining. Then from that data, association rules could be extracted. The
value of these rules are evaluated based on two metrics, conf and lift, which are commonly
used data mining metrics. These values can be used to determine whether or not a certain
statement may contain a fault.

Lastly, a fault localization framework using data mining was proposed in Hirsch 2021. Here
it is investigated a possible usage of a novel approach that inverts the hierarchy by identifying
a starting point based on historical data and then apply other fault localization techniques.
This historical textual data is formed by bug tickets, issue tickets, feature requests, pull
requests, and commit messages. Then a machine learning algorithm will create a model
with the responsibility of each code component.

Machine Learning-Based Techniques

Machine learning is based on the idea that machines should be able to learn and adapt
through experience and the use of data.Techniques that use machine learning have been suc-
cessfully used in many areas of software engineering. In fault localization, these techniques
have to learn the location of a fault based on input data. Examples of this data are the
statement coverage and the success or failure from the execution result of each test case.
After learning, they will adapt and try to deduce the suspicious program elements (Wong,
Gao, et al. 2016).

In Ericwong and Yuqi 2011 for example, it is used an approach based on Back-Propagation
(BP), a machine learning model to help programmers locate program faults. First it is

12 Chapter 2. State of Art

trained a BP neural network with the coverage data and the execution result (success or
failure) gathered from the program, and then it is used the trained network to compute how
suspicious is each executable statement, in terms of its likelihood of containing faults.

Another approach was taken in Wong, Debroy, et al. 2012 based on Radial Basis Function
(RBF) networks, which are less susceptible to problems like paralysis and local minima which
are often found in BP networks. Not only this, but also their ability to learn is proven
better. This network is trained in a very similar way to the BP network, however, there is
three innovative aspects in this work. First, it was introduced a method for representing
test cases, statement coverage, and execution results within a modified RBF neural network
formalism. Second, it was developed an unique algorithm to determine the number of hidden
neurons and their receptive field centers at the same time. Third, it was used a weighted
bit-comparison-based dissimilarity to estimate the distance between the statement coverage
vectors of two test cases, instead of the usual traditional Euclidean distance which has
proven inefficient in this context.

Lastly, we have an approach using the Deep Neural Network, another sub field of the
machine learning family that is most commonly known as "Deep Learning". In deep learning,
a computer model learns to perform directly from images, text, or sound. These models can
achieve state-of-the-art accuracy, sometimes even over performing humans. In this case,
the network was also trained very similar to the aforementioned but this one requires less
percentage of examined statements to find out all faulty versions. Finally, even though this
method proved is effectiveness and efficiency it still needs to be improve in order to handle
multiple bug programs and big-scale software (W. Zheng, Hu, and J. Wang 2016).

Mutation-Based Techniques

Instead of conventional program execution, mutation-based fault localization uses infor-
mation from mutation analysis as inputs to its ranking metric or risk evaluation calculation
(Jia and Harman 2011). As a result, it introduces some faults known as mutants into the
program under investigation. Mutants are created using mutation operators, which are sim-
ple syntactic rules. Mutation testing is done by running the mutant programs through a set
of test cases and observing the differences in behavior between the mutant and original pro-
gram versions. As a result, the mutants might be classified as either killed or alive. Different
approaches give different meanings to the mutants that are not killed and the ones that are
(Zou et al. 2021).

MUSE (Moon et al. 2014) and Metallaxis-FL (Papadakis and Le Traon 2015 are two
known Mutation Based Fault Localization (MBFL) tools. The differences between these
two lie in the coefficient they use in order to calculate the suspicion level score and in the
meaning of a killed mutant. MUSE uses its own coefficient score where Metallaxis-FL uses
the Ochiai coefficient shown before (2.3.2). Also to count as killing a mutant in MUSE,
a failed test case must be changed to successful, on the other hand to count as killing a
mutant in Metallaxis, a failed test case merely needs to generate a different result (which
may still be unsuccessful).

Model-Based Techniques

Model-Based techniques work towards finding out all the possible causes of odd behaviour
in an observed system based on what one knows about the system’s expected behaviour

2.3. Fault Localization 13

when its working correctly (Shchekotykhin, Schmitz, and Jannach 2016). Now, it will be
shown some of the model-based techniques presented over the years.

This first model-based fault localization technique aims to help pin down the manual
localization process into a small fraction of the whole system. Maruyama and Matsuoka
2008 consists of two parts: pre-fault model generation and model based anomaly detection.
In the first place, it is collected function call traces from each process and it is originated
an execution model that mirrors the function calling behaviours of the whole system. When
there is a failure, the anomaly score is computed for each execution unit in the trial traces
by comparing it against the attained model. This score quantifies how likely the execution
unit is correlated with the fault.This way, the analyst can significantly reduce the time spent
doing the manual localization by prioritizing the execution units with higher anomaly scores.

Nonetheless, model-based techniques can have different types based on their intention.It
is the case of Mateis, Stumptner, and Wotawa 2000 which is a dependency model-based
technique since its model derives from dependencies between statements in a program. Here
was created a dependency model for Java programs in order to locate and partly repair bugs
. This model handles all object-oriented features, loop constructs and global variables.

Moreover, there is a sequential model-based technique in Shchekotykhin, Schmitz, and
Jannach 2016 aiming to reduce the time of the sequential diagnosis sessions.

The algorithm uses partial diagnoses, which are computed using a subset of the mini-
mal conflicts. Conflicts are a set of components that don’t work correctly as a whole at
the same time given the observations and measurements. Then it is determined the best
possible partitioning of the partial diagnoses which form a smaller search space than in the
original problem setting. Lastly, it is guaranteed that the true problem cause, called preferred
diagnosis, will be found.

Lastly, in Abreu, Zoeteweij, and A. J. C. v. Gemund 2008 is presented an observation-
based model technique.This approach uses dynamic information, namely abstraction of pro-
gram traces, to generate a sub-model of the program under analysis. This model is used to
compute the set of valid diagnoses, ranking them afterwards according to the likelihood of
them being guilty of the failures. Despite most approaches in fault localization only present
a single explanation,this approach also contains multiple fault explanations in the ranking
diagnosis.

Program State-Based Techniques

A program stores values in variables or constants. A program state consists of these
variables or constants and their value at a given time during the execution of the program.As
the program executes its state will change, either the variable may differ or even the contents
stored in memory. Analyzing the variables or constants in a precise state is a good approach
to locate bugs in the program.

In Zimmermann and Zeller 2001 is presented a technique called delta debugging. Using
memory graphs, that deliver an overview of all data structures of the program, to capture
and explore the program states. This way, it is possible to contrast a graph of a successful
and a failed test. Also to test the level of suspicion, we can replace the values of a failed
test in a corresponding value of a successful test at the same point. If it replicates, it is
considered suspicious.

14 Chapter 2. State of Art

Another program state-based fault localization technique is shown in Zhang, N. Gupta,
and R. Gupta 2006.Its approach strove to repeat executions of the program on the failing
input and then switch the conditional branch results during these retries till it was discovered
a predicate switching that caused the program to build the correct output. To achieve this
end result, this approach uses a search strategy made of three important steps:

• Only one predicate switch at a time - the program behaviour is not explored by switch-
ing several predicates at the same time since its possibilities are immense;

• Last Executed First Switched (LEFS) Ordering - after having only one predicate switch
at a time, it is needed to choose which predicate to look for first. For this LEFS is used,
it is explored possible predicates in the reverse order of the predicate executions,the
outcome found last will be the first;

• Prioritization-based (PRIOR) Ordering - Adding to the LEFS strategy it used the
PRIOR strategy which consists of two main steps. In the first step,an algorithm
is used to divide all branch predicate instances into those that are expected to be
influenced by the faulty code and those that are not expected to be influenced by
faulty code. The first group is explored before the second. In the second step, it
is ordered the branch predicate within the first group according to their dependence
distance from the wrong output value.The order result of these branch predicates is
then used in our search.

This study shown us that can present valuable clues to the cause of the failure and,
therefore, assist in fault localization field.

Statistics-Based Techniques

Statistical debugging is a dynamic analysis to identify the underlying causes of software
failures. Several algorithms were presented over the years, therefore, here will be shown just
an overview of some of them.

In Liblit et al. 2005, it is possible to verify an algorithm that isolate bugs in programs
containing multiple bugs that were not diagnosed. Their approach consists of instrumented
predicates tested at particular program points. The idea behind it is to simulate the manner
in which programmer usually find and fix bugs, which is by first identifying the most important
bug, then fix it and repeat. To get into the algorithm, we should understand some nuances:

• Feedback report R - indicates whether the run of the program succeeded or failed, if
a predicate is observed to be true at least once during run R then R(P) = 1, otherwise
R(P) = 0.

• Bug profile B - a set of failing runs (feedback reports) that share the same cause of
failure.

• Predicate P - simply a bug predictor, whenever R(P) = 1 is likely that it belongs to
the bug profile.

Finally, the algorithm consists on first computing the probability that P being true implies
failure, Failure(P), and the probability that the execution of P implies failure, Context(P)
for each predicate. Predicates that have a Failure(P) minus Context(P) less or equal to 0
are discarded. The remaining predicates are prioritized based on their scores, which are an
indicator of the connection between the predicate and the bug profile.

2.4. Fault Localization Techniques Comparison 15

Another interesting statistical approach was taken by Liu et al. 2006 to localize software
faults without prior knowledge of program semantics. It was called the SOBER technique
and it was used to rank predicates that were suspicious. In this technique, a predicate
P can be evaluated as true more than once in the execution of one test case. Compute
π(P) = n(t)

n(t)+n(f) ; the probability that P is evaluated as true in each execution of a test
case, where n(t) is the number of times P is evaluated as true and n(f) is the number of
times P is evaluated as false. If the distribution of π(P) in failed executions is significantly
different from that in successful executions, then P is related to a fault.

On other hand, there are other approaches just like the one in You, Qin, and Z. Zheng
2012, where it is exploited the statistical information of two sequentially connected predicates
in the execution. It is built an execution graph for each execution of a test case, where the
predicates are the vertices and the transition of two sequential predicates are the edges.
Lastly, for each edge a suspicion value is calculated to quantify its likelihood of fault. This
has proven more effective than older approaches.

2.4 Fault Localization Techniques Comparison

Several fault localization techniques were shown, presented some papers related to them
as well as what these techniques consist of. However, there was no comparison between
these families of techniques.

Here is presented an evaluation of some of them based on Zou et al. 2021 paper. This
study was based on 357 real-world faults from the Defects4J dataset. Most of the tools
from other techniques are not open source and this study compares some of the techniques
that were presented in this thesis like SFL (2.3.2), slicing (2.3.2), MBFL (2.3.2) and data
mining (2.3.2).

To evaluate these techniques they used the EXAM score. EXAM is the percentage of
elements that have to be examined until finding a faulty element, averaged across all 357
faults. It is important to note that smaller EXAM scores are better. In the table 2.1,
it is possible to see the results of this metric applied to the tools of the respective fault
localization techniques.

Table 2.1: Evaluation of Fault Localization Techniques based on Zou et al.
2021

Family Technique EXAM

SFL
Ochiai
Dstar

0.033
0.033

MBFL
Metallaxis
MUSE

0.118
0.304

Slicing
union
intersection

0.207
0.222

Data mining based BugLocator 0.212

SFL procedures produce better outcomes based on table 2.1 alone; however, the decision
on which technique the tool that will be integrated employs will be made in chapter 3 using
a decision-making method considering more variables.

16 Chapter 2. State of Art

2.5 Fault Localization Tools and Integrations

Fault localization can be one of the most challenging tasks during software development.
Having the right tools in this task can be the decisive factor on many studies. Therefore,
many tools have been developed in order to reduce the amount of effort and time software
developers have to spend on fault localization (Chandrasekaran et al. 2016). In this section,
it is listed some of the tools researched, some of them already integrated with an IDE, along
with a brief description.

2.5.1 Aletheia

Firstly, there is Aletheia (Golagha et al. 2018) which is a fault diagnosis toolchain aiming
to help everyone reducing their failure analysis time. It is designed for C++ projects and its
also compatible with the Google testing framework. Also, it was released as an open source
tool on Github, being also integrated in Visual Studio as an extension.

Aletheia has three main components: data generation, failure clustering and fault local-
ization as it is presented in figure 2.5.

Figure 2.5: Aletheia main components (Golagha et al. 2018)

The first component, named data generation, intents to generate and prepare data for
further analysis using the source-code ant its test suite. Then, it runs the test, collecting
coverage information and aggregating it into the hit/count spectra.

The second component is failure clustering. Here, it receives a hit spectrum (provided
by the data generation component or by other tools such as GZoltar (see 2.5.5). Firstly,
it generates a hierarchical tree of failing tests. Then, the tree is divided into some clusters

2.5. Fault Localization Tools and Integrations 17

using spectrum-based fault localization. In the end, it selects as many representatives for
each cluster as the user desires.

The last and third component, fault localization, uses the information summarized in a
hit spectrum (of all tests or one cluster), returns a list of program elements with their ranks
based on their likelihood to be faulty. Atheleia implements Tarantula, Ochiai, Jaccard and
Dstar metrics (see in 2.3.2).

2.5.2 CharmFL

CharmFL (Sarhan et al. 2021) is an Open-source fault localization tool that has IDE inte-
gration with PyCharm, a popular Python development platform. This tool uses Spectrum-
based fault localization (see in 2.3.2) to assist Python developers by examining their programs
and generating useful data at run-time in order to create a ranked list of potentially faulty
program elements.

It is possible to divide this tool into two parts, the GUI and the frameworks architecture.
In the GUI, program elements are highlighted with different shades of red color based on the
suspicion level scores. The darker the color is, the more suspicious the element is. Also a
great advantage of this tool is that the user can choose multiple metrics like Tarantula and
Ochiai , Dstar and Wong II (see in 2.3.2).

In the end, the results figure (2.6) shows the program elements hierarchically, next to
them there are their positions in the source code, their ranks, and their scores.

Figure 2.6: CharmFL ranking list output (Sarhan et al. 2021)

About the framework’s architecture, it is important to note that it can be used as a stand-
alone tool or integrated in other IDEs too as a plug-in. Also, in order to collect the program’s
spectra it uses the popular coverage measuring tool for Python, called “coverage.py".The
framework transforms the statement level of the coverage measuring tool to method and
class levels as shown in 2.6. Later, the classes are sorted based on their suspicion level
scores, then the functions, and finally the statements. Finally, to make the coverage matrix,
it is used the “.coveragerc” file where the user can configure the measurement.

18 Chapter 2. State of Art

2.5.3 FLACOCO

FLACOCO (A. Silva et al. 2021 is a recent fault localization tool for Java, it uses SFL
(2.3.2) and can be used abroad a wide variety of Java versions. This is entirely possible due
to this tool being built on top of JaCoCo, a top tier code coverage library with almost a
decade of existence. Therefore by update the JaCoCo version, the tool is able to support
new Java versions which is a major advantage comparing to other existing fault localization
tools.

In figure 2.7 is present the architecture of FLACOCO which can be divided into seven
different components: User Interface, Test Detection, Instrumentation and Test Execution,
Coverage Collection, Suspicouness Computation, AST Bridge and File Exporter. Below will
be given a brief explanation of each component in this order.

Figure 2.7: FLACOCO Architecture based on (A. Silva et al. 2021)

The first component, User Interface, is the entry point of the tool and it can be used in
the command line or as a Java API. Secondly in Test Detection, it is detected the tests
to be executed and analyzed with supported test framework (JUnit 3,4 and 5). Thirdly, all
of the tests before mentioned that were chosen are executed and instrumented by JaCoCo.
Next, it is collected the information related to the test result, exceptions thrown and the
coverage. After this test suite is executed, the results will be used to compute the suspicion
level score using the Ochiai coefficient (2.3.2). In addition, FLACOCO can provide an output
as an AST (abstract syntax tree) using the AST Bridge or as JSON or CSV using the File
Exporter. Lastly, it is important to note that FLACOCO does not have an IDE integration
present in the paper (A. Silva et al. 2021).

2.5. Fault Localization Tools and Integrations 19

2.5.4 FLAVS

FLAVS (N. Wang et al. 2015), which stands for Fault Localization Add-in for Visual
Studio, has an IDE integration with Visual Studio coded in C#. It can be used to develop
projects in Visual C,Visual Basic,C#, and other languages.

Figure 2.8 represents the FLAVS flowchart with its main functions, below will be given a
brief description of each step present in the flowchart.

Figure 2.8: FLAVS flowchart (N. Wang et al. 2015)

Starting with the step one, here is defined the amount of test cases a test has to do, the
set of test cases executed, the execution time of each test case and the intervals between
each test cases (this can be defined by the user). In step two is provided an automatic
instrumentation mechanism, which is triggered before the program compilation. Later in
step three, environmental factors like memory consuming, CPU usage and thread numbers

20 Chapter 2. State of Art

are kept in check. Step four saves all the coverage information automatically and the
developer can be asked to mark the test status,i.e.,successful or failed (it also can be done
automatically). After in step five the suspicion level of each statement is calculated to later
be shown and highlighted. Finally in step six, it is provided the option to rerun all previous
test cases. Step seven and eight are optional and basically they let the users create their
own new technique and upload it to the servers respectively.

2.5.5 GZoltar

GZoltar (Campos et al. 2012a) is a SFL tool that provides an infrastructure to auto-
matically instrument the source code and produce run time data. Additionally, this data
is examined in order to minimize the test suite and return a ranked list of the suspicious
elements. GZoltar generates a HTML visualization and a warning marking these suspicious
elements in the code with a high chance of being faulty. This tool implements SFL and can
employ several similarity coefficients such as Ochiai, Dstar, Jaccard (see their formulas in
2.3.2). Figure 2.9 presents the information flow of GZoltar.

Figure 2.9: GZoltar information flow based on (Campos et al. 2012b)

2.5. Fault Localization Tools and Integrations 21

At this moment, GZoltar is available as a command line interface, ant task, maven plug-
in and Visual Studio Code IDE integration. Also, it is important to denote a paper that
describes this integration of the GZoltar tool into the IDE Visual Studio Code.

In Brito 2020, the author argued that the GZoltar tool should transition from an Eclipse
plug-in to a Visual Studio Code plug-in because Eclipse’s popularity has been falling ever
since then. This paper showed state-of-art techniques, the GZoltar tool as the major focus,
demonstrated the Visual Studio Code principles that were essential to know, whether they
were visual concepts or API related, and explained how the integration was designed.

Nonetheless, the created extension was published in the Visual Studio Marketplace being
available to a wide variety of users and conducted an user study to prove the effectiveness
of the plug-in which turned out to be successful.

2.5.6 MUSEUM

MUSEUM (Hong et al. 2015) is a MBFL technique (2.3.2) for real-world multilingual
programs. A multilingual program is made up of numerous pieces of code written in various
languages that communicate with one another via language interfaces. Also, MUSEUM is
language-independent since it generates syntactic mutations and statistical reasoning based
on the outcomes of testing on a target program and its mutants.

MUSEUM requires no extra build/runtime environments, merely a mutation tool and a
coverage assessment tool for the target programming languages. This is a significant benefit
over alternative debugging techniques that necessitate the use of specialized infrastructure
such as virtual machines or compilers.

In terms of its fault localization process, MUSEUM divides its process into four steps:

• MUSEUM accepts the target source code and the target program’s test cases as input;

• MUSEUM creates mutants, each of which is obtained by modifying a single statement
of the target code;

• MUSEUM examines the mutants’ testing data to identify faulty; assertions;

• MUSEUM uses its own suspiciouness metric to evaluate the test results and outputs
a suspiciousness score ranking.

Finally, MUSEUM was implemented targeting Java and C primarily (author said it would
support other languages later but not possible to confirm) and it is not integrated with any
IDE.

2.5.7 Tarantula

Tarantula (Jones, Harrold, and Stasko 2002b) tool is a program visualization system to
aid fault localization. This tool is written in Java and the SFL metric named Tarantula
(check 2.3.2). Its input is software’s source code and the results of executing a test suite
in order to provide a visual mapping of the participation of each program statement in the
testing. Also, the program statements are colored using a from red to yellow to green: the
greater the percentage of failed test cases that execute a statement, the brighter and more
red the statement be. Finally, there is no IDE integration with this tool.

22 Chapter 2. State of Art

2.5.8 UnitFL

UnitFL (Chen and N. Wang 2016) is an add-in of Microsoft Visual Studio written in C#.
It supports projects written in C#, C and Visual Basic. UnitFL has the options to run in
test and fault localization mode (see in figure 2.10). Both modes include unit test design,
visualized guidance and regression test modules.

Figure 2.10: UnitFL menu UnitFL n.d.

UnitFL uses program slicing (2.3.2) and dynamic program instrumentation approaches in
order to reduce the program execution overhead. Besides,it also puts up different floors of
granularities for fault localization analysis to provide different aspects of execution during
the program analysis. Lastly, it evaluates each unit test performance to discover underlying
bugs and shows with different colors based on their suspicion level ranging from green to
red.

2.6 Summary

Over this chapter, multiple fault localization tools that leverage several different tech-
niques were demonstrated, and some of them were even integrated with an IDE. However,
it is necessary to investigate which tools are accessible for integration into an IDE, whether
they already have an integration, and whose family of automatic fault localization techniques
they belong to.

2.6. Summary 23

Table 2.2 summarizes the thesis’ findings, including details on the technique employed,
whether or not it includes IDE integration and the year in which the associated paper was
published.

Table 2.2: Comparative Analysis of Fault Localization Tools

Tool Technique IDE Integration Language Supported Open Source Year
Atheleia SFL Visual Studio C++ Yes 2018
CharmFL SFL PyCharm Python Yes 2021
FLACOCO SFL None Java Yes 2021
FLAVS SFL Visual Studio C/Visual Basic/C# No 2015
GZoltar SFL Visual Studio Code Java Yes 2012
MUSEUM MBFL None Multi language No 2015
Tarantula SFL None Java No 2002
UnitFL Slicing Visual Studio C#/C/Visual Basic No 2016

25

Chapter 3

Value Analysis

This chapter addresses how can this dissertation bring value. Nuances about the inno-
vation process and the business process will be presented, as well as an identification and
analysis of opportunities. Lastly, there will be a value proposition and the use of Analytic
Hierarchy Process (AHP) for multi criteria decision to aid choosing the best fault localization
technique to focus.

3.1 Innovation Process

Accordingly to P. Koen, Bertels, and Kleinschmidt 2014, the innovation process can be
split into three different steps (see 3.1): Fuzzy Front End (FFE) also known as Front End
of Innovation (FEI), New Product Development (NPD) and Commercialization.

Figure 3.1: The three steps of the Innovation Process (Dimitrijevic 2014)

The first step, the FFE, represents a chaotic and experimental state where there are a
lot of uncertainties, mostly financial ones. The second step, the NPD, has concrete and
goal-oriented plans with formalized dates and teams focused on process and/or product
development. The last and third step, the Commercialization, is the final result originated
from the last two steps and the main goal of the innovative process (P. A. Koen et al. 2002).

26 Chapter 3. Value Analysis

3.2 New Concept Development

New Concept Development (NCD) model is a framework for Front End of Innovation that
provides a common knowledge for the field. Additionally, it is divided into three fundamental
parts:

• The engine - at the center of the model there is the engine, which provides power
to the innovation process. It consists of two separate segments: organizational at-
tributes/teams and collaboration.

• The wheel - in the inner part of the model it is present the wheel. It contains the
five fundamental elements of the front end of innovation: opportunity identification,
opportunity analysis, idea generation, idea selection and concept definition.

• The rim - that last element, the rim, comprises the environmental factors that influ-
ence the engine and form the five activity elements.

Figure 3.2: The New Concept Development (NCD) Model(P. Koen, Bertels,
and Kleinschmidt 2014)

The circular shape of the model in Figure 3.2 is intended to depict how thoughts move
between the five elements. The arrows pointing into the model show potential project
starting points, which can be Opportunity Identification or Idea Generation and Enrichment.
The projects that exit through the NPD or Technology Stage Gate processes are represented
by the arrow pointing out of the model.

3.2.1 Opportunity Identification

Opportunity identification is when the organization identifies the different available op-
portunities to eventually allocate its resources. This can be done in different ways, such as
making existing processes better, more efficient or effective. The opportunity can also be

3.2. New Concept Development 27

an entirely new direction for the business, a new service offering or a new manufacturing
process (P. A. Koen et al. 2002).

In the context of this dissertation, the opportunity identification lies in the fault localization
field. Since the everyday programmer faces faults, finding the underlying cause can be a hard
task to perform with the ever increasing scale of today’s software and its complexity. Adding
to this fact, the fault localization tools are mostly deprecated, with no support whatsoever or
hidden from the average person. That is where is the opportunity, to provide the integration
of a fault localization tool with a popular IDE to make sure its availability to everyone.

3.2.2 Opportunity Analysis

After having the opportunity identified, it is mandatory to understand if the opportunity
is worth pursuing. In order to know this, information on reducing uncertainties about how
attractive is the opportunity, the size of the future development and the risk tolerance should
be scouted.

Therefore, a SWOT analysis is an adequate way to evaluate and analyse the opportunity.
It is usually associated with the strategic planning, which consists in a sequential set of
analyses and choices that will eventually lead to the strategy with better odds of succeeding.
The SWOT analysis process has four components: Strengths, Weaknesses, Opportunities
and Threats (Gürel 2017). Strengths describes what the opportunity excels at, weaknesses
are the internal issues that stop the opportunity from its prime level, opportunities are the
favourable external factors that add value to the opportunity and lastly, threats are external
factors that can harm our opportunity.

Strengths
• Open Source
• User-friendly

Weaknesses
• Development team reduced to one

member.
• Non existent Certificate

Opportunities
• Software development is growing

larger everyday
• Lack of up-to-date integrated fault lo-

calization tools

Threats
• Big companies have their own tools.

Strengths

• Open Source: It will be available for free in the marketplace and in an open source
community, closing the gap with the customer and being open to new changes.

• User-friendly: Developers will not need to use external tools or find themselves sur-
rounded by deprecated ones. The plugin will have a friendly interface for the code
editor.

Weaknesses

• Development team reduced to one member: Being the author of this thesis the only
member on this project, it faces a disadvantage in terms of time and in comparison
with other multi-element team projects.

28 Chapter 3. Value Analysis

• Non existent Certificate: Since it is an academic project, it does not have a certificate
of approval or trust like big companies do. This might scare away developers that
want options validated by big entities.

Opportunities

• Software development is growing larger everyday: It is everywhere. Since software is
needed everywhere and it is only getting larger and more complex, developers need
fault localization tools in order to be more efficient. As a result, the fault localization
field also grows bigger and it is a necessity.

• The lack of up-to-date integrated fault localization tools show up as an opportunity
since it becomes a need for the developers who want to have a better experience
debugging and need to be more efficient.

Threats

• Big companies have their own tools: Organizations will rather use their own developed
tools than to use an open source one with no guarantee of success.

3.2.3 Idea Generation

Idea Generation is the evolutionary process that includes the birth, development and
maturation of the opportunity into a definitive idea (P. A. Koen et al. 2002). More often than
not, the idea is not straightforward. During the process of generating the idea there will be
several step backs where it will be needed to reshape,combine,modify or even upgrade what
was previously thought of. Additionally, brainstorming sessions where multiple perspectives
can be gathered are essential since a new concept can arise outside the confines of the current
one. In this dissertation, the idea was originally thought of by my supervisor ProfDoc Alberto
Sampaio and after some brainstorming sessions it was formalized to be an integration of a
software localization tool into an IDE. Nevertheless, this idea is still not complete since there
were still some questions left to answer in order to complete the idea:

• Q1: What is the fault localization technique that the tool has to have?

• Q2: What tool will be used?

• Q3: What IDE will be used?

As a result, those three questions all depend on Q1 "What is the fault localization technique
that the tool has to have?". Having stated that, Q1 should be the primary focus. After
considerable investigation (2.4), four alternatives were found in order to answer Q1:

• A1: Spectrum Based Fault Localization Technique

• A2: Mutation Based Fault Localization Technique

• A3: Program Slicing Fault Localization Technique

• A4: Data Mining Based Fault Localization Technique

3.2. New Concept Development 29

3.2.4 Idea Selection

Idea selection is a critical but tricky process in order to attain the most value out of the
opportunity. This process that can be as simple as choosing one idea out of a set of many
self-generated ideas, can be the decisive factor of success or failure. However, this idea is
allowed to grow and advance but the basis must be there (P. A. Koen et al. 2002).

Furthermore, there is no system that ensures the correct decision is made. Having said
that, there are various strategies that can help with the idea selection process, ensuring that
it has a better chance of succeeding. This is the case with AHP, the approach employed for
that goal in this dissertation.

Analytical Hierarchical Process

The AHP is a method to aid in the process of deciding complex decisions, using math and
psychology. Accordingly to Nicola 2018, it is divided into seven steps:

• Structure the decision hierarchy from the top with the goal of the decision, its criteria
and alternatives.

• Compare the alternatives and the criteria.

• Determine the relative priority for each criterion.

• Examine the coherence of relative priorities.

• Construction of a parity comparison matrix for each criterion, taking into account all
of the alternatives

• Obtain the composite priority for the alternatives.

• Alternative’s choice

For the first step, the problem was already exposed through a question in section 3.2.3,
which asked "What is the fault localization technique that the tool has to have?". To answer
this question it will be used the following criteria:

• Accuracy: the proportion of correct localized faults in the total number of faults.

• Reliability: the consistency of the solution.

• Performance: the percentage of code statements that need to be examined until the
first faulty statement is reached.

For the alternatives, we will use the ones tested in 2.4, since it is the only comparison
data it could be found. And, these are:

• Spectrum Based

• Mutation Based

• Program Slicing

• Data Mining Based

30 Chapter 3. Value Analysis

Now it is possible to generate the AHP decision hierarchy tree:

Figure 3.3: Hierarchical Decision Tree

Criteria comparison

The second phase entails using a comparison matrix to establish priorities among the
elements at each level of the hierarchy. In order to correctly compare our alternatives with
the defined criteria, it is needed an importance scale. This scale is presented in with the
rating explanations.

Table 3.1: Fundamental scale from Saaty 2008

Intensity of Importance Definition Explanation

1 Equal Importance
Two activities contribute equally
to the objective

2 Weak or slight

3 Moderate importance
Experience and judgement slightly
favour one activity over another

4 Moderate plus

5 Strong importance
Experience and judgement strongly
favour one activity over another

6 Strong plus

7
Very strong or demonstrated
importance

An activity is favoured very strongly
over another; its dominance
demonstrated in practice

8 Very, very strong

9 Extreme importance
The evidence favouring one activity
over another is of the highest
possible order of affirmation

Reciprocals of above

If activity i has one of the above
non-zero numbers assigned
to it when compared with
activity j, then j has the reciprocal
value when compared with i

A reasonable assumption

1.1-1.9 If activities are very close

May be difficult to assign the best
value but when compared with
other contrasting activities the
size of small numbers would not
be too noticeable yet they can still
indicate the relative importance
of the activities

3.2. New Concept Development 31

Finally, a weight is provided to each of the criteria described above using the AHP funda-
mental scale (table 3.1). In addition, paired procedures are used to compare each criterion
(table 3.2).

Table 3.2: AHP table for criteria comparison

Accuracy Reliability Performance
Accuracy 1 2 5
Reliability 1/2 1 3
Performance 1/5 1/3 1

After analyzing the table 3.2, it is possible to infer that:

• Accuracy is very slightly more crucial than reliability.

• Performance isn’t nearly as critical as accuracy.

• Reliability is more important than performance.

The author reasoning for this is that accuracy is the most determining factor in a algorithm
specially in fault localization since the whole point is to discover the most faults possible,
paired with it is reliability because in order to be a good technique it needs to be consistent.
Lastly, performance is a useful metric to have since it can decide between two really good
options but is not as mandatory as the last two.

Criterion Relative Priority

Now, in the third step, there is two important steps to do. Firstly, in order to match
all criteria to the same unit, the values of the comparison matrix will be normalized. To
accomplish this, we must compute the sum of each column:

Table 3.3: AHP table for criteria comparison

Accuracy Reliability Performance
Accuracy 1 2 5
Reliability 1/2 1 3
Performance 1/5 1/3 1
Sum 17/10 10/3 9

And then, normalize by dividing each matrix value by the sum of its associated column:

Table 3.4: Normalized criteria matrix

Accuracy Reliability Performance
Accuracy 10/17 3/5 5/9
Reliability 5/17 3/10 1/3
Performance 2/17 1/10 1/9

Lastly, the priority vector must then be obtained in order to establish the relevance order
of each criterion. To do so, the normalized matrix of the previous point is used in order to
find the arithmetic mean of each row’s values.

32 Chapter 3. Value Analysis

Table 3.5: Relative Priority of each criterion

Accuracy Reliability Performance Relative Priority
Accuracy 10/17 3/5 5/9 0.5813
Reliability 5/17 3/10 1/3 0.3092
Performance 2/17 1/10 1/9 0.1096

Relative Priorities Coherence

Now, in order to quantify how consistent the judgments were for large samples of entirely
random judgments, the fourth step is to calculate the Consistency Ratio (CR).If the RC is
more than 0.1, the judgements are untrustworthy since they are too near of randomness.

To begin, obtain the value of λmax , which indicates the biggest eigenvalue of a matrix A,
using the equation below:

Ax = λmaxx

Where x denotes the priority vector of each criterion and Ax denotes the multiplication
of this vector by the non-normalized priority matrix. The matrix 3.4 below displays the
outcomes of this multiplication.

 1 2 5

1/2 1 3

1/5 1/3 1

X
0.58130.3092

0.1096

 =
1.74770.9287

0.3289

Figure 3.4: Multiplication of priority vector by the non-normalized priority
matrix

Then, it is possible to calculate the matrix eigenvalue:

λmax =
1.7477
0.5813 +

0.9287
0.3092 +

0.3289
0.1096

3
≈ 3.004

Finally, the division between the Consistency Index (CI) and the Random Index (RI) is
required to compute the Consistency Ratio (CR). To calculate the CI, this is the formula:

CI =
λmax − n
n − 1

Where n is the number of criteria it was used.Because the value of λmax has already been
determined, the IC can be calculated quickly:

CI =
3.004− 3
3− 1 ≈ 0, 002

3.2. New Concept Development 33

Then, the Random Index (RI) can be obtained in table 3.6, where the value depends on
the number of criteria used:

Table 3.6: Random Consistency Index (Nicola 2018)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

Since it was used three criteria, the RI is 0.58 and lastly, the value of CR is obtained:

CR =
0, 002

0.58
≈ 0, 0034

Then, it is possible to infer that the criteria is trustworthy since the obtained CR value
was approximately 0.0034, which is less than 0.1.

Alternative’s Parity Comparison Matrix For Each Criterion

The fifth step is to observe the relative relevance of each of the alternative in the problem
at hand. To accomplish this, the creation of the comparison matrices (this time, between
each criterion and alternative), the respective normalization matrix, and the calculation of
the priority vector are all repeated. Table 3.7,3.8 and 3.9 show the preliminary comparison
using the fundamental scale (Table 3.1).

Table 3.7: Comparison Matrix of Accuracy between Alternatives

Accuracy
Spectrum Based Mutation Based Program Slicing Data Mining Based

Spectrum Based 1 5 7 7
Mutation Based 1/5 1 3 6
Program Slicing 1/7 1/3 1 5
Data Mining Based 1/7 1/6 1/5 1

Table 3.8: Comparison Matrix of Reliability between Alternatives

Reliability
Spectrum Based Mutation Based Program Slicing Data Mining Based

Spectrum Based 1 3 3 7
Mutation Based 1/3 1 2 5
Program Slicing 1/3 1/2 1 5
Data Mining Based 1/7 1/5 1/5 1

Table 3.9: Comparison Matrix of Performance between Alternatives

Performance
Spectrum Based Mutation Based Program Slicing Data Mining Based

Spectrum Based 1 5 7 5
Mutation Based 1/5 1 5 2
Program Slicing 1/7 1/5 1 1/5
Data Mining Based 1/5 1/2 5 1

These matrices are then normalized, and the local priority vector for each one of them is
determined. Table 3.7, 3.8 and 3.9 show the result as well as their local priority vector.

34 Chapter 3. Value Analysis

Table 3.10: Normalized Matrix for Alternatives-Accuracy Comparison and
Local Priority

Accuracy
Spectrum Based Mutation Based Program Slicing Data Mining Based Local Priority

Spectrum Based 0.6731 0.7692 0.625 0.3684 0.6089
Mutation Based 0.1346 0.1538 0.2678 0.3158 0.218
Program Slicing 0.0961 0.0513 0.0892 0.2631 0.1249
Data Mining Based 0.0961 0.0256 0.0178 0.0526 0.0480

Table 3.11: Normalized Matrix for Alternatives-Reliability Comparison and
Local Priority

Reliability
Spectrum Based Mutation Based Program Slicing Data Mining Based Local Priority

Spectrum Based 0.5526 0.6383 0.4839 0.3889 0.5159
Mutation Based 0.1842 0.2128 0.3226 0.2778 0.2493
Program Slicing 0.1842 0.1064 0.1613 0.2778 0.1824
Data Mining Based 0.0789 0.0425 0.0322 0.0556 0.0523

Table 3.12: Normalized Matrix for Alternatives-Performance Comparison and
Local Priority

Performance
Spectrum Based Mutation Based Program Slicing Data Mining Based Local Priority

Spectrum Based 0.6481 0.7463 0.3889 0.6097 0.5982
Mutation Based 0.1296 0.1492 0.2778 0.2439 0.2001
Program Slicing 0.0926 0.0298 0.0555 0.0243 0.0505
Data Mining Based 0.1296 0.0746 0.2778 0.1212 0.1508

Alternative’s Composite Priority and the Choice Table 3.7,3.8 and 3.9 results are then
combined with table 3.5 relative priority vector to create a new matrix:

0.6089 0.5159 0.5982

0.218 0.2493 0.2001

0.1249 0.1824 0.0505

0.0480 0.0523 0.1508

X
0.58130.3092

0.1096

 =

0.5790

0.2257

0.1345

0.0606

Figure 3.5: Multiplication of priority matrix by the criteria priority vector

Then, the composite priority vector may be calculated using these values by multiplying
the result of each alternative with the priority vector. Based on the criteria, this vector will
indicate the relevance of the alternative. Table 3.13 summarizes the findings:

Table 3.13: Criteria/Alternatives Classification Matrix and Composite Prior-
ity

Accuracy Reliability Performance Composite Priority
Spectrum Based 0.6089 0.5159 0.5982 0.5790
Mutation Based 0.218 0.2493 0.2001 0.2257
Program Slicing 0.1249 0.1824 0.0505 0.1345
Data Mining Based 0.0480 0.0523 0.1508 0.0606

3.3. Value Analysis 35

To sum up, the AHP method and the related findings of the global priority vector from Ta-
ble 3.13 indicate that Spectrum Based are the preferred techniques, followed by Mutation
Based, Program Slicing and Data Mining Based.

3.2.5 Concept Definition

Concept definition is the final element of the NCD, providing the only exit to this frame-
work (P. A. Koen et al. 2002). This is essentially the creation of the dissertation, therefore
the primary objectives and concepts should be synthesized here.

That being the case, the main objectives of this project are describing fault localization
techniques and its state of art (done previously in 2), choose a fault localization technique
to integrate a tool from to an IDE (technique chosen in 3.2.4) and integrate the tool into
an IDE. The tool and IDE will be presented in the Design chapter.

3.3 Value Analysis

In order to improve product creation or service delivery a lot of organizations use Value
Analysis. This is a process aiming to identify and get rid of product and service features
that don’t add any value to the customer or the product but do imply costs to manufacture
or provide the service (Rich, Holweg, and Wirtschaftsing 2000). Therefore, in this section
concepts like Customer Value, Perceived Value, Benefits and Sacrifices will be explained in
order to further understand Value Analysis and its connection with the customer.

3.3.1 Customer Value

According to Mahajan 2020, "customer value is the perception of what a product or
service is worth to a customer versus the possible alternatives". This can be converted into
the following equation:

CustomerV alue =
Benef its

Costs

The costs can be something related with the price or even other types of costs like time
or effort. On the other hand, the benefits are the advantages of the said product or service.

In the context of this dissertation, which is a integration of a fault localization tool into
an IDE, something worth to the customer is having a reliable, effective and easy to use way
to use these tools on their favourite code editor.

3.3.2 Perceived Value

Perceived value can be described as the value of a product or service for the customer
measured in their own perception of the said product/service’s attractiveness (What is Per-
ceived Value? 2020). It is known that a customer will be willing to pay more if they think
the product is valuable to them, thus factors like the brand’s name or reputation can affect
the perceived value as well.

In this context, the perceived value of the customer should be up to the mark. Since the
user will be able to use the same reliable tools available in their IDE for free (open-source)
and without much complications.

36 Chapter 3. Value Analysis

3.3.3 Benefit vs Sacrifice

The benefit and sacrifice heavily depend on the type of value that the product or service
provide to the customer. In Smith et al. 2007, it is presented four major types : functional/in-
strumental value, experiential/hedonic value (related with providing appropriate feelings and
emotions), symbolic/expressive value (related with attaching the customer to the product
or giving it some psychological meaning), and cost/sacrifice value (related with minimizing
the costs of purchasing a product/service).

The integration done in this thesis falls under the functional/instrumental value, where
it really matters how efficient, practical and useful the product/service is. The list below
identifies the benefits and sacrifices for this dissertation:

Benefits

• Practical - Simple, practical, user-friendly interface.

• Dependency Reduction - Less reliant on a debugging tool.

• Useful - Excellent addition to the IDE’s testing capabilities.

• Free - Available for free on the marketplace and to the open source community.

Sacrifices

• Time/Effort - Time and effort employed by the open source community.

3.4 Value Proposition

A Value Proposition is used to summarize the reasons why a customer should buy/use a
product/service. If it is enthralling enough, it should persuade any customer that is pensive
about the matter.

The Value Proposition Canvas was originally created by Dr Alexander Osterwalder as a
framework to ensure that there is a suitable connection between the product and the market
(Osterwalder et al. 2014). A similar canvas (see 3.14), Business Model Canvas, is used to
demonstrate the value of the current dissertation.

3.5. Summary 37

Table 3.14: Business Model Canvas

Key Partners

• Open Source community;
• Digital Libraries;
• IDE developers.

• Identifying the best fault
localization techniques and
tools;

• Adapt and implement the
technique/tool into an IDE.

Key Activities

• Available Fault
Localization Tools;

• Compatible IDE.

Key Resources

No monetary costs included.

Cost Structure

No monetary profit included.

Revenue Streams

Value Propositions

• Implementation of a fault
localization tool/technique
into a compatible IDE;

• Open Source solution;
• User Friendly;
• Reducing dependency on

external tools.

• Online documentation: All
of the work will be
documented adequately in
online tools and in this
dissertation;

• Release Notes.

Customer Relationships

• Plugins Marketplace;
• Email for technical

support.

Channels

Customer Segments

• Independent Developers;
• Students.

3.5 Summary

Several value analysis topics were introduced and addressed throughout this chapter. The
approach began with the innovation process, which was divided into three parts, one of which,
the NCD, was primarily focused on. Each of the five key parts of the NCD (opportunity
identification, opportunity analysis, idea production, idea selection, and concept definition)
was examined and applied to this dissertation.

Nonetheless, among these five key parts, it is crucial to highlight the idea selection,
which played a significant role in the thesis’ enrollment. Using the AHP method to aid in
the selection, Spectrum Based Fault Localization techniques were determined to be the
winner with the highest composite priority.

Finally, ideas like as customer value, perceived value, benefit, and sacrifice were demon-
strated in order to better understand the client and what value this dissertation may provide
to him. In addition, a value proposition was developed to strengthen this relationship with
the consumer and demonstrate why they should utilize the end product.

39

Chapter 4

Analysis and Design

This chapter outlines what was done prior to the start of implementation. The tool and
IDE selection, the requirements, and some diagrams to help grasp the overall structure of
the project.

4.1 Selection Process

In chapter 3, it was determined that the tool would have to use SFL approaches, as well
as to be open source in order to be integrated. However, according to table 2.2 where it
was included the tools discovered as well as other pertinent information, there were four
SFL technique based tools that fulfilled this criteria:

• Atheleia

• CharmFL

• FLACOCO

• GZoltar

Choices had to be made, and there was a preference for Java-supported tools which
narrowed the options down to FLACOCO (2.5.3) and GZoltar (2.5.5). However, due to
FLACOCO not having any IDE integration, it was decided to integrate this tool.

The choice for IDE integration was between IntelliJ and Visual Studio Code. When
looking at an index of the most popular IDE’s (Carbonnelle 2022), they are the only ones
supporting Java and with a positive trend rise, indicating that they are both gaining traction
over the past year. Yet, given to Microsoft’s extensive and well-documented Extension API1,
it was decided to incorporate FLACOCO into the IDE Visual Studio Code.

Nonetheless, if this choice failed, a GZoltar integration with the IntelliJ IDE would be the
alternative.

4.2 Requirements

Understanding the project’s functional and non-functional requirements is critical for es-
tablishing the use cases for the solution’s implementation.

1https://code.visualstudio.com/api

40 Chapter 4. Analysis and Design

4.2.1 Functional Requirements

Functional requirements specify exactly what the system must perform and describe the
features that the system must have. Hence, in this section, the requirements identified
during the project led to the development of use cases:

• Read the project folder the developer wants to analyze;

• Execute the FLACOCO tool analysis in the project;

• Highlight the suspicious lines of code in the developer’s project.

It was thus able to identify some use cases (UC) related to the integration of the tool
FLACOCO in the IDE Visual Studio Code. This is illustrated in the use case diagram 4.1:

Figure 4.1: Use Case Diagram

UC1: Open entry project folder

Goal:

Display the opened folder to be analyzed in the Visual Studio Code FLACOCO Extension
UI.

Actor:

Developer

Preconditions:

The project folder is in Java language.

Trigger:

The extension is triggered if the project folder is in the Java language.

Success Scenario

1. The developer opens the Visual Studio Code FLACOCO Extension UI.

2. The project name is shown successfully in the Visual Studio Code FLACOCO Extension
UI under the opened folders.

4.2. Requirements 41

Fail Scenario

1. The developer opens the Visual Studio Code FLACOCO Extension UI.

2. The project name is not shown in the Visual Studio Code FLACOCO Extension UI
under the opened folders.

3. Visual Studio Code presents an error message.

UC2: Execute FLACOCO tool

Goal:

Run the FLACOCO tool to examine the specified project.

Actor:

Developer

Preconditions:

The UC1 (Read entry project folder) has to be completed successfully.

Success Condition

1. The developer presses the Run button in the Visual Studio Code FLACOCO Extension
UI.

2. Visual Studio Code presents an information message indicating that the FLACOCO
Extension is running.

3. Visual Studio Code presents an information message indicating that the FLACOCO
Extension ran successfully.

Fail Condition

1. The developer presses the Run button in the Visual Studio Code FLACOCO Extension
UI.

2. Visual Studio Code presents an error message.

UC3: Open suspicious classes

Goal:

Display the names of suspicious classes in the Visual Studio Code FLACOCO Extension
UI so that the developer can easily be redirected by pressing them.

Actor:

Developer

Preconditions:

The UC2 (Execute FLACOCO tool) has to be completed successfully.

Success Scenario

1. The Visual Studio Code FLACOCO extension extracts the data from the Excel file
created having the suspicious classes from running the FLACOCO tool.

42 Chapter 4. Analysis and Design

2. The Visual Studio Code FLACOCO Extension uses the extracted data to display a list
of the suspicious classes names in its UI.

3. The developer presses the desired class to check.

4. Visual Studio Code redirects the developer to the folder of the corresponding class.

Fail Scenarios

First

1. The Visual Studio Code FLACOCO extension extracts the data from the Excel file
created having the suspicious classes from running the FLACOCO tool.

2. There is no data.

3. Visual Studio Code presents an error message.

Second

1. The Visual Studio Code FLACOCO extension extracts the data from the Excel file
created having the suspicious classes from running the FLACOCO tool.

2. The Visual Studio Code FLACOCO Extension uses the extracted data to display a list
of the suspicious classes names in its UI.

3. The developer presses the desired class to check.

4. Visual Studio Code doesn’t redirect the developer to the folder of the corresponding
class.

5. Visual Studio Code presents an error message.

UC4: Highlight suspicious lines of code

Goal:

Highlight suspicious lines of code in the project’s source code based on their level of
suspicion.

Actor:

System (FLACOCO Extension)

Preconditions:

The UC2 (Execute FLACOCO tool) has to be completed successfully.

Success Condition

1. The Visual Studio Code FLACOCO extension extracts the data from the Excel file
created having the lines of code and its suspicion level from running the FLACOCO
tool.

2. Visual Studio Code FLACOCO extension uses the received data to highlight the lines
of code in the project source code files.

Fail Condition

1. The Visual Studio Code FLACOCO extension extracts the data from the Excel file
having the lines of code and its suspicion level from running the FLACOCO tool.

4.3. Design 43

2. There is no data.

3. Visual Studio Code presents an error message.

4.2.2 Non-Functional Requirements

Non-functional requirements are those that define how the system should operate. They
can be thought of as system properties.

As a result, Table 4.1’s objective is to describe each non-functional requirement employed
in the project’s thesis.

Table 4.1: Non-Functional Requirements

Requirement
Portability Specifies how a system can be launched in one environment or another.
Usability Features linked to the aesthetics and consistency of the user interface are evaluated.

1. Portability: The application should be accessible for all operating systems supported
by Visual Studio Code, this includes Windows, Linux, and MacOS;

2. Usability: The application is designed to be flexible, user-friendly, and information-
rich.

4.3 Design

4.3.1 Architecture

In this section, the architecture of the generated solution will be revealed in order to
describe the software. A general understanding of how software will work is the starting
point for any successful endeavor. Thus, figure 4.2 was designed to achieve that purpose,
while adhering to the recommended practices for a Visual Studio Code extension.

Figure 4.2: FLACOCO Component Diagram

Figure 4.2 depicts the three major components of the FLACOCO Visual Studio Extension.

44 Chapter 4. Analysis and Design

Firstly, the Front End or View (following the Visual Studio Code UX guidelines2). This
component serves as the user interface, presenting the user with all of the information
processed in the back end as well as delivering all of the orders requested by the user to the
back end.

Secondly, there is the Back End. In the Back End there are several components, therefore
it will be given a brief sum of their purpose. The component MainCommand accepts the
user requests and acts accordingly to its needs, if it is needed to interact with FLACOCO
in order to get the analysis result it will request the CLIRunner component, otherwise if it is
file related it will request the FileStorage. In order to highlight the suspicious lines of code
in the project’s source code it is used the Decorator component, which is linked to a file.

Finally, the FLACOCO tool does the analysis as directed by the CLIRunner and reports
the results back to the MainCommand.

4.3.2 Deployment

Deployment is the process of making software available to the target customers in a
specified environment(Williams 2021). A deployment diagram was constructed to aid the
process, this diagram can therefore be found in Figure 4.3 .

Figure 4.3: FLACOCO Deployment

As can be seen in the Figure 4.3, it was adopted the method of deploying the software in
Microsoft Azure. Since Microsoft owns Visual Studio Code as well as Azure, a well-known
cloud deployment provider, it offers excellent support and compatibility for deploying your
Visual Studio Code extensions, therefore it only made sense to do so.

Chapter 5 will go through how this deployment was carried out in further detail.
2https://code.visualstudio.com/api/ux-guidelines/views

4.4. Summary 45

4.4 Summary

There were a few noteworthy points in this chapter. To begin, FLACOCO was chosen as
the automatic fault localization tool and Visual Studio Code as the IDE to integrate it on.

Moreover, four use cases were created to meet the functional requirements: open entry
project folder, execute FLACOCO tool, open suspicious classes and highlight suspicious lines
of code. Additionally, two non-functional requirements were imposed: the extension must
be usable in all VSCode-supported operating systems and be user-friendly.

Finally, a component and deployment diagram were used to describe the extension’s ar-
chitecture.

47

Chapter 5

Development

This chapter will discuss the software development process, therefore it will first detail
how Visual Studio Code extensions function, followed by an explanation of how each use
case mentioned in Chapter 4 was implemented. Finally, any other pertinent information
about the development will be shared.

5.1 Visual Studio Code Extensions

Visual Studio Code is a source code editor developed by Microsoft for Windows, Linux,
and macOS. It is noted for being a lightweight and fast IDE, but it lacks some of the built-in
features that other IDEs offer. Nonetheless, Visual Studio Code excels in having a large
number of extensions in its marketplace and a highly extendable API, with practically every
aspect of VS Code being extremely customizable.

5.1.1 Creating an Extension

Some prerequisites must be completed before creating the extension. The device must
have Node.js, Yeoman, and the VS Code Extension Generator installed.

Yeoman is a web scaffolding tool for web applications, and as such it can provide a
generator ecosystem. Being available in the package manager Node, through a simple Node
command it can be created a VS Code Extension Generator walking the user through the
steps required to create an extension:

npm install -g yo generator-code

After executing the generator, it will be prompted with some customization questions,
the most important of which is whether the extension is written in TypeScript or JavaScript
and whether the package management used is Yarn or Node.js. FLACOCO Visual Studio
Code Extension was written in Typescript and used the node package manager.

Following that, a base folder structure with a simple extension implementation will be
built.

5.1.2 Extension Structure

There are some files created by the generator,however, the primary files that are re-
quired to comprehend the extension are package.json (Extension Manifest) and extension.ts
(Entry File).

48 Chapter 5. Development

Extension Manifest

The Extension Manifest for each VS Code extension must be package.json. The pack-
age.json file has a mix of Node.js fields like scripts and devDependencies as well as VS Code
fields (Microsoft 2022). Some of the most significant VS Code fields are as follows:

• Name and Publisher: To identify an extension, VS Code uses <publisher>.<name>
as an unique ID;

• Main: Extension’s entry point;

• Activation Events: set of JSON statements that, if they occur, activate your ex-
tension. The presence of a file in the folder of a specific programming language,
for example, can be activated by the onLanguage Activation Event (e.g., "onLan-
guage:java").

• Contribution Points: a set of JSON declarations that extend the functionality of
Visual Studio Code. For example, contributing the UI with a command, define when
the command should be enabled or even the condition under which specific items
should show during that command.

Entry File

Two functions are exported by the extension entry file: activate and deactivate.

When your registered Activation Event occurs, activate is executed. The activate function
will include the core logic flow and code for your extension; here you will register your
commands and control any section of the extension using the VS Code API.

Deactivate function allows you to clean up before your extension is deactivated. Many
extensions may not require specific cleanup, and the deactivate function may be omitted.
This is the approach to use if an extension wants to conduct an operation while VS Code is
closing down or the extension is disabled or removed (Microsoft 2022).

UX Guidelines

Figure 5.1 was created in order to completely comprehend some of the expressions that
will be utilized throughout the development explanation and what they represent in the Visual
Studio UI.

5.2. Use Case Development 49

Figure 5.1: Visual Studio Code UX Guidelines (Microsoft 2022)

• View Container: here it will be present the icon of the extension developed;

• View: content containers that can show in the sidebar or panel. Views can contain
tree views or custom views, as well as view actions.

• Status Bar: located at the bottom of the VS Code workbench and displays workspace-
related information and actions.

5.2 Use Case Development

The four use cases will be presented in this section in order to demonstrate all the features
and sub-functionalities of the software. The following approach was used to document the
respective use cases: first, a description of the UC will be provided, indicating what it does
and who executes it, then figures referencing the result will be made presented, and finally, it
will be explained how some relevant parts of its coding were implemented, with the possibility
of inserting relevant code snippets.

5.2.1 UC1 - Open entry project folder

This use case occurs when the developer opens a Java project folder to be analyzed and
the folder name is displayed in the View menu when using the extension (5.2).

50 Chapter 5. Development

Figure 5.2: Flacoco Extension View

Furthermore, some triggers were implemented for this use case. By creating the "on-
Language:java" Activation Event in the package.json (5.1.2), it was possible to make the
extension icon visible in the View Container if the developer opened a project folder that
uses the Java language.

Visual Studio Code requires data to display in the newly opened view after opening the
extension. For this, the Tree View API was used, which allows the content to be shown as
a tree. First, a TreeDataProvider was created in order to provide data to the view, which
must extend from the TreeItem class. These are our elements in the view; they include
attributes such as labels and a collapsible state that indicates whether or not they have
children (meaning if they can be opened or not). Figure 5.2 shows two TreeItems that were
implemented: the first with the label as the folder name and no children; the second with
"FAULTY CLASSES" as the label and the possibility to have children.

Nonetheless, on the Contribution Points field of the Extension Manifest, the "FLA-
COCO:COMMANDS" label, as well as the refresh and run buttons, are defined. The label,
as well as the image linked to specific commands, can be defined there (like run and refresh).

Finally, it is important to note that a ".flacoco" folder is created in the root of the user’s
project, where the tool’s jar is also moved, and an empty CSV is created there to receive
future data from the tool analysis.

5.2.2 UC2 - Execute FLACOCO tool

This use case occurs when the developer launches the extension analysis by clicking the
Run icon in the View Toolbar or by hovering over the folder name and pressing the Run icon,
as shown in Figure (5.3).

5.2. Use Case Development 51

Figure 5.3: Flacoco Extension Run

In terms of code, the command Run was linked to a function that will define its logic. In
that function, it calls a class that constructs the FLACOCO tool command from formatted
strings and then executes it to get the tool’s output into the previously prepared empty CSV.

Furthermore, after the run has begun, it is critical to keep the user informed of what the
extension is doing. As a result, the Extension API was utilized to generate a Status Bar and
an Information Message popup, as seen in Figure 5.4. This was accomplished by utilizing
the vscode.window.createStatusBarItem (where the text and position can be specified) and
vscode.window.showInformationMessage functions (where it can be defined the text present
in the message). This way, even if long background work is being performed, users are aware
that the extension is still operational, despite the inability to display results immediately.

Figure 5.4: Flacoco Status Bar and Information Message

5.2.3 UC3 - Open suspicious classes

This use case happens when the extension displays the names of the defective classes so
that the user may easily be redirected to the class source file by simply clicking them, as
presented in Figure 5.5 .

52 Chapter 5. Development

Figure 5.5: Flacoco Faulty Classes Tree

Coding-wise, it is necessary to first read the tool’s output, which was saved as a CSV
(5.2.2), but in order to parse that data, it is necessary to understand how the data was
organized. That being said, the data in the CSV is ordered as follows: first, the Java class
name, then the number of the suspicious code line, and last, the suspicious level, which can
range between 0 and 1.

Only the first piece of data, the class name, is required for this use case. Using a standard
Typescript split, the first piece is sent to a function that searches for the full path of the
desired class and creates an object with the class name and full path. If this object is not
repeated, it will be added to an array containing all of the faulty classes.

1 private static async addToFaulty(folder: string) {
2 let faultyClass: TreeFolder;
3 let label: string;
4 let glob: string;
5
6 let folderToFind = folder.replace (/\./g, ’/’) + ’.java’;
7 label = folder.split(’.’).pop()!;
8
9 glob = ’**/*${folderToFind}’;

10
11 await vscode.workspace
12 .findFiles(glob , ’/node_modules/’, 1)
13 .then((uris: vscode.Uri[]) => {
14 uris.forEach ((uri: vscode.Uri) => {
15 faultyClass = new TreeFolder(label , uri.fsPath);
16 if (
17 !Decorator.faultyClasses.some((f) => f.path ===

faultyClass.path)
18) {
19 Decorator.faultyClasses.push(faultyClass);
20 }
21 });
22 });
23 }
24 }

Listing 5.1: Implementation of the method addToFaulty

Looking at this code, the main Extension API function that should be focused on is the
vscode.workspace.findFiles function. Three arguments were used: include pattern, exclude

5.2. Use Case Development 53

pattern, and number of maximum results. In the first, there is a pattern to search the full
path of a file ending in the class name plus the ".java" since it is a java file, in the second,
there is no need to search in the node modules folder, which would consume a lot of the
extension response time, and finally, only one match should be possible.

Lastly, the array containing all of the faulty classes discovered during the analysis will be
utilized to populate the children of the TreeItem labeled "FAULTY CLASSES" described in
5.2.1. This will be linked with the vscode.open command from the Extension API, with the
entire path of the faulty class as an argument, so that the user can click the class name and
be redirected to the source file.

5.2.4 UC4 - Highlight suspicious lines of code

This use case is triggered when the user switches to a different text editor, either by being
redirected on pressing the class name in UC3 (5.2.3) or by manually going through each
class file. Then, in each file, the suspicious lines of code are highlighted as shown in Figure
5.6.

Figure 5.6: Flacoco Highlight Example

In terms of coding implementation, using the tool’s output, which included the class file
name, number of suspicious code lines, and suspicion level, it was possible to associate an
image of a specific color with each line and its level. Green denoted a low level of suspicion,
yellow a medium level, orange a high level, and red a very high level. An extra step was
taken here by adding a hoverMessage property so that when the user hovers over a specific

54 Chapter 5. Development

line, a text indicating its level appears (Figure 5.7). This measure can assist colorblind
people in using the extension.

Figure 5.7: Flacoco Hover Example

The image and type of highlight were assigned to the code lines using the Extension API
method createTextEditorDecorationType. This decoration would be triggered whenever the
user switched to that text editor via the onDidChangeActiveTextEditor event, but would be
removed if the user saved the document via the Extension API’s onWillSaveTextDocument
event.

5.3 Other FLACOCO Extension Details

5.3.1 Logo

Visual Studio Code presents an icon of each active extension in its View Container, there-
fore, an icon was needed.

The logo needed to reflect the tool’s identity, it is a tool to help the debugging task using
the tests in Java projects. Thus, the idea was to combine the Java logo with a testing logo,
as illustrated in Figure 5.8.

Figure 5.8: Flacoco Visual Studio Extension Icon

5.3. Other FLACOCO Extension Details 55

5.3.2 README

Along with the extension’s implementation, a README file was created to serve as a
guide for any new users of the extension. This README can be found here1. Its contents
included a brief overview of the tool and its goals, as well as the prerequisites for using it,
instructions on how to set it up and use it. The guide attempted to include a lot of pictures
to make it easy to follow, as well as release notes to keep the user up to date on its contents.

5.3.3 Deploy

After finishing the extension, the next step was to submit it to the VS Code Extension
Marketplace so that others could find, download, and use it. To do so, first install the
library vsce, which stands for "Visual Studio Code Extensions" and is a command-line tool
for packaging, publishing, and managing VS Code extensions. This can be accomplished
with the following command:

npm install -g vsce

After completing the first step, it was necessary to establish an organization. This was
possible by filling out some basic information on the Azure Dev Ops page2. The Personal
Access Token must then be obtained. Figure 5.9 shows how to do this on the top right of
the page.

Figure 5.9: VSCode Personal Access Token

It is also necessary to create a publisher. It is possible to create one by filling out the
name and identifier for the created extension on the marketplace publisher management
page3. After completing all of the preceding steps, go to the root directory and execute the
following commands:

1https://marketplace.visualstudio.com/items?itemName=JoaoLeao.flacoco
2https://dev.azure.com
3https://marketplace.visualstudio.com/manage/publishers

56 Chapter 5. Development

vsce login <publisher identifier>

The Personal Access Token obtained previously will be required after using this command.

vsce publish

Finally, once all preceding procedures have been performed successfully, the extension will
go live upon approval from the Visual Studio Marketplace.

5.4 Summary

This chapter went into greater detail on how the extension was created.

It began by introducing the basic ideas of Visual Studio Code Extensions, such as its UX
Guidelines and anatomy. Then, for each use case, it was provided a detailed description of
its purpose and how it was implemented, along with an image to illustrate it.

Finally, the logo, the extension guide provided in the README and how it was deployed
into the Visual Studio Marketplace were demonstrated.

57

Chapter 6

Evaluation and Experimentation

The solution evaluation and results discussion are presented in this chapter. It begins with
the presentation of the research question, the hypothesis outlining, as well as the metrics by
which the findings will be measured and how the user study was performed. This refers to
step 5 from the DSRM approach used in this dissertation.

6.1 Goal and Research Question

As previously stated in this thesis, the final goal is to integrate a fault localization tool
into an IDE. Therefore, the following research question was developed:

RQ1: Is FLACOCO Visual Studio Code Extension a valuable tool for developers?

Thereafter, the Visual Studio Code Extension FLACOCO will be refered just as "exten-
sion".

6.2 Hypothesis

Two hypotheses were derived from the Research Question. They have been defined in
order to assess the success of the integration. The Null hypothesis H0 and the alternative
hypothesis H1. The Null hypothesis of a test always predicts failure, while the alternative
hypothesis predicts success:

• H0 : The extension was not deemed valuable by the end user.

• H1 : The extension was deemed valuable by the end user.

6.3 Study Planning

In order to validate the hypothesis, an user study was performed. This user study has two
parts that complement each other: Test Scenario and Questionnaire Application. The
success of it will decide on whether the Null hypothesis is refuted or not.

6.3.1 Test Scenario

The goal of this test scenario is to instruct the users in how to perform tasks using the
extension on a daily basis, whether academically or professionally. In the Test Scenario the
participants will have to perform two debugging tasks using the extension’s current version

58 Chapter 6. Evaluation and Experimentation

in the IDE Visual Studio Code. The time that each user takes to finish the individual tasks
will be recorded.

6.3.2 Evaluation Indicators

The concept of value for the end user, on the other hand, is tremendously subjective (Tan-
ner 2022). Subsequently, the extension should be evaluated by its usability and usefulness,
both of which should be major reasons of why someone would consider something valuable
(L. F. d. Silva and Oliveira 2020). With that in mind, the hypothesis will be evaluated using
the following indicators:

• Real-life Usefulness: It is necessary to assess if the integration mitigates real-life
issues for the user;

• User’s Usability: User usability for the project in question is a crucial issue to consider,
as it is a support tool to improve the developer’s quality of life, and their feedback will
condition the project’s development.

6.3.3 Participants

Initially, it was necessary to choose participants for the Test Scenario. The use of the tool
requires prior Java knowledge. As a result, only developers with previous experience with
the Java language (being it professionally or academic) could be invited.

Nonetheless, the study should have a minimum number of participants in order to proceed.
According to a research made by Virzi 1992, there is a relation between the number of
participants in an evaluation session and the percentage of usability problems detected.

Figure 6.1: Relation between the number of subjects and number of usability
problems detected

6.3. Study Planning 59

According to Figure 6.1, Virzi found that with just three participants the percentage of
detected problems would be around 65%; with nine, 95% of the problems are detected. As a
result, the minimum number of participants for the study should be nine, since its percentage
of problems detected is close to 100%. Naturally, as more people test the program, the
likelihood of a new error being discovered decreases.

For convenience, the participants would be invited from developer’s Discord1 communities
as well as students currently attending the ISEP’s Masters Degree in Software Engineer.

6.3.4 Questionnaire

A questionnaire was developed to be presented to the Java developers that will participate
in the study. The questionnaire was designed recurring to the Google Forms platform.
The responses supplied by these developers are critical in determining whether or not the
extension achieved meaningful and valuable consequences. Furthermore, it is particularly
useful to establish whether the questionnaire touches on the relevant matters required to
assess the validation of the integration.

The questionnaire contained two groups of questions:

• Demographic: Section with questions designed to elicit information about the re-
spondent’s history and experience. This is critical for forming connections with the
responses provided.

• User Experience: Section including questions meant to elicit information on the
participant’s experience with the extension. It is designed to retrieve information about
the two indicators specified in 6.3.2. Lastly, it offers a choice to give any additional
feedback.

Moreover, this questionnaire will use a symmetric Likert Scale (presented in Table 6.1)
in the User Experience section. This means that the position of neutrality (neutral/don’t
know) is located exactly halfway between the two extremes of strongly disagree (SD) and
strongly agree (SA), and it allows a participant to choose any response in either direction in
a balanced and symmetric manner (Joshi et al. 2015).

Table 6.1: Likert Scale

Description
Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

Lastly, Table 6.2 presents the questions in the User Experience section of the questionnaire
which are the ones applying the Likert scale. It is also shown which indicator they pretend
to evaluate. Nonetheless, the full questionnaire is included in the Appendix A.

1https://discord.com/

60 Chapter 6. Evaluation and Experimentation

Table 6.2: Questionnaire’s User Experience Section

Question Indicator

1
The readme file clearly and objectively
describes how to utilize the extension.

Usability

2 It was easy to start using the extension. Usability

3
The extension interface presented
information in a structured manner.

Usability

4
The information in the extension
interface is presented in a clear manner.

Usability

5 The extension responds quickly. Usability

6
The extension played an important role
in locating the bug.

Usefulness

7
The extension is a positive addition
to a developers’ daily life

Usefulness

8
I would recommend the extension
to other developers.

Usefulness

6.3.5 Hypothesis Evaluation

In Likert scales, the response categories have a rank order, but the intervals between
values cannot be assumed to be equal. Thus, for ordinal data, the mean is incorrect and a
statistic like mode would be advised (Jamieson 2005). Therefore, using the mode and the
values in the Likert Scale, it is reasonable to conclude that the extension outcome is positive
if the calculated mode is greater than Neutral, which would mean that it would be Agree or
Strongly Agree. Based on such, the following statements can be made:

• Usability indicator is valid if the mode for these questions is Agree or Strongly Agree
(Mo > Neutral).

• Usefulness indicator is valid if the mode for these questions is Agree or Strongly
Agree (Mo > Neutral).

If both indicators are valid, it can be stated that the extension is deemed valuable for the
developers.

6.4 Preparation

Following the planning, the preparation for the user study began. As a result, an extension
and session guide had to be created, as well as faulty projects prepared for the participants
to test the extension on.

The extension guide had previously been created while implementing the extension in form
of a README file. This file was slightly adjusted in order to clarify some nuances that might
have been less obvious.

Then, one or more faulty projects should be provided to the participants in order for them
to test the extension. After some research, it was deemed necessary to have two projects:
one being a sizable open source project and the other an academic project. Correspondingly,
the Joda-Time2 open source project, which is a replacement to the standard date and time

2https://www.joda.org/joda-time/

6.5. Results and Discussion 61

library for Java and an academic project developed during the Bachelor’s degree named
Graph3 were chosen. Afterwards, two bugs were introduced, one in each project, and it
was ensured that the project could compile but that it would lead to unexpected behaviour
during execution causing some test cases to fail. In the Joda-Time project, the line 435
of the Hours class was changed to an equal operation to 0 instead of 1 and in the Graph
project, line 65 of the RouteImpl class was changed the equal operator "==" to a not equal
"!=".

Subsequently, the session guide was created. This included a personal introduction, a
presentation of the topic and the study goals, and then an explanation of how the procedure
would work. In this procedure, it would be sent an invitation link to a video conference in
Discord for the developers from the Discord communities and a Zoom link for the students
attending the ISEP’s Masters Degree in Software Engineer. Then, it would be ensured that
the participants had Visual Studio Code, Java and Maven (due to the projects) installed in
their machines. Following that, a link to the extension’s installation and usage guide, as well
as a link to the faulty projects they would use, would be provided. Nonetheless, the task
at hand would be explained to them. This task consisted of localizing the two bugs, and in
order to complete it, the developer had to correctly pinpoint the bug. When the activity was
completed, the developer was required to send the number of the faulty line as well as its
fix via email. The time taken by each developer to accomplish the task was likewise tracked
this way. Finally, they would be given a 25 minute limit for each task. This was a rough
estimate of the maximum time in order to not worry the participants about its content, the
estimate was also based on the evaluations performed on GZoltar (Brito 2020 and Campos
et al. 2012a).

Before beginning the test, any concerns that participants had would be addressed. How-
ever, no instructions on how to use the extension would be provided because the quality
of the README file as a guide required to be tested. Whenever everyone was ready, they
would start at the same time and in the same project. After the 25 minute limit, the other
project test would begin with everyone at the same time again.

6.5 Results and Discussion

The study was able to enlist the participation of thirteen people, this included eleven
working software engineers and two students currently doing their masters degree. The
majority of the working software engineers were new to the field, with 1 to 2 years of expe-
rience (46,2%); however, some experienced developers participated as well, with experience
of more than 5 years (15,4%). The large majority of participants (76,9%) were already
familiar with Visual Studio Code, and Automatic Fault Localization tools were majorly un-
familiar amongst the participants, with only 53,8 percent having never worked with any of
them. Finally, nine of these participants used Windows, one Linux, and three MacOS as
their operating system. All of this information is shown in the graphs in the Appendix A.1.2.

All of the participants were able to identify and correct the problem in the 25 minutes
time frame given. The average time to complete the task for the Joda-Time project was
around 11 minutes (662 seconds), with the lowest time being 178 seconds and the highest
time being 901 seconds. On the other hand, for the Graph project, the average time to
complete the task was around 7 minutes (420 seconds), with the lowest time being 114

3https://github.com/JoaoLeao7/graph

62 Chapter 6. Evaluation and Experimentation

seconds and the highest time being 897 seconds. All the time data gathered is available in
the Appendix A.1.

As previously mentioned, after completing the task the users were invited to answer a
survey related to their experience using the extension. The questions addressed the usability
and interface of the extension in a Likert Scale (6.3.4).

Firstly, regarding the quality of the README created as a guide, all of the users agreed
that it achieved its purpose by clearly and objectively describing how to use the extension,
having a mode of Agree (frequency of 7 users) to this statement.

The majority of the users also agreed on the extension being easy to pick on, having
a mode of Strongly Agree (frequency of 7 users). It is impressive that only one user was
Neutral to this question since three users claimed that they had no previous experience with
the IDE Visual Studio Code.

Everyone agreed that the interface was well structured, presenting the information ac-
cordingly. However, when asking if the interface presented information in a clear manner;
two users preferred to be neutral about it. It is possible that some users were overwhelmed
by the highlight system presented in the extension or that they would prefer some extra
feature to aid it. Nevertheless, the mode for both of these questions were Agree (frequency
of 7 users on both).

Following up on the extension performance, whether it had a quick response or not, even
though the majority still agreed on the extension having a quick and smooth performance,
there was a huge minority that were Neutral about it. Therefore, in this question, the data
set gathered is bimodal. This signifies that no single data value occurs with the greatest
frequency. Instead, there are two data values that have the same frequency (Taylor 2020).
These two data values were Agree and Neutral with a frequency of 5 users. In this case,
the perception of how quickly something responds can be subjective, and the results reflect
this. Even though most users thought the response time was adequate for the size of the
test projects, some would prefer it to be faster. Nonetheless, this is a factor to consider; it
will be attempted in the future to improve the extension’s performance.

Moving on, most of the users (frequency of 12) believed the extension was critical in
locating the bug, with a bimodal data set consisting of Agree and Strongly Agree with 6
users each. Furthermore, the majority agreed that the extension was a useful addition to
their toolkit and that they would recommend it to other developers, both with a mode of
Agree (frequency of 8 users on both).

The survey also included an open question for users to indicate any issues or suggestions
they had during the session, which resulted in valuable feedback being gathered here. Some
suggested that the code highlight should be shown in the VSCode Minimap as well, in order
to provide a better overview of the source file that the user is inspecting. It was also
suggested to not remove the highlights automatically after saving the file, but rather left up
to the user with a toggle button option. Another useful suggestion was to be able to set up
a keybinding to advance to the next severity level (first red highlights, then orange, and so
on). Lastly, some users expressed a desire for this type of extension in the IntelliJ IDE.

Overall it was a very positive experience, all of the results to the questionnaire and the
questionnaire itself is available in the Appendix A. Furthermore, in order to determine whether
the indicators explained in 6.3.5 were valid, the mode for the usability and usefulness ques-
tions must be checked.

6.6. Limitations 63

• Usefulness: The mode for this category was Agree with an absolute frequency of 22.

• Usability: The mode for this category was Agree with an absolute frequency of 31.

With these results in mind, it is possible to confirm that the Null Hypothesis (The end
user does not value the extension, which is the integration of a fault localization tool into
an IDE.") was refuted since both categories had modes superior to Neutral.

Fianlly, it is possible to state that the FLACOCO Visual Studio Extension is a valuable
tool for developers.

6.6 Limitations

Despite the fact that the outcome was overwhelmingly positive, there were some setbacks
in gathering User Feedback.

Some issues were unavoidable due to the online nature of the video conferences. Because
users were required to test the extension on their computers using the projects provided
to them, some encountered compilation issues that were resolved but caused delays in the
video conferences.

Nonetheless, two users reported an error with the extension that caused it to stop working
while analyzing the code; however, this was fixed without knowing the underlying cause.

Lastly, given the nature of the data and the limited number of participants, the result
samples could not be generalized. However, it was possible to infer that the extension was
a success amongst the participants who performed the test and answered the questionnaire.

6.7 Summary

The steps for evaluating the extension were presented in this chapter.

The research question was presented first. This was the primary premise of the hypothesis
for which evaluation indicators were developed. A user study was then planned to validate
these indicators. This included creating an extension guide, a plan for each video conference
session, gathering participants, preparing test projects, and creating a questionnaire.

The user study was a success, despite some setbacks. All users were able to identify the
bugs with the extension and were pleased with how the tool worked. This was reflected in
the questionnaire results, which allowed the stated Null Hypothesis to be refuted, indicating
that the FLACOCO extension was proven to be useful to developers.

65

Chapter 7

Conclusion

This chapter finishes the document by reviewing the work completed and providing some
final thoughts. First, the initially established objectives are examined to determine whether
they have been fully addressed. Followed by a description of the obstacles encountered and
how they were overcome. Future work is also mentioned, as are some final considerations
regarding the work done.

7.1 Achieved Goals

This section discusses the set goals for this thesis and whether they were completed or
not. Table 7.1 displays their descriptions as well as whether or not they were completed.

Table 7.1: Thesis’ Objectives

Objective Completed

1
Identify and describe existing automatic
fault location techniques and tools.

Yes

2
Identify the possible tools, and/or techniques,
that show good results and can be included in
an Integrated Development Environment (IDE).

Yes

3
Integrate an existing tool into a chosen IDE.
Integration may require adapting, or
improving, this tool.

Yes

Thus, in addition to accomplishing all of the objectives put forth previously, this thesis
offered several contributions to the automatic fault localization field:

1. For starters, it presented an in-depth examination of current automatic fault localiza-
tion tools and and techniques. It went through their concepts with examples and even
a comparison.

2. Second, this thesis contributed with the design and implementation of the integration
of the FLACOCO tool into Visual Studio Code, complementing the study of A. Silva
et al. 2021 where the tool is described and is evaluated its effectiveness.

3. Third, it also contributed with an evaluation of the extension through an user study.
The study was divided into two parts: one for participants to gain firsthand experience
with the extension and the second for them to rate their experience. The results to
the questionnaire were positive, deeming the extension useful to the developers.

66 Chapter 7. Conclusion

7.2 Limitations

While developing this document, several challenges were faced. It is reasonable to state
that the following constraints influenced the research and implementation of the thesis:

• Information Limitations: Due to the niche nature of Automatic Fault Localization,
gathering information about the various existing techniques, comparing families, and
tools was a difficult task. Furthermore, finding recently updated open-source auto-
matic fault localization tools or papers about them is difficult.

• User Study Limitations: Gathering participants for the user study was not an easy
task; they did not need to be experienced with Visual Studio Code, but they did need
to be Java developers and be willing to do what could be a 1 hour session to complete
the tasks and answer the questionnaire. Nonetheless, because everything had to be
done online, attempting to work around everyone’s schedule resulted in the creation
of several video conference sessions along the way.

7.3 Future Work

Even though this thesis successfully achieved all the initially defined objectives, there are
always improvements that can be made to enrich the outcomes produced. The responses
to the questionnaires provided some insight into what aspects of the extension could be
improved or added in the future. They are listed as follows:

• Extension Performance: Some users voiced concern about the extension response
time as the project size grew exponentially larger. This should be reviewed to determine
what is achievable in terms of performance.

• VSCode Minimap Highlight: The extension should not only highlight the source
code file, but it should also be visible in the VSCode Minimap so that users may get
a better overview of that particular file.

• User Customization Improvements: Some user options customization, such as
whether or not the highlight should fade after saving, should be added. As well as
keybinding configuration choices, such as skipping from red to orange warnings.

7.4 Final Remarks

The task planning was completed, as were all of the primary functionalities; as a result,
the author believes that it was a successful project.

Since the author was unfamiliar with the topic, the project was considered a challenge
from the start. However, the overall development of this thesis was very positive, owing to
the valuable knowledge acquired in automatic fault localization, such as its techniques and
tools, which was a very interesting topic to learn about and participate in. It is hoped that
this project will contribute to the topic of automatic fault localization among programmers,
which is extremely underappreciated for its value.

Finally, despite the demanding work required to complete this document and the limited
experience in the field, it is very satisfying to be able to achieve the initial goals and to leave
the comfort zone, by expanding knowledge on various areas of software development as well

7.4. Final Remarks 67

as learning new technologies that will undoubtedly be valuable for the future career path or
personal fulfillment.

69

Bibliography

Abreu, Rui, Peter Zoeteweij, and Arjan J. C. van Gemund (2008). “An Observation-Based
Model for Fault Localization”. In: Proceedings of the 2008 International Workshop on
Dynamic Analysis: Held in Conjunction with the ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA 2008). WODA ’08. Seattle, Washington:
Association for Computing Machinery, pp. 64–70. isbn: 9781605580548. doi: 10.1145/
1401827.1401841. url: https://doi.org/10.1145/1401827.1401841.

– (2007a). “On the Accuracy of Spectrum-based Fault Localization”. In: Testing: Academic
and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), pp. 89–98. doi: 10.1109/TAIC.PART.2007.13.

– (2007b). “On the Accuracy of Spectrum-based Fault Localization”. In: Testing: Academic
and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), pp. 89–98. doi: 10.1109/TAIC.PART.2007.13.

Abreu, Rui, Peter Zoeteweij, Rob Golsteijn, et al. (Nov. 2009). “A practical evaluation of
spectrum-based fault localization”. In: Journal of Systems and Software 82, pp. 1780–
1792. doi: 10.1016/j.jss.2009.06.035.

Adragna, Pierre-Antoine (2008). “Software debugging techniques”. In.
Beller, Moritz et al. (2018). “On the Dichotomy of Debugging Behavior Among Pro-

grammers”. In: 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pp. 572–583. doi: 10.1145/3180155.3180175.

Brito, Steven Carlos Lopes (2020). “An Automated Debugging plug-in for Visual Studio
Code”. In.

Campos, José et al. (2012a). “GZoltar: an eclipse plug-in for testing and debugging”. In: 2012
Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, pp. 378–381. doi: 10.1145/2351676.2351752.

– (2012b). “GZoltar: an eclipse plug-in for testing and debugging”. In: 2012 Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering,
pp. 378–381. doi: 10.1145/2351676.2351752.

Carbonnelle, Pierre (2022). TOP IDE index. https : / / pypl . github . io / IDE . html.
Accessed: 2022-06-24.

Cellier, Peggy et al. (July 2011). “Multiple Fault Localization with Data Mining”. In: pp. 238–
243.

Chandrasekaran, Jaganmohan et al. (2016). “Evaluating the Effectiveness of BEN in Local-
izing Different Types of Software Fault”. In: 2016 IEEE Ninth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pp. 26–34. doi:
10.1109/ICSTW.2016.44.

Chen, Cheng and Nan Wang (2016). “UnitFL: A fault localization tool integrated with unit
test”. In: 2016 5th International Conference on Computer Science and Network Technol-
ogy (ICCSNT), pp. 136–142. doi: 10.1109/ICCSNT.2016.8070135.

Denmat, Tristan, Mireille Ducassé, and Olivier Ridoux (2005). “Data Mining and Cross-
Checking of Execution Traces: A Re-Interpretation of Jones, Harrold and Stasko Test

70 Bibliography

Information”. In: Proceedings of the 20th IEEE/ACM International Conference on Auto-
mated Software Engineering. ASE ’05. Long Beach, CA, USA: Association for Comput-
ing Machinery, pp. 396–399. isbn: 1581139934. doi: 10.1145/1101908.1101979. url:
https://doi.org/10.1145/1101908.1101979.

Dimitrijevic, Katarina (Nov. 2014). “Transgressing Plastic Waste: Designedisposal Strategic
Scenarios”. In.

Ericwong, W. and Yuqi (Nov. 2011). “BP NEURAL NETWORK-BASED EFFECTIVE
FAULT LOCALIZATION”. In: International Journal of Software Engineering and Knowl-
edge Engineering 19. doi: 10.1142/S021819400900426X.

Golagha, Mojdeh et al. (2018). “Aletheia: A Failure Diagnosis Toolchain”. In: 2018 IEEE/ACM
40th International Conference on Software Engineering: Companion (ICSE-Companion),
pp. 13–16.

Gürel, Emet (Aug. 2017). “SWOT ANALYSIS: A THEORETICAL REVIEW”. In: Journal
of International Social Research 10, pp. 994–1006. doi: 10.17719/jisr.2017.1832.

Hirsch, Thomas (Mar. 2021). “A Fault Localization and Debugging Support Framework
driven by Bug Tracking Data”. In.

Hong, Shin et al. (2015). “Mutation-Based Fault Localization for Real-World Multilingual
Programs (T)”. In: 2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 464–475. doi: 10.1109/ASE.2015.14.

ISO (2017). “ISO/IEC/IEEE 24765:2017(en) Systems and software engineering — Vocab-
ulary”. In: ISO.

Jamieson, Susan (Jan. 2005). “Likert Scales: How to (ab) Use Them”. In: Medical education
38, pp. 1217–8. doi: 10.1111/j.1365-2929.2004.02012.x.

Jia, Yue and Mark Harman (2011). “An Analysis and Survey of the Development of Mutation
Testing”. In: IEEE Transactions on Software Engineering 37.5, pp. 649–678. doi: 10.
1109/TSE.2010.62.

Jones, James A., Mary Jean Harrold, and John Stasko (2002a). “Visualization of Test In-
formation to Assist Fault Localization”. In: Proceedings of the 24th International Con-
ference on Software Engineering. ICSE ’02. Orlando, Florida: Association for Computing
Machinery, pp. 467–477. isbn: 158113472X. doi: 10.1145/581339.581397. url: https:
//doi.org/10.1145/581339.581397.

– (2002b). “Visualization of Test Information to Assist Fault Localization”. In: Proceedings
of the 24th International Conference on Software Engineering. ICSE ’02. Orlando, Florida:
Association for Computing Machinery, pp. 467–477. isbn: 158113472X. doi: 10.1145/
581339.581397. url: https://doi.org/10.1145/581339.581397.

Joshi, Ankur et al. (Jan. 2015). “Likert Scale: Explored and Explained”. In: British Journal
of Applied Science & Technology 7, pp. 396–403. doi: 10.9734/BJAST/2015/14975.

Knuth, Donald E. (2016). “Design Science Research Methodology Enquanto Estratégia
Metodológica para a Pesquisa Tecnológica”. In: Revista Espacios 38.6, p. 25.

Ko, Andrew and Brad Myers (2008). “Debugging reinvented”. In: 2008 ACM/IEEE 30th
International Conference on Software Engineering, pp. 301–310. doi: 10.1145/1368088.
1368130.

Koen, Peter, Heidi Bertels, and Elko Kleinschmidt (May 2014). “Managing the Front End
of Innovation Part-I Results From a Three-Year Study”. In: Research-Technology Man-
agement 57. doi: 10.5437/08956308X5703199.

Koen, Peter A. et al. (2002). “1 Fuzzy Front End : Effective Methods , Tools , and Tech-
niques”. In.

Korel, Bogdan and Janusz Laski (1990). “Dynamic slicing of computer programs”. In: Journal
of Systems and Software 13.3, pp. 187–195. issn: 0164-1212. doi: https://doi.org/

Bibliography 71

10.1016/0164-1212(90)90094-3. url: https://www.sciencedirect.com/science/
article/pii/0164121290900943.

Kusumoto, Shinji et al. (2002). “Experimental Evaluation of Program Slicing for Fault Lo-
calization”. In: Empirical Softw. Engg. 7.1, pp. 49–76. issn: 1382-3256. doi: 10.1023/A:
1014823126938. url: https://doi.org/10.1023/A:1014823126938.

Lawrence, Carl, Tuure Tuunanen, and Michael Myers (Mar. 2010). “Extending Design Sci-
ence Research Methodology for a Multicultural World”. In: vol. 318, pp. 108–121. isbn:
978-3-642-12112-8. doi: 10.1007/978-3-642-12113-5_7.

Liblit, Ben et al. (2005). “Scalable Statistical Bug Isolation”. In: Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI
’05. Chicago, IL, USA: Association for Computing Machinery, pp. 15–26. isbn: 1595930566.
doi: 10.1145/1065010.1065014. url: https://doi.org/10.1145/1065010.1065014.

Liu, Chao et al. (2006). “Statistical Debugging: A Hypothesis Testing-Based Approach”.
In: IEEE Transactions on Software Engineering 32.10, pp. 831–848. doi: 10.1109/TSE.
2006.105.

Mahajan, Gautam (2020). “What Is Customer Value and How Can You Create It?” In:
Journal of Creating Value 6.1, pp. 119–121. doi: 10.1177/2394964320903557. eprint:
https://doi.org/10.1177/2394964320903557. url: https://doi.org/10.1177/
2394964320903557.

Maruyama, Naoya and Satoshi Matsuoka (2008). “Model-based fault localization in large-
scale computing systems”. In: 2008 IEEE International Symposium on Parallel and Dis-
tributed Processing, pp. 1–12. doi: 10.1109/IPDPS.2008.4536310.

Mateis, Cristinel, Markus Stumptner, and Franz Wotawa (2000). “Modeling Java Programs
for Diagnosis”. In: Proceedings of the 14th European Conference on Artificial Intelligence.
ECAI’00. Berlin, Germany: IOS Press, pp. 171–175.

Microsoft (2022). Extension API. https://code.visualstudio.com/api. Accessed:
2022-05-31.

Moon, Seokhyeon et al. (2014). “Ask the Mutants: Mutating Faulty Programs for Fault
Localization”. In: 2014 IEEE Seventh International Conference on Software Testing, Ver-
ification and Validation, pp. 153–162. doi: 10.1109/ICST.2014.28.

Nicola, Susana (2018). Análise de Valor. https://moodle.isep.ipp.pt/pluginfile.
php/187507/mod_resource/content/1/An%C3%A1lise_Valor_Aula_4_21NOV_2018_
1hora_AHP.pdf. Accessed: 2022-02-17.

Osterwalder, Alexander et al. (2014). Value proposition design. Wiley.
Papadakis, Mike and Yves Le Traon (Aug. 2015). “Metallaxis-FL: Mutation-Based Fault

Localization”. In: Softw. Test. Verif. Reliab. 25.5–7, pp. 605–628. issn: 0960-0833. doi:
10.1002/stvr.1509. url: https://doi.org/10.1002/stvr.1509.

Parnin, Chris and Alessandro Orso (2011). “Are Automated Debugging Techniques Actually
Helping Programmers?” In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis. ISSTA ’11. Toronto, Ontario, Canada: Association for Computing
Machinery, pp. 199–209. isbn: 9781450305624. doi: 10.1145/2001420.2001445. url:
https://doi.org/10.1145/2001420.2001445.

Rich, Nick, Matthias Holweg, and Wirtschaftsing (2000). “INNOREGIO: dissemination of
innovation and knowledge management techniques”. In.

Rosenblum, David S. (1992). “Towards a Method of Programming with Assertions”. In: Pro-
ceedings of the 14th International Conference on Software Engineering. ICSE ’92. Mel-
bourne, Australia: Association for Computing Machinery, pp. 92–104. isbn: 0897915046.
doi: 10.1145/143062.143098. url: https://doi.org/10.1145/143062.143098.

72 Bibliography

Saaty, Thomas (Jan. 2008). “Decision making with the Analytic Hierarchy Process”. In: Int.
J. Services Sciences Int. J. Services Sciences 1, pp. 83–98. doi: 10.1504/IJSSCI.2008.
017590.

Sarhan, Qusay et al. (Aug. 2021). “CharmFL: A Fault Localization Tool for Python”. In.
Sayantini (2020). What is Debugging and Why is it important? Last accessed 10 January

2022. url: https://www.edureka.co/blog/what-is-debugging/.
Shchekotykhin, Kostyantyn, Thomas Schmitz, and Dietmar Jannach (2016). “Efficient Se-

quential Model-Based Fault-Localization with Partial Diagnoses”. In: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence. IJCAI’16. New York,
New York, USA: AAAI Press, pp. 1251–1257. isbn: 9781577357704.

Silva, André et al. (2021). FLACOCO: Fault Localization for Java based on Industry-grade
Coverage. Tech. rep. 2111.12513. arXiv. url: http://arxiv.org/pdf/2111.12513.

Silva, Fabio Pereira da, Higor Amario de Souza, and Marcos Lordello Chaim (2018). “Us-
ability Evaluation of Software Debugging Tools”. In: Proceedings of the XIV Brazilian
Symposium on Information Systems. SBSI’18. Caxias do Sul, Brazil: Association for Com-
puting Machinery. isbn: 9781450365598. doi: 10.1145/3229345.3229410. url: https:
//doi.org/10.1145/3229345.3229410.

Silva, Leandro Flores da and Edson Oliveira (2020). “Evaluating Usefulness, Ease of Use
and Usability of an UML-Based Software Product Line Tool”. In: Proceedings of the 34th
Brazilian Symposium on Software Engineering. SBES ’20. Natal, Brazil: Association for
Computing Machinery, pp. 798–807. isbn: 9781450387538. doi: 10.1145/3422392.
3422402. url: https://doi.org/10.1145/3422392.3422402.

Smith et al. (Dec. 2007). “Customer Value Creation: A Practical Framework”. In: Journal
of Marketing Theory and Practise 15, pp. 7–23. doi: 10.2753/MTP1069-6679150101.

Souza, Higor, Marcos Chaim, and Fabio Kon (July 2016). “Spectrum-based Software Fault
Localization: A Survey of Techniques, Advances, and Challenges”. In.

Srivastva, Shreya and Saru Dhir (2017). “Debugging approaches on various software pro-
cessing levels”. In: 2017 International conference of Electronics, Communication and
Aerospace Technology (ICECA). Vol. 2, pp. 302–306. doi: 10 . 1109 / ICECA . 2017 .
8212821.

Tanner, Jason (2022). Defining Customer Value. https://appliedframeworks.com/
defining-customer-value/. Accessed: 2022-06-5.

Taylor, Courtney (2020). Definition of Bimodal in Statistics. https://www.thoughtco.
com/definition-of-bimodal-in-statistics-3126325. Accessed: 2022-06-24.

UnitFL (n.d.). https://marketplace.visualstudio.com/items?itemName=Wangnangg.
UnitFL. Accessed: 2022-02-06.

Virzi, Robert A. (1992). “Refining the Test Phase of Usability Evaluation: How Many Sub-
jects Is Enough?” In: Human Factors 34.4, pp. 457–468. doi: 10.1177/001872089203400407.
eprint: https://doi.org/10.1177/001872089203400407. url: https://doi.org/10.
1177/001872089203400407.

Wang, Nan et al. (2015). “FLAVS: A Fault Localization Add-in for Visual Studio”. In: Pro-
ceedings of the First International Workshop on Complex FaUlts and Failures in LargE
Software Systems. COUFLESS ’15. Florence, Italy: IEEE Press, pp. 1–6.

Weiser, Mark (1984). “Program Slicing”. In: IEEE Transactions on Software Engineering
SE-10.4, pp. 352–357. doi: 10.1109/TSE.1984.5010248.

What is Perceived Value? (2020). https://www.investopedia.com/terms/p/perceived-
value.asp. Accessed: 2022-02-12.

Williams, Elise (2021). What is Deployment in Software. https://pdf.wondershare.com/
business/what-is-software-deployment.html. Accessed: 2022-05-31.

Bibliography 73

Wong, W. Eric, Vidroha Debroy, et al. (2012). “Effective Software Fault Localization Using
an RBF Neural Network”. In: IEEE Transactions on Reliability 61.1, pp. 149–169. doi:
10.1109/TR.2011.2172031.

Wong, W. Eric, Ruizhi Gao, et al. (2016). “A Survey on Software Fault Localization”. In:
IEEE Transactions on Software Engineering 42.8, pp. 707–740. doi: 10.1109/TSE.2016.
2521368.

You, Zunwen, Zengchang Qin, and Zheng Zheng (2012). “Statistical fault localization using
execution sequence”. In: 2012 International Conference on Machine Learning and Cyber-
netics. Vol. 3, pp. 899–905. doi: 10.1109/ICMLC.2012.6359473.

Zhang, Xiangyu, Neelam Gupta, and Rajiv Gupta (2006). “Locating Faults through Au-
tomated Predicate Switching”. In: Proceedings of the 28th International Conference on
Software Engineering. ICSE ’06. Shanghai, China: Association for Computing Machin-
ery, pp. 272–281. isbn: 1595933751. doi: 10.1145/1134285.1134324. url: https:
//doi.org/10.1145/1134285.1134324.

Zheng, Wei, Desheng Hu, and Jing Wang (Jan. 2016). “Fault Localization Analysis Based
on Deep Neural Network”. In: Mathematical Problems in Engineering 2016, pp. 1–11. doi:
10.1155/2016/1820454.

Zimmermann, Thomas and Andreas Zeller (2001). “Visualizing Memory Graphs”. In: Revised
Lectures on Software Visualization, International Seminar. Berlin, Heidelberg: Springer-
Verlag, pp. 191–204. isbn: 3540433236.

Zou, Daming et al. (2021). “An Empirical Study of Fault Localization Families and Their
Combinations”. In: IEEE Transactions on Software Engineering 47.2, pp. 332–347. doi:
10.1109/TSE.2019.2892102.

75

Appendix A: User Study

A.1 Questions

A.1.1 Introduction

Figure A.1: Questionnaire Questions Part 1

76 APPENDIX A: USER STUDY

A.1.2 Demographic

Figure A.2: Questionnaire Questions Part 2

A.1. Questions 77

Figure A.3: Questionnaire Questions Part 3

78 APPENDIX A: USER STUDY

A.1.3 User Experience

Figure A.4: Questionnaire Questions Part 4

A.1. Questions 79

Figure A.5: Questionnaire Questions Part 5

80 APPENDIX A: USER STUDY

Figure A.6: Questionnaire Questions Part 6

A.2. Results 81

Figure A.7: Questionnaire Questions Part 7

A.2 Results

A.2.1 User Times

Table A.1: User Times

Participant Joda-Time Task (in seconds) Graph Task (in seconds)
1 713 897
2 605 181
3 665 235
4 736 231
5 901 592
6 613 414
7 585 303
8 844 364
9 178 114
10 664 481
11 737 604
12 693 535
13 676 511
Average 662 420

82 APPENDIX A: USER STUDY

A.2.2 Demographic

Figure A.8: Demographic Question 1 Results

Figure A.9: Demographic Question 2 Results

A.2. Results 83

Figure A.10: Demographic Question 3 Results

Figure A.11: Demographic Question 4 Results

84 APPENDIX A: USER STUDY

A.2.3 User Experience

Figure A.12: User Experience Question 1 Results

Figure A.13: User Experience Question 2 Results

A.2. Results 85

Figure A.14: User Experience Question 3 Results

Figure A.15: User Experience Question 4 Results

86 APPENDIX A: USER STUDY

Figure A.16: User Experience Question 5 Results

Figure A.17: User Experience Question 6 Results

A.2. Results 87

Figure A.18: User Experience Question 7 Results

Figure A.19: User Experience Question 8 Results

