
Department of Mechanical Engineering

Morphing Autonomous Underwater
Vehicle - Hydrodynamic Analysis

Author:
Ricardo Cordeiro - up201808938

Supervisors:
Prof. Dr.ª Catarina Castro
Dr. Nelson Gonçalves
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Abstract

This dissertation concerns the hydrodynamics of an Autonomous Underwater Vehicle
(AUV) capable of changing it’s shape in order to obtain the best performance in different
situations. The demand for high-performance AUVs is growing in the field of ocean
engineering due to increasing activities in ocean exploration and research. New generations
of AUVs are expected to operate in harsh and complex ocean environments. We propose
a hybrid design of an Autonomous Underwater Vehicle based on a Bio-inspired form.

The study was performed by creating a bi-dimensional shape using seven input variables.
This body was object of a hydrodynamic study in order to get two output variables. The
input variables are geometrical, these are respective to the body dimensions: Length (L),
Diameter (D), Front Length (Lf ), Rear Length (Lr), Front Radius (Rf ), Rear Radius
(Rr) and Middle Radius (Rm). The output variables represent the Drag Coefficient (CD)
and the Turbulent Kinetic energy (k) produced by the body in its locomotion. The
physical evaluation was done using the simulation software Ansys and by changing the
Flow Velocity (Uin) from 1 m/s to 10 m/s. The domain of each geometrical variable
was restrained to a finite interval. Then the values of each of the geometrical variables
were uniformly distributed through the domain by utilizing the Uniform Design Method
(UDM). In order to get the best results, i.e. minimizing both values of the output variables
by changing the input variables values, an optimization procedure was taken. To do so,
the software Fortran was used to utilize an Artificial Neural Network (ANN) with the
application of a Genetic Algorithm (GA).

The results obtained show that there are two geometrical variables with a major impact
in this optimization problem: Diameter (D) and Rear Radius (Rr). The optimization
procedure achieved an improvement of 15.2 % in the Drag Coefficient (CD) and 0.83 % in
the Turbulent Kinetic Energy (k).
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Resumo

Esta dissertação tem como objectivo estudar a hidrodinâmica de um Véıculo Autónomo
Subaquático (AUV) que seja capaz de alterar a sua morfologia de forma a atingir a mel-
hor performance posśıvel em diferentes situações. A necessidade de véıculos autónomos
subaquáticos de elevada performance tem vindo a crescer na área de engenharia maŕıtima
devido ao aumento de atividades de exploração e investigação maŕıtima. É esperado que
as novas gerações deste tipo de véıculos sejam capazes de operar em condições maŕıtimas
adversas e complexas. Nesta dissertação é proposto um véıculo autónomo subaquático
com um design h́ıbrido inspirado numa forma biomórfica.

De forma a desenvolver este estudo, foi criado um corpo bi-dimensional composto por
sete variáveis. Este corpo foi alvo de um estudo hidrodinâmico com o intuito de obter
duas variáveis de sáıda. As variáveis de entrada são geométricas e correspondem à geome-
tria do corpo em estudo: Comprimento (L), Diâmetro (D), Comprimento Frontal (Lf ),
Comprimento Traseiro (Lr), Raio Frontal (Rf ), Raio Traseiro (Rr) e Raio Médio (Rm).
As variáveis de sáıda representam o Coeficiente de Atrito (CD) e a Energia de Turbulência
Cinética (k), produzidas pelo movimento de deslocação do corpo. A avaliação dinâmica
foi realizada utilizando o software de simulação Ansys, através da alteração da Velocidade
do Escoamento (Uin) desde 1 m/s até 10 m/s. O domı́nio de cada variável geométrica foi
limitado a um intervalo fixo. Posteriormente os valores de cada variável geométrica foram
distribúıdos uniformemente pelo dominio considerado, utilizando o Método de Design Uni-
forme (UDM). De forma a obter os melhores resultados posśıveis, i.e minimizar o valor
das duas variáveis de sáıda alterando o valor das sete variáveis de entrada, um método de
otimização foi utilizado. Deste modo,para a realização deste método, o software Fortran
foi aplicado de forma a pôr em ação uma Rede Artificial Neuronal (ANN) com a aplicação
de um Algoritmo Genético (GA).

Os resultados obtidos mostram a existência de duas variáveis geométricas com maior
peso para o processo de otimização: Diâmetro (D) e Raio Traseiro (Rr). O processo de
otimização foi capaz de alcançar uma melhoria de 15.2 % para o Coeficiente de Atrito
(CD) e de 0.83 % para a Energia de Turbulência Cinética (k).
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Résumé

Cette dissertation poursuit l’étude de l’hydrodynamique d’un véhicule autonome sous-
marin (AUV), capable de changer sa morphologie afin d’atteindre la meilleure perfor-
mance possible selon les différentes situations. La nécessité de véhicules autonomes sous-
marins de performance élevée s’est accrue dans le domaine de l’ingénierie maritime, dû à
l’augmentation d’activités d’exploration et de recherche maritimes. Les nouvelles générations
de ce type de véhicules sont censées opérer dans des conditions maritimes adverses et com-
plexes. Cette dissertation propose un véhicule autonome sous-marin (AUV) avec un design
hybride, inspiré d’une forme biomorphique.

Un corps bidimensionnel, composé de sept variables, a été conçu avec l’objectif d’approfondir
cette étude. Ce corps a fait l’objet d’une étude hydrodynamique qui a pour but obtenir
deux variables de sortie. Les variables d’entrée sont géométriques, et celles-ci correspon-
dent à la géométrie du corps ici observé: Longueur (L), Diamètre (D), Longueur Frontal
(Lf), Longueur Arrière (Lr), Rayon Frontal (Rf), Rayon Arrière (Rr) et Rayon Moyen
(Rm). Les variables de sortie représentent le Coefficient de Frottement (CD) et l’Énergie
Cinétique Turbulente (k) produits par le déplacement du corps. L’évaluation dynamique
a été réalisée en utilisant le software de simulation Ansys, à travers la modification de
la Vitesse d’Écoulement (Uin) dès 1 m/s jusqu’à 10 m/s. Le domaine de chaque vari-
able géométrique a été limité à un intervalle fixe. Ensuite, les valeurs de chaque vari-
able géométrique ont été réparties uniformément sur le domaine considéré, en appliquant
la Méthode de Design Uniforme (UDM). La méthode d’optimisation utilisée consiste à
réduire les valeurs des deux variables de sortie en changeant les sept variables d’entrée,
dans le but d’atteindre les meilleurs résultats. Ainsi, le software Fortran a mis en œuvre
un Réseau Neuronal Artificiel (ANN) avec l’application de l’Algorithme Génétique (GA).

Les résultats obtenus démontrent qu’il existe deux variables géométriques plus déterminantes
dans le processus d’optimisation: Diamètre (D) et le Rayon Arrière (Rr). Le processus
d’optimisation a atteint une amélioration de 15.2% pour le Coefficient de Frottement (CD)
et de 0.83% pour l’Énergie Cinétique Turbulente (k).
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Chapter 1

Introduction

In this chapter a brief contextualization of the following work to be developed is given
in order to get the reader’s attention to the reasons that guide the author to do this
work. The objectives stipulated to this work are also presented as well as this dissertation
outline.

1.1 Thesis Context

The ocean as been a source of inspiration for inventors and researchers over the last
three millennia. The greatest part of Earth’s biodiversity, approximately 90%, lives in the
ocean and studies have proven that species are always adapting and evolving to overcome
their habitat difficulties and thrive. That kind of behaviour as been studied by humans
in their attempt to adopt some natural features to science and engineering. The ocean
exploration started very soon in human civilization, since 4500 B.C with divers in Greek
and Chinese cultures to the genesis of ship-borne deep-sea research in the 17

th
Century

by the hands of Sir James Clark Ross and has continued until today. The issues and
goals are different nowadays and they are a lot more difficult to achieve. We are talking
about issues like aquaculture monitoring to ocean mapping and prospecting, this kind of
challenges require sophisticated technology capable of satisfying the requirements of these
tasks so they can be solved the most efficient and sustainable way [44].

Aquaculture has grown very rapidly during the past 20 years and the tendency is to
continue it’s growth because of the need of protein required to feed humans and other
animals. Recent studies have predicted that fish consumption in developing and developed
countries will increase by 57 % and 4 %, respectively [41]. This demand can cause problems
in product quality because of the development of fish diseases due to fish concentration
and nutrition [42]. To avoid this problem and to estimate the fish population development,
constant monitoring is needed and to do so human divers are required, although they are
being submitted to this possibly infected environment and their actions are restricted in
low-visibility environments [36].

Ocean mapping and prospecting are activities done in deep waters, so humans divers are
incapable of playing this role. To perform this kind of activities and others like inspection
of structures of oil and gas extraction, inspection of offshore wind turbine structures,
military missions and so on, Remotely Operated Vehicles (ROVs) are used. The major
drawback is that they are expensive and require human command, becoming very time-
consuming, which increases the overall costs and most important they are ineffective in a
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group of tasks because of their shape and dimensions [55].

To overcome this issue and be able to execute the tasks mentioned above, humans
have developed Autonomous Underwater Vehicles (AUVs) with shapes resembling marine
species. This attempt to copy and adapt bio-inspired forms is based on the fact that fishes
possess capabilities such as: high energy efficiency, high velocity, silent swimming, high
manoeuvrability and stability. All these characteristics are goals to achieve on the design
and engineering of this kind of technology, but it’s impossible to cover them all with one
kind of AUV because of its shape. This means that a vehicle projected to perform a
long-distance and high-velocity mission is going to underperform on a mission requiring
high manoeuvrability in a confined space, this requires a vehicle able to switch its form
depending on the mission objectives [19].

This capability will revolutionize the AUV industry. Having a vehicle able to excel in
opposite tasks by changing its form would guaranty efficiency and sustainability through-
out its mission, reflecting in a higher payoff to the investors and a smaller ecologic step
for the environment.

1.2 Objectives

Conceptual biomimetic AUVs are being designed and built all over the world because
of their obvious advantages over traditional AUVs. TECMAR, one of the INEGI groups
that works specifically with technologies and procedures that contribute for the appreci-
ation of the marine resources, understands the potential of this concept to develop new
vehicles and is pursuing a realistic model of an AUV capable of morphing its shape to
provide a self-sustainable autonomous operating vehicle. The objective of this work is to
get some initial insight on what shapes are best suited for the diverse operating modes
and how to optimize those shapes, collecting relevant data of hydrodynamic variables that
characterize their performance. To perform Computational Fluid Dynamics (CFD) simu-
lations, the software Ansys was used and to perform sensibility analysis and optimization,
the softwares MATLAB and Fortran were utilized. This dissertation studies numerically
a bi-dimensional torpedo shape to evaluate the impact of geometrical variables and flow
velocity on its performance. Afterwards, an optimization of the previous mentioned vari-
ables values was done by recurring to an Artificial Neural Network (ANN). This results in
an optimal body shape for each of the ten velocities.

1.3 Outline

The present study case is divided in six chapters and eight appendices.

Chapter 2 gives a review of the concepts and technological developments of the main
subjects of this work.

Chapter 3 introduces the methods and tools used to model the problem.

Chapter 4 includes a detailed description of the process developed to solve the presented
problem.

Chapter 5 presents and discusses the results obtained in this work.

Chapter 6 presents the conclusion and provides insights of a possible future work.

Appendix A presents figures from the Ansys Design Modeler work station.
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Appendix B presents the figures from the Mesh construction procedure developed in
Ansys Mesh.

Appendix C presents figures that represent the step-by-step configuration procedure
utilized in Ansys Fluent.

Appendix D presents the tables utilized to apply the Uniform Design Method (UDM)
as well as the tables obtained for the present work.

Appendix E presents the MATLAB code developed to build an Artificial Neural Net-
work (ANN) with the application of Genetic Algorithm (GA).

Appendix F presents the tables from Ansys Fluent: input and output variables.
Appendix G presents figures from the results obtained for the Sensitivity Index (Sobol)
Appendix H presents the figures obtained for the optimization procedure
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Chapter 2

State of the Art

In this chapter a revision and identification of each one of the following themes is done.
The objective is to give the reader a basic knowledge about the state of development,
methods, applications and existing models of each of this topics: Autonomous Underwater
Vehicles (AUV), Swimming Modes, Uniform Design Method (UDM), Artificial Neural
Networks (ANN) and Genetic Algorithm (GA).

2.1 Autonomous Underwater Vehicles

2.1.1 Overview

The need for underwater exploration and exploitation has driven researchers and in-
vestigators to build a machine able to perform those tasks. That’s where Unmanned
Underwater Vehicles (UUV) were born. First vehicles to be born were Remotely Oper-
ated Underwater Vehicles (ROV) that, as the name says, are remotely controled vehicles
that can be manipulated at long ranges and steepness. Due to the risks to human life
in underwater operations, these vehicles have gradually replaced divers and manned sub-
mersibles. Most of the developed systems are designed to be controlled by an experienced
user, who manipulates it from the surface. In addition to safety, ROV’s have offered a
more effective and low-cost method for underwater research and sea exploitation. This is
the primary reason for the rapid development of numerous vehicles over the past few years
[38].

2.1.2 Technology development

In order to reduce time consumption, resources and to optimize data collection a new
kind of vehicle has been developed, an Autonomous Underwater Vehicle (AUV). This ma-
chine is independent of human direct control by having a computer on board programmed
to follow a pre-programmed course and is able to navigate using arrays of acoustic beacons
on the seafloor or a combination of Ultra Short Base Line (USBL) acoustic communication,
GPS positioning and inertial navigation. This technological achievement is revolutionising
our ability to map and monitor the marine environment [56].

Unlike submarine gliders, which are propelled using a buoyancy engine and have an
undulating trajectory, AUV’s are able to maintain a linear trajectory through the water
and are therefore well suited to geo-science applications requiring constant altitude, such
as seabed mapping and sub-bottom profiling. Typically deployed from a surface vessel, this
machine can operate independently of that vessel for periods of a few hours to several days
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2.1. Autonomous Underwater Vehicles 5

[56]. Remotely Operated Vehicles (ROVs) remain tethered to the host vessel, although this
enables them to draw more power and communicate real-time data. Their speed, mobility
and spatial range are very limited compared with an AUV. The wholly autonomous nature
of some AUVs means that the deploying vessel can be used for other tasks while the AUV
is in the water, dramatically increasing the amount of data that can be collected for a
given amount of time.

Nowadays most of the existing underwater vehicles are propeller driven. Even though
they are easy to control, their propulsion mode has some drawbacks, such as loud noise,
large size, low efficiency, as well as poor manoeuvring at low speed. In addition, another
significant drawback related to marine aquaculture applications is the acoustic noise caused
by the propeller. It inevitably interrupts the cluster of fish and results in low yield [36].
Most AUV’s are torpedo-shaped (e.g. the NERC Autosub6000 AUV; Figure 2.1), but
some have a more complex configuration allowing them to move slowly and across complex
terrain, e.g. the WHOI ABE (Figure 2.2) and SENTRY (Figure 2.3) AUVs [56].

Figure 2.1: NERC Auto-
sub6000 AUV

Figure 2.2: WHOI ABE
AUV

Figure 2.3: SENTRY AUV

The aspects to be optimized on AUV’s are mainly their autonomy and safety conditions
[1]. In furtherance to increase travelling time, the vehicle needs to spend less energy in its
locomotion and to do so its hydrodynamic shape is a crucial criterion. A way to achieve
this optimal shape is to use biomimetic technologies in order to develop a fish-like robot,
since this animals have thrived and excel in this environment. That’s when the concept
of Bio-inspired AUV’s was born.

There are some existing prototypes such as: MantaDroid (Figure 2.4), that emulates a
manta ray. This model excels in endurance and silence swimming, it has autonomy up to
ten hours and can be used in aquaculture surveillance [45]. The Tunabot, this prototype
mimics a Yellowfin tuna shape and locomotion achieving nearly equivalent speeds when
compared with live specimens (Figure 2.5) [22]. Another model is called the Eelume, and
replicates a eel. Eelume vehicle is basically self-propelled robotic arm whose slender and
flexible body can transit over long distances and carry out Inspection, Maintenance and
Repair (IMR) equipment in confined spaces not accessible by conventional underwater
vehicles. It’s most relevant characteristic is it’s amazing maneuverability (Figure 2.6) [21].

AUVs have already proven their efficacy and superiority to other UUV in many cir-
cumstances, but it’s still a developing technology although it’s almost sixty five years of
existence [27]. With the aim of producing the best aquatic vehicle possible information
and inspiration must be withdrawn from aquatic creatures. The spotlight of creation will
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Figure 2.4: MantaDroid
AUV Figure 2.5: Tunabot AUV

Figure 2.6: Eelume AUV

of course differ according to the vehicle function, but as mentioned before, the main reason
of producing this kind of vehicles is its autonomy and efficiency. That means they should
also be able to operate in different tasks, adding the component of versatility to their
core characteristics. This is a simple definition to an abstract answer, considering that
there are many environmental factors that will clout this kind of vehicles performance,
besides it’s shape and propeller method, like currents, different pressure zones, different
temperatures, animals and so on. Since these variables can not be changed or contained,
our job is to do the best in every controlled design parameter. An AUV design capable
of morphing between different bio-shapes and propeller methods would vastly increase it’s
range of applications and would be able to excel it’s operation in different situations.

2.2 Swimming Modes

2.2.1 Overview

Fish are marine animals that have adapted and evolved to thrive in a particularly
hospice environments. Due to natural selection the mechanisms developed by these are
highly efficient with regard to the mode of life, activity and habitat for each species. Some
fish are highly manoeuvrable, some are fast long-distance swimmers, others are power-
efficient endurance swimmers and others are short burst of speed swimmers (Figure 2.8).
Despite their differences, all of them are equally adapted to their way of living and that
is reflected in their body characteristics [16].

The main properties of water as a locomotion medium are its incompressibility and
its high density. Since water is an incompressible fluid, any movement performed by an
aquatic animal will set the water surrounding in motion and vice-versa. Due to its high
density, nearly equal to the animal body density, it counterbalances the force of gravity
so the weight is not of primary importance.

2.2.2 Swimming mechanics

Swimming consists in the transfer of momentum from the fish to the surrounding water
(and vice-versa) via drag, lift and acceleration reaction forces.

Swimming drag can be decomposed into three components: friction or viscous drag,
form drag and vortex or induced drag. Friction or viscous drag is due to skin friction
between the fish and the boundary layer of water, it arises as a result of the viscosity of
water in areas of flow with large velocity gradients. Form drag is caused by the distortion
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Figure 2.7: BCF (a) and MPF (b) swimmers

of flow around solid bodies. Vortex or induced drag results from the energy lost in the
vortexes formed by the caudal and pectoral fins as they generate lift or thrust. Logically,
this characteristics are antagonistic and so it’s impossible to fully satisfy each one of them,
at the same time, with the same stationary body [26].

Figure 2.8: Different type of marine animals locomotion methods

Lift forces are caused by asymmetries in the flow, as a fluid moves past an object, the
pattern of flow may be such that the pressure on one lateral side is greater than on the
opposite side. Lift is then exerted on the object in a direction perpendicular to the flow
direction. Acceleration reaction is an inertial force, generated by the resistance of the
water surrounding a body or an appendage when the velocity of the latter relative to the
water is changing [51].
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8 2.2. Swimming Modes

It’s possible to summarize fish locomotion capability by looking into two aspects in their
morphology: body shape and fins. Body shape is defined by the structure and form of the
fish, it will influence the animal interaction with its locomotion surroundings. A simple way
to compare different shapes and their respective capacity, is by their cross-section: there
are fusiform animals that are considered cruising specialists, compressed animals with tall
elliptical shapes that are considered manoeuvre specialists, depressed animals that are
able to sit on the ocean floor, and circular animals that are accelerating specialists. Fins
are swimming tools developed by fish so they can propel and stabilize their body’s in the
water, see Figure 2.9. Although these functions differ from species to species, in most
marine animals, pectoral fins are mainly used for steering and locomotion, pelvic fins for
stabilizing and braking, dorsal and anal fins are used for balance, stabilization and to
prevent pitching and spinning and caudal fins are used for thrust or propel [35].

Figure 2.9: Fish morphology terminology

Most fish generate thrust by bending their bodies into a backward-moving propulsive
wave that extends to its caudal fin, a type of swimming classified underbody and/or caudal
fin (BCF) locomotion. Other fish have developed alternative swimming mechanisms that
involve the use of their median and pectoral fins, termed median and/or paired fin (MPF)
locomotion. Because BCF relies on powerfull caudal body structures that can thrust only
rearwards, this form of locomotion is particularly effective for accelerating quickly and
cruising. In MPF swimmers, propulsive forces are generated by multiple fins, this ables
them to coordinate their fins motion to execute elaborated turns, so this type of swimming
is well adapted for high manoeuvrability [26].

Inside these two major groups, there are twelve different kinds of sub-groups. Belonging
to the BCF family there is anguilliform, subcarangiform, carangiform and thunniform. In-
side MPF there is rajiform, diodontiform, amiiform, gymnotiform, balistiform, labriform,
tetraodontiform and ostraciiform. Those types can be seen in Figure 2.7 [16].

With the aim of producing a bio-inspired AUV, there are a few determining factors that
can be found in each one of this types of swimming modes, however it’s impossible to
gather them all in only one prototype, so the main focus would be redirected to assemble
the main characteristics of thunniform and anguilliform swimmers, both belonging to the
BCF group. This option is supported on the fact that thunniform swimmers have the most
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efficient locomotion mode developed in the aquatic environment, that allows high cruising
speeds to be maintained for long periods of time. Along with the power of the caudal
propellers (more than 90%), the well-streamlined body shape and weight distribution,
besides reducing pressure drag, ensures that the recoil forces are effectively minimized.
This design accomplishes an optimized form for high-speed swimming, nonetheless is not
well suited for actions like slow swimming, turning manoeuvres or rapid acceleration. On
the opposite side there are anguilliform swimmers, they are slow speed swimmers but
they are accelerating and manoeuvre specialists. Because of their flexible bodies they are
capable of changing their direction and navigate through confined spaces very easily. A
combination of this two kind of body shapes would be able to perform exquisitely in a
vast number of situations and conditions [51].

2.3 Selection of Training Datasets (Uniform Design Method)

2.3.1 Overview

Classical experimental designs are mostly based on analysis of variance (ANOVA) mod-
els that involve main effects, interactions and random error. The objective is to provide a
good estimation for all parameters with a reasonable number of experiments. When the
number of factors increases, the number of parameters in this method increases exponen-
tially, this means that the number of experiments will do too. This fact brings a problem
related with computer processing due to extensive time-consumption [23].

2.3.2 Uniform Design Method creation

The optimal regression design is based on a pre-specified regression model.

Y =

k

∑
i=1

βigi(x1, ..., xs) + ε (2.1)

where x1, ..., xs are s input factors, βi’s are unknown parameters, ε is the random error
and gi’s are unknown functions, so Equation 2.1 can be represented as

Y = h(x1, ..., xs) + ε (2.2)

where the function h is unknown. The goal is to estimate the average value E(h(x)) over
the experimental domain, where h(x) is the output parameter of the experiment. Without
loss of generality, is assumed that experimental domain is the unit cube C

s
, so

E(h(x)) = ∫
Cs
h(x)dx (2.3)

It usually can be estimated by

h̄ =
1
n ∑
x∈P

h(x) (2.4)

where P is a set of n experimental points over the domain. The goal is to achieve an
experimental design that estimates E(h(x)) in an efficient way [23].
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10 2.3. Selection of Training Datasets (Uniform Design Method)

Fang (1980) proposed the Uniform Design Method (UDM), that allocates experimental
points uniformly scattered on the experimental domain. UDM is a space filling experi-
mental design in a deterministic uniform fashion, that selects points from the center of
cells. A distinctive feature of this method is the introduction of number-theoretic method,
it’s target is to find a set of points that are uniformly scattered over an s-dimensional unit
cube and this set is used instead of random number in Monte Carlo method. This way
UDM requires one-dimensional balance and s-dimensional uniformity [13].

This method is distinguished from the traditional ones in the way that it simultane-
ously deletes insignificant variables and estimates the coefficients of significant variables.
In fact, the UDM can be considered as a kind of experimental design with the aim of min-
imizing discrepancy. It possesses an oracle property (it is robust to the underlying model
assumption), which means that it performs as well as if the true model were known in
advance. Besides that, within a small number of experimental runs, a significant amount
of information can be obtained for exploring the relationships between the response and
the contributing factors. The theoretical backup of uniform design rests on the theory of
numbers and quasi-Monte Carlo method [37].

2.3.3 Discrepancy concept

The Koksma-Hlawka inequality gives the upper error bounds of the estimate of E(h(x))

∣E(h(x)) − h̄∣ ≤ D(P )V (h) (2.5)

where V (h) is a measure of the variation of h and is independent of the design points.
D(P ) is the discrepancy of P . So, given a bounded V (h), Equation 2.5 indicates that the
more uniform a set P of points is over the experimental region C

s
, the more accurate h̄

is as an estimator of E(h(x)). Therefore, one should choose a set of experimental points
with smallest discrepancy among all possible designs for a given number of factors and
experimental runs. This is the fundamental idea of UDM. Note that the UD is robust
against changes of the function h for which V (h) remains unchanged, this fact indicates
that UD provides a good estimate of E(h(x)) for a very large class of h(x). The key issue
to be addressed then is how to find n points in C

s
with minimum discrepancy [23].

Suppose there are s factors of interest over a standard domain C
s
. The goal here is to

choose a set of n points Pn such that these points are uniformly scattered on C
s
. M (Pn)

is a measure of the non-uniformity of Pn, the goal is to find a set of points that minimize
M . From the Koksma-Hlawka inequality (Equation 2.5), a natural choice of M is the
discrepancy D(P ). Being Fn(x) the empirical distribution function of Pn

Fn(x) =
1
n

n

∑
i=1

I(xi ≤ x) (2.6)

where I(⋅) is the indicator function. Then the discrepancy Dp can be written as:

Dp(Pn) = [∫
Cs

∣Fn(x) − F (x)∣pdx]
1
p

(2.7)

where F (x) is the uniform distribution function on C
s
. The popular D∞ discrepancy can

be obtained by taking p =∞ in Equation 2.7 is called the star discrepancy or discrepancy
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for simplicity. This is the most commonly used measurement for discrepancy and can be
reexpressed as follows:

D(Pn) = sup
x∈Cs

∣Fn(x) − F (x)∣ (2.8)

The discrepancy has been universally accepted in quasi-Monte Carlo methods and number-
theoretic methods.

2.3.4 Application and development

A UDM table is denoted by Un(qs), being U the uniform design, n the number of samples,
q the number of levels of each input variable, and s the maximum number of columns of
the table. There is an accessory table for each UDM table, including recommendations of
columns with minimum discrepancy for a given number of input parameters [17].

Details of the algorithm for constructing a Un(qs) table are given as follows:

• For a given n, find the set Hn = (h1, h2, . . . hm) with m. d. c. (n, hi) = 1 and hi ≤ n,
i = 1, . . . ,m, with m = φ(n), where φ is the Euler function

φ(n) = n(1 − 1
p1

)(1 − 1
p2

)...(1 − 1
pt

) (2.9)

and n = p
r1
1 p

r2
2 ...p

rt
t is the prime decomposition of n.

• For any s distinct elements of Hn, generate an n × s table where uij = ihj (mod n)
(for i = 1, . . . , n and j = 1, . . . , s) and 0 < uij ≤ n, this is, uij = n if ihj = kn for k
∈N.

Finally, the UDM table must be transformed into a hyperrectangle region corresponding
to the input variable domain by linear transformation. The idea is to obtain a relationship
between the design variables on the interval [π̄−2απ̄, π̄+2απ̄] and the output values, being
π̄ the mean value of the domain and α a constant value for each variable defined as the
Variation Coefficient [17].

The uniform design method has the following advantages: (1) it is able to produce
samples with high representativeness in the domain; (2) it imposes no strong assumption
on the model; and (3) it accommodates the largest possible number of levels for each factor
among all experimental designs. Due to these advantages, the Uniform Design Method has
been applied to the fields of chemistry and chemical engineering, pharmaceutics, quality
engineering, system engineering, survey design, computer sciences and natural sciences
[13].

2.4 Modeling (Artificial Neural Network)

2.4.1 Overview

A Artificial Neural Network (ANN) is, as once said by Dr. Robert Hecht Nielsen, the
inventor of first neurocomputer: a computing system made up of a number of simple,
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12 2.4. Modeling (Artificial Neural Network)

highly interconnected processing elements, which process information by their dynamic
state response to external inputs [12]. ANN are processing devices (algorithms or actual
harware) that are loosely modeled after the neuronal structure of the cerebral cortex but
on a much smaller scale. The intention of this working networks is not to replicate the
operation of the biological systems but to make use of what is known of the biological
networks for solving complex problems.

The attractiveness of ANNs comes from their remarkable information processing char-
acteristics, mainly to their non-linearity, high parallelism, robustness, fault and failure
tolerance, ability to handle imprecise and fuzzy information (noise tolerance), learning
and generalization capabilities [10].

Artificial models possessing such characteristics are desirable because (i) nonlinearity
allows better fit to the data, (ii) operation and the analogy between ANNs and bionoise-
insensitivity provides accurate prediction in the presence of uncertain data and measure-
ment errors, (iii) high parallelism implies fast processing and hardware failure-tolerance,
(iv) learning and adaptivity allows the system to update (modify) its internal structure in
response to changing environment, (v) generalization enables application of the model to
unlearned data.

ANNs are computational modeling tools that have emerged and found extensive ac-
ceptance in many disciplines for modeling real-world problems. They were first used in
the fields of cognitive science and engineering but recently their usage has significantly in-
creased in other fields such as sonar target recognition, car navigation, image compression,
signal prediction and forecasting, recognizing hand-written ZIP codes, speech recognition
and even backgammon. In micro biology, they have been used extensively ranging from
modeling, classification, pattern recognition and multivariate data analysis. The main
goal of an ANN-based computing is to develop mathematical algorithms that will en-
able ANNs to learn by mimicking information processing and knowledge aquisition in the
human brain, it is the foundation of Artificial Intelligence (AI) [34].

2.4.2 Biological and Artificial Neural Networks

The human nervous system consists in billions of neurons of various types and lengths
relevant to their function. In Figure 2.10 is represented a schematic draw of a biological
neuron composed by three major funtional units: dendrites, cell body and axon. The cell
body incorporates the nucleus that contains cell data and information, the dendrites are
responsible for receiving signals from other neurons and pass that information to the cell
body and the axon, which branches into collaterals, receives signals from the cell body
and carries them to the dendrites of the neighboring neurons through a microscopic gap
named synaptic gap (Figure 2.11).

An impulse, in the form of electric signal is received at the dendrites of one neuron
and travels through the cell body towards the axon until finally reaches the synaptic gap.
Upon the arrival of the signal to the membrane a chemical neurotransmitter is released
in quantity proportional to the strength of the incoming signal. This signal is received
by the dendrites of the upon neuron, forcing it to generate a new electrical signal and
do the same process from the earlier neuron and so on. This simplified mechanism is the
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Figure 2.10: Schema of a biological neu-
ron Figure 2.11: Schema of a synaptic gap

foundation of the neurocomputing development and the operation of the building unit of
an ANN [10].

The analogy made between biological and artificial neurons is that connections between
the artificial nodes represent the axons and dendrites, the synapses are replaced with the
connection weights and the cell body and respective nucleus are replenished by a mathe-
matical function. As Figure 2.12 ilustrates there can be n artificial neurons with various
signals of intensity x and connection weight w feeding into a neuron with a threshold of
b, also called bias. This is similar to a biological neuron, and both networks learn by
incrementally adjusting the magnitudes of the weights or synapse’s strengths.

Figure 2.12: Connections in biological and artificial neurons

An artificial neuron receives inputs from the environment and combines them in a
peculiar way to form a net input (ξ), passes that information through the threshold and
emits an output (y) to the next neuron of the network. Only when ξ value is greater than
the neuron threshold or bias (b) the neuron is activated. The network input is computed
as the inner product of the input signals (x) and their respective strengths (w). For n
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signals the artificial neuron or perceptron neuron operation can be expressed as:

y = { 1, if ∑n
i=1wixi ≥ b;

0, if ∑n
i=1wixi < b

(2.10)

where when the output signal is equal to one the neuron is activated and when the value
is zero it isn’t. Positive connection weights (wi > 0) excite the neuron and enhance the
net signal ξ, on the other hand when the connection weights are negative (wi < 0) they
reduce the neuron activity and inhibit the net signal.

The perceptron can be trained on a set of examples using a special learning rule (Hecht-
Nielsen, 1990). The connection weigths are changed in proportion to the difference of
the network output (y) and the correct or target output (Y ), this difference defines the
error function. This function forms an irregular multidimensional complex hyperplane
with many peaks, saddle points and minima. Using a particular search technique the
learning process strives to obtain a group of connection weights that correspond to the
global minimum.

In order to obtain results for nonlinear separable problems, the network as the need of
additional layer(s) between the input and the output layers. This architecture is called
multilayer perceptron (MLP). The learning of a MLP is not so simple and direct as the
two layer perceptron. For example a Backpropagation MLP trained by the delta learning
rule is a well known and applied example. Both this elements will be discused later in this
section.

In a perceptron, learning can be discribed as the process of updating the internal repre-
sentation of the system in response to external stimuli so that it can perform a specific task.
This means it’s necessary morphing the network architecture, this consists in adjusting
the connection weights, pruning or creating some connection links and change some firing
rules for each neuron. This learning process is performed iteratively when the network is
confronted with new training examples. An ANN is said to have learnt if it can handle
imprecise, fuzzy, noisy and probabilistic information without noticeable adverse effect on
it’s response and when the network is capable of generalize from the known learned tasks
to the unknown ones.

2.4.3 Computational problems

There are seven categories of important problems that an ANN outperform other com-
putacional tools, these are: pattern classification, clustering, function approximation, fore-
casting, optimization, association and control.

• Pattern classification

This category deals with the problem of assigning an unknown input pattern to a
certain class based on properties that characterize that class. Unlike other tools an ANN
does not require the linearity assumption, so it can be applied to non-linear separable
classes.

• Clustering

Morphing Autonomous Underwater Vehicle - Hydrodynamic Analysis



2.4. Modeling (Artificial Neural Network) 15

The cluster problem consists in the construction of classes by exploration of the sim-
ilarities between the input patterns based on their inter-correlations. The network will
designate similar patterns to the same cluster/class.

• Function approximation

The function approximation or modeling involves the problem of training the ANN on
input and output data so as to approximate the underlying rules relating the inputs to
the outputs.

• Forecasting

The forecasting problem consists in the prediction of one behavior, to do so, the com-
putacional tool must be trained on samples from a time series representing a certain phe-
nomenon at a given scenario and then using that phenomenon to forecast the behaviour
for other scenarios.

• Optimization

Optmization consists in finding the best solution for the current problem, wether can
be finding a value that maximizes or minimizes the objective function subject to a group
of problem or real world constrains.

• Association

Association can be dealt by developing a network using noise-free data in order to use
that network to evaluate noise-corrupted data and to correct or reconstruct the corrupted
or missing data.

• Control

This last problem consists in designing a network capable of assuming an adaptive
control system to generate the required control inputs, such that the system will follow a
certain path based on it’s own feedback.

2.4.4 Classification

There are a series of parameters to classify a operating network, they can be based on
the degree of connectivity of the neuron in the network, the function that the network is
design to serve, the direction of the flow of information within the network, the type of
learning algorithm, the learning rule and the degree of learning.

There are three types of learning: supervised learning, this method consists in training
the network with the target outputs for each example and using the error between the
network solution and them to adjust the connections weights; reinforcement learning is a
kind of supervised learning but instead of the network having access to the correct answer
it is provided with a critique on correctness of the desired output; unsupervised learn-
ing does not require the correct answer for each training example, however the network,
through exploring the data and correlation between the examples, organizes the data into
clusters based on their similarity; there is also hybrid learning that combines supervised
and unsupervised learning.
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It’s also important to discuss the kind of existing learning rules and their respective
utilization in each type of learning. There are basically four types of learning rules and
these define the way how the network weights are updated between training cycles. The
error-correction learning (ECL) rule is used in supervised learning in which the arithmetic
difference or error is used to modify the connection weights in a way to reduce is effective
value. The Boltzmann learning (BL) rule is a stochastic rule similar to ECL but is based on
Boltzmann statistical distribution which renders learning extremely slower. The Hebbian
learning (HL) rule is the oldest one and it’s based on the synchronous activation of both
neurons on one synapse and due to the repetition of this event the connection strength is
increased, therefore unlike the previous mentioned methods this method learns locally by
adjusting the synapse weight based on the neurons activity. For last there is Competitive
learning (CL) rule where all the neurons are forced to compete against each other and only
one will activate, this way the connection weights are updated according to this activity.

2.4.5 Backpropagation

This kind of networks are the most widely used and are considered the workhorse of
artificial neural networks [34]. A Backpropagation (BP) is a multilayer network consti-
tuted by an input layer, an output layer and one or more hidden layer/s, these last are
responsible to capture the nonlinearity in the data, see Figure 2.13. They use a supervised
learning method with an error-correction learning rule (ECL) and are capable of learning
the mapping from one data space to another using known examples. The term backprop-
agation is due to the reverse direction of the error in the network architecture, this means
that when the network as finished the process and given a solution to the problem, the
difference between the obtained solution and the optimum solution, the so called error,
travels from the output layer until it reaches the input layer so that the connection weights
can be modified. The collective effect of all the nodes is summed up by action of the prod-
uct between each node value and it’s respective connection weight, once the net effect on
one node is determined the activation at that node is calculated using a transfer function,
for example the sigmoidal function, to yield an output between 0 and +1 or -1 and +1.
The amount of activation obtained represents the new signal that is going to be transfered
to the following layer and this is aplied for all the layers constituing the network. The
forward and backward processes are perfomed repeatedly until the ANN solution is within
the tolerance for the optimum solution. These networks are very versatile and can be used
and excel in almost all computational problems.

2.4.6 Development

The development of an operational and successful network consists in a cycle of six
phases: problem definition and formulation, system design, system realization, system
verification, system implementation and system maintenance. The process starts with a
good problem definition and formulation, this is the foundation of the network and it’s
very relevant to the following work. The next step is system design where the type of
network and the learning rule are established, this is also where the data is collected and
pre-processed to fit the type of ANN used, this includes a statistical analysis and divi-
sion of the contained data into three subsets: training, test and validation. The following
step, system realization, where the training of the network occurs. After this section is
complete it’s time for system verification where the network is examined for its general-
ization capability, this means that the network needs to be capable of respond accurately
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Figure 2.13: Connections in an artificial neuron with the backpropagation method

to examples never used on its development. If the network succeeds, the following step
is the system implementation where the network is installed in a computer program or
a hardware controller. After all these steps, the system is operating, but to continue on
it’s excellent level another step is required, this is called system maintenance and involves
updating the developed system as changes in variables occur, this closes the development
cycle shown in Figure 2.14.

The are common issues when developing and implementing a BP ANN, such as: database
size and partitioning, data preprocessing, balancing and enrichment, data normalization,
input and output representation, network weight initialization, learning rate (η) , momen-
tum coefficient (µ), transfer function (σ), convergence criteria, number of training cycles,
training modes, hidden layer size and parameter optimization [10] .

The database size problem happens because since the network must be capable of gen-
eralizing, the data should be sufficiently large so it covers all possible variations in the
problem domain. The data partitioning, as said before, must be done into three subsets:
training, test and validation. The training subset must include all the data from the
problem domain and is used to adjust the connection weights between the nodes. The
test subset must be filled with different data from the training subset, although both data
must be inside the same domain. The validation subset must be constituted by examples
different from the ones from the previous subsets so the best network can be chosen and
it’s accuracy can be evaluated.

Before beginning the network training a group of techniques must be done like noise re-
moval, reducing input dimensionality and data transformation, treatment of non-normally
distributed data, data inspection and deletion of outliers. All this processes constitute the
data preprocessing. Balacing the data is particulary important in classification problems
and is based on distributing the data evenly between the various clusters in order to pre-
vent the network for being biased to one or more over-represented classes. Data enrichment
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Figure 2.14: Development of an operational network cycle

consists in adding data to the domain so that the ANN robustness increases, this can be
done by adding data or random noise data.

Data normalization is crucial for preventing larger numbers to override smaller numbers
and to avoid premature saturation of hidden nodes which will restrict the network learning
process. Input and output representation is based on the language used by the network,
a binary terminology is very useful in extracting rules from a trained network and also
increases the dimensionality of the vectors, and so the data discretization is more complete.

Network weight initialization it’s still an undefined case that researchers disagree in
it’s relevance to the overall convergence and architecture of the network. On the other
hand, the learning rate (η) is a well defined subject. If the learning rate is high the
training process will be faster, the weight update will change significantly, this may cause
oscillation on the error surface and the system may never converge, and also it increases
the risk of overshooting a near optimal connection weight value for each node. Contrarily,
if the learning rate is small it will drive steadily to the optimum solution, but in a very
slow process. There is also a constant learning rate that is in between the two previous
mentioned. In order to get the best of both characteristics, the adaptive learning rate
[η(t)] was created, and as the name says, it will vary along the training process and adapt
the velocity/step of the learning rate to the required at the moment, normally a bigger
step is needed in the beginning of the training process and it should decrease when the
process is closer to the final value.

The momentum coefficient (µ) is used in the weight updating to help the system escape
local minima and reduce search instability, although it could lead to overshooting the
solution when it’s value is high [10]. In order to rectify that, in a similar way to the
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learning rate, a variable momentum coefficient [µ(t)] as been created and it changes along
the process to satisfy the system needs. The transfer function (σ) is necessary to transform
the weighted sum of all signals onto a neuron so as to determine its firing intensity. The
convergence criteria may differ for each network and can be based on the training error,
on the gradient of error or on cross-validation, being the last one the more reliable but
with the consequence of being more computational demanding and requiring abundant
data from the network. The most used stop criterion is the sum-of-squared-errors (SSE)
calculated as

SSE =
1

N

N

∑
p=1

M

∑
i=1

(tpi −Opi)2 (2.11)

where Opi is the actual solution, tpi is the target solution, i represents the numeral of the
output node, p is the numeral of the example, N is the number of total training examples
and M is the number of output nodes. Normally the error decreases significantly with the
increment of the number of nodes that constitute the hidden layer or with the growing
number of training cycles, although when this parameters are oversized they can lead to
network memorization and overtraining. The learning curves for this process can be seen
in the Figure 2.15.

Figure 2.15: Learning curve of an artificial neural network

There isn’t a concrete number of training cycles for every network, this must be achieved
by trial and error, training a network for a long period of time could result in a over trained
network that will only serve as a look-up table, this fenomenon is called overtraining or
memorization, despite the fact that, theoretically speaking, a large number of training
cycles would result in a near-zero error. Although hard to specify the determination of
the appropriate number of hidden layers and nodes in each layer is one of the most crucial
tasks in a ANN design. A network with few nodes will be incapable of differentiating
between complex patterns and this will lead to a linear approximation of the actual trend.
On the opposite side a network with to many nodes will result in overparameterization
and follow the noise, this will cause a poor generalization of the training data and will
require extensive processing time[10].
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Training data is presented to the network and treated by one or both the following
training modes: example-by-example training (EET) and batch training (BT). In EET
mode, the connection weights are updated immediately after the processing of each training
example, this leads to a small storage requirement and a better stochastic search. The
disadvantage of this method is that training may become stuck in a bad training example
wich may lead the network in the wrong direction. Otherwise, in the BT mode the weight
update is done after all the training examples are processed by the network, this reflects
in a better estimation of the error gradient vector and a more representative measurement
of the required weight change, but it requires a larger network storage and is more likely
to be stuck in a local minimum [12].

The concept of parameter optimization passes through the selection of the ideal values
for each of the six quantifiable parameters mentioned previously. The number of hidden
nodes if set to large will lead to overfitting and no generalization and set to small will
lead to underfitting and slow training. The same analogy can be done to the learning
rate (η), a high rate will lead to an unstable network that oscillates around the optimal
solution and a low rate to a slow training. For the momentum coefficient (µ) when is set
for a high value it will reduce the network risk of being stuck on local minima, speeds the
training process but also increases the risk of overshooting the solution value which leads to
instability, on the other hand, when this parameter is set for a low value it will contribute
for a entrapment in local minima and slow training. A large number of training cycles
will cause network memorization and bad generalization, the opposite situation will cause
underrepresentation of data. The size of the training subset also affects it’s performance,
when using a large training subset the network will be capable of generalization but the
opposite situation will result on the opposite effect. Also, regarding the test subset, a
large size will give the network the ability to confirm it’s generalization and a small test
subset will restrict the network to do such self-evaluation.

An artificial neural network is an efficient and widely used computational tool due to
his processing and learning capabilities, his increased utilization is linked to his ability to
recognize and identify the underlying relations between data regardless explicit relation,
nonlinearity and dimensionality. Its noise and corrupted data tolerance makes them ver-
satile and attractive to numerous situations. This being said, it doesn’t mean this method
does not have it’s limitations such as lack of clear rules or guidelines for an optimal archi-
tecture design, unclear explanation of the process through which the solution was obtained
by the network, lack of physical concepts, and the most relevant factor, that ANN sucess
is based on the quality and quantity of data used in the process.

2.5 Optimization (Genetic Algorithm)

2.5.1 Overview

Optimization can be defined as the selection of the best elements from a specific group
with a set of constrains related to them. Select these individuals will lead to better results
and then optimization will be achieved. This is a simple definition to a hard and vast
job that sometimes cannot be accomplished. In mathematics, optimization can be seen
as maximizing or minimizing a certain target function. In order to do so, rules must be
satisfied otherwise the obtained solution will not be plausible.
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A genetic algorithm (GA) is a heuristic search method that is inspired by Charles Dar-
win’s theory of natural evolution. This algorithm reflects the process of natural selection
where the fittest individuals are selected for reproduction in order to produce offsprings
of the next generation. This is an iterative process and the main goal is to achieve a
generation with the fittest individuals, this is sustained on the fact that by passing the
best genes the next generation, this generation will be better and have a greater chance
at surviving.

The use of this method for solving computational problems is not new. It was intro-
duced in 1970’s by J. H. Holland when it has proved to be a significant development for
scientific and engineering applications. Besides this method low speed processing and it’s
randomness, that leads to a problem of performance assurance, the research work in this
field has grown exponentially due to the easy availability of low-cost fast processing com-
puters and so this method has reached a stage of maturity. When applying this method,
former complex and conflicting unsolved problems that require simultaneous solutions,
can now be solved [40].

2.5.2 Basic concepts

A genetic algorithm cannot be considered as a mathematically guided algorithm, because
it doesn’t have any stringent mathematical formulation. This method is just a stochastic,
discrete event and a nonlinear process and the optimal results obtained arise from the
previous mentioned natural selection mechanism. In order to select such individuals a
objective value must be introduced in such a way that a fitness function can be created to
evaluate the performance of each individual, i.e., it’s capability to compete against other
individuals, and, prevail.

Four phases are considered in a genetic algorithm cycle: initial population, selection,
crossover and mutation [9]. The process begins with a random set of individuals which
is called initial population. Each individual represents a solution to the problem and is
characterized by a set of parameters (variables) known as genes, a string of genes will
form a chromosome (solution). In a genetic algorithm, the set of genes of an individual is
usually represented using a binary string for reasons that will be explained later on this
chapter.

The next phase is called selection and consists in the selection of the fittest individuals
so they could pass their genes to the next generation. The pair of individuals (parents)
are selected, as mentioned before, by the fitness function that will attribute a fitness score
to each individual of the population.

After selection, comes the most significant phase in a genetic algorithm, the crossover.
For each pair of parents to be mated, a crossover point or points is chosen randomly
from within the genes, offsprings are created by crossing the genes of their parents among
themselves until the crossover point is reached, and so, the new offspring are added to the
population.

In some cases of the previous formed offspring, some of their genes can be subjected to
a change in a process called mutation, that happens with a low random probability. This
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Figure 2.16: Schema of the genetic operators cycle

implies that some parameters values from the previous solution are modified. The main
goal of mutation is to maintain diversity within the population and prevent premature
convergence to a local minimum.

The algorithm comes to a final solution when the population has converged, i.e. the
new offspring is not significantly different from the previous generation. Then it is said
that the genetic algorithm has provided a set of solutions to the existing problem. But
this is not the only way to stop the iterative cycle. It also can stop when a certain target
value for the fitness function is reached or when a stipulated number of runs/iterations is
finished.

2.5.3 Design and Construction

After establishing the GA cycle steps it’s important to clarify a few criteria that need
to be established. First thing to be discussed is the language utilized in this method
to established the problem solutions. The bit string encoding is the classical and most
commonly used approach used by GA researchers because of it’s simplicity and traceability,
although it could lead to difficult and sometimes unnatural solutions in some optimization
problems [40].

Next, crossover and mutation rate criterion will define the probability of each operation
to happen. The choice of such rate values is complex and nonlinear from one problem
to another but an established guideline is that for a large population size (one hundred
individuals) the crossover rate is smaller than a small population size (thirty individuals).
This is given because the crossover operation tends to conserve the genetic information
present in the strings and so it’s capacity to generate new building blocks is small, although
it increases the chance of disrupting some good chromosomes. On the other hand, the
mutation rate in a large population is greater than in a small population size due to it’s
great capacity of generating new building blocks and it’s non-conservative information
operation, however it has the capacity of reintroduce some lost genetic material. Logically
this happens because in a larger population the need to maintain the initial information
is reduced when comparing with a smaller population, because when that happens to the
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smaller population there’s a risk of losing crucial information to find the problems best
suited solution.

The fitness function is the main link between the genetic algorithm and the operating
system. It receives a chromosome and produces an objective value, normally in least square
form, as a measure of it’s performance. In order to maintain uniformity between the range
of values over various problem domains, there are three common scaling operations: linear
scaling, power law scaling and sigma truncation. In the linear scaling the fitness value of
one chromosome has a linear relationship with the objective value:

fi = a ⋅Oi + b (2.12)

where i is the chromosome identification, a and b are problem constants used to enforce
the equality of the average objective value Oi and the fitness value fi and cause maximum
scaled fitness to be a specified multiple of the averaged fitness. In the power law scaling
the fitness value is obtained as the k

th
power of the objective value:

fi = O
k
i (2.13)

where k is problem dependent or even varying during each run. In the sigma truncation,
the fitness value is obtained by:

fi = Oi − (O − cxσ) (2.14)

where c is a integer, O is the mean value of the objective values, and σ is the standard
deviation in the population [40].

As mentioned before the probability of one chromosome be a parent depends on it’s
fitness score, and to measure that performance there are a few selection algorithms. Bias
is a kind of algorithm that defines the absolute difference between actual and expected
selection probabilities of each individual. Alternatively there’s the spread algorithm that
quantifies the range of possible number of trials that an individual may achieved. There
is also efficiency that is related to the overall time complexity of the algorithm. One
of the most used selection techniques is called roulette wheel selection. This mechanism
starts with the sum of the fitness of all the population members (N), then a random
number (n) between zero and N is generated and them the algorithm returns to the first
population member whose fitness added to the fitness of the subsequent generations is equal
or greater than n. This technique tends to give zero bias but could potentially use spread
unlimitedly. Other commonly used selection technique is stochastic universal sampling
(SUS) that has minimum spread, zero bias but as a low level of efficiency, that means that
the time complexity is high. There are other methods that introduce a different approach
to chromosome classification: instead of selecting a chromosome due to it’s evaluation
value the choice is based on their proportional rank, this is called ranking scheme. This
has brought some developments in avoiding premature convergence and speeding up the
process when the population is near the final convergence.

In the mutation phase it was said that this phenomenon could occur in one or more
points of the chromosome genes. Although one-point crossover was stipulated because
of natural processes, it has a major drawback because it’s not possible to obtain certain
combinations in some situations [40]. That’s when the multi-point crossover as been
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introduced, this exponentially improved the generation of offspring. There’s also uniform
crossover, this approach uses a randomly generated crossover mask so it does not have a
fixed number of crossover points. This method exchanges bits instead of segments so it can
combine features regardless of their location. This skill can overcome the fact of destroying
building blocks and potentially lose some important data. There is not a monochromatic
view from researchers for which approach is better because it depends on each problem.
The only well established conclusion is that one-point crossover is the least skilled method.

After creating the new generation is time to be decide what to do with the previous
one. There are a few strategies that can be followed. First there’s total replacement
where every individual from the former generation is replaced with the newborns. Of
course this can only happen when the number of offspring’s generated by the algorithm
is the same as the population before. This strategy is normally associated with a elitist
strategy because of the possibility of the best chromosome/s failed to produce offspring and
this way they can be implemented in the next generation. This strategy may induce the
algorithm to increase the domination of a super chromosome but it undeniably increases
the population performance. When the algorithm does not produce enough offspring’s to
completely substitute the previous generation, logically, only a percentage of them is going
to be replaced. To choose which are going to be left out, normally the algorithm picks
the worst ones but it can also substitute directly the parents for their respective offspring
maintaining the diversity in the population.

As known one of the major applications of the GA is for time dependent problems. This
means that the problem environment is changing throughout the process. In an effort to
get the best solution, the algorithm must be adaptive to the system behaviour or it must
be able to remain inviolable to such disturbance. To do so, there are two basic strate-
gies: (1) expand the GA memory, so it can build up more data and consequentially more
qualified responses; (2) combining three mechanisms called random immigrants, triggered
hypermutation and statistical process control. This gives the algorithm more capacity for
generate diversity in the population. The random immigrants replace some individuals
from the population, the triggered hypermutation is an adaptive mechanism that increases
the mutation rate whenever the best time-average performance of the population deterio-
rates and the statistical process controls the GA population performance so it can adapt
to the nonstationary environment.

As quoted before one of the key negative points of GA method is the time spent in
the computation process. With the aim of minimizing that effect and knowing that GA
as already an intrinsic parallelism architecture, a parallel computational framework can
be implemented. There are a few existing methods that can enhance the computational
speed and they can be classified into three categories: global, migration and diffusion [40].

The global GA, represented in Figure 2.17, treats the entire population as only one
breed and creates a master-slave relationship between the selection and fitness assignment
(master) and the crossover, mutation and function evaluation (slave). The master can
have has many slaves as needed to solve the problem, but one big disadvantage of this
method is that the slaves embrace a lazy attitude while the master does his selective work.
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Figure 2.17: Schema of a global GA

Another approach is the migration GA, this method divides the population in subgroups
which are treated as a different breeding from each other, then single individuals migrate
to another subgroup in such a manner that good genetic material spreads through all
population. There are three kinds of migration associated with this method: ring migration
where individuals migrate according to a certain direction as represented in Figure 2.18;
neighborhood migration where migration occurs to the nearest subgroups, Figure 2.19;
and unrestricted migration where individuals can migrate to every existing group, 2.20.

Figure 2.18: Schema of a
ring migration GA

Figure 2.19: Schema of
a neighborhood migration
GA

Figure 2.20: Schema of an
unrestricted migration GA

Last there’s diffusion GA, a method that considers the whole population as a single
breed and scatters all individuals in a bi-dimensional network in which individuals are
able to breed with other individuals in a small neighborhood (see Figure 2.21).

On the other hand one of the key positive points of GA method is it’s capacity to
solve multiobjective problems. The solution set of a multiobjective optimization problem
consists not in a individual parameter optimization but on a group optimization, this
means that not all parameters are going to be simultaneously and equally improved. This
concept is knowm as the Pareto-optimality. A genetic algorithm as demonstrated it’s
capacity to obtain the Pareto-optimal set instead of a single parameter optimization.
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Figure 2.21: Schema of a diffusion GA

2.5.4 Advantages and shortcomings

After looking at all this methods and mechanisms adopted in a way to get the better
and best suited genetic algorithm for every situation, is now reasonable to sum all it’s
positive aspects and give a series of reasons why this algorithm has become so popular
and utilized:

• It can simplify problem constrains by traducing them into a chromosome coding
language

• It’s architecture can be updated and design to solve multiobjective problems the
best way possible

• It can solve multimodal, nondifferientable, noncontinuous problems due to it’s inde-
pendence of the error surface

• It’s a very simple and easy to understand technique

• It can be easily interfaced to existing models and simulations

As any other system it also has some negative factors. In some situations depending of
the nature of the objective functions it can also generate bad chromosomes by combining
good building blocks, this phenomenon is called deception [40]. Other negative episode is
called genetic drift or bias, i.e. there are no guarantees of obtaining the global optimal
solution, because the algorithm can be stuck in a sub-optimal point a prematurely converge
towards a sub-optimal solution. As cited before, a genetic algorithm is not well suited
for cases where response times must be guaranteed because of the it’s large variance.
Last but not least, it’s important to consider this method randomness in such a way
that the population performance will increase but that doesn’t mean a specific individual
performance will do too, because of such factor is not wise integrate a GA directly to a
real system without utilizing a simulation model before.

2.5.5 Applications

Due to is characteristics this algorithm as been implemented in a wide range of appli-
cations in the area of industrial electronics, such applications are among parameter and
system identification, control, robotics, pattern recognition, speech recognition, engineer-
ing designs, planning and scheduling and also system classification.
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Regarding the work to be developed in this thesis, the application of GA enters the
domain of engineering design. It can be used in the optimization of one object shaping,
circuit layout and many other applications. Because an engineering design is similar to
an art form, the GA can be used to strengthen this design and can be seen as a futuristic
way for the creation of an object.

A typical problem is the optimization of an airfoil shape design, where the target pressure
distribution is acquired by the Navier-Stokes equations and then GA is applied to optimize
this value so that a critical airfoil shape is obtained. Experimentation has shown that the
genetic algorithm approach yields better results than the ones obtained via established
heuristics that embody extensive domain knowledge.

After looking at the outline features of a genetic algorithm since the problem formu-
lation, genetic functionality of operators and some practical applications is reasonable to
assume it’s capacity for solving complex and conflicting problems, which makes this algo-
rithm a powerful and useful computational tool. Although GA has some difficulty to react
properly to changing environments due to it’s convergence population factor, this could
be mitigated by monitoring the algorithm with some intelligent supervisory scheme.

The application of GA with other emerging technologies such as neural networks and
fuzzy logic systems could provide great results, leading to successful practical application
of these intelligent system design, overcoming the performance of each technology by it
self. This could be a challenge to implement but could bring some interesting and fruitful
outcomes to innumerous areas of science.
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Chapter 3

Modeling

In this chapter the author intends to give the reader an insight of how the problem was
approached, what were the methods applied, the formulation and concepts relative to this
study problem and how they are going to be solved in this work. In this chapter can be
seen a description of: the Navier-Stokes Equations, the Finite Volume Method, the Drag
Force, Turbulence and the Software Used.

3.1 Navier-Stokes Equations

3.1.1 Introduction

Fluid dynamics is a hoary problem that human kind have been trying to solve since the
great Greek philosophers and scientists Aristotle (384-322 BC) and Archimedes (287-212
BC). The first partial differential equation, this means the first differential equation that
contains unknown multi-variable functions and their partial derivatives, for fluid dynamics
was much later formulated by Euler in 1752. In 1822, Claude Louis Marie Henri Navier,
after adopting the Newton’s definition of friction due to the velocity gradient and fluid
viscosity, was able to include viscous forces into the previous equation and got the correct
equation to what would become the Navier-Stokes equation. This equation has the name
of two scientists because, although the equation was right, it’s derivation was extremely
flawed, that’s when George Gabriel Stokes, twenty three years later (1845) re-derived
the equation in a more delicate way. However their names do not enter the equation
name, there were other three main scholars that had made great contribution in the years
between Navier and Stokes work to establish the fluid dynamic equation, their names
were Augustin-Louis Cauchy, Siméon Denis Poisson and Adhémar Jean Claude Barré de
Saint-Venant [52].

The Navier-Stokes equation is the fundamental equation for governing fluid motion and
dynamics, and until today numerous real world problems such as vehicle aerodynamics,
meteorology, ocean and polution modeling and so on, have shown it’s correctness and ap-
plicability. It is well known that seeking an analytical solution is too difficult and can only
be obtained for some simple laminar flows, therefore, some simplifications or assumptions
must be done, such asthe use of numerical methods, or solve simplified versions of these
equations at defined points in space and time and simulate unresolved features of the fluid
flow, such as turbulence, with parametrized approximations like averaging in a method
called Reynolds averaging. This subject will be approached latter on this study. This
difficulty is attributable to turbulence, a phenomenon frequently referred as one of the
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major unsolved problems of classical physics [15]. In 2000 the Navier-Stokes equation was
selected to be one of the seven Millennium Problems by the Clay Mathematics Institute
of Cambridge, U.S. and an astonishing award of one million dollars is given for the answer
of each of the 7 millennium questions [28]. The answer to this problem must settle that
three properties must be satisfied: a solution must exist, the solution must be always the
same (unique solution) and must be a smooth solution, this means that a small change in
one of the input parameters of the problem must result in a small change in the output
solution. If these three properties are satisfied the equations would be fully discretized
mathematically, this is already possible for a two-dimensional problem but not for a three
dimensional problem [18]. The most recent development is this area was done by Terence
Tao in the year of 2016, who demonstrated that for the averaged Navier-Stokes equations
we get a infinite solution in finite time. The way he approached can be a way to show
that is impossible to always obtain solutions in tri-dimensional in finite time [53].

3.1.2 Development

All hydrodynamic models are based upon the Newtonian law that acceleration is the
result of imposed forces, also known as conservation of momentum, and on the conservation
of mass, both fundamental laws of physics. If the flow is compressible the first law of
thermodynamics must also be taken into account, that means that the energy is conserved
[15]. Although the water is slightly compressible, it is often treated as incompressible
when doing fluid flow calculations because the pressure changes involved are too small to
make an appreciable change to it’s density. The water at the bottom of the ocean is denser
than at the surface due to the very large pressure there, it is also a little denser because it
is colder at the bottom. Is also important to mention the existance of a thermocline, that
simply consists in the transition layer between warmer mixed water at the ocean’s surface
and cooler deep water below. So that being said is easy to conclude that ocean water is
not isothermal nor imcompressible, but in order to simplify the problem solution in this
study water will be considered imcompressible and isothermic fluid.

In contrast with a solid body in a translational motion, when a fluid moves the velocity
of each particle may be different at each location of the fluid. Due to that fact, in order to
apply the fundamental physical principles, one of the following two discretization methods
must be applied: finite control volume or infinitesimal fluid element. The fluid flow equa-
tions obtained directly from the finite control volume are in the integral form but they
can be manipulated to be obtained in the partial differential form and vice-versa. In both
scenarios the equations obtained are in the so called conservation form of the governing
equations if the finite control volume or infinitesimal fluid element is fixed, however if they
are moving with the flow, the equations obtained are in the non-conservation form [29].
In this study the first method was used, the finite control volume method, but in order to
get a better comprehension of this equations both formulations were described.

Historically the momentum equations for a viscous flow were identified as the Navier-
Stokes equations, however in modern Computer Fluid Dynamics (CFD) literature, this
terminology has been expanded to include the entire system of equations, that means the
equation for conservation of mass, momentum and energy. As mentioned before, the fluid
is considered isothermic so the conservation of energy can be neglected.
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Conservation of mass

Considering a finite control volume fixed in space as shown in Figure 3.1, the flow velocity
at a point on the control surface is V⃗ and the vector surface area is dS⃗. An elemental
volume inside the finite volume control is represented as dϑ. Applying the fundamental
physical principal that mass is conserved is the same thing that saying that the net mass
flow out of control volume through surface S is equal to the time rate of decrease of mass
inside the control volume.

Figure 3.1: Finite control volume fixed in space

The mass flow of a moving fluid across the fixed surface can be obtained by calculating
the product of density times the area of the surface times the component of velocity
perpendicular to the surface, so

ρVndS = ρV⃗ ⋅ d⃗S (3.1)

The net mass flow of the entire control volume through the control surface S is given
by the summation over S of each of the infinetesimal elemental mass flows represented in
the previous Figure 3.1. In the limite this becomes a integral and can be represented as

∯
S
ρV⃗ ⋅ d⃗S (3.2)

this is equivalent to the left side of the equation and represents the net mass flow out of
control volume through surface S. Now considering the time rate of decrease of mass inside
the control volume, the right side of the equation is given by

−
∂

∂t
∰

ϑ
ρdϑ (3.3)

then substituting both terms in the previous statement that net massflow out of control
volume through surface S is equal to the time rate of decrease of mass inside the control
volume, results in

∯
S
ρV⃗ ⋅ d⃗S = −

∂

∂t
∰

ϑ
ρdϑ (3.4)

which is equivalent to

∂

∂t
∰

ϑ
ρdϑ +∯

S
ρV⃗ ⋅ d⃗S = 0 (3.5)
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The expression obtained is the integral and conservative form of the continuity equation.
After obtaining this equation is possible to manipulate it in order to get the differential
form. Since the control volume is fixed in space the limits of integration for the integrals
are constant, that means that the time derivative ∂

∂t
can be placed inside the integral,

resulting in

∰
ϑ

∂ρ

∂t
dϑ +∯

S
ρV⃗ ⋅ d⃗S = 0 (3.6)

By applying the divergence theorem from vector calculus, the surface integral can be
expressed as a volume integral

∯
S
(ρV⃗ ) ⋅ d⃗S = ∰

ϑ
∇ ⋅ (ρV⃗ )dϑ (3.7)

Substituting Equation (3.7) in Equation (3.6)

∰
ϑ

∂ρ

∂t
dϑ +∰

ϑ
∇ ⋅ (ρV⃗ )dϑ = 0 (3.8)

or,

∰
ϑ
[∂ρ
∂t

+ ∇ ⋅ (ρV⃗ )]dϑ = 0 (3.9)

Since the finite control volume can be arbitrarily placed the only way for the integral to
be equal to zero is for the integrand to be zero at every single point within the control
volume, that results in the following equation:

∂ρ

∂t
+ ∇ ⋅ (ρV⃗ ) = 0 (3.10)

which represents the continuity equation in the differential and conservation form.

It’s important to refer that both equations are statements of the mass conservation and
also that both are written in the conservation form because initially was assumed that the
finite control volume was fixed in space. If the control volume was moving along with the
fluid the equations obtained directly would be written in the non-conservation form. Both
are equally valid and one can be obtained easily from the other [29]. Consider the vector
identity involving the divergence of the product of a scalar times a vector such as

∇ ⋅ (ρV⃗ ) ≡ ρ∇ ⋅ V⃗ + V⃗ ⋅ ∇ρ (3.11)

substituting Equation (3.11) in the Equation (3.10)

∂ρ

∂t
+ V⃗ ⋅ ∇ρ + ρ∇ ⋅ V⃗ = 0 (3.12)

the first two terms of the equation are just the substantial derivative of density, so

Dρ

Dt
+ ρ∇ ⋅ V⃗ = 0 (3.13)

which represents the non-conservation form of the continuity equation. It’s important to
notice that the difference between the two different forms of expressing the equation is
very small in most of the theoretical aerodynamics, however it can make a considerable
difference in some CFD applications and that’s the main reason why both formulations
are represented in this work [29].
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Conservation of momentum

In this section another fundamental physical principle is applied to a model of the flow,
the so called Newton’s second law that says that force actuating on a body is equal to the
product of it’s mass times the acceleration

F⃗ = ma⃗ (3.14)

This time let’s start with the non-conservation form of the equation, to directly obtain it,
it’s necessary to assume that the finite control volume or the infinitesimal fluid element are
moving with the flow. Since on the previous deduction of the equation of conservation of
mass we started by using the finite control volume, this time the infinitesimal fluid element
was used in order to prove that one can be obtained after another. The infinitesimal fluid
element is an infinitesimally small fluid element in the flow with a differential volume, dV ,
however it is large enough to contain a huge number of molecules so that it can be viewed
as a continuous medium [29].

When we apply Newton’s second law to a infinitesimal fluid element moving with the
flow, it’s reasonable to say that the net force in on the fluid element equals it’s mass times
the acceleration of the element. This relation can be split apart into three components x,
y and z - axes. In this study only two dimensions were considered, so only the x and y-
axes are relevant, however the equations are described for the three axes. If considering
the forces actuating only on the x-component, the equation becomes

Fx = max (3.15)

where Fx and ax are the scalar x-components of the force and acceleration, respectively.

The main sources of the force actuating on the fluid element are body forces and surface
forces. The body forces are the ones which act directly on the volumetric mass of the fluid
element such as gravitational, electric and magnetic forces. Surface forces are the ones
that act directly on the surface of the fluid element, they are caused by the pressure
distribution acting on the surface imposed by the fluid surrounding the fluid element and
to the shear and normal stress distribution acting on the surface, also imposed by the
outside fluid by means of friction.

The shear and normal stresses in a fluid are related with the time-rate-of-change of the
deformation of the fluid element. As can be seen in Figure 3.2 the shear stress is denoted
by τxy and is related with the time-rate-of-change of the shearing deformation of the fluid
element, whereas the normal stress, represented in Figure 3.3 is related to the time-rate-
of-change of volume of the fluid element and is denoted by τxx. Both of these stresses are
dependent of the velocity gradients of the flow, however for most viscous flows the normal
stresses are much smaller than shear stresses and are normally dilapidated, except in flows
where the normal velocity gradients are very large, such as inside a shock wave [29].

The surface forces in the x-direction applied in the fluid element are sketched in Figure
3.4. The formulation used means that τij denotes a stress in the j-direction and exerted
on the perpendicular plane of the i-axis.
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Figure 3.2: Shear stress on an in-
finitesimal fluid element

Figure 3.3: Normal stress on an in-
finitesimal fluid element

Figure 3.4: x-direction forces actuating on a moving infinitesimal fluid element

After analysing the Figure 3.4 above it’s possible to comprehend that the net surface
force in the x-direction is given by

[p − (p + ∂p

∂x
dx)]dydz + [(τxx +

∂τxx
∂x

dx) − τxx]dydz

+[(τyx +
∂τyx

∂x
dy) − τyx]dxdz + [(τzx +

∂τzx
∂z

dz) − τzx]dxdy
(3.16)

and also that the body force per unit of mass acting on the fluid element by F⃗ is given
by fx on the x-component and the volume of the infinitesimal fluid element is given by
(dxdydz), which results in the body force on the infinitesimal fluid element acting in the
x-direction be equal to

ρfx(dxdydz) (3.17)

combining Equations (3.16) and (3.17), after adding and cancelling terms, it’s possible to
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obtain the Equation (3.18) that represents the total force in the x-direction, Fx

Fx = ( − ∂p

∂x
+
∂τxx
∂x

+
∂τyx

∂y
+
∂τzx
∂z

)dxdydz + ρfxdxdydz (3.18)

which represents the left side of Equation (3.14). Recalling that the mass of the infinites-
imal fluid element is given by

m = ρdxdydz (3.19)

and also that the acceleration on the x-direction (ax) of the infinitesimal fluid element
is the time-rate-of-change of it’s velocity in the x-direction (u), that can be obtained by
applying the substantial derivative, thus:

ax =
Du

Dt
(3.20)

Combining Equations (3.14), (3.18), (3.19) and (3.20) it’s possible to obtain the x-component
of the momentum equation for a viscous flow

ρ
Du

Dt
= −

∂p

∂x
+
∂τxx
∂x

+
∂τyx

∂y
+
∂τzx
∂z

+ ρfx (3.21)

In a similar way it’s possible to obtain the y and z-components

ρ
Dv

Dt
= −

∂p

∂y
+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ ρfy (3.22)

ρ
Dw

Dt
= −

∂p

∂z
+
∂τxz
∂x

+
∂τyz

∂y
+
∂τzz
∂z

+ ρfz (3.23)

These equations are written in the partial differential form and were obtained directly
by the application of the fundamental physical principle, Newton’s second law to a in-
finitesimal fluid element which results in the acquisition of the non-conservation form of
these equations. Note that is possible to obtain them in the conservation form after some
manipulation.

Rewriting the left side of Equation (3.21) in terms of the definition of the substantial
derivative

ρ
Du

Dt
= ρ

∂u

∂t
+ ρV⃗ ⋅ ∇u (3.24)

and expanding the following derivative, it results in

ρ
∂u

∂t
=
∂(ρu)
∂t

−
∂ρ

∂t
(3.25)

after the application of the vector identity for the divergence of the product of a scalar
times a vector, the result is

ρV⃗ ⋅ ∇u = ∇ ⋅ (ρuV⃗ ) − u∇ ⋅ (ρV⃗ ) (3.26)

substituting Equations (3.25) and (3.26) on the Equation (3.24), it’s possible to obtain

ρ
Du

Dt
=
∂(ρu)
∂t

− u[∂ρ
∂t

+ ∇ ⋅ (ρV⃗ )] + ∇ ⋅ (ρuV⃗ ) (3.27)
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On the Equation (3.27) above, the term in brackets is no more than the left side of the
continuity equation (Equation (3.10)), which means that it’s value is equal to zero

ρ
Du

Dt
=
∂(ρu)
∂t

+ ∇ ⋅ (ρuV⃗ ) (3.28)

Substituting Equation (3.28) into Equation (3.21)

∂(ρu)
∂t

+ ∇ ⋅ (ρuV⃗ ) = −∂p
∂x

+
∂τxx
∂x

+
∂τyx

∂y
+
∂τzx
∂z

+ ρfx (3.29)

which represents the conservation form of the momentum equation on the x-component.
In a similar way the equations for the y and z-components can be obtained

∂(ρv)
∂t

+ ∇ ⋅ (ρvV⃗ ) = −∂p
∂y

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ ρfy (3.30)

∂(ρw)
∂t

+ ∇ ⋅ (ρwV⃗ ) = −∂p
∂z

+
∂τxz
∂x

+
∂τyz

∂y
+
∂τzz
∂z

+ ρfz (3.31)

At the end of the seventeenth century Isaac Newton stated that shear stress in a fluid
is proportional to the velocity gradients. This statement would give a group of fluids the
name of Newtonian fluids, examples are air and water. Non-Newtonian fluids are the ones
which the shear stress is not proportional to the velocity gradients such as blood. Theo-
retically, in all practical aerodynamic problems, the fluid can be treated as a Newtonian
fluid. For such fluids, in the year of 1845, George Gabriel Stokes stated that

τxx = λ∇ ⋅ V⃗ + 2µ
∂u

∂x
(3.32)

τyy = λ∇ ⋅ V⃗ + 2µ
∂v

∂y
(3.33)

τzz = λ∇ ⋅ V⃗ + 2µ
∂w

∂z
(3.34)

τxy = τyx = µ(
∂v

∂x
+
∂u

∂y
) (3.35)

τxz = τzx = µ(
∂u

∂z
+
∂w

∂x
) (3.36)

τyz = τzy = µ(
∂w

∂y
+
∂v

∂z
) (3.37)

where µ is the molecular viscosity and λ is the bulk viscosity coefficient. By applying the
Stokes statement to the previous conservation form of the momentum Equation (3.29),
(3.30) and (3.31) for the x, y and z-components, respectively, it’s possible to obtain

∂(ρu)
∂t

+
∂(ρu2)
∂x

+
∂(ρuv)
∂y

+
(ρuw)
∂z

= −
∂p

∂x
+
∂

∂x
(λ + 2µ

∂u

∂x
) + ∂

∂y
[µ(∂v

∂x
+
∂u

∂y
)] + ∂

∂z
[µ(∂u

∂z
+
∂w

∂x
)] + ρfx

(3.38)
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∂(ρv)
∂t

+
∂(ρv2)
∂x

+
∂(ρuv)
∂x

+
(ρuw)
∂z

= −
∂p

∂y
+
∂

∂y
(λ + 2µ

∂v

∂y
) + ∂

∂x
[µ(∂v

∂x
+
∂u

∂y
)] + ∂

∂z
[µ(∂w

∂y
+
∂v

∂z
)] + ρfy

(3.39)

∂(ρw)
∂t

+
∂(ρw2)
∂z

+
∂(ρuw)
∂x

+
(ρvw)
∂y

= −
∂p

∂z
+
∂

∂z
(λ + 2µ

∂w

∂z
) + ∂

∂x
[µ(∂u

∂z
+
∂w

∂x
)] + ∂

∂y
[µ(∂w

∂y
+
∂v

∂z
)] + ρfz

(3.40)

In other words the Navier-Stokes equations are a coupled system of non-linear partial
differential equations that until today there isn’t a general closed-form solution, however
they are widely used in a long range of practical applications. Their output results are
largely influenced by the initial conditions and boundary conditions stipulated for the
problem specially when working with CFD solutions. In a CFD simulation the results
tend to be generally smooth and stable when the conservation form of this equations is
utilized, however when the non-conservation form is used for a shock-capturing solution,
the computed flow-field usually exhibit unsatisfactory a spatial oscillations upstream and
downstream of the shock wave which can provide unstable solutions [29]. The concept of
turbulence is really important to understand the problem with Navier-Stokes equations
problem because fluids have a turbulent motion and the existing computational power
always average the solutions by eliminating this phenomenon from the problem.

3.2 Finite Volume Method

3.2.1 Introduction

The start point of any numerical method is the mathematical model, such as in this
study case, a group of partial differential equations and boundary conditions that define
the problem. Selecting an appropriate model is very important, because some simplifi-
cations and relaxation of certain restrictions could lead to crucial mistakes. Commonly
a numerical method is created to find an approximate solution to a particular group of
equations, since that is impossible to create a general numerical method capable of solv-
ing all problems. After selecting a fitting mathematical method, it’s necessary to choose
a proper discretization method. A discretization method is a way of approximating the
differential equations by a system of algebraic equations for the problem variables, that
are going to be obtained in discrete locations in time and space. There are several dis-
cretization methods, however the most widely used are: Finite Difference Method (FDM),
Finite Volume Method (FVM) and Finite Element Method (FEM) [20].

The finite volume method, in similarity with other numerical methods developed for the
simulation of fluid flow, transforms a set of partial differential equations into a system of
linear algebraic equations. However, the discretization procedure is distinctive from the
other methods and involves two basic steps: first, the partial differential equations are
integrated and transformed into balance equations over an element. The result is a set of
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semi-discretized equations. Second, interpolation profiles are chosen to approximate the
variation of the variables within the element and relate the surface values of the variables
to their cell values and thus transform the algebraic relations into algebraic equations [43].

The popularity of the FVM in computer fluid dynamics is due to the high flexibility
it offers as a discretization method, its prominent role in the simulation of fluid flow
problems urges as a result of the work done by the CFD group at Imperial College in
the early seventies under the direction of Professor Spalding, with contributors such as
Patankar, Gosman and Runchal [43]. The FVM flexibility and popularity is based on the
fact that discretization is carried out directly in the physical space, thus there’s no need
for any transformation between the physical and the computational coordinate system.
Another crucial characteristic of the FVM is that its numerics mirror the physics and the
conservation principles it models, such as the integral property of the governing equations
and the attributes of the terms it discretizes. Later its adoption of a collocated or non-
staggered variable arrangement, where all dependent variables share the same control
volumes, turned it capable of solving flows in complex geometries [30]. These improvements
have provided the capacity to use the FVM in a wide range of applications while retaining
the simplicity of its mathematical formulation.

3.2.2 Development

Considering a general flow field represented by streamlines, it’s possible to insert a closed
volume within a finite region of the flow, this defines a control volume V , and a control
surface S, defined by the closed surface that bounds the volume. The control volume can
be fixed in space, this means that the fluid moves through it (Figure 3.5) or the control
volume can be moving with the fluid, which means that the volume particles inside the
control volume are always the same (Figure 3.6). In both scenarios the control volume
is a sufficiently large finite region of the flow and the fundamental physical principles
are applied to the fluid inside the control volume in the second scenario and to the fluid
crossing through the control surface in the first scenario. The main reason of applying
this method is that by implementing this control volume our attention is redirected to a
finite region instead of the whole fluid field, which simplifies the process [29].

Figure 3.5: Fixed finite control
volume

Figure 3.6: Moving finite con-
trol volume
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As mentioned previously in this chapter the finite volume method utilizes directly the
integral form of the conservation equations, therefore the basic quantities such as mass and
momentum will be conserved at the discrete level. In the center of each control volume
there’s a computational node, as can be seen in Figure 3.7, where the variable values are
calculated, the variable values in the control volume surface are obtained by interpolation
in relation to the node value. The surface and volume integrals are approximated utilizing
appropriate quadrature formulation, as a result, an algebraic equation is obtained for each
control volume such as the values for the node and respective neighbor nodes.

Figure 3.7: Representation of the finite control volume and interaction with the respective
neighbors

This method can be applied to any kind of computational mesh because of it’s capacity
of adapting to complex geometries, the mesh only defines the control volume frontiers
and it does not need to be relationed to the system coordinates. This method is inherent
conservative since the surface integrals, that represent convective and diffuse fluxes, are
the same in shared faces of control volumes.

In the first step of the discretization process the governing equations are integrated
over the finite volumes into which the domain as been divided, then the Gauss theorem is
applied to the volume integrals of the convection and diffusion terms into surface integrals,
after this procedure the surface and volume integrals are transformed into discrete ones
and integrated numerically through the use of integration points. The objective of the
second phase of the discretization process is to transform the equations into algebraic
equations by expressing the face and volume fluxes in terms of the values of the variable
at the neighboring cell centers. In short, the first step consists in the discretization of the
solution domain and the second in the discretization of the problem equations and also as
a linearization of the fluxes [30].

After achieving the semi-discretized equation, it’s important to set the boundary con-
ditions. In a way to evaluate the fluxes at the faces of a domain boundary, generally it’s
not required to have a profile assumption, so usually a direct substitution is performed.
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Notwithstanding the wide range of boundary conditions, the two most broadly used are
the Dirichlet and the Neumann boundary conditions, which, in mathematical terms, rep-
resent a value specified and a flux specified boundary conditions, respectively. The order
of accuracy of the discretization procedure is based on the fact that fluxes at the faces and
sources over the element are evaluated following the mean value approach and also that
the value of the variables are stored in the center of the cells and it’s assumed that their
variation is linear across the cells (center to surface) [43].

In an effort to ensure a meaningful solution field, the discretized equations must possess
a set of properties such as: conservation, accuracy, convergence, consistency, stability,
economy, transportiveness and boundedness of the interpolation profile. The reason to
this matter is that when the size of the mesh element tends to zero, the numerical solution
is expected to be the exact solution of the equation utilized, independently of the interpo-
lation profile used to evaluate the element variable values, however since the finite volume
method is used the following properties become crucial.

• Conservation

From a physical point of view, is fundamental that the transported variables are con-
served in the discretized solution domain, such as in the initial domain, since that generally,
these are conservative quantities such as mass, energy, momentum, etc. Otherwise the re-
sults obtained may be unrealistic. In the FVM this property is ensured because the fluxes
integrated at an element face are based on the values of the elements sharing the face,
so for any surface common to two elements, the flux leaving the face of one element will
be equal to the flux entering the other element through that same face, this means that
these fluxes have equal magnitude but opposite signs. Thus, the FVM can be considered
a conservative method since it possesses this property [43].

• Accuracy

Accuracy can be defined as how close a numerical solution is to the exact solution,
however in some cases the exact solution for the problem is unknown, consequently a
direct comparison to check accuracy is not possible. An alternative way is to consider the
truncation error as a measure of accuracy. In the FVM discretization process the error
associated with the first step has a second order accuracy, this means that if the number
of grid points is doubled then the discretization error will be reduced by a factor of four.
The truncation error of a discretization scheme is the largest truncation error of each of
the individual terms in the discretized equation. The discretization error does not give the
value of the error on a certain grid, however, it shows how fast the error will decrease with
grid refinement, which means the higher the order of the error the faster it will decrease
with mesh refinement.

• Convergence

Due to the fact of dealing with nonlinear conservation equations an iterative process
is required. This approach consists in repeatedly applying a solution algorithm, after
starting with an initial guess, with the solution at the end of an iteration as the initial
guess of the next iteration. Theoretically, a solution has converged when it’s value does
not change from the previous iteration to the current iteration, however this may be very
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hard to get and may consume a lot of time, so in practice is said that the solution has
converged when the change of value is smaller than a specified quantity. Generally, the
therm convergence is used to indicate the obtainment of a solution with any method, but
it can also be used to indicate the achievement of a grid independent solution in a CFD
case, this means a solution that does not change despite any further grid refinement.

• Consistency

A solution to an algebraic equation approximating a partial differential equation is said
to be consistent if, at each point in the solution domain, the numerical solution approaches
the exact solution of the partial differential equation as the time step and grid spacing tend
to zero, so, the discretization error also tends to zero. If this properties are not satisfied,
consistency can not be assured.

• Stability

The concept of stability is allusive to the discretized equations behavior when solved
by an iterative solver, it indicates if the set of algebraic equations can be solved under a
variety of initial and boundary conditions. In this context the stability it’s not regarding
the process but respective to the resulting system of equations. A sufficient condition for
a system of linear equations to be stable and converge to a solution is for it to satisfy the
Scarborough criterion, which means that its matrix of coefficients is diagonally dominant.
For transient problems the use of explicit or implicit transient schemes has direct impact
on the stability of the numerical method.

• Economy

When developing and applying a CFD code it’s important to have in mind the costs
involved in the computational time and requirements needed to solve the problem, this
process could be time and monetary expensive but this properties must not be prohibitive
of its appliance.

• Transportiveness

The directional properties exhibited by fluid transport are well known and are signaled
by the change in the type of the transport scalar equation. When applying the FVM there
are some implications that can be seen in Figure 3.8.

Figure 3.8: Representation of the fluid flow transportability property
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If a constant source of the scalar variable exists within the element C in a flow field
with uniform diffusivity and velocity, then the contours of the constant scalar variable will
be influenced by the ratio between the convection and diffusion phenomenon. The Péclet
number (Pe) shows this relation and can be written as

Pe =
Convection strength

Diffusion strength
=

ρu

Γ/∆x
(3.41)

When Equation (3.41) value is equal to zero, that means that the transport is ruled
by diffusion and the isolines of the scalar variable are circular and the value of the scalar
variable at point C is influenced by the surrounding nodes W and E. Conversely, when
the convection effects increase, the circular contours become elliptical and the region in-
fluencing the value of the scalar variable shifts in the direction of the flow, accordingly
for high value of Pe flows, the element C will have weak or nonexistent influence on
upstream nodes (W ), while downstream nodes (E) will be strongly affected. When this
property is not verified it could lead to unstable and nonphysical solutions in the selected
discretization schemes.

• Boundedness of the interpolation profile

Ensuring conservation does not guarantee that other important properties of the orig-
inal partial differential equation will be maintained after the realization of the discretiza-
tion method. This can be accomplished by controlling the discretization schemes an their
linearization.

Another feature to have in mind is the variable arrangement, that defines the location
where the variables and their respective values are stored. There are two possible arrange-
ments, the cell-centered arrangement (Figure 3.9 (a)) and the vertex-centered arrangement
(Figure 3.9 (b)).

Figure 3.9: Representation of the cell-centered (a) and vertex-centered (b) arrangements

In the vertex-centered arrangement the flow variables are stored at the vertices of the
elements while elements are integrated around the variable location. When applying this
concept a cell can be created around a grid point in several ways. In a two dimensional
approach, one way is to connect the centroids of the cells having the grid point in common
or centroids can be joined of the surrounding elements to the centroids of their faces.
This type of arrangement allows for an explicit profile to be defined over the elements
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in terms of the vertex variables and also permits an accurate resolution of face fluxes for
all mesh topologies. However it has some shortcomings such as yield of a lower order
accuracy of element-based integrations (since the vertex is not necessarily in the center of
the centroid), it increases the storage requirements, due to the creation of larger matrix,
handling of boundary conditions requires additional treatment, the mesh must be based
on a set of element types for which a shape function can be defined, also, additional
complications may arise at sharp edges and branch cuts.

On the other hand there’s the cell-centered variable arrangement, that currently is the
most popular type of variable arrangement used in FVM. By applying this practice the
variables are stored at the centroids of grid cells or elements. Therefore, the elements
are identical to the discretization elements and the method has second order accuracy,
since all quantities are computed at element and face centroids. Another advantages of
the cell-centered formulation are it’s allowance to use general polygonal elements with no
need for pre-defined shape functions, this enables a straightfoward implementation of a
full multigrid strategy, variations within the cell can be re-constructed using Taylor se-
ries expansion. Withal, as any other method it has a some disadvantages, two of the
most important are its treatment of non-conjunctional elements and the manner the dif-
fusion term is discretized on non-orthogonal cells, these influence the method accuracy
and robustness, respectively. Both are affected by the mesh quality and so depends the
discretization error, so it’s possible to conclude that this method as a strong dependence
on the mesh construction. In accordance with this fact, for a sufficiently smooth grid, the
cell-centered arrangement can attain accuracy of order two or higher. Another problem of
this arrangement is the treatment of non-orthogonality in the discretization of the diffusion
term.

To recap, the vertex-centered scheme and the cell-centered scheme are numerically very
similar, in the interior of a domain, for steady state calculations. The only situation where
the performance of the vertex-centered scheme is superior to the cell-centered scheme is
over a distorted grid, however in all other situations, it is more advantageous to use
the cell-centered arrangement, as it leads to a more straightforward implementation in a
computer code [43].

As mentioned earlier on this chapter, there are explicit and implicit numerical methods.
The first method is one in which the dependent variables are computed directly via already
know values, thus any discretization operator can be directly evaluated based on the
variable values. Contrastingly, in a implicit method the variables are treated as unknows
and assembled to form a coupled set of equations which are treated as unknowns and
assembled to form a coupled set of equations which are then solved via numerical tools
using either a direct or an iterative solution algorithm. In CFD the conservation equations
dealt are nonlinear, therefore the implicit approach is most often chosen for solving them.

This method is widely used by engineers because of it’s simplicity and because every
term that needs approximation has physical meaning [20]. But as all methods it has some
disadvantages, when comparing the FVM with the FDM, it’s possible to conclude that is
harder to apply methods with order higher than second order to develop tri-dimensional
non-structured meshes, this is a result of the FVM need for interpolation, differentiation
and integration [24].
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After going through this method description, it’s possible to understand it’s guiding
principles for the discretization process, which guarantee that the resulting discretized
equation will possess the desirable attributes, in such a way that the desiring results
would be obtained and this tool could be used in several applications.

3.3 Drag Coefficient (CD)

3.3.1 Introduction

Drag is the heart of hydrodynamic design. The accurate assessment of drag charac-
teristics and values is essential for engineering design in order to get the best and more
economic vehicle. Determination of vehicle drag coefficient as been one of the most in-
teresting topics in the last fifty years, so today there are many different methods, from
experimental to numerical methods. This phenomenon can be simulated and measured by
recreating air flow over an object or can be simulated in appropriate simulation programs,
those who are used in Computer Fluid Dynamics (CFD). However, the experimental meth-
ods offer the exact value of this coefficient that as an urge to be known in the early phase
of vehicle design [39].

Having in mind the daily changes of fuel costs, greater vehicles speeds and necessary
reduction of the fuel consumption due to CO2 emissions, further research should be di-
rected to get a better understanding of vehicle hydrodynamics and aerodynamics in such
a way to achieve a more efficient fuel consumption. For this purpose car manufacturers
use vehicle models, although this experimental method requires very expensive equipment,
such as the wind tunnel, which dimensions make possible a research on real scale vehicles
that would lead to real experimental values. With the aim to meet this need there are
numerical methods that offer a cheaper but reliable way to determine air or water flows
around the vehicle in study [49].

Notwithstanding, this subject must be approached with great respect and caution, be-
cause there is much more to drag calculation than meets the eye and it’s very hard to
predict accurately, being very easy to over or under estimate it’s value. This does not
mean that the calculations are difficult, but rather that the process of identifying the
sources that contribute to this phenomenon is complex. In spite of the intuitive thought
of reducing this parameter in a way of achieving less movement resistance, this is also
important when turning the body comes in the picture, so more important than reducing
it is controlling it [25].

3.3.2 Contextualization

Airfoils and hydrofoils operate in fluids (air and water, respectively) which differ princi-
pally in density and viscosity, properties that are readily treated by the concept of Reynolds
number. Since that is true, the vast amount of aerodynamic data already accumulated
becomes available for use in predicting hydrofoil characteristics. Aside from the effects of
cavitation then, the principal difference between airfoil and hydrofoil applications are the
boundaries. In restricted areas such as shallow harbors, canals and towing tanks, other
boundaries are present besides the water surface, that is, the bottom and sides. Naturally
these boundaries also influence the characteristics of a hydrofoil, and their effects must
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be evaluated in order to use aerodynamic data for the prediction of the characteristics
of hydrofoils under such conditions. In addition to the reflective influence of the bottom
and sides we have the finite depth of water limits and the speed of propagation of the
transverse waves generated by the hydrofoil. This change in flow causes the lift and drag
characteristics to be different at speeds below this critical speed [33].

Drag, Dg, can be defined as the component of the resultant force, which is parallel to
the trajectory of motion (Figure 3.10). The drag force differs from the lift force in it’s
direction although, like lift, drag is a component of the total aerodynamic force that results
from the pressure differential over a body. Besides pressure differential, there is another
component in drag named friction. This force acts parallel to the airspeed which explains
why it contributes only to the drag force and not to the lift force.

Figure 3.10: Representation of drag and lift on an airfoil

The purpose of performing a drag analysis is to estimate the magnitude of this force and
understand how the geometry will behave in the practical situation that it was designed
for. a classical approach to drag estimation is based on geometry and flow properties. A
good estimation method must account for:

• Laminar boundary layer

• Turbulent boundary layer

• Location of laminar-to-turbulent transition

• Flow separation regions

• Compressibility

Non-dimensional coefficients are essential when working with hydrodynamics forces and
moments. The coefficient form that represents the total drag is referred to as the drag
model. A drag model is a mathematical expression that when multiplied by the dynamic
pressure and a reference area will yield the drag force acting on the airfoil, also it expresses
the Drag Coefficient (CD) that describes how the drag of the body changes as a function
of its orientation in the flow field. This model can be used in a series of important ways,
ranging from plotting the drag polar (a graph in which the drag coefficient is plotted as a
function of the lift coefficient), to evaluating important performance characteristics such
as the lift coefficient to achieve the longest glide distance or navigate farthest [25].
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Generally, the total drag is broken into two classes: flow separation (pressure drag) and
skin friction (skin friction drag), thus, drag consists on the following contributions:

1. Basic pressure drag - caused by the pressure differential formed by the airfoil that
acts parallel to the tangent to the glide path.

2. Skin friction drag - caused by the ”rubbing” of molecules along the surface of the
airfoil.

3. Lift-induced drag - caused by the circulation around the airfoil, which tilts the lift
vector backwards, creating a force component that adds to the total drag.

4. Wave drag - caused by the rise in pressure around a body due to the formation of a
normal shock wave on the airfoil.

5. Miscellaneous drag is caused by a number of ”small” contributions that are often
easily overlooked, such as small inlets and outlets, access panels, caps and other
construction features that are necessary to ensure the maintenance and good function
of the vehicle [25].

Therefore, drag, Dg, can be written as:

Dg = f (geometry, α, β, ρ, U∞, Re,M ) (3.42)

where geometry refers to reference and wetted area, α to the angle-of attack, β to the
angle-of-yaw, ρ to the water density, U∞ to the far-field flow speed, Re is the Reynolds
number and M is the Mach number. The standard way to estimate the drag value is to
represent the dependency of flow speed and density through the dynamic pressure, 1

2
ρV

2
∞,

the geometry using a reference area, Sref , and the remaining dependencies are lumped into
the Drag Coefficient, denoted by CD. Hence, drag can be computed using the following
expression:

Dg =
1

2
ρU

2
∞SrefCD (3.43)

The Equation (3.43) can be written in order to the Drag Coefficient (CD), so it results
in Equation (3.44)

CD =
Dg

1
2
ρU2

∞Sref
(3.44)

Basic drag modeling is the mathematical combination of all sources of drag for a vehicle,
such that the effect of changing its orientation with respect to its path of motion and fluid
velocity is realistically replicated. This modeling culminates in the determination of the
total drag coefficient, CD. As stated before, the total drag coefficient comprises the effect
of basic pressure drag, skin friction drag, lift-induced drag, wave drag and contributions
from other sources, commonly referred to as miscellaneous drag.

CD = CD0 + CDf + CDi + CDw + CDmisc (3.45)

where CD is the total drag coefficient, CD0 is the basic drag coefficient (pressure drag),
CDf defines the skin friction drag coefficient, CDi is the induced drag coefficient (pressure
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drag), CDw defines wave drag and CDmisc represents the miscellaneous or additive drag.
Each of the previous components depend on the geometry as well as its orientation and
flowspeed. For low subsonic speeds, the wave drag component can be neglected because
of it’s insignificant value [25]. Also, having in mind that miscellaneous drag cannot be
defined by an equation because of it’s subjectivity, the Drag Coefficient equation results
in:

CD = CD0 + CDf + CDi (3.46)

Basic drag can be seen as a pressure drag force caused by resultant pressure distribution
over the surface of the body. It can be treated as the component of the pressure force
parallel to the tangent to the glide path. The force is the product of the pressure acting
on a cross-sectional area of the body, normal to the flight path.

D0 = ∫
S
(Pxn)dA (3.47)

where n is the normal to the glide path and S is the surface of the body. After obtaining
the value of the basic drag force, the basic drag coefficient can be defined as:

CD0 =
2D0

ρU2
∞Sref

(3.48)

Ultimately, the basic drag force can be thought of as the increase in the skin friction
forces due to the applied form factor [25]. Skin friction is caused by a fluid’s viscosity as it
flows over a surface. Its magnitude depends on the viscosity of the fluid and the wetted (or
total) surface area in contact with it, as well as the surface roughness. The skin friction
drag coefficient is defined as follows:

CDf =
2Df

ρU2
∞Sref

(3.49)

Lift induced drag is caused by the flow circulation around the surface of the airfoil,
which will reveal through the formation of vortices. The lift-induced drag is a pressure
drag force and can be defined as:

CDi =
2Di

ρU2
∞Sref

(3.50)

which can be reformulated by combining Equations (3.46), (3.48), (3.49) and (3.50)
and the result would be:

CD =
2D0

ρU2
∞Sref

+
2Df

ρU2
∞Sref

+
2Di

ρU2
∞Sref

(3.51)

3.4 Turbulent Kinetic Energy (k)

3.4.1 Introduction

Turbulence is one of the most prevailing mysteries of physics. After more than a century
studying turbulence we’ve only come up with a few answers for how it works and affects the
world around us. And yet, turbulence is ubiquitous, springing up in virtually any system
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that has moving fluids. Understanding precisely how this phenomenon works would have
a bearing effect on many aspects of our lives.

Usually, liquids and gases have two types of motion: a laminar flow, which is stable
and smooth and a turbulent flow, which is composed by seemingly unorganized swirls.
The laminar flow is steady and easy to predict, on the other hand a turbulent flow is
unstable and the pattern of movement is chaotic. That phenomenon is turbulence in action
and turbulent flows have certain characteristics in common. Firstly, turbulence is always
chaotic, this definition is different from being random. Rather, this means that turbulence
is very sensitive to disruptions, a little change can eventually turn into completely different
results. That fact makes it nearly impossible to predict what will happen, even with a
lot of information about the current state of a system . Another important characteristic
of turbulence is the different scales of motion that these flows display. Turbulent flows
have many different sized whirls called eddies, which are like vortexes of different sizes and
shapes. All those different sized eddies interact with each other, breaking up to become
smaller and smaller, until all that movement is transformed into heat, in a process called
the ”energy cascade” [14].

In every flowing liquid or gas there are two opposing forces: inertia and viscosity. Inertia
can be defined as the tendency of fluids to keep moving which causes instability and pos-
teriorly turbulence, while viscosity works against disruption, turning the flow laminar. In
thick fluids such as honey viscosity is prominent, but on less viscous substances like water
or air, are more prone to inertia, which creates instability that develops into turbulence.
It’s possible to measure where a flow falls on that spectrum with the Reynolds number,
which is the ratio between a flow’s inertia and its viscosity [11]. The higher it’s value the
more likely is is that turbulence will occur.

Re =
Inertial forces

V iscous forces
=
ρ ⋅ U ⋅ L

µ =
U ⋅ L
ν (3.52)

In this equation ρ is the fluid density, U is the flow velocity, L is the characteristic length
and µ represents the bulk viscosity. Knowing that

ρ

µ
is equal to ν, which is the kinematic

viscosity of the fluid, the Reynolds number can be expressed as shown in Equation (3.52)
[11].

Turbulence affects the mean (non-turbulent) part of the flow through a specific mech-
anism called eddy flux. The most unique measure for turbulence is the kinetic energy of
the turbulent part of the flow. This concept is called Turbulent Kinetic Energy, k, which
measures the kinetic energy per unit mass of the turbulent fluctuations in a turbulent flow.
The SI unit of k is J/kg = m

2
/s

2
and, as is noticeable from the name of this quantity,

the value of k directly represents the ’strength’ of the turbulence in the flow, thus it can
be seen as a measure of the intensity of turbulence [50].

In computational of turbulent flows the range of length scales and complexity of phe-
nomena involved in turbulence make most modeling approaches prohibitively expensive.
The resolution required to solve all scales involved in turbulence is beyond what is com-
putationally possible, thus, the primary approach in such cases is to create numerical
models to approximate unresolved phenomena. Turbulence models can be classified based
on computational expense, which corresponds to the range of scales that are modeled
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versus resolved. The more turbulent scales that are resolved, the finer the resolution of
the simulation, and therefore the higher the computational cost. If a majority or all of
the turbulent scales are not modeled, the computational cost is very low, but the trade-off
comes in the form of decreased accuracy [32].

In order to achieve the best results possible, by balancing computational cost with
accuracy the Shear-Stress Transport (SST) k - ω Model was used. The following section
is a extensive description of this method.

3.4.2 Shear-Stress Transport (SST) k - ω Model

Overview

The shear-stress transport (SST) k - ω model was developed by Menter in the year of
1993 to effectively blend the robust and accurate formulation of the k - ω model in the
near-wall region with the free-stream independence of the k - ε model in the far field. To
achieve this, the k - ε model is converted into a k - ω formulation. The SST k - ω model
is similar to the standard k - ω model, but includes the following refinements:

• The standard k - ω model and the transformed k - ε model are both multiplied by
a blending function and both models are added together. The blending function is
designed to be one in the near-wall region, which activates the standard k - ω model,
and zero away from the surface, which activates the transformed k - ε model.

• The SST model incorporates a damped cross-diffusion derivative term in the ω equa-
tion.

• The definition of the turbulent viscosity is modified to account for the transport of
the turbulent shear stress.

• The modeling constants are different.

These features make the SST k - ω model more accurate and reliable for a wider class
of flows (e.g. adverse pressure gradient flows, airfoils, transonic shock waves) than the
standard k - ω model. Other modifications include the addition of a cross-diffusion term
in the ω equation and a blending function to ensure that the model equations behave
appropriately in both the near-wall and far-field zones [2].

The SST k - ω turbulence model is a two-equation eddy-viscosity model which has
become very popular. The shear stress transport (SST) formulation combines the best
of two worlds. The use of a k - ω formulation in the inner parts of the boundary layer
makes the model directly usable all the way down to the wall through the viscous sub-
layer, hence the SST k - ω model can be used as a Low-Re turbulence model without any
extra damping functions. The SST formulation also switches to a k - ε behaviour in the
free-stream and thereby avoids the common k - ω problem that the model is too sensitive
to the inlet free-stream turbulence properties. Authors who use the SST k - ω model
often merit it for its good behaviour in adverse pressure gradients and separating flow.
The SST k - ω model does produce a bit too large turbulence levels in regions with large
normal strain, like stagnation regions and regions with strong acceleration. This tendency
is much less pronounced than with a normal k - ε model [47].
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Transport Equations for the SST k - ω Model

The SST k - ω model has a similar form to the standard k - ω model. The Turbulent
Kinetic Energy, k, and the specific dissipation rate, ω, are obtained from the following
transport equations:

∂

∂t
(ρk) + ∂

∂xi
(ρkui) =

∂

∂xj
(Γk

∂k

∂xj
) + G̃k − Yk + Sk (3.53)

and

∂

∂t
(ρω) + ∂

∂xi
(ρωui) =

∂

∂xj
(Γω

∂ω

∂xj
) +Gω − Yω +Dω + Sω (3.54)

In these equations, Γk and Γω represent the effective diffusivity of k and ω, respectively.
G̃k represents the generation of Turbulent Kinetic Energy due to mean velocity gradients.
Gω represents the generation of ω. Yk and Yω represent the dissipation of k and ω due
to turbulence. All of the above terms are calculated as described below. Sk and Sω are
user-defined source terms. Also ui represents velocity, ∂

∂t
is the partial derivative in order

of time, ρ is the specific density, ∂
∂xi

and ∂
∂xj

are partial derivative in order of space.

Modeling the Effective Diffusivity

The effective diffusivities for the SST k - ω model are given by

Γk = µ +
µt
σk

(3.55)

Γω = µ +
µt
σω

(3.56)

where µ is the dynamic viscosity, σk and σω are the turbulent Prandtl numbers for k
and ω, respectively.

σk =
1

F1/σk,1 + (1 − F1)/σk,2
(3.57)

σω =
1

F1/σω,1 + (1 − F1)/σω,2
(3.58)

where σk,1 = 1.176, σk,2 = 1.0, σω,1 = 2.0, σω,2 = 1.168. The blending function F1 is given
by

F1 = tanh (Φ4
1) (3.59)

Φ1 = min [max (
√
k

0.09ωy
,
500ω

ρy2ω
) , 4ρk

σω,2D
+
ωy

2
] (3.60)

D
+
ω = max [2ρ 1

σω,2

1
ω
∂k

∂xj

∂ω

∂xj
, 10

−10] (3.61)

where y is the distance to the next surface and D
+
ω is the positive portion of the

cross-diffusion term, see Equation (3.86).
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The turbulent viscosity, µt, is computed as follows:

µt =
ρk
ω

1

max [ 1
α∗
,
SF2

a1ω
]

(3.62)

where a1 = 0.31. S is the modulus of the mean rate-of-strain tensor, defined in the
same way as for the k - ε model.

S ≡

√
2SijSij (3.63)

Sij =
1

2
(
∂uj

∂xi
+
∂ui
∂xj

) (3.64)

The blending function F2 is given by

F2 = tanh (Φ2
2) (3.65)

Φ2 = max [2

√
k

0.09ωy
,

500µ

ρy2ω
] (3.66)

The coefficient α
∗

damps the turbulent viscosity causing a low-Reynolds-number cor-
rection. It is given by

α
∗
= α

∗
∞ (α

∗
0 + Ret/Rk

1 + Ret/Rk
) (3.67)

Ret =
ρk
µω (3.68)

α
∗
0 =

βi
3

(3.69)

βi = F1βi,1 + (1 − F1)βi,2 (3.70)

where βi,1 = 0.075, βi,2 = 0.0828, Rk = 6, α
∗
∞ = 1. Note that, in the high-Reynolds-

number form of the k - w model, α
∗
= α

∗
∞ = 1.

Modeling the Turbulence Production

The term G̃k represents the production of turbulence kinetic energy, and is defined as:

G̃k = min(Gk, 10ρβ
∗
kω) (3.71)

where Gk is defined in the same manner as in the standard k - ω model. From the
exact equation for the transport of k, this term may be defined as

Gk = −ρu
′
i
u′
j

∂uj

∂xi
(3.72)

To evaluate Gk in a manner consistent with the boussinesq hypothesis,

Gk = µtS
2

(3.73)
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and

β
∗
= β

∗
i [1 + ζ∗F (Mt)] (3.74)

β
∗
i = β

∗
∞ (

4/15 + (Ret/Rβ)4

1 + (Ret/Rβ)4
) (3.75)

F (Mt) = { 0 Mt ≤ Mt0 ;

M
2
t −M

2
t0 Mt > Mt0

(3.76)

M
2
t ≡

2k

a2
(3.77)

a =
√
γRT (3.78)

where ζ
∗
= 1.5, Rβ = 8, β

∗
∞ = 0.09, Mt0 = 0.25, γ is the ration of specific heat, R is the

gas constant and T is the temperature. Note that, in the high-Reynolds-number form of
the k - ω model, β

∗
i = β

∗
∞, and also that in the incompressible form, β

∗
= β

∗
i .

The term Gω represents the production of ω and is given by

Gω =
α
νt
G̃k (3.79)

α =
α∞
α∗

(α0 + Ret/Rω
1 + Ret/Rω

) (3.80)

where α0 = 1/9, Rω = 2.95, α
∗
= 0.024 and Ret is given by Equation (3.68). Note that

the formulation of Gω differs from the standard k - ω model. The difference between the
two models also exists in the way the term α∞ is evaluated. In the standard k - ω model,
α∞ is defined as a constant, for the SST k - ω model, α∞ is given by

α∞ = F1α∞,1 + (1 − F1)α∞,2 (3.81)

where

α∞,1 =
βi,1

β∗∞
−

κ
2

σw,1
√
β∗∞

(3.82)

α∞,2 =
βi,2

β∗∞
−

κ
2

σw,2
√
β∗∞

(3.83)

where β
∗
∞ = 0.09, κ = 0.41 ,

Modeling the Turbulence Dissipation

The term Yk represents the dissipation of turbulence kinetic energy, and is defined in a
similar manner as in the standard k - ω model. The difference is in the way the term fβ∗

is evaluated. In the standard k - ω model, fβ∗ is defined as a piecewise function. For the
SST k - ω model, fβ∗ is a constant equal to 1. Thus,

Yk = ρβ
∗
kω (3.84)
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The term Yω represents the dissipation of ω, and is defined in a similar manner as in
the standard k - ω model. The difference is in the way the terms βi and fβ are evaluated.
In the standard k - ω model, βi is defined as a constant and fβ is defined by a function.
For the SST k - ω model, fβ is a constant equal to 1. Thus,

Yω = ρβiω
2

(3.85)

Instead of having a constant value, βi is given by Equation (3.70) and F1 is obtained
from Equation (3.59).

Cross-Diffusion Modification

The SST k - ω model is based on both the standard k - ω model and the standard k - ε
model. To blend these two models together, the standard k - ε model has been transformed
into equations based on k and ω, which leads to the introduction of a cross-diffusion term
(Dω in Equation (3.54)). Dω is defined as

Dω = 2 (1 − F1) ρσω,2
1
ω
∂k

∂xj

∂ω

∂xj
(3.86)

3.5 Software Used

3.5.1 Ansys

Design

The first aspect of pre-processing is the geometry definition, this is the core of the work
and it delineates how the study is done and what aspects and parameters were examined.
Besides geometry being an essential component of engineering simulation, it also links
engineering simulation with design and manufacturing, and therefore plays an important
role in simulation driven product development. In Ansys Workbench, the geometry can
either be imported from a file or drawn using Ansys Design Modeler or Ansys SpaceClaim.
For this study case Ansys Design Modeler was used.

With direct interface with all major computer-aided design (CAD) systems, support
from reader and translators and other characteristics Ansys Design Modeler offers a com-
prehensive geometry handling solution for engineering simulation in an integrated environ-
ment. This tool provides unique modeling functions for simulation that include paramet-
ric geometry creation, concept model creation, CAD geometry modification, automated
cleanup and repair, and several custom tools designed for fluid flow, structural and other
types of analyses [8].

Mesh

The most important part of pre-processing is the mesh generation. It consists in the
subdivision of the domain into smaller non-overlapping subdomains (elements or cells)
where the governing equations are solved numerically determining the discrete values of
pressure, velocity and other variables of interest. The accuracy of the CFD solution is
not only influenced by the size, in other words, by the number of cells in the mesh, as
stated above, but also by the type of mesh, the order of accuracy of the numerical method,
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and the adequacy of the numerical methods chosen to describe the physics of the problem
[31]. This increase in accuracy comes with the cost of additional computational power
and computational time requirements, thus a better and more automated meshing tool is
crucial in an attempt to get a fast and accurate solution.

Ansys provides a meshing software that produces accurate and efficient results with
a wide range of applicability from general purpose to high-performance solutions. The
methods available cover the meshing spectrum of high-order to linear elements and fast
tetrahedral and polyhedral to high-quality hexahedral and Mosaic. Smart defaults are
built into the software to make meshing a painless and intuitive task delivering the required
resolution to capture solution gradients properly for dependable results.

The cells can be of several shapes. Bi-dimensional meshes usually use triangle or quadri-
lateral cells, while elements of tri-dimensional meshes are generally tetrahedral or hexa-
hedral. In this study case, a bi-dimensional mesh was used because the problem solution
only required two dimensions. The mesh can be classified into structured or non-structured
based on the cells connectivity. In a structured mesh each cell has the same number of
neighboring cells, they follow an uniform pattern and are usually quadrilaterals (2D) or
hexahedron (3D), while in an non-structured mesh there is not a regular pattern and its
cells are usually triangles (2D) or tetrahedrons (3D) [31]. The advantage of structured
meshes lies on its connectivity which makes it faster to solve, while non-structured meshes
are better suited for complex geometries as the skewness is not as intense as in structured
grids, which can lead to nonphysical solutions [31]. Since the geometry used in this study
is bi-dimensional, a non-structured triangular and quadrilateral mesh was used.

Fluent

Ansys Fluent software contains the broad physical modeling capabilities needed to model
flow turbulence, heat transfer and reactions for industrial applications. With a highly
scalable, high-performance computing (HPC) to help solve complex and large-model CFD
simulations quickly and cost-effectively, Ansys Fluent became a well known and exploited
solution in this area. These properties allowed it’s implementation in a wide range of
applications such as : study of an air flow over an aircraft wing to combustion in a furnace,
from bubble columns to oil platforms, from blood flow to semiconductor manufacturing
and from clean room design to wastewater treatment plants. It also possesses a fault-
tolerant workflow, that speeds meshing for non-watertight (“dirty”) geometries with use
of a “wrapper”- a layer of mesh that covers surface imperfections in the geometry, so that
complex models, that previously took days or even weeks can now be meshed and solved
in hours with minimal sacrifice to simulation accuracy.

Ansys Fluent software places special emphasis on providing a wide range of turbulence
models to capture the effects of turbulence accurately and efficiently, several innovative
models such as the Menter–Langtry laminar–turbulent transition model are available only
in Fluent. The main goal of this work is to evaluate the kinematic turbulence along with
the coefficient of drag of a water flow around an AUV body, which is very similar to an
airfoil, so this computational solution becomes very attractive for this matter [7].
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3.5.2 MATLAB

MATLAB is a high-performance language for technical computing. It integrates com-
putation, visualization and programming in an easy-to-use environment where problems
and solutions are expressed in familiar mathematical notation [46]. Typical applications
include:

• Math and computation

• Algorithm development

• Modeling simulation and prototyping

• Data analysis, exploration and visualization

• Scientific and engineering graphics

• Application development, including Graphical User Interface building

The name MATLAB stands for ”MATrix LABoratory”. MATLAB was originally writ-
ten to provide easy access to matrix software developed by the LINPACK and EISPACK
projects, which together represent the state-of-the-art in software for matrix computation
[46].

3.5.3 Fortran

Fortran was originally named after the contraction of ”Formula Translation”, highlight-
ing Fortran’s origins as a language designed specifically for mathematical calculations.
Fortran was developed in the early 1950s and the first ever Fortran program ran in 1954.
Fortran has outlived several nation states since its conception, and still is in wide use
today in a number of specialised scientific communities [54].

Fortran is a computer programming language that is extensively used in numerical, sci-
entific computing. While outwith the scientific community it still has a strong user base
with scientific programmers and is also used in organizations such as weather forecasters,
financial trading, and in engineering simulations. Fortran programs can be highly opti-
mised to run on high performance computers, and in general the language is suited to
producing code where performance is important [54].
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Chapter 4

Case Study

In this chapter a description of the methods and procedures utilized in this work is
realized. The author pretends to give the reader an insight about how the study was
conducted.

Figure 4.1: Schema of the procedure used in this case study

4.1 Computer Fluid Dynamics (Ansys)

For performing a hydrodynamic simulation in Ansys software three different stages are
necessary: Geometry, Mesh and Fluent (see Figure 4.2). This stages are the base of the
software manipulation. First there is the Geometry stage where, as the name says, the
geometry is defined, for the domain and the body, together with the geometrical variables.
Next there is the Mesh stage, were the software takes the Geometry as an input and
constructs the mesh around all the domain. This is where the mesh characteristics are
defined such as refinement, growth and inflation. Lastly, there’s the Fluent stage which
is the solver of this software. This is where all the numerical solution requirements are
established and also where the output variables are defined.

4.1.1 Geometry

First a rectangle was drawn to represent the geometrical domain of the problem, this is
a large body/surface in comparison with the body in study. The rectangle as the following
dimensions : 40 m x 15 m, see Figure A.1. The distance from the inlet boundary to the
body is 10 m, and the distance of the rear part of the body and the outlet boundary is
more than 20 m to assure that the flow around the body is not affected by the boundary
conditions and can be measured in the stipulated domain (Figure A.2). One frequent CFD
recommendation is to leave at least three times the body length to the outlet boundary,
as so, this recommendation is fully satisfied.
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Figure 4.2: Three stages prevalent in Ansys software: Geometry, Mesh and Fluent

The body itself is composed by 7 variables: Length (L), Diameter (D), Front Length
(Lf ), Rear Length (Lr), Front Radius (Rf ), Rear Radius (Rr) and Middle Radius (Rm).
The body started as a simple rectangle where L and D were defined (Figure A.3). Next,
a triangle was drawn in the front and rear of the body, where Lf and Lr were defined
(Figures A.4). Using the triangle vertice and both corners a middle point was defined.
Using that middle point a perpendicular line was created (Figure A.5 and A.6). Using this
line and the respective corners of the triangle, a radius was defined, which value depends
on the line length (Figures A.7, A.8 and A.9). This process was done four times, so four
radius were defined, see Figure A.10. As shown in Figure A.9, the two radius mentioned
before will only represent one radius, with the vertice as it’s connection point, this is the
way Rf was defined. The same process was done for the Rr. Last, the Rm was defined
using the most distanced corners of the rectangle, a middle point between them and a
perpendicular line, in a process similar to that previously described (see Figures A.11 and
A.12). The final result can be seen in Figure 4.3.

Figure 4.3: Schema of the geometrical variables that compose the body

Lastly, a partial elliptic/circular body was created around the body to be used later in
the mesh generation, this can be called a body of control and does not add material to the
domain. Two kinds of body’s of control were created, one type for the ”INITIAL” and
other ”FINAL” meshes, these can be seen in Figure A.13 and A.14, respectively. Also, to
help the program processing, two symmetry lines were drawn: one intersecting the body
in its horizontal middle plan, Ox (also used for mesh generation) and other intersecting
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the body in its vertical middle plan, Oy, see Figure A.15 and Figure A.16, respectively.

4.1.2 Mesh

Procedure

In order to evaluate the results obtained and to assess the convergence six types of
meshes were constructed. These meshes are divided into two groups: ”INITIAL” (Figure
4.4) and ”FINAL” (Figure 4.5). The difference between them consists in the body of
control dimensions and the refinement of the ”tail” of the body along the domain. To do
this, the line that crosses the horizontal symmetry of the body was used. Inside this two
groups exist three kinds of nets named ”1” , ”2” and ”3”, being ”1” the less refined and
”3” the most refined. This means that mesh ”3” as more elements in it and the elements
size is smaller, so it is more precise (see Table 4.1). It should be remarked that we used a
STUDENT VERSION of Ansys, which means that the maximum number of elements is
restricted to 512000 elements.

Table 4.1: Size values for each mesh element

Units [m]
Domain

Mesh
Body
Sizing

Edge Sizing
(Body)

Edge Sizing
(Tail)

MESH1 1.50E-01 1.50E-02 1.50E-03 -
MESH2 1.00E-01 1.00E-02 1.00E-03 -INITIAL
MESH3 9.00E-02 9.00E-03 9.00E-04 -

MESH1 1.50E-01 1.50E-02 1.50E-03 1.50E-02
MESH2 1.00E-01 1.00E-02 1.00E-03 1.00E-02FINAL
MESH3 9.00E-02 9.00E-03 9.00E-04 9.00E-03

First of all, the mesh was created in all domain with a constant value for the mesh
size, this and the next values depend on which kind of mesh is in use (”1”,”2” or ”3”).
Afterward a more refined mesh (more elements) is created in the body of control/influence
(Figure B.1), and a even more refined mesh is generated on the edges of the body (Figure
B.2). Also on the edges of the body is created a inflation with ten layers (Figure B.3). As
mentioned before, on the meshes from the ”FINAL” group, a more refined mesh is created
around the horizontal symmetry axis (Figure B.4) with the same mesh size as the body
of control, the reason for this implementation can be explained this way: when the flow
encounters the rigid body it suffers a change because of it’s interference with the body
walls, and that change does not disappear immediately when the body ends, in fact the
most perturbed part of the flow occurs at the end of the rigid body. However, as can
easily be perceived, that disturbance is going to fade gradually in the flow domain after
the body edge. This refinement implementation leads to a better approximation of the
flow disturbance caused by the rigid body and therefore a better solution field. At last,
the growth rate used for the ”INITIAL” and ”FINAL” meshes is the pre-definition value
of 1.2, this ensures that the growth in the elements size is ”smooth” and the result will be
a precise net.

The last thing to be done was the definition of the domain boundaries: ”Inlet”,
”Outlet”, ”WallTop”, ”WallBottom”, ”WallBodyTop”, ”WallBodyBottom”. This kind
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Figure 4.4: Image from Ansys Meshing procedure: ”INITIAL” mesh

Figure 4.5: Image from Ansys Meshing procedure: ”FINAL” mesh

of nomenclature is useful when introducing the mesh in Ansys Fluent, because this way the
program identifies each kind of boundary and their respective function. These procedure
is represented in Appendix C in Figures B.5, B.6, B.7, B.8, B.9, B.10. Also on Appendix
C it’s possible to take a closer look to the ”FINAL” mesh in Figures B.11, B.12, B.13 and
B.14.

Convergence

As mentioned before in the present work, a crucial requirement for CFD simulations
is convergence. This means that results must converge to a unique solution or to a so-
lution with a small predefined discrepancy. With the aim of obtaining this requirement
a study was done involving the behavior of the Turbulent Kinetic Energy (k) for the six
computational meshes: ”M1 INITIAL”, ”M2 INITIAL”, ”M3 INITIAL”, ”M1 FINAL”,
”M2 FINAL”, ”M3 FINAL”.

In Figure 4.6 the Turbulent Kinetic Energy (k) measured from the Ox symmetry is
represented for all the domain extension. Starting by the beginning of the domain there is
a small amount of turbulence caused by the initiation of the flow, this should be neglected
because it has no meaning for the following study. It’s possible to identify that the
maximum values occur after the mark of twelve meters (see Figure 4.7), this is where
the body ends, which will cause an increase in the flow turbulence. It’s also possible to
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observe that the ”k” values obtained from the ”INITIAL” meshes are bigger than the ones
obtained using the ”FINAL” meshes.

Figure 4.6: Turbulent kinetic energy (k) [J/kg]: full domain

Figure 4.7: Turbulent kinetic energy (k) [J/kg]: exponential increase of the values

In a way to take a closer look to the maximum values obtained for for the ”INITIAL”
and ”FINAL” meshes, in Figure 4.8 and Figure 4.9 there is a representation of each
peak,”INITIAL” and ”FINAL” meshes, respectively. Inside each figure, meshes ”1”, ”2”
and ”3” are represented, as mentioned before ”M1” is the least refined mesh and ”M3”
is the most refined one. By observing those figures the conclusion supports the previous
observation, the values obtained from the less refined meshes are bigger than the ones
obtained using the more refined meshes.

In Figures 4.7, 4.8 and 4.9 is also possible to recognize that the values obtained for the
”FINAL” meshes (”1”, ”2” and ”3”) are more similar to each other than the ”INITIAL”
meshes, which also can be accounted as a positive factor for convergence. Another impor-
tant aspect is the ”smoothness” of the lines. Since the natural phenomenon is progressive
the approximation values represented by the lines must have a linear behaviour.
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Figure 4.8: Turbulent kinetic energy (k)
[J/kg]: peak values of the ”INITIAL”
meshes

Figure 4.9: Turbulent kinetic energy (k)
[J/kg]: peak values of the ”FINAL”
meshes

As can be seen in Figure 4.10, in the ”INITIAL” meshes there is an abrupt decrease in
the kinematic turbulence, specially on ”M1”, that doesn’t happen in the ”FINAL” meshes,
which proves that the values are more similar to reality which means that the ”FINAL”
construction of the mesh is better suited to the problem.

Figure 4.10: Turbulent kinetic energy (k) [J/kg]: linear decrease of the values

In a further study, with the same goal of verifying the mesh convergence, an analysis
was done using the global values of the Turbulent kinetic energy (k) and Drag Coefficient
(CD) for all the domain, unlike before that the values corresponded to the ox symmetry.
Therefore there’s only one value for each variable (k and CD) in each mesh. These values
can be seen in Table 4.2. For a more intuitive observation two plots were done, these
are represented in Figure 4.11 which represents the Drag Coefficient (CD) and in Figure
4.12 which represents the Turbulent Kinetic Energy (k) for all the meshes in this study
case. As can be seen in these plots convergence of the values is not completely ensured
since that, for both variables, when the mesh refinement increases the value obtained is
substantially different from the others.

By looking at the Drag Coefficient (CD) plot (Figure 4.11), two lines can be spotted. The
red one is referent to the ”INITIAL” meshes and the black one is referent to the ”FINAL”
meshes. Looking at the red line is possible to observe that the CD values are decreasing
with the increase of elements, this means that the value obtained with the mesh ”M1” is
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Table 4.2: Number of elements, Turbulent kinetic energy (k) [J/kg] and Drag Coefficient
(CD) values for all the meshes

INITIAL MESH FINAL MESH
M1 M2 M3 M1 M2 M3

CD 0.037763 0.037579 0.03732 0.031044 0.03122 0.032538

k 0.088908 0.079005 0.077015 0.038711 0.07557 0.308629

Elements 194043 422669 505288 221215 404850 474240

Figure 4.11: Drag Coefficient (CD): linear decrease of the values

greater than the one obtained from the ”M3”. On the other hand, when looking at the
black line is possible to observe an increase in the CD value when the number of elements
increases, which means that the values of CD measured from the mesh ”M3” are greater
than the ones measured from ”M1”. Besides, the values obtained for the ”INITIAL”
meshes are very close to each other, while the ones obtained for the ”FINAL” meshes,
specially from the mesh ”M3”, is substantially different from the meshes ”M1” and ”M2”.
This could potentially mean that by increasing the number of elements better results could
be achieved, although this might be true the computational tool utilized, ”STUDENT
VERSION of Ansys”, has the maximum number of elements of 512000 elements, which
restraints further refinent of the mesh.

In a similar way, by looking at the Turbulent Kinetic Energy (k) plot (Figure 4.12)
two lines can be detected with the same color ”nomenclature” from before, the red one is
referent to the ”INITIAL” mesh and the black one is referent to ”FINAL” meshes. Like
before the values from the red line decrease with the increase of the number of elements
while the values from the black line increase with the increase of the of the number of
elements. Unlike the previous plot, where the values of the CD variable of the ”INITIAL”
meshes where always bigger than the ”FINAL” ones, for the k variable the values from
the ”INITIAL” meshes are bigger in the first two meshes (”M1” and ”M2”) but the value
from the mesh ”M3” is considerably bigger on the ”FINAL” mesh.
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Figure 4.12: Turbulent kinetic energy (k) [J/kg]: linear decrease of the values

As can be seen in the Table 4.2 the number of elements of the ”M2” and ”M3” meshes
from the ”INITIAL” group is greater than the ”M2” and ”M3” meshes from the ”FINAL”
group. The values obtained from the ”INITIAL” ones are closer to each other than the
”FINAL” ones, but, as mentioned before the ”FINAL” meshes are a better approach to
this particular problem, which supports the previous conclusion that a mesh with the same
construction as the ”FINAL” mesh should be constructed and more elements should be
utilized in order to verify results convergence.

4.1.3 Solver

When launching Ansys Fluent the first thing to pop up is the Fluent Launcher. In the
options field a double precision procedure was chosen so that better results are ensured by
the solver. After entering Fluent work station, the ”Setup” must be done before solving
the system of equations. First of all, the solver must be chosen (Figure C.1). In this
work a ”Pressure-Based Solver” was used, in this method the pressure field is extracted
by solving a pressure (or pressure correction) equation obtained by manipulating the
momentum and continuity equations in such a way that the velocity field, corrected by
the pressure, satisfies the continuity. This is called the projection method [6].

The next step consists in defining the ”Model” (Figure C.2), this is based on the type
of study that is going to be done relatively to the body. The ”Viscous” model was chosen
in order to evaluate the water flow passing around the body. Since that water offers
resistance to the movement of a rigid body, this creates a Drag Coefficient (CD), which
is one of the two output variables evaluated in this work. A turbulence model must be
chosen too. With the objective of getting the best results a ”k−ω” Shear-Stress Transport
(SST) model was chosen, this way the second variable evaluated in this work, Turbulent
Kinetic Energy (k) could be achieved. This model was explained in detail on the previous
Chapter.

It’s also important to define the materials in use on our mesh (Figure C.3), because they
will condition the interactions between the body and the flow because of their physical
characteristics. The flow field is fluid and is defined as liquid water with a density of
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998.2 kg/m3
and a viscosity value of 0.001003 kg/m ⋅s, being both values constant through

all the simulation.

Then it’s time to set the boundaries conditions of the previous characterized bound-
aries. For the Inlet boundary (Figure C.4) it was stipulated a variable named Uin, which
corresponds to the Flow Velocity. A turbulence specification method of ”Intensity and
Hydraulic Diameter” was utilized. For this method it was necessary to input two param-
eters values: turbulent intensity (%) and hydraulic diameter (m). For this study case, the
hydraulic diameter (Dh) was stipulated as 30m because

Dh =
4V

A
(4.1)

where V is the volume and A is the area. The domain is a rectangle so it results in a Dh

with twice the size the height of the rectangle, that as said before is equal to 15m.

In order to calculate the percentage of the turbulent intensity, being this parameter
defined as the ratio between the root-mean-square of the velocity fluctuations to the mean
flow velocity [3], Ansys Fluent suggests that for fully developed pipe flow the turbulence
intensity at the core can be estimated as:

I = 0.16(ReDh
)−1/8

(4.2)

being ReDh
the Reynolds number based on the pipe hydraulic diameter Dh. It’s value can

be calculated with the following expression:

ReDh
=
Uin ⋅Dh

ν (4.3)

where Uin is the inlet velocity and ν is the kinematic viscosity of the water.

The next boundaries to be discriminated were the ”WallTop” and the ”WallBottom”
(Figure C.9 and C.8, respectively). Both of them were described as slippery surfaces and
to do that in the ”Shear Condition” was introduced a ”Specific Shear” condition and
given the value zero Pascal to both of the main axis (Ox and Oy). This way all boundaries
conditions are fully defined in order to progress in the simulation work. It’s possible to
observe the remaining boundary conditions definition and Reference Values in Appendix
C.

After introducing all this Setup conditions, it was necessary to do the same for the
Solution segment of the solver. The first thing to be done was defining the solution meth-
ods (Figure C.11). For the ”Pressure-Velocity Coupling” the ”Scheme” was established
as ”Coupled” because this method uses pressure-based coupled algorithm instead of a
segregated one. It obtains a more robust and efficient single-phase implementation for
steady-state flows [4]. For the ”Spacial Discretization” of ”Momentum”, ”Turbulent Ki-
netic Energy” and ”Specific Dissipation Rate” was used the ”Second Order Upwind”. It
provides a second order precision and face values are computed using a multidimensional
linear reconstruction approach. Having worse convergence than first-order upwind scheme,
it yields more accurate results, especially on triangle and tetrahedral meshes [4]. For the
”Gradient” was used the ”Least Squares Cell Based”, in this method is assumed that
the solution varies linearly and it was chosen because on irregular (skewed and distorted)
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unstructured meshes, the accuracy of the least-squares gradient method is comparable to
the node-based gradient (and both are much more superior compared to the cell-based
gradient). However, it is less expensive to compute the least-squares gradient than the
node-based gradient [5]. For the ”Pressure” term was used a ”Second Order” scheme
that reconstructs the face pressure in the manner used for second-order accurate convec-
tion terms. This scheme may provide some improvement over the standard and linear
schemes, but it may have some trouble if it is used at the start of a calculation and/or
with a bad mesh adequacy [4].

Afterwards, with a focus on obtaining the Drag Coefficient (CD) and the Turbulent
Kinetic Energy (k), reports for both of these output parameters must be set (Figure
C.13). For the CD report (Figure C.15) was necessary to define the wall zones where
”WallBodyBottom” and ”WallBodyTop” where selected in such a way that the results
obtained are referred to the body in study. The type of output report was set as ”Drag
Coefficient” and an output parameter was created, by checking the ”Create Output Pa-
rameter” option, this allows the incorporation of this analysis on the ”Parameter Set”
table of Workbench. For the k report (Figure C.14) the ”Cell Zones” selected was Surface
Body, the report type was set as ”Volume Integral”, the field variable set was ”Turbulence”
and inside this category ”Turbulent Kinetic Energy (k)” was chosen. This parameter was
also stipulated as an output parameter as the previous one.

Next the ”Solution Initialization”, the ”Hybrid Initialization” method was applied (Fig-
ure C.17). This method is a collection of recipes and boundary interpolation methods. It
solves Laplace’s equation to determine the velocity and pressure fields. All other variables,
such as temperature, turbulence, species fractions, and volume fractions, will be automat-
ically patched based on domain averaged values or a particular interpolation recipe. Last,
the ”Run Calculation” (Figure C.18) as been activated and 1200 iterations were set, this
way we ensure that the error is minimized and the results are the most realistic possible.

It’s also possible to see the mesh representation in Ansys Fluent by defining it’s dis-
play domain as shown in Figure C.19. This can be useful when we want to see a visual
representation of the mesh chosen and it’s adequacy to the body behaviour. Also to do
the convergence analysis presented before a XY Plot of the Turbulent Kinetic Energy (k)
was created as shown in Figure C.21. Lastly, the contours of the body behaviour, also for
Output variable k, can be obtained in a visual representation by defining this option in
the Results section (Figure C.20).

4.2 Uniform Design Method (UDM)

The main goal of this approach is to shorten the solution domain design points in order
to reduce the computational time and obtain realistic solutions. After the definition of the
set of variables that define the problem : Length (L), Diameter (D), Front Length (Lf ),
Rear Length (Lr), Front Radius (Rf ), Rear Radius (Rr) and the Middle Radius (Rm);
it’s time to limit their values. These dimensional restrictions are based on some existing
models and prototypes found in bibliography such as [21], [22], [45] and [56]. Also they
were chosen in order to meet the limitations of the Ansys STUDENT VERSION, because
a bigger body require more elements in mesh creation, and that could not be possible to
achieve due to the limited number of elements in this student version. Also, the variables
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domain is restricted by some Uniform Design Method rules of application as described is
this section.

The UDM table must be transformed into a hyperrectangle region corresponding to
the input variable domain by linear transformation. The idea is to obtain a relationship
between the design variables on the interval [π̄−2σp, π̄+2σp] and the output values, being
π̄ the Mean Value of the Domain and σp the Standard Deviation [17]. In this study case
the Variation Coefficient (α), defined has a constant value for each variable, was set to a
value of 10 %. As we know, the Variation Coefficient is equal to the Standard Deviation
(σp) divided by the Mean Value of the Domain (π̄) of each value as Equation (4.4) shows

α =
σp
π̄

(4.4)

Table 4.3: Calculation of the Minimum and Maximum values for each of the Input variables
for a Variation Coefficient (α) equal to 10 %

Variables Rf Lf D L Rr Lr Rm

Mean Value 0.5625 0.35 0.25 1 0.5625 0.4 9
Standard Deviation 0.05625 0.035 0.025 0.1 0.05625 0.04 0.9

Minimum Value 0.45 0.28 0.2 0.8 0.45 0.32 7.2
Maximum Value 0.675 0.42 0.3 1.2 0.675 0.48 10.8

The dimensional domain for each variable obtained by this method is shown beneath:

0.8m < L < 1.2m

0.2m < D < 0.3m

0.28m < Lf < 0.42m

0.32m < Lr < 0.48m

0.45m < Rf < 0.675m

0.45m < Rr < 0.675m

7.2m < Rm < 10.8m

In order to apply the UDM there is a need to divide each input variable domain in 27
equally distributed points. This can be seen in table D.1, where the method to obtain
each of the points was defined by the following simple equation:

DesignPointn+1 = DesignPointn + ((DesignPoint27 −DesignPoint1)/26) (4.5)

As mentioned in Chapter 2, UDM tables denoted by Un(qs), being U the uniform design,
n the number of samples, q the number of levels of each input variable, and s the maximum
number of columns of the table, can be used with the purpose of applying this methodology.
There is an accessory table for each UDM table, including recommendations of columns
with minimum discrepancy for a given number of input parameters [17]. By acessing [13]
it was possible to extract a table suited to the problem requirements (Figure D.1).
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The problem in this study case has seven input variables, so by consulting the accessory
table represented in Figure D.2 it’s possible to realize that the columns that are meant to
be used in this case are ”1,2,3,5,6,7,8”. By analysing the accessory table is also possible
to see that the Discrepancy, Dp, associated with this method is 0.2927. After making
this selection the result is Table D.2 which contains the ”sequence” of values that should
be used for each variable. After this table is obtained its necessary to cross reference it
with D.1, that means, organizing each of the twenty seven points of the domain in the
order present in each column of Table D.2. By doing this, the result is Table D.3 which
exemplifies the values of the input variables to insert in Ansys Fluent.

4.3 Modeling and Simulation (MATLAB/Fortran)

4.3.1 Artificial Neural Network (ANN)

Learning procedure

The proposed ANN is organized into three layers of nodes (neurons): input, hidden,
and output layers. The linkages between input and hidden nodes and between hidden
and output nodes are denoted by synapses. These are weighted connections that establish
the relationship between input data and output data. Deviations on neurons belonging to
hidden and output layers are also considered in the proposed ANN model. In the developed
ANN, the input data vector D

in
is defined by a set of values for input variables vector

I⃗, which are the input data variables from the software Ansys. The input geometrical
variables of the body are Length (L), Diameter (D), Front Length (Lf ), Rear Length (Lr),
Front Radius (Rf ), Rear Radius (Rr) and the Middle Radius (Rm). The corresponding

output data vector D
out

is composed by the output variables from the software Ansys,
wich are the Drag Coefficient (CD) and the Turbulent Kinetic Energy (k).

The data used to build the ANN needs to be normalized with the aim to avoid numerical
error propagation during the learning process. Thus, the data normalization is done as
follows:

Dk = (Dk −Dmin) −
D
max
N −Dmin

N

Dmax +Dmin
D
min
N (4.6)

where Dk is the real value of the variable before normalization, Dmin and Dmax are the
minimum and maximum values of Dk, respectively, in the input/output data set to be

normalized [9]. According to Equation (4.7), the data set is normalized to values, Dk,
that need to verify the condition:

D
min
N ≤ Dk ≤ D

max
N (4.7)

The sum of the modified signals (total activation) is performed through the activation
function. A sigmoid function is applied on each node of the hidden layer while a linear
function is considered for the output layer [17]. The activation of the k

th
node of the hidden

layer (p=1) or output layer (p=2) is obtained through sigmoid functions as follows:

A
(1)
k

=
1

1 + e−ηC
(1)
k

(4.8)
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A
(2)
k

= C
(2)
k

(4.9)

where A
(1)
k

and A
(2)
k

represent the activation functions of the signal of the nodes of the

hidden and output layers, respectively. The signal in each node (C
(p)
k

) is defined as the

components of the vector C
(p)

given by

C
(p)

=M
(p)
D

(p)
+ r

(p)
(4.10)

whereM
(p)

is the matrix of the weights of synapses associated with the connections between

input and hidden layer (p=1) or between hidden and output layers (p=2), r
(p)

represents
the biases vector considered for the nodes of the hidden (p=1) or output (p=2) layers and

D
(p)

is the input data vector for the hidden (p=1) or output (p=2) layer [48].

The scaling parameters, η, must be controlled because they influence the sensitivity

of the sigmoid activation function. The weights of the synapses, w
(p)
ij

, and biases in the

neurons at the hidden and output layers, b
(p)
k

, are controlled during the learning process.
The ANN supervised learning is an optimization process based on the minimization of the
error between predefined (or experimental) output data and ANN simulated results [9]. In
this optimization process, the weights of the synapses and the biases in neurons are used
as design variables. For each set of input data and any configuration of the weight matrix,

M
(p)

, and biases matrix, r
(p)

, a set of output simulated results ϕ
sim
i is obtained. These

simulated output results are compared with the experimental output values ϕ
exp(Fluent)
i

,
obtained for the same input data to evaluate the difference (or error), which must be
minimized during the learning procedure aiming to obtain the optimal ANN configuration
[17].

In the proposed ANN approach, several measures of the error are considered with the
objective to accelerate and stabilize the learning process. The first measure is the root-
meansquare error defined as

RMSE
(1)

=
1

Nexp

√
√√√√√√⎷
Nexp

∑
i=1

(ϕsimi − ϕ
exp(Fluent)
i )

2

(4.11)

being Nexp the number of experiments, here associated with the set of design points of
UDM application. The superscripts sim and exp denote the simulated and experimental
data, respectively. The second measure of the error is the mean relative error component:

RE =
1

Nexp

Nexp

∑
i=1

[(
ϕ
sim
i − ϕ

exp(Fluent)
i

ϕ
exp(Fluent)
i

)
2

]
i

(4.12)

The biases calculated at neurons of the hidden and output layers is included aiming to
stabilize the learning process:

Γ =

√
√√√√√√⎷

1

Nexp

Nexp

∑
i=1

[ 1

Nhid

Nhid

∑
k=1

(r(1)
k

)
2

]
i

+

√
√√√√√√⎷

1

Nexp

Nexp

∑
i=1

1

Nout
[
Nout

∑
k=1

(r(2)
k

)
2

]
i

(4.13)

Morphing Autonomous Underwater Vehicle - Hydrodynamic Analysis



68 4.3. Modeling and Simulation (MATLAB/Fortran)

where Nhid and Nout are the number of nodes of the hidden layer and of the output layer,
respectively. The three error measures presented in Equations (4.11), (4.12) and (4.13)
are aggregated throughout the Equation (4.14):

Γ1(M (1)
, r

(1)
,M

(2)
, r

(2)) = c1RMSE
(1)
+ c2RE + c3Γ (4.14)

where the constants ck are used to stabilize the numerical differences between the three
error terms. The weights of the synapses and biases are changed during the ANN learning
procedure until the value of Γ1 falls within a prescribed value. The ANN supervised
learning procedure is based on the minimization of the Equation (4.14) using the weights

of synapses M
(p)

, and biases of neural nodes at the hidden and output layers r
(p)

as
design variables. The search for the ANN optimal configuration is performed by a Genetic

Algorithm GA
(1)

. A binary code format is used for these variables with different digits
depending on the connection between the input-hidden layers or hidden-output layers.

The domain of the design variables M
(p)

and r
(p)

(p = 1 and p = 2) and scaling parameter
η can be tuned together [48]. The optimization problem formulation associated with the
ANN learning procedure is based on the minimization of the Equation (4.14) as follows:

MaximizeFIT
(1)

= K − Γ1(M (1)
, r

(1)
,M

(2)
, r

(2)) (4.15)

subject to M
(p)

, r
(p)

∈Ω1 (p = 1 and p = 2), being Ω1 the domain of design variables

in learning procedure, and FIT
(1)

is the Fitness Function. The solution of the problem
defined in Equation (4.15) corresponds to the optimal ANN topology, P

opt

ANN
. The constant

K
(1)

must be large enough to obtain always positive fitness values [17].

Sensitivity index

After the construction and training of the Artificial Neural Network, the next step is
to evaluate the importance of each of the seven input variables. That is, an attempt to
achieve the best results possible, it’s necessary to define which variables are more relevant
to the problem, because it would be a waist of time and money investing on a geometrical
parameter that has small or even no relevance in the output. With the intent to accomplish
this sensitivity measure a Global variance-based method was utilized.

Among the Global Sensitivity Analysis (GSA) techniques the variance-based methods
are the most appropriated [9]. In this work the variance-based method is applied to a group
of input variables, namely the geometrical properties of the body and then compared
with local importance measures. Assuming that X = (X1, ... ,Xn) are n independent
input parameters and Ψm is the model function previously defined, an indicator of the
importance of an input parameter Xi could be based on the outcomes of the variance
of Ψm if Xi is fixed at its true value x

∗
i : var(Ψm∣Xi = x

∗
i )[17]. This is the conditional

variance of Ψm given Xi = x
∗
i . However, in most cases the true value x

∗
i of Xi is not

known and then to overcome this difficulty the average of the conditional variance under
all possible values for Xi denoted by E[var(Ψm∣Xi)], is calculated [48]. Considering the
following algebraic property represented in Equation (4.16):

var(Ψm) = var[E(Ψm∣Xi)] + E[var(Ψm∣Xi)] (4.16)

the variance of the conditional expectation var[E(Ψm∣Xi)] can be used as an indicator
of the importance of Xi on the variance of Ψm. This indicator is directly proportional
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to the importance of Xi. A normalised index can be established using the conditional
expectation as

Si =
var[E(Ψm∣Xi)]

var(Ψm) (4.17)

named first-order sensitivity index by Sobol [9]. Furthermore, Sobol proposed a complete
variance decomposition of the uncertainty associated with Ψm into components depending
on individual parameters and interactions between individual parameters. This procedure
explains the variance var(Ψm) as a contribution of the partial variance associated to each
individual parameters or each parameter groups as

var(Ψm) = ∑
i

Vi +∑
i<j

Vij + ∑
i<j<k

Vijk + ... + V1,2...n (4.18)

where

Vi = var[E(Ψm∣Xi)] (4.19)

Vij = var[E(Ψm∣Xi, Xj)] − Vi − Vj (4.20)

Vijk = var[E(Ψm∣Xi, Xj , Xk)] − Vij − Vjk − Vik − Vi − Vj − Vk (4.21)

and assuming that all input parameters are independent in this approach. From this
decomposition higher-order sensitivity indices can be established in particular the second-
order sensitivity index as:

Sij =
Vij

var(Ψm) (4.22)

The second-order index Sij defines the sensitivity of the physical response Ψm to the
interaction between Xi and Xj , i.e. the portion of the variance of Ψm that is not included
in the individual effects of Xi and Xj . The sum of all order indices is equal to one in case
all input parameters are independent [9].

Optimization

The optimal design procedure is completely different from ANN learning process. Here,
the design variables are the components of the vector I⃗ = [L, D, Lf , Lr, Rf , Rr, Rm].

The process starts with a initial population X
(o)

of solutions for I⃗. The population of

solutions X
(t)

is updated for each t-th generation of the evolutionary search driven by the

genetic algorithm, GA
(2)

. Each solution in X(t) is ranked according its fitness value, which
is related with the objective function. The fitness value of each solution results from the
objective value [17].
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The universal form of a multi-objective design optimization problem can be mathemat-
ically defined as:

MinimizeF (x) = [fiRn
→ R; i = 1, ...,m; m > 1], over x (4.23)

In this particular study case, the problem can be defined as:

MinimizeF (x) = [f1(x), f2(x)], over x (4.24)

where f1(x) = CD(x) and f2(x) = k(x). This is subjected to

xinf < x < xsup (4.25)

For each of the seven geometrical input variables. Their domain values are going to be
defined later on Chapter 5.

There is not an unique solution for a multi-objective problem with more than one
conflicting objectives. The obtained solutions are denoted by Pareto-optimal solutions,
this concept depends on the theory of dominance according to the definitions shown bellow
[48]:

• Definition 1 (Dominance): Being Q ⊂ R
n

the subset in the minimization problem
formulated in Equation (4.24), a solution x1 ∈ Q dominates a solution x2 ∈ Q if
the objective value for x1 is smaller than the objective value for x2 in at least one
objective.

• Definition 2 (Pareto optimal design): Since Q ⊂ R
n

the subset in the minimization

problem formulated in Equation (4.24). A solution x
Λ

can be defined as a Pareto
optimal design only in the situation where this solution is not dominated by any
other solution ∈ Q. The group of all the Pareto solutions is called the Pareto front.

These definitions are essential to Pareto evolutionary search for multi-objective optimiza-
tion of the geometry design.

The proposed approach follows the problem definition established in the previous para-
graphs. The multi-objective optimization is based on the minimization of the objectives
functions represented in Equation (4.24), so the performance is going to be measured by
the minimization of the Drag Coefficient (CD) and the Turbulent Kinetic Energy (k)

4.4 Exploratory Analysis

Since the beginning of the present work a extended amount of attempts were done to
get the dimensional domain appropriated to the study case. This had multiple conditions
to be satisfied. First, this domain should be physically possible and should be based on
existing models, this required background study of existing models and prototypes for this
kind of vehicle.
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Second, the domain is restricted by the limit number of elements given by Ansys Student
Software, this was one of the main problems encountered during this work, because the
software simulations are very time consuming and it was very hard to find an acceptable
domain for each of the seven variables that would not exceed the maximum number of
elements given by the student version of the software. As so, this required a lot of ex-
perimentation and several hours of simulation in Ansys Fluent, because each simulation
contained twenty-seven different simulations in it, in which the body geometrical variables
changed, so the mesh also had to be adjusted so finally a solution could be achieved.
This being said, the different combinations could easily surpass the maximum number of
elements in just one of the twenty-seven points and so all the simulation needed to be
repeated because the software could not achieve values to this point. This also required
several adjusts to the meshing process because it was not possible to oversimplify the
meshing procedure or else the results obtained would not be precise, this created the need
to make changes in the mesh refinement, in all the domain, in the body of control and
in the body surface. Also, the body control shape was changed in order to satisfy the
software needs.

Third, the Uniform Design Method also required a parameterized domain, this meant
that the values should have a standard deviation from it’s mean value as explained in
the previous Chapter 4, which also complicated the search for an acceptable domain. In
the beginning of this work this was not taken in account, so the domain chosen for each
variable was selected based in the two previous parameters mentioned. When the results
from the Ansys Fluent were inserted in the ANN the sensibility obtained for each variable
was not viable because the standard deviation from the mean value of each variable was
not the same. This required a new search for a indicated domain, which in sum culminate
in a serious amount of attempts to find an acceptable hydrodynamic simulation in a total
account of thirty-four Ansys simulation runs, which represents an approximated number
of five-hundred and ten hours.

The process to obtain the the expected results was also changed during the process,
which also took some considerable time to execute. First approach to solve this problem
was set by utilizing seven geometrical variables and one fixed velocity of 1 m/s. This
process required the application of the UDM, mesh creation and search for a indicated
domain for each of the seven geometrical variables Length (L), Diameter (D), Front Length
(Lf ), Rear Length (Lr), Front Radius (Rf ), Rear Radius (Rr) and the Middle Radius
(Rm).

After obtaining the Ansys Fluent simulation results for the Turbulent Kinetic Energy
(k) and the Drag Coefficient (CD) it was discussed that it would be crucial to obtain
the same output variables values for different velocities. To do so, the strategy adopted
was to replace one of the geometrical variables, in this case the Middle Radius (Rm),
because it was assumed that this variable would not have as great impact on the output
variables k and CD as the other input variables, and defined it’s value as a constant value.
After defining this variable value as constant in the Design Modeler of Ansys, the Flow
Velocity (Uin) was introduced as one of the input variables, this was done with an eye on
saving computational time. This required a new application of the UDM and search for a
indicated domain for each of the seven variables, because since one of the input variables
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had changed, the domain chosen for the other six variables was no longer valid because it
surpassed the limit number of elements supported by the software.

After this simulation was done, the results for each of the output variables were obtained
and could now be inserted in the Artificial Neural Network (ANN). This was done and the
results have shown an over-fit of the ANN due to the major relevance of the Flow velocity
(Uin). This means that, since Uin is a state variable it’s importance was overwhelming
when compared to the body geometrical variables, which made the ANN converge in
order of this variable only. Since this happened the optimization results that could be
obtained using this network would not accomplish the main goals of this work, obtaining
a optimal body for each flow velocity, because the only variable that would be optimized
by the network would be the flow velocity since it’s relevance was so much higher than
the others.

After these results were obtained it was time to take a step back and bring back the
geometrical variable that was removed to insert the Flow velocity as one of the input
variables. So the Middle Radius (Rm) was reinserted in the input variables group. This did
not required a new search for the variables domain, nor renew the application of the UDM
but it required the simulation in Ansys Fluent for different flow velocities. Since these
simulations are very time consuming, the Flow Velocity (Uin) domain was set from one to
ten meters per second. This took several hours of computer simulation in order to obtain
the output variables values for the ten different velocity values. After these simulations
were finished the data collected could be inserted in the Artificial Neural Network in order
to obtain the results needed and that are represented in the next Chapter 5.
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Chapter 5

Results

In this chapter the author intends to give the reader an insight of which were the
results obtained, analyse them and take conclusions about these results. There is also a
description of the path taken in order to get these results.

5.1 Computer Fluid Dynamics (Ansys)

After running Ansys Fluent the results obtained are demonstrative of the variation of
the values of the Turbulent Kinetic Energy (k) and the Drag coefficient (CD) relating to
the input parameters: Length (L), Diameter (D), Front Length (Lf ), Rear Length (Lr),
Front Radius (Rf ), Rear Radius (Rr) and the Middle Radius (Rm); and dependent on the
Flow Velocity (Uin) that varies between 1 m/s and 10 m/s. As mentioned before some
input variables will have a greater impact on the output parameters, this subject will be
approached carefully and in detail later on this chapter.

After performing the simulations, it’s possible to construct Tables F.1, F.2, F.3, F.4,
F.5, F.6, F.7, F.8, F.9, F.10 that represent the 27 values obtained for each of the 2 output
variables as a function of the 7 input variables and the 10 flow velocities.

These tables provide the information needed about the variation of the output variables
CD and k due to the input variables L, D, Lf , Lr, Rf , Rr and Rm. After these values
are attained, the next area of work can begin, the development of the Artificial Neural
Network. Besides this tables, is also possible to obtain contours which demonstrate visually
how one of the output variables of the simulation, Turbulent Kinetic Energy (k), varies
along the dimensional domain chosen. This plot is shown later in this chapter, but it’s
data was already used in the Mesh evaluation procedure when comparing the ”INITIAL”
and ”FINAL” meshes (Figures 4.6 to 4.7).

5.2 Modeling and Simulation (MATLAB/Fortran)

5.2.1 Sensitivity Analysis

After the Artificial Neural Network (ANN) is up and running, the results for the sen-
sitivity indexes can be extracted as represented in Table G.1. As explained before, this
indexes are called Sobol indexes and they measure the importance of each variable in order
to get the best results, i.e. the relevance of each variable to minimize the Drag Coefficient
(CD) and the Turbulent Kinetic Energy (k).
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The last column of this table represents the sum of the sobol indexes for each velocity
and output variable, and as can be seen, it’s value always is different of one, this is due to
some uncertainty involved in the process of obtaining this values, so the need to uniform
the values in order to do a more precise analysis as taken the author to apply a simple
method represented in Equation (5.1), which transforms Table G.1 in Table G.2

Sobol Index (%) = Geometrical V ariable Sobol Index ∗ 100

Sumof Sobol Index
(5.1)

As can clearly be seen in the Figure 5.1, that represents a graphical distribution of
the global sensitivity index obtained for the Drag Coefficient (CD) as a function of the
seven different geometrical variables and the ten different flow velocities, the most relevant
variables are the body Diameter (D) and the Rear Radius (Rr). This indicates that in
a attempt to minimize the Drag Coefficient (CD) these variables are the most important
ones and need to have more weight than the other variables because they are going to
have the greatest impact on this variable.

Figure 5.1: Global sensitivity index percentage value obtained for the Drag Coefficient
(CD) as a function of the the seven different geometrical variables and the ten different
flow velocities

This being said, let’s take a closer look to variable Diameter (D) and its relevance in
the output results of the Drag Coefficient (CD) for all the velocities. As can be seen in
Figure 5.2, the variable D has its most relevant impact when the velocity is equal to 9 m/s,
achieving a total value of 69.60 % (Figure 5.17). Its minor impact is when the velocity is
equal to 3 m/s, achieving a total value of 43.96 % (Figure 5.11), which is still one of the
two most relevant variables, besides Rr with a total value of 48.90 % (Figure 5.11).

Due to it’s great relevance let’s also take a look to variable Rear Radius (Rr). In Figure
5.3, this variable has its greatest values on the output variable CD when the velocity is
equal to 3 m/s (Figure 5.11), achieving a total percentage value of 48.90 %, as mentioned
before. On the other hand its minor impact is when the velocity is equal to 9 m/s with a
total value of 20.16 % (Figure 5.17). The maximum value for the relevance of the input
geometrical to variable CD corresponds to the minimum value for the relevance of the
input geometrical variable k and vice-versa. This observation led to the construction of
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the plot represented in Figure 5.4. The goal was to find out if this phenomenon also
happens for other velocities.

Figure 5.2: Sensitivity index percentage value obtained for the Drag Coefficient (CD) as
a function of the Diameter (D) geometrical variable and the ten different flow velocities

Figure 5.3: Sensitivity index percentage value obtained for the Drag Coefficient (CD) as a
function of the Rear Radius (Rr) geometrical variable and the ten different flow velocities

As can be seen in Figure 5.4 the perceptual Sobol values for the output variable CD
of the geometrical variables Diameter (D) and Rear Radius (Rr) are almost a mirror of
each other. This means that when the relevance of one of them increases it’s value for
one specific velocity the other one decreases. This happens for every and each velocity,
which results in the ”mirror” representation of each other. Besides this phenomenon, it’s
also possible to see that these variables are always more relevant than all of the others
geometrical variables.

By analysing Figure 5.5, that represents a graphical distribution of the global sensitivity
index obtained for the Turbulent Kinetic Energy (k) as a function of the seven different
geometrical variables and the ten different flow velocities, the most relevant variables are
also the body Diameter (D) and the Rear Radius (Rr) as shown before for the output

Morphing Autonomous Underwater Vehicle - Hydrodynamic Analysis



76 5.2. Modeling and Simulation (MATLAB/Fortran)

Figure 5.4: Global sensitivity index percentage value obtained for the Drag Coefficient
(CD) as a function of the seven different geometrical variables and the ten different flow
velocities: Lines

variable CD. This indicates that in a attempt to minimize the Turbulent Kinetic Energy
(k) these variables are the most important ones and need to have more weight than the
other variables because they dominate all the others in terms of relevance.

Figure 5.5: Global sensitivity index percentage value obtained for the Turbulent Kinetic
Energy (k) as a function of the seven different geometrical variables and the ten different
flow velocities

Doing the same analysis as done before, but now for the output variable k (Figure
5.6), the input variable D has its most important impact when the velocity is equal to
9 m/s having a total value of 69.24 % (Figure 5.17) and it’s less important impact when
the velocity is equal to 8 m/s with a total value of 42.41 % (Figure 5.16). This point
corresponds to the highest value of the Rr variable with a total value of 44.16 %.
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Due to it’s great relevance let’s also take a look to variable Rear Radius (Rr). As can
be seen in Figure 5.7, this variable has its greatest values on the output variable k when
the velocity is equal to 8 m/s (Figure 5.16), achieving a total percentage value of 44.16 %
and it’s minor impact is when the velocity is equal to 3 m/s with a total value of 16.20 %
(Figure 5.11).

Figure 5.6: Sensitivity index percentage value obtained for the Turbulent Kinetic Energy
(k) as a function of the Diameter (D) geometrical variable and the ten different flow
velocities

Figure 5.7: Sensitivity index percentage value obtained for the Turbulent Kinetic Energy
(k) as a function of the Rear Radius (Rr) geometrical variable and the ten different flow
velocities

Unlike the scenario of the output variable CD, when we look at Figure 5.8, it’s not
possible to find that almost perfect ”mirror effect” between the input variables D and Rr
as seen before in Figure 5.4. For sure it’s possible to identify that pattern for higher velocity
values but not for velocity values under 5 m/s. This may be due to the fact that other
input variables such as Front Length Lf and Middle Radius Rm have a certain amount
of importance for the output variable k that did not have for the output variable CD. In
order to better analyse this phenomenon, the next step was to perform an analysis velocity
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by velocity and finding out what others variables might be relevant to the optimization
procedure.

Figure 5.8: Global sensitivity index percentage value obtained for the Turbulent Kinetic
Energy (k) as a function of the seven different geometrical variables and the ten different
flow velocities

By analysing the values attained for Flow Velocity (Uin) equal to 1 m/s is possible to
note in Figure 5.9 that besides variables D and Rr, variable Lr also as some relevance,
achieving values equal to 10.81 % for the Drag Coefficient, CD, and 11.10 % for the
Turbulent Kinetic Energy, k. This also happens when the velocity is equal to 2 m/s
(Figure 5.10), where Lr achieves a total value of 10,03 % for CD and 7.73 % for the k
variable.

Figure 5.9: Sensitivity index percentage
value obtained for velocity equal to 1
m/s for both output varibles: CD and
k

Figure 5.10: Sensitivity index percent-
age value obtained for velocity equal to
2 m/s for both output varibles: CD and
k

When the velocity is equal to 3 m/s (Figure 5.11), the third most important input
variable for the output variable CD is still Lr achieving a total value of 4.43 % but when
it comes to the output variables k the third most important variable is Front Length (Lf )
achieving a total value of 12.13%.
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Figure 5.11: Sensitivity index percent-
age value obtained for velocity equal to
3 m/s for both output varibles: CD and
k

Figure 5.12: Sensitivity index percent-
age value obtained for velocity equal to
4 m/s for both output varibles: CD and
k

For the Uin value of 4 m/s (Figure 5.12) it’s possible to note another change in the
system, the input variable Length (L) becomes more relevant than before, turning into
the new third more relevant input variable for both input variables CD and k, achieving
values for these values of 8.76 % and 5.37 %, respectively. This event repeats itself for
velocities equal to 5 m/s and 6 m/s (Figures 5.13 and 5.14), although a subtle change
occurs for variable CD when the velocity is equal to 5 m/s. The L variable remains the
third most relevant for this velocity, but it’s sensitivity index value of 4.76 % is really
near the value obtained for variable Lr of 4.75 %, which means that they have almost the
same relevance and should be taken in account in a similar matter. Regarding the output
variable k the scenario does not change, the input variable L is always more important.

Figure 5.13: Sensitivity index percent-
age value obtained for velocity equal to
5 m/s for both output varibles: CD and
k

Figure 5.14: Sensitivity index percent-
age value obtained for velocity equal to
6 m/s for both output varibles: CD and
k

For a Flow Velocity (Uin) value equal to 7 m/s (Figure 5.15) both input variables L and
Lr acquire similar values of relevance. Variable L attains a total value of 4.37 % for CD
and 4.16 % for k. On the other hand, variable Lr achieves a total value of 5.15 % for CD
and 4.27 % for k, surpassing again the importance of variable L, however this difference
is very small, so they should be treated with similarity.
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When the flow velocity is equal to 8 m/s (Figure 5.16) a new change occurs. Variable Lr
becomes again the third most relevant geometrical variable when we look for a combined
impact both output variables CD and k (3.31 % and 3.93 %, respectively) but more
importantly variable Middle Radius (Rm) enhanced its relevance to a considerable value
of 6.19 % regarding the output variable CD. On the other hand, its impact on k is smaller
than L and Lr, achiving merely a total value of 0.88 %.

Figure 5.15: Sensitivity index percent-
age value obtained for velocity equal to
7 m/s for both output varibles: CD and
k

Figure 5.16: Sensitivity index percent-
age value obtained for velocity equal to
8 m/s for both output varibles: CD and
k

In a similar way to when the Flow Velocity (Uin) is equal to 6 m/s, when it achieves a
value of 9 m/s (Figure 5.17) the third most important geometrical variable is L, achieving
a total sensitivity index value of 6.67 % and 8.54 % for the output variables CD and k,
respectively. On the other hand when we compare the relevance of Rm to the velocity
before (8 m/s), it basically disappears, becoming a non relevant variable.

Finally for a Uin equal to 10 m/s it is clear, that besides variables D and Rr (like on
every other scenario), the geometrical variable Length (L) it’s the most relevant of the
remaining variables, having a total impact of 6.67 % regarding the output variable CD
and 7.12 % regarding the output variable k, as can be seen Figure 5.18.

Figure 5.17: Sensitivity index percent-
age value obtained for velocity equal to
9 m/s for both output varibles: CD and
k

Figure 5.18: Sensitivity index percent-
age value obtained for velocity equal to
10 m/s for both output varibles: CD and
k
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In conclusion it’s possible to comprehend that the geometrical variable Rear Length
(Lr) is more important when the Flow Velocity (Uin) has a smaller value, so its relevance
decreases when the value of Uin increases. On the other hand, the geometrical variable
Length (L) has a minor impact on the output variables CD and k when the Flow Velocity is
lower but its influence grows while the velocity increases. These two geometrical variables
have opposite behaviours when regarding the flow velocity, and that is an interesting aspect
to consider in the optimization process. The geometrical variables Middle Radius (Rm)
and Front Length (Lf ) have bursts of relevance for specific velocities but besides those
velocities their importance is near 0 % for all the other situations, so it’s viable to conclude
that these variables are not important for optimizing the body performance and should
be neglected when comparing to other geometrical variables. The same should happen to
variable Front Radius (Rf ), this variable should also have a smaller weight when doing
the optimization process because its sensitivity index values are always low. It also as
some higher value points like Rm and Lf but for this variable those highest values are
always smaller than all the others variables values. This means that this variable is the
least important of all the seven geometrical variables.

The previous observations are grounded by Tables G.3 and G.4, that represent the
perceptual sensitivity index values for all the geometrical variables concerning all flow
velocities values (1 m/s to 10 m/s).

Table G.5 represents the maximum and minimum of the Sobol index values for all the
geometrical variables regarding the output variables Drag Coefficient (CD) and Turbulent
Kinetic Energy (k). It is clear that variable D is the most important one. This variable
range fluctuates between 69.60 % and 43.96 % for CD and between 69,23 % and 42.41 %
for k. Next, there’s variable Rr, this is the second more important variable for the body
performance with sensitivity values ranging between 48.90 % and 20.16 % for CD and
among 44.16 % and 16.20 % for k. Next should be variable Lr, this variable according
to Table G.5, is the third most relevant variable, achieving importance values between
10.81 % and 1.36 % for CD and between 11.10 % and 1.38 %. Although this observation
is only based on the maximum and minimum values, it does not have in consideration
the variability regarding the velocity. The fourth most important value is L, this variable
accomplishes values between 8.75 % and 0,55 % for CD and 8.85 % and 0,16 % for k. The
remaining geometrical variables Rf , Lf and Rm have not a considerable or substantial
impact on the body performance. They have some peak values but overall their importance
ranges between 0 % and 2 %, which makes them negligible when comparing to the other
four geometrical variables (Figure 5.19).

In Appendix G can be found similar plots represented in this subsection, but instead of
the percent values the real values are presented. There is data for the Global sensitivity
index value for the Drag Coefficient (CD) in Figure G.11 and for the Turbulent Kinetic
Energy (k) in Figure G.19. There is also the distribution of the sensitivity index values for
each and everyone of the geometrical variables in order of the ten different flow velocities,
regarding output variable CD (Figures G.12 to G.18) and respecting output variable k
(Figures G.20 to G.26). There is also the representation of the distribution of the sensitiv-
ity index by velocity as can be seen in Figures G.27 to G.36. Besides this non-percentage
values plots, there are also the representing plots of the percentage sensitivity values ob-
tained for the CD and k variables in order of the ten different flow velocities for each of the
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Figure 5.19: Sensitivity Index domain for each of the geometrical variables

remaining five variables that were not shown in this chapter, those can be seen in Figures
G.1 to G.10.

5.2.2 Optimization

The optimization procedure has begun with the introduction of two new conditions that
were implemented in the problem. First, in such a way that the body can carry a certain
volume inside it, a new restriction to the input geometrical variables was introduced: L ⋅D
= 0.25 m

2
. In other words, the body Length (L) times the body Diameter (D) must always

be equal to 0.25 m
2
. Second, the geometrical variables domain was reduced to 90 % of

it’s original domain, because this way ensures that the results obtained are between the
domain extreme values utilized to train the network. The mathematical formulation of
the bi-objective optimization problem is defined as CD and k minimization subject to the
resulting domain (y) for each geometrical variable is represented bellow.

MaximizeFIT
(2)

= K
(2)
− Ξ1 f1(y) − Ξ2 f2(y), over y (5.2)

where Ξ1 is equal to 0.5 Ξ2 is also equal to 0.5, this way is established a balanced opti-
mization. Regarding the new domain, ymin < y < ymax is defined by as follows:

0.495m < Rf < 0.6075m

0.308m < Lf < 0.378m

0.22m < D < 0.27m

0.88m < L < 1.08m

0.495m < Rr < 0.6075m

0.352m < Lr < 0.432m

7.92m < Rm < 9.72m
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Having this changes in consideration the Artificial Neural Network (ANN) gives a set a
values for each of the geometrical variables (Rf , Lf , D, L, Rr, Lr, Rm) for the minimization
of both the Drag Coefficient (CD) and Turbulent Kinetic Energy (k) values at the same
time in a double objective optimization procedure. With this concept in mind, is easy to
understand that some of the found solutions might favor one of the output parameters
and might neglect the other when compared to other optimal solution, i.e. one optimized
solution might have the lowest value for the CD output variable, but the same could not
happen for k, it’s lowest value might be on other optimized solution. This introduces the
concept of Pareto efficiency or Pareto optimality which consists in a situation where no
individual can upgrade it’s performance without making at least one individual minimize
it’s performance.

In this case study the number of optimal solutions obtained vary along with the velocity
domain. When the Flow Velocity (Uin) is equal to 1 m/s, 5 m/s, 6 m/s, 7 m/s, 9 m/s
and 10 m/s the ANN has reached to one optimal solution for each of these Uin values. In
this situation the solutions obtained are the solutions chosen as the best solution. When
Uin is equal to 2 m/s and 8 m/s the number of optimal solutions is equal to two and as
can be seen in Table H.1 the situation described before happens, one of the solutions has
a smaller CD value and the other has a smaller k value. For a Flow Velocity equal to
3 m/s was possible to find eight optimized solutions and for a Uin equal to 4 m/s were
found seven optimized solutions. These situations require a Pareto optimality assessment,
so a solution can be chosen in such a way that a balanced performance for both output
variables (CD and k) could be achieved.

But first, it’s important to evaluate the ANN reliability. To do so, the optimal values
for the geometrical variables were inserted in Ansys so both output variables (CD and k)
values could be calculated with an eye on comparing these values from the ones obtained
from the ANN. The results obtained in the Ansys Fluent are represented in Table H.2.
Table H.3 shows the percentage difference between all the solutions obtained for both
output variables in both methods: ANN and CFD. As can be seen the results are very
similar. The mean difference value for the Drag Coefficient is equal to 3.17 % and for
the Turbulent Kinetic Energy is 0.26 %. This small discrepancy assigns credibility to the
Artificial Neural Network results obtained for both variables.

As mentioned before, when the Flow Velocity (Uin) is equal to 1 m/s, 5 m/s, 6 m/s, 7
m/s, 9 m/s and 10 m/s the ANN has reached to one optimal solution for each of this Uin
values, so there isn’t a need to pick a solution between the domain of solutions obtained
because only one is in ranking ”1” of the dominance category. This can be seen in Figure
5.20, where the point closest to the origin of the plot, with the tag ”1”, is the best solution
obtained for this flow velocity. The Drag Coefficient value for this solution is equal to
0.028379 and the Turbulent Kinetic Energy is equal to 0.30327 J/kg. On the other hand
the values for the next point, with the dominance category of ”2” are 0.028528 and 0.30336
for the CD and k, respectively.

The same situation happens for the previous mentioned velocities of 5 m/s, 6 m/s, 7
m/s, 9 m/s and 10 m/s. Their plots can be seen in Figures H.1, H.2, H.3, H.4 and H.5,
respectively.
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Figure 5.20: Pareto efficiency - Optimal solution distribution plot for Uin equal to 1 m/s

Another completely different scenario is the one obtained for Uin equal to 3 m/s and 4
m/s. This is due to the fact that in these cases there are several ranking ”1” solutions,
so the Pareto front is build upon these solutions only. The question is which one of these
solutions will have a greater balanced performance for both variables (CD and k) between
the ranking ”1” solutions.

First let’s take a closer look to the behavior of the output variables when the Flow
Velocity is equal to 3 m/s. As can be seen in Figure 5.21, the variables (CD and k) have
an opposing behaviour for this velocity. This means that when the value from one of the
variables gets higher the other one gets lower and so on. The goal is to find a solution
where the performance obtained for the CD and k are as low as possible while being
balanced.

Aiming to obtain that optimal solution, the Pareto front was constructed and can be
seen in Figure 5.22. By analysing this plot is easy to comprehend that the best solution
is the one where CD as a value of 0.20927 and k is equal to 2.088 J/kg. This values
correspond to solution eight in Table H.1 and to the closest point to the origin in Figure
5.22. The distance to the origin is given by the Equation (5.3)

Dist0 = (C2
D + k

2)−1/2
(5.3)

Now analysing the scenario for a Flow Velocity (Uin) equal to 4 m/s, Figure 5.23 shows
that the behaviour of CD and k has not changed. For this Uin value the output variables
still have an opposing behaviour like the situation analysed before. So, in order to achieve
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Figure 5.21: Drag Coefficient (CD) and Turbulent Kinetic Energy (k) values obtained for
the ranking of one solution when the Flow Velocity Uin is equal to 3 m/s

a balanced performance point, i.e. the solution that minimizes both variables equally,
without prioritizing one of them, a Pareto optimality study was done.

The plot represented in Figure 5.24 shows the Pareto front for this Flow Velocity value.
The best solution is the nearest to the origin, aplying the same method as before, rep-
resented in Equation (5.3). The optimal solution point has a CD value of 0.37252 and
a k value of 3.4681 J/kg, which performs a total distance value of 3.4880. This solution
corresponds to solution five in Table H.1.

The situation that occurs for a Flow Velocity equal to 2 m/s and 8 m/s is peculiar in
a certain way . The ANN as achieved two solutions of ranking ”1” for each of the Uin
values so this solutions are very similar to each other in a qualitative way but one of them
achieves better results for the CD variable while the other achieves better results for the k
variable. So the distance to the origin criterion will tell which one of this solutions is more
balanced, i.e. the one that achieves a better performance ratio between the two output
variables.

Regarding the Flow Velocity equal to 2 m/s (Figure 5.25) the optimal solution is solution
one in Table H.1 with a CD value of 0.101740 and a k value of 1.024300 J/kg, which together
perform a total Dist0 value of 1.029340 while the other solution has a total Dist0 value
of 1.029528. The other solutions represented in the top right corner in Figure 5.25 are
not ranking one solutions, so their performance will always be worst then the two solution
described above.

The scenario for a velocity equal to 8 m/s is similar to the situation described before.
There are two ranking one solutions which are very identical to each other, although one
of them achieves a better performance result for the CD and the other for the k. The
selection criterion is the same as before, the overall distance from the point to the origin
(Equation 5.3). By this means the best solution acquired is solution two in Table H.1,
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Figure 5.22: Pareto efficiency - Optimal solution distribution plot for Uin equal to 3 m/s

which has a CD value of 1.2447 and a k value of 11.6540 J/kg. The total distance Dist0
is equal to 11.7202 while the other solution point as a total distance of 11.7210.

After performing this analysis it’s possible to build Table H.4 which represents the
optimal solutions chosen as well as the geometrical variables values corresponding to these
solutions. Utilizing these solutions three more tables were built.

The first Table H.5, represents the CD and k values obtained by the Artificial Neural
Network, the second (Table H.6) represents also the CD and k values, but obtained from the
CFD simulation in Ansys Fluent and the third one (Table H.7) represents the differences
between the values obtained in the ANN and Ansys (like Table H.3) just for the optimal
solutions chosen. Which led to the construction of the plots represented in Figures 5.27 and
5.28. The first plot (Figure 5.27) represents the difference between ANN and Ansys CD
values and as can be seen, the maximum difference is equal to 5,896 % and the minimum
difference goes down to 0.0152%, which clarifies the good approximation between the
optimal values confirming their veracity. The same goes to the k variable, represented in
Figure 5.28, where the maximum difference is equal to 0.686 % and the minimum 0.0801
%. Is this case the difference between the results obtained using the two methods (ANN
and CFD) is even smaller than the Drag Coefficient case, which supports the accuracy of
the ANN once again.

In Figure 5.29 are represented the optimal geometrical bodies for each of the flow ve-
locities values. The left column represents the optimal bodies for Uin equal to 1 m/s to 5
m/s and the right column for Uin equal to 6 m/s to 10 m/s. The reason to do this repre-
sentation is to get a visual demonstration of how the body would change while changing
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Figure 5.23: Drag Coefficient (CD) and Turbulent Kinetic Energy (k) values obtained for
the ranking one solution when the Flow Velocity Uin is equal to 4 m/s

it’s velocity.

In Ansys Fluent was also possible to obtain a visual representation of the distribution of
the Turbulent Kinetic Energy (k) along the domain. For example, when the Flow Velocity
(Uin) is equal to 5 m/s the representation can be seen in Figure 5.30. In this figure is
possible to visualize that the highest value of this variable is accomplished after the body
ends close to the rear part of the body and it soon starts to vanish. Figure 5.31 represents
a close up vision of the front part of the body. On the ”tip” of the body the k value is at
it’s lowest value, then it starts to rise slowly along the body surface until it reaches the
rear part of the body (Figure 5.32) where the value of k decreases in the body surface but
starts to increase exponentially (Figure 5.33) around the body rear part until it reaches
it highest value. Then it starts to decrease gradually when the distance to the body rear
”tip” starts to increase, until the point it reaches it’s lowest value again. These plots can
be seen for Uin equal to 1 m/s and 10 m/s in Figures H.6 to H.11.

With an eye on evaluating this optimization procedure, the next step consisted in com-
paring the optimized bodies for each velocity with a non-optimized body. To do so, the
Design Point (DP) 25 was randomly chosen between the initial Design Points utilized to
train the ANN. The method utilized to compare the performance of the optimized body
with the DP25 consisted in comparing the output variables (CD and k) values from each
geometry. Since the DP25 is a non-optimal body it’s CD and k values are expected to be
bigger than the ones obtained from the optimized body’s, so the procedure was to quantify
the difference between this values and reach the percent increase in the body performance
for each velocity. For example, for a Uin equal to 5 m/s, the process to obtain the CD
percent increase is shown in Equation (5.4):

CDimprov(%)[5m/s]
=

(DP25CD [5m/s] −OPTCD [5m/s]) ⋅ 100

DP25CD [5m/s]
(5.4)
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Figure 5.24: Pareto efficiency - Optimal solution distribution plot for Uin equal to 4 m/s

being the CDimprov(%)[5m/s]
the Drag Coefficient performance percent increase for Uin equal

to 5 m/s, the DP25CD [5m/s] is the CD value of Design Point 25 geometry obtained in Ansys
for Uin equal to 5 m/s and OPTCD [5m/s] the optimal geometry CD value also obtained in
Ansys for a Uin equal to 5 m/s.

Utilizing the same procedure, represented in Equation (5.4), for all the flow velocities
for CD and k variables it’s possible to construct the plots represented in Figures 5.34 and
5.35. The plot represented in Figure 5.34 shows the percentage improvements achieved
on variable CD utilizing this optimization procedure. The mean value attained for this
improvement was 15,149 %. On the other hand, for the output variable k (Figure 5.35)
the mean value of improvement was 0.829 %.

Regarding the evolution of the input geometrical variables values with the variation of
the Flow Velocity (Uin) from 1 m/s to 10 m/s the results obtained allow a first impression
of what that evolution would look like, i.e. if, for example, the Diameter D values are
smaller when the flow velocities are lower and it increase when the flow velocities reach
greater values. This analysis was done for each one of the geometrical variables and the
plots obtained can be seen in Figures H.12 to H.18. To do this investigation the optimal
geometries for each Flow Velocity chosen were utilized. By doing this a picture of the way
the body is going to respond to the velocity variation could be ploted.

When analysing Figure H.12, it’s possible to observe a gradual, even though osciliting,
increase of the Front Radius (Rf ) values when the Flow Velocity (Uin) increases. On
the other hand, the variable Front Length (Lf ) (Figure H.13) values decrease when the
velocity increases. Both these variables are related to the front part of the geometry and
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Figure 5.25: Pareto efficiency - Optimal solution distribution plot for Uin equal to 2 m/s

this behaviour shows the trend to a shorter and curved geometry in the front part of the
vehicle.

The Diameter (D) and Length (L) of the body (Figures H.14 and H.15) tend to have
a more stable behaviour, this means that they do not vary their values a lot through the
process, although it can be seen that when Uin reaches greater value the body Diameter
(D) tends to increase and the body Length (L) tends to decrease. This behaviour shows
that for cruising lower velocities the body assumes a longer and thinner shape, while on
higher speeds it tends to get smaller and wider. This is also supported by the behaviour of
the evolution of the Middle Radius (Rm) variable (Figure H.18), which tends to increase
when the velocity increases, which creates a flatter body in the top and bottom sides while
for lower velocities it creates a more concave body, counterbalancing the Diameter increase
and decrease.

Regarding the rear part of the geometry, it’s possible to detect through the evolution of
variables Rear Radius (Rr) and Rear Length (Lr) (Figures H.16 and H.18, respectively)
that the body tends to get shorter and concave, approximating it’s rear part to a cone.
This observation is supported by the fact that the Rear Radius (Rr) values tend to decrease
when the Flow Velocity (Uin) attains greater values, transforming the tail of the body in
a more concave shape than when the velocity values were lower. The rear part also tends
to get smaller, this is based upon the fact that the value of the Rear Length (Lr) tends
to get smaller when the Flow Velocity increases.

After all this observations is possible to conclude that for a cruising way of navigating,
the optimal form of the body should be longer, flatter and thinner. Contrastingly, when
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Figure 5.26: Pareto efficiency - Optimal solution distribution plot for Uin equal to 8 m/s

the goal is to achieve a higher locomotion velocity the body tends to get smaller, wider
and more curved or concave. This transformation allows the body to excel its performance
when changing velocities, through a continuous and gradual change.
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Figure 5.27: Percentage difference between the values obtained for the CD using the ANN
and CFD methods

Figure 5.28: Percentage difference between the values obtained for the k using the ANN
and CFD methods
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Figure 5.29: Optimized geometries for each of the Flow Velocity Uin values

Figure 5.30: Turbulent Kinetic Energy (k) contour - Full body (5 m/s)

Figure 5.31: Turbulent Kinetic Energy (k) contour - Front part of the body (5 m/s)

Figure 5.32: Turbulent Kinetic Energy (k) contour - Rear part of the body (5 m/s)
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Figure 5.33: Turbulent Kinetic Energy (k) value along the domain - 5 m/s

Figure 5.34: Percentage improvements achieved for the CD - Optimized body versus non-
optimized body (DP25)

Figure 5.35: Percentage improvements achieved for the k - Optimized body versus non-
optimized body (DP25)
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Chapter 6

Conclusion and Future Work

The objective of this research was to do a hydrodynamic analysis of an Autonomous
Underwater Vehicle (AUV) with the ability to change and adapt it’s shape to different
requirements. With the scope to do that a CFD and an optimization studies were neces-
sary. The optimization procedure achieved good results with a mean error of 3.41 % for
the first objective (CD) and 0.27 % for the second objective (k). This discrepancy means
that the ANN has learned and adapted well and the results are viable.

The goal was achieved by reaching to ten different geometries that excel their perfor-
mance for each of the ten flow velocities. The geometrical variables chosen show a relevant
impact on the body performance, mainly the Diameter (D) and the Rear Radius (Rr) of
the body, these variables couldn’t be neglected when designing this type of vehicle. The
optimal geometries attained show considerable improvements comparing to a non-optimal
geometry, accomplishing the study case mission. Regarding the Drag Coefficient (CD) the
mean improvement was 15.2 % and for the Turbulent Kinetic Energy (k) the improvement
was 0.83 %. The number of solutions is small and could not provide a clear view of the
evolution of the geometrical variables through the increase of flow velocity. Despite of
that, these developments show the benefits of utilizing a morphing geometry instead of a
fixed geometry.

Regarding the CFD study the method adopted was sufficient to provide good and stable
results, although the utilization of a non-student version could provide better results due
to a non-existing limitation of elements which hands over the possibility of a greater
mesh refinement and a bigger domain for the input variables. That would culminate
in more accurate and sizable simulations and results. Still concerning this procedure a
vaster domain for the velocity field would grant a further knowledge of the body morphing
procedure. The geometry used is a simplification of a real vehicle, further studies could
embrace a tri-dimensional geometry that would mimic, in a more realistic way, a real world
vehicle. Also different propulsion methods could be examined to determine which one of
them better applies to each requirement.

The relationship between the output variables (CD and k) behaviour couldn’t be estab-
lished for all the flow velocity field, except for the velocities of three and four meters per
second, where their behaviour was opposed to one another. This could be upgraded by
selecting different parameters along the optimization procedure.
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Appendix A

Ansys Design Modeler

Figure A.1: Geometry design: domain

Figure A.2: Geometry design: body representation in the domain

96



97

Figure A.3: Geometry design: definition of Length (L) and Diameter (D)

Figure A.4: Geometry design: definition of the Front Length (Lf) and Rear Length (Lr)

Figure A.5: Geometry design: perpendicular lines to radius definition (front part)
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Figure A.6: Geometry design: perpendicular lines to radius definition (full body)

Figure A.7: Geometry design: front Radius (Rf) partial schematic draw

Figure A.8: Geometry design: front Radius (Rf) schema
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Figure A.9: Geometry design: front Radius (Rf) schema with dimensions defined

Figure A.10: Geometry design: front Radius (Rf) and Rear Radius (Rr)

Figure A.11: Geometry design: middle Radius (Rm) partial schema
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Figure A.12: Geometry design: full body parameters defined

Figure A.13: Geometry design: body of control for ”INITIAL” meshes

Figure A.14: Geometry design: body of control for ”FINAL” meshes
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Figure A.15: Geometry design: Ox symmetry definition

Figure A.16: Geometry design: Oy symmetry definition
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Appendix B

Mesh Construction

Figure B.1: Mesh Construction: Body Sizing

Figure B.2: Mesh Construction: Edge Sizing (body)
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Figure B.3: Mesh Construction: Inflation

Figure B.4: Mesh Construction: Edge Sizing (tail)

Figure B.5: Boundary definition: Inlet

Morphing Autonomous Underwater Vehicle - Hydrodynamic Analysis



104

Figure B.6: Boundary definition: Outlet

Figure B.7: Boundary definition: Wall Top

Figure B.8: Boundary definition: Wall Bottom
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Figure B.9: Boundary definition: Wall Body Top

Figure B.10: Boundary definition: Wall Body Bottom

Figure B.11: Final Mesh closeup: Front part of the body
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Figure B.12: Final Mesh closeup: Full body

Figure B.13: Final Mesh closeup: Inflation

Figure B.14: Final Mesh closeup: Rear part of the body
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Appendix C

Ansys Fluent: Step-by-step solution setup

Figure C.1: Setup: General
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Figure C.2: Setup: Models - Viscous (SST k-omega)
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Figure C.3: Setup: Materials
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Figure C.4: Setup: Boundary Conditions - Inlet

Figure C.5: Setup: Boundary Conditions - Outlet
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Figure C.6: Setup: Boundary Conditions - Wall Body Bottom

Figure C.7: Setup: Boundary Conditions - Wall Body top
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Figure C.8: Setup: Boundary Conditions - Wall Bottom

Figure C.9: Setup: Boundary Conditions - Wall Top
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Figure C.10: Setup: Reference Values
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Figure C.11: Solution: Methods
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Figure C.12: Solution: Controls
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Figure C.13: Solution: Reports Definitions

Figure C.14: Solution: Reports Definitions - k
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Figure C.15: Solution: Reports Definitions - CD

Figure C.16: Solution: Monitors - Residual

Morphing Autonomous Underwater Vehicle - Hydrodynamic Analysis



118

Figure C.17: Solution: Initialization
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Figure C.18: Solution: Run Calculation
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Figure C.19: Results: Mesh Display
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Figure C.20: Results: Contours - k

Figure C.21: Results: Plots - XY Plot
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Appendix D

Uniform Design Method (UDM)

Table D.1: Study case variables domain divided in equal partitions

27 domain points in sequence

Design points Rf Lf D L Rr Lr Rm
1 0.450000 0.280000 0.200000 0.800000 0.450000 0.320000 7.200000

2 0.458654 0.285385 0.203846 0.815385 0.458654 0.326154 7.338462

3 0.467308 0.290769 0.207692 0.830769 0.467308 0.332308 7.476923

4 0.475962 0.296154 0.211538 0.846154 0.475962 0.338462 7.615385

5 0.484615 0.301538 0.215385 0.861538 0.484615 0.344615 7.753846

6 0.493269 0.306923 0.219231 0.876923 0.493269 0.350769 7.892308

7 0.501923 0.312308 0.223077 0.892308 0.501923 0.356923 8.030769

8 0.510577 0.317692 0.226923 0.907692 0.510577 0.363077 8.169231

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692

10 0.527885 0.328462 0.234615 0.938462 0.527885 0.375385 8.446154

11 0.536538 0.333846 0.238462 0.953846 0.536538 0.381538 8.584615

12 0.545192 0.339231 0.242308 0.969231 0.545192 0.387692 8.723077

13 0.553846 0.344615 0.246154 0.984615 0.553846 0.393846 8.861538

14 0.562500 0.350000 0.250000 1.000000 0.562500 0.400000 9.000000

15 0.571154 0.355385 0.253846 1.015385 0.571154 0.406154 9.138462

16 0.579808 0.360769 0.257692 1.030769 0.579808 0.412308 9.276923

17 0.588462 0.366154 0.261538 1.046154 0.588462 0.418462 9.415385

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846

19 0.605769 0.376923 0.269231 1.076923 0.605769 0.430769 9.692308

20 0.614423 0.382308 0.273077 1.092308 0.614423 0.436923 9.830769

21 0.623077 0.387692 0.276923 1.107692 0.623077 0.443077 9.969231

22 0.631731 0.393077 0.280769 1.123077 0.631731 0.449231 10.107692

23 0.640385 0.398462 0.284615 1.138462 0.640385 0.455385 10.246154

24 0.649038 0.403846 0.288462 1.153846 0.649038 0.461538 10.384615

25 0.657692 0.409231 0.292308 1.169231 0.657692 0.467692 10.523077

26 0.666346 0.414615 0.296154 1.184615 0.666346 0.473846 10.661538

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000
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Figure D.1: Uniform Design Method table

Figure D.2: Uniform Design Method accessory table
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Table D.2: Uniform Design Method points for the problem of seven variables and respective
discrepancy

UDM design points for discrepancy Dp = 0.2927

Design points (1) (2) (3) (5) (6) (7) (8)

1 1 4 7 10 13 16 19

2 2 8 14 20 26 5 11

3 3 12 21 3 12 21 3

4 4 16 1 13 25 10 22

5 5 20 8 23 11 26 14

6 6 24 15 6 24 15 6

7 7 1 22 16 10 4 25

8 8 5 2 26 23 20 17

9 9 9 9 9 9 9 9

10 10 13 16 19 22 25 1

11 11 17 23 2 8 14 20

12 12 21 3 12 21 3 12

13 13 25 10 22 7 19 4

14 14 2 17 5 20 8 23

15 15 6 24 15 6 24 15

16 16 10 4 25 19 13 7

17 17 14 11 8 5 2 26

18 18 18 18 18 18 18 18

19 19 22 25 1 4 4 10

20 20 26 5 11 17 17 2

21 21 3 12 21 3 3 21

22 22 7 19 4 16 16 13

23 23 11 26 14 2 2 5

24 24 15 6 24 15 15 24

25 25 19 13 7 1 1 16

26 26 23 20 17 14 14 8

27 27 27 27 27 27 27 27
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Table D.3: Input variable values introduced into software Ansys Fluent: after recombina-
tion

Input variables used in Ansys Fluent

Design points Rf (1) Lf (2) D (3) L (5) Rr (6) Lr (7) Rm (8)

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000
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Appendix E

MATLAB Code

E.1 Matlab Code - Artificial Neural Network construction
and Analysis of Sensitivity (Sobol)

c l e a r a l l

N=27;

R f = x l s r e a d ( ’UDM−ANN runs . x lsx ’ , ’ANSYS 10 ’ , ’F6 : F32 ’ ) ;
L f = x l s r e ad ( ’UDM−ANN runs . x lsx ’ , ’ANSYS 10 ’ , ’G6 : G32 ’ ) ;
D = x l s r e ad ( ’UDM−ANN runs . x lsx ’ , ’ANSYS 10 ’ , ’H6 : H32 ’ ) ;
L = x l s r e a d ( ’UDM−ANN runs . x lsx ’ , ’ANSYS 10 ’ , ’ I6 : I32 ’ ) ;
R r = x l s r e ad ( ’UDM−ANN runs . x lsx ’ , ’ANSYS 10 ’ , ’ J6 : J32 ’ ) ;
L r = x l s r ea d ( ’UDM−ANN runs . x lsx ’ , ’ANSYS 10 ’ , ’K6 : K32 ’ ) ;
R m = x l s r ea d ( ’UDM−ANN runs . x lsx ’ , ’ANSYS 10 ’ , ’L6 : L32 ’ ) ;

Var In=transpose ( [ R f , L f ,D, L , R r , L r ,R m ] ) ;
[ Store Ent , P In ] = mapminmax( Var In ) ;
Uniform In = mapminmax( ’ apply ’ , Var In , P In ) ;

C D = x l s r e a d ( ’UDM−ANN runs . x lsx ’ , ’ANSYS 10 ’ , ’M6:M32 ’ ) ;
k = x l s r e ad ( ’UDM−ANN runs . x lsx ’ , ’ANSYS 10 ’ , ’N6 : N32 ’ ) ;

Var Out = transpose ( [ C D , k ] ) ;
[ Store Out , P Out ] = mapminmax( Var Out ) ;
Uniform Out = mapminmax( ’ apply ’ , Var Out , P Out ) ;

126



E.1. Matlab Code - Artificial Neural Network construction and Analysis of Sensitivity
(Sobol) 127

net = feed fo rwardnet ( 6 ) ;
net = c o n f i g u r e ( net , Uniform In , Uniform Out ) ;
view ( net ) ;
[ net , t r ] = t r a i n ( net , Uniform In , Uniform Out ) ;
net nova10=net ; save net nova10 ;

V e r i f e n t=mapminmax( ’ r eve r s e ’ , Uniform In , P In ) ;
F luent va l = mapminmax( ’ r eve r s e ’ , Uniform Out , P Out ) ;
Network val uni form = sim ( net , Uniform In ) ;
NET val = mapminmax( ’ r eve r s e ’ , Network val uni form , P Out ) ;

Ninput =100;
f o r i =1:10
Var rand= −1+2∗rand (7 , Ninput ) ;
end

Var rand= −1+2∗rand (7 , Ninput ) ;
Network rand = sim ( net , Var rand ) ;
penalF1=(sum(sum( Network rand (1 ,:)<−1))+
sum(sum( Network rand (1 , : )>+1)))/ Ninput ;
penalF2=(sum(sum( Network rand (2 ,:)<−1))+
sum(sum( Network rand (2 , : )>+1)))/ Ninput ;
f p r i n t f ( ’ pena l i zacao ’ ) ; d i sp ( penalF1 ) ; d i sp ( penalF2 ) ;

Ent rand=mapminmax( ’ r eve r s e ’ , Var rand , P In ) ;
NET rand = mapminmax( ’ r eve r s e ’ , Network rand , P Out ) ;

f i g u r e ( 1 ) ;
subplot ( 2 , 3 , 1 ) ; histogram ( Uniform In ) ; t i t l e ( ’ 7 IN ’ ) ;
subplot ( 2 , 3 , 2 ) ; histogram ( Uniform Out ( 1 , : ) ) ; t i t l e ( ’ 7 C D’ ) ;
subplot ( 2 , 3 , 3 ) ; histogram ( Uniform Out ( 2 , : ) ) ; t i t l e ( ’ 7 k ’ ) ;

subplot ( 2 , 3 , 4 ) ; histogram ( Var rand ) ; t i t l e ( ’100 rand IN ’ ) ;
subplot ( 2 , 3 , 5 ) ; histogram ( Network rand ( 1 , : ) ) ; t i t l e ( ’100 net C D’ ) ;
subplot ( 2 , 3 , 6 ) ; histogram ( Network rand ( 2 , : ) ) ; t i t l e ( ’100 net k ’ ) ;

f i g u r e ( 2 ) ;
subplot ( 2 , 3 , 1 ) ; histogram ( V e r i f e n t ) ; t i t l e ( ’ 7 IN ’ ) ;
subplot ( 2 , 3 , 2 ) ; histogram ( NET val ( 1 , : ) ) ; t i t l e ( ’ 7 C D’ ) ;
subplot ( 2 , 3 , 3 ) ; histogram ( NET val ( 2 , : ) ) ; t i t l e ( ’ 7 k ’ ) ;

subplot ( 2 , 3 , 4 ) ; histogram ( Ent rand ) ; t i t l e ( ’100 rand IN ’ ) ;
subplot ( 2 , 3 , 5 ) ; histogram (NET rand ( 1 , : ) ) ; t i t l e ( ’100 net C D’ ) ;
subplot ( 2 , 3 , 6 ) ; histogram (NET rand ( 2 , : ) ) ; t i t l e ( ’100 net k ’ ) ;

Ninput =100;
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E.1. Matlab Code - Artificial Neural Network construction and Analysis of Sensitivity

(Sobol)

f o r i =1:10
Var rand= −1+2∗rand (7 , Ninput ) ;
end

Network rand = sim ( net , Var rand ) ;
NET val = mapminmax( ’ r eve r s e ’ , Network rand , P Out ) ;

Nf ixo =50;
f o r i =1:10
Var f i xo=−1+2∗rand (1 , Nfixo ) ;
end

dim MAXIMA=7∗Nfixo ∗Ninput ;
A tota l1=ze ro s (1 ,dim MAXIMA) ;
A tota l2=ze ro s (1 ,dim MAXIMA) ;

mediaNfixo 1=ze ro s ( 1 , 7 ) ;
v a r i a n c i a N f i x o 1= ze ro s ( 1 , 7 ) ;
mediaNfixo 2= ze ro s ( 1 , 7 ) ;
v a r i a n c i a N f i x o 2= ze ro s ( 1 , 7 ) ;

cc1 =1;
cc2=Ninput ;
f o r i =1:1 :7

d i sp ( i )
A 7 Out1=ze ro s (1 , Nfixo ) ;
A 7 Out2=ze ro s (1 , Nfixo ) ;

f o r kk =1:1 : Nfixo
New 7 rand=Var rand ;
P=Var f i xo (1 , kk )∗ ones (1 , Ninput ) ;
New 7 rand ( i , : )=P;

Out NET = sim ( net , New 7 rand ) ;
NEW 2 Out = mapminmax( ’ r eve r s e ’ , Out NET , P Out ) ;

A tota l1 ( cc1 : cc2)=NEW 2 Out ( 1 , : ) ;
A tota l2 ( cc1 : cc2)=NEW 2 Out ( 2 , : ) ;
cc1=cc1+Ninput ;
cc2=cc2+Ninput ;

Media NEW 2 Out= mean(NEW 2 Out . ’ ) ;
A 7 Out1 ( kk)=Media NEW 2 Out ( 1 ) ;
A 7 Out2 ( kk)=Media NEW 2 Out ( 2 ) ;

end
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E.2. Matlab Code - Optimization 129

mediaNfixo 1 ( i )= mean( A 7 Out1 ) ;
v a r i a n c i a N f i x o 1 ( i )= var ( A 7 Out1 ) ;
mediaNfixo 2 ( i )= mean( A 7 Out2 ) ;
v a r i a n c i a N f i x o 2 ( i )= var ( A 7 Out2 ) ;

end

f p r i n t f ( ’ MEDIA da resposta do sistema ’ )
MEDIA do sistema1=mean( A tota l1 ) ;
MEDIA do sistema2=mean( A tota l2 ) ;

VAR do sistema1=var ( A tota l1 ) ;
VAR do sistema2=var ( A tota l2 ) ;

Globa l s1=ze ro s ( 1 , 7 ) ;
Globa l s2=ze ro s ( 1 , 7 ) ;

f o r i =1:1 :7
Globa l s1 (1 , i )= v a r i a n c i a N f i x o 1 ( i )/ VAR do sistema1 ;
Globa l s2 (1 , i )= v a r i a n c i a N f i x o 2 ( i )/ VAR do sistema2 ;

end
f p r i n t f ( ’ mediaNfixo ’ )
d i sp ( mediaNfixo 1 )
d i sp ( mediaNfixo 2 )
f p r i n t f ( ’ Global s ’ )
d i sp ( Globa l s1 )
d i sp ( Globa l s2 )
f p r i n t f ( ’ Soma Global s ’ )

d i sp (sum( Globa l s1 ) )
d i sp (sum( Globa l s2 ) )

E.2 Matlab Code - Optimization

c l e a r
c l o s e
format compact
warning o f f

nDes = 7 ;

nG = 250 ;
nPi= 10 ;
nP = 8 ;
nSC = 4 ;
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130 E.2. Matlab Code - Optimization

nAC = 0 ;
nDC = 0 ;
nI = 8 ;

load ( ’ n e t f i n a l 9 . mat ’ )
NITER=1;
f o r i t e r =1 :NITER
[REVERSE, Xbest , Fbest , Fbest1 , Fbest2 ] = Genet ic Ricardo ( nDes , nG,
nPi , nP , nSC , nAC, nDC, nI ) ;
r e s u l ( : , i t e r )=REVERSE

[ n m] = s i z e ( Xbest ) ;

R f i n a l ( i t e r , : ) = [ Xbest (n , : ) , Fbest (n ) , Fbest1 (n ) , Fbest2 (n ) ] ;
d i sp ( i t e r ) ;
end

x l s w r i t e ( ’ r e s . x lsx ’ , r e su l ’ , ’ V9 ’ , ’ A2 : I2 ’ )
x l s w r i t e ( ’ r e s . x lsx ’ , Fbest ’ , ’ V9 ’ , ’ A4 : A253 ’ )

x l s w r i t e ( ’ r e s . x lsx ’ , Fbest1 ’ , ’ V9 ’ , ’ B4 : B253 ’ )
x l s w r i t e ( ’ r e s . x lsx ’ , Fbest2 ’ , ’ V9 ’ , ’ C4 : C253 ’ )

Xbest
Fbest
f i g u r e (2 )

p l o t ( Fbest1 , ’−−ks ’ , ’ LineWidth ’ , 2 , . . .
’ MarkerEdgeColor ’ , ’ k ’ , . . .

’ MarkerFaceColor ’ , ’ b ’ , . . .
’ MarkerSize ’ , 5 ) ;

x l a b e l ( ’ n de geracoes ’ )
y l a b e l ( ’ Funcao o b j e c t i v o C D’ )
t i t l e ( ’ Gra f i co de evolucao ’ )
f i g u r e (3 )

p l o t ( Fbest2 , ’−−ks ’ , ’ LineWidth ’ , 2 , . . .
’ MarkerEdgeColor ’ , ’ k ’ , . . .

’ MarkerFaceColor ’ , ’ r ’ , . . .
’ MarkerSize ’ , 5 ) ;

x l a b e l ( ’ n de geracoes ’ )
y l a b e l ( ’ Funcao o b j e c t i v o k ’ )
t i t l e ( ’ Gra f i co de evolucao ’ )

[ n m] = s i z e ( R f i n a l ) ;
R f i n a l
REVERSE
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Appendix F

Ansys Fluent: Output Tables

Table F.1: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 1 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 0.033144 0.305473

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 0.031071 0.305108

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 0.039649 0.310327

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 0.025899 0.301980

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 0.037812 0.310093

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 0.031897 0.304188

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 0.039754 0.311056

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 0.028202 0.302645

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 0.031545 0.305447

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 0.034409 0.307167

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 0.040431 0.311515

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 0.025976 0.301877

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 0.038530 0.308811

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 0.031987 0.305182

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 0.047291 0.318555

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 0.028328 0.303449

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 0.032874 0.306336

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 0.034451 0.307676

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 0.042198 0.310531

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 0.030320 0.304799

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 0.036310 0.309592

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 0.036521 0.308418

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 0.043124 0.311773

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 0.031577 0.304466

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 0.035285 0.307400

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 0.036925 0.310261

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 0.037794 0.309361
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Table F.2: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 2 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 0.107094 1.028056

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 0.108687 1.034550

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 0.138756 1.044894

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 0.091444 1.019145

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 0.132279 1.043819

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 0.109181 1.033012

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 0.132328 1.044656

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 0.100345 1.023369

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 0.111672 1.029018

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 0.117168 1.033338

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 0.141607 1.051201

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 0.092429 1.020020

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 0.131030 1.043396

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 0.112150 1.030565

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 0.167922 1.073896

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 0.098947 1.025657

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 0.114288 1.035269

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 0.125533 1.042056

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 0.146241 1.054646

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 0.101657 1.024083

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 0.123311 1.041290

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 0.120572 1.035821

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 0.153235 1.060358

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 0.109218 1.032829

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 0.126196 1.038929

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 0.136220 1.043982

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 0.138222 1.049559
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Table F.3: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 3 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 0.225504 2.094556

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 0.223466 2.098569

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 0.284190 2.130627

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 0.187562 2.076563

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 0.276007 2.120333

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 0.226477 2.096817

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 0.276817 2.124674

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 0.209473 2.088599

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 0.230946 2.098135

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 0.251552 2.113044

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 0.292556 2.134694

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 0.192234 2.079668

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 0.275823 2.123247

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 0.231051 2.098951

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 0.341929 2.161093

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 0.211961 2.090762

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 0.240075 2.102270

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 0.256837 2.114912

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 0.303540 2.138652

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 0.215439 2.091258

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 0.257627 2.113756

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 0.251163 2.112309

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 0.315219 2.150319

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 0.227105 2.097237

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 0.260378 2.113362

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 0.270176 2.123096

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 0.283478 2.128719
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Table F.4: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 4 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 0.382805 3.472379

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 0.378005 3.475310

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 0.480158 3.526595

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 0.317865 3.441608

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 0.467962 3.513840

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 0.383417 3.474876

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 0.469070 3.521206

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 0.354453 3.461241

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 0.390222 3.476228

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 0.425666 3.499137

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 0.494643 3.533857

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 0.325742 3.445646

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 0.467013 3.516603

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 0.388685 3.475622

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 0.582262 3.584328

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 0.359310 3.465050

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 0.406603 3.484238

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 0.434139 3.503447

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 0.512892 3.544624

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 0.364189 3.464409

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 0.438038 3.502314

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 0.425089 3.496328

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 0.537607 3.561799

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 0.386359 3.476778

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 0.440502 3.501512

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 0.457831 3.519007

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 0.475757 3.532071
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Table F.5: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 5 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 0.575794 5.123599

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 0.577421 5.147451

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 0.732087 5.225649

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 0.478753 5.090375

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 0.698178 5.195675

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 0.584096 5.155518

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 0.704759 5.217022

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 0.540601 5.118979

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 0.595312 5.147490

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 0.642343 5.182548

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 0.747661 5.224945

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 0.491530 5.094536

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 0.705891 5.197011

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 0.585174 5.141247

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 0.884380 5.332457

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 0.542194 5.122397

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 0.619283 5.150490

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 0.656478 5.182475

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 0.784001 5.251793

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 0.549572 5.119416

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 0.678542 5.195763

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 0.646645 5.171892

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 0.822971 5.328762

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 0.590082 5.146311

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 0.665935 5.181451

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 0.689213 5.207390

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 0.715628 5.219178
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Table F.6: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 6 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 0.794652 7.067825

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 0.784321 7.075231

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 0.995391 7.169621

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 0.660256 7.008179

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 0.970797 7.150886

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 0.793568 7.072703

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 0.972069 7.164964

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 0.739404 7.049300

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 0.810032 7.074890

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 0.884738 7.123108

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 1.027343 7.192478

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 0.676723 7.016158

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 0.971851 7.156932

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 0.804613 7.077263

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 1.207499 7.297197

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 0.747382 7.052587

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 0.843314 7.090899

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 0.906043 7.140275

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 1.068077 7.210005

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 0.759794 7.054968

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 0.911547 7.138162

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 0.878138 7.110300

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 1.118972 7.253207

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 0.800757 7.074690

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 0.908098 7.125724

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 0.948976 7.155095

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 1.002597 7.197261
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Table F.7: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 7 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 1.043755 9.257411

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 1.031848 9.264347

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 1.311602 9.402122

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 0.866577 9.178395

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 1.268342 9.375689

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 1.043603 9.265977

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 1.279707 9.384646

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 0.972584 9.231149

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 1.065052 9.269546

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 1.162114 9.334130

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 1.361594 9.438195

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 0.890169 9.190361

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 1.280264 9.385513

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 1.056890 9.268993

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 1.592623 9.579948

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 0.982657 9.237205

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 1.106828 9.286324

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 1.187056 9.348793

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 1.426387 9.494033

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 0.997356 9.242821

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 1.198463 9.334985

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 1.158456 9.338375

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 1.481128 9.500232

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 1.055587 9.266165

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 1.205792 9.338315

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 1.245087 9.375955

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 1.300801 9.406790
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Table F.8: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 8 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 1.319913 11.696540

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 1.303946 11.707521

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 1.661356 11.864556

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 1.098644 11.603073

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 1.619013 11.833211

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 1.319727 11.703185

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 1.617072 11.851503

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 1.230478 11.664818

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 1.347209 11.712122

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 1.468996 11.786899

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 1.713330 11.895981

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 1.129534 11.617112

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 1.627434 11.843465

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 1.334017 11.708419

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 2.020516 12.060603

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 1.242212 11.673582

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 1.398793 11.736117

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 1.499838 11.798116

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 1.784265 11.928596

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 1.262449 11.675094

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 1.518532 11.793597

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 1.461000 11.768591

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 1.872708 11.988842

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 1.333110 11.710246

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 1.518024 11.786682

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 1.575264 11.834599

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 1.663555 11.893417
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Table F.9: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 9 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 1.623730 14.374714

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 1.605731 14.389204

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 2.046662 14.580880

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 1.352628 14.261700

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 1.997502 14.544881

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 1.624902 14.383428

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 1.991531 14.562491

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 1.513250 14.337495

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 1.657171 14.393642

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 1.808188 14.484943

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 2.104320 14.612731

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 1.388017 14.279427

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 2.004557 14.554528

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 1.642547 14.389727

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 2.490606 14.817008

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 1.529811 14.348511

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 1.726634 14.425018

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 1.847874 14.501942

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 2.193805 14.654121

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 1.554509 14.349210

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 1.871648 14.496234

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 1.797029 14.463648

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 2.311187 14.731705

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 1.643391 14.394370

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 1.876763 14.489449

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 1.945339 14.548224

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 2.049367 14.612981
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Table F.10: Ansys Fluent results for the Drag Coefficient (CD) and Turbulent Kinetic
Energy (k) for Flow Velocity (Uin) equal to 10 m/s

Input experimental values used in ANN learning process

Design points L D Lf Lr Rf Rr Rm CD k

1 0.450000 0.296154 0.223077 0.938462 0.553846 0.412308 9.692308 1.958199 17.288104

2 0.458654 0.317692 0.250000 1.092308 0.666346 0.344615 8.584615 1.935473 17.303844

3 0.467308 0.339231 0.276923 0.830769 0.545192 0.443077 7.476923 2.464225 17.531866

4 0.475962 0.360769 0.200000 0.984615 0.657692 0.375385 10.107692 1.630426 17.153289

5 0.484615 0.382308 0.226923 1.138462 0.536538 0.473846 9.000000 2.405913 17.487819

6 0.493269 0.403846 0.253846 0.876923 0.649038 0.406154 7.892308 1.960952 17.299877

7 0.501923 0.280000 0.280769 1.030769 0.527885 0.338462 10.523077 2.410550 17.530479

8 0.510577 0.301538 0.203846 1.184615 0.640385 0.436923 9.415385 1.822372 17.241667

9 0.519231 0.323077 0.230769 0.923077 0.519231 0.369231 8.307692 1.995536 17.308713

10 0.527885 0.344615 0.257692 1.076923 0.631731 0.467692 7.200000 2.180707 17.419999

11 0.536538 0.366154 0.284615 0.815385 0.510577 0.400000 9.830769 2.535312 17.567048

12 0.545192 0.387692 0.207692 0.969231 0.623077 0.332308 8.723077 1.674630 17.175568

13 0.553846 0.409231 0.234615 1.123077 0.501923 0.430769 7.615385 2.418341 17.502011

14 0.562500 0.285385 0.261538 0.861538 0.614423 0.363077 10.246154 1.978179 17.305572

15 0.571154 0.306923 0.288462 1.015385 0.493269 0.461538 9.138462 2.992453 17.804504

16 0.579808 0.328462 0.211538 1.169231 0.605769 0.393846 8.030769 1.842270 17.256141

17 0.588462 0.350000 0.238462 0.907692 0.484615 0.326154 10.661538 2.081323 17.345754

18 0.597115 0.371538 0.265385 1.061538 0.597115 0.424615 9.553846 2.231119 17.436849

19 0.605769 0.393077 0.292308 0.800000 0.475962 0.338462 8.446154 2.647227 17.622632

20 0.614423 0.414615 0.215385 0.953846 0.588462 0.418462 7.338462 1.873862 17.258062

21 0.623077 0.290769 0.242308 1.107692 0.467308 0.332308 9.969231 2.255931 17.431197

22 0.631731 0.312308 0.269231 0.846154 0.579808 0.412308 8.861538 2.164366 17.391331

23 0.640385 0.333846 0.296154 1.000000 0.458654 0.326154 7.753846 2.781947 17.706992

24 0.649038 0.355385 0.219231 1.153846 0.571154 0.406154 10.384615 1.979479 17.308805

25 0.657692 0.376923 0.246154 0.892308 0.450000 0.320000 9.276923 2.263591 17.423593

26 0.666346 0.398462 0.273077 1.046154 0.562500 0.400000 8.169231 2.341505 17.489524

27 0.675000 0.420000 0.300000 1.200000 0.675000 0.480000 10.800000 2.454450 17.568763
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Appendix G

Sensitivity Index (Sobol)

Table G.1: Sensitivity Index values for every Geometrical Variable and Sum of this Index

Geometrical Variables
Velocity Physical Variables

Rf Lf D L Rr Lr Rm
Sum of Sobol

k 0.00008825 0.00755706 0.48961754 0.00422376 0.34941119 0.10634567 0.00125661 0.95850007
1 m/s

CD 0.00142055 0.00592207 0.52023182 0.00925733 0.32063910 0.10422027 0.00281396 0.96450511
k 0.01104991 0.00328498 0.54804540 0.02574279 0.30532136 0.07519352 0.00437867 0.97301663

2 m/s
CD 0.00126894 0.01594495 0.56906313 0.01122709 0.27353324 0.09724902 0.00159268 0.96987905
k 0.04800942 0.10247749 0.42881531 0.00133361 0.13687988 0.04853452 0.07897356 0.84502379

3 m/s
CD 0.00005271 0.00080198 0.33316246 0.00418769 0.37058900 0.03355015 0.01548030 0.75782429
k 0.00090120 0.01077043 0.57609757 0.05451542 0.32784620 0.01676941 0.02766518 1.01456540

4 m/s
CD 0.00405650 0.00205722 0.69127572 0.09168592 0.23236479 0.01420269 0.01165832 1.04730117
k 0.00685969 0.00155641 0.51167706 0.07996957 0.27643671 0.02700708 0.00038180 0.90388832

5 m/s
CD 0.01639817 0.00042642 0.52508390 0.04430723 0.28956994 0.04419307 0.01033933 0.93031807
k 0.00088470 0.00671946 0.69090047 0.06874913 0.21521207 0.01646809 0.00344459 1.00237852

6 m/s
CD 0.00086753 0.00384754 0.66687659 0.07113662 0.21992683 0.02454650 0.00359219 0.99079381
k 0.00090988 0.00146882 0.63313403 0.03958060 0.23039906 0.04068045 0.00564437 0.95181720

7 m/s
CD 0.00069628 0.00121002 0.62623417 0.04146936 0.22476934 0.04884804 0.00626161 0.94948884
k 0.00305515 0.01458161 0.45437439 0.01778511 0.47313170 0.04208042 0.06634847 1.07135685

8 m/s
CD 0.00523617 0.00031991 0.51182573 0.02727866 0.48795810 0.03567975 0.00948676 1.07778507
k 0.01056930 0.00969851 0.70168576 0.08650876 0.17195207 0.03241855 0.00065923 1.01349217

9 m/s
CD 0.00780423 0.01077237 0.71841828 0.06887202 0.20806261 0.01723088 0.00098722 1.03214761
k 0.01341899 0.00433286 0.63769916 0.06940722 0.23401317 0.01343834 0.00215168 0.97446141

10 m/s
CD 0.00933560 0.00218234 0.65981985 0.06512942 0.22364190 0.01540173 0.00098748 0.97649833

Table G.2: Sensitivity Index percentage values (%) for every Geometrical Variable

Geometrical Variables
Velocity Physical Variables

Rf Lf D L Rr Lr Rm
k 0.0092 0.7884 51.0816 0.4407 36.4540 11.0950 0.1311

1 m/s
CD 0.1473 0.6140 53.9377 0.9598 33.2439 10.8056 0.2918
k 1.1356 0.3376 56.3244 2.6457 31.3788 7.7279 0.4500

2 m/s
CD 0.1308 1.6440 58.6736 1.1576 28.2028 10.0269 0.1642
k 5.6814 12.1272 50.7459 0.1578 16.1983 5.7436 9.3457

3 m/s
CD 0.0070 0.1058 43.9630 0.5526 48.9017 4.4272 2.0427
k 0.0888 1.0616 56.7827 5.3733 32.3140 1.6529 2.7268

4 m/s
CD 0.3873 0.1964 66.0054 8.7545 22.1870 1.3561 1.1132
k 0.7589 0.1722 56.6084 8.8473 30.5831 2.9879 0.0422

5 m/s
CD 1.7626 0.0458 56.4413 4.7626 31.1259 4.7503 1.1114
k 0.0883 0.6704 68.9261 6.8586 21.4701 1.6429 0.3436

6 m/s
CD 0.0876 0.3883 67.3073 7.1798 22.1970 2.4775 0.3626
k 0.0956 0.1543 66.5184 4.1584 24.2062 4.2740 0.5930

7 m/s
CD 0.0733 0.1274 65.9549 4.3675 23.6727 5.1447 0.6595
k 0.2852 1.3610 42.4111 1.6601 44.1619 3.9278 6.1929

8 m/s
CD 0.4858 0.0297 47.4887 2.5310 45.2742 3.3105 0.8802
k 1.0429 0.9569 69.2345 8.5357 16.9663 3.1987 0.0650

9 m/s
CD 0.7561 1.0437 69.6042 6.6727 20.1582 1.6694 0.0956
k 1.3771 0.4446 65.4412 7.1226 24.0146 1.3791 0.2208

10 m/s
CD 0.9560 0.2235 67.5700 6.6697 22.9024 1.5772 0.1011
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Table G.3: Sensitivity index values for all the flow velocities and geometrical input vari-
ables regarding the output variable CD

Drag Coefficient - CD
Geometrical VariablesVelocity

(m/s) Rf Lf D L Rr Lr Rm
1 0.1473 0.6140 53.9377 0.9598 33.2439 10.8056 0.2918
2 0.1308 1.6440 58.6736 1.1576 28.2028 10.0269 0.1642
3 0.0070 0.1058 43.9630 0.5526 48.9017 4.4272 2.0427
4 0.3873 0.1964 66.0054 8.7545 22.1870 1.3561 1.1132
5 1.7626 0.0458 56.4413 4.7626 31.1259 4.7503 1.1114
6 0.0876 0.3883 67.3073 7.1798 22.1970 2.4775 0.3626
7 0.0733 0.1274 65.9549 4.3675 23.6727 5.1447 0.6595
8 0.4858 0.0297 47.4887 2.5310 45.2742 3.3105 0.8802
9 0.7561 1.0437 69.6042 6.6727 20.1582 1.6694 0.0956
10 0.9560 0.2235 67.5700 6.6697 22.9024 1.5772 0.1011

Table G.4: Sensitivity index values for all the flow velocities and geometrical input vari-
ables regarding the output variable k

Turbulent kinetic energy - k
Geometrical VariablesVelocity

(m/s) Rf Lf D L Rr Lr Rm
1 0.0092 0.7884 51.0816 0.4407 36.4540 11.0950 0.1311
2 1.1356 0.3376 56.3244 2.6457 31.3788 7.7279 0.4500
3 5.6814 12.1272 50.7459 0.1578 16.1983 5.7436 9.3457
4 0.0888 1.0616 56.7827 5.3733 32.3140 1.6529 2.7268
5 0.7589 0.1722 56.6084 8.8473 30.5831 2.9879 0.0422
6 0.0883 0.6704 68.9261 6.8586 21.4701 1.6429 0.3436
7 0.0956 0.1543 66.5184 4.1584 24.2062 4.2740 0.5930
8 0.2852 1.3610 42.4111 1.6601 44.1619 3.9278 6.1929
9 1.0429 0.9569 69.2345 8.5357 16.9663 3.1987 0.0650
10 1.3771 0.4446 65.4412 7.1226 24.0146 1.3791 0.2208

Table G.5: Maximum and minimum sensitivity index values for all the geometrical vari-
ables regarding both output variables: CD and k

Output Variable CD k
Sobol Index Max Min Max Min

Rf 1.762641 0.006956 5.681428 0.009207
Lf 1.644015 0.029682 12.12717 0.154317
D 69.60422 43.96302 69.23445 42.41112
L 8.754494 0.552593 8.847284 0.157819
Rr 48.90171 20.15822 44.16191 16.19835
Lr 10.80557 1.356123 11.09501 1.379053

Geometrical Variables

Rm 2.04273 0.095647 9.345721 0.04224
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Figure G.1: Sensitivity index percentage value obtained for the Drag Coefficient (CD) in
order of the Front Radius (Rf ) geometrical variable and the ten different flow velocities

Figure G.2: Sensitivity index percentage value obtained for the Drag Coefficient (CD) as a
function of the Front Length (Lf ) geometrical variable and the ten different flow velocities

Figure G.3: Sensitivity index percentage value obtained for the Drag Coefficient (CD) as
a function of the Length (L) geometrical variable and the ten different flow velocities
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Figure G.4: Sensitivity index percentage value obtained for the Drag Coefficient (CD) as a
function of the Rear Length (Lr) geometrical variable and the ten different flow velocities

Figure G.5: Sensitivity index percentage value obtained for the Drag Coefficient (CD)
as a function of the Middle Radius (Rm) geometrical variable and the ten different flow
velocities

Figure G.6: Sensitivity index percentage value obtained for the Turbulent Kinetic Energy
(k) as a function of the Front Radius (Rf ) geometrical variable and the ten different flow
velocities
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Figure G.7: Sensitivity index percentage value obtained for the Turbulent Kinetic Energy
(k) as a function of the Front Length (Lf ) geometrical variable and the ten different flow
velocities

Figure G.8: Sensitivity index percentage value obtained for the Turbulent Kinetic Energy
(k) as a function of the Length (L) geometrical variable and the ten different flow velocities

Figure G.9: Sensitivity index percentage value obtained for the Turbulent Kinetic Energy
(k) as a function of the Rear Length (Lr) geometrical variable and the ten different flow
velocities
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Figure G.10: Sensitivity index percentage value obtained for the Turbulent Kinetic Energy
(k) as a function of the Middle Radius (Rm) geometrical variable and the ten different
flow velocities

Figure G.11: Global sensitivity index value obtained for the Drag Coefficient (CD) as a
function of the seven different geometrical variables and the ten different flow velocities

Figure G.12: Sensitivity index value obtained for the Drag Coefficient (CD) as a function
of the Front Radius (Rf ) geometrical variable and the ten different flow velocities
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Figure G.13: Sensitivity index value obtained for the Drag Coefficient (CD) as a function
of the Front Length (Lf ) geometrical variable and the ten different flow velocities

Figure G.14: Sensitivity index value obtained for the Drag Coefficient (CD) as a function
of the Diameter (D) geometrical variable and the ten different flow velocities

Figure G.15: Sensitivity index value obtained for the Drag Coefficient (CD) as a function
of the Length (L) geometrical variable and the ten different flow velocities
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Figure G.16: Sensitivity index value obtained for the Drag Coefficient (CD) as a function
of the Rear Radius (Rr) geometrical variable and the ten different flow velocities

Figure G.17: Sensitivity index value obtained for the Drag Coefficient (CD) as a function
of the Rear Length (Lr) geometrical variable and the ten different flow velocities

Figure G.18: Sensitivity index value obtained for the Drag Coefficient (CD) as a function
of the Middle Radius (Rm) geometrical variable and the ten different flow velocities
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Figure G.19: Global sensitivity value index obtained for the Turbulent Kinetic Energy
(k) as a function of the seven different geometrical variables and the ten different flow
velocities

Figure G.20: Sensitivity index value obtained for the Turbulent Kinetic Energy (k) as a
function of the Front Radius (Rf ) geometrical variable and the ten different flow velocities

Figure G.21: Sensitivity index value obtained for the Turbulent Kinetic Energy (k) as a
function of the Front Length (Lf ) geometrical variable and the ten different flow velocities
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Figure G.22: Sensitivity index value obtained for the Turbulent Kinetic Energy (k) as a
function of the Diameter (D) geometrical variable and the ten different flow velocities

Figure G.23: Sensitivity index value obtained for the Turbulent Kinetic Energy (k) as a
function of the Length (L) geometrical variable and the ten different flow velocities

Figure G.24: Sensitivity index value obtained for the Turbulent Kinetic Energy (k) as a
function of the Rear Radius (Rr) geometrical variable and the ten different flow velocities
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Figure G.25: Sensitivity index value obtained for the Turbulent Kinetic Energy (k) as a
function of the Rear Length (Lf ) geometrical variable and the ten different flow velocities

Figure G.26: Sensitivity index value obtained for the Turbulent Kinetic Energy (k) as
a function of the Middle Radius (Rm) geometrical variable and the ten different flow
velocities
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Figure G.27: Sensitivity index value obtained for velocity equal to 1 m/s for both output
variables: CD and k

Figure G.28: Sensitivity index value obtained for velocity equal to 2 m/s for both output
variables: CD and k
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Figure G.29: Sensitivity index value obtained for velocity equal to 3 m/s for both output
variables: CD and k

Figure G.30: Sensitivity index value obtained for velocity equal to 4 m/s for both output
variables: CD and k
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Figure G.31: Sensitivity index value obtained for velocity equal to 5 m/s for both output
variables: CD and k

Figure G.32: Sensitivity index value obtained for velocity equal to 6 m/s for both output
variables: CD and k
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Figure G.33: Sensitivity index value obtained for velocity equal to 7 m/s for both output
variables: CD and k

Figure G.34: Sensitivity index value obtained for velocity equal to 8 m/s for both output
variables: CD and k
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Figure G.35: Sensitivity index value obtained for velocity equal to 9 m/s for both output
variables: CD and k

Figure G.36: Sensitivity index value obtained for velocity equal to 10 m/s for both output
variables: CD and k
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Appendix H

Optimization Results

Table H.1: Optimal CD and k values obtained from the Artificial Neural Network (ANN)

Velocity (m/s) Rf Lf D L Rr Lr Rm Solution CD k

1 0.527661 0.373484 0.231481 1.080000 0.607500 0.354581 9.371613 1 0.028379 0.303270

0.498629 0.378000 0.231481 1.080000 0.607500 0.357161 8.268387 1 0.101740 1.024300
2

0.513145 0.375742 0.231481 1.080000 0.607500 0.352000 8.790968 2 0.101630 1.024500

0.567581 0.364452 0.231481 1.080000 0.607500 0.352000 9.429677 1 0.207820 2.089300
0.502258 0.378000 0.231481 1.080000 0.600242 0.362323 9.603871 2 0.213830 2.087000
0.542177 0.357677 0.231481 1.080000 0.603871 0.357161 9.661935 3 0.209010 2.088800
0.509516 0.375742 0.232873 1.073548 0.607500 0.375226 9.720000 4 0.212850 2.087300
0.560323 0.348645 0.231481 1.080000 0.607500 0.354581 9.603871 5 0.207740 2.090300
0.531290 0.378000 0.231481 1.080000 0.596613 0.364903 9.720000 6 0.212310 2.087500
0.502258 0.341871 0.231481 1.080000 0.607500 0.354581 9.720000 7 0.209040 2.088300

3

0.545806 0.366710 0.231481 1.080000 0.600242 0.354581 9.720000 8 0.209270 2.088000

0.520403 0.375742 0.231481 1.080000 0.603871 0.372645 9.720000 1 0.375650 3.465700
0.513145 0.364452 0.231481 1.080000 0.607500 0.352000 9.487742 2 0.373010 3.465800
0.516774 0.321548 0.231481 1.080000 0.603871 0.354581 9.720000 3 0.370860 3.470000
0.516774 0.310258 0.231481 1.080000 0.607500 0.354581 9.371613 4 0.369960 3.471300
0.524032 0.344129 0.231481 1.080000 0.603871 0.352000 9.720000 5 0.372520 3.468100
0.553065 0.314774 0.231481 1.080000 0.607500 0.352000 9.545806 6 0.368320 3.471800

4

0.553065 0.364452 0.231481 1.080000 0.607500 0.352000 9.661935 7 0.372710 3.466600

5 0.607500 0.378000 0.231481 1.080000 0.607500 0.354581 8.384516 1 0.541510 5.125700

6 0.534919 0.375742 0.232873 1.073548 0.603871 0.352000 9.720000 1 0.752290 7.056900

7 0.578468 0.373484 0.231481 1.080000 0.607500 0.352000 9.545806 1 0.980130 9.237600

0.531290 0.364452 0.231481 1.080000 0.607500 0.352000 9.720000 1 1.242900 11.655000
8

0.538548 0.378000 0.232873 1.073548 0.607500 0.352000 9.661935 2 1.244700 11.654000

9 0.596613 0.373484 0.234281 1.067097 0.603871 0.352000 9.603871 1 1.547200 14.350000

10 0.603871 0.312516 0.231481 1.080000 0.603871 0.357161 9.661935 1 1.891700 17.269000
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Table H.2: Optimal CD and k values obtained from the CFD simulation in Ansys

Velocity (m/s) Rf Lf D L Rr Lr Rm Solution CD k

1 0.527661 0.373484 0.231481 1.080000 0.607500 0.354581 9.371613 1 0.030063 0.305364

0.498629 0.378000 0.231481 1.080000 0.607500 0.357161 8.268387 1 0.103048 1.027315
2

0.513145 0.375742 0.231481 1.080000 0.607500 0.352000 8.790968 2 0.103140 1.027268

0.567581 0.364452 0.231481 1.080000 0.607500 0.352000 9.429677 1 0.217758 2.093621
0.502258 0.378000 0.231481 1.080000 0.600242 0.362323 9.603871 2 0.222013 2.095946
0.542177 0.357677 0.231481 1.080000 0.603871 0.357161 9.661935 3 0.218730 2.094117
0.509516 0.375742 0.232873 1.073548 0.607500 0.375226 9.720000 4 0.222206 2.095445
0.560323 0.348645 0.231481 1.080000 0.607500 0.354581 9.603871 5 0.216644 2.093321
0.531290 0.378000 0.231481 1.080000 0.596613 0.364903 9.720000 6 0.221714 2.095193
0.502258 0.341871 0.231481 1.080000 0.607500 0.354581 9.720000 7 0.217502 2.093266

3

0.545806 0.366710 0.231481 1.080000 0.600242 0.354581 9.720000 8 0.218824 2.093908

0.520403 0.375742 0.231481 1.080000 0.603871 0.372645 9.720000 1 0.391816 3.473672
0.513145 0.364452 0.231481 1.080000 0.607500 0.352000 9.487742 2 0.371005 3.468521
0.516774 0.321548 0.231481 1.080000 0.603871 0.354581 9.720000 3 0.364627 3.468209
0.516774 0.310258 0.231481 1.080000 0.607500 0.354581 9.371613 4 0.363407 3.466655
0.524032 0.344129 0.231481 1.080000 0.603871 0.352000 9.720000 5 0.378753 3.479759
0.553065 0.314774 0.231481 1.080000 0.607500 0.352000 9.545806 6 0.364721 3.466701

4

0.553065 0.364452 0.231481 1.080000 0.607500 0.352000 9.661935 7 0.384093 3.488198

5 0.607500 0.378000 0.231481 1.080000 0.607500 0.354581 8.384516 1 0.569600 5.142752

6 0.534919 0.375742 0.232873 1.073548 0.603871 0.352000 9.720000 1 0.799430 7.066403

7 0.578468 0.373484 0.231481 1.080000 0.607500 0.352000 9.545806 1 1.013080 9.25186

0.531290 0.364452 0.231481 1.080000 0.607500 0.352000 9.720000 1 1.274754 11.68566
8

0.538548 0.378000 0.232873 1.073548 0.607500 0.352000 9.661935 2 1.285242 11.69200

9 0.596613 0.373484 0.234281 1.067097 0.603871 0.352000 9.603871 1 1.610725 14.36151

10 0.603871 0.312516 0.231481 1.080000 0.603871 0.357161 9.661935 1 1.891412 17.28877

Table H.3: Percentage difference between CD and k obtained from ANN and Ansys for
all the optimal solutions

Velocity (m/s) Solution Difference (%) CD Difference (%) k

1 1 5.600154 0.685723

1 1.269216 0.293445
2

2 1.463590 0.269423

1 4.563962 0.206375
2 3.685799 0.426824
3 4.443883 0.253921
4 4.210400 0.388700
5 4.109747 0.144297
6 4.241651 0.367150
7 3.890398 0.237227

3

8 4.365944 0.282147

1 4.125919 0.229506
2 0.537508 0.078443
3 1.680572 0.051611
4 1.771248 0.133817
5 1.645695 0.335063
6 0.977194 0.146866

4

7 2.963689 0.619159

5 1 4.931476 0.331581

6 1 5.896719 0.134479

7 1 3.252477 0.154132

1 2.498866 0.262339
8

2 3.154395 0.324992

9 1 3.943900 0.080110

10 1 0.015209 0.114323

Morphing Autonomous Underwater Vehicle - Hydrodynamic Analysis



159

Figure H.1: Pareto efficiency - Optimal solution distribution plot for Uin equal to 5 m/s

Figure H.2: Pareto efficiency - Optimal solution distribution plot for Uin equal to 6 m/s
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Figure H.3: Pareto efficiency - Optimal solution distribution plot for Uin equal to 7 m/s

Figure H.4: Pareto efficiency - Optimal solution distribution plot for Uin equal to 9 m/s
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Figure H.5: Pareto efficiency - Optimal solution distribution plot for Uin equal to 10 m/s

Table H.4: Optimal values for the input geometrical variables for each Flow Velocity Uin

Velocity (m/s) Solution Rf Lf D L Rr Lr Rm
1 1 0.527661 0.373484 0.231481 1.080000 0.607500 0.354581 9.371613
2 1 0.498629 0.378000 0.231481 1.080000 0.607500 0.357161 8.268387
3 8 0.545806 0.366710 0.231481 1.080000 0.600242 0.354581 9.720000
4 5 0.524032 0.344129 0.231481 1.080000 0.603871 0.352000 9.720000
5 1 0.607500 0.378000 0.231481 1.080000 0.607500 0.354581 8.384516
6 1 0.534919 0.375742 0.232873 1.073548 0.603871 0.352000 9.720000
7 1 0.578468 0.373484 0.231481 1.080000 0.607500 0.352000 9.545806
8 2 0.538548 0.378000 0.232873 1.073548 0.607500 0.352000 9.661935
9 1 0.596613 0.373484 0.234281 1.067097 0.603871 0.352000 9.603871
10 1 0.603871 0.312516 0.231481 1.080000 0.603871 0.357161 9.661935

Table H.5: Optimal values for the output variables for each Flow Velocity (Uin) obtained
by the Artificial Neural Network (ANN)

Velocity (m/s) Solution CD k
1 1 0.028379 0.303270
2 1 0.101740 1.024300
3 8 0.209270 2.088000
4 5 0.372520 3.468100
5 1 0.541510 5.125700
6 1 0.752290 7.056900
7 1 0.980130 9.237600
8 2 1.244700 11.654000
9 1 1.547200 14.350000
10 1 1.891700 17.269000
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Table H.6: Optimal values for the output variables for each Flow Velocity (Uin) obtained
by the CFD simulation in Ansys

Velocity (m/s) Solution CD k
1 1 0.030063 0.305364
2 1 0.103048 1.027315
3 8 0.218824 2.093908
4 5 0.378753 3.479759
5 1 0.569600 5.142752
6 1 0.799430 7.066403
7 1 1.013080 9.25186
8 2 1.285242 11.69200
9 1 1.610725 14.36151
10 1 1.891412 17.28877

Table H.7: Percentage difference between CD and k obtained from ANN and Ansys for
the chosen optimal solutions

Velocity (m/s) Solution Difference (%) CD Difference (%) k
1 1 5.600154 0.685723
2 1 1.269216 0.293445
3 8 4.365944 0.282147
4 5 1.645695 0.335063
5 1 4.931476 0.331581
6 1 5.896719 0.134479
7 1 3.252477 0.154132
8 2 3.154395 0.324992
9 1 3.943900 0.080110
10 1 0.015209 0.114323

Figure H.6: Turbulent Kinetic Energy (k) contour - Full body (1 m/s)
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Figure H.7: Turbulent Kinetic Energy (k) contour - Front part of the body (1 m/s)

Figure H.8: Turbulent Kinetic Energy (k) contour - Rear part of the body (1 m/s)

Figure H.9: Turbulent Kinetic Energy (k) contour - Full body (10 m/s)
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Figure H.10: Turbulent Kinetic Energy (k) contour - Front part of the body (10 m/s)

Figure H.11: Turbulent Kinetic Energy (k) contour - Rear part of the body (10 m/s)

Figure H.12: Evolution of the variable value when the Flow Velocity Uin value changes:
Front Radius (Rf )
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Figure H.13: Evolution of the variable value when the Flow Velocity Uin value changes:
Front Length (Lf )

Figure H.14: Evolution of the variable value when the Flow Velocity Uin value changes:
Diameter (D)
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Figure H.15: Evolution of the variable value when the Flow Velocity Uin value changes:
Length (L)

Figure H.16: Evolution of the variable value when the Flow Velocity Uin value changes:
Rear Radius (Rr)
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Figure H.17: Evolution of the variable value when the Flow Velocity Uin value changes:
Rear Length (Lr)

Figure H.18: Evolution of the variable value when the Flow Velocity Uin value changes:
Middle Radius (Rm)
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