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ABSTRACT

Since the onset of the internet, the world has embraced this new technology and used it to col-

lectively advance Humanity. Companies have followed the trend from the physical to the digital

world, taking with them all their associated value. In order to safeguard this value, security

needed to evolve, with enterprises employing departments of highly trained professionals. Nev-

ertheless, the ever increasing amount of information in need of evaluation by these professionals

requires the deployment of automation techniques, aiding in data analysis and bulk task pro-

cessing, to reduce detection time and as such improve mitigation. This work proposes a novel

tool designed to help in attack detection and alert aggregation, by leveraging machine learning

techniques. The proposed solution is described in full and showcased using real data from an

example implementation.

Key-Words: Cybersecurity; Machine Learning; Security Opera-

tions Center
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RESUMO

Desde o aparecimento da internet, esta nova tecnologia tem sido usada para avançar a Hu-

manidade. O mercado seguiu as tendências, passando do mundo fı́sico para o digital e levando

consigo todo o seu valor associado. De forma a salvaguardar este valor, a segurança precisou

de se adaptar, com empresas a dedicarem departamentos inteiros com esse objetivo. No en-

tanto, a quantidade cada vez mais elevada de informação a analisar exige o desenvolvimento de

técnicas automáticas de processamento de dados e execução de tarefas em massa, para diminuir

o tempo de deteção de ataques permitindo uma mitigação mais ágil dos mesmos. Este trabalho

propõe uma ferramenta projetada para ajudar na deteção de ataques e agregação de alertas, us-

ando técnicas de inteligência artificial. A solução proposta é descrita na ı́ntegra e apresentada

usando dados reais aplicados a uma implementação de exemplo.

Palavras-Chave: Cybersegurança; Inteligência Artificial, Centro de

Operações de Segurança
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Ever since the dawn of Mankind, value has both been protected and attacked. Throughout His-

tory, this value has evolved and taken many forms, as have the mechanisms used to secure it.

From the humble vigilance of a tribe’s sustenance against thieves and animals, to the ingenious

and constant development of vaults, warding physical breaches [1], this permanent game of cat-

and-mouse has followed Humanity from the beginning. Now, with the onset of the internet not

only impacting current industries but creating new ones as well, security has needed to evolve in

order to protect these online value chains [2].

The internet allows cybercriminals to treat their craft as a business, always testing and im-

proving innovative ways of circumventing cybersecurity and maximizing profits [3]. The fast

pace with which things are developed in this current reality, means the typical Reactive Security

is no longer enough [4]. Although this type of Security is a necessary baseline for any enterprise,

involving the deployment of antivirus and firewalls, it hinges on a key component: previous at-

tacks [5]. In this, measures are taken to be certain that known attacks are prevented or stopped
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CHAPTER 1. INTRODUCTION

when they occur. The issue arises once a new type of attack is created or a new type of vulnera-

bility is discovered, and a successful exploit is launched before it is patched. With data breaches

reaching hundreds of thousands in damages per incident, lessons quickly become a costly affair

[6]. As such, security needs to be paired with more proactive methods of staying ahead of the

curve, such as up-to-date security training and sensibilization for personnel as well as regular

systems vulnerability tests.

Security Operations Centers (SOC) normally orchestrate these tasks, along with the gath-

ering of information from normal business operations as well as status reports from all used

devices and network systems [7]. A security analyst will then have the responsibility of review-

ing all these logs and acting on suspicious behaviour. However, with thousands of logs reviewed

every day, tools need to be created to aid in this work, by filtering and correlating data, and high-

lighting important discoveries to analysts. The use of Artificial Intelligence (AI) in problems of

this type has achieved promising results [8].

Furthermore, similarly to cybercriminals’ sharing of unpatched exploits [9], collaboration in

cybersecurity is also an important step to levelling the playing field. Projects such as Malware

Information Sharing Platform (MISP) have proven a very effective tool by cataloguing all infor-

mation on known attacks and exploits. This ensures proper solutions to any security breach are

developed and disseminated throughout the community, reducing the impact of even zero-day

attacks [10].

1.2 Objectives

This work has the main purpose of applying automation to cybersecurity tasks in order to more

efficiently deal with new threats, for that several targets have been appointed to better guide this

thesis to that end. They are as follows:

• O1: Identify the main problems that cybersecurity currently deals with.

• O2: Study the state of the art of techniques and technologies utilized in this domain.

• O3: Proposed a solution to the identified problems.

• O4: Deploy an example implementation, highlighting the obtained results.

1.3 Research Questions

The following Research Questions were used to better guide the investigations performed in this

thesis:

2
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• RQ1: How can Automation help in day-to-day cybersecurity tasks?

• RQ2: What are the best techniques for each type of task in a SOC?

In RQ1 SOCs and their main tasks are analysed, to better understand just how much reliable

automation can benefit all involved. Additionally, in RQ2, Machine Learning is explored as a

possible answer to alleviate SOC analyst’s workload of monotonous and repetitive tasks.

1.4 Contributions

From this work, several contributions can be appointed:

• C1: A survey on the state of cybersecurity tools deployments and currently used automa-

tion techniques.

• C2: Guidelines for deploying a novel solution to some of the SOCs more tedious tasks.

• C3: An example implementation of the proposed solution with real world data.

1.5 Outline

This work is organized into multiple sections, described as follows:

• Chapter 1 introduces the basic concepts explored throughout this work as well as the re-

search questions that will be addressed.

• Chapter 2 describes the motivations behind this work, going more in-depth on each of the

related concepts and exploring the relationships between them.

• Chapter 3 contains an overview of the current state of technology in the main topics of this

work.

• Chapter 4 delineates the proposed solution, explaining the different parts and how they fit

together.

• Chapter 5 applies the solution to a given case, outlining and comparing the obtained results,

as well as detailing the technical infrastructure.

• Chapter 6 discusses the overall findings of this work as well as highlighting possible future

work.
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CHAPTER 2

MOTIVATION

As cyberthreats are becoming increasingly common, it is crucial to react quickly to security

breaches in order to limit an attackers impact in the network [11]. A SOC is a centralized place for

safeguarding an organization’s status, by establishing and maintaining Situational Awareness of

its security [7]. Situational Awareness means that a SOC understands its overseen environment,

by knowing the details of all events happening regarding its Information and Communications

Technology (ICT) devices and understands the existing threats to them [12].

Three main sections can be considered in Situational Awareness: Environment, Mission and

Threat. Environment encompasses all hardware and software utilized by the organization; the

location, type and quantity as well as all connections between them, including possible vulner-

abilities. Mission and Threat, on the other hand, are less introspective, standing side-by-side in

paying attention to the surrounding environment instead. Mission regards the business side of

the organization and how it interacts with its partners, and Threat considers possible enemies and

what they stand to gain in an attack.
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2.1 The Flood of Data

In order to build the Environment part of Situational Awareness, SOCs collect log data from a

myriad of devices, servers, workstations, firewalls, routers, etc., for every action involving each

of them. When a simple email is sent, logs are generated from every single device that interacts

with the email, from the workstation used to send it, to the email server and the network devices

responsible for carrying it. Even moderately sized organizations generate huge amounts of data

[7]. Correlating data from different sources helps build a much clearer picture, by making it pos-

sible to follow the series of events, and as such detect intrusions in a timely manner. Correlation

involves comparing logs from the different sources and connecting them in a timeline.

After collection, SOC use tools to correlate data and launch alerts with the findings to be

reviewed by analysts. Most correlation engines in these tools are rule based, were rules are de-

veloped by security experts and compiled in sets, in order to defeat a type of attack. Developing

these rules is a time consuming endeavor requiring a high level of expertise and precision. Fur-

thermore, as these rules reflect the current threat landscape and threats evolve overtime, new rules

need to be continually developed and tested in an iterative process that leaves gaps in the security

fabric of an Organization [13].

Nowadays, many of the challenges of cybersecurity can be attributed to the flood of data

and repetitive tasks within the workflow of a SOC whittling down the available time of security

experts. Automation appears the obvious answer to this problem and, although certain tasks do

require a more hands-on approach to them, such as devising and maintaining rule-based systems,

others benefit greatly from it, such as threat identification [14]. For this latter one, with its bulk

data processing nature, application of Machine Learning (ML) techniques actually benefits from

a high amount of data to compile [15].

2.2 Collaboration in Cybersecurity

The Threat component of Situational Awareness considers an Organization’s value and signifi-

cance, as that indicates what types of attacks it will be submitted to. This information can be

critical when devising a cybersecurity strategy as a script-kiddie’s motivation and ability is vastly

different from state-sponsored cyber-terrorism, with vastly different outcomes [16, 17].

Mission, on the other hand, identifies what vulnerabilities allies introduce. The implicit trust

relationship existent between business partners can be abused to attack an Organization, either

from access to the environment from a trusted network or from targeted phishing from known

emails. Furthermore, attacks to an Organization higher up in the supply chain can have impacts
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on all others downstream, i.e., attacking the supplier of the intended target or targets [18, 19],

or infecting production environments by targeting open source libraries [20, 21]. These types of

attacks, although lengthy in their execution, can completely bypass an otherwise robust security

strategy.

Linking SOCs from different Organizations, preferably within the supply chain, in a col-

laborative security effort has many advantages, among which strengthening against supply chain

attacks. Besides setting mutual objectives in security strategies and as such, presenting a com-

mon front against cyberattacks, this collaboration further allows the sharing of expertise among

analysts while dividing the load dealing with alerts. Nevertheless, access to a whole new SOC

worth of assets also means a SOC worth of information to go through, exacerbating the issue of

too much data.

2.3 Workflow Automation

The typical SOC workflow 2.1 can be simplified into two main parts, Threat Management and In-

cident Management. Threat Management involves monitoring an environment through analysis

of incoming information, in order to identify possible threats in a timely manner. Incident Man-

agement, on the other hand, involves dealing with the detected threats either through mitigation

or remediation.

Figure 2.1: SOC workflow [22].

As information moves through the SOC workflow, its designation is upgraded according to

its threat status, Figure 2.2. Individual device logs are Events, a simple occurrence originating

somewhere in the environment that by themselves may or may not indicate suspicious behaviour.

As previously mentioned, multiple Events are correlated together using semi-automatic methods

7
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such as rule based systems [13], emitting an Alert when a combination of Events triggers a given

rule set. Alerts can be false positives, and as such inconsequential, or true positives (Incidents)

meaning a cyberattack is occurring and mitigation or remediation actions need to be deployed.

Figure 2.2: Incident Types [22].

For Incident Management, its mitigation and remediation tasks can be somewhat automated

through the use of playbooks [23]. Security Experts will prepare playbooks, describing step-by-

step how to deal with a given type of intrusion or attack. A phishing email playbook might include

steps such as: deleting emails from affected inboxes, sending out memos raising awareness about

this type of attack and running scans on the machines of victims to make sure nothing was

compromised. Compiling a list of playbooks for different types of attacks allows automation of

much of their steps, considerably streamlining a SOCs workflow [23]. Furthermore, multiple

alerts originating from the same type of attack, or even the same attack, can be aggregated in

cases, where playbooks can be applied to all the alerts in a case at the same time.

The problem of too much data impacts Threat Management more heavily, with detection

rules requiring continuous maintenance and alerts needing to be manually analysed in an indi-

vidual manner. Detection and Analysis becomes then the most time consuming tasks, for after

pinpointing the correct type of attack, chances are that a playbook with automated tasks already

exists. For this reason, in the hopes of further automating cybersecurity, this detection step is

continuously analysed in the literature [24, 25, 26, 27].

8



MACHINE LEARNING TO IMPROVE SECURITY OPERATION CENTERS

2.4 Summary

When devising a security strategy there are several critical steps to consider. It is not just the

latest tools, or the most knowledgeable personnel that create the most robust system, but the

complete strategy where all parts are collaborating. Security staff needs the correct tools to help

them with the workload, as well as the right processes to streamline interventions. The tools need

to be configured correctly alongside the devices being monitored. Finally, with the advances in

machine learning, new automation techniques become available, allowing even greater efficiency.
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CHAPTER 3

STATE OF THE ART

Although the training and experience of a SOC’s staff has huge value, they need to be supported

by the correct tools to properly perform their tasks. Truly efficient SOCs utilize information au-

tomation in combination with their analysts’ expertise, to streamline data filtering and correlation

processes.

3.1 Cybersecurity Tools

Security Incident and Event Management (SIEM) systems are powerful tools that combine log

management systems with several security related features such as data analysis and correlation,

as well as rule based alerting. Collected data is sent to a centralized unit and used to build

a baseline of normal behaviour for an Organization [28]. Beyond regular business operations,

user authentication and authorization is also monitored taking into account privileged users and

sensitive data, as required by compliance reporting [29]. Continually updated threat intelligence

is used to warn of any weaknesses in applications or systems in the environment, that might be

exploited by targeted attacks. Finally, data analytics functionalities are capable of communicating

meaningful patterns through dashboards and reports, aiding in security investigations.
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These systems however, can still generate thousands of alerts that normally are monitored

using mostly manual methods and processes [30].

Security Orchestration, Automation and Response (SOAR) are possible solutions to prob-

lems with manual threat analysis, delays in dealing with intrusions as well as providing con-

tinuous, centralized and up-to-date security status of an Organization. SOARs’ first step is In-

tegration, where all the tools in a SOC are centralized in a single platform, increasing their

interoperability. Most security tools offer API-based unification support [30], but as different

tools generate data in different formats, so do these formats need to be standardized. The second

step is Orchestration, where security experts create playbooks of their security tasks, by devel-

oping code or scrips that interact with the correct tools for each case, facilitating investigations

or responses to security incidents. The third and final step is Automation, where an Organization

identifies which processes can be automated and which require review by security analysts. This

step varies greatly from one Organization to the next, as there is no clear consensus on what tasks

are more critical.

In a Forrester Wave report on security platforms [31], J. Blankenship et al. rated and de-

scribed some of the market leaders in this domain, as seen in Figure 3.1. In addition, other recent

vendors have entered the market with robust and interesting security tools:

• Splunk [32]: Splunk is a SIEM solution able to be hosted in the cloud and interface seam-

lessly with mature environments, while also being available in a Software-as-a-Service

(SaaS) subscription model. It provides the normal SIEM functionalities such as data in-

gestion from most sources, multiple types of correlation engines and intuitive data visual-

ization to aid in security investigations.

• Phantom [33]: Splunk also offers a SOAR solution, Phantom. Providing all the most im-

portant functionalities of SOARs, security infrastructure orchestration, playbook automa-

tion, case management capabilities and integrated threat intelligence.

• Cymerius [34]: this tool is an all-in-one SIEM and SOAR, built for Critical Systems with

multiple locations. It is therefore equipped with powerful data ingestion and correlation

capabilities to a unified interface, as well as allowing the orchestration of tools and humans

while respecting the standards and procedures of an Organization.

• IBM Security [35]: IBM is building a comprehensive security platform in the cloud, capa-

ble of covering all security needs. With SIEM and SOAR capabilities, as well as offering

supplementary functionalities available in the app format, allowing an Organization to pick

and choose the most useful tools for their environment.

12
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Figure 3.1: Security Platforms Market Leaders [31].
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• Microsoft Sentinel [36]: Microsoft offers a cloud-based security analytics platform, a

SIEM with great compatibility with the other Microsoft products such as Azure, Office365

and Windows Defender, allowing great integration and protection at multiple layers, from

email to cloud and endpoints.

• The Hive [37]: is an easily deployable, open-source security orchestration platform, de-

signed with collaboration in mind. It offers all the required functionalities of a SOAR for

multiple partners, with the ability of sharing data, security playbooks and processes, as

well as allowing analysts from different organizations to work collaboratively on the same

cases.

Despite the existence of multiple commercial solutions available for SIEMs, SOARs and

Incident Management portals the research community has not stopped developing new and inno-

vative ways to improve these tools.

3.2 Machine Learning

Machine Learning encompasses a vast number of different techniques, based on a multitude of

training strategies and computing algorithms. From supervised and unsupervised to hybrid and

deep learning, new techniques are continuously being developed and tested in the cybersecurity

domain [38]. Due to the nature of security tasks such as data correlation and intrusion detection,

it is no surprise that ML achieves good results [39].

Supervised learning, where labeled training data is used to train the models, has seen many

uses in applications such as Intrusion Detection Systems (IDS), analysing incoming data and

detecting attacks. In [40], Ł. Podlodowski et al., applied a XgBoost classifier to a suspicious

network event dataset, demonstrating its great performance in classification problems.

Random Forest [26] and Support Vector Machines (SVM) [27, 26] are also represented with

good results, although their applications are certainly pivoting to ensemble implementations. In

[26], A. Yeboah-Ofori et al. explores several models in this domain, comparing their results

for threat detection, while in [27] S. Kalyani et al. applies SVM directly to security auditing,

discussing the possibility of application to different systems.

Unsupervised approaches such as the ones based on anomaly detection are also being inves-

tigated in the literature. By modeling the network during normal operations, deviations from that

normal baseline will standout, possibly detecting zero-day attacks.

In [41], K. Ghanem et al., have enriched an existing IDS system by employing a Support

Vector Machines based, anomaly detection model. In a similar manner, A. Siddiqui et al. in
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[42] developed a cyber attack detector based on anomaly detection, with explainable results and

capable of improving using the feedback of security experts.

In [27], M. Evangelou et al. defends anomaly based systems as unbeatable secondary de-

fense systems, exploring several models for this function and finding Quantile Regression Forests

the ideal model for the used environment of enterprise networks.

Hybrid ML approaches are being used as a means of improving the results of single clas-

sifiers, in threat detection. In [43], T. Dias et al. presented a hybrid IDS solution that used

ML to enrich expert written rules. Similarly, in [44], M. Aydın et al. combines missuse based

and anomaly detection based IDS systems to achieve a different type of hybrid IDS, testing this

solution in MIT Lincoln Laboratories’ network traffic data [45].

In [46], P. Shukla et al. tested several ML based IDS systems applied to Internet of Things

(IoT) security, comparing supervised and unsupervised based approaches to an hybrid one using

both types of models, with the hybrid approach achieving better results overall with less false

positives.

In [47], J. Carneiro et al. compared several ML models applied to network based intrusion

detection, using the notable CIDDS-001 dataset [48]. Similarly, N. Oliveira et al., applies several

ML models to the CIDDS-001 dataset, focusing on how feature engineering can impact different

model types.

In [49], Ployphan Sornsuwit et al. used an ensemble of ML models, in combination with

adaptive boosting, to achieve state of the art results in multiple datasets of different types of at-

tack. The novel model architecture in conjunction with correlation-based feature selection in the

data preprocessing step, confirmed in the experimental results the higher efficiency in intrusion

detection over other methods. In [50], J. Sakhnini et al. apply an ensemble of deeplearning

methods to attack detection, focusing on attacks on the physical. The dataset used to evaluate the

model is based on smart grids and developed by Oak Ridge National Laboratories.

To excel in this domain, and develop increasingly complex and useful models, data repre-

senting the day-to-day reality of a secure environment needs to be available. The closer to reality

the data is, the more useful will be the resulting artificial intelligence. Its becoming common to

see in the literature this problem being tackled in manners benefiting the entire research com-

munity. In [51], James Fraley et al. created a dataset of security alerts and a security analyst’s

decisions and actions for every one. Training a Neural Network with this dataset achieved 90%

accuracy in security events and alerts classification. In [52], K. Highnam et al. present the

BETH dataset, developed from baseline network honeypot behaviour and designed for anomaly

detection model training.
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Although ML shows promise in cybersecurity, it can have disadvantages by introducing new

attack vectors in a system. Adversarial AI Attacks can have devastating consequences, by al-

lowing attackers to completely bypass an Organization’s security [53]. These types of attacks

feed slightly altered information to a model during retraining phases, in order to manipulate it

into wrongly classifying malicious behaviour as benign [54]. Steps are being taken to research

this type of attack though, with G. Apruzzese et al. in [55] discusses how many commonly used

machine learning models in cybersecurity are vulnerable to these types of attacks, suggesting pos-

sible fixes for current models and improvements to avoid these vulnerabilities going forward. In

[24], the same authors apply adversarial attack training to random forest model implementations

to great success, not only protecting the models from these types of attacks but also improving

performance.

3.3 Summary

With security tools being continually developed, their focus is on how to be more efficient with

analysts time allowing them to be more productive. Automation seems the clear solution, with

machine learning the promising new technology.

Despite the extensive exploration of ML applied to cybersecurity, the focus is undoubtedly

on attack detection, leaving a clear hole in other promising automatable steps, namely alert group

aggregation. Going forward, a robust security strategy will be a balancing act of human experi-

ence and expertise, allied with ML-powered automation.

16



CHAPTER 4

CONCEPT

Automation and the application of machine learning are a promising solution to mitigating the

flood of data in cybersecurity. Although the use of AI is not a new endeavour in this domain, the

literature currently mostly focuses on the analysis of incoming data in order to identify a security

breach. Albeit a commendable use, other steps in a SOC workflow could greatly benefit from the

employment of this technology.

Current SOC implementations are typically setup so that alerts from one or multiple sources

are delivered straight to the used incident management solution 4.1, where analysts have access

to alerts in a queue similar to a ticketing system [56]. Analysts then manually access alerts

individually for signs of security breaches.

In order to further automate cybersecurity, and focusing on the identification step of a SOC

workflow, this work proposes a solution capable of slotting into current SOC tools, as a way

of enriching incoming alerts. This solution is leveraged as a decision support system, employ-

ing multiple models to perform identification and classification of alerts, adding their results as

another point of consideration for security expert analysis. The additional information helps an-

alysts not only decide if a given alert is in fact an attack, but also by identifying which case

contains playbooks to treat similar alerts.

17



CHAPTER 4. CONCEPT

Figure 4.1: Simplified Comparison of Current vs Proposed Solutions.

4.1 Intelligence Layer Architecture

The Intelligence Layer was designed using a microservices architecture design pattern, separating

responsibilities into standalone components. These components can be seen in Figure 4.2 and

are described as follows:

• Preprocessing handles incoming alerts, applying data transformation logic in order to

prepare them for model ingestion. Additionally, new features are computed using historical

information from previous recent alerts.

• Database stores all the alerts that pass through the system. This data can be revisited and

used to enrich alerts in preparation for ML analysis.

• Analyser contains the logic behind this system, receiving alerts after their preprocessing

and submitting them to the Machine Learning Engine for analysis. After obtaining the

results, this component adds the new information to the alert in a readable manner before

sending it to the SOAR of choice.
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• Machine Learning Engine, possibly the most important component, contains the models

trained using relevant security data and capable of not only detecting an alert as a security

breach but also aggregating it to other similar alerts in the system, for bulk processing by

security analysts.

Figure 4.2: Decision Support System: Components View.

4.2 Machine Learning Engine

The ML Engine aims to tackle two problems of the SOC pipeline, assessment of incoming alerts

for security threats, or identification, and grouping of similar alerts in cases for bulk processing,

or aggregation. Although different in their nature, both of these are classification problems where

a set of data points are categorized into classes. In this context the data points will be alerts and

the classes their possible label.

In the identification problem, only two possible classes exist for an alert is either attack or

normal, whereas in the aggregation problem the possible classes are the existent cases in the

system. Furthermore, the nature of the data for our binary classification problem, identification,

guarantees that all the future incoming entries will only ever be of two possible types. On the

other hand, classifying each alert into groups will fail when a never before seen alert, i.e. from a
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new type of attack, arrives in the queue. The multiclass classification model, trained with known

classes will incorrectly identify the new alert as one of the existing classes.

For this reason, a middle step needs to exist between both classification problems. After

being identified as attack by the first model, the system needs to decide if this alert is similar to

other alerts already in the database or if it is a new one. As such, an anomaly detection model

will be trained with alerts already in the system to create a baseline of known alerts, filtering any

outliers and skipping the final step. The third model is trained on groups of alerts that compose a

case, selecting the relevant case for every incoming entry. The sequence of these three steps can

be seen in Figure 4.3

Figure 4.3: Machine Learning Steps.

Each of the three different identification phases of the Intelligence Layer, require ML models

attuned to the unique specifications of their given problem. These models will undergo a selection

stage were data originating from the final system is used to train and compare the results among

them.

4.2.1 Phase 1: Classification

For this problem three main models were considered, given their results with similar problems in

this or other domains.

• Random Forest [57] is a tree based model, employing a set of decision trees and taking

in account the output of each one. A decision tree aggregates datapoints by iteratively

splitting the features of a given dataset into consecutive binary nodes, ending each branch
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on its outcome, or label. Although very good with low complexity data, higher sized trees

can lead to overfitting. Random Forest models mitigate this issue by using an ensemble of

unrelated decision trees and consolidating their results, achieving significant results in the

literature for both classification and regression problems.

• Support-Vector Machines (SVM) [58] is a probabilistic model that maps training data to

points in space, and finds the hyperplane with the maximum margin that separates the two

classes. Newer data points are mapped in space in the same way and classified according

to which side of the hyperplane they have landed. This model is a very robust classifier

with the caveat that it is limited to binary-class classification.

• Similarly to Random Forest, XgBoost [59] is an ensemble of decision trees, but using

a gradient boosting algorithm. Instead of concurrently training a group of decision tree

models and averaging their output, models are trained consecutively using the residuals

from each iteration to train the next one.

4.2.2 Phase 2: Anomaly Detection

In order to classify an incoming alert as ”unknown”, an anomaly detection based approach was

selected. Although this approach is not uncommon for the cybersecurity domain, it is normally

applied to the detection of attacks. Here, its use is to identify alerts different from everything

in the system so that new cases can be aggregated and playbooks developed. For this novel use

case, two models were selected.

• Isolation Forest [60] is a tree based model that uses distance between data points to detect

outliers, hinging on the principle that outliers are distinct from normal data. During the

construction of the binary tree, data is grouped into branches according to their similarity,

with more similar entries needing longer branches to differentiate them. As such, data

closer to the root of the tree can be considered an anomaly since it was easily distinguish-

able from the rest.

• One-Class Support-Vector Machines [61] is a similar implementation to SVM but in-

stead of using an hyperplane to separate two classes, it uses an hypersphere around normal

data and classifies new data based on its distance to the sphere.

4.2.3 Phase 3: Multiclass Classification

Since multiclass classification is a subset of normal classification, they have in common many

models that achieve similar results. For this reason some of the models from the first phase were
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selected:

• Random Forest due to its robust results and straightforward implementation, behaving no

differently in binary and multiclass classification problems.

• Although models such as Support-Vector Machines in its most simple type only supports

binary classification, implementations exist where the problem is compartmentalized into

multiple binary classification problems followed by the same principle: discovering the

hyperplane that linearly separates classes [62, 63].

• K-Nearest Neighbors (KNN) [64] uses distance between datapoints to identify clusters of

similar data. Despite its good results it is not very scalable due to being computationally

demanding.

4.3 Summary

The proposed solution allows slotting into current SOC workflow implementations, enriching

alerts with valuable information. Several ML models are presented for three different phases,

responsible for identifying attacks and aggregating them into the correct cases.
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EXPERIMENTAL FINDINGS

For the proposed solution to work, the three used ML models need to be trained, tested and

deployed in the system. As a case study for this, a dataset was acquired and all the relevant steps

of constructing usable models are described and analysed, and the system deployment into a SOC

workflow is documented. The used SOC is based on the Security of Air Transport Infrastructure

of Europe (SATIE) Project [65], where new SOC philosophies were being investigated, with new

intelligent tools and innovative workflows being explored and developed.

5.1 Datasets

The data used is sourced from SATIE’s cyber-physical environment and composed of two parts.

The first one is of alerts, correlated from logs from a multitude of devices and device types, from

network devices such as routers and firewalls, to workstations and even physical sensors. The

second is a list of incidents, meaning a security breach confirmed by a specialist, where each

incident contains the list of alerts related to it. Using this information, a dataset can be built from

the alerts using the list of incidents to label each one. All alerts related to an incident will receive

that incident’s ID number as label, with the rest being marked as ”normal”.
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Additionally, a new set of features were engineered, aiming to give models historical context

for each entry. These features were extracted using a rolling time window and are based on the

recent frequency of incoming alerts. As such, for each entry and given a window of 30 minutes,

the number of alerts received, the number of distinct sources and the most common source are

computed and added to the dataset.

Due to the difference in log sources, each alert contains differing information. This results

in a dataset resembling a sparse matrix, with many entries having absent values in unrelated

features. In order to reduce the impact this could have in the final results, three different datasets

were constructed and tested. The first one, henceforth referred to as Full Dataset, contains all

the data available, serving as the control sample and its features can be seen in Table 5.1. The

second dataset went through a curating process where columns were disregarded if containing

a threshold of missing values higher than 60%, from now on referenced as Curated Dataset.

Finally, for the third dataset, a Random Forest was trained for a classification problem and the

most important features derived from that training were selected to build the Feature Importance

Dataset. These last two datasets’ features can be seen in Table 5.2 and 5.3 respectively.

In Phase 1, for the classification problem, 11764 total entries are used, with 11201 labelled

as ”normal” and 563 labelled as ”attack”. For the following phases, ”normal” labelled entries are

no longer relevant and as such are disregarded. In Phase 2, for the anomaly detection problem,

166 outliers were randomly selected, leaving 397 as inliers. In Phase 3, for the multiclass clas-

sification problem, of the 563 ”attack” alerts, each was aggregated into classes according to its

incident, ranging from 3 to 100 members each.

5.2 Data Preprocessing

Before starting the experiments some processing of the data needs to occur, to prepare it to

be ingested by the ML models. Categorical data needs to be encoded, since these models do

not compute data that is not numerical, but even previously numerical data needs adjustments

depending on which type of models will be used later on.

When encoding data, several approaches are discussed in the literature, each with their own

pros and cons, but arguably the most used is OneHot Encoding [66]. In this type of encoding,

a categorical feature of n unique values is unfolded into n binary features, each entry will be

marked with ”1” for the feature pertaining to its previous one, and with ”0” for all the others.

This has the caveat of considerably increasing the number of features in a dataset, but without

creating undesirable numerical relationships between categorical vales. Furthermore, the prolific

use of distance based models in this work, required the scaling of numerical data, as distance
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Table 5.1: Full Dataset Features.

Features Description

alert title Title

location Physical location of the source

most common sensor in window Most common source in the last 30 min

n alerts in window Number of alerts in the last 30 min

n distinct sensors in window Number of sources of alerts in the last 30 min

sensor Source of the alert

severity Level of priority for this alert

type Origin type of the alert, either cyber or physical

target ip address Target IP address

source ip address Source IP address

source host name Host name of source machine

source port Source port

source user name Source Username

target host name Host name of target machine

target port Target port

source tool Source Tool

source url Targeted URL

target file name Target file name

target tool Target tool

target user name User name of target

command Command that triggered the alert

file name File contained in the alert

file hash Hash of file contained in the alert
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Table 5.2: Curated Dataset Features.

Features Description

alert title Title

location Physical location of the source

most common sensor in window Most common source in the last 30 min

n alerts in window Number of alerts in the last 30 min

n distinct sensors in window Number of sources of alerts in the last 30 min

sensor source

severity Level of priority for this alert

Type Origin type of the alert, either cyber or physical

target ip address Target IP address

source ip address Source IP address

Table 5.3: Feature Importance Dataset Features.

Features Description

alert title Title

location Physical location of the source

most common sensor in window Most common source in the last 30 min

n alerts in window Number of alerts in the last 30 min

n distinct sensors in window Number of sources of alerts in the last 30 min

sensor source

severity Level of priority for this alert

Type Origin type of the alert, either cyber or physical

target ip address Target IP address

source ip address Source IP address

source host name Host name of source machine

source port Source port

source user name Source Username

target host name Host name of target machine

target port Target port
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between datapoints will impact how each one is classified. This is so a change of a certain value

to any feature has the same importance across the whole dataset. The chosen method for this was

MinMax scaler, for keeping the shape of the overall data intact.

The final considered prepocessing step included in the experiments was a dimensionality

reduction technique, using Singular Value Decomposition (SVD) [67]. Dimensionality reduction

aims to reduce the number of features, computing out unneeded information while retaining the

most important parts. In this context, SVD was chosen due to its compatibility with sparse feature

spaces.

5.3 Experiments and Results

The selected models were trained and tested with the three compiled datasets, with experiments

following a standardized script. For each dataset, every model was subjected to several experi-

ments, differing in the used preprocessing of the data. The considered default preprocessing in-

volves scaling and encoding of numerical and categorical features, respectively, regarding models

were it is applicable to do so. Although best practices dictate, when using distance based mod-

els, that numerical data should be scaled and categorical data encoded, tree based models do

not share this need. Additional considered preprocessing steps are dimensionality reduction via

SVD, comparing the full range of data to smaller and richer subsets of it, and feature creation

using kmeans to cluster similar data into groups.

5.3.1 Metrics

Respective to results comparison, Accuracy [68] is the base metric used for comparing the per-

formance between models. It is the most straight forward, calculated by comparing the number

of correct predictions against the total of entries predicted. Although a good baseline, it does

not tell the whole story, especially in class imbalanced datasets such as the ones used in this

work. Precision and Recall despite giving results that explore the data more in depth, are two

sides of the same coin [69], with Precision focusing on the amount of correct entries retrieved

by the model while Recall focuses on how many correct entries were identified. Consequently,

F1-score [70] was selected as the metric of choice given its good balance between Precision and

Recall while paying attention to class imbalance existent in the data. This imbalance can also be

observed in the difference between macro and weighted metrics, since macro metrics take into

account the number of each class’ members during result calculations. As such, for the first and

third phases, the macro F1-score was used for evaluating the impact differently sized classes have

in the final results. For the second phase F1-score was also used, only this time focusing on the
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score for the outlier class, i.e. the alerts considered unknown to the system.

5.3.2 Phase 1: Classification

Experiments were conducted with the selected models for all three compiled datasets: Full, Cu-

rated and Feature Importance Datasets. In all of them, the preprocessing applied to the data

consisted of scaling of numerical data using MinMax Scaler and encoding of the categorical

data using OneHot Encoding. Due to the sparse nature of the datasets, an additional trial was

included utilizing Dimensionality Reduction techniques, namely Singular Value Decomposition.

The mapping of the experiments for each dataset is in Table 5.4 with the results in Tables 5.5, 5.6

and 5.7:

Table 5.4: Phase 1 Experiments.

SVM Random Forest XgBoost

Default: default svm default rf default xgb

Default with SVD: svd svm svd rf svd xgb

Table 5.5: Phase 1 Results: Full Dataset.

Full Data default svm svd svm default rf svd rf default xgb svd xgb

Accuracy 0.973 0.970 0.971 0.968 0.973 0.968

Macro Precision 0.840 0.485 0.764 0.712 0.784 0.713

Weighted Precision 0.966 0.940 0.966 0.961 0.967 0.961

Macro Recall 0.584 0.500 0.653 0.617 0.661 0.624

Weighted Recall 0.973 0.970 0.971 0.968 0.973 0.968

Macro F1-Score 0.631 0.492 0.692 0.649 0.704 0.655

Weighted F1-Score 0.965 0.955 0.968 0.963 0.969 0.964

Table 5.6: Phase 1 Results: Curated Dataset.

Curated Data default svm svd svm default rf svd rf default xgb svd xgb

Accuracy 0.972 0.970 0.972 0.970 0.973 0.971

Macro Precision 0.792 0.485 0.770 0.746 0.788 0.767

Weighted Precision 0.964 0.940 0.967 0.963 0.967 0.965

Macro Recall 0.598 0.500 0.660 0.625 0.654 0.639

Weighted Recall 0.972 0.970 0.972 0.970 0.972 0.971

Macro F1-Score 0.643 0.492 0.699 0.664 0.698 0.681

Weighted F1-Score 0.964 0.955 0.968 0.965 0.968 0.966
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Table 5.7: Phase 1 Results: Feature Importance Dataset.

Feature Importance default svm svd svm default rf svd rf default xgb svd xgb

Accuracy 0.984 0.984 0.984 0.983 0.983 0.983

Macro Precision 0.492 0.492 0.766 0.680 0.743 0.742

Weighted Precision 0.968 0.968 0.979 0.975 0.977 0.977

Macro Recall 0.500 0.500 0.579 0.539 0.553 0.539

Weighted Recall 0.984 0.984 0.984 0.983 0.984 0.984

Macro F1-Score 0.496 0.496 0.621 0.562 0.585 0.566

Weighted F1-Score 0.976 0.976 0.980 0.977 0.978 0.978

In this phase XgBoost shines, consistently outperforming the other two models. The only

test where this is not true is when using the dataset constructed using feature importance. The

explanation for this is quite simple, the most important features used to construct this dataset

were extracted by training a random forest and sorting the features with the most impact for it.

As such that dataset is tuned for use with random forest, achieving worst overall results with

different models.

Although the use of automatic dimensionality reduction in the form of SVD produced worst

results in most cases, the manual dimensionality reduction that happens from the Full to the

Curated Dataset results in minor differences, indicating that superfluous features do exist in the

full data and SVD is just not able to extract them. With more careful feature tuning the presented

results can further be improved.

5.3.3 Phase 2: Anomaly Detection

In the second phase two experiments were run for each model and for each dataset, trying the

default preprocessing and comparing its results to the ones with a dimensionality reduction step.

Since the Feature Importance Dataset was compiled using a classification model to select the

most important features, those might not reflect the best ones for anomaly detection. For this

reason, this dataset was disregarded and the experiments used only the Full and Curated Datasets.

Additionally, anomaly detection involves a sensibility threshold in order to classify data as inlier

or outlier. As this threshold can have a great impact in the model’s final results, an optimization

step was added to all the experiments. This optimization used GridSearch to systematically try

all the given combinations of hyperparameters, including anomaly threshold. Finally, as in Phase

1, the preprocessing consisted of MinMax Scaling and OneHot Encoding with SVD being used

for dimensionality reduction. The mapping of the experiments for each dataset is in Table 5.4

with the results in Tables 5.5, 5.6 and 5.7:
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Table 5.8: Phase 2 Experiments.

SVM Isolation Forest

Default: default svm default if

Default with optimization: svm opt if opt

Default with SVD: svd svm svd if

Default with SVD and optimization: svd svm opt svd if opt

Table 5.9: Phase 2 Results: Full Dataset.

Full Data default svm svm opt svd svm svd svm opt default if if opt svd if svd if opt

F1-Score 0.746 0.823 0.346 0.737 0.106 0.818 0.821 0.828

Macro F1-Score 0.662 0.800 0.409 0.656 0.393 0.801 0.809 0.808

Accuracy 0.683 0.803 0.415 0.676 0.528 0.803 0.809 0.809

Table 5.10: Phase 2 Results: Curated Dataset.

Curated Data default svm svm opt svd svm svd svm opt default if if opt svd if svd if opt

F1-Score 0.732 0.732 0.633 0.807 0.225 0.815 0.747 0.820

Macro F1-Score 0.623 0.623 0.586 0.778 0.460 0.793 0.731 0.801

Accuracy 0.655 0.655 0.591 0.782 0.563 0.795 0.732 0.803

The need for optimization inherent to anomaly detection due to error thresholds, also reveals

the boost to model performance that can be extracted. Optimized models beat their default ver-

sion across the board, with Isolation Forest coming ahead in both datasets. Furthermore, while

SVD failed to impact the results in any significant manner, in the previous classification problem,

here it managed to slightly increase the results every time.

5.3.4 Phase 3: Multiclass Classification

Once again experiments were conducted with the selected models for all three compiled datasets,

following closely phase 1’s preprocessing due to the similar nature of the challenge: scaling of

numerical data using MinMax and encoding using OneHot. SVD was again utilized for dimen-

sionality reduction. The mapping of the experiments for each dataset is in Table 5.11 with the

results in Tables 5.12, 5.13 and 5.14:
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Table 5.11: Phase 3 Experiments.

SVM Random Forest KNN

Default: default svm default rf default knn

Default with SVD: svd svm svd rf svd knn

Table 5.12: Phase 3 Results: Full Dataset.

Full Data default svm svd svm default rf svd rf default knn svd knn

Accuracy 0.802 0.802 0.802 0.775 0.883 0.892

Macro Precision 0.558 0.578 0.582 0.507 0.515 0.505

Weighted Precision 0.792 0.787 0.785 0.778 0.832 0.853

Macro Recall 0.640 0.640 0.640 0.540 0.629 0.631

Weighted Recall 0.802 0.800 0.801 0.774 0.882 0.892

Macro F1-Score 0.581 0.593 0.585 0.497 0.549 0.542

Weighted F1-Score 0.784 0.783 0.778 0.762 0.854 0.868

Table 5.13: Phase 3 Results: Curated Dataset.

Curated Data default svm svd svm default rf svd rf default knn svd knn

Accuracy 0.811 0.810 0.792 0.784 0.901 0.909

Macro Precision 0.636 0.636 0.555 0.531 0.652 0.644

Weighted Precision 0.813 0.813 0.792 0.785 0.879 0.885

Macro Recall 0.673 0.673 0.606 0.573 0.695 0.697

Weighted Recall 0.811 0.811 0.793 0.784 0.901 0.909

Macro F1-Score 0.623 0.623 0.555 0.526 0.644 0.649

Weighted F1-Score 0.795 0.795 0.777 0.769 0.883 0.893

Table 5.14: Phase 3 Results: Feature Importance Dataset.

Feature Importance default svm svd svm default rf svd rf default knn svd knn

Accuracy 0.811 0.810 0.801 0.801 0.874 0.883

Macro Precision 0.603 0.622 0.575 0.589 0.500 0.496

Weighted Precision 0.804 0.799 0.797 0.794 0.835 0.850

Macro Recall 0.6733 0.673 0.640 0.640 0.595 0.597

Weighted Recall 0.812 0.812 0.801 0.801 0.873 0.882

Macro F1-Score 0.612 0.624 0.583 0.588 0.517 0.515

Weighted F1-Score 0.792 0.792 0.785 0.783 0.849 0.859
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Due to both the imbalance in class members as well as the low number of overall data entries,

the results for this last set of experiments are the worst so far. Furthermore, although SVM with

SVD achieved the best results for two of the three datasets, KNN also with SVD achieved the best

score overall in the third dataset, Curated Dataset. The slight dispersion in the results indicates

that for this small sample of data no one model is best, and more data points need to be obtained

before any reliable results can be produced.

5.4 Deployment

The final step before deployment is to choose which models to use for each phase. To ease the

preprocessing stage of alerts before analysis, all the models chosen are from the same dataset.

This way, alerts need only to receive transformation into one format to be able to be computed

by all the models. Full Dataset had the highest results in three out of two phases and will then

be used as the formatting formula for the incoming alerts. With this, the proposed Intelligence

Layer system is ready to be deployed into a SOC workflow and start to enrich all the new alerts.

The SOC implementation chosen for testing this tool is using TheHive as an incident man-

agement and orchestration tool, with alerts originating from a Splunk IDS deployment. The

correlation rules used in Splunk monitor logs from the overseen environment and launch alerts if

any event triggers a rule.

TheHive is chosen as the basis for this SOC due to its open-source implementation, and

collaboration focused functionalities. TheHive is designed to support multi-enterprise SOCs

in a collaborative incident management and orchestration environment. This allows security

analysts and experts to share information between partners and work on cases collaboratively.

Furthermore, TheHive contains connections to security threat databases, namely MISP, receiving

up-to-date intelligence on any new security threats.

TheHive utlizes its own concept of observables [71], stateful properties of an alert that are

likely to indicate an intrusion, allowing investigations to be run on individual or groups of ob-

servables to verify their compromise level. The source IP, file hash or sender email domain are

all possible observables contained in an alert, and are all information that may indicate an attack.

Figure 5.1: Intelligence Layer example implementation.
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The setup differs from the one shown in Figure 4.1 due to TheHives’ collaborative nature,

allowing multiple enterprises to work together on the same SOC deployment, sharing information

and processes when needed. As such, this implementation more closely resembles Figure 5.1,

with the novel Intelligence Layer capturing incoming alerts from multiple sources and, after ML

analysis, augmenting their information with intelligent classification. The improved alerts are

then submitted to TheHive’s new alert queue, Figure 5.2, waiting for manual verification. When

security analysts log in to TheHive to perform this verification, they can use the ML analysis

contained in each alert to help decide on how to proceed with each one, as seen in Figure 5.3.

Figure 5.2: TheHive Alert Queue.

Figure 5.3: TheHive Alert Example.
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5.5 Summary

To demonstrate the implementation of the proposed solution, an established SOC was used, with

datasets compiled from the available data and used to train the ML models. Several experiments

were performed to decide on the best model for each phase, with forest based models achieving

the best results overall for this use case.
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CONCLUSION

This chapter discusses the overall findings of this work and highlights possible future improve-

ments to the proposed solution.

6.1 Results Summary

Cybersecurity continually explores Machine Learning as a tool to help solve the information

overload issue plaguing security centers. The novel system presented in this work aims to solve

this same problem, focusing on a less explored step of a SOC workflow, aggregation of incoming

alerts into cases.

The proposed system tackles this and the previous ”attack identification” step, in a robust

and flexible solution, capable of integrating any current SOC tool implementation, in order to

enrich incoming alerts with ML analysis of their threat risk. This additional information helps

security analysts assess each alert, spending less time on each one and increasing the efficiency

of the overall SOC.

As a use case of this system, a Cyberphysical dataset was acquired and used in a series

of experiments, comparing possible models for the different types of ML problems existent in

35



CHAPTER 6. CONCLUSION

the system. The superiority of tree based models was obvious in the ensuing comparison, with

XgBoost and Isolation Forest achieving high results in the classification and anomaly detection

problems, respectively, whereas in the multiclass classification problem, despite similar results

overall, KNN did edge ahead.

6.2 Objectives Overview

The objectives proposed in Chapter 1.2 were all met in the course of this work. O1 was answered

in Chapter 2.1, where the main problem in cybersecurity, namely the flood of data, is described.

O2 was tackled in Chapter 3, where the state of the art of cybersecurity tools and techniques are

described, along the current state of Machine Learning usage in cybersecurity. O3 and O4 are

addressed in Chapters 4 and 5 respectively, the former introduces design guidelines to construct a

solution capable of answering the presented problem, and the latter successfully deploys a Proof

of Concept (PoC) implementation on a real world example of a SOC.

6.3 Research Questions Overview

The following Research Questions were presented in Chapter 1.3 to help guide this work, with

possible answers found throughout this text:

• RQ1: How can Automation help in day-to-day cybersecurity tasks?

– Cybersecurity workflows in typical security centers are composed of many tedious,

data heavy task benefiting from automation both in detection and analysis of attacks

as well as remediation and mitigation tasks.

• RQ2: What are the best techniques for each type of task in a SOC?

– While remediation and mitigation tasks benefit from straightforward automation, in

the sense that similar alerts that undergo the same procedures can be grouped and

treated together, threat detection and analysis requires a more nuanced approached to

keep up with ever evolving attacks. For this case, ML solutions are ideal due to their

capacity to evolve alongside emerging threats, learning from previous exploits and

even detecting zero-day attacks.
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6.4 Future Work

As future work, in regards to the use case, more data would be useful in order to improve the

results across the board. Some of the limitations encountered were due to limited and imbalanced

classes. On the system’s side, the greatest improvement it could receive would be automatic

retraining of the models, using labeled data from the SOC. Utilizing the security analysts’ final

decision on processed alerts to periodically improve model performance. This improvement

consequently also solves the main issue with the current dataset, since with time more interesting

data can be aggregated and used to improve the existing solution.
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