
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Simulation and Intelligent Visualisation
Tool for an Investment Casting

Manufacturing Process

Ana Beatriz Campos Cruz

MASTER’S DEGREE IN ELECTRICAL AND COMPUTER ENGINEERING

Supervisor: Armando Jorge Miranda de Sousa

Co-Supervisors: Ângela Cardoso and Bernardo Valente

September 4, 2019

c© Ana Beatriz Campos Cruz, 2019

Abstract

With present day industries pressing for retrofitting of current machinery into Industry 4.0 ideas, a
large effort is put into data production, storage and analysis. However, not all industries are ready
for these changes.

This dissertation case studies a foundry company, Zollern & Comandita, that uses the lost
wax method to produce metal parts. This company is an example where it is difficult to apply the
Industry 4.0 ideas. As retrofitting is underway, modelling, simulation and smart data visualisation
are proposed as methods to overcome data shortage in quantity and quality.

When this project began, only a low quantity of data was being stored, so it is necessary to
study the entire process in order to understand which is the most relevant and critical data to
monitor in each phase.

With the mentioned case study, a simulator was developed to generate sample data until the
real data from the machines is being stored. To be able to use such real data, it is fundamental
to create intelligent software for analysis and visualisation of a growing, but frequently faulty,
amount of data, without the quality and quantity adequate for full blown data mining techniques.

The developed data visualisation system is demonstrated to be adapted to the requirements
and needs of this company in order to approach full automation ideas. It allows workers and su-
pervisors to know in real time what is happening in the factory, or study the passage of manufac-
turing orders for a specific area. Data Analysts will, in near future, be able to predict machinery
problems, correct issues with slow changing deviations and gather additional knowledge on the
implementation of the process itself.

Since the lost wax investment casting process is composed by many phases, during the analysis
of the case study company, the most critical phase of the process was identified. Thus, the work
was developed with the focus where the company will get more advantage to meet their needs.

With such challenges in mind, this dissertation focuses on the study of the Zollern & Coman-
dita, to develop a proper data visualisation tool properly for this company. The recent approaches
on the development of applications were taken in count, to make the application as scalable as
possible.

i

ii

Resumo

Com a pressão existente nas indústrias atuais para modernizar os seus processos de produção com
as ideias da Industria 4.0, tem sido colocado um grande esforço na produção, armazenamento e
análise de dados. No entanto, nem todas as indústrias estão preparadas para estas mudanças.

O caso de estudo desta dissertação é uma empresa de fundição que usa o método de cera
perdida para produzir peças de metal precisas. Esta empresa é um exemplo de indústrias onde é
difícil aplicar as ideias da Indústria 4.0. À medida que a remodelação está a decorrer, modelagem,
simulação e visualização inteligente de dados são propostas como métodos para superar a escassez
de dados em quantidade e qualidade.

Neste moemnto são poucos os dados a serem monitorizados, por isso é necessário estudar todo
o processo de fabrico a fim de se perceber quais são os dados relevantes e criticos de cada etapa.
Com este estudo, é possivel desenvolver um simulador do processo de fabrico a fim de gerar dados,
até que os reais estejam a ser armazenados. Para se poder usar esses dados, é fundamental criar
software inteligente para análise e visualização de uma quantidade crescente, mas frequentemente
defeituosa, de dados, sem a qualidade e quantidade adequadas para técnicas de data mining.

O sistema de visualização de dados desenvolvido é apresentado de forma a corresponder aos
requisitos e necessidades desta empresa, a fim de abordar as ideias de automação completa. Esse
sistema de visualização de dados permite que os trabalhadores e supervisores saibam em tempo
real o que está a acontecer na fábrica ou que possam estudar a passagem de ordens de produção
por uma área específica. Os interpretadores de dados também podem prever problemas mecânicos,
corrigir problemas com desvios lentos e coletar conhecimento adicional sobre a implementação
do próprio processo.

Uma vez que o método de fundição por cera perdida é constituido por várias etapas, durante a
análise da empresa deste caso de estudo, foi identificada a étapa mais critica no processo. Assim,
o trabalho foi desenvolvido com foco a onde a empresa obtivesse o melhor proveito face às suas
necessidades.

Com este tipo de desafios como foco principal, esta dissertação centra-se no estudo da empresa
Zollern & Comandita, para desenvolver uma ferramenta de visualização de dados adequada à
empresa. Recentes métodos sobre desenvolvimento de aplicações foram tidas em consideração,
para fazer com que a aplicação seja o mais escalável possível.

iii

iv

Agradecimentos

Ao meu orientador, Prof. Dr. Armando Sousa, um grande obrigada por todo o apoio e motivação,
não só na fase da dissertação, mas também ao longo de todo o meu percurso académico. Obrigada
por ter sempre acreditado em mim e por todas as oportunidades que me proporcionou. À minha
co-orientadora, Ângela Cardoso, por toda a paciência, pelas horas dedicadas a este trabalho e pelas
palavras de motivação nos momentos mais difíceis. Obrigada também pelas boas gargalhadas. Ao
meu co-orientador, Bernardo Valente, por todas as coisas que me ensinou com muita paciência.
Obrigada por toda a simpatia e por estar sempre disponível para ajudar. Quero agradecer também
ao INEGI e à Zollern & Comandita a oportunidade para desenvolver este trabalho.

Esta dissertação não se resume só a um semestre, mas sim ao caminho percorrido até chegar
aqui. À Márcia, a minha grande companheira de todos os momentos, um grande e muito especial
obrigada. Ela foi, sem dúvida, o mais importante que este percurso me deu. Ao Fábio por todo o
carinho e apoio ao longo deste percurso. Obrigada por me teres ensinado a dar os primeiros passos
no mundo engenharia. Sem a tua ajuda, não teria chegado onde cheguei. E porque também foram
muito importantes nesta jornada e vão ficar sempre no meu coração, para o Baltasar, o João e o
Renato, um xiii muito apertadinho por todas as brincadeiras, por toda a paciência e por estarem
sempre lá.

Por último, mas não menos importante, à minha família. Aos meus pais, por todas as oportu-
nidades que me têm proporcionado, por todo o apoio e dedicação, por estarem sempre lá nos bons
momentos, mas também nos menos bons. Sem vocês nada disto tinha sido possível. À Xana e ao
Afonso, obrigada por serem quem são. Aquilo que eu sou hoje, devo-o muito a vocês.

Beatriz Cruz

v

vi

“How wonderful it is that nobody need wait a single moment
before starting to improve the world.”

Anne Frank

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 2
1.4 Contributions . 3
1.5 Document Structure . 3

2 State of the Art, Fundamentals and Tools 5
2.1 State of the Art . 5

2.1.1 Industry 4.0 . 5
2.1.2 Data Visualisation Systems . 6

2.2 Fundamentals . 7
2.2.1 Native App vs. Web App . 7
2.2.2 Recent trends in web programming . 8
2.2.3 Web Architecture . 9

2.3 Tools . 9
2.3.1 Angular . 9
2.3.2 Django . 10
2.3.3 Chart.js . 11
2.3.4 Bootstrap . 11

3 Case Study - Investment Casting 13
3.1 Introduction . 13
3.2 The Investment Casting Process . 13
3.3 Highlight Stage . 13
3.4 List of known problems . 17
3.5 Conclusion . 17

4 Software Solution - Simulation and Visualisation 19
4.1 Requirements . 19

4.1.1 Functional Requirements . 19
4.1.2 Non-Functional Requirements . 20

4.2 Architecture . 21
4.2.1 Simulator . 21
4.2.2 SmartVis4.0 . 23

4.3 Data structure . 25
4.3.1 Information data . 25
4.3.2 Monitoring data . 25

ix

x CONTENTS

4.3.3 Alerts . 29
4.4 Smart data dynamics . 29

4.4.1 Inter Blocks . 30
4.4.2 Intra Blocks - DB . 30

4.5 Relevant implementation details . 33
4.5.1 Rotary furnace - Simulator . 33
4.5.2 Rotary furnace diagram - SmartVis4.0 34
4.5.3 Example usage . 38

5 Experiments and Results 41
5.1 Simulation with faults . 41
5.2 Requirements Validation . 42

5.2.1 Functional . 42
5.2.2 Non-Functional . 45

5.3 Validation by the client . 45

6 Conclusions 47
6.1 Future Work . 48

A Provisional version of paper accepted for ROBOT2019 49

References 63

List of Figures

2.1 Evolution of Industry . 6
2.2 Client-Server Request-Response Cycle . 10

3.1 Wax tree before layers of ceramic . 15
3.2 Scheme of the rotary furnace. 16
3.3 Scheme of the main components of the foundry department. 17

4.1 UML use cases diagram. 20
4.2 System architecture. 21
4.3 Simulator architecture. 22
4.4 State machine for the main chamber of the autoclave. 23
4.5 State machine for the steam generator. 24
4.6 Deployment diagram for SmartVis4.0. 24
4.7 Relational diagram. 26
4.8 Relational diagram for the main production information. 27
4.9 Relational diagram for the autoclave section. 27
4.10 Relational diagram for the rotary furnace section. 28
4.11 Relational diagram for the alerts. 29
4.12 Data dynamic in all system. 30
4.13 Table with the data from the storage. 31
4.14 Swim lane diagram about trigger for storage table. 31
4.15 Triggers on the rotary furnace database. 32
4.16 Base diagram of the rotary furnace in SmartVis4.0. 35
4.17 Relation between the attributes and the real diagram in SmartVis4.0. 38
4.18 Final appearance of the rotary furnace diagram in SmartVis4.0. 39
4.19 Scheme with all communications when the SmartVis4.0 works. 39

5.1 Probability to a failure occur . 42
5.2 Variation of the pressure in the main chamber of the autoclave during the cycle of

the shelf containing PO 8127326. 43
5.3 Representation of the rotary furnace in the data visualisation system. 44
5.4 Notifications on Visualisation Tool. 44
5.5 Tests in computer using different browsers. 46
5.6 Tests in mobile phone using different browsers. 46

xi

xii LIST OF FIGURES

List of Tables

3.1 Phases of Investment Casting Process . 14
3.2 Problems that could by occur at the autoclave. 18
3.3 Problems that could by occur at the Rotary furnace. 18

4.1 Level of the problems listed. 33

5.1 Combinations to test the platforms compatibility requirement. 45

xiii

xiv LIST OF TABLES

Abbreviations

AI Artificial Intelligence
HTTP HyperText Transfer Protocol
MTV Model Template View
MVC Model View Controller
PO Production Order
PWA Progressive Web Application
RWD Responsive Web Design
SDK Software Development Kit
SPA Single Page Application

xv

Chapter 1

Introduction

This chapter introduces the work developed in this dissertation. It presents the context, motivation

and the goals that this work consists of. It also describes the structure of this document.

1.1 Context

Nowadays, we are going through the fourth industrial revolution, also known as Industry 4.0.

This is a digital revolution, whose main objectives are to increase the efficiency of operation and

productivity, as well as the level of automation, thus making companies more competitive, as

concluded in [1].

This digital revolution is driving the implementation of tools and intelligent platforms that

produce a greater amount of data and information for analysis, as explained in [2]. The storage

of large amounts of data allows an analysis of the conditions in which a product was created, as

well as the use of machine learning techniques, to make an early prediction of the occurrence of

product defects or machine failures.

However, not all companies are prepared for this type of revolution, because many operate on

rather primitive processes, where human work and control predominate. An example is investment

casting companies that use the lost wax casting method, where at least the last part of the process

is mostly manual. In this type of manufacturing, the occurrence of failures in some sections,

more specific in the casting department, is quite frequent and difficult to control. Generally, data

acquisition and monitoring are also very scarce, due to the existing manufacturing processes.

This project belongs to the final dissertation from the master degree in Electrical and Com-

puter Engineering, and it was developed in an entrepreneurial environment in partnership with

the Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI). IN-

EGI is a Research and Technology Organisation, focused on applied Research and Development,

Innovation and Technology Transfer activities between university and industry, [3].

For this project, the investment casting international company ZOLLERN & Comandita, with

a portuguese branch located in Porto, Portugal, that it is working in collaboration with INEGI,

was used as a case study. This company is adapting to the Industry 4.0 ideas. After studying the

1

2 Introduction

company and its processes, a joint decision was made that is able to conclude that the section that

needs more attention, due of its defects, is the foundry department. Since this section is the most

manual, the acquisition of data and management control is harder to achieve. Such makes this

company a good case study as a representation of the companies of investment casting that want

to grow for the Industry 4.0 ideas.

1.2 Motivation

With the ideas of the Industry 4.0, a big quantity of data has been stored in clouds. Without

systems capable of filtering and present this data, it is hard to take some advantage of that.

At the time of this work, the portuguese branch of ZOLLERN & Comandita has few data stored

in the cloud. Since data collection is at its early stages, it was necessary to develop a simulator,

which produces relevant data, very close to what would be real. Some work concerning the data

structure was developed by INEGI collaborators before this project began. However, the structure

of data was improved during the development of this dissertation.

After the development of the simulator, a data visualisation tool could allow ZOLLERN &

Comandita to see the data stored in cloud and, with that, it has more control over what is being

produced in the foundry department. In the case of the manager, who is not on the shop floor, he

could know what is being produced with a data visualisation tool that shows data storages in cloud

in real time.

Sometimes, a large quantity of parts with defects are produced, however it can be difficult to

identify the fault. With this tool, it is easier to know the conditions of the production and identify

if it was a human or a machine malfunction. Cause-effect relations help the company to be more

profitable and efficient, avoiding faulty parts.

1.3 Goals

The main objective of this dissertation is to develop a data visualisation tool, SmartVis4.0, to be

applied in ZOLLERN & Comandita, that would help it to see collected data in a database. This

tool allows to:

• Monitor, in real time, the collected data as well as the whole operation on the shop floor;

• Obtain alerts when an error is detected, by studying the deviations from the standard;

• Visualise data from a finished manufacturing order, which makes it possible to understand

the conditions of its production, as well as to make the cause-effect study of its defects or

qualities.

To make this tool more flexible, it should be a web page to be accessible in any device, wher-

ever the user is. To have a good view in small screens, like in smart-phones, it should be a

Responsive Web Design (RWD).

1.4 Contributions 3

Since this work is being developed in an early stage of the industrial revolution in ZOLLERN

& Comandita, it was necessary to develop:

• An architecture and structure for a database;

• A simulator that produces relevant data, similar to what would be real.

While real data collected does not exist in a database, the SmartVis4.0 will show the data gen-

erated by the simulator. When the company has real data stored in database, the SmartVis4.0 should

be able to work correctly.

1.4 Contributions

The main contributions of this work are:

• The strategy adopted for the development of a data visualisation tool for the specific case

study of an industry with the investment casting process;

• The case study for similar problems where the Industry 4.0 ideas are difficult to be applied

when big quantity of data does not exist;

• The developed tool allows the user to see intelligent data, since the data mining ideas do not

have statistical validity.

• The study of the investment casting process in ZOLLERN & Comandita allows the devel-

opment of a systematised list with the known and expected problems in the foundry depart-

ment.

From the development of this work originated the following scientific paper:

• Beatriz Cruz, Armando Sousa, Ângela Cardoso, Bernardo Valente and Ana Reis, “Smart

Data Visualisation as a Stepping Stone for Industry 4.0 - a case study in investment casting

industry”.

This paper was accepted in ROBOT2019 conference, that will be happening in Porto, Portugal,

in November of 2019.

1.5 Document Structure

Chapter 1 focuses on the context, motivation and goals for the proposed work, followed by this

scientific contributions of the work and resulting publications.

Chapter 2 begins with a state of the art (Section 2.1) of data visualisation systems, followed by

some fundamentals (Section 2.2) for the work developed and, in the end, the important selected

tools (Section 2.3).

4 Introduction

Chapter 3 presents the case study for the development of this work with the explanation of the

investment casting process. The highlight stage is described with more detail and a list of known

problems is presented.

Chapter 4 explains with some detail the data visualisation tool developed. This chapter begins

with the identification of the requirements, followed by the architecture of the system. After this

the data structure followed by the smart data dynamics with the explanation of the data flow. At

the end of the chapter, some relevant implementation details will be explained.

Chapter 5 presents the obtained results and Chapter 6 concludes this work and addresses future

research directions.

Chapter 2

State of the Art, Fundamentals and
Tools

2.1 State of the Art

This chapter will present some ideas and fundamental concepts that will help to understand the

work developed. Beginning with the state of the art about Industry 4.0 and some data visualisation

tools that exist at this moment. After that, the expert system concept will be introduced, with a

connection to some smart visualisation tools.

2.1.1 Industry 4.0

Since the 18th century, it is possible to follow the evolution of industry. The first revolution

was represented by the mechanical production plants based on water and steam power. In the

20th century, the second industrial revolution was a symbol of mass labour production based

on electrical energy. The third industrial revolution began in the 1970s with the characteristic

of automatic production based on electronics and internet technology. Nowadays, we are living

through the fourth industrial revolution, named "Industry 4.0", with the characteristics of cyber-

physical systems production, based on heterogeneous data and knowledge integration, as cited

in [4]. Figure 2.1 shows the evolution of the industry since its inception.

Scholarly, there have been several different approaches to define Industry 4.0. Article [1]

presents a survey on technologies and applications in Industry 4.0. It shows some of the definitions

that exist about this revolution. As an example, at the Consortium II Fact Sheet [6], Industry

4.0 is “the integration of complex physical machinery and devices with networked sensors and

software, used to predict, control and plan for better business and societal outcomes.”. However,

it concluded that there is no unanimity.

The different applications of Industry 4.0 are numerous, from smart factory and manufacturing

to smart product and finally to smart city [7]. In this dissertation, the main goal is to apply the

ideas of Industry 4.0 regarding smart factories with control-centric optimisation and intelligence.

5

6 State of the Art, Fundamentals and Tools

Figure 2.1: Evolution of Industry [5].

The strategy is to make industries more intelligent, adding dynamics with sensors, actors and au-

tonomous systems. With the ideas of smart factories, software tools have been developed in order

to help the improvement of the factory processes. Intelligent systems that have knowledge about

the processes will then be used to optimise product service needs and predict product performance

degradation.

2.1.2 Data Visualisation Systems

The usage of data visualisation systems has been increasing due to the big amount of data that has

been collected. Without these tools, the data becomes useless, because it is hard to interpret and

make conclusions with just big tables.

2.1.2.1 Q-DAS

The Q-DAS [8] software is specialised in the computerisation of statistical procedures with a focus

on quality management applications including Statistical Processes. This software has several

tools, such as QS-STAT, which allows the user to make statistical analyses of the collected data by

producing analysis reports, that refer to the values collected by sensors at certain time intervals.

2.1.2.2 Grafana

Grafana [9], is an open-source platform that allows visualisation of data. It is a dashboard that

allows the user to query, visualise and understand data metrics, regardless of where they are stored.

2.2 Fundamentals 7

The dashboard gives the users the possibility to chose the type of the graphs which they want to

see. The users can add thresholds, to be alerted when the values deviates from that threshold.

2.2 Fundamentals

With the evolution of technology, personal computers and mobile phones became essential tools

in daily lives of people. The computer is very useful because of its size, however, the user cannot

always bring the computer with them. The mobile phone does not have this constraint as the user

always carries it. Because of that, more and more, the applications for the most different purposes

are developed to work on mobile phones to allow the users to use the tools everywhere they are.

This evolution raises questions of the user experience when the trend is to use more the mobile

phone than the computer, and to develop applications that are normally used in a computer, to be

used in a mobile phone.

The following section aims to explain some relevant questions about this topic for the work

developed. The respective decisions and conclusions will also be presented.

2.2.1 Native App vs. Web App

As it usually is, when a new application is developed for a specific device, the choice is the

native Software Development Kit (SDK). This platform is usually provided by the vendor and

each operating system has its specific languages, thus making these applications very restricted to

the device and its operating system. To develop an application that is universal and simultaneously

compatible with different environments is more expensive. To solve the limitations of the SDK,

the concept of cross-platform software was created.

Cross-platform is a computer software, that is implemented on multiple computing platforms.

This could solve the problem of compatibility of operating systems. There is one basic character-

istic that is shared by all cross-platform app development frameworks.

Web applications are considered cross-platform, since they just need a browser to run the

application, and all devices, independently of their operating systems, have a browser. Actually,

the quantity of frameworks available to develop web applications, guarantees that the apps could

be used in multiple environments [10].

Since one of the objectives for the developed work is that the user of the platform could use

it in any device or place inside the company, a web app was chosen to be developed. Then, the

same platform could be used in any device without the need of a software installation, just a

network connection. The application will read data in real time from the database, so the network

connection will not be an issue, because the platform needs this connection to fulfil its main

objective, [11].

8 State of the Art, Fundamentals and Tools

2.2.2 Recent trends in web programming

With the growing usage of mobile phones, the trends in web programming have been more dis-

cussed. There are a lot of different ideas that allow the utilisation of web apps in mobile phones to

become more user friendly.

After a study of the most recent trends in web programming, the most relevant for the applica-

tion to be developed was identified. They are:

• Responsive Web Design (RWD);

• Push Notifications;

• Progressive Web App (PWA).

The choice of a web application for this work was to allow the user the possibility to use the

application in all devices wherever the user is. However, the size of the computer screen and the

mobile phone screen are very different. The design of a web page to be assessed in a computer,

is not always an attractive design to be visited in a mobile phone. With this in mind, the concept

of RWD can be introduced [12]. In [13], three elements are identified in RWD, which are a fluid

layout, flexible media and media queries. These features improve the user experience in the web

application, with the capacity to adapt the web design in function of the screen size.

The concept of an adaptive web app is also very used when talking about web design, but

this is different from the concept of responsive. The adaptive web design uses distinct layouts for

multiple screen sizes, the layout largely depends on the screen size being used so with each of

these sizes in mind a layout would have to be designed for it, while the responsive web design

adapts to the size of the screen no matter what the target device screen size is. The layout is fluid

and uses CSS media to change styles, thus enabling the page to resize its width and height to adapt

to different screen sizes and display correctly.

Another interesting feature in web development are push notifications. Push notifications are

capable of alerting the user, even if the application is running in background. These alerts use

sounds, vibration and the standard notifications of the device. In native applications, it is common

and easy to use this tool, making the interaction between application and user more powerful.

Before the growing usage of web apps, there were few frameworks that enabled this feature in

web pages. However, this paradigm has been changing and nowadays, it is possible to find a lot of

frameworks compatible with multiple devices.

All results in searches made about new trends in web development talk about Progressive
Web Application (PWA). This concept comes up as a possible unifying technology for web apps

and native apps, as mentioned in [14]. While a regular web site requires the user to open a browser,

type in a URL and wait for all content to be downloaded on every visit, a PWA only requires these

steps for the first visit. After a home screen installation, all necessary static files, including HTML,

CSS, JavaScript, images and fonts for the web site, are now stored on the phone of the user, ready

to be used offline [15].

2.3 Tools 9

Increasingly, the frameworks and paradigms in web development have been created with the

rise of web applications usage. There is a lot of other recent trends in this area, however, the

enumerated were the most relevant for the work to be developed.

2.2.3 Web Architecture

The architecture of a web application is crucial for supporting its future growth, which may come

from increased demand, its future interoperability, and its enhanced reliability requirements.

A web app is typically composed of two main sides: the client side and the server side. As an

overview, in this architecture the user sends the command to the server through the Internet, using

the browser or the interface of the application. The web server is responsible for forwarding the

command to the requested server. The server executes the requested commands (either the data

processing or the database querying). The server delivers the processed information to the web

application, which provides the user with the requested data. This is the basic of a client-server

architecture.

Researching about specific architectures in web development on the client side (or frontend),

there is a lot of recent documents that talk about Single Page Application (SPA). This concept is

very common when talking about new trends in web development. The SPA is a web application

that fully loads all of the resources in initial request and then the page components are replaced by

other component depending on user interaction, as cited in [16]. In the same paper, it is mentioned

that this architecture is very flexible and elegant when dealing with data.

In Figure 2.2, it is possible to compare the two different architectures mentioned above, the

traditional client-server and the SPA client-server. While in traditional architecture, for each re-

quest, the page is loaded again, in the SPA architecture, the page is loaded on the first request, and

for the following requests only the required data is updated.

2.3 Tools

There are a lot of different tools available to develop web applications. According to the ideas and

objectives for the work to be developed, and following the trends mentioned above, the selected

frameworks will be described in this section.

2.3.1 Angular

In web development, when talking about the frameworks to develop the frontend, Angular is one

of the best frameworks referenced in all web pages that talk about this topic. This is an open source

JavaScript framework, although the most recent versions use TypeScript. This is a typed superset

of JavaScript that compiles to plain JavaScript. Angular allows the implementation of the recent

trends in web programming mentioned above. This framework is a fully client sided library.

Angular follows a Model View Controller (MVC) architecture. This segregates user interfaces

into 3 parts: The model, which contains the data; The view, to which the data is presented; The

10 State of the Art, Fundamentals and Tools

Figure 2.2: Client-Server Request-Response Cycle, from [16].

controller, which acts as a negotiator between user and model. The MVC architecture has the

capability to simplify development, maintenance and testing, as it is mentioned in [16].

Angular is based on full Bidirectional-Data-Binding. Bidirectional-Data-Binding is an auto-

matic way of updating the view whenever the model changes, and updating the model whenever

the view changes, as it is referenced in [16].

SPA is becoming popular in recent web development ideas and the technology Angular also

aids to create such applications in an easy way. When developing an Angular application, the

developer creates HTML templates according to Angular’s template language; the HTML tem-

plates include HTML that is embedded with Angular scripts and other Angular coding constructs,

such as directives. At the web browser, Angular JavaScript libraries are loaded and interpret the

HTML templates, such that the resulting pages look and behave as defined in the templates, as it

is explained in [17].

2.3.2 Django

Article [18] provides a methodology to evaluate three open source web development frameworks

for the backend. These are Django, Ruby on Rails and CakePHP. Features like maintainability,

data management and migration, testability, popularity, marketability, community and maturity

were used to evaluate each one. The final result gave the Django framework the highest score,

with 4.05, while Ruby on Rails and CakePHP got 3.85 and 2.95, respectively.

2.3 Tools 11

Other articles agree that Django is a good framework in web development. This framework

is based on Python, which is a very popular programming language. Python is an open source

language and has a large number of libraries and modules available.

Django calls its architecture Model Template View (MTV), which is very similar to MVC.

The layer Model is for structuring and manipulating the data of the Web application. The concept

of Views is to encapsulate the logic responsible for processing a user request and for returning the

response. The template layer provides a designer-friendly syntax for rendering the information to

be presented to the user. This information is explained in [19].

2.3.3 Chart.js

The final web application will present data in a dashboard. For that it was necessary to chose a

framework compatible with the frameworks and languages chosen above.

Chart.js is an open-source JavaScript library, that has eight different types of charts, each of

them animated and customisable. It follows the HTML5 canvas with a great rendering perfor-

mance across all modern browsers. As an added bonus, Chart.js is a responsive tool. All this

information is described in the official documentation, in [20].

2.3.4 Bootstrap

Bootstrap is a free and open-source CSS framework directed at responsive, front-end web devel-

opment. The primary purpose of adding it to a web project is to apply choices of colour, size, font

and layout from Bootstrap to that project. There are a lot of free open-source templates available

on the internet.

The template used in this dissertation was AdminBSB - Material Design [21] because it has all

necessary elements to develop an intuitive dashboard and it is is a fully responsive template.

12 State of the Art, Fundamentals and Tools

Chapter 3

Case Study - Investment Casting

3.1 Introduction

In this section, the process of investment casting, more specifically in ZOLLERN & Comandita,

will be explained. The highlight stage for this work will be demonstrated with more detail. The

list of known problems and the requirements for the work developed will also be shown.

3.2 The Investment Casting Process

Lost wax casting is a method of producing metal parts with high precision. This process has eight

stages of development until the final product is obtained. Table 3.1 demonstrates the different

stages of this casting method and their respective explanation.

At ZOLLERN & Comandita the production of parts is organised in Production Orders (PO).

Each PO has associated a specific part to be produced, the number of parts per tree, the number of

trees and all the necessary parameters to correctly produce the parts on each phase of the process.

Each phase of the production process has its specific function, as was shown in Table 3.1.

In ZOLLERN & Comandita some phases are more rudimentary than others and the number of

rejected parts in each phase can vary. This case study was focused on a specific phase that will be

explained next.

3.3 Highlight Stage

A study was conducted at ZOLLERN & Comandita to understand which section has the most

issues and the foundry was the one that stood out in the high number of incidences. That is the

main reason why the focus of this case study was the foundry section, since this area will benefit

the most with this work.

The foundry area is composed of various inner processes such as wax removal, tree sintering,

alloy melting and casting. ?? represents a wax tree before the layers of ceramic. The trees, at first,

arrive at this area in shelves, with a non-constant number of trees per shelf. This happens mainly

13

14 Case Study - Investment Casting

Table 3.1: Phases of Investment Casting Process, adapted from [22].

Illustration Description

1. Wax Injection
In the first phase of the process, a model of the final product is created in wax. With
the metal mould, liquid wax is injected into the interior. When it is in the solid state,
it is removed from inside the mould. It is necessary to make as many models, as
many pieces as the costumer wants.

2. Pattern Assembly
Once the wax pieces are created, they are welded to a trunk, also made of wax, to
create a tree of pieces. Thus, it is possible to create several items at once.

3. Shell Making
When a tree of pieces is complete, it is covered by several layers of ceramic. A layer
of ceramic is made by dipping the tree into a special glue, then it is subjected to a
"sandwash" and is finally dried. This process is repeated several times cyclically, at
the beginning with fine sands and at the end with coarser sands.

4. Dewaxing in a high pressure autoclave
After the ceramic shell has all its layers complete and well dried it is then placed
inside a high pressure autoclave in order to remove the majority of the wax from
inside the shell.

5. Melting and pouring
The alloy is melted in an induction furnace and once both the metal is ready and
ceramic shells are sintered and heated up the pouring phase may then start. In the
step of the process the molten metal is poured to the shell in order to fill all the empty
cavities. The metal will then cool down and solidify.

6. Ceramic break down
After the solidification phenomena and the temperature is low enough, the shell is
subjected to high vibration in order to break down the ceramic material. At the end
of this step the metal tree will then be clean of ceramic.

7. Cutting Off
At this stage, the parts are separated of the tree by saw cutting.

8. Finishing and quality control
In the last step of the process the parts are finished by grinding and polishing work.
There is visual inspection and some other types of quality checks, such as dimen-
sional control, to verify if the pieces and within the client requirements or not. This
final step ends the process.

3.3 Highlight Stage 15

because their size varies and the workers always place the maximum possible number of trees in

each shelf. The trees do not need to belong to the same PO, so one shelf could be composed of

more than one PO and the same PO could be divided into multiples shelves. The first step of the

foundry department is placing a shelf of trees inside a high pressure autoclave.

Figure 3.1: Wax tree before layers of ceramic [23].

An autoclave is a pressure chamber used to carry out industrial processes requiring elevated

pressure and temperature different from ambient air pressure. In the case of investment casting, its

main objective is the removal of the majority of wax from inside the ceramic trees. The autoclave

is composed of two zones, the steam generator and the main chamber.

The main objective of the steam generator is to slowly increase its pressure, until it reaches

12 bar. It is crucial that when a new cycle begins in the main chamber, the steam generator is at

12 bar, to guarantee that the process functions correctly. When the autoclave begins a new cycle,

with a shelf inside of the main chamber, the existing pressure in the steam generator is quickly

transferred to the main chamber, so the pressure in the main space increases the pressure between

the environmental pressure (approximately 1 bar) to 9 bar, in less than 14 seconds.

The fast increase of the pressure inside the main chamber of the autoclave is fundamental to

maintain the good quality of the ceramic trees, because the wax inside of that will expand with the

increase of the temperature. If the pressure grows fast, the first layer of wax will melt first, and

that will make space for the expansion of the remaining wax, without damaging the ceramic tree.

After the fast pressure increase, the autoclave maintains the pressure during 15 minutes in the

main space where the shelf is, and, at the same time, increases the pressure in the steam generator

until the 12 bar. This high pressure removes a big part of the wax inside the tree. At the end of the

15 minutes, the main space begins decreasing the pressure by steps. When the pressure reaches

the environmental pressure, the cycle is finished and the shelf can be removed from the autoclave.

After the dewaxing is complete, the empty trees, also known as shells, are prepared, if neces-

sary, and stored where they wait their turn to be sintered and later casted after the rotary furnace

process.

In the rotary furnace, the shells are placed in small sections, called buds, with at most three

shells per bud, that corresponds to three different positions in each bud, and run through the five

16 Case Study - Investment Casting

different zones until they reach the exit.

Each zone is composed by a different number of buds. Figure 3.2 represents the rotary furnace

and its structure. As presented there, zone 1 and zone 3 have five buds, zone 2 has seven buds,

zone 4 has four buds and the last one, zone 5, has three buds.

Figure 3.2: Scheme of the rotary furnace.

The shells are placed inside the furnace, one by one, in each position of the bud, starting from

the entrance. When that bud is full, the factory operator presses a pedal that rotates all the buds

inside the rotary furnace one position in clockwise direction. Since there is a wall between the exit

zone and entrance zone, the bud that is in the exit needs to be free before the rotary movement. To

remove shells from the interior of the rotary furnace, the bud with the shells to be removed, needs

to be at the exit. After that, the shells are removed one by one. When the bud is free, the operator

presses a pedal to move the buds forward and continue the unloading process. When this phase is

complete and pouring has ended it is important to move the buds back in order to use the empty

spaces in a optimised way when loading more shells.

Zone 1 aims to burn the remaining wax from inside the shell. Both zones 1 and 1 rise the

temperature of the ceramic material up 1000oC in order to sinter it. Zones 3, 4 and 5 are where the

ceramic material achieves the temperature required for the pouring phase. This phase is important

to avoid thermal shocks and prevent the metal alloy from solidifying before reaching all the areas

in the interior of the shell.

While the shells are inside the rotary furnace the alloy is being melted in an induction furnace.

After at least two hours of shell sintering and once the metal is ready, the pouring may start.

The foundry department at ZOLLERN & Comandita has two autoclaves, two rotation furnaces

and three induction furnaces, as represented in Figure 3.3 . For the development of this work, only

3.4 List of known problems 17

one of each furnace will be considered.

Figure 3.3: Scheme of the main components of the foundry department.

3.4 List of known problems

One of the main objectives of this work is to develop a system that is able to identify and alert

the manager of the foundry department when something does not follow the correct procedure.

Although, the manager and the operators of the shop floor in the foundry department at ZOLLERN

& Comandita know the problems that could occur, a list with those possible problems and the

respective consequence in a production order did not exist.

In the scope of this dissertation by lit review and interviews with the manager of the foundry

department in order to organise the relevant information about all possible failures, a list of the

events that could lead to faulty parts in each furnace was created.

Table 3.2 and Table 3.3 list the problems that can occur in each furnace.

3.5 Conclusion

The industry of investment casting is an example of an industry with some rudimentary phases.

For that reason, and given that they have room for improvement, ZOLLERN & Comandita is good

case study for this dissertation.

The foundry department of the ZOLLERN & Comandita was identified as the harder phase to

control. It is also the one that stood out in the high number of incidences. With the focus on that

department, the most relevant problems were identified and how the process should work correctly

in detail.

18 Case Study - Investment Casting

Table 3.2: Problems that could by occur at the autoclave.

1. Delay less or more than 14 seconds to arrive approximately 9 bar
In the normal work of the autoclave, the pressure should increase to 9 bar in more or less 8
seconds, but it can take up to 14 seconds. It is considered a failure if the pressure does not
get to 9 bar before 14 seconds have elapsed. If this occurs, the ceramic part of the tree, may
be damaged with the wax expansion.

2. Pressure in steam generator is not at 12 bar
At the beginning of a new cycle of the autoclave, the steam generator should be at 12 bar.
If this does not occur, the main space will not reach the expected pressure for the correct
functioning.

3. More than 1 minute between entry and start
The shelf should not to be inside the autoclave before the initiation of the cycle for a long
period of time, because it compromises the quality of the trees since it increases the tem-
perature slowly and the ceramic part of the tree may be damaged with the wax expansion.

4. Pressure is not at 9 bar during the cycle
During the interval of the 15 minutes of the cycle of the autoclave, the main chamber should
stay constantly at 9 bar to maintain the quality of the trees and remove as most wax as
possible that exists inside the tree. In order to have a range, it is considered that something
went wrong if the pressure decreases below 8 bar or it increases above 10 bar.

Table 3.3: Problems that could by occur at the Rotary furnace.

1. Tree less than 15 minutes in first zone
To guarantee the correct burn of the remaining wax that exists inside the tree, it has to stay
at least 15 minutes in the first zone. If this is not fulfilled, the probability that wax remains
inside the tree increases.

2. Temperature of zone 1 and zone 2 different of 1000oC
The first two zones of the rotary furnace should always be at 1000oC. If the temperature is
different, the quality of the trees could be compromised because a good tree sintering will
not be acomplished.

3. Temperature of zones 3, 4 and 5 different from expected
Each production order has its specific temperature for zone 3, 4 and 5, the same temperature
for the three zones. If the temperature is not respected, the sinterization can be compro-
mised.

4. Failure of the oxygen in the first zone
The first zone of the rotary furnace has as main objective to burn the remaining wax that
exists inside the tree. If the oxygen injection fails, the remaining wax will not be burn and
the final pieces will present defects. It is considered a failure when the percentage of oxygen
is less than 7%.

5. Less than 20% of the oxygen in the first zone during the entry of trees
The first zone of the rotary furnace has as main objective burn the remaining wax that it
exists inside the tree. During the entry of the trees in the rotary furnace, the level of oxygen
should be 20%, in order to guarantee a correct burning of the remaining wax.

Chapter 4

Software Solution - Simulation and
Visualisation

The development of a data visualisation tool is the main objective for this work. The proposed

software solution is called SmartVis4.0, because it is a visualisation tool that should help the

user make informed and intelligent decisions in the context of Industry 4.0, while also having its

own ability to identify important or abnormal events, based on its built in knowledge about the

manufacturing process at ZOLLERN & Comandita.

SmartVis4.0 should work correctly in different devices. In order to develop this web applica-

tion, the framework Angular was used for the frontend component and Django framework for the

backend.

Since it was not possible to collect data in the shop floor, it was necessary to develop a sim-

ulator, that will be used to test SmartVis4.0. When data collected from the shop floor exists,

SmartVis4.0 will work correctly by reading and interpreting the real values from database.

In this chapter, the requirements, the architecture and the data structure for the developed work,

will be presented. At the end, more details about data flow and relevant implementations, will be

explained.

4.1 Requirements

Having identified the base goals for SmartVis4.0, the requirements for this system were created.

The functional requirements will be presented with Use Cases (UC).

4.1.1 Functional Requirements

The main requirement of SmartVis4.0 is, as it was mentioned, to show collected data from the

foundry department of ZOLLERN & Comandita identifying the id of the PO or the tree id that

the user wants to see. This data should be presented in graphics and diagrams to help the user to

understand it. Alternatively, the user should have the possibility to choose which data they want

to see. This requirement is summarised in UC 1.

19

20 Software Solution - Simulation and Visualisation

UC 1. The user wants to see data that was collected from a specific furnace, selecting a PO or a

tree id.

Another requirement is that the section managers should have the possibility to see data related

to what is happening on the shop floor, in real time. That way, they can quickly perceive what is

being produced and if everything is working within the expected parameters. This is summed up

in UC 2.

UC 2. The user wants to see data that is being collected in real time to control the shop floor.

The rotary furnace is loaded one tree at a time and it is important to know the state of each

bud, previous shown in Figure 3.2. Thus, it is useful if the data visualisation tool has a simple and

intuitive way to see, in real time, the state of the rotary furnace. This requirement is collected in

UC 3.

UC 3. The user wants to see the state of the rotary furnace in real time.

Another requirement identified for the system is to alert the department manager when some-

thing deviates from the expected values, without the manager needing to constantly monitor the

data. This requirement is represented by the UC 4.

UC 4. The user wants to be alerted when something does not work correctly.

The diagram in Figure 4.1 illustrates the four statements above, which compromise the initial

functional requirements established for SmartVis4.0.

User

See data collected in the past

Choose the
furnace

Choose PO or
IdTree

See rotary furnace
state

See data in real time

Choose the
furnace

See alerts

Figure 4.1: UML use cases diagram.

4.1.2 Non-Functional Requirements

In terms of non-functional requirements, SmartVis4.0 should work in different devices, with differ-

ent screen sizes, so it should be platform compatible. To have an easy and intuitive interpretation

by the user, usability was also a non-functional requirement for the system.

4.2 Architecture 21

The system will show data in real time and it could change every second. Thus, the perfor-

mance of the system was considered as another non-functional requirement, because the existence

of delays in the presented data would implicate that the real-time feature would not be fulfilled.

Scalability is also a concern, since the tool is meant to be extended to the whole manufacturing

process and because, without the manager needing to constantly monitor the data. The managers

may want to see the history of the shop floor. The tools selected for the development of this system

were chosen so that its evolution is as easy as possible, while also being easy to change the visual

appearance.

Security requirements are not a big concern and were not considered. Even though some data

could be sensitive, the system is meant to only be available in the internal network of the company.

Assuming that the local network is properly secured, there is no need for extra security measures

in the visualisation tool. Eventually, as more data becomes available, if the company feels the

need to have access control, user authentication and authorisation can be added.

4.2 Architecture

To obtain a good data flow, an architecture for the whole system was created, compromised by its

different parts.

This system is composed of three main components, as shown in Figure 4.2. The first compo-

nent is the simulator, which generates simulated data that will be stored in the second component,

the database. Later, the simulator will be substituted for the shop floor, since the data will be

collected directly, in real time, from the foundry department. The third component is SmartVis4.0,

which is divided in two subcomponents, frontend and backend.

Figure 4.2: System architecture.

The following subsections will describe the architecture adopted for each component.

4.2.1 Simulator

Since the simulator should generate data as close as possible to the real data that exists in the

foundry department at ZOLLERN & Comandita, it was developed to be as similar as possible to

the shop floor. The simulator generates data that corresponds to the correct work of the shop floor,

without any problem. The injection of simulated faults was implemented with probabilities and

will be explained with more detail in Section 5.1.

22 Software Solution - Simulation and Visualisation

The simulator consists of three main parts or subcomponents, as shown in Figure 4.3.

Figure 4.3: Simulator architecture.

The first subcomponent, the PO generator box in Figure 4.3, has the function to generate data

regarding the parts that will be produced, with their respective features. The necessary specifica-

tions for a PO, are generated in this block as well. This data was generated with a small sample of

real data. Based on that, a necessary quantity of POs was created to simulate and generate a good

amount of data to be shown.

Each PO is identified by a sequential number that currently has seven digits. When generating

a new PO, a random part previously generated and that already exists in the list of possible parts to

be produced, is selected. The number of parts to be produced in each PO is generated following a

normal distribution, centered in 10 and with a high standard deviation, because this feature could

have a large variation. Still in this subcomponent, the POs are organised in shelves to enter the

foundry department, like in the shop floor. Each shelf is identified with a sequential id. This part

of the simulator is executed just once to generate the necessary data for the rest of the simulation.

The other two subcomponents of the simulator, represented by the green and blue boxes in

Figure 4.3, correspond respectively to the autoclave and the rotary furnace. These two parts gener-

ate data by simulating the operation of each furnace. This simulation is executed in real time, and

the data is generated at the same rate that the real furnaces can monitor. These two blocks work

independently, like the two furnaces in the case study.

The autoclave has two important zones for its operation, as described in Chapter 3. The part of

the simulator that corresponds to the autoclave operation, was developed with two state machines

that correspond to each part of each zone. The two state machines are represented in Figure 4.4

and Figure 4.5.

For each phase of each zone of the autoclave, the simulated data was generated with normal

distributions centered in the target value.

When a shelf ends a cycle inside the autoclave, it is added to the storage, where the trees wait

to go to the rotary furnace. To help the connection between the simulator of the autoclave and the

rotary furnace, a trigger was added to the database that automatically inserts into the storage the

shelf that ends the cycle in the autoclave.

Once the storage table has all shelves containing a PO, the trees in that PO are ready to enter

the rotary furnace. This part of the simulator works as in the real world, independently of the

autoclave.

4.2 Architecture 23

Figure 4.4: State machine for the main chamber of the autoclave.

Simulating the behaviour of the rotary furnace is more complex, because the entrance and exit

of trees from that furnace, together with the advances and retreats of the furnace base, are con-

trolled by the operators, making these movements difficult to normalise. Of course, it is also due to

that manual operation that the department managers need to have better control of this work flow.

Parallel to that, the temperatures need to be collected and they are set for each zone individually,

thus they are potentially different for each zone and consequently for different trees that it are

inside the rotary furnace. Considering this, two threads were developed. One thread simulates the

events of input and output of the trees in the rotary furnace, as well as, the advances and retreats of

the base. The algorithm developed in this thread will be explained in Subsection 4.5.1. The other

thread simulates the temperatures monitored in each zone. Similar to the autoclave, the simulator

of the rotary furnace generates the real temperatures that follow a normal deviation, centered in

the target value.

4.2.2 SmartVis4.0

SmartVis4.0 was envisioned to be as efficient as possible, because it will process a large quantity of

data. This tool needs to be simple, and have an intuitive interface. Because of that, it was divided

in two parts, the backend and the frontend. Each part has its architecture to be more efficient in its

functions. The deployment diagram for SmartVis4.0 is presented in Figure 4.6. The system uses

the company’s corporate PostGreSQL database server.

As it is demonstrated in the deployment diagram, the user will interact with SmartVis4.0 by

a web browser, which communicates with the frontend server. Each time that is necessary to

communicate with the database, the frontend communicates with the backend server, that will

fetch the necessary data and will send it to the frontend to be shown to the user.

Frontend
Due to the fact that Angular is a Model View Controller (MVC) based framework, but also

because this architectural style is well suited for web applications, the architecture of the frontend

follows the MVC pattern. As such, there is a representation of the data structure in the Model,

24 Software Solution - Simulation and Visualisation

Figure 4.5: State machine for the steam generator.

Back end server

Client

Front end server

Database Server

User

HTTP

Web Browser
PostgreSQL

TCP/IP

JSON

Django

View

Model

 HTTP

Angular

Model

View Controller

Figure 4.6: Deployment diagram for SmartVis4.0.

which is simultaneously used as source of the information displayed in the View and queried by

the Controller upon user interaction.

Backend

As for the server, the DJango framework was used, which follows the Model Template View

(MTV) architectural style. MTV is similar to MVC, as mentioned in Subsection 2.3.2, but de-

pending on the source, there are some differences. In any case, the core ideas of code separation

according to its purpose are the same. For the backend, the Model was used to represent the data

and communicate with the database, while the View is responsible for replying to the HTTP re-

quests from the frontend using the JSON format. There is also a layer of business logic, that is

responsible for the necessary processing of data before sending it to the frontend. Typically, the

Template layer is responsible for presenting the information to the user, not the content itself, but

4.3 Data structure 25

the way it is presented. For the backend component, this layer was not developed, because the

template is done in the frontend component.

4.3 Data structure

Data is one of the main elements for the development of this project. The work presented is based

on preliminary work presented in [24]. As such, an architecture was created for the database,

facilitating its access and interpretation. The architecture developed for the database is presented

in Figure 4.7 with a relational diagram.

The database was organised in three main parts. The first one contains all information of the

parts to be developed and their respective features to be produced. The second one contains all

data monitored with the respective time stamp for what is being produced. The last one saves the

alerts to be shown in the data visualisation tool.

The next sections will explain with more detail each part of the data structure in the database.

4.3.1 Information data

To study and analyse what is being produced, it is traceability to the tree to keep all the information

from POs. This information is inserted by the administration of the company and contains all

features concerning the parts that the customers require. The tables shown in Figure 4.8 were

created to store only that informative/static data.

As previously shown, a part is associated to a PO. Since each PO has its specific features and

it is possible to have more than one PO to the same part, the relation between the table PartType

and ProductionOrder is 1 : n.

A PO has associated several trees. Even though all trees have the same features, they will not

be manufactured in the same exact conditions, so it is important to uniquely identify each tree. In

that way, the Tree table was created, that preserves the features for each tree. The relation between

the table ProductionOrder and Tree is 1 : n.

Once the trees enter the foundry department they are organised in shelves, hence there is

another table, Tree_Shelf, that associates the trees with their respective shelves.

4.3.2 Monitoring data

At this part of the database, all data collected from the shop floor is saved. It corresponds to the

critical attributes that should be controlled for the correct work of each furnace, but also all events

from the shop floor in the foundry department.

The monitored data on the database is organised in two subsections, Subsubsection 4.3.2.1 and

Subsubsection 4.3.2.2, that corresponds to the autoclave and the rotary furnace respectively.

26 Software Solution - Simulation and Visualisation

Autoclave

+ id: int

+ shelf: int

+ entry: timestamp

+ cycle_start: timestamp

+ cycle_end: timestamp

+ exit: timestamp

+ program: string

Tree

+ id: bigint

+ id_po: bigint

+ zgts: int

+ number: int

+ start: timestamp

+ finish: timestamp

+ state: boolean

Tree_RotaryFurnace

+ id: int

+ id_tree: bigint

+ furnace: int

+ bud: int

+ position_bud: int

+ entry: timestamp

+ exit: timestamp

RotaryFurnace

+ id: int

+ furnace: int

+ date_time: timestamp

+ target_temp_1: float

+ real_temp_1: float

+ target_temp_2: float

+ real_temp_2: float

+ target_temp_3: float

+ real_temp_3: float

+ target_temp_4: float

+ real_temp_4: float

+ target_temp_5: float

+ real_temp_5: float

+ oxygen: float

+ gas_flow: float

+ exaust_temp: float

RotaryFurnaceAdvance

+ id: int

+ furnace: int

+ entry_bud: int

+ date_time: timestamp

PartType

+ id: float

+ material: bigint

+ alloy: string

+ design: bigint

+ sprue: string

+ num_parts: int

ProductionOrder

+ id: bigint

+ id_partType: float

+ num_trees: int

+ weight: float

Tree_Shelf

+ id: int

+ id_tree: bigint

+ shelf: int

MainChamber

+ id: int

+ id_autoclave: int

+ date_time: timestamp

+ target_pressure: float

+ real_pressure: float

+ real_temp: float

SteamGenerator

+ id: int

+ id_autoclave: int

+ date_time: timestamp

+ target_pressure: float

+ real_pressure: float

+ real_temp: float

RotaryFurnaceState

+ id: int

+ furnace: int

+ bud: int

+ position_bud: int

+ id_tree: bigint

Bud_Zone

+ id: int

+ furnace: int

+ bud: int

+ zone: int

+ date_time: timestamp

Alerts

+ id: int

+ id_autoclave: int

+ id_bud_zone: int

+ date_time: timestamp

+ level: int

+ source: string

+ message: string

Storage

+ id: int

+ id_po: bigint

+ date_time: timestamp

+ num_trees: int

+ total_num_trees: bigint1 1

1

n

1

n

n 0..1

n

11n

1

n

1

1

0..1

1

0..1

1

n n

n n

n

n

n

n

Figure 4.7: Relational diagram.

4.3.2.1 Autoclave Data

The foundry department starts with the processing of shelves of trees through the autoclave. The

data of this part of the process is stored in three different tables, presented in Figure 4.9.

The Autoclave table stores information about the autoclave cycles. It is important to save the

shelf that was processed in that furnace and the respective timestamp for its entry and exit, as

4.3 Data structure 27

Tree

+ id: bigint

+ id_po: bigint

+ zgts: int

+ number: int

+ start: timestamp

+ finish: timestamp

+ state: boolean

PartType

+ id: float

+ material: bigint

+ alloy: string

+ design: bigint

+ sprue: string

+ num_parts: int

ProductionOrder

+ id: bigint

+ id_partType: float

+ num_trees: int

+ weight: float

Tree_Shelf

+ id: int

+ id_tree: bigint

+ shelf: int

1 n 1n n 1

Figure 4.8: Relational diagram for the main production information.

well as the begin and the end of its cycle. It is important to save all this timestamps in order to

identify exactly the pressure of the main chamber and the steam generator during the cycle. The

time difference between the entry and the start of the cycle, as well as, the time difference between

the end of the cycle and the exit, are important to control, because if those intervals are large, they

compromise the quality of the trees.

The tables MainChamber and SteamGenerator store temperature and pressure data, for each

second that the cycle lasts, in the main chamber and the steam generator, respectively.

The relation between these three tables is that for each new insert in the table Autoclave, there

are n inserts at the tables MainChamber and SteamGenerator.

Autoclave

+ id: int

+ shelf: int

+ entry: timestamp

+ cycle_start: timestamp

+ cycle_end: timestamp

+ exit: timestamp

+ program: string

MainChamber

+ id: int

+ id_autoclave: int

+ date_time: timestamp

+ target_pressure: float

+ real_pressure: float

+ real_temp: float

SteamGenerator

+ id: int

+ id_autoclave: int

+ date_time: timestamp

+ target_pressure: float

+ real_pressure: float

+ real_temp: float

1n 1 n

Figure 4.9: Relational diagram for the autoclave section.

4.3.2.2 Rotary Furnace Data

The tables for the rotary furnace are depicted in Figure 4.10. This part of the database is composed

by five tables. One of them, the table RotaryFurnace, saves the essential attributes that are nec-

essary to guarantee that the furnace is working correctly. The remaining tables save all the events

that occur in this furnace.

Every minute, already defined by the furnace, the RotaryFurnace table saves the measured

temperature for each zone. This corresponds to the attribute real_temp_n, where n is the number

of the corresponding zone. The element target_temp_n indicates the nominal value for each zone,

in each insert, where n is the number of the corresponding zone. As the first zone is different from

28 Software Solution - Simulation and Visualisation

Tree_RotaryFurnace

+ id: int

+ id_tree: bigint

+ furnace: int

+ bud: int

+ position_bud: int

+ entry: timestamp

+ exit: timestamp

RotaryFurnace

+ id: int

+ furnace: int

+ date_time: timestamp

+ target_temp_1: float

+ real_temp_1: float

+ target_temp_2: float

+ real_temp_2: float

+ target_temp_3: float

+ real_temp_3: float

+ target_temp_4: float

+ real_temp_4: float

+ target_temp_5: float

+ real_temp_5: float

+ oxygen: float

+ gas_flow: float

+ exaust_temp: float

RotaryFurnaceAdvance

+ id: int

+ furnace: int

+ entry_bud: int

+ date_time: timestamp

RotaryFurnaceState

+ id: int

+ furnace: int

+ bud: int

+ position_bud: int

+ id_tree: bigint

Bud_Zone

+ id: int

+ furnace: int

+ bud: int

+ zone: int

+ date_time: timestamp

0..1
1

n nn n

Figure 4.10: Relational diagram for the rotary furnace section.

the other ones, because it has oxygen injection to burn the trees, for each insert in this table, the

oxygen level, the gas flow and the exhaust temperature are also stored, that correspond respectively

to the attributes oxygen, gas_flow and exaust_temp, in the RotaryFurnace table.

The main events of the rotary furnace are the entry and exit of trees, and the bud advances

inside the furnace. Since the company wants to control the position of each tree during its passage

in the rotary furnace, for each tree, the id of the bud and its respective position, are saved in the

Tree_RotaryFurnace table, in the attributes bud and position_bud, respectively. The timestamps

of the respective entry and exit, are also stored in this table.

To simplify the reading of the current state of the rotary furnace, each time a new tree is

inserted into the rotary furnace, the RotaryFurnaceState table is updated by a trigger. This trigger

will be explained in chapter Subsubsection 4.4.2.2. The RotaryFurnaceState table always has the

current state of each bud, saving the id of the trees at that moment, without maintaining a log.

It is also necessary to record the location of each bud over time. To do that, for each new

advance of the rotary furnace, the id of the new bud in the first position on the first zone, that

corresponds to the entry of the furnace, is stored on the RotaryFurnaceAdvance table. This is

stored because knowing the bud that is in the furnace entrance at each moment, it is possible to

know the ids of the remaining first buds of each zone. The Bud_Zone table, stores the bud at the

start of each zone over time. This information is generated with a trigger on each rotary furnace

advance. This trigger will be explained in Subsubsection 4.4.2.2. Thus, it is easier to know how

much time each tree spent in each zone, given that it is also possible to know the bud in which

4.4 Smart data dynamics 29

each tree is loaded.

4.3.3 Alerts

The alerts section is composed of a single table, as shown in Figure 4.11. This table stores the

alerts to be shown to the user and it keeps the history of previous alerts.

The alerts have their specific features, so it is important to save them in order to make it

possible for the data visualisation tool to show them easily. These features are the level and the

source of the alert, that is stored in the Alerts table, in the attributes level and source, respectively.

The level of the alert indicates the importance of such alert, in a range, whether it is something

informative for the manager department or if something catastrophic is happening. The source

identifies where the problem was encountered, to help the department manager to identify and

solve that problem.

Once the level and the source of the alert is identified, the last parameter, message, specifies in

an objective form, what generated the alert.

The Alerts table is filled by triggers in other tables in the database, which will be explained in

Subsubsection 4.4.2.3.

Alerts

+ id: int

+ id_autoclave: int

+ id_bud_zone: int

+ date_time: timestamp

+ level: int

+ source: string

+ message: string

Figure 4.11: Relational diagram for the alerts.

4.4 Smart data dynamics

Data flow is one of the most important aspects of this work. To guarantee that the data arrives

correctly to the user, each block communicates with others blocks, with different types of struc-

tures, facilitating the implementation of different functionalities. However, the knowledge that the

system has also flows inside the database. The Figure 4.12 shows how each block communicates

with other blocks.

Next sections will explain the data flow between blocks and the smart data used in each block.

30 Software Solution - Simulation and Visualisation

Figure 4.12: Data dynamic in all system.

4.4.1 Inter Blocks

As discussed, the simulator generates data and stores it in the database. This communication

is performed by queries, which are represented in Figure 4.12. Sometimes, it is necessary to

send some of that data from the database to the simulator, since the latter needs data to work

properly. As the simulator will be disabled when the real data from the shop floor is available, the

communication from database to the simulator is represented with a dotted line because it will not

be necessary.

The other component that communicates with the database is the backend of SmartVis4.0.

This component receives requests from the frontend by the HyperText Transfer Protocol (HTTP).

The backend receives the request, interprets it and sends the necessary queries to the database, in

order to receive from the database the required data. The frontend receives the response from the

backend in JSON format, since the frontend is a web interface and it uses TypeScript language,

this is the most appropriate format to exchange data.

4.4.2 Intra Blocks - DB

The system developed has some knowledge about the process of investment casting, more specif-

ically the production method in ZOLLERN & Comandita. Thus, some relevant data is interpreted

and reorganised in the database with the use of triggers. Although, this involve a new technology,

the alternative of the use of triggers is multiple periodic queries. However, this approach is more

exhaustive to the communications with database.

In other cases a summary resulting of the data interpretation is created, that helps the user to get

some information without the need to be constantly analysing and interpreting the data collected

in the shop floor. The knowledge that the system has from the foundry department at ZOLLERN

& Comandita, gave it the skills such as those that would be found in an expert system.

The information that results from the interpretation of the data collected from the shop floor

is organised into three big parts. These are the storage, the rotary furnace and the alerts. The first

two use the data collected to save, in an easy way, the data that will be interesting to the user.

This reorganisation of the information will spare some processing needed each time that the user

4.4 Smart data dynamics 31

requires that information. The last part uses its knowledge about the factory process and generates

summaries when it is necessary to inform the factory manager when something needs attention.

In what follows more detail will be given about how each part was implemented.

4.4.2.1 Storage

Between the autoclave and the rotary furnace in the foundry department at ZOLLERN & Coman-

dita, the POs wait in storage. To know exactly which trees finished their cycle on the autoclave

and are waiting to go to the rotary furnace, a table was created on the database called Storage,

presented on Figure 4.13.

Storage

+ id: int

+ id_po: bigint

+ date_time: timestamp

+ num_trees: int

+ total_num_trees: bigint

Figure 4.13: Table with the data from the storage.

The attribute po_id identifies the id of the PO that is in the storage and the total_num_trees

indicates the total number of trees that the PO has. Since all trees from a PO may not go through

the autoclave at the same time, the attribute num_trees indicates the number of trees that are in the

storage zone. The timestamp date_time saves the instant that the first tree from that PO arrives at

the storage.

The information saved on the Storage table is inserted by a trigger on the Autoclave table. The

trigger is represented in Figure 4.14.

Autoclave Storage

Update Data

Added Exit?

No

Insert TreesYes

Figure 4.14: Swim lane diagram about trigger for storage table.

32 Software Solution - Simulation and Visualisation

Each time that the timestamp of the attribute exit on Autoclave table is updated, the trigger is

activated. It selects all trees that exist on the shelf that is exiting the autoclave and identifies the

ids of the POs that they correspond. If there is an entry on Storage table from that PO, the number

of trees is updated, if not, the id of the new PO is inserted with the respective number of trees.

4.4.2.2 Rotary furnace

The rotary furnace is very human dependent and its movements are somewhat unpredictable. The

manager of the foundry department needs to track the movement of each tree in each instance,

but it is hard to control that just by storing each advance of the buds in the rotary furnace. As

mentioned in Subsubsection 4.3.2.2, two tables were created, Bud_Zone and RotaryFurnaceState,

that save information that helps the access to relevant data. In this way, each table is updated with

triggers, that are presented in Figure 4.15.

Figure 4.15: Triggers on the rotary furnace database.

The Bud_Zone table, stores the bud at the start of each zone over time. This information is

generated with a trigger on each rotary furnace advance, which is represented by the scheme of

left side of Figure 4.15. Just by knowing the bud that is in the furnace entrance at each moment, it

is possible to know the ids of the remaining first buds of each zone, using Equation 4.1, where e

is the id of the entrance bud and nk is the number of buds from the entrance to the start of zone k

and bk is the id of the bud at the start of zone k.

bk = ((((e+nk−1) mod 24)+24) mod 24)+1,

k = {2,3,4,5},
nk = {5,12,17,21}

(4.1)

To simplify obtaining the current state of the rotary furnace each time that a new tree en-

ters or exits the rotary furnace, the RotaryFurnaceState table updates the attribute id_tree for the

respective bud and position, where the entered or exited, with a trigger.

4.4.2.3 Alerts

The entries of the Alerts table are entirely generated by triggers. Thus, the database will always be

responsible for controlling the data and inserting a new alert in the database when something does

not work correctly.

4.5 Relevant implementation details 33

The database is able to identify all problems mentioned in Section 3.4. Each problem is iden-

tified by each trigger and has a predefined alert level. The Table 4.1 indicates, for each problem

presented in Section 3.4, its respective level. The level could be one, two or three, with one

corresponding to an informative message, two for a median alert and three for an important or

dangerous alert. Each level was attributed for each identified problem.

Table 4.1: Level of the problems listed.

Furnace Problem Level
Delay less or more than 8 seconds to arrive 9 bar 2
Pressure in steam generator is not at 12 bar 3
More than 10 seconds between entry and start 2
Pressure is not at 9 bar during the cycle 3

Autoclave

More or less 15 minutes at 9 bar 3
Tree less than 15 minutes in first zone 3
Temperature of zone 1 and zone 2 different of 1000oC 2
Temperature of zones 3, 4 and 5 different of the expected 2
Failure of the oxygen in the first zone 3

Rotary

More than 2 hours inside the rotary furnace 1

4.5 Relevant implementation details

The principal components of the developed work and how these are implemented, are described

within this section. First, the events regarding the rotary furnace implemented in the simulator

are covered. After that, the visualisation tool developed to represent the state of this furnace is

described. Finally, the most relevant alerts, implemented with triggers, will be explained.

4.5.1 Rotary furnace - Simulator

As previously mentioned, the simulation of the rotary furnace events are not linear and it is difficult

to normalise its work. In this way, an algorithm to simulate this part of the rotary furnace was

developed in order to be the closest as possible to the work in the shop floor. This will simulate

the work of the furnace, without any failure.

The rotary furnace follows Algorithm 1 and executes it in an infinite loop. The variable newPO

saves the id of a new PO that is available in the storage and treesPO is an array with the ids of

all trees that belongs to the newPO. The next trees that will be placed in the rotary furnace are

the trees which were saved in queue and were removed from the array treesPO. With the number

of trees that will be placed next in the rotary furnace, it is easy to know how many buds are

necessary to be available, so the number of buds that the trees will need is saved in numBuds. The

variable free_buds_exit and available_buds_advance are flags that indicate, respectively, if there

are numBuds empty in the rotary furnace’s exit and numBuds in the first zone ready to advance.

The part of the simulator explained in Algorithm 1 begins verifying the next PO that is avail-

able to enter the rotary furnace. Sometimes, the PO needs to be divided. This happens in two

34 Software Solution - Simulation and Visualisation

Algorithm 1: Function responsible for simulating the rotary furnace data

if empty queue then
newPo = PO from Storage table;
treesPO = Array with trees from newPO;
if newPO.weigth > 200 then

queue = array trees which total weight < 200;
treesPO = array treesPO without trees that are in queue;

else
queue = treesPO;
treesPO = null;

else
numBuds = round(queue.length/3);
free_buds_exit = verify the availability of buds in exit;
available_buds_advance = verify the availability of advances in first zone;
if available_buds_advance and free_buds_exit then

Add trees from queue to rotary furnace;
if treesPO then

queue = treesPO;
treesPO = null;

else
queue = null;

else if available_buds_advance then
Remove trees from rotary furnace;

possible cases. The first one, if the PO is too large, that means that the metal is too heavy, more

than 200Kg, to be produced in one time. The second one, if the number of trees is bigger than the

number of spaces available in the first zone, because the trees need to stay fifteen minutes in this

part of the rotary furnace. After that, if necessary, one part is with the maximum number of trees

that can enter at the same time, and the second part with the remaining.

When the simulator of the rotary furnace has the set of trees that will begin their rotary furnace

cycle, the simulator verifies if there are trees at the end of the rotary furnace that can be used for

the new trees that need to enter. After this verification, and removal if there are any trees at the

exit, the simulator will verify if the rotary furnace can advance the trees of the first zone, and if

there are buds available to receive the new trees. If the conditions are verified, new trees are added

to the rotary furnace, if not, the cycle of the Algorithm 1 continues to check the availability to

insert new trees in the rotary furnace cycle.

4.5.2 Rotary furnace diagram - SmartVis4.0

The diagram of the rotary furnace in SmartVis4.0 was developed in order to be as similar as pos-

sible with the architecture of the real furnace, as mentioned previously. That way, it will be better

for the foundry manager get the necessary information about the state of the rotary furnace.

4.5 Relevant implementation details 35

The diagram of the rotary furnace in SmartVis4.0 has its base structure that is presented in

Figure 4.16.

data.datasets[0]

data.datasets[1]

data.datasets[2]

entry exit

Figure 4.16: Base diagram of the rotary furnace in SmartVis4.0.

To develop this visualisation diagram, the framework Chart.js was used. As mentioned in

Subsection 2.3.3, this framework uses the TypeScript language, which allows the developing of

an appealing and dynamic visualisation module. This framework uses the Chart class to represent

different types of graphs just by initialising the attributes of the class with specific values. These

principal attributes are type, data, options and plugins. With these it is possible to define multiple

features for each graph.

The rotary furnace is round, as demonstrated in Figure 3.2. The chart in the framework Chart.js

that has the shape more similar with the rotary furnace is the Doughnut Chart, so the attribute type

is initialised as ’doughnut’. The attribute data is what defines how the graph will be presented.

This can be composed by more than one dataset, organised in a vector. For each dataset it is

possible to define different features. The attribute data, of doughnut chart that was created to

represent the rotary furnace, was initialised as presented in Code 4.1.

Code 4.1: Initialise attribute data in the class Chart.

data: {

datasets: [{

data: sizesVector,

backgroundColor: coloursVector,

label: labels3,

}, {

data: sizesVector,

backgroundColor: coloursVector,

36 Software Solution - Simulation and Visualisation

label: labels2,

}, {

data: sizesVector,

backgroundColor: coloursVector,

label: labels1,

}],

},

The doughnut chart is round, like the rotary furnace, and it has a free space in the centre, which

makes each part of the graph look like a bud. The number and the size of each part of the graph is

defined with the values that the attribute data, inside the datasets, is initialised. Since this graph is

used to compare the dimension of different values, the attribute data needs to be initialised with an

array of numbers. The dimension of each bud of the doughnut chart follows Equation 4.2, where

i is the index of the data array, data[i] is the value in data array with index i and the sizebud [i] is

the dimension of the bud in a range [0 : 1], where 1 corresponds to the whole graph and 0 does not

appear in it.

sizebud [i] =
data[i]

∑
n
j=0 data[j]

(4.2)

Since this part of the graph should represent each bud of the furnace that is composed by

twenty four buds, all with the same size, the array sizesVector, presented in Code 4.1, should be

initialised with twenty four equal values. The doughnut chart was initialised with three layers,

corresponding to the three possible positions of each bud. For this, the datasets is initialised by a

set of three datasets representing three aligned layers. Thus, doughnut chart gets the shape of the

rotary furnace.

The rotary furnace is composed of five zones. Each zone has its number of buds and some other

specific features, as it was mentioned in Section 3.3. For an easier interpretation of the diagram,

it is necessary to highlight each zone. To do that, a vector of twenty four colours was created,

that correspond to the colour of each zone, and the buds of the each zone have the same colour.

The Code 4.2 demonstrates how the colour vector is created. The background in all datasets was

initialised with same vector of colours.

Code 4.2: Vector of colours.

colours = [

// Zone 1 -> 5 buds

red, red, red, red, red,

// Zone 2 -> 7 buds

turquoise, turquoise, turquoise, turquoise, turquoise, turquoise, turquoise,

// Zone 3 -> 5 buds

yellow, yellow, yellow, yellow, yellow,

// Zone 4 -> 4 buds

green, green, green, green,

// Zone 5 -> 3 buds

4.5 Relevant implementation details 37

blue, blue, blue

];

The next phase of the creation of the rotary furnace representation in SmartVis4.0, is to get the

state of the furnace from the database. With that, the label of each bud is initialised based on the

existence of tree in the specific position of the rotary furnace. For that, the function initLabels(),

that is partially represented in Code 4.3, was created.

Code 4.3: Function to initialise labels with the existing trees in the rotary furnace

initLabels() {

// res -> Result of the getStateRotationOven()

this.getStateRotationOven().then(res => {

this.resData = res;

// bud -> first bud of the first zone

this.getFirstBud().then(bud => {

let i = 0;

let tempPos = 0;

const entryBud = this.getAttribute(this.getAttribute(bud[0], ’fields’), ’

entry_bud’);

this.resData.forEach(y => {

const x = this.getAttribute(y, ’fields’);

tempPos = this.getAttribute(x, ’position_bud’);

i = (this.getAttribute(x, ’bud’) - entryBud + 24) % 24;

if (this.getAttribute(x, ’id_tree’) !== null) {

this.label[tempPos - 1][i] = this.getAttribute(x, ’id_tree’) - (Math.

floor(this.getAttribute(x, ’id_tree’) / 1000) * 1000);

} else {

this.label[tempPos - 1][i] = null;

}

});

this.initChartDonut();

});

});

}

Firstly, this function gets the state of the rotary furnace with the ids of the trees that are in each

position in each bud, and resData vector. If there are no trees, the corresponding value is null. It

is necessary to know the id of the bud that is in entry of the furnace, in order to represent each tree

in the respective place of the diagram. This corresponds to the label with the index equal to zero.

After that, it is possible to initialise the matrix with all labels. The relation of the matrix and each

part of the diagram is represented in Figure 4.17.

To initialise the matrix with all values of the trees in their correct place, each index of the

resData vector is filled. For each element the respective bud id and position are accessed. With

the value of the position, it is possible to get the index of the line in the matrix of labels. To know

38 Software Solution - Simulation and Visualisation

entryBud
data.datasets[p].labels[0]

p = 0

p = 1

p = 2

entry exit

Figure 4.17: Relation between the attributes and the real diagram in SmartVis4.0.

the index of the bud in that moment, Equation 4.3 is used.

index = (idBudTree− entryBud +24) mod 24 (4.3)

After the resData vector is filled with the state of the rotary furnace, all the labels are ready to

be presented. For a better visualisation, the opacity of each bud is changed when it does not have

a tree, in other words, when the label is equal to null. The opacity of the respective bud is changed

to 50%.

The other two parameters of the Chart class, options and plugins, where initialised with fea-

tures that give details in the presentation of the diagram and user interaction. One example of that

is when there is no tree in a specific position and the user places the mouse over that position, the

label does not appear. Other feature defined within these parameters, is the text that appears on

top of each position, in this case, the id of the corresponding tree, as it is shown in Figure 4.18 and

this is responsive for different screen sizes. The information that will be shown in the label when

the user places the mouse over a position with a tree, is also defined in these parameters.

4.5.3 Example usage

To guarantee that all data arrives correctly to the user, there are a lot of communications and func-

tions that exists behind the browser. These functions and communications could be triggered by

the user, or triggered by a specific function that runs periodically in the frontend server. Figure 4.19

represents as an overview of all communications that could occur in parallel.

4.5 Relevant implementation details 39

Figure 4.18: Final appearance of the rotary furnace diagram in SmartVis4.0.

Angular Django
DB

a) b)

c)

d)

e)f)

g)

h)
i)

j)

Browser Shop Floor

Figure 4.19: Scheme with all communications when the SmartVis4.0 works.

As it was mentioned above, the communications could be trigger by the user. Considering

this case, its respective communications are represented by the green arrows in Figure 4.19. The

user begins to select what wants to see and the browser sends the information to the frontend

server, Angular, corresponding to the a) arrow. The interaction of the user with the browser, will

triggered a specific function in the frontend server. The respective function sends a HTTP request

to the backend server, Django, corresponding to the b) arrow.

The backend server is always waiting for a HTTP request. When one arrives, the backend

server activates the corresponding function of the request. This function will be sent a query to

database, c) arrow, and the database returns the respective required data, d) arrow. At this step,

Django serialises the data in JSON to sends it to the frontend server, e) arrow.

When an answer of a specific request arrives in Angular, the frontend server interprets if it is

an error or not. If the answer was an error, the respective message will be presented to the user, but,

if it was an "OK", the Angular initialises the variables of the graphs with the respective parameters

from the answer. The information that the frontend server sends to the browser, is represented by

the f) arrow.

Some events could be triggered by functions that exist in the frontend server, as an example,

40 Software Solution - Simulation and Visualisation

the function to check if exists new alerts in the database. This part of the frontend server makes

periodically to the backend server, g) arrow. The backend server receives the join and verifies in

the database if new alerts exists. After that verification, sends the respective answer to the frontend

server, h) arrow. The Angular receives the answer and interprets it. If no alerts exists, the Angular

does not do anything, but, if answer brings new alerts, according to their levels, they are sent to

the browser and presented to the user in the SmartVis4.0, i).
In the case of a user makes a request to see data in real time, this will be triggered a function

that will make periodical to the backend, like the function of the alerts. However, the function of

alerts runs all the time, while if it was a request of the user and if he wants to stop to see data in

real time, the function could be suspended.

In parallel of all communications and functions that guarantee the correct operation of the

SmartVis4.0, the data collected in the shop floor is stored in the database, j) arrow. With the

existence of the triggers in the database that were explained above, once the data arrives in the

database, it is immediately reorganised and interpreted, in order to guarantee that the information

arrives at the user, as soon as possible.

Chapter 5

Experiments and Results

Testing the system is fundamental to guarantee that all requirements were fulfilled. To help this

task, some features were added in the simulator, in order to create specific situations. For validating

all principal objectives of the system, all use cases where tested and validated.

Finally, the client review is crucial for the software validation. In this work, ZOLLERN &

Comandita was the client. Some software validations were made during the software development,

in order to discuss some details and to make some small validations to guarantee that the work is

complying with the client’s needs.

5.1 Simulation with faults

The simulator was developed to generate data as closely as possible with what’s happening in the

shop floor but without failures. However, the process does not work correctly all the time and

sometimes, some failures can occur. The possible failures were identified and compiled into a

list, presented in Section 3.4. SmartVis4.0 has the capacity to show data, but it was developed to

identify the problems listed and to present alerts when some occur.

In order to test in SmartVis4.0, the alerts when problems occur in the shop floor, while real

data does not exist, it was added the possibility of generating failures in the simulator. The failures

are injected during the work of the simulator with the changing of the correct work of the process

with failures before saving the data in the database.

Each problem identified was tested isolated to guarantee that SmartVis4.0 can easily identify

all the cases. To help this implementation, each problem was developed in their respective part of

the simulator and it is always integrated into the simulator, but it is isolated to the remaining parts

by a condition.

For each problem, a probability is defined that failure could occur, px that is a number between

zero and one. The Figure 5.1 demonstrates the possible range of the occurrence of the failure

according to the value of the px. To define if the failure occurs, a random value is generated

between zero and one, that follows a normal distribution. If that number is lower or equal to px,

the failure will occur, if not, the simulator will work normally.

41

42 Experiments and Results

0 1px

Failure Not failure

Figure 5.1: Probability to a failure occur

To test some specific failure, its probability of occurrence is defined with a high value to

guarantee that the failure happens in a short time, however, the probability is not defined equal to

one, which makes the failure occur all the time, because it is more interesting that the simulator

generates failures sometimes, and other times it works correctly. Thus it is possible in the same

simulation the ability of SmartVis4.0 to identify the problems when they happen. When testing a

failure, the probabilities of the other failures that are not under study are equal to zero, to guarantee

that they never occur, so they don’t interfere with the failure under observation.

After all the possible problems were tested, it was defined, for each one, the probability of the

failure different to the zero, but under 0.5 to make some failures occur and generate some alerts

for any problem. Thus, the simulation is closer to the real world and what really could happen

when SmartVis4.0 will use the real data monitored in real time.

5.2 Requirements Validation

In order to validate the system developed with all parts integrated, the requirements presented in

Section 4.1, functional and non functional will be validated with images of the final appearance of

SmartVis4.0.

5.2.1 Functional

The functional requirements define functions of the system. For SmartVis4.0, they were deter-

mined in Section 4.1. To test the system and if it achieves the main objectives, each requirement

will be analysed with examples of SmartVis4.0 usage. All the use cases were tested with simulated

data.

UC 1. The user wants to see data that was collected from a specific furnace, selecting a PO or a

tree id.

With SmartVis4.0, it is possible to visualise data that represents the passage of a certain PO by

the existing furnaces. As an example of this case, the autoclave was selected. For that autoclave,

the user wants to see what was the pressure in the main space during the cycle of the PO with

id equal to 8127326. Figure 5.2 contains a graph of the pressure variation in the main chamber

during a full autoclave cycle, corresponding to a given PO. This information is preprocessed in the

backend, which determines in which shelves that order was stored, before entering the autoclave,

and then obtains the cycle data for those shelves. In this case, only one graph is shown because

the whole order was stored in a single shelf.

5.2 Requirements Validation 43

Figure 5.2: Variation of the pressure in the main chamber of the autoclave during the cycle of the
shelf containing PO 8127326.

UC 2. The user wants to see data monitored that is being collected in real time to control the shop

floor.

Control the data in real time is easier with SmartVis4.0 in real time mode. With that, the

platform receives new data regarding the furnaces, with a refresh rate of a second.

In the case of the pressures and temperatures from each furnace, since these parameters are

constantly monitored, a temporal window of data is maintained in SmartVis4.0. For the autoclave,

the window has 30 minutes because the period of its cycle is more or less 20 minutes, therefore,

it is possible to see a complete cycle. In the case of the rotary furnace, since the variations of

temperatures are less than the autoclave and a complete cycle of a tree inside of it is higher, there

is an one hour time window.

Any time that a new value is collected in database about one of the furnaces, it is added to

SmartVis4.0 and the last value presented is removed from the data visualiser, keeping the size of

each window.

UC 3. The user wants to see the state of the rotary furnace in real time.

One of the features requested by the managers of the foundry department was the ability to

quickly check the state of the rotary furnace, which was implemented through the scheme in

Figure 5.3. This diagram shows how the furnace is loaded in real time, but it can also be used

to check the progress over time of a given PO within the furnace. For each position of each bud,

one can see if it is loaded and the number of the tree in that position. The chart is also interactive,

allowing the user to scroll the mouse over to obtain a quick overview of the contents, or to click in

a bud and obtain more detailed information.

UC 4. The user wants to be alerted when something does not work correctly.

44 Experiments and Results

Figure 5.3: Representation of the rotary furnace in the data visualisation system.

To verify this use case, failures were introduced in the simulator following the ideas presented

in Section 5.1, thus activating the triggers that generate alerts in the database. These alerts are re-

ceived in SmartVis4.0 and are shown both in the form of a pop-up and in a drop-down notifications

menu, as depicted in Figure 5.4.

(a) Pop-up notification (b) Drop-down notifications

Figure 5.4: Notifications on Visualisation Tool.

All problems presented in Table 4.1 was implemented. Each one was tested singly, with the

probabilities of occurrence, explained in Section 5.1, in order to verify that all respective alerts

work correctly in SmartVis4.0.

5.3 Validation by the client 45

Table 5.1: Combinations to test the platforms compatibility requirement.

Firefox Chrome Safari
Computer test1 test2 test3

Mobile phone test4 test5 test6

5.2.2 Non-Functional

Some of the non functional requirements that were mentioned in Subsection 4.1.2 are essential

to fulfil some of the principal objectives of SmartVis4.0. They are platform compatibility and

performance.

In order to test the platform compatibility of SmartVis4.0, three different browsers were used.

They are Firefox, Google Chrome and Safari. Each browser was tested in computers and in mobile

phones to verify the responsiveness that makes web pages render well on a variety of devices and

window or screen sizes. The Table 5.1 identifies the test for each combination.

The results of each test are presented in Figure 5.5 and Figure 5.6, that shows how the

SmartVis4.0 is presented in each browser in computers and in mobile phones, respectively. It

is possible to verify that the web page is exactly equal in the tested browsers. When the page

is accessed in devices with different sizes of the screens, SmartVis4.0 is responsive, because it

adapts its menus and the size of the page elements depending on the screen, it is possible to see

comparison results in Figure 5.5 and in Figure 5.6.

The performance requirement is fundamental in SmartVis4.0, as it shows data in real time

and the response time of the system needs to follow the data arrive rate. Since data arrives every

second, it was verified that SmartVis4.0 is able to present data at that rate, so the performance

requirement was fulfilled.

5.3 Validation by the client

At the time of writting, SmartVis4.0 is not installed in the ZOLLERN & Comandita, because

there is no collected data. Since the only data that exists is the data generated by the simulator,

SmartVis4.0 wil be usefull in future for the company.

However, the future users of SmartVis4.0, the foundry department managers, have been follow-

ing the evolution of the tool in order to guarantee that it is developed with the necessary features

to help their work. At this moment, they consider that SmartVis4.0 is a step in the right direction.

The funcionalities of SmartVis4.0 will facilitate their work, when the real data is available.

46 Experiments and Results

(a) Test 1 - Firefox (b) Test 2 - Google Chrome

(c) Test 3 - Safari

Figure 5.5: Tests in computer using different browsers.

(a) Test 4 - Firefox (b) Test 5 - Google Chrome (c) Test 6 - Safari

Figure 5.6: Tests in mobile phone using different browsers.

Chapter 6

Conclusions

As demonstrated, it is essential that data visualisation systems are developed to facilitate access

and interpretation of the large amounts of acquired data. This work proposes a data visualisation

system, SmartVis4.0, that allows the company ZOLLERN & Comandita the possibility to under-

stand what happens on the shop floor in real time in a simpler and more intuitive way. Wherever

the users are, they can know what is being produced at that moment and verify if the whole process

is following its normal operation.

A study of the recent trends in web applications development made SmartVis4.0 a state of the

art web platform. Ideas like responsiveness and single page application were taken into account

during the development of this tool. This allows the manager of the foundry department an easy

and quick access to the platform, in any device that has a browser. Independently of the size of the

screen, SmartVis4.0 is responsive, so the page could adapt to be more user friendly. The software

can easily be extended mainly due to the MVC concept used in its development. Scalability is

expected to be good but no tests were conducted. Performance of the battery held device was

taken into consideration as no polling operations are used.

The approaches taken have been validated by the client. SmartVis4.0 allows the users to follow

a given production order through the foundry department and to better understand the probable

origins of high defect rates. It is possible to know exactly when an order passed through each

furnace and the parameters registered during its processing. It will, therefore, be easier to see

whether all the rules of the manufacturing process have been met or not.

Existing tools have some similar features to the visualisation tool developed in this work, like

seeing in real time data saved in a database. However, SmartVis4.0 has some schemes developed

specifically to be applied at ZOLLERN & Comandita, to help the interpretation of what is happen-

ing in the shop floor. In addition, the system developed is an expert system, it compares process

data with expected parameters and generates alerts when something is wrong, so that the managers

can take immediate action.

SmartVis4.0 is expected to run without modification once real data is available. With this

tool, the company may also conduct a cause-and-effect study in the foundry department. This

will improve its manufacturing process, making it more efficient and decreasing the percentage of

47

48 Conclusions

defective parts.

The developed software is expected to be adequate to other companies of the same process.

The strategies for analysis and software development seem adequate for other cases where devel-

opment of (smart) industrial visualisation tools are of interest.

6.1 Future Work

Since this work was developed in an initial phase of Industry 4.0 revolution at ZOLLERN & Co-

mandita, there is still a long way to go. To improve SmartVis4.0, the following is proposed:

• Adding push notifications so that SmartVis4.0 can alert the users when they are not running

the application;

• Adding user authentication to protect the information that exists in SmartVis4.0 from every-

one that is inside the company network and does not have permission to access;

• Add the possibility for each user to define the alerts that they want to see;

• Adding the week plan of the foundry department in SmartVis4.0;

• Comparing the week plan with what is really happening in the shop floor, in order to identify

deviations.

Appendix A

Provisional version of paper accepted
for ROBOT2019

49

Smart Data Visualisation as a Stepping Stone
for Industry 4.0 - a case study in investment

casting industry

Ana Beatriz Cruz1, Armando Sousa2, Ângela Cardoso3, Bernardo Valente4,
and Ana Reis5

1 FEUP
2 INESC-TEC and FEUP

3 INEGI
4 Zollern & Comandita

5 INEGI and FEUP

Abstract. With present day industries pressing for retrofitting of cur-
rent machinery into Industry 4.0 ideas, a large effort is put into data
production, storage and analysis. To be able to use such data, it is fun-
damental to create intelligent software for analysis and visualisation of
a growing but frequently faulty amount of data, without the quality
and quantity adequate for full blown data mining techniques. This ar-
ticle case studies a foundry company that uses the lost wax method to
produce metal parts. As retrofitting is underway, modelling, simulation
and smart data visualisation are proposed as methods to overcome data
shortage in quantity and quality. The developed data visualisation sys-
tem is demonstrated to be adapted to the requirements and needs of
this company in order to approach full automation ideas. Such data vi-
sualisation system allow workers and supervisors to know in real time
what is happening in the factory, or study the passage of manufacturing
orders for a specific area. Data Analysts can also predict machinery prob-
lems, correct issues with slow changing deviations and gather additional
knowledge on the implementation of the process itself.

1 Introduction

Nowadays, we are going through the fourth industrial revolution, also known as
Industry 4.0. This is a digital revolution, whose main objectives are increasing
the efficiency of operation and productivity, as well as increasing the level of
automation, thus making the companies more competitive, as concluded in [1].

This digital revolution is driving the implementation of tools and intelligent
platforms that produce a greater amount of data and information for analysis,
as explained in [2]. The storage of large amounts of data allows an analysis of
the conditions in which a product was created, as well as the use of machine
learning techniques, to make an early prediction of the occurrence of product
defects or machine failures.

50

2 Ana Beatriz Cruz

However, not all companies are prepared for this type of revolution, because
many have at least some very primitive processes, where human work and con-
trol predominate. An example are investment casting companies that use the
lost wax casting method, where at least the last part of the process is mostly
manual. In this type of manufacturing, the occurrence of failures in some sec-
tions, more specific in the casting department, is quite frequent and difficult to
control. Generally, data acquisition and monitoring are also very scarce, due to
the existing manufacturing processes.

For this project, the investment casting company Zollern & Comandita, was
used as a case study, with the objective of developing a data visualisation system.
The project began with a study of the manufacturing process. Then, because it
is the section where the managers have less access to the information necessary
to make their decisions, the focus was placed in the foundry department. Since
data collection is at its early stages, it was necessary to develop a simulator,
which produces relevant data, very close to what would be real.

Subsequently, an expert data visualisation system was developed, to allow
an intuitive comprehension of the information. This analysis can be done in real
time, in fact the system is capable of recognising deviations from what is expected
and emits alerts when something goes wrong. The tool also allows to view data
from a finished production order, which makes it possible to understand the
conditions of its production, as well as to make the cause-effect study of its
defects or qualities.

2 Industry Context, Objectives and Requirements

Lost wax casting is a method of producing metal parts with high precision. This
process has eight stages of development until the final product is obtained, as
shown in Figure 1 and demonstrated on the web page [3].

First, wax forms of the product to be manufactured are injected. Then one
or more of these pieces are welded to a common trunk of wax, which is called the
tree. Subsequently, several layers of ceramic are made around this tree. After the
ceramic layers are thoroughly dried, the inner wax is removed so that the metal
alloy can be poured in a liquid state into the tree. After the metal solidification,
the ceramic is broken and the final product is obtained by separating the parts
of the common trunk.

A study was done at Zollern & Comandita to understand which section has
the most issues and the foundry was the one that stood out in the high number of
incidences. This section consists of the phases of wax removal, tree sinterization,
metal alloy preparation and pouring.

At the foundry, the trees are placed inside a furnace (autoclave), and are
subjected to a pressure of 9 bar for 15 minutes. This high pressure removes
about 95% of the wax inside the tree. After that, the trees are stored until there
is room to move to a second furnace. This is a rotary furnace, where the trees
are placed in small sections, called buds, with at most three trees per bud, and

51

Smart Data Visualization as a Stepping Stone for Industry 4.0 3

Fig. 1. Investment casting process, as shown in [4].

run through the five different zones within it until they reach the exit. Figure 2
represents this furnace and its structure.

Fig. 2. Scheme of the rotary furnace.

The first zone of the furnace aims to burn the remaining wax inside of the
tree. Trees must stay in this area for 15 minutes or more, depending on the type
of metal part being produced. Zones 2, 3, 4 and 5 aim to increase the temperature
and to sinter the trees to be cast. This phase is important to avoid thermal shocks
and prevent the metal alloy from starting to solidify before reaching all areas of
the interior of the tree.

Whilst the trees are in the rotary furnace, the metal alloy to be poured is
being prepared in an induction oven. At the moment, there is very little data
being collected from the induction ovens, only the temperatures of the alloy are

52

4 Ana Beatriz Cruz

measured and even that is done very sparsely. Once the trees have gone through
all zones of the rotary furnace, which takes approximately 2 hours, and the metal
alloy is prepared, pouring begins, but no data is collected.

Although there are ideas to eventually collect more data from alloy prepa-
ration and pouring, those phases are not included in this project, because the
specific way in which the data will be collected is yet to be decided.

Figure 3 explains the scheme sequence of the foundry section. At Zollern &
Comandita there are two autoclaves, two rotary furnaces and three induction
furnaces.

Fig. 3. Scheme of the main components of the foundry department.

This project’s main objective is to develop a system where it is possible to
visualise the collected data of the production line of the company. It must be
able to filter large amounts of data from the past, to something more specific
and easy to interpret by the user. This will help in understanding and better
tracking what is happening on the shop floor. This system must also have the
characteristic of being accessible by any device.

Based on the above objectives, three system requirements were devised:
R1. View data from a finished production order: Viewing data from

a production order that has already been completed allows the managers to es-
tablish cause-and-effect relationships. These relationships will identify the char-
acteristics in the manufacturing process that led to defects in the final product.

R2. Get real-time insight into what is happening on the shop floor:
Understanding what is happening on the shop floor in real time is important for
section managers. That way, they can quickly perceive what is being produced
and if everything is working within the expected parameters.

R3. Emit alerts if certain variables are outside the expected values:
Real-time warnings when important manufacturing conditions are not verified
may allow the managers to quickly correct the problem, or at least to interrupt
production.

3 State of the Art

With the high amount of data coming from Industry 4.0, some systems were
developed to allow its visualisation. These systems have been created with in

53

Smart Data Visualization as a Stepping Stone for Industry 4.0 5

general purpose, so that they can be applied in any context, giving the user
the possibility to choose the way of presenting the data. Following are two well
known examples of this kind of data viewers.

The Q-DAS [5] software is specialised in the computerisation of statistical
procedures with a focus on quality management applications including Statistical
Processes. This software has several tools, such as QS-STAT, which allows the
user to make statistical analyses of the collected data by producing analysis
reports, which refer to the values collected by sensors at certain time intervals.

Another platform that allows visualisation of data is Grafana [6], which is
a dashboard that allows the user to query, visualise, alert and understand data
metrics, regardless of where they are stored.

Despite their wide usage, these two platforms are for local use, that is they
can only be used in a computer that has the software installed. As such, these
tools are not always the best for companies that are in the initial stages of
implementing Industry 4.0 ideas.

4 Data Structure

Data is one of the main elements for the development of this work. As such, an
architecture was created for the database, facilitating its access and interpreta-
tion.

4.1 Production Data

To study and analyse what is being produced, it is necessary to keep all the in-
formation from production orders. The tables shown in Figure 4 were created to
store only informative/static data. A production order has associated a type of
part to be produced and several trees. Once the trees enter the foundry depart-
ment they are organised in shelves, hence there is another table that associates
the trees with their respective shelves.

Fig. 4. Database scheme for the main production information.

54

6 Ana Beatriz Cruz

4.2 Autoclave Data

The foundry department starts with the processing of shelves of trees through
the autoclave. The data of this part of the process is stored in three tables.
The first table stores general information about the autoclave cycles, while the
second and third tables store temperature and pressure data, for each second
that the cycle lasts, in the main chamber and the steam generator. There is also
a table which keeps information about the production orders that have already
exited the autoclave and are ready for the rotary furnace. The data in this table
is inserted through a trigger that runs when a shelf exits the autoclave.

Figure 5 demonstrates the architecture of autoclave part of the database and
the trigger (red arrow) between the Autoclave table and the Storage table.

(a) Autoclave tables (b) Trigger

Fig. 5. Database scheme for the autoclave section with the trigger from the Autoclave
table to the Storage table.

4.3 Rotary Furnace Data

In the case of the rotary furnace, it is necessary to record the location of each
bud over time. Just knowing the bud that is in the furnace entrance at each
moment, it is possible to know the ids of the remaining first buds of each zone,
using Equation 1, where e is the id of the entrance bud and nk is the number of
buds from the entrance to the start of zone k and bk is the id of the bud at the
start of zone k.

bk = ((((e + nk − 1) mod 24) + 24) mod 24) + 1,

k = {2, 3, 4, 5},
nk = {5, 12, 17, 21}

(1)

The tables for the rotary furnace are depicted in Figure 6. In particular,
the table Bud Zone, stores the bud at the start of each zone over time. This
information is generated with a trigger on each rotary furnace advance, which

55

Smart Data Visualization as a Stepping Stone for Industry 4.0 7

is represented by the green arrow in Figure 6 and the scheme of left side of
Figure 7. Thus, it is easier to know how much time each tree spent in each zone,
given that we also know the bud in which each tree is loaded.

Fig. 6. Database scheme for the rotary furnace section.

To make reading the current state of the rotary furnace simpler, each time
a new tree is inserted into the rotary furnace, the RotaryFurnaceState table is
updated by a trigger, which is represented by the yellow arrow in Figure 6 and
the scheme on the right side of Figure 7. The RotaryFurnaceState table always
has the current state of each bud, saving the id of the trees it has at that moment,
without maintaining history.

Fig. 7. Triggers on the rotary furnace database.

4.4 Alerts Data

In order for the managers to have instant alerts when an issue arises, the database
also includes an alerts table, whose diagram is shown on the left of Figure 8.
The entries of this table are entirely generated by triggers. For example, when a
new autoclave cycle starts, if the steam generator pressure is not approximately
12 bar, a new alert is added to the table as shown by the scheme on the right of
Figure 8.

56

8 Ana Beatriz Cruz

(a) Table of alerts (b) Example of a trigger of an alert

Fig. 8. Alerts data.

5 Simulation Tool

At the start of this project, Zollern & Comandita did not have all the data nec-
essary for the visualisation tool to be built. As such, it was necessary to develop
a simulator to generate the required data. This tool is designed to automatically
populate all tables in the database, with values very close to the expected ones.

For the tables with the information of the pieces to be produced, some real
samples were used while others where simulated to look like the real samples.

After information of the manufacturing orders is inserted in the database,
the system begins to simulate the entire manufacturing process of the foundry
department in real time. The autoclave and the rotary furnace are simulated
by different components, which operate independently and are only connected
by the data in the database. The simulator generates the sporadic event of the
arrival of a new shelf in the autoclave. As soon as a shelf exits the autoclave, it
is added to the Storage table by a trigger. With this table, the simulator of the
rotary furnace always knows the shelves it has available to use. Every time the
rotary furnace has room for a new production order and there are completed
orders in the storage, the simulator automatically loads the rotary furnace.

To generate furnace temperature data, normal distributions centred on the
target values of each zone were used. The respective standard deviations were
adjusted, depending on each situation so that the simulated data would be as
similar as possible to real samples of the rotary furnace.

The simulation tool generates data and stores it in the database. This data
can be used in developing any tool for the company, as well as studying what is
more relevant to monitor. When real data is available, the company can store it
in the database, replacing the simulator, and the remaining components of this
project will continue to work.

6 Visualisation Tool

To be able to visualise the data, a graphical interface has been developed. The
idea is to add features to this interface in due time, as the managers decide

57

Smart Data Visualization as a Stepping Stone for Industry 4.0 9

what is more relevant for them to see, but also as data becomes available and is
integrated in the database, throughout the whole factory. A web interface was
chosen so that it is easily accessed from any computer or mobile device that has
a network connection. It was taken into account that the interface should be
responsive to adapt to the size of the screen of the device being used.

The visualisation system was designed as a typical web application, with a
front end component, responsible for presenting the information to the users,
and a back end component, which manages the access to the database, as shown
in Figure 9. Communication between these two components is achieved through
HTTP (Hypertext Transfer Protocol) requests, which comply with the REST
(Representational State Transfer) architectural style.

Fig. 9. Architecture of the Visualisation Tool.

For the development of front end component, the web framework Angular was
used, because it offers a wide variety of tools that help with the development of
such interfaces. In particular, the plugin Chart.js was used for the graphs, and
the framework Bootstrap was used in order to easily obtain a responsive user
interface.

Due to the fact that Angular is an MVC (Model View Controller) based
framework, but also because this architectural style is well suited for web ap-
plications, the architecture of the front end follows the MVC pattern. As such,
there is a representation of the data structure in the Model, which is simulta-
neously used as source of the information displayed in the View and queried by
the Controller upon user interaction.

As for the server, the DJango framework was used, which follows the Model
Template View (MTV) architectural style. MTV is similar to MVC, but depend-
ing on the source, there are some differences. In any case, the core ideas of code
separation according to its purpose are the same. For the back end, the Model
was used to represent the data and communicate with the database, while the
View is responsible for replying to the HTTP requests from the front end using
the JSON format. There is also a layer of business logic, that is responsible for
the necessary processing of data before sending it to the front end. Typically,
the Template layer is responsible for presenting the information to the user, not
the content itself, but the way it is presented. For the back end component, this
layer was not developed, because that responsibility belongs to the front end
component.

58

10 Ana Beatriz Cruz

7 Results

In this section, the results of the database, simulator and visualisation tool de-
veloped up to this point for the foundry department of Zollern & Comandita
are presented, while validating the requirements elicited in Section 2.

R1. View data from a finished production order

With the developed tool it is possible to visualise data generated by the simulator
that represents the passage of a certain production order by the existing furnaces.
For example, one can see the data simulated for the autoclave and the resulting
charts. Figure 10 contains a graph of the pressure variation in the main chamber
during a full autoclave cycle, corresponding to a given production order. This
information is preprocessed in the back end, which determines in which shelves
that order was stored, before entering the autoclave, and then obtains the cycle
data for those shelves. In this case, only one graph is shown because the whole
order was stored in a single shelf.

Fig. 10. Variation of the pressure in the main chamber of the autoclave during the
cycle of the shelf containing production order 8127337.

R2. Get real-time insight into what is happening on the shop floor

One of the features requested by the managers of the foundry department was the
ability to quickly check the state of the rotary furnace, which was implemented
through the scheme in Figure 11. This diagram shows how the furnace is loaded
in real time, but it can also be used to check the progress of a given production
order within the furnace over time. For each position of each bud one can see,
if it is loaded and the number of the tree in that position. The chart is also
interactive, allowing the user to scroll the mouse over to obtain a quick overview
of the contents, or to click in a bud and obtain more detailed information.

59

Smart Data Visualization as a Stepping Stone for Industry 4.0 11

Fig. 11. Representation of the rotary furnace in the data visualisation system.

R3. Emit alerts if certain variables are outside the expected values

To verify this requirement, specific failures were introduced in the simulator,
activating the triggers that generate alerts in the database. These alerts are
received in the visualisation tool and shown both in the form of a pop-up and
in a drop-down notifications menu, as depicted in Figure 12.

(a) Pop-up notification (b) Drop-down notifications

Fig. 12. Notifications on Visualisation Tool

60

12 Ana Beatriz Cruz

8 Conclusions

As has been shown, it is essential that data visualisation systems are developed
to facilitate access and interpretation of the large amounts of data acquired.

This work proposes a data visualisation system that allows the company
Zollern & Comandita the possibility to understand what happens on the shop
floor in real time in a simpler and more intuitive way. Wherever the users are,
they can know what is being produced at that moment and verify if the whole
process is following its normal operation.

The developed tool also allows the users to follow a given production order
through the foundry department and to better understand the probable ori-
gins of high defect rates. It is possible to know exactly when an order passed
through each furnace and the parameters registered during their processing. It
will, therefore, be easier to see whether all the rules of the manufacturing process
have been met or not.

Existing tools have some similar features to the visualisation tool developed
in this work, like seeing in real time data saved in database. However, this visu-
alisation tool has some schemes developed specifically to be applied at Zollern
& Comandita, to help the interpretation of whats happening in the shop floor.
In addition, the system developed is an expert system, it compares process data
with expected parameters and generates alerts when something is wrong, so that
the managers can take immediate action.

With this tool, the company may also conduct a cause-and-effect study in
the foundry department. This will improve its manufacturing process, making it
more efficient and able to decrease the percentage of defective parts.

References

1. Lu, Yang. ”Industry 4.0: A survey on technologies, applications and open research
issues.” Journal of Industrial Information Integration 6 (2017): 1-10.

2. John Zysman and Martin Kenney. 2018. The Next Phase in the Digital Revolution:
Intelligent Tools, Platforms, Growth, Employ- ment. Commun. ACM 61, 2 (2018),
54–63.

3. Pattnaik, Sarojrani, D. Benny Karunakar, and P. K. Jha. ”Developments in invest-
ment casting process—a review.” Journal of Materials Processing Technology 212.11
(2012): 2332-2348.

4. “Investment Casting Process — Sand Casting, Investment Casting & CNC
Machining in China.” Sand Casting, Investment Casting and Die Casting
in China, 29 Dec. 2009, www.castingquality.com/casting-technology/investment-
casting-tech/investment-casting-process.html.

5. Hexagon Manufacturing Intelligence. Q-DAS. Available at https://www.q-
das.com/en, 2019. Accessed 2019-07-05.

6. Grafana Labs. Grafana. Available at https://grafana.com, 2019. Accessed 2019-07-
05.

7. Morgan, R., Grossmann, G., Schrefl, M., Stumptner, M. A Model-Driven Approach
for Visualisation Processes (2019) ACM International Conference Proceeding Series,
art. no. a55, .

61

62 Provisional version of paper accepted for ROBOT2019

References

[1] Yang Lu. Industry 4.0: A survey on technologies, applications and open research issues.
Journal of Industrial Information Integration, 6:1–10, 2017.

[2] J. Zysman and M. Kenney. The next phase in the digital revolution: Intelligent
tools, platforms, growth, employment. Communications of the ACM, 61(2):54–63,
2018. cited By 21. URL: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85041610915&doi=10.1145%2f3173550&partnerID=40&md5=
2bd88cce61625e452cfd7769adf63525, doi:10.1145/3173550.

[3] Inegi. Institute of science and innovation in mechanical and industrial engineering. Accessed:
2019-07-23. URL: http://www.inegi.pt/instituicao.asp?idm=1&idsubm=5&
LN=EN.

[4] Massimo Bertolini, Davide Mezzogori, and Francesco Zammori. Comparison of new meta-
heuristics, for the solution of an integrated jobs-maintenance scheduling problem. Expert
Systems with Applications, 122:118–136, 2019. doi:10.1016/j.eswa.2018.12.034.

[5] Greg Cline. Industry 4.0 and industrial iot in manufacturing: A sneak
peek - aberdeen. https://www.aberdeen.com/opspro-essentials/
industry-4-0-industrial-iot-manufacturing-sneak-peek/, March 2017.
(Accessed on 02/13/2019).

[6] IIC. Industrial Internet Consortium - Fact Sheet. (March 2014):1, 2015.

[7] Jay Lee, Hung-An Kao, and Shanhu Yang. Service innovation and smart analytics for indus-
try 4.0 and big data environment. Procedia Cirp, 16:3–8, 2014.

[8] Hexagon manufacturing intelligence. https://www.q-das.com/en. Accessed: 2019-
07-05.

[9] Grafana labs. https://grafana.com. Accessed: 2019-07-05.

[10] Tim A Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli. Progressive web apps:
the definite approach to cross-platform development? 2018.

[11] Andre Charland and Brian Leroux. Mobile application development: web vs. native. Com-
munications of the ACM, 54(5):49–53, 2011.

[12] Vanessa Donnelly. Designing easy-to-use websites. Addison-Wesley, 2000.

[13] Brett S Gardner. Responsive web design: Enriching the user experience. Sigma Journal:
Inside the Digital Ecosystem, 11(1):13–19, 2011.

63

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041610915&doi=10.1145%2f3173550&partnerID=40&md5=2bd88cce61625e452cfd7769adf63525
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041610915&doi=10.1145%2f3173550&partnerID=40&md5=2bd88cce61625e452cfd7769adf63525
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041610915&doi=10.1145%2f3173550&partnerID=40&md5=2bd88cce61625e452cfd7769adf63525
http://dx.doi.org/10.1145/3173550
http://www.inegi.pt/instituicao.asp?idm=1&idsubm=5&LN=EN
http://www.inegi.pt/instituicao.asp?idm=1&idsubm=5&LN=EN
http://dx.doi.org/10.1016/j.eswa.2018.12.034
https://www.aberdeen.com/opspro-essentials/industry-4-0-industrial-iot-manufacturing-sneak-peek/
https://www.aberdeen.com/opspro-essentials/industry-4-0-industrial-iot-manufacturing-sneak-peek/
https://www.q-das.com/en
https://grafana.com

64 REFERENCES

[14] Andreas Biørn-Hansen, Tim A Majchrzak, and Tor-Morten Grønli. Progressive web apps:
The possible web-native unifier for mobile development. In WEBIST, pages 344–351, 2017.

[15] Progressive web app checklist | web | google developers. URL: https://developers.
google.com/web/progressive-web-apps/checklist.

[16] Madhuri A Jadhav, Balkrishna R Sawant, and Anushree Deshmukh. Single page application
using angularjs. International Journal of Computer Science and Information Technologies,
6(3):2876–2879, 2015.

[17] Sivakumaresan Thangeswaran. Software application architecture, March 28 2019. US Patent
App. 16/202,373.

[18] Julia Plekhanova. Evaluating web development frameworks: Django, ruby on rails and
cakephp. Institute for Business and Information Technology, 2009.

[19] Django. URL: https://www.djangoproject.com/.

[20] Chart.js. URL: https://www.chartjs.org/.

[21] Gurayyarar. Adminbsbmaterialdesign, Oct 2018. URL: https://github.com/
gurayyarar/AdminBSBMaterialDesign.

[22] Serope Kalpakjian and Steven R Schmid. Manufacturing processes for engineering materials.
New Jersey, the United States of America: Prentice Hall, 2003.

[23] InduSoft Web Studio. Mpi, inc. URL: http://www.indusoft.com/Marketing/
Article/ArtMID/684/ArticleID/129/MPI-Inc.

[24] Isabel Maria Lousada Soares Figueiredo. Towards "industrie 4.0" in the context of investment
casting industry. MSc. FEUP, 2019.

https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/progressive-web-apps/checklist
https://www.djangoproject.com/
https://www.chartjs.org/
https://github.com/gurayyarar/AdminBSBMaterialDesign
https://github.com/gurayyarar/AdminBSBMaterialDesign
http://www.indusoft.com/Marketing/Article/ArtMID/684/ArticleID/129/MPI-Inc
http://www.indusoft.com/Marketing/Article/ArtMID/684/ArticleID/129/MPI-Inc

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Goals
	1.4 Contributions
	1.5 Document Structure

	2 State of the Art, Fundamentals and Tools
	2.1 State of the Art
	2.1.1 Industry 4.0
	2.1.2 Data Visualisation Systems

	2.2 Fundamentals
	2.2.1 Native App vs. Web App
	2.2.2 Recent trends in web programming
	2.2.3 Web Architecture

	2.3 Tools
	2.3.1 Angular
	2.3.2 Django
	2.3.3 Chart.js
	2.3.4 Bootstrap

	3 Case Study - Investment Casting
	3.1 Introduction
	3.2 The Investment Casting Process
	3.3 Highlight Stage
	3.4 List of known problems
	3.5 Conclusion

	4 Software Solution - Simulation and Visualisation
	4.1 Requirements
	4.1.1 Functional Requirements
	4.1.2 Non-Functional Requirements

	4.2 Architecture
	4.2.1 Simulator
	4.2.2 SmartVis4.0

	4.3 Data structure
	4.3.1 Information data
	4.3.2 Monitoring data
	4.3.3 Alerts

	4.4 Smart data dynamics
	4.4.1 Inter Blocks
	4.4.2 Intra Blocks - DB

	4.5 Relevant implementation details
	4.5.1 Rotary furnace - Simulator
	4.5.2 Rotary furnace diagram - SmartVis4.0
	4.5.3 Example usage

	5 Experiments and Results
	5.1 Simulation with faults
	5.2 Requirements Validation
	5.2.1 Functional
	5.2.2 Non-Functional

	5.3 Validation by the client

	6 Conclusions
	6.1 Future Work

	A Provisional version of paper accepted for ROBOT2019
	References

