

Bus-Contention Aware WCRT Analysis for the
3-Phase Task Model Considering a Work-
Conserving Bus Arbitration Scheme

Conference Paper

Jatin Arora*

Cláudio Maia*

Syed Aftab Rashid*

Geoffrey Nelissen

Eduardo Tovar*

*CISTER Research Centre

CISTER-TR-211004

2021/12/13

Conference Paper CISTER-TR-211004 Bus-Contention Aware WCRT Analysis for the 3-Phase Task ...

© 2021 CISTER Research Center
www.cister-labs.pt

1

Bus-Contention Aware WCRT Analysis for the 3-Phase Task Model Considering a
Work-Conserving Bus Arbitration Scheme

Jatin Arora*, Cláudio Maia*, Syed Aftab Rashid*, Geoffrey Nelissen, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: jatin@isep.ipp.pt, clrrm@isep.ipp.pt, syara@isep.ipp.pt, gnn@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Today multicore processors are used in most modern systems that require computational logic. However, their
applicability in systems with stringent timing requirements is still an ongoing research. This is due to the difficulty
of ensuring the timing correctness of tasks executing on a multicore platform that comprises a number of shared
hardware resources, e.g., caches, memory bus and the main memory. Concurrent accesses to any of these shared
resources can generate uncontrolled interference, which complicates the estimations of tasks' worst-case
execution time (WCET) and the worst-case response time (WCRT).The use of the 3-phase task execution model
helps in upper bounding the contention due to the sharing of bus/main memory in multicore systems. It divides
the execution of tasks into distinct memory and execution phases, where tasks can only access the bus/main
memory during their memory phases. This makes bus/memory access patterns of tasks more predictable,
enabling a preciser computation of bus/memory contention.In this work, we show how the bus contention can be
computed for the 3-phase task model considering a work-conserving, i.e., round-robin (RR) based, arbitration
policy at the memory bus. This is different from existing works that analyze the time-division multiple access
(TDMA) and first-come-first-serve (FCFS) based bus arbitration policies. First, we present a solution to model the
bus contention that can be suffered/caused by tasks executing on the same/remote cores of a multicore system
under an RR-based bus arbitration scheme. We then evaluate the impact of resulting bus contention on taskset
schedulability. Experimental results show that our proposed RR-based bus contention analysis can improve
taskset schedulability by up to 100 percentage points than the TDMA-based analysis and up to 40 percentage
points than the FCFS-based bus contention analysis.

Bus-Contention Aware WCRT Analysis for the 3-Phase Task Model

Considering a Work-Conserving Bus Arbitration Scheme

Jatin Aroraa,∗, Cláudio Maiaa, Syed Aftab Rashida,c, Geoffrey Nelissenb, Eduardo Tovara

aCISTER Research Centre, ISEP, IPP, Porto, Portugal
bEindhoven University of Technology, Eindhoven, the Netherlands

cVORTEX CoLab, Porto, Portugal

Abstract

Nowadays multicore processors are used in most modern systems. However, their applicability in systems
with stringent timing requirements is still ongoing research. The main reason behind this is the difficulty
of ensuring the timing correctness of tasks executing on such systems as they comprise a number of shared
hardware resources, as for instance, caches, memory bus, and the main memory. Concurrent accesses to any
of these shared resources can generate uncontrolled interference, which complicates the estimations of the
worst-case execution time and the worst-case response time of tasks.

The use of the 3-phase task execution model helps in upper bounding the contention due to the sharing
of bus/main memory in multicore systems. This model divides the execution time of tasks into distinct
memory and execution phases, where tasks can only access the bus/main memory during their memory
phases. This makes bus and memory access patterns of tasks predictable by enabling a precise computation
of bus/memory contention.

In this work, we show how the bus contention can be computed for the 3-phase task model considering
a round-robin-based arbitration policy at the memory bus. We differ from existing works that analyze the
time-division multiple access and first-come-first-serve-based bus arbitration policies. First, we present a
solution that models the bus contention that can be suffered/caused by tasks executing on the same/remote
cores of a multicore system under an RR-based bus arbitration scheme. Then, the impact of the resulting
bus contention on taskset schedulability is evaluated.

Experimental results show that our proposed RR-based bus contention analysis can improve taskset
schedulability by up to 100 percentage points when compared to a state-of-the-art TDMA-based analysis,
and up to 40 percentage points when compared to the state-of-the-art FCFS-based bus contention analysis.

Keywords: Real-Time Systems, Multicore Processors, Partitioned Scheduling, Phased Execution Model,
Bus Contention, Schedulability Analysis

1. Introduction

Multicore processors were introduced to overcome the limitations of single-core processors, e.g., comput-
ing power, energy efficiency, and heat dissipation. Most modern systems (e.g., mobile phones, computers,
digital cameras, etc.) use Commercial-Off-The-Shelf (COTS) multicore processors to take benefit of the
above-mentioned features. However, the adoption of COTS multicore processors in systems that run appli-
cations with stringent timing requirements is still a work-in-progress. The main reason behind this is the
non-deterministic behavior of COTS multicore processors. This non-determinism exists due to the sharing
of different hardware resources among the different tasks. A typical example of a hardware component that

∗Corresponding author
Email addresses: jatin@isep.com (Jatin Arora), crrm@isep.com (Cláudio Maia), syara@isep.com (Syed Aftab Rashid),

g.r.r.j.p.nelissen@tue.nl (Geoffrey Nelissen), emt@isep.com (Eduardo Tovar)

Preprint submitted to Journal of LATEX Templates October 26, 2021

is shared in a COTS multicore processor is the system bus which is used to fetch task’s data/instructions
from the main memory.

Due to this sharing, when a task running on a given core requests access to the bus to fetch its
data/instructions from the main memory, it may suffer bus contention if the bus is already busy serv-
ing the requests of another task executing on some other core of the same multicore platform. It has been
shown by several works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] that the bus contention suffered by tasks executing
on a multicore platform can have a significant impact on the Worst-Case Execution Time (WCET) and the
Worst-Case Response Time (WCRT) of tasks.

The use of phased execution models [13, 14, 15] is one approach that addresses this problem. Under
a phased execution model, the execution of a task is divided into distinct memory and execution phases.
This ensures that tasks can issue memory requests only during their memory phase(s), which facilitates
the analysis of the bus contention that can be suffered by tasks. Under the umbrella of phased-execution
models, the 3-phase execution model has received much attention from industry and academia [14, 15, 8,
16, 10, 17, 18, 19, 12, 20, 21, 22, 23]. In the 3-phase task execution model, the execution of a task is divided
into three phases Acquisition (A-phase), Execution (E-phase), and Restitution (R-phase). When a task is
released, it first executes the A-phase to fetch all its data/instructions from the main memory to the core’s
local memory via the system bus. It then executes the E-phase using the data/instructions already available
in the core’s local memory without generating any bus/memory requests. Finally, in the R-phase the task
write-back the modified data to the main memory using the system bus. Thus, the A- and R-phase are
memory phases, i.e., time intervals in which accesses to bus/main memory are allowed, and the E-phase is
a computation phase, i.e., no bus/memory access occurs in this phase. As the memory accesses can only
happen during the memory phases, the complexity of analyzing the WCET/WCRT of applications running
on COTS multicore processors can be reduced by using the 3-phase task model. However, tasks can still
suffer bus contention. For instance, a memory phase of a given task τi executing on one core of a multicore
platform can be delayed due to the bus contention caused by the memory phases of tasks executing on other
cores of the same multicore platform.

Few existing works [10, 8, 12] have focused on analyzing the bus contention that can be suffered by tasks
executed using the 3-phase execution model. Maia et al. [10] have presented a bus contention aware WCRT
analysis for the 3-phase tasks scheduled using global fixed-priority non-preemptive scheduling. Schranzhofer
et al. [8] have proposed a bus contention aware WCRT analysis for partitioned fixed-priority non-preemptive
scheduling assuming a Time-Division Multiple Access (TDMA) based bus arbiter. Similarly, Arora et al. [12]
have presented a schedulability analysis for the 3-phase tasks that are scheduled using partitioned fixed-
priority non-preemptive scheduling and the bus arbitration policy is assumed to be First-Come-First-Serve
(FCFS). The arbitration policy considered at the bus can have a strong impact on the bus contention that
can be suffered by the tasks. The TDMA [8] based bus contention analysis can be pessimistic due to the
non-work-conserving nature of TDMA bus arbitration and hence it may not fully utilize the benefits of
the 3-phase execution model. Similarly, FCFS-based bus contention analysis [12] can also be pessimistic
as it does not uniformly allocate the bus among all the cores. On the contrary, a fairer work-conserving
bus arbitration policy like Round-Robin (RR) can uniformly distribute the bus among cores, resulting in
reducing the bus contention that can be suffered by the tasks.

Furthermore, most existing works in the state-of-the-art [12] that focus on bounding bus contention
considering partitioned fixed-priority non-preemptive scheduling of 3-phase tasks may underestimate the
blocking that can be caused by the lower-priority tasks running on the same core. This is mainly because
most of these works assume that under partitioned fixed-priority non-preemptive scheduling, any task τi will
always suffer blocking from a lower priority task with the largest WCET. This assumption is valid only for
single-core systems since on a multicore system a task with the largest execution time may not always suffer
the maximum bus contention. In this work, we address these issues by making the following contributions:

1. We present an approach to bound the maximum bus contention that can be suffered by 3-phase tasks
executing on multicore architectures that use partitioned fixed-priority scheduling and Round-Robin
(RR) bus arbitration policy.

2. We show that when computing the WCRT of a task τi under the 3-phase execution model scheduled

2

using partitioned fixed-priority non-preemptive scheduling on a multicore system, each task τj having
a lower priority than τi can block the execution of τi and each τj may contribute differently to the
total bus contention. Therefore, we propose an algorithm to accurately quantify the contribution of
every lower priority task τj in order to maximize the delay that can be suffered by a task τi during
its response time interval. We then integrate the resulting bounds on the bus contention and blocking
from lower-priority tasks into the schedulability analysis of partitioned fixed-priority non-preemptive
systems.

3. We perform an extensive experimental evaluation under different settings to show the effectiveness of
the proposed analysis in comparison to the state-of-the-art analysis presented in [8, 12]. Experimental
results show that our proposed RR-based bus contention analysis improves taskset schedulability by
up to 100 percentage points than the TDMA-based analysis [8] and up to 40 percentage points than
the FCFS-based bus contention analysis [12].

2. System Model

We assume a multicore platform that is composed of m identical cores (π1, π2, . . . , πm). Each core has
a local memory (e.g., scratchpad or local cache) that is sufficiently large to store the data/code required
by the task with the largest memory footprint running on that core. This is to ensure that tasks suffer
no self-evictions, i.e., all memory blocks used by a task during its execution fit in the core’s local memory,
without overlap. It is assumed that the system bus is shared among all the cores and connects all the cores to
the main memory (e.g. DRAM). Similar to existing works [8, 5, 6, 7, 10, 9, 12], we assume a single-channel
system bus, i.e., the system bus can only handle one memory request at a time. As the proposed work
mainly focus on the main memory accesses, we assume that a shared cache is not present in the system or
disabled if present.

2.1. Task Model and Useful Notations

We consider a task set Γ comprising n sporadic tasks from which a subset Γ′ is assigned to each core
according to the given task-to-core mapping strategy. Each task τi is characterized by a triplet (Ci, Ti,
Di) where Ci is the total Worst-Case Execution Time (WCET) of τi in isolation, Ti is its minimum inter-
arrival time, and Di is its relative deadline. We assume that tasks are partitioned among cores at design
time and are scheduled using a partitioned fixed task priority algorithm such as rate monotonic or deadline
monotonic [24]. Additionally, we do not make any assumption on unique task priorities1.

Each task τi is executed as per the 3-phase task model, i.e., the execution of each task is divided into
Acquisition (A), Execution (E), and Restitution (R) phases. The WCET of A, E and R-phases of task
τi when it executes in isolation is given by CA

i , CE
i , CR

i , respectively, and the total WCET of task τi in
isolation is given by Ci = CA

i + CE
i + CR

i . We assume that tasks have constrained deadlines, i.e., Di ≤ Ti,
and are independent, i.e., tasks do not share data among themselves. Each task τi has a utilization Ui =

Ci

Ti

and the utilization of taskset Γ
′

l assigned to core πl is given by
∑

τi∈Γ′

l
Ui. The total utilization of taskset Γ

is given by
∑

τi∈Γ Ui. Similarly, the bus utilization of task τi is given by
CA

i +CR
i

Ti
and the total bus utilization

of taskset Γ is given by
∑

τi∈Γ
CA

i +CR
i

Ti
. The response time of the kth job of task τi executing on a given

core πl is denoted by Ri,k,l and the Worst-Case Response Time (WCRT) of task τi, denoted by Rmax
i,l , is

given by maximizing Ri,k,l over all jobs of τi. The taskset Γ is deemed unschedulable if the utilization of a

task set Γ
′

l assigned to a core πl is greater than 1. Similarly, the taskset is also deemed unschedulable if the
total bus utilization is greater than 1 since the system bus saturates and the communication delay with the
memory cannot be bounded anymore.

For notational convenience, we define the following set of tasks: hepi,l denote the set of tasks with higher
or equal priority than τi (including τi) assigned to core πl and hpi,l (resp. lpi,l) denote the set of tasks with
higher (resp. lower) priority than τi assigned to core πl.

1It implies that multiple tasks running on a given core can have same priority.

3

2.2. System Bus Model

We assume a single-channel system bus that can handle only one request at a time. A memory phase is
composed of one or multiple memory requests. A memory request is said to be initiated when the requesting
memory phase gains access to the bus and starts executing. A memory request is said to be completed when
the system bus completes the required read/write operation from the main memory. The system bus handles
each memory request non-preemptively and remains busy while handling a request. Similarly to the existing
works [8, 5, 25, 26, 27], we assume that each memory request will be served in MT time units, i.e., the
maximum time required to perform a single read/write operation from/to the main memory. The maximum
number of memory requests that can be issued during the A-phase (resp. R-phase) of a task τi when it
executes in isolation is given by MRA

i (resp. MRR
i). We assume that the values of MRA

i , MRR
i and MT

can be derived using any static WCET analysis tools or by using any measurement-based techniques [28].
We assume that the bus arbitration policy is Round-Robin (RR). In the RR bus arbitration policy, a

core can access the bus only during the bus access slot assigned to that core. In this paper, we use the term
bus slot or slot to refer to the bus access slot. The bus slot for a given core is said to be active only when
that core starts performing memory requests during its assigned bus slot. The maximum number of memory
requests that a core can perform during its assigned bus slot depends on the slot size SS. We assume that
SS is an integer multiple of MT such that at least one memory request can be performed during a single
bus access slot. It is assumed that the value of SS is the same for each core. Due to the work-conserving
nature of the RR bus arbitration policy, if a core does not have any pending memory requests, it will not
use its assigned slot and the system can then grant the slot to the next core waiting for the bus.

2.3. Execution Model

In the 3-phase task model, when a task is released, it first executes the A-phase by fetching all its
data/instructions from the main memory to the core’s local memory via the system bus. It then executes
the E-phase using the data/instructions already available in the core’s local memory without generating any
bus/memory request. Finally, in the R-phase, the task write-back the modified data to the main memory
using the system bus. This categorizes the A- and R-phase into memory phases, i.e., time intervals in which
accesses to bus/main memory are allowed, and the E-phase into a computation phase, i.e., no bus/memory
access can be generated in this phase. Each task executes non-preemptively, i.e., once a task starts executing
its A-phase, it cannot be preempted by any other task running on the same core until the completion of its
R-phase. A memory phase can only request access to the bus when it is ready to execute. For instance,
the A-phase of a task τi is ready to execute when task τi is released whereas its R-phase becomes ready
to execute after the completion of its E-phase. The task is said to be completed when the execution of its
R-phase terminates.

Whenever a task is ready to execute on a given core, the core requests access to the system bus in order
to execute the A-phase of the ready task. If the bus is free, the slot assigned to the core become active
immediately and the A-phase starts executing. However, if the bus is busy serving the memory requests of
co-running tasks, the requesting core has to wait for its turn i.e., for the completion of bus slots assigned to
the other cores. Once the slot for the core becomes active, the core starts executing the A-phase. If all the
memory requests of an A-phase cannot be served in one bus slot, the core waits for its next active slot to
execute the pending memory requests of the same A-phase. Once the A-phase is completed, the core releases
the bus, even if there is time available in the bus slot, in order to execute the E-phase of the same task.
Once the task completes the execution of its E-phase, the core waits for its slot to execute the R-phase of
the same task. Once the R-phase is completed, the core releases the bus even if the slot is not fully utilized
by the core.

3. Background and Problem Formulation

In this section, we introduce a number of key concepts and summarize an existing schedulability analysis
for the 3-phase task model when using partitioned fixed-priority non-preemptive scheduling. Later, we use
this analysis to build our proposed analysis.

4

It is proved in [29] that for a task τi executing on a single-core platform under Fixed-Priority Non-
Preemptive (FPNP) scheduling, the WCRT is observed in the longest level-i busy window. The level-i busy
window w.r.t a task τi is defined as follows.

Definition 3.1. [Level-i busy window (from [30])] A level-i busy window is a time interval (a, b) in which
the pending workload of tasks with priorities higher or equal to that of task τi is positive for all t ∈ (a, b)
and 0 at the boundaries a and b.

Let Wi be the length of the level-i busy window that can be computed by first bounding the

• Maximum workload that can be generated by all jobs released by all tasks in hepi (including task τi)
during the level-i busy window, and

• Maximum blocking that can be caused by one job of a task in lpi, that may start its execution before
the arrival of τi.

Consequently, the length of the longest level-i busy window Wi is given by the first positive fixed-point
solution to the following iterative equation.

Wi = Cmax
lpi

+
∑

τh∈hepi

(η+h (Wi)× Ch) (1)

where Cmax
lpi

is the maximum blocking that can be caused by one job of a lower-priority task in lpi, i.e.,

Cmax
lpi

= max
∀τj∈lpi

{Cj}. The term η+h (Wi) is the upper event arrival function [1] that captures the maximum

number of jobs released by a task τh in any time interval of length Wi. Consequently, the maximum workload
that can be generated by all tasks in hepi in any time interval of lengthWi is given by

∑

τh∈hepi
(η+h (Wi)×Ch);

where Ch is the WCET of a task τh ∈ hepi computed in isolation.
Unlike single-core processors, where only one task can execute at a time, multicore processors allow par-

allel task executions on different cores. These concurrently executing tasks may suffer additional execution
delays due to the bus contention as they use the same shared system bus to fetch data/code from the main
memory. Therefore, for a task τi executing on a multicore platform, the length of the longest level-i busy
window does not only depend on the workload generated by the tasks that execute on the same core as τi,
but, also on the bus contention that can be suffered by all the jobs running on the core under analysis during
the busy window. To address this issue, the work in [12] proposed a bus-contention aware schedulability
analysis for the 3-phase task model considering partitioned fixed-priority non-preemptive scheduling.

Under the analysis presented in [12], the length of the longest level-i busy window w.r.t a task τi executing
on a core πl of multicore platform is given by Wi,l, where

Wi,l = Cmax
lpi,l

+Busmax
i,l (Wi,l) +

∑

τh∈hepi,l

(η+h (Wi,l)× Ch) (2)

where
∑

τh∈hepi,l
(η+h (Wi,l) × Ch) is the maximum workload that can be generated by all tasks in hepi,l

(including τi) in any time interval of length Wi,l. Similarly, the term Cmax
lpi,l

captures the maximum blocking
that can be caused by one job of a task in lpi,l at the start of level-i busy window Wi,l on core πl. The
analysis in [12] computes both

∑

τh∈hepi,l
(η+h (Wi,l)× Ch) and Cmax

lpi,l
in a similar manner as in Equation 1.

In Equation 2, Busmax
i,l (Wi,l) denotes the total bus contention that can be suffered by the tasks executing

on the local core πl (i.e., core on which task under analysis is running) during Wi,l, from all other tasks that
may execute on all other remote cores (i.e., all cores except the local core) during Wi,l. The bus contention
analysis in [12] computes the value of Busmax

i,l (Wi,l) by considering the maximum number of memory phases
that can be executed on the local/remote cores during Wi,l. It then uses the number of memory phases of
local/remote cores to identify different possible execution scenarios, i.e., denoted as “cases” in [12], and the
resulting bus contention for each case. The total bus contention is then computed by assuming a first-come
first-serve (FCFS) bus arbitration policy (see Section 4.2 and 4.3 of [12] for details).

5

Having determined the length of the longest level-i busy window Wi,l using Equation 2, the maximum
number of jobs of task τi that can execute during Wi,l are computed as follows [12]

Ki = η+i (Wi,l) (3)

The WCRT of a task τi executing on core πl is then computed by first computing the response time of
each job of task τi that executes on core πl during Wi,l.

For the 3-phase tasks scheduled using non-preemptive scheduling, the response time of the kth job of a
task τi on core πl, i.e., τi,k,l, is computed by first evaluating the latest start time of the R-phase of τi,k,l.

The latest start time of the R-phase of τi,k,l is denoted by sRi,k,l and is given by the first positive solution
to the fixed-point iteration on the following equation:

sRi,k,l = Cmax
lpi,l

+
∑

τh∈hepi,l\τi

η+h (s
R
i,k,l − (CA

i + CE
i))× Ch +Busmax

i,l (sRi,k,l) + ((k − 1)× Ci) + (CA
i + CE

i)

(4)
where Cmax

lpi,l
is the same as in Equation 2.

Due to the non-preemptive execution of tasks, a task τh ∈ hepi,l can only impact τi,k,l until the start
of the A-phase of τi,k,l. Thus, the term η+h (s

R
i,k,l − (CA

i + CE
i)) × Ch captures the maximum workload

generated by a task τh ∈ hepi,l until the start of the A-phase of τi,k,l. Effectively, the maximum workload
generated by all the tasks in hepi,l (excluding τi) until the start of the A-phase of τi,k,l is captured using
∑

τh∈hepi,l\τi
η+h (s

R
i,k,l − (CA

i + CE
i)) × Ch. The term (k − 1) × Ci represents the contribution of previous

jobs of task τi that can delay the start time of the R-phase of τi,k,l. The term (CA
i + CE

i) accounts for the
WCET of the A-phase and the E-phase of τi while computing the starting time of R-phase of τi,k,l. The
total bus contention that can be suffered by core πl from all remote cores during any time interval of length
sRi,k,l is computed by Busmax

i,l (sRi,k,l).

Using sRi,k,l, the response time Ri,k,l of τi,k,l can finally be computed as:

Ri,k,l = sRi,k,l + CR
i (5)

The WCRT of task τi is then given by the largest response time of any job of τi that executes during
the level-i busy window Wi,l. Hence,

Rmax
i,l = max

k∈[1,Ki]
{Ri,k,l} (6)

where Ki is computed using Equation 3. Readers are referred to [12] for details on the formulation and
proofs of Equation 2-6.

3.1. Problem Formulation

The bus contention analysis presented in [12] assumes that the bus arbitration policy is FCFS. Hence, a
memory phase that executes on the local core can be served only after the completion of the memory phases
of the tasks executing on all the remote cores. This assumption is clearly very pessimistic as we show using
the example scenario depicted in Figure 1. Figure 1a shows the execution of two tasks on the local core
πl, i.e., τh and task τi, along with different job releases on a remote core πr during the same time interval.
We can clearly see that memory phases of the tasks running on the local core are smaller, i.e., they issue
a smaller number of memory requests. On the contrary, the memory phases of the tasks running on the
remote core are larger, i.e., they issues a larger number of memory requests. Under FCFS, in the worst-case,
a memory phase running on the local core has to wait for the completion of all the memory requests made
by the memory phases running on the remote core. Consequently, we see in Figure 1a that task executing
on the local core πl suffer larger bus contention under FCFS bus arbitration scheme.

On the other hand, RR bus arbitration makes use of bus slots in which a core can use the bus only during
its assigned slot. Thus, the bus contention that can be suffered/caused by the memory phases running on
the local/remote core depends on the number of memory requests that can be performed during those bus
slots. As shown in Figure 1b, the slot size is set such that each core can execute at most one memory request

6

(a) Example Scenario for FCFS Analysis of [12] (b) Example Scenario for RR bus arbitration

Figure 1: WCRT of tasks under FCFS (a) and RR Bus Arbitration Policy (b)

(a) Example Scenario for TDMA Analysis of [8] (b) Example Scenario for RR bus arbitration

Figure 2: WCRT of tasks under TDMA (a) and RR Bus Arbitration Policy (b)

during its bus slot. Consequently, we can see in the Figure 1b that the same tasks running on the local core,
i.e., τh and τi, suffer lesser bus contention under the RR-based bus arbitration policy.

Similarly, few other works [8] that compute the bus contention for the 3-phase task model assuming
a TDMA-based bus arbitration scheme also overestimate the bus contention and therefore the WCRT of
tasks due to the non-work-conserving nature of the TDMA bus. We explain this overestimation using the
example scenario depicted in Figure 2. Figure 2a shows execution of two tasks, i.e., τh and task τi, on the
local core πl whereas no task is released on the remote core πr. Since TDMA is a non-work-conserving bus
arbitration policy, each core reserves their bus slots disregard of the memory requests issued by the tasks
running on that core. Consequently, the memory phases running on the local core suffer bus contention due
to the TDMA bus slots assigned to the remote core. If instead, an RR-based bus arbitration was used (as
shown in Figure 2b) task will not suffer the bus contention.

Simple example scenarios discussed above shows that the bus contention that can be suffered by tasks
executing on a multicore platform can be reduced by using a RR-bases bus arbitration scheme. In the
following sections, we will explain how to upper bound the bus contention of 3-phase tasks under the RR
bus arbitration scheme.

4. Bus Contention Analysis for RR-based Bus Arbitration Policy

To reduce the pessimism of the existing bus contention analyses for the 3-phase task model [8, 12], in this
section, we present a bus contention analysis for the 3-phase task model considering a Round-Robin-based
bus arbitration policy.

When computing the maximum bus contention that can be suffered by tasks under a RR-based bus
arbitration policy, we assume that task τi is the task under analysis, executing on some core πl (referred to
as the local core in this work) of a multicore platform. Our goal is to bound the maximum bus contention
that can be suffered by all jobs released by all tasks in hepi,l (including τi) on core πl, in a level-i busy
window Wi,l. For now, we only consider the bus contention that can be caused due to tasks executing on

7

one remote core, (denoted as πr). We later generalize our analysis to account for the bus contention that
can be caused by multiple cores.

Under an RR-based bus arbitration policy, tasks executing on the local core πl can suffer bus contention
when they have to wait for the completion of bus access slots assigned to all other remote cores. In the
worst-case, the bus access slot(s) required by the tasks executing on the local core πl may become active after
the completion of the bus access slot(s) utilized by a remote core πr. This means that the bus contention
that can be suffered by tasks executing on the local core πl not only depends on the number of bus slots
required by the tasks executing on the local core but also on the number of bus access slots required by the
tasks executing on the remote core πr. Building on this insight, we propose a two-step solution to bound the
maximum bus contention that can be suffered by tasks executing on the local core πl due to other co-running
tasks on a remote core πr, within a time interval of length Wi,l. The two-steps are explained as follows:

• Step 1: Bound the maximum number of bus slots required by the tasks executing on the local core
πl and remote core πr within Wi,l. This step is discussed in detail in Section 4.1.

• Step 2: Compute the maximum bus contention that can be suffered by the tasks executing on the
local core πl from a remote core πr during Wi,l. This step is discussed in detail in Section 4.2.

4.1. Step 1: Bounding the Maximum Number of Bus Slots required by the Local/Remote Core

As we discussed previously, under the RR-based bus arbitration policy, the bus contention that can be
suffered by tasks executing on the local core πl due to the execution of tasks on a remote core πr depends
on the number of bus slots required by the local and remote core. Therefore, we first bound the maximum
number of bus slots required by the local core πl and remote core πr in any time window of length Wi,l

using the following two lemmas.

Lemma 1. The maximum number of bus slots required by the tasks running on the local core πl in any time
interval of length Wi,l is upper-bounded by βπl

(Wi,l), where

βπl
(Wi,l) =

(

∑

τh∈hepi,l

η+h (Wi,l)×

(

⌈

MRA
h ×MT

SS

⌉

+

⌈

MRR
h ×MT

SS

⌉

))

+

(⌈

MRA
j ×MT

SS

⌉

+

⌈

MRR
j ×MT

SS

⌉)

(7)
In Equation 7, MRA

h (resp. MRR
h) is the maximum number of memory requests issued during the A-phase

(resp. R-phase) of a task τh ∈ hepi,l. Similarly, MRA
j (resp. MRR

j) is the maximum number of memory
requests issued during the A-phase (resp. R-phase) of a task τj ∈ lpi,l.

Proof. By definition, the maximum number of memory requests that can be generated by a task τh ∈ hepi,l
during its A- and R-phase is upper bounded by MRA

h and MRR
h , respectively. Also, we know that the

maximum time needed to perform one memory request is given by MT . Consequently, the term MRA
h ×MT

(resp. MRR
h ×MT) gives the maximum time needed to complete the A-phase (resp. the R-phase) of task τh

on core πl. Knowing that under the RR-based bus arbitration policy, a core can access the bus only during
its assigned bus slot for at most SS time units. Therefore, one job of task τh ∈ hepi,l that execute on core

πl during Wi,l will use
⌈

MRA
h ×MT

SS

⌉

+
⌈

MRR
h ×MT

SS

⌉

bus slots and all the jobs of τh that execute during Wi,l,

i.e., upper bounded by η+h (Wi,l), will require η+h (Wi,l) ×
(⌈

MRA
h ×MT

SS

⌉

+
⌈

MRR
h ×MT

SS

⌉)

bus slots. Hence,
∑

τh∈hepi,l
η+h (Wi,l)×

(⌈

MRA
h ×MT

SS

⌉

+
⌈

MRR
h ×MT

SS

⌉)

bounds the maximum number of bus slots required by

all the tasks in hepi,l during Wi,l.
Finally, we know that due to non-preemptive scheduling, if task τi is not the lowest priority task executing

on core πl, it can suffer blocking from one job of a lower priority task, e.g., τj ∈ lpi,l. Since, that one blocking
job of τj will also require bus slots to complete its A- and R-phase, the maximum number of bus access slots

required by that job of task τj is given by

⌈

MRA
j ×MT

SS

⌉

+

⌈

MRR
j ×MT

SS

⌉

. For now, it can be assumed that the

task τj can be any task from lpi,l. Later in Section 5, we present an algorithm to correctly select a specific
task from lpi,l. The Lemma follows.

8

Lemma 2. The maximum number of bus slots required by the tasks running on a remote core πr in any
time interval of length Wi,l is upper-bounded by βπr

(Wi,l), where

βπr
(Wi,l) =

∑

τu∈Γ′

r

η+u (Wi,l)×
(

⌈

MRA
u ×MT

SS

⌉

+

⌈

MRR
u ×MT

SS

⌉

)

(8)

In Equation 8, the term MRA
u (resp. MRR

u) is the maximum number of memory requests issued during the
A-phase (resp. R-phase) of a task τu ∈ Γ′

r

Proof. The proof directly follows from Lemma 1. However, we need to account for the bus slots required by
all memory phases of all tasks released on a remote core πr in any time interval of length Wi,l.

4.2. Step 2: Bounding Maximum Bus Contention

Having bounded the maximum number of bus slots required by the tasks executing on the local core πl

and a remote core πr during Wi,l, we can now compute the maximum bus contention Busi,r(Wi,l) that can
be suffered by the tasks executing on the local core πl from co-running tasks on a remote core πr. Depending
on the values of βπl

(Wi,l) and βπr
(Wi,l), two cases must be considered.

• Case 1: βπl
(Wi,l) ≥ βπr

(Wi,l), i.e., the maximum number of bus slots required by tasks executing on
the local core πl during Wi,l is greater than or equal to the maximum number of bus slots required by
tasks executing on a remote core πr during Wi,l. This case is discussed in detail in Section 4.2.1.

• Case 2: βπl
(Wi,l) < βπr

(Wi,l), i.e., the maximum number of bus slots required by tasks executing on
the local core πl during Wi,l is less than the maximum number of bus slots required by tasks executing
on a remote core πr during Wi,l. This case is discussed in detail in Section 4.2.2.

4.2.1. Computing Maximum Bus Contention for Case 1

When the maximum number of bus slots required by the tasks executing on the local core πl is greater
than or equal to the maximum number of bus slots required by a remote core πr in any time interval of
length Wi,l, then, the maximum bus contention is computed using the following lemma.

Lemma 3. If βπl
(Wi,l) ≥ βπr

(Wi,l), then the maximum bus contention that can be suffered by tasks executing
on the local core πl from tasks running on a remote core πr in any time interval of length Wi,l is upper-
bounded by Busi,r(Wi,l), where

Busi,r(Wi,l) =
∑

τu∈Γ′

r

η+u (Wi,l)×
(

(MRA
u ×MT) + (MRR

u ×MT)
)

(9)

In Equation 9, the term MRA
u ×MT (resp. MRR

u ×MT) gives the maximum time required to serve all the
memory requests generated during an A-phase (resp. R-phase) of task τu executing on core πr.

Proof. In the worst-case, each bus slot required by the tasks executing on the local core πl can only be
active after the completion of one bus slot used by tasks executing on the remote core πr. We know that
the number of bus slots required by the remote core, i.e., βπr

(Wi,l), are less than or equal to βπl
(Wi,l).

This means that all the memory requests generated by all the tasks executing on core πr during Wi,l can
contribute to the bus contention suffered by tasks running on core πl.

Knowing that each task τu assigned to core πr can execute at most η+u (Wi,l) jobs during Wi,l, and the
time required to complete the A-phase (resp. R-phase) of one job of task τu is given by MRA

u ×MT (resp.
MRR

u ×MT), the total time required to complete the A- and R-phases of all jobs of all tasks that execute

on core πr during Wi,l is given by
∑

τu∈Γ′

r
η+u (Wi,l) ×

(

(MRA
u ×MT) + (MRR

u ×MT)
)

. Equation 9 also

upper bounds the maximum bus contention that can be suffered by the tasks executing on the local πl due
to the tasks released on a remote core πr during Wi,l, if βπl

(Wi,l) ≥ βπr
(Wi,l). The Lemma follows.

9

Figure 3: Example Scenario to Derive Maximum Bus Contention for Case 2

Note that it is also possible to directly compute the maximum bus contention for case 1 using the
maximum number of slots required by the tasks executing on the remote core πr during Wi,l (βπr

(Wi,l))
and the size of one bus slot (SS). Effectively, βπr

(Wi,l) × SS upper bounds the bus contention for case
1. Although, this bound is safe, it can be pessimistic as the remote core may not always fully utilize all
its βπr

(Wi,l) bus slots for SS time units as the utilization of a bus slot depends on the number of memory
requests performed during that bus slot. Therefore, Equation 9 which is built considering the size of memory
phases of tasks, provides a tighter bound on the bus contention that can be caused by a remote core πr

during a time window of length Wi,l.

4.2.2. Computing Maximum Bus Contention for Case 2

For any given time interval of length Wi,l, if the maximum number of bus slots required by the tasks
executing on the local core πl is less than the maximum number of bus slots required by tasks executing on
a remote core πr, then, all bus slots used by the remote core can not contribute to the bus contention. This
is mainly because each bus slot required by the local core πl can only suffer bus contention from at most one
slot used by the remote core πr. Hence, βπl

(Wi,l) slots requested by the local core can be served after the
execution of at most βπl

(Wi,l) bus slots used by the remote core. Consequently, when computing the bus
contention that can be suffered by tasks executing on the local core πl due to co-running tasks executing on
core πr, we need to consider only βπl

(Wi,l) bus slots.
Knowing that at most βπl

(Wi,l) bus slots used by a remote core πr can cause bus contention to tasks
executing on core πl, we can upper bound the bus contention that can be caused by core πr to core πl during
Wi,l by simply multiplying βπl

(Wi,l) with the size of one bus slot, i.e.,

Busi,r(Wi,l) = βπl
(Wi,l)× SS (10)

Equation 10 assumes that each of βπl
(Wi,l) bus slots from the remote core πr that can contribute to the

blocking of core πl will be fully utilized, i.e., up to SS time units, by tasks that execute on πr during Wi,l.
This assumption is safe but can be pessimistic as we explain using the below example.

Example 1: Figure 3 shows a schedule of tasks executing on the local core πl and the remote core πr,
along with the utilization of bus slots by the cores. We can see in the figure that the maximum number of bus
slots required by the tasks running on the local core πl during Wi,l is seven, i.e., βπl

(Wi,l) = 7. Moreover, the
maximum number of bus slots required by the tasks running on the remote core πr during Wi,l is eight, i.e.,
βπr

(Wi,l) = 8. Since βπl
(Wi,l) < βπr

(Wi,l), the local core can suffer bus contention from at most βπl
(Wi,l)

bus slots from the remote core in this example. While an upper bound on the total bus contention can be
computed using Equation 10, by looking closely at the utilization of the bus slots in Figure 3, we can see that
this bound can be very pessimistic. This is mainly because for the scenario shown in Figure 3, the active
time, i.e., the time in which memory requests are performed during a bus slot, of some of the bus slots used

10

by the remote core πr is much less than the size of the bus slot, i.e., SS. Hence, assuming that each bus slot
of the local core suffers a delay of SS from the remote core can be very pessimistic.

The above example shows that for βπl
(Wi,l) < βπr

(Wi,l) a tighter bound on the bus contention can only
be obtained by considering the active time of each bus slot accessed by the tasks executing on πr during
Wi,l. Consequently, the following Lemmas are used to incorporate the active time of each bus slot used by
the A- and R-phases of all the tasks running on the remote core πr in a time window of length Wi,l.

Lemma 4. If n represents the number of bus slots required to complete the execution of an A-phase of a
task τu executing on a remote core πr during Wi,l, then the active time of each bus slot in the range 1 to
n− 1, used by the A-phase of task τu is given by σA

u,r,y, where

σA
u,r,y = SS ∀y ∈ [1, n− 1] (11)

In Equation 11, u represents the task index, r the core index, and y is used to represent the bus slot index,
i.e., yth bus slot such that y ∈ [1, n− 1].

Proof. We prove that if a task τu executing on core πr requires n bus slots to complete an A-phase, then,
τu will fully utilize at least n− 1 bus slots for SS time units.

The A-phase of a task τu executing on core πr will only require n bus slots if it cannot complete its
execution within n − 1 bus slots. This means that for each bus slot, until the n − 1th bus slot, the time
required to serve the pending memory requests of the A-phase of task τu is always greater than SS. Hence,
it can only be the case that the nth bus slot used by the A-phase may or may not be fully utilized. The
Lemma follows.

Lemma 5. If n represents the number of bus slots required to complete the execution of an A-phase of a task
τu executing on a remote core πr during Wi,l, then the active time of the nth bus slot used by the A-phase
of task τu is given by σA

u,r,n, where

σA
u,r,n = (MRA

u ×MT)− ((n− 1)× SS) (12)

Proof. The maximum number of memory requests that can be issued during an A-phase of a task τu
executing on a core πr is upper bounded by MRA

u . Moreover, in the worst-case, each memory request can
be served in MT time units. Consequently, the total time required to complete an A-phase of task τu on
core πr is given by MRA

u ×MT .
From Lemma 4, if an A-phase of task τu needs n bus slots to complete its execution, then, it will fully

utilize at least n− 1 bus slots, and the maximum workload that can be done during n− 1 bus slots is given
by (n− 1)× SS. Consequently, the maximum time that can be used by the A-phase of task τu during the
nth bus slot, i.e., the active time of the nth bus slot, is given by (MRA

u ×MT)− ((n−1)×SS). The Lemma
follows.

Having computed the active time of bus slots used by the A-phases of tasks, we can use the same approach
to compute the active time of bus slots used during the R-phases of tasks.

Lemma 6. If n represents the number of bus slots required to complete the execution of an R-phase of a
task τu executing on a remote core πr during Wi,l, then the active time of each bus slot in the range 1 to
n− 1, used by the R-phase of task τu is given by σR

u,r,y, where

σR
u,r,y = SS ∀y ∈ [1, n− 1] (13)

Proof. The proof directly follows from Lemma 4 considering the bus slots required by the R-phase of task
τu.

Lemma 7. If n represents the number of bus slots required to complete the execution of an R-phase of a task
τu executing on a remote core πr during Wi,l, then the active time of the nth bus slot used by the R-phase
of task τu is given by σR

u,r,n, where

σR
u,r,n = (MRR

u ×MT)− ((n− 1)× SS) (14)

11

Proof. The proof directly follows from Lemma 5 considering the bus slots required by the R-phase of task
τu.

Having bounded the active time of each bus access slot used by all the memory phases of all the tasks
released on a remote core πr in any time interval of length Wi,l, we will now explain how to compute the
maximum bus contention for case 2, i.e., βπl

(Wi,l) < βπr
(Wi,l).

Let V be an ordered set that contains the active time of each bus slot utilized by all the memory phases
(i.e., both A- and R-phases) released on a remote core πr in any time interval of length Wi,l, sorted in
non-increasing order, i.e.,

V = {σr,1, σr,2, . . . σr,Q | σr,x ≥ σr,x+1} (15)

where σr,x denotes the active time of bus slot x used by any memory phase (i.e., A- or R-phase) of any task
that may execute on core πr during Wi,l. In Equation 15, the index Q is equal to the maximum number of
bus slots used by all the tasks that execute on πr during Wi,l, i.e., Q = βπr

(Wi,l).
Using the above defined notations, the maximum bus contention for case 2 can be derived using the

following lemma.

Lemma 8. If βπl
(Wi,l) < βπr

(Wi,l), then the maximum bus contention that can be suffered by tasks executing
on the local core πl from the tasks running on a remote core πr in any time interval of length Wi,l is upper-
bounded by Busi,r(Wi,l), where

Busi,r(Wi,l) =

x=βπl
(Wi,l)
∑

x=1

σr,x (16)

Proof. Since the tasks executing on the local core πl require βπl
(Wi,l) bus slots during Wi,l, at most βπl

(Wi,l)
bus slots utilized by the tasks executing on the remote core πr can cause bus contention. However, as we
cannot predict the schedule of tasks on the remote core, we do not know which memory phases of which
tasks may use these bus slots. Therefore, to maximize the bus contention, we choose βπl

(Wi,l) bus slots
with the largest active times among all the bus slots used by the tasks released on the remote core πr in
any time interval of length Wi,l. This is achieved by extracting the first βπl

(Wi,l) values from set V , that
contains the active times of all bus slots utilized on core πr during Wi,l (see Equation 15).

Having bounded the maximum bus contention Busi,r(Wi,l) that can be suffered by the local core πl from
a remote core πr in any time interval of length Wi,l, we can now compute the total bus contention that can
be suffered by tasks executing on core πl due to tasks running on all other cores. Knowing that under a
RR-based bus arbitration policy, the worst-case scenario may happen when a bus slot required by a given
task executing on the local core is served after the completion of one bus slot from each of the remotes cores.

Therefore, under the RR-based bus arbitration policy, the total bus contention that can be suffered by
the local core πl from all remote cores in any time interval of length Wi,l is given by Busmax

i,l (Wi,l), where

Busmax
i,l (Wi,l) =

m
∑

r=1,r 6=l

Busi,r(Wi,l) (17)

5. Accurately Estimating the Impact of Lower Priority Blocking

Under FPNP scheduling, the execution of a task τi can be blocked due to the execution of a lower priority
task, e.g., task τj in lpi,l, that contributes to the length of level-i busy window. The blocking that τj can
cause during the level-i busy window is usually upper bounded by choosing τj such that it has the maximum
execution time among all the tasks in lpi,l, i.e., Cmax

lpi,l
= max

∀τj∈lpi,l

{Cj}. While this assumption is sound

when considering a single-core platform, it may lead to unsafe results for multicore architectures. This is
mainly because when τj , the task that blocks the execution of τi, is executing on a single-core processor the
system bus and all other resources are dedicated to τj only. So, in the worst-case τj executes for its entire
WCET at the beginning of the level-i busy window. However, on a multicore processor, task τj can suffer

12

Figure 4: Scenario 1 when task τj ∈ lpi,l cause blocking to task τi during Wi,l

Figure 5: Scenario 2 when task τz ∈ lpi,l cause blocking to task τi during Wi,l

execution delays in addition to its WCET due to the bus contention it may suffer during its execution. This
bus contention does not entirely depends on the WCET time of τj but also on its memory access demand,
i.e., the total number of memory requests that can be generated by τj ’s memory phases. For instance, we
can have a scenario where another task τz ∈ lpi,l with τz 6= τj , having a smaller WCET than τj but a
higher memory access demand, may suffer higher bus contention than τj . This will eventually result in τz
contributing more to the blocking of τi than τj . To illustrate, consider the two scenarios shown in Figure 4
and Figure 5.

Scenario 1, depicted in Figure 4, shows that a task τj ∈ lpi,l is blocking the execution of tasks in hepi,l
on core πl at the start of the level-i busy window. τj has the largest WCET among all tasks in lpi,l but it
has smaller A- and R-phases. We can see in Figure 4, that task τj require two bus slots to complete its A-
and R-phase. Similarly, all other tasks in hepi,l executing on core πl require four bus slots to complete their
memory phases. Eventually, in scenario 1, the maximum number of bus slots required to complete memory
phases of all tasks that execute on core πl during Wi,l is equal to 6, i.e., βπl

(Wi,l) = 6.
Figure 5, depicts another scenario, where a task τz ∈ lpi,l, with τz 6= τj , is causing blocking at the start

of level-i busy window on core πl. τz has a smaller overall WCET than τj but it has larger A- and R-phases.
Consequently, τz needs four bus slots to complete its A- and R-phases. All other tasks in hepi,l executing on
core πl are the same as in Figure 4 and require four bus slots to complete their memory phases. Eventually,
for the execution scenario shown in Figure 5, the maximum number of bus slots required to complete the
memory phases of all tasks that execute on core πl during Wi,l is equal to 8, i.e., βπl

(Wi,l) = 8. As shown
previously, the bus contention that can be suffered by tasks executing on πl during Wi,l depends on the value
of βπl

(Wi,l) and a larger value of βπl
(Wi,l) may lead to more bus contention. Therefore, when analyzing

multicore systems, the scenario depicted in Figure 5 may lead to a higher bus contention and eventually a
larger level-i busy window than the scenario depicted in Figure 4.

To the best of our knowledge, the only existing work in the state-of-the-art that accurately accounts for
the lower priority blocking when computing bus contention is presented in [31] (See Equation 11 of [31]).
However, the solution provided in [31] is developed considering the generic task model and therefore, can
not be used when considering the 3-phase task model.

To accurately quantify the impact of blocking from a given task in lpi,l, on tasks that execute on core πl

13

during Wi,l, we have to evaluate the impact of bus contention on each task in lpi,l and the resulting length
of the level-i busy window. We will then select the task from lpi,l that maximizes the Wi,l as the blocking
task. We use Algorithm 1 to evaluate how each task in lpi,l can impact bus contention and also the length
of level-i busy window.

Algorithm 1 Computing the maximum delay suffered by the local core πl during Wi,l due to total bus
contention and blocking from tasks in lpi,l

1: αmax
i,l (Wi,l) := 0

2: for ∀τj ∈ lpi,l do
3: Compute βπl

(Wi,l) using Lemma 1 assuming τj will cause blocking to task τi on core πl.
4: Compute βπr

(Wi,l) using Lemma 2.
5: Compute Busi,r(Wi,l) using Lemma 3 up to Lemma 8.
6: Compute the total bus contention Busmax

i,l (Wi,l) using Equation 17.
7: αi,l(Wi,l) := Busmax

i,l (Wi,l) + Cj

8: if αi,l(Wi,l) > αmax
i,l (Wi,l) then

9: αmax
i,l (Wi,l) := αi,l(Wi,l)

10: end if

11: end for

Algorithm 1 computes the maximum delay that can be suffered by the local core πl during Wi,l due
to the total bus contention caused by all the remote cores and blocking caused by one job from any task
τj ∈ lpi,l. Since we need to consider all tasks in lpi,l, Algorithm 1 iterates over all tasks in lpi,l (lines 2 to
10). For every task τj ∈ lpi,l, it first computes the maximum number of slots required by all the tasks that
execute on the local core πl during Wi,l, i.e., βπl

(Wi,l), using Lemma 1 (line 3). The maximum number
of bus slots required by all the tasks released on a remote core πr in any time interval of length Wi,l, i.e.,
βπr

(Wi,l), are computed using Lemma 2 (line 4).
Values of βπl

(Wi,l) and βπr
(Wi,l) derived in lines 3 and 4 are then used as input to Lemma 3 up to

Lemma 8, to compute the maximum bus contention that can be caused by a remote core πr to the tasks
running on the local core πl during Wi,l, i.e., Busi,r(Wi,l). The total bus contention that can be suffered by
the local core πl from all remote cores during Wi,l, i.e., Busmax

i,l (Wi,l), is then computed using Equation 17
(line 6). Line 7 computes αi,l(Wi,l), i.e., the total delay that can be suffered by the local core πl during
Wi,l due to the total bus contention caused by all the remote cores, i.e., Busmax

i,l (Wi,l) plus the blocking
caused by one job of task τj . Lines 8 to 10 compare the derived values of αi,l(Wi,l) for each τj ∈ lpi,l to find
αmax
i,l (Wi,l) which is the maximum delay that can be suffered by the local core πl during Wi,l.

6. Schedulability Analysis

In this section, we derive the schedulability analysis for the 3-phase task model while using partitioned
fixed-priority scheduling, by integrating the bus contention computed in Section 4.2 and 5. Similarly to the
work in [12], we first compute the length of the longest level-i busy window Wi,l on the local core, i.e., πl.

The longest level-i busy window Wi,l for the local core πl w.r.t task τi is given by the first positive
fixed-point solution of the following equation:

Wi,l = αmax
i,l (Wi,l) +

∑

τh∈hepi,l

(η+h (Wi,l)× Ch) (18)

where η+h (Wi,l) gives the maximum number of jobs released by τh ∈ hepi,l in any time interval of length
Wi,l. Consequently, the term

∑

τh∈hepi,l
(η+h (Wi,l)×Ch) captures the contribution of all the jobs from hepi,l

task set in any time interval of length Wi,l
2. The term αmax

i,l (Wi,l) captures the maximum delay suffered

2Having accounted for the total bus contention that can be suffered by all tasks of local core during Wi,l, we can use the
value Ch to account for time required to execute task τh ∈ hepi,l.

14

by the local core πl in any time interval Wi,l due to the total bus contention caused by all the remote cores
and blocking caused by one job from lpi,l task set. αmax

i,l (Wi,l) is computed using Algorithm 1.
Having bounded the value of Wi,l, we can compute the maximum number of jobs of task τi that can

execute on core πl during Wi,l using Equation 3, i.e., Ki = η+i (Wi,l).
To compute the response time of the kth job of τi on core πl, i.e., τi,k,l, we compute the latest starting

time of the R-phase of τi,k,l using the following Lemma.

Lemma 9. The latest start time of the R-phase of τi,k,l is denoted by sRi,k,l, where sRi,k,l is given by the first
positive solution to the fixed-point iteration on the following equation:

sRi,k,l = αmax
i,l (sRi,k,l) + ((k − 1)× Ci) + (CA

i + CE
i) +

∑

τh∈hepi,l\τi

η+h (s
R
i,k,l − (CA

i + CE
i))× Ch (19)

Proof. As the latest starting time of the R-phase of τi,k,l is being computed, the sum of the execution time
of the A-phase and the E-phase of task τi needs to be considered, i.e., CA

i + CE
i .

The execution of τi,k,l can be impacted by all the jobs of task τi that execute before τi,k,l. Hence,
(k − 1)× Ci considers the maximum delay that can be caused by the k − 1 jobs of τi.

Due to the fixed-priority non-preemptive scheduling, all the jobs released by all the tasks in hepi,l
(excluding τi) can delay the execution of τi,k,l until the start of the A-phase of τi,k,l. This implies that the
maximum workload that can be generated by a task τh ∈ hepi,l until the start of the A-phase of τi,k,l is upper
bounded by η+h (s

R
i,k,l−(CA

i +CE
i))×Ch. Hence, the total workload that can be generated by all tasks in hepi,l

taskset until the start of the A-phase of τi,k,l is upper bounded by
∑

τh∈hepi,l\τi
η+h (s

R
i,k,l− (CA

i +CE
i))×Ch.

Due to the non-preemptive execution, one job of a task in lpi,l taskset can delay the execution of
τi,k,l. Furthermore, each job that executes on the local core πl until the completion of τi,k,l can suffer bus
contention. The term αmax

i,l (sRi,k,l) captures the maximum delay that can be suffered by core πl in any time

interval of length sRi,k,l due to the total bus contention, i.e., Busmax
i,l (sRi,k,l), and the blocking caused by a

task in lpi,l taskset
3. Hence, proving the lemma.

As sRi,k,l appears on both sides of Equation 19, it can be solved iteratively by initializing sRi,k,l = CA
i +

CE
i + Cmax

lpi,l
+
∑

τh∈hepi,l\τi
Ch. The starting time sRi,k,l will then be given by the smallest positive value of

sRi,k,l for which Equation 19 converges.

Having computed the value of sRi,k,l, the response time Ri,k,l of τi,k,l can be computed by adding the
execution time of the R-phase of τi, i.e.,

Ri,k,l = sRi,k,l + CR
i (20)

Finally, the WCRT of task τi is then given by the largest response time of any job of τi that executes during
the level-i busy window. Hence,

Rmax
i,l = max

k∈[1,Ki]
{Ri,k,l} (21)

where the computation of Ki is obtained using Equation 3.
A task τi is deemed schedulable if its WCRT Rmax

i,l is less than or equal to its relative deadline Di.
Similarly, a task set Γ is deemed schedulable if all tasks τi ∈ Γ are schedulable. Also, note that for a task
set to be schedulable, the total core utilization of each individual core should not be greater than 1 and the
total bus utilization of the taskset should be less than or equal to 1.

7. Experimental Evaluation

In this section, we evaluate the performance of our proposed analysis. To the best of our knowledge, no
work exists in the state-of-the-art that focuses on the bus contention analysis for the 3-phase task model,

3The value of αmax
i,l

(sR
i,k,l

) can be computed using Algorithm 1 by simply replacingWi,l with sR
i,k,l

in each line of Algorithm 1.

15

considering partitioned fixed priority non-preemptive scheduling and Round-Robin (RR) bus arbitration
policy. The most relevant works that present similar bus contention analyses as ours are [8] and [12]. The
work in [8] focus on the bus-contention analysis for various task execution models including the 3-phase
task model (referred to as the dedicated phase model in [8]). Their bus contention analysis is based on a
TDMA-based bus arbitration policy in which cores reserve their TDMA bus slots disregarding the number
of memory requests issued by the tasks running on the cores. The work in [12] provides a fine-grained bus
contention analysis for the 3-phase task model assuming a FCFS (First-Come First-Serve) bus arbitration
scheme.

To compare our proposed approach against the analyses in [8] and [12], we performed several experi-
ments using synthetic task sets under different settings. As a default configuration, we assume a multicore
architecture with 4 cores. The total number of tasks per task set are 32, where each core is assigned 8 tasks
at design time. Tasks utilizations are generated using Uunifast-discard [32]. Tasks’ periods are generated
using log-uniform distribution in the range of [100,500]. We assume that the slot size SS is same for each
core and its value is set such that SS = 2×MT .

The WCET Ci of each task τi is set using its utilization and period, i.e., Ci = Ui × Ti. The memory
access demand MDi of task τi, i.e., the maximum time required by τi to complete its A and R-phase when
executing in isolation, is chosen randomly in the range [10%, 50%]× Ci. The value of CA

i , CR
i and CE

i are
then set such that CA

i = CR
i = (MDi/2) and CE

i = Ci − (CA
i + CR

i). Furthermore, we assume that the
maximum time required to serve all the memory requests issued during the A-phase (resp. R-phase) of a
task τi executing on core πl is given by MRA

i ×MT = CA
i (resp. MRR

i ×MT = CR
i). Task deadlines are

implicit (i.e., Di = Ti) with priorities assigned using Rate-Monotonic [24].
We compared the performance of our proposed analysis against the analyses in [8, 12] by varying the

core utilization, memory access demand, number of cores, tasks’ periods, and slot size SS. We use task set
schedulability, i.e., the number of task sets deemed schedulable as the performance metric and evaluate 1000
randomly generated task sets per point for all the analyzed approaches.

1. Core Utilization: In this experiment, we vary the core utilization of each core from 0.025 to 1.0
in steps of 0.025 and evaluate its impact on task set schedulability. The percentage of task sets that were
deemed schedulable using all the approaches are shown in Figure 6. The label marked as “OUR” in Figure 6
represents our proposed bus contention analysis for RR-based bus arbitration policy. The state-of-the-art
analysis presented in [8] is marked as “TDMA” whereas the analysis of [12] is labeled as “FCFS”. The plot
in Figure 6 also shows a line marked as “No Bus Contention”4, which represents an ideal scenario where
a task set is deemed schedulable if its bus utilization is less than 1. Consequently, the No Bus Contention
analysis provides an upper bound on the number of task sets that may be schedulable at any given core
utilization.

In Figure 6, the x-axis represents the core-utilization and the y-axis represents percentage of schedulable
tasksets for all the analyzed approaches. We can see in Figure 6 that for all the approaches the percentage
of schedulable tasksets decreases with an increase in the core utilization. This is intuitive as increase in core
utilization can increase the utilization of tasks that may result in increase in the WCET as Ci = Ui × Ti.
Higher WCET of tasks eventually result in increasing the interference/blocking that tasks can suffer from
the same core as well as bus contention from remote cores. However, we can also see in Figure 6 that
our proposed RR-based bus contention analysis outperforms the FCFS-based [12] and the TDMA-based [8]
analysis. In fact, our proposed analysis can schedule up to 86.1% more tasksets as compared to [8] and up
to 29.7% more tasksets as compared to [12]. This improvement in performance in comparison to the existing
analysis can be explained as follows. When computing bus contention the analysis presented in [8] assumes
a TDMA-based arbitration at the bus. Due to the non-work-conserving nature of TDMA, bus contention
that can be suffered by the task executing on the local core is always computed without considering the
actual workload of the remote cores. Hence, tasks are assumed to suffer more bus contention which leads to
a lower task set schedulability.

4In No Bus Contention, we assume that tasks do not suffer any bus contention and may deemed schedulable if the total bus
utilization is less than or equal to 1

16

Figure 6: Varying Core Utilization

(a) Varying the Core Utilization for m=2 (b) Varying the Core Utilization for m=4 (c) Varying the Core Utilization for m=8

Figure 7: Varying the Number of Cores and Core Utilization

The analysis presented in [12] focus on FCFS-based bus arbitration, which is a work-conserving bus
arbitration policy. However, the analysis of [12] only focus on the number of memory phases released on
the local/remote cores when bounding the bus contention and does not account for the number of memory
requests issued during the memory phase or the size of bus slots assigned to each core as shown in Figure 1a.
Hence, the FCFS-based analysis also overestimates the bus contention that can be caused by the remote
cores. In contrast to the TDMA and FCFS-based analysis, our proposed RR-based efficiently regulates the
bus utilization among cores which leads to a significant reduction in the bus contention that can be suffered
by the tasks.

2. Number of Cores: To evaluate the impact of the number of cores (and the number of tasks) on the
performance of all analyzed approaches, we re-do experiment 1 by varying the value of m (i.e., number of
cores) between 2 and 8 along with core utilizations. We observe in Figure 7 that by increasing the number
of cores the task set schedulability for all approaches decreases. This is mainly because, by increasing the
number of cores, the total number of tasks executing on the remote cores also increases. This increase
in the number of tasks leads to a higher contention at the bus. Hence, we see in Figure 7c, a very low
percentage of task sets are schedulable by all the approaches for m=8, i.e., a total of 64 tasks in the system.
However, we can also note that our proposed analysis always dominates other analyses by improving task
set schedulability by up to 100 percentage points in comparison to TDMA-based analysis and up to 35
percentage points in comparison to FCFS-based analysis.

3. Varying Memory Access Demand: In this experiment, we vary the size of memory phases of each
task τi by varying the memory access demand MDi between [5%, 95%]×Ci. We performed this experiment
for different core utilizations (marked as Uti), i.e., 20%, 30%, and 40%. The results are shown in Figure 8

17

(a) Varying MD for Core Utilization of 0.20 (b) Varying MD for Core Utilization of 0.30 (c) Varying MD for Core Utilization of 0.40

Figure 8: Varying Memory Access Demand (MD)

(a) Task Periods in range of 100 to 500 (b) Task Periods in range of 100 to 1000 (c) Task Periods in range of 1000 to 5000

Figure 9: Varying the Tasks’ Period Range and Core Utilization

where the x-axis represents memory access demand (MD) of tasks and the y-axis represents percentage of
schedulable tasksets.

We can see in Figure 8 that by increasing the memory access demand of tasks the schedulability of all the
approaches decreases. This is intuitive, since higher values of MD also increase the length of memory phases,
which in turn increases the number of memory requests that can be generated by tasks. Consequently, tasks
will suffer more bus contention for higher values of MD. Looking at the results, one can observe that our
proposed analysis still outperforms the existing analysis for all values of MD at different core utilizations.

4. Varying Task Period Range: In this experiment, we varied tasks’ period ranges from [100,500],
[100,1000], to [1000,5000], along with core utilization, and plot the percentage of schedulable tasksets. The
results are shown in Figure 9. One can see in Figure 9 that the FCFS analysis [12] is most sensitive to
task periods and its performance decreases as the period range increases. This is mainly because the FCFS
analysis [12] only considers the number of memory phases of tasks to bound bus contention. So, larger task
periods can generate larger values of Ci, which translates in to higher values for CA

i , CR
i . This results in

increasing the bus contention tasks suffer under the FCFS analysis [12]. Contrary to the FCFS analysis,
the performance of the TDMA analysis improves by increasing the task period ranges, i.e., [100,1000] and
[1000,5000]. Intuitively, this is because larger periods may generate larger WCET and therefore, larger
number of memory requests generated during the memory phases. In such a case, it is possible that the
local core may perform large number of memory requests during its assigned bus slots that may result in
better utilization of the bus slots assigned to the local core. Our proposed work is less impacted by varying
the task periods and outperforms the analyses of TDMA and FCFS for the all the task period ranges, as
shown in Figure 9. Intuitively, this is due to the work-conserving nature of the RR-based arbitration policy
and fine-grained bus contention analysis proposed in this paper.

5. Varying Slot Size: In this experiment, we vary the value of SS (i.e., slot size) along with core
utilization and evaluate their impact on task set schedulability. The results are shown in Figure 10. We
can see in the figure that for a smaller value of slot size SS the task set schedulability for both RR and
TDMA-based anlysis is higher. This is mainly because for lower values of SS, the bus contention that can

18

(a) Slot Size of SS = MT (b) Slot Size of SS = 2 × MT (c) Slot Size of SS = 3 × MT

Figure 10: Varying the Slot Size and Core Utilization

be generated by remote cores is also lower and the slots can be better utilized. For higher values of SS, the
task set schedulability decreases due to an increase in bus contention that can be generated due to remote
cores. For instance, if the SS = 3MT and the local core has to execute only one memory request, then, in
the worst-case, the local core may have to wait 3MT ×m− 1 time units to access the bus. However, we can
also see in Figure 10 that our proposed work is less impacted by the increase in slot size since it is based on
the work-conserving RR bus arbitration policy in contrast to the TDMA-based analysis of [8].

Discussion: In all the experiments, we observe that the proposed analysis was able to perform signifi-
cantly better than existing TDMA analysis of [8]. This result is intuitive as TDMA is non-work-conserving
bus arbitration policy and may over estimate the bus contention that can be suffered by the tasks. Similarly,
the proposed analysis was able to perform better than FCFS-based analysis under all the settings. However,
we can see a difference between the RR and the existing FCFS based analysis only for a narrow range of
utilizations due to the overall lower schedulability of the generated task sets under the default configuration,
i.e., 4 cores, 32 tasks, tasks’ periods between 100 to 500. For example, we can see in Figure 6, that even for
a perfect bus (i.e., marked as No Bus Contention), the utilization range for which the number of schedulable
tasksets are less than 100% and more than 0% is quite small. This is because of a higher interference between
tasks contending for the bus. Understandably, the range of utilization increase as we decrease the number
of tasks/cores (Figure 7a) or increase the period range (Figure 9c).

The only downside of the proposed RR analysis in comparison to [8] and [12] is a slight increase in
computational complexity. The FCFS analysis is based on the analysis of memory phases, whereas the
proposed RR analysis also considers the number of memory requests performed by tasks during the bus
slots. Similarly, the proposed RR-based analysis also accurately estimate the blocking due to lower priority
tasks which leads to a longer analysis time in comparison to existing FCFS and TDMA based analysis.

8. Related Work

Several works in the state-of-the-art have focused on the problem of bus contention5 in multicore plat-
forms considering partitioned fixed-priority scheduling [2, 3, 4, 1, 5, 6, 7, 9]. Dasari et al. proposed several
works [5, 6, 7] that bound the memory bus contention in multicore platforms assuming FPNP scheduling.
The work in [5] computes the WCRT of tasks considering a non-specified work-conserving bus arbiter. The
work in [6] computes the bus-contention aware WCET of tasks considering a multicore platform that uses
a RR-based bus arbitration policy. Dasari et al. later extended the work in [5, 6] to [7] that provides
a general framework for memory bus-contention analysis. All of the above-mentioned works focus on the
problem of bus contention considering a generic task model, i.e., tasks can generate bus/memory accesses
anytime during their execution. Hence, their solutions are not directly applicable to the 3-phase execution
model studied in this work.

5Some existing works use the term shared resource contention, memory bus contention, Front-Side-Bus (FSB) contention,
etc., which is same as the term bus contention used in this paper.

19

The concept of phased execution model was introduced in the form of PRedictable Execution Model
(PREM) [13] in which the execution of each task is divided into a memory phase and an execution phase.
The concept of PREM was extended to the 3-phase task execution model [14, 15] in which the execution
of each task is divided into three phases. Since the tasks can only issue the memory requests during their
memory phases, it is possible to obtain a tighter bound on the bus/memory contention that can be suffered
by tasks running on a multicore platform. Several existing works [8, 33, 34, 10, 16, 17, 20, 19, 12, 35] focus
on the problem of the bus/memory contention suffered by the phased execution model. The memory-centric
scheduling of PREM tasks using fixed-priority partitioned scheduling was proposed in [33]. The main idea
of memory-centric scheduling [33] is to use TDMA bus slots for all the cores and allow memory promotion
at the core level, i.e., memory phases can preempt the computation phases running on the same core to
better utilize the TDMA slots. The memory-centric scheduling is extended in [35] that focuses on the fixed-
processor priority-based bus/memory arbitration policy. Unlike [33], the approach in [35] introduces the
concept of global memory preemption, i.e., the memory phases running on the higher-priority processors
can preempt the memory phases running on the lower-priority processors.

Casini et al. [19] proposed the memory-contention aware WCRT analysis for the 3-phase task model using
fixed-priority partitioned scheduling. Even though the solution provided in [19] is important, it assumes an
architecture with crossbar switch that is responsible for point-to-point communication between the cores and
the main memory. Consequently, the work proposed in [19] may not be applicable to multicore architectures
that use a shared system bus. Maia et al. [10] presented a bus-contention analysis for the 3-phase task model
using fixed-priority global scheduling. Since the focus of the work of [10] is global scheduling, it does not
address the problem for fixed-priority partitioned scheduling perspective.

Schranzhofer et al. [8] proposed the bus contention analysis considering various task models including the
3-phase task model (referred to as the dedicated phase model in [8]). The work in [8] assumes TDMA-based
non-work-conserving bus arbitration policy. The results in [8] show that the 3-phase task model outperforms
all the other task models e.g., the general access model studied in [8]. Arora et. al [12] presented a fine-
grained bus-contention analysis for the 3-phase task model using fixed-priority partitioned scheduling. The
work in [12] assumes an FCFS-based bus arbitration scheme.

To the best of our knowledge, no existing work focuses on the bus-contention analysis for the 3-phase
task model considering the fixed-priority partitioned scheduling and RR-based bus arbitration policy. The
similar works that can be compared against the proposed analysis in this paper are the analysis of [8] for
TDMA and [12] for FCFS because they provide a bus-contention analysis for the 3-phase task model using
fixed-priority partitioned non-preemptive scheduling.

9. Conclusion

In this work, we propose the bus-contention analysis for the 3-phase task model considering partitioned
fixed-priority non-preemptive scheduling and RR bus arbitration scheme. We show that a fairer work-
conserving bus arbitration scheme such as RR can significantly reduce the bus contention of 3-phase tasks
executing on a multicore platform in comparison to FCFS and TDMA based bus arbitration scheme. We
present a fine-grained analysis to bound the maximum bus contention of 3-phase tasks under a RR-based bus
arbitration policy. We also propose an algorithm to to soundly estimate the blocking that can be suffered by
tasks due to lower priority tasks running on the same core. The bus-contention aware schedulability analysis
is then formulated for the 3-phase task model using fixed-priority partitioned scheduling by additionally
integrating the impact of the bus-contention and blocking from lower-priority tasks running on the same
core. The extensive experimental evaluation reveals that the proposed work can schedule up to 100% more
tasksets as compared to TDMA-based analysis [8] and up to 40% more tasksets as compared to FCFS-based
analysis [12]. As future work, we would like to extend our work by considering priority based bus arbitration
schemes, e.g., task priority based bus arbitration scheme and processor priority bases bus arbitration scheme.

20

Acknowledgement

This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for
Science and Technology), within the CISTER Research Unit (UIDB-UIDP/04234/2020); also by the Opera-
tional Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Partner-
ship Agreement, through the European Regional Development Fund (ERDF), and by national funds through
the FCT, within project POCI-01-0145-FEDER-029119 (PREFECT); also by the European Union’s Hori-
zon 2020 - The EU Framework Programme for Research and Innovation 2014-2020, under grant agreement
No. 732505. Project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with In-
dustrial Impact/NORTE-01-0145-FEDER000020” financed by the North Portugal Regional Operational
Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement; also by FCT, under PhD
grant 2020.09532.BD.

References

[1] S. Schliecker, R. Ernst, Real-time performance analysis of multiprocessor systems with shared memory, ACM Transactions
on Embedded Computing Systems 10 (2) (2010) 1–27. doi:10.1145/1880050.1880058.
URL http://portal.acm.org/citation.cfm?doid=1880050.1880058

[2] J. Rosen, A. Andrei, P. Eles, Z. Peng, Bus access optimization for predictable implementation of real-time applications
on multiprocessor systems-on-chip, in: 28th IEEE International Real-Time Systems Symposium (RTSS 2007), 2007, pp.
49–60.

[3] S. Chattopadhyay, A. Roychoudhury, T. Mitra, Modeling shared cache and bus in multi-cores for timing analysis, in: Pro-
ceedings of the 13th International Workshop on Software & Compilers for Embedded Systems, SCOPES ’10, Association
for Computing Machinery, New York, NY, USA, 2010. doi:10.1145/1811212.1811220.
URL https://doi.org/10.1145/1811212.1811220

[4] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, A. Roychoudhury, Bus-aware multicore wcet analysis through tdma
offset bounds, in: 2011 23rd Euromicro Conference on Real-Time Systems, 2011, pp. 3–12.

[5] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, J. Lee, Response time analysis of cots-based multicores
considering the contention on the shared memory bus, in: 2011IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications, 2011, pp. 1068–1075.

[6] D. Dasari, V. Nelis, An analysis of the impact of bus contention on the wcet in multicores, in: 2012 IEEE 14th International
Conference on High Performance Computing and Communication 2012 IEEE 9th International Conference on Embedded
Software and Systems, 2012, pp. 1450–1457. doi:10.1109/HPCC.2012.212.

[7] D. Dasari, V. Nelis, B. Akesson, A framework for memory contention analysis in multi-core platforms, Real-Time Systems
52 (06 2015). doi:10.1007/s11241-015-9229-9.

[8] A. Schranzhofer, J.-J. Chen, L. Thiele, Timing analysis for tdma arbitration in resource sharing systems, in: 2010 16th
IEEE Real-Time and Embedded Technology and Applications Symposium, 2010, pp. 215–224. doi:10.1109/RTAS.2010.24.

[9] S. A. Rashid, G. Nelissen, E. Tovar, Cache persistence-aware memory bus contention analysis for multicore systems, in:
2020 Design, Automation Test in Europe Conference Exhibition (DATE), 2020, pp. 442–447. doi:10.23919/DATE48585.

2020.9116265.
[10] C. Maia, G. Nelissen, L. Nogueira, L. M. Pinho, D. G. Perez, Schedulability analysis for global fixed-priority scheduling of

the 3-phase task model, in: 2017 IEEE 23rd International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), IEEE, Hsinchu, Taiwan, 2017, pp. 1–10. doi:10.1109/RTCSA.2017.8046313.
URL http://ieeexplore.ieee.org/document/8046313/

[11] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. M. and·Vincent Nelis, J. Reineke, An extensible framework for multicore
response time analysis, Real-Time Systems (July 2017).

[12] J. Arora, C. Maia, S. Aftab Rashid, G. Nelissen, E. Tovar, Bus-contention aware schedulability analysis for the 3-phase task
model with partitioned scheduling, in: 29th International Conference on Real-Time Networks and Systems, RTNS’2021,
Association for Computing Machinery, New York, NY, USA, 2021, p. 123–133. doi:10.1145/3453417.3453433.
URL https://doi.org/10.1145/3453417.3453433

[13] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, R. Kegley, A Predictable Execution Model for COTS-
Based Embedded Systems, in: 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium,
IEEE, Chicago, IL, USA, 2011, pp. 269–279. doi:10.1109/RTAS.2011.33.
URL http://ieeexplore.ieee.org/document/5767117/

[14] G. Durrieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, W. Puffitsch, Predictable Flight Management System
Implementation on a Multicore Processor, in: Embedded Real Time Software (ERTS’14), TOULOUSE, France, 2014.
URL https://hal.archives-ouvertes.fr/hal-01121700

[15] C. Maia, L. Nogueira, L. M. Pinho, D. G. Perez, A closer look into the AER Model, in: 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, Berlin, Germany, 2016, pp. 1–8. doi:

10.1109/ETFA.2016.7733567.
URL http://ieeexplore.ieee.org/document/7733567/

21

[16] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, M. Caccamo, A real-time scratchpad-centric
os for multi-core embedded systems, in: 2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2016, pp. 1–11. doi:10.1109/RTAS.2016.7461321.

[17] R. Tabish, R. Mancuso, S. Wasly, R. Pellizzoni, M. Caccamo, A real-time scratchpad-centric os with predictable
inter/intra-core communication for multi-core embedded systems, Real-Time Systems 55 (10 2019). doi:10.1007/

s11241-019-09340-0.
[18] M. Soliman, G. Gracioli, R. Tabish, R. Pellizzoni, M. Caccamo, Segment streaming for the three-phase execution model:

Design and implementation, 2019. doi:10.1109/RTSS46320.2019.00032.
[19] D. Casini, A. Biondi, G. Nelissen, G. Buttazzo, A holistic memory contention analysis for parallel real-time tasks under

partitioned scheduling, in: 2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2020,
pp. 239–252. doi:10.1109/RTAS48715.2020.000-3.

[20] C. Pagetti, J. Forget, H. Falk, D. Oehlert, A. Luppold, Automated generation of time-predictable executables on multi-
core, in: RTNS 2018, Proceedings of the 26th International Conference on Real-Time Networks and Systems, POITIERS,
France, 2018.
URL https://hal.archives-ouvertes.fr/hal-01888728

[21] F. Fort, J. Forget, Code generation for multi-phase tasks on multicore with distributed memory, in: JRWRTC 2018, 2018.
[22] G. Gracioli, R. Tabish, R. Mancuso, r. mirosanlou, R. Pellizzoni, M. Caccamo, Designing mixed criticality applications on

modern heterogeneous mpsoc platforms, 2019.
[23] S. Park, M.-Y. Kwon, H.-K. Kim, H. Kim, Execution model to reduce the interference of shared memory in arinc 653

compliant multicore rtos, Applied Sciences 10 (7) (2020). doi:10.3390/app10072464.
URL https://www.mdpi.com/2076-3417/10/7/2464

[24] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time environment, J. ACM 20 (1)
(1973) 46–61. doi:10.1145/321738.321743.
URL https://doi.org/10.1145/321738.321743

[25] R. Pellizzoni, M. Caccamo, Toward the predictable integration of real-time cots based systems, in: Proceedings of the
28th IEEE International Real-Time Systems Symposium, RTSS ’07, IEEE Computer Society, USA, 2007, p. 73–82.
doi:10.1109/RTSS.2007.51.
URL https://doi.org/10.1109/RTSS.2007.51

[26] M. Paolieri, E. Quiñones, F. Cazorla, G. Bernat, M. Valero, Hardware support for wcet analysis of hard real-time multicore
systems, Vol. 37, 2009, pp. 57–68. doi:10.1145/1555754.1555764.

[27] G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, L. Sha, Schedulability analysis for memory bandwidth regulated
multicore real-time systems, IEEE Transactions on Computers 65 (2) (2016) 601–614. doi:10.1109/TC.2015.2425874.

[28] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann,
T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P. Stenström, The worst-case execution-time problem—overview
of methods and survey of tools, ACM Trans. Embed. Comput. Syst. 7 (3) (May 2008). doi:10.1145/1347375.1347389.
URL https://doi.org/10.1145/1347375.1347389

[29] R. J. Bril, J. J. Lukkien, W. F. J. Verhaegh, Worst-case response time analysis of real-time tasks under fixed-priority
scheduling with deferred preemption revisited, in: 19th Euromicro Conference on Real-Time Systems (ECRTS’07), 2007,
pp. 269–279.

[30] J. Lehoczky, Fixed priority scheduling of periodic task sets with arbitrary deadlines, [1990] Proceedings 11th Real-Time
Systems Symposium (1990) 201–209.

[31] M. Negrean, R. Ernst, Response-time analysis for non-preemptive scheduling in multi-core systems with shared resources,
in: 7th IEEE International Symposium on Industrial Embedded Systems (SIES’12), 2012, pp. 191–200. doi:10.1109/

SIES.2012.6356585.
[32] P. Emberson, R. Stafford, R. Davis, Techniques for the synthesis of multiprocessor tasksets, WATERS’10 (01 2010).
[33] G. Yao, R. Pellizzoni, S. Bak, E. Betti, M. Caccamo, Memory-centric scheduling for multicore hard real-time systems,

Real-Time Systems 48 (11 2012). doi:10.1007/s11241-012-9158-9.
[34] A. Alhammad, R. Pellizzoni, Schedulability analysis of global memory-predictable scheduling, in: 2014 International

Conference on Embedded Software (EMSOFT), 2014, pp. 1–10. doi:10.1145/2656045.2656070.
[35] G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, M. Caccamo, Fixed-priority memory-centric scheduler for cots-based

multiprocessors, in: M. Volp (Ed.), 32nd Euromicro Conference on Real-Time Systems, ECRTS 2020, Leibniz International
Proceedings in Informatics, LIPIcs, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020,
32nd Euromicro Conference on Real-Time Systems, ECRTS 2020 ; Conference date: 07-07-2020 Through 10-07-2020.
doi:10.4230/LIPIcs.ECRTS.2020.1.

22

	Introduction
	System Model
	Task Model and Useful Notations
	System Bus Model
	Execution Model

	Background and Problem Formulation
	Problem Formulation

	Bus Contention Analysis for RR-based Bus Arbitration Policy
	Step 1: Bounding the Maximum Number of Bus Slots required by the Local/Remote Core
	Step 2: Bounding Maximum Bus Contention
	Computing Maximum Bus Contention for Case 1
	Computing Maximum Bus Contention for Case 2

	Accurately Estimating the Impact of Lower Priority Blocking
	Schedulability Analysis
	Experimental Evaluation
	Related Work
	Conclusion

