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Abstract

Due to the technological advancements over the years, security of data is, nowadays, more

important than ever. Therefore, better encryption schemes are necessary to maintain data

confidential and at the same time take full advantage of the several new features that

this new digital world brings, such as Artificial Intelligence. Homomorphic encryption

schemes come as a solution to this problem, since these type of schemes allow us to

perform computations on encrypted data without ever having the necessity of decrypting

it, ensuring confidentiality at all times.

The idea of computing over encrypted data was first introduced in 1978 as a “privacy

homomorphism ” by Rivest et al. [1], evolving then to what we now know as homomorphic

encryption. This schemes can be split into three different categories, with the Fully

Homomorphic Encryption (FHE) schemes being the ones with more potential, since they

allow to perform computations in encrypted data with more than one operation and an

arbitrary number of times. Gentry’s breakthrough [2], presented in 2009, was the first

feasible FHE scheme to be published, which was also a huge leap in the quest for a

“complete” FHE scheme, since some of the foundations he presented in his work can be

found throughout several FHE schemes that were then published.

In this dissertation, it is done a in-depth analysis of a FHE scheme in rings, which was

proposed by Gribov et al. [3], in 2018. Firstly, the encryption process as a whole is studied

and described in detail. An analysis of its security liabilities is also presented, where

some interesting conclusions are raised which may help a user to prevent possible attacks.

Finally, it is done an implementation of this scheme, in Python, applied to third-party

private search, as well as a performance analysis.

Keywords: Fully Homomorphic Encryption, Third-Party Private Search, Public-Key En-

cryption, Rings, Idempotents
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Resumo

Devido aos grandes avanços tecnológicos dos últimos anos, a segurança de dados é, hoje,

mais importante do que nunca. Como tal, é necessário desenvolver novas e melhores cifras

de modo a que a confidencialidade dos dados possa ser mantida enquanto se aproveita

ao máximo todas as vantagens que este novo mundo digital nos traz, como por exemplo,

o uso de Inteligência Artificial. As Cifras Homomórficas surgem como uma solução para

este problema, visto que este tipo de cifras permite efetuar cálculos com dados cifrados

sem haver nunca a necessidade de os decifrar, mantendo assim a confidencialidade dos

mesmos durante todo o processo.

A ideia de efetuar cálculos sobre dados cifrados foi introduzida pela primeira vez em

1978 como um “privacy homomorphism ” por Rivest et al. [1], evoluindo até ao que hoje

se conhece como Cifras Homomórficas. Este tipo de cifras pode ser dividido em três

categorias diferentes, sendo as Cifras Totalmente Homomórficas (FHE) aquelas que têm

mais pontencial, uma vez que permitem efetuar cálculos sobre dados cifrados com mais

de uma operação e um número arbitrário de vezes. A descoberta de Gentry [2], em 2009,

foi a primeira Cifra Totalmente Homomórfica viável, o que foi também um avanço muito

significativo na procura de uma Cifra Totalmente Homomórfica ”completa”, visto que

muitos dos fundamentos apresentados no trabalho dele podem ser encontrados em várias

cifras publicadas posteriormente.

Nesta dissertação, faz-se uma análise detalhada de uma Cifra Totalmente Homomórfica

em anéis, publicada em 2018 por Gribov et al. [3]. Primeiramente, é feito um estudo de-

talhado de todo o processo de cifragem. Exploram-se também alguns problemas de

segurança, onde alguns resultados interessantes são apresentados e que poderão ajudar

um utilizador a evitar possı́veis ataques. Por fim, apresenta-se uma implementação desta

cifra, em Python, com o objetivo de que a mesma seja usada para pesquisa privada de

terceiros, assim como uma análise do seu desempenho.

Palavras-chave: Cifras Totalmente Homomórficas, Pesquisa privada de terceiros, Cifras

de Chave Pública, Anéis, Idempotentes

v



vi



Contents

Acknowledgements i

Abstract iii

Resumo v

Contents vii

List of Tables ix

List of Figures xi

1 Introduction 1

2 Preliminaries 5
2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Cryptography Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 The Encryption Scheme 17
3.1 Encryption Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 The ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 The ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Idempotents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Detailed Encryption Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Key-Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.3 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.1 Embedding without ring structure . . . . . . . . . . . . . . . . . . . . 29
3.6.2 Embedding with ring structure . . . . . . . . . . . . . . . . . . . . . . 29

4 Security 31
4.1 Security against ciphertext-only attacks . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Accumulating encryptions of zero . . . . . . . . . . . . . . . . . . . . 32
4.1.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



4.2 Security issues with an homomorphic embedding . . . . . . . . . . . . . . . 34
4.2.1 Encryptions of the unity . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Mutual null coordinates across ideal generators . . . . . . . . . . . . 35

4.2.2.1 Mutual null coordinates experiment . . . . . . . . . . . . . 37
4.2.3 2n mutual null coordinates . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3.1 Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Private Search 55
5.1 Third-Party Private Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Encryption Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.1.1 Key-Generation . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.1.2 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.1.3 Cloud Computations . . . . . . . . . . . . . . . . . . . . . . 57
5.1.1.4 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.2 False Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.3 Code Walkthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.3.1 Design Thinking . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.3.2 Key-Generation and Database . . . . . . . . . . . . . . . . . 62
5.1.3.3 Bob and Alice Encryption . . . . . . . . . . . . . . . . . . . . 67
5.1.3.4 Carl’s Computation . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.3.5 Bob and Alice Decryption . . . . . . . . . . . . . . . . . . . 67
5.1.3.6 Testing function . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusion 73

Bibliography 74

A Appendix 77
A.1 Main Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Mutual null coordinates experiment . . . . . . . . . . . . . . . . . . . . . . . 88
A.3 Enhancements testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



List of Tables

4.1 Results of Enhancement Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 First Comparison of Code Performance . . . . . . . . . . . . . . . . . . . . . 65
5.2 Second Comparison of Code Performance . . . . . . . . . . . . . . . . . . . . 66
5.3 Third Comparison of Code Performance . . . . . . . . . . . . . . . . . . . . . 66
5.4 Third-party private search with “poor” parameters . . . . . . . . . . . . . . 69
5.5 Third-party private search results over 1000 runs . . . . . . . . . . . . . . . . 70
5.6 Third-party private search results over 100 runs . . . . . . . . . . . . . . . . 71
5.7 Third-party private search results over 10 runs . . . . . . . . . . . . . . . . . 71

ix



x



List of Figures

4.1 Mutual null coordinates - Homomorphic Embedding . . . . . . . . . . . . . 38
4.2 Mutual null coordinates - One-to-one “poor” Embedding . . . . . . . . . . 39
4.3 Mutual null coordinates - One-to-one“good” Embedding . . . . . . . . . . . 40

xi



xii



Chapter 1

Introduction

The purpose of encryption is to ensure confidentiality of data and, nowadays, this is

more important than ever. The technological evolution and the increasing digitisation of

services make inevitable the sharing of sensitive data through public networks. In this

context, better encryption tools are needed to ensure the confidentiality of data while also

allowing to take advantage of this new digital world. For example, the use of sensitive data

to train machine learning models, by Third-Parties, for diseases diagnosis is constrained

by the General Data Protection Regulation and, as a consequence, the true potential of

Artificial Intelligence (AI) cannot be completely explored.

In order to freely use data and, at the same time, guarantee privacy, encryption schemes

should be used to encrypt the data before sharing it and, ideally, those schemes should

allow computations on encrypted data, i.e., if the result of a computation between en-

crypted elements is decrypted, then the result obtained must be the same as of computing

such elements unencrypted.

The idea of computing over encrypted data was first introduced in 1978 as a “privacy

homomorphism” by Rivest et al. [1]. This catered the attention of researchers in the field

of cryptography due to its potential for being a possible solution to the computing without

decryption problem, and it then developed into the study of homomorphic encryption

today.

After the work from Rivest et al., researchers in the field of cryptography began to seek

for a Homomorphic Encryption (HE) scheme that allowed for computations on encrypted

data using more than one operation. However, in the following twenty years, the many

attempts of an homomorphic encryption scheme resulted in schemes that allowed for

1



2 Fully Homomorphic Encryption and its application in Private Search

computations on encrypted data with only one operation. This kind of schemes are

known as Partially Homomorphic Encryption (PHE) schemes.

RSA, a well known public key cryptosystem also introduced in 1978 by Rivest et

al. [4], is an example of a PHE scheme with the usual product. However, this scheme is

deterministic, meaning that, with a given key, the encryption of the same plaintext will

always result in the same ciphertext, and, consequently, it does not achieve the highest

level of security possible for an HE scheme.

In 1985, El Gamal introduced a PHE [5] which allows only one operation (the usual

product) but it has the maximum level of security for an HE scheme. A few years

before, in 1982, Goldwasser-Micali published the first probabilistic (or non determininstic)

PHE scheme [6], and most schemes published in the following couple of decades were

strongly inspired by this one, such as Benaloh’s [7], in 1994, which was a generalization of

Goldwasser-Micali, and Naccache-Stern’s [8], which was an improvement on Benaloh’s

scheme. More schemes followed this pattern, however, this all led to Paillier’s encryption

scheme [9], which is a PHE for the usual sum. What makes this scheme, and its variants,

so special is their efficiency but also, as El Gamal, they achieve the highest level of security

for an homomorphic encryption scheme.

Throughout the years, there was also another category of homomorphic encryption

schemes being published, which allow for more than one operation to be computed on

encrypted data. However, in these schemes, only a limited amount of such computations

are allowed. This type of schemes are known as Somewhat Homomorphic Encryption

(SWHE) schemes. Nonetheless, towards the end of the century, they became much more

complete, serving as a stepping stone to achieve a Fully Homomorphic Encryption (FHE)

scheme, i.e., a scheme where more than one operation is allowed, and computations can

be performed an unlimited number of times.

An example of such a more complete scheme is BGN [10], published in 2005, which

allows for arbitrary additions and only one product, and is considered by many to be

an important stepping stone towards a FHE scheme. In fact, not many years later, in

2009, Gentry published the first feasible FHE scheme [2]. Until Gentry’s publishing, most

attempts of a FHE scheme were proved to be unsecure or there was no computational

capacity, at the time, to implement such schemes.

A security liability that is common among homomorphic encryption schemes is accu-

mulating encryptions of 0, i.e., if an attacker is able to accumulate enough encryptions of 0
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then the security of the scheme might be at risk. To overcome this problem many schemes

disguise encryptions of 0 with what is designated by noise. However, this noise tends

to increase with the number of computations performed, which may lead to an incorrect

decryption in the end. The main idea introduced by Gentry was bootstrapping, which

helps to solve this problem. On the other hand, bootstrapping is computationally expen-

sive, and this along with its complex mathematical foundations made Gentry’s scheme

not exactly applicable in real-life scenarios.

Nonetheless, its foundations were very solid, which led to a huge leap in the quest of a

”complete” FHE scheme and most schemes published since then are either optimizations

of this scheme or its foundations are similar. In fact, after Gentry’s work, the research of

FHE schemes was mainly split into the four following categories:

• Ideal Lattices - Schemes in this branch are, in a sense, optimizations of Gentry’s,

some examples are the work of Gentry and Haveli [11], in 2011, and also in the same

year, the work of Scholl and Smart [12];

• Integers - First appearance in 2010, by Van Djik et al. [13]. The main motivation

behind these schemes its the simplicity of the concept, however they are not practical,

which makes this the least favorite category for researchers;

• (Rings) Learning With Error, (R)LWE - Originated in 2011, by Brakerski and Vaikun-

tanathan [14], and these schemes are based on the LWE problem, which is considered

one of the hardest problems to solve in practical time, even for post-quantum algo-

rithms. RLWE is an algebraic variant of LWE, which is more efficient for applications;

• Nth degree-truncated polynomial ring unit (NTRU)-Like FHE schemes - Mainly

know for their efficiency and for their use of Multi-Key FHE, which as the name may

suggest, allows for computations between data encrypted with distinct keys. First

proposed by López-Alt et al. [15], in 2012.

Another note to make, regarding SWHE schemes, is that after Gentry’s breakthrough, the

perspective on such schemes changed, i.e., some attempts of FHE schemes were simply

converted to a more efficient SWHE scheme.

In 2018, Alex Gribov et. al [3] introduced a fully homomorphic encryption scheme

in rings, that does not rely on bootstrapping. Therefore, it may be more suited for

practical usage than previous schemes, namely its application to private search. In this
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thesis, it is done an in-depth study of this scheme, which includes the description of the

core encryption process, an analysis of its security, its application to private search, and an

implementation of this application, in Python and using some Sage modules [16], together

with a performance analysis. Moreover, some new results are also presented which act as

recommendations for a more secure usage of this scheme.

The remaining of this document is organized as follows.

In Chapter 2, some preliminary concepts and results, from different areas of Mathemat-

ics, are introduced, including some basic notions from Cryptography. We also introduce

some convenient notation.

The analysis of the whole scheme is discussed in Chapter 3, which consists of first

explaining the core encryption process, followed by a brief explanation of how to perform

an embedding of our data, which is a concern one must have when applying such scheme

in a real life scenario.

This analysis is followed by a discussion on its security, in Chapter 4, which revolves

mainly around the embeddings mentioned above, since a poor choice of these might lead

to plaintexts being exposed. While discussing this topic we also present some results

proved by us while working on this project, and that are of great importance for a better

usage of the scheme presented.

In Chapter 5, we introduce private search, which consists in privately checking if the

encryption of a certain element belongs to an encrypted database. We also present an

overview of our implementation of this scheme, in Python, as well as a performance

analysis. Notice that all the code wrote is shared in the Appendix.

Finally, in Chapter 6 we summarize our main contributions and propose some future

research topics.



Chapter 2

Preliminaries

In this chapter, we give some introductory concepts from abstract algebra, as well as from

cryptography, that are considered to be relevant going forward.

The first section is dedicated to mathematical preliminaries, and the following to

the preliminaries related with Cryptography, where a few definitions are shared, that

hopefully, will help the reader to better understand where these encryption schemes fit

within the world of Cryptography.

2.1 Mathematical Preliminaries

We begin this section with a revision of some group theory concepts that will aid the

reader in the remaining of these mathematical preliminaries. We then proceed to present

results that are more directly related to our work. Note that we do not include proofs in

these preliminaries unless they are somewhat relevant to this project, nonetheless, for the

most curious readers we recommend the work of T.-Y. Lam [17] and T.W. Judson [18] for

a more complete introduction on such topics.

Brief group theory revision

Let A and B be two sets. A relation ∼ from A to B is a subset of the cartesian product A×B.

For any a ∈ A and b ∈ B, we write a ∼ b to denote that (a, b) is in the relation ∼, otherwise

we write a / b. When A = B, ∼ is also called a binary relation on A.

A binary relation ∼ on a set A is said to be an equivalence relation if and only if it is

reflexive, symmetric and transitive, i.e., for all a,b and c in A:

1. a ∼ a (reflexivity);

5
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2. a ∼ b if and only if b ∼ a (symmetry);

3. If a ∼ b and b ∼ c, then a ∼ c (transitivity).

Let ∼ be an equivalence relation on A. For any a ∈ A, the set [a]∼ = {b ∈ A | a ∼ b} is called the

equivalence class containing a, while the set of all equivalence classes, A/ ∼= { [a]∼ | a ∈ A},

is called the quotient of A by ∼.

One of the most common examples of an equivalence relation is a congruence modulo

n on the set of integers Z. For a positive integer n, two integers a and b are said to be

congruent modulo n if their difference a− b is a multiple of n. The notation for a congruent

with b modulo n is the following:

a ≡n b or a ≡ b (mod n).

In this context an equivalence class consists of those integers which have the same remain-

der on division by n. The set of integers modulo n, which is denoted by Zn, is the set of

all congruence classes of the integers for the modulus n.

A n-ary operation in A is a mapping from An to A, where n ∈ N = {1, 2, 3, ...}. Then, a

binary operation is a mapping ⋆ : A2
→ A, which means that if (a, b) is an ordered pair of

elements from A, then a⋆ b is a unique element of A.

Definition 2.1 (Idempotent). An element x of a set S equipped with a binary operator · is

said to be idempotent under · if,

x · x = x.

The binary operation · is said to be idempotent if every element of S is an idempotent

under ·.

That said, a group is an ordered pair (G,⋆), where G is a non-empty set and ⋆ is a

binary operation on G (called the group operation), satisfying the following properties,

for any x, y, z ∈ G:

1. x⋆ (y⋆ z) = (x⋆ y)⋆ z, i.e., ⋆ is associative;

2. There is an element e ∈ G such that for all x ∈ G, x⋆ e = e⋆ x = x. This element is

unique and is called the identity element;

3. For any x in G there is an element x′ in G such that x⋆ x′ = x′ ⋆ x = e. The element

x′ is called the inverse of x in G.
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Moreover, if the group operation is commutative we say that G is an Abelian group or

commutative group.

Proposition 2.2. Let Zn be the set of equivalence classes of the integers mod n and a, b, c ∈ Zn.

Then,

1. Addition and multiplication are commutative:

a + b ≡ b + a (mod n),

a · b ≡ b · a (mod n);

2. Addition and multiplication are associative:

a + (b + c) ≡ (a + b) + c (mod n),

a · (b · c) ≡ (a · b) · c (mod n);

3. There are both an additive and a multiplicative identity:

a + 0 ≡ a (mod n),

a · 1 ≡ a (mod n);

4. Multiplication distributes over addition:

a · (b + c) ≡ a · b + a · c (mod n);

5. For every integer a there is an additive inverse −a:

a + (−a) ≡ 0 (mod n);

6. Let a be a nonzero integer. Then gcd(a, n) = 1 if and only if there exists a multiplicative

inverse b for a, modn, i.e., a non-zero integer b such that,

a · b ≡ 1 (mod n).

Note that from this proposition we can conclude that Zn form a group with addition

modulo n. On the other hand, the same is not true when the group operation is the product

modulo n, since there is no element a in Zn such that a · 0 ≡ 1 (mod n). Nonetheless, if n is

a prime number, then every element in Zn \ {0} has a multiplicative inverse modulo n.
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We define a subgroup H of a group G to be a subset H of G such that when the group

operation of G is restricted to H, H is a group in its own right. Notice that every group

G with at least two elements will always have at least two subgroups: the subgroup

consisting of the identity element alone and the entire group itself, where the former

is called the trivial subgroup. The following proposition states a more direct method of

verifying if a subset H of G is a subgroup.

Proposition 2.3. Let H be a subset of a group G. Then H is a subgroup of G if and only if H , ∅,

and whenever a, b ∈ H then a⋆ b−1
∈ H, where ⋆ is the group operation for G.

One of the most important definitions in this thesis is the concept of homomorphism,

namely group homomorphism and ring homomorphism.

Definition 2.4 (Group Homomorphism). A homomorphism between groups (G,⋆) and

(H, ⋄) is a map ϕ : G→ H such that ϕ(a⋆ b) = ϕ(a) ⋄ϕ(b) for a, b ∈ G.

If this map is bijective, then its called an isomorphism, and we denote such relation

between G and H as G � H.

Given two groups (G,⋆) and (H, ⋄), one can define a new group, G×H, as follows.

Proposition 2.5. Let (G,⋆) and (H, ⋄) be groups. The set G ×H is a group under the operation

(a1, b1) ∗ (a2, b2) = (a1 ⋆ a2, b1 ⋄ b2) where a1, a2 ∈ G and b1, b2 ∈ H.

Following Proposition 2.2, and as referred before, Zn is a group for the addition modulo

n and, by the above result, Zn ×Zn is also a group with the following operation

(a1, b1) + (a2, b2) = (a1 + a2 (mod n), b1 + b2 (mod n)),

for any a1, a2, b1, b2 ∈ Zn. This is of great use throughout this project, more specifically the

fact that this can be generalized to a direct product of k groups. Therefore, if the groups are

all the same, in this specific case, Zn, the resulting group is denoted by Zk
n = Zn × ...×Zn

(k times).

Rings, Fields and Ideals

Definition 2.6 (Ring). A ring is a triple (R,+, ·) such that (R,+) is an Abelian Group, and

the following conditions are satisfied:

• (a · b) · c = a · (b · c), for a, b, c ∈ R (multiplication is associative);
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• There is an element 1 ∈ R such that 1 , 0 and 1a = a1 = a for each element a ∈ R;

• For any a, b, c ∈ R one has,

a · (b + c) = a · b + a · c,

(a + b) · c = a · c + b · c,

i.e., multiplication distributes over addition.

We can easily observe that Zn is a ring, since (Zn,+n) is an Abelian group and by

Proposition 2.2 we confirm the remaining conditions.

Note also that just as we have subgroups of groups, we have an analogous class of

substructures for rings. A subring S of a ring R is a subset S of R such that S is also a ring

under the inherited operations from R.

A very common type of rings are polynomial rings, which also play a huge role in

this thesis. A polynomial ring in the variable x with coefficients in a ring R is denoted by

R[x] and is formed by the set of polynomials in x and the usual operations of polynomial

addition and multiplication. A polynomial in R[x] is therefore an expression of the form:

p(x) = a0 + a1x + a2x2 + + an−1xn+1 + anxn,

for some n ∈ N0, and where ai ∈ R, for all 0 ≤ i ≤ n. In this work, we use a multivariate

polynomial ring, meaning that instead of having only one variable x, it has a set of

variables x1, ..., xk, and is denoted by R[x1, ..., xk]. Notice that if R is a commutative ring,

then R[x1, ..., xk] is also commutative. Therefore, for a commutative R, the elements of

R[x1, ..., xk] are linear combinations of monomials of the form xα1
1 xα2

2 ...xαk
k with coefficients

in R, where αi ∈N0 for every i ∈ {1, ..., k}. Notice also that 1 = x0
1x0

2...x0
k .

After the previous definition we can now formally define a field.

Definition 2.7 (Field). A ring (R,+, ·) is called a field if

1. The product is commutative ((R,+, ·) is a commutative ring);

2. There are no zero divisors, i.e., for any a , 0 in R there is no nonzero element b in R

such that ab = 0 (if R verifies this along with the above condition then its called an

integral domain);
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3. For any a ∈ R, a , 0, exists a unique element a−1 such that aa−1 = a−1a = 1 (R is a

division ring).

Proposition 2.8. Zn is a field if and only if n is prime.

In this thesis, we work with a particular type of multivariate polynomial rings, where

the coefficients are elements of Zn, as will be shown in Chapter 3. However, we want these

coefficients to be elements of a field, therefore, the above proposition is fundamental.

Recall that a group homomorphism is a map that preserves the operation of the

group. Similarly, a homomorphism between rings preserves the operations of addition

and multiplication in the ring. More specifically, if (R,+R, ·R) and (S,+S, ·S) are rings, then

a ring homomorphism is a map ϕ : R→ S such that:

ϕ(a +R b) = ϕ(a) +S ϕ(b)

ϕ(a ·R b) = ϕ(a) ·S ϕ(b),

for any a, b ∈ R. As for groups, ϕ is an isomorphism if it is bijective. The following

proposition states some important properties of a ring homomorphism.

Proposition 2.9. Let ϕ : R→ S be a ring homomorphism.

1. If (R,+, ·) is a commutative ring, then (ϕ(R),+S, ·S)) is a commutative ring;

2. ϕ(0R) = 0S;

3. Let 1R and 1S be the identities for R and S, respectively. If ϕ is surjective, then ϕ(1R) = 1S;

4. If (R,+, ·) is a field and (ϕ(R),+S, ·S)) , {0S}, then (ϕ(R),+S, ·S)) is a field.

In ring theory, there is a special class of subrings called ideals. An ideal in a ring (R,+, ·)

is a subring I of (R,+, ·) such that, for any a ∈ I and r ∈ R,

• a · r ∈ I, i.e., I · r ⊂ I (I is a left-ideal);

• r · a ∈ I, i.e., r · I ⊂ I (I is a right-ideal).

Note that every ring (R,+, ·) has at least two ideals, {0R} and (R,+, ·), which are called

the trivial ideals.
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Recall that the kernel of a ring homomorphism ϕ : R→ S is given by,

ker ϕ = {r ∈ R | ϕ(r) = 0S},

and notice that the following proposition holds.

Proposition 2.10. The kernel of any ring homomorphism ϕ : R→ S is an ideal in R.

Given an ideal I of R, we can define a equivalence relation in R as follows:

a ∼ b if and only if a− b ∈ I.

It is easy to see that this is a congruence relation due to the properties of I. The equivalence

class of an element a ∈ R is given by,

[a] = a + I = {a + r | r ∈ I}.

This equivalence class is sometimes referred to as a modulo I. The set of all equivalence

classes is denoted by R/I, which together with the following operations,

(a + I) + (b + I) = (a + b) + I

and,

(a + I)(b + I) = (ab) + I

forms a new ring, called a factor or quotient ring. We can easily see that addition is well

defined, however, note the following theorem that guarantees that R/I is a ring with

multiplication defined as above.

Theorem 2.11. Let I be an ideal of (R,+, ·). The factor group R/I is a ring with multiplication

defined by

(r + I) · (s + I) = r · s + I,

for any r, s ∈ R.

Proof. We already know that R/I is an Abelian group under addition. Let r + I and s + I

be in R/I. We must show that the product (r + I) · (s + I) = r · s + I is independent of the

choice of coset, i.e., if r′ ∈ r + I and s′ ∈ s + I then r′s′ must be in rs + I. Since r′ ∈ r + I,

there exists an element a in I such that r′ = r + a. Similarly, there exists b ∈ I such that

s′ = s+ b. Notice that r′s′ = (r+ a) · (s+ b) = r · s+ a · s+ r · b+ a · b and a · s+ r · b+ a · b ∈ I

since I is an ideal, consequently, r′ · s′ ∈ r · s+ I. Finally we can easily verify the associative

law for multiplication and the distributive laws. □
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This results ends this section of mathematical preliminaries since it is very important

within the encryption scheme explored in this thesis, as will be explained in the following

chapter.

2.2 Cryptography Preliminaries

Encryption is the method by which information is made private, i.e., information is con-

verted to code, such that, without performing decryption one is unaware of the original

piece of information. In computing, unencrypted data is known as plaintext, and en-

crypted data is called ciphertext. The methods used for an encryption/decryption process

are called encryption schemes, or ciphers.

Alice and Bob are usually used in the literature to refer to two entities that wish to

exchange messages in a secret way.

Symmetric and Public-Key Encryption schemes

Encryption schemes can be either symmetric or public-key. Symmetric encryption schemes,

also known as private-key encryption schemes, rely on the same key to perform encryption

and decryption, or one can easily obtain the key to decrypt from the one used to encrypt.

That is, when Alice wants to send a message to Bob, she has to use the same key that Bob

will use to decrypt the corresponding ciphertext. Consequently, they have to agree on a

key beforehand, which is the main downside of this type of encryption scheme. A famous

example of this type of schemes is AES [19].

In contrast, on public-key encryption schemes a pair of keys are generated, where one

is made public, named public-key while the other remains private, denoted private-key.

This type of schemes allows for two entities that never met, Alice and Bob, to exchange

messages. When Bob wants to send an encrypted message to Alice, he first encrypts the

message using Alice’s public key, then, Alice decrypts the message using her private key.

The most famous example of this type of scheme is RSA [4].

Deterministic and Probabilistic Encryption schemes

An important property of encryption schemes, that was briefly mentioned in the intro-

duction, is having deterministic or probabilistic encryption. In a deterministic encryption
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scheme, for a given encryption key, the same plaintext will always produce the same

ciphertext. A famous scheme that has deterministic encryption is RSA, as shown next.

In RSA, the public-key is a pair (e, n) where n is the product of two large primes, p

and q, and e is chosen such that gcd(e,ϕ) = 1, where ϕ = (p − 1)(q − 1). The secret-key is

another pair (d, n), where d is chosen such that ed ≡ 1 mod ϕ.

To encrypt a message, it has first to be converted into a plaintext 0 ≤ m < n and, then,

its encryption is computed as follows,

E(m) = me (mod n),

where E denotes the encryption function. It is clear that the encryption of m does not

change unless the key used for encryption changes.

On the other hand, with a probabilistic encryption, under the same conditions, this

does not happen, as a matter of fact, we would often get a different ciphertext. A well-

known example of a scheme with probabilistic encryption is the Paillier encryption scheme

as we show next.

To perform key-generation we first have to choose a pair of large primes p and q such

that gcd(pq, (p − 1)(q − 1)) = 1, then let n = pq and λ = lcm(p − 1, q − 1). We then select a

random element g ∈ Z∗
n2 , where Z∗

n2 is the set of invertible elements of Zn2 . We do this by

checking whether gcd(n, L(gλ mod n2)) = 1, where L is defined as L(u) = (u−1)
n , for every

u ∈ Z∗
n2 . Then we define the public-key as (n, g) and the secret-key as (p, q). For each

message m ∈ Zn a number r ∈ Zn, is randomly chosen, and encryption is performed as

follows,

E(m) = gmrn
Ä

mod n2
ä

.

This means that with the same key, two distinct messages would likely produce two

distinct ciphertexts, due to the randomness of r.

Homomorphic Encryption

Let M denote the set of plaintexts and C the set of ciphertexts. Let⊙M and⊙C be operations

in M and C, respectively. An encryption scheme is said to be Homomorphic if for any

encryption key k, the encryption function E satisfies the property below,

∀m1, m2 ∈M E(m1 ⊙M m2)← E(m1)⊙C E(m2), (2.1)
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where←means that can be directly obtained from. That is, in (2.1), E(m1 ⊙M m2) can be di-

rectly obtained from E(m1)⊙C E(m2), i.e., without having to perform any decryption. And,

as mentioned in the introduction, this is exactly the purpose of homomorphic encryption

schemes. Notice, however, that only fully homomorphic encryption schemes give us total

freedom when computing on encrypted data.

To conclude this section, we recall the three different types of homomorphic encryption

schemes mentioned in the introduction.

• Partially Homomorphic Encryption (PHE) - The Homomorphic property is satisfied

by one operation, unlimited times.

Two very well known examples of PHE schemes are the RSA encryption algorithm

(see [4]) and the Paillier encryption scheme (see [9]) based on the composite resid-

uosity problem, where the first verifies the homomorphic property with the usual

product and the latter with the usual sum, as we show next.

In RSA, after key generation we have a private-key (d, n) and a public-key (e, n)

as we saw above. Recall that to perform encryption on a message, it has first to

be converted into a plaintext 0 ≤ m < n and, then, its encryption is computed as

follows,

E(m) = me (mod n).

That said, given m1, m2 ∈M, where M is the set of plaintexts, we have,

E(m1) · E(m2) =
Ä

me
1 (mod n)

ä
·

Ä
me

2 (mod n)
ä
= (m1 ·m2)e (mod n) = E(m1 ·m2).

Therefore, the result of encrypting the product of two plaintexts is equal to the

product of their respective encryptions.

As shown before, for the Paillier encryption scheme, after key-generation, we have

a public-key (n, g) and a secret-key (p, q), and we perform encryption on a plaintext

m ∈ Zn as follows,

E(m) = gmrn
Ä

mod n2
ä

,
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where r ∈ Zn is randomly chosen for each message. Therefore, given two plaintexts

m1 and m2 we have,

E(m1) · E(m2) =
(

gm1rn
1

Ä
mod n2

ä)
·

(
gm2rn

2

Ä
mod n2

ä)
= gm1+m2(r1 · r2)n

Ä
mod n2

ä
= E(m1 + m2).

This means that the encryption of a sum of plaintexts is equal to the product of their

respective encryptions.

• Somewhat Homomorphic Encryption (SWHE) - The Homomorphic property is sat-

isfied by a set of operations, a limited amount of times.

Although these schemes have been around almost since the beginning of homomor-

phic encryption, it was near the year 2000 where they evolved into being considered

a evolution to PHE. A very well known example of such schemes is BGN [10], that

is considered to play a major role in the pursue of a feasible fully homomorphic

encryption scheme. In this scheme although we can perform unlimited additions on

encrypted data, we are only allowed one multiplication.

• Fully Homomorphic Encryption (FHE) - The Homomorphic property is satisfied by

a set of operation an unlimited amount of times.

The latter type of schemes are the focus of this project, in particular the work of Gribov

et al. [3] as mentioned in the introduction. In the following chapter it will be shown

that this scheme has probabilistic encryption, since every time a plaintext is encrypted a

random element is added to it. Therefore, the ciphertexts obtained from encrypting the

same plaintext tend to be different each time.
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Chapter 3

The Encryption Scheme

In this section, we present the encryption scheme in rings suggested by Gribov et. al in

2018 [3]. This scheme is private-key, which means that its range of applications might

be more limited compared to a public-key encryption scheme. A difference to have into

account, between a private-key encryption scheme and a public-key encryption scheme,

its their respective security analysis. In a private-key encryption scheme one does not have

to worry with some brute force attacks that are usually a concern regarding the security

of a public-key encryption scheme [3]. However, with fully homomorphic encryption

schemes (FHE), even private-key encryption schemes have to share some information with

the public so that computations on encrypted data are allowed, otherwise it would defy

the whole purpose of a FHE scheme. Therefore, even though the scheme is private-key,

its security analysis is slightly different from a non-homomorphic private-key encryption

scheme, as it will be seen in the next chapter.

In this scheme, plaintexts are elements of a ring that can be either private or public (i.e,

it does not really matter if it is public or private, since this does not make any difference

either in terms of security or for the scheme to work) and ciphertexts are elements of a

public ring, such that the first is a subset of the latter. By public ring we mean that a set of

rules for adding and multiplying elements is shared with the public, i.e., it is shared just

enough information so that it allows for the public to compute on encrypted data.

In the next section, an overview of the encryption process is provided without giving

details on how to define the needed rings and other required mathematical structures.

These will then be introduced in the following sections, before presenting the detailed

encryption process in Section 3.5.

17



18 Fully Homomorphic Encryption and its application in Private Search

3.1 Encryption Overview

As said above, in this scheme, plaintexts are elements of a ring R and ciphertexts are

elements of a ring S, where R ⊂ S. Let E be the encryption function defined as

E(u) = u + i,∀u ∈ R

where i is a random element of an ideal I of S 1. That is, the encryption process consists

of adding a random element of an ideal to the ciphertext, and it can be represented in a

simple way by the following diagram

R E
−→ S.

To perform decryption correctly, the goal is to return to our original plaintext, which

is an element of R. Notice that, when encrypting, we add to our plaintext a element from

I. Therefore, the first step when decrypting is to somehow reverse that procedure. To do

this, we apply a map ρ from S to R′ = S/I that annihilates every element of I. However,

these are not exactly the elements of R. Nonetheless, there is an isomorphism φ : R′ → R,

which allows to finish the decryption process. This process can be represented by the

following diagram

S
ρ
−→ R′

φ
−→ R.

Remark 3.1. When studying this encryption scheme, we realized that φ has indeed to be

an isomorphism; otherwise, it would result in incorrect decryptions. Therefore, to avoid

that, the generators of the ideal I of S have to be chosen carefully, as we explain further in

the following subsections.

In most real life applications, plaintexts are usually not elements of a ring R. There-

fore, in such cases, before performing encryption, an embedding from our set of original

plaintexts to R has to be performed, which means that after decryption, we also need to

return to this original set of plaintexts.

For example, suppose the set of data we wish to encrypt is a collection of names. In

order to perform encryption, we first need to do an embedding of this set of names into

R, i.e., represent each name with a distinct element of R. Similarly, when decrypting a

ciphertext, the result is an element of R. Consequently, in order to recover the original

name, we have to perform the inverse of our original embedding.

1Gribov et al. [3] refer to i as E(0), i.e., encryptions of 0.
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Let D denote the set of original data we wish to encrypt, then, the overall process can

be represented by the following diagram

D α
−→ R E

−→ S
ρ
−→ R′

φ
−→ R

β
−→ D,

where β(α(x)) = x,∀x ∈ D.

Notice that the encryption function E is an homomorphism modulo I, since for any

u, v ∈ R, one has

E(u) + E(v) = u + j1 + v + j2 = u + v + j3 = E(u + v) modulo I,

and,

E(u)E(v) = (u + j1)(v + j2) = uv + j3 = E(uv) modulo I,

for j1, j2, j3 ∈ I.

We can easily see, by the above equalities, that E, by itself, is not an homomorphism.

However, in the context of this work, being an homomorphism modulo I is what is

required.

3.2 The ring

Consider the following family of multivariate polynomial rings with coefficients in Zp,

Sn = Zp[x1, ..., xn]/⟨x2
1 − x1, ..., x2

n − xn⟩,

where n ∈N and p is a prime number.

First of all, notice that Sn is a linear vector space over Zp. The so-called standard basis

of this vector space consists of all distinct monomials of Sn with coefficient 1. We can easily

see that there are 2n of them, which means that Sn has p2n
elements. For the most part, due

to practical reasons, we think of elements of Sn as vectors, instead of polynomials. We do

this by fixing a order among the elements of the standard basis and, given a polynomial,

we simply compute its coordinate vector in relation to our ordered standard basis.

Example 3.1. Let n = 3 and p = 5, then we have,

S3 = Z5[x1, x2, x3]/⟨x2
1 − x1, x2

2 − x2, x2
3 − x3⟩.

First we choose an order among the elements of the standard basis of S3, e.g.,
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1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3.

Then, for an arbitrary element of S3, e.g.,

1 + 4x1x2 + 2x3 + x2x3,

we have the corresponding coordinate vector,

(1, 0, 0, 4, 2, 0, 1, 0).

It is easy to see that the result of adding two of these coordinate vectors, with the usual

sum of vectors, is equal to the vector obtained from the result of adding the respective

polynomials. On the other hand, it is not obvious how one can define a product between

those vectors that represents the product of their respective polynomials.

Nonetheless, in Section 3.4, a technique will be introduced which allows to define such

a product.

3.3 The ideal

In Section 3.1 was mentioned that the generators of the ideal I, used for encryption, had to

be chosen carefully, otherwise it could lead to incorrect decryptions. Before we explicitly

introduce it, notice that, in this scheme, ciphertexts are elements of

Sr = Zp[x1, ..., xr]/⟨x2
1 − x1, ..., x2

r − xr⟩,

where r > n. The ideal I, used for encryption, is then defined over Sr in the following way

I = ⟨xn+1 −wn, ..., xr −wr−1⟩,

where wm is a random idempotent of Sm for m ∈ {n, ..., r − 1}. Later in this section, it

will be explained why choosing the generators of the ideal I as above guarantees that the

decryption process works properly.

Recall that, now, the decryption process can be represented by the following diagram

Sr
ρ
−→ Sr/I

φ
−→ Sn.

Remark 3.2. In our opinion, Gribov et. al chose the generators of the ideal I to have the

form xm −wm−1, for m ∈ {n+ 1, ..., r}, in order to easily define the map ρ, as we simply map

every xm to wm−1. In this way, it is assured that any element from Sr is equivalent, in Sr/I,

to an element of Sn, i.e., every equivalence class in Sr/I has at least one element of Sn.
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Ideally, every equivalence class in Sr/I should have one and only one representative of

Sn, such that, one can easily define an isomorphism φ between Sr/I and Sn, and therefore

guarantee that decryption works correctly every time. For this to happen, there cannot be

any elements of Sn in I, except 0, since this would result on two distinct elements of Sn in

the same equivalence class of Sr/I.

We now proceed to prove that if the ideal I is generated as defined above, then, the

only polynomial in the intersection of Sn with I is the null polynomial.

For the remaining of this section we use the following notation,

f (x1, ..., xr)

to denote a polynomial f from Sr, i.e., a polynomial which involves, at most, the generators

x1, ..., xr.

Let h(x1, ...xn) ∈ Sn ∩ I, then, there exists polynomials f1(x1, ..., xr), ..., fr−n(x1, ..., xr) ∈ Sr

such that,

h(x1, ..., xn) = f1(x1, ..., xr) · (xn+1 −wn(x1, ..., xn))+ ...+ fr−n(x1, ..., xr) · (xr −wr−1(x1, ..., xr−1)).

We can easily see that the application Zp[x1, ..., xr] → Zp that evaluates a polynomial

g(x1, ..., xr) in a point (a1, ..., ar) is well defined. However, the corresponding application

between Zp[x1, ..., xr]/⟨x2
1 − x1, ..., x2

r − xr⟩ and Zp is well defined only if (a1, ..., ar) is a zero

of every polynomial in ⟨x2
1 − x1, ..., x2

r − xr⟩. This means that such applications is well

defined only when every ai, for i ∈ {1, ..., r}, is an idempotent. Therefore, we are only

allowed to substitute xm = wm−1(x1, ..., xm−1) in h(x1, ..., xn) when wm−1(x1, ..., xm−1) is an

idempotent, which is the case for m ∈ {n + 1, ..., r}. Performing these substitutions we

obtain h(x1, ..., xn) = 0 which proves that the only element in the intersection of Sn with I

is the null polynomial.

That said, if I is generated as above, then every equivalence class in Sr/I has only one

element of Sn, and this allows us to easily define the isomorphism φ.

Notice that, if the elements wm are not necessarily idempotents, then its possible that

an element different from the null polynomial belongs to the intersection of Sn with I, and

this means that φwould not be an isomorphism since |Sr/I| < |Sn|.

In the following example, we illustrate this argument with a simple case.
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Example 3.2. Let n = 2, p = 5 and r = 3. Consider the ideal I of S3 generated by ⟨x3 − 2⟩,

noting that 2 is not an idempotent in S2. We have that,

2 = (x3 − 2) · (−x3 − 1) .

Therefore 2 ∈ S2 ∩ I, which means that 3 · 2 ≡ 1 (mod 5) ∈ I. This lets us conclude that

I = S3, so we have that |S3/I| = 1 , |S2|, therefore there is no isomorphism between this

two rings.

3.4 Idempotents

Notice that in Sn every xi is an idempotent, and since a product of idempotents is again an

idempotent, every monomial with coefficient 1 is also an idempotent of Sn. In fact, these

are not the only idempotents that exist in Sn. For example, 1− x j is also an idempotent in

this ring, for any j ∈ {1, ..., n}.

Consider the following elements

eF =
∏
i∈F

xi ·
∏
j<F

(1− x j), (3.1)

where F ⊆ {1, ..., n}. Since every xi and every 1− x j are idempotents of Sn, we can easily see

that every eF is also an idempotent of Sn, and there are 2n of them, which is the number

of subsets of {1, ..., n}. Notice also that for any two elements eF, eG such that F , G, we

have that eFeG = 0, therefore these elements are pairwise orthogonal. This means that any

sum of different eF is still an idempotent, and there are 22n
of such sums. Moreover, these

elements constitute an idempotent orthogonal basis of Sn and we take advantage of this

when we have to generate random idempotents, i.e., our random idempotents are simply

a random sum of elements from this idempotent orthogonal basis.

Recall that we could represent elements of Sn as vectors, however it was not easy to

define a product between vectors that would represent the product of the corresponding

polynomials of Sn. This is no longer the case if we consider the coordinate vectors relative

to the orthogonal basis and define the product between any two vectors as follows

(a1, a2, ..., an) · (b1, b2, ..., bn) = (a1b1, a2b2, ..., anbn).

Multiplying vectors as above guarantees that the result obtained will be equal to the vector

representing the product of the corresponding polynomials. This is true because, eFeG = 0

for any F , G, i.e., the product of any two coordinates in distinct positions is 0. Therefore,
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we only have to multiply coordinates in the same position in its respective vectors.

Notice that the usual sum of vectors still satisfies this same property regarding the sum of

polynomials.

From what was said above, we can conclude that Sn is isomorphic to a direct sum of

2n copies of Zp.

Example 3.3. Considering Example 3.2, let us now build the respective idempotent or-

thogonal basis, where F ⊆ {1, 2, 3}, i.e., F ∈ {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Then,

the elements of the orthogonal basis are:

e0 = e{} = 1 + 4x1 + 4x2 + 4x3 + x1x2 + x1x3 + x2x3 + 4x1x2x3

e1 = e{1} = x1 + 4x1x2 + 4x1x3 + x1x2x3

e2 = e{2} = x2 + 4x1x2 + 4x2x3 + x1x2x3

e3 = e{3} = x3 + 4x1x3 + 4x2x3 + x1x2x3

e4 = e{1,2} = x1x2 + 4x1x2x3

e5 = e{1,3} = x1x3 + 4x1x2x3

e6 = e{2,3} = x2x3 + 4x1x2x3

e7 = e{1,2,3} = x1x2x3.

Now, let, a and b be two elements of S3. Take a to be the element defined in the previous

section, a = 1 + 4x1x2 + 2x3 + x2x3, and let b = 3x1 + x1x2x3. For further comparison,

notice that,

a + b = 1 + 3x1 + 4x1x2 + 2x3 + x2x3 + x1x2x3

ab = 3x1 + x1x3 + 2x1x2 + x1x2x3.

To compute the coordinates of a and b in the orthogonal basis we used a built-in function

in Python, obtaining:

a = e0 + e1 + e2 + 3e3 + 3e5 + 4e6 + 3e7

b = 3e1 + 3e4 + 3e5 + 4e7,

then we can represent a and b as a vector as follows,

a −→ a′ = (1, 1, 1, 3, 0, 3, 4, 3)

b −→ b′ = (0, 3, 0, 0, 3, 3, 0, 4).

Applying the usual sum between vectors and the product defined as above, we get,
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a′ + b′ = (1, 4, 1, 3, 3, 1, 4, 2) = e0 + 4e1 + e2 + 3e3 + 3e4 + e5 + 2e6 + 2e7 =

1 + 3x1 + 4x1x2 + 2x3 + x3x2 + x1x2x3 = a + b,

and,

a′b′ = (0, 3, 0, 0, 0, 4, 0, 2) = 3e1 + 4e5 + 2e7 = 3x1 + x1x3 + 2x1x2 + x1x2x3 = ab.

This is of great use when we introduce private search in Chapter 5, where we have to

perform several multiplications of this kind, allowing us to save a significant amount of

processing time.

3.5 Detailed Encryption Process

After discussing an overview of the whole encryption process as well as some useful

information moving forward, such as the form of the rings and the ability to build an

idempotent orthogonal basis, we are now in the right conditions to present a more in

depth description on how every step of the encryption process actually works.

The first step is key-generation, where we basically setup our encryption scheme so

that the following steps are as objective as possible. Then we move onto the encryption

and decryption parts, concluding this section with a simple example of an encryption/de-

cryption procedure.

3.5.1 Key-Generation

First of all, Alice (the owner of a private database of plaintexts) creates the ring Sn:

Sn = Zp[x1, ..., xn]/⟨x2
1 − x1, ..., x2

n − xn⟩,

where n ∈N is private and p is a prime number.

In Section 3.3, we mentioned that ciphertexts are elements of a ring Sr for r > n, and

that the ideal used for encryption is defined by

I = ⟨xn+1 −wn, ..., xr −wr−1⟩,

where each wm represents a random idempotent from Sm.

The first step in key generation process is to build these two structures, i.e., to choose a

value for r and then generate the random idempotents that are used for the generators of
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the ideal I. As mention before, we compute these random idempotents, of Sm, as a random

sum of elements from the respective orthogonal basis, i.e.,

wm =
2m∑
i=0

αiei,

where m ∈ {n + 1, ..., r}, αi ∈ {0, 1} and (e0, ..., e2m) is the orthogonal basis of Sm.

The next step is to perform a change of basis from the standard basis of Sr to the

orthogonal basis, followed by a random permutation on the generators of this basis,

which is part of the private-key.

Finally, Alice publishes the ring P:

P = Zp[e1, ..., e2r]/⟨e2
1 − e1, ..., e2

2r − e2r⟩,

where eie j = 0, ∀i , j.

Remark 3.3. In our code, this procedure is done through a function called prik, shared in

Appendix A.1, that given inputs n, p and r, it outputs, among other things, the idempotent

orthogonal basis and the set of random idempotents selected for the generators of the

ideal.

Notice that it is possible that certain elements from the orthogonal basis have mutual

null coordinates across all ideal’s generators. As a matter of fact, during this project we

were able to prove that this number of elements is constant given a fixed value for n, as

we discuss further in Section 4.2.3.

3.5.2 Encryption

As mentioned in Section 3.1, to encrypt a plaintext u ∈ Sn, we simply sum a random

element i of the ideal I, to it, i.e., E(u) = u + i. These random elements of I are of the form

r∑
j=n+1

(x j −w j−1) · h j,

where h j is a random element of Sr. We then take the result of this sum, which is an

element of Sr, and convert it to the orthogonal basis of Sr, obtaining, at last, our ciphertext

as an element of the published ring P.

Remark 3.4. In our code, the encryption process is slightly different. In order to optimize

the code as much as possible, we represent elements of Sr as coordinate vectors regarding
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the respective orthogonal basis as soon as possible. This means that, by the time we

perform encryption, we no longer generate a random element of our ideal, exactly as said

above.

The first thing to note is that, since h j is a random element of Sr, then this means that,

in vector form, regarding the orthogonal basis, h j is a random vector with coefficients

in Zp. As for I, at this point we already have every of its generators in the orthogonal

basis, in vector form, so we apply the product defined above in Section 3.4 for every

pair of generator and respective random vector, h j. This then gives us a vector with the

coordinates of a random element of I in the orthogonal basis.

Finally, all we have to do is to turn u into a vector regarding the orthogonal basis, as

we saw in Example 3.3, and add the random element obtained.

3.5.3 Decryption

When decrypting we no longer feel the need to work with vectors, so the first step is

always to return to the standard basis. Then, all we have to do is to replace each x j by

w j−1, starting with j = r and ending with j = n+ 1. When we conclude this procedure we

will have our original plaintext.

Remark 3.5. Regarding our code, this step is done exactly as described. As mentioned in

the key-generation step, the function prik outputs us the set of random idempotents w j,

used to generate the ideal, so we just need to use a simple substitution command.

To summarize, the private key consists of:

• The generators of the ideal I of Sr;

• The permutation π used on the elements of the orthogonal basis;

• The embedding from the database of plaintexts onto Sn.

3.5.4 Example

For a better understanding of everything that has been said in this chapter, lets take a look

at an example of an encryption/decryption process. We chose to leave out the random

permutation because it is irrelevant in this example and we also leave out the embedding

process since it will be discussed in the following subsections.
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The first thing to do is to set the parameters. Let n = 2, p = 5 and r = n + 2. Then we

proceed to key-generation, where, with the aid of our function prikwe obtain,

w2 = 4x1x2 + x1

w3 = 4x1x2 + x1 + x2.

With this set of random idempotents, respectively from S2 and S3, we can now build our

ideal I as follows,

I = ⟨x3 −w2, x4 −w3⟩.

Then, choosing three random elements from S4, h1, h2 and h3 we have everything necessary

to perform encryption on a plaintext.

Recall that plaintexts are elements of

S2 = Z5[x1, x2]/⟨x2
1 − x1, x2

2 − x2⟩.

Then, choosing a plaintext at random, for example, m = x1 + 4x1x2, we have that

E(m) = m + E(0),

where

E(0) = (x3 −w2) · h1 + (x4 −w3) · h2.

Therefore, we obtain,

c = E(m) = 2x1x2x3x4 + x1x2x3 + 4x1x2 + 2x1x3 + 2x2x3 + 2x2x4 + x3x4 + x1 + 3x2 + 2x3,

where h1 and h2 are the following

h1 = 3x1x2x3x4 + x1x2x3 + 4x1x2x4 + 2x1x3x4 + x2x3x4 + 2x1x2 + x2x3 + 4x1x4 + 4x2x4 +

4x3x4 + 4x1 + 2x2 + x3 + x4 + 1

h2 = x1x2x3x4 + x1x2x3 + 3x1x2x4 + 2x2x3x4 + x1x2 + 3x1x3 + 3x2x3 + 3x1x4 + 3x2x4 +

3x3x4 + 4x1 + x2 + 3x3 + 4x4 + 1.

Finally we just have to convert c to a linear combination of ei,

c = e1 + 3e2 + 2e3 + 3e5 + e7 + 2e8 + 3e10 + e13.

To perform decryption on c, we first have to return to the standard basis and then substitute

every xm for wm−1, starting with m = 4 and ending with m = 3, i.e., there are, in this case,

two steps of substitution:
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• 1st Step (x4 −→ w3)

c1 = 2x1x2x3 + 4x1x2 + 3x1x3 + 3x2x3 + x1 + 2x3

• 2nd Step (x3 −→ w2)

c2 = 4x1x2 + x1

After performing decryption we got c2, which is equal to m, our original plaintext.

Consider now another plaintext m′ = 2x2, and its respective ciphertext

c′ = E(m′) =

4x1x2x3x4 + 2x1x2x3 + 3x1x3x4 + 4x1x3 + 3x2x3 + x1x4 + 2x2x4 + 4x1 + 3x2 + x3 + 2x4 =

= 4e1 + 3e2 + e3 + 2e4 + 2e5 + 4e6 + 2e7 + 2e8 + 2e9 + 3e10 + 2e11 + 2e12 + e14 + 4e15,

where h1 and h2 are the following,

h1 = 4x1x2x3x4 + 2x1x2x3 + 4x1x2x4 + 4x1x3x4 + 2x1x2 + 2x1x3 + 3x2x3 + x1x4 + 4x1 + x2 +

2x3 + 4x4 + 4

h2 = x1x2x3x4 + 4x1x2x3 + x1x2x4 + 4x1x3x4 + 2x1x2 + 3x2x3 + 2x1x4 + 2x2x4 + 3x3x4 +

4x1 + 3x3 + 3x4 + 4

We have that,

π = c · c′ = 4e1 + 4e2 + 2e3 + e5 + 2e7 + 4e8 + 4e10,

and,

σ = c + c′ = e2 + 3e3 + 2e4 + 4e6 + 3e7 + 4e8 + 2e9 + e10 + 2e11 + 2e12 + e13 + e14 + 4e15.

When performing decryption on π and σwe obtain,

Dec(π) = 0 = 2x2 · (x1 + 4x1x2) = m ·m′,

and,

Dec(σ) = 2x2 + x1 + 4x1x2 = m + m′.

As expected, the result of computations performed between ciphertexts, when decrypted,

is equal to the result of this same operations performed on their respective plaintexts.
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3.6 Embeddings

As mentioned before, in practical applications we often need to perform an embedding

from our database (set of real-life plaintexts) onto Sn. There are two types of embedding,

depending on whether our database has ring structure or not.

3.6.1 Embedding without ring structure

This is the simplest case, since our database does not have a ring structure, we simply do

a one-to-one embedding without any sort of restrictions, which means that the number of

possible embeddings of a database with k elements onto Sn is p2n
!

(p2n
−k)!

, where k ≤ p2n
.

This type of embedding assures us that if any parts of a plaintext got exposed, it would

not necessarily mean that elements of our original database would be exposed, since an

attacker would have to know the embedding used. However, this might be the case when

our database does have ring structure, as we will see in the next subsection as well as in

the next chapter, when discussing security.

3.6.2 Embedding with ring structure

If our database has ring structure it is possible to perform an homomorphic embedding α,

which means that from the embedding of the element 1, α(1), we can completely determine

α through homomorphic properties. Another aspect to have into account is the fact that

1 is an idempotent of our ring, therefore α(1) must also be an idempotent of Sn, therefore

there are 22n
possible homomorphic embeddings, i.e., the number of idempotents in Sn.

As we will explain further when discussing security, if our embedding is homomor-

phic, there are more concerns regarding security compared to a one-to-one embedding.

However, we only need to know the embedding of 1 to determine the whole embedding,

which is not the case with an one-to-one embedding. This is because, in the latter case,

we have to know the embedding of every single element of our database.

To conclude this subsection, consider the following example of an homomorphic em-

bedding between a database with ring structure and Sn.

Example 3.4. Suppose our database is the ring Z5 and we wish to perform an embedding

into S2, with p = 5, which has 54 = 625 elements. As mentioned above, the first step is

to define α(1), where α(1) is an idempotent of S2. Recall that S2 has 24 = 16 idempotents,

therefore, this is the amount of distinct homomorphic embeddings one can perform.



30 Fully Homomorphic Encryption and its application in Private Search

Choosing α(1) = x1x2, one gets that α is completely determined as follows

α( j) = jx1x2,

for j ∈ Z5.

Note that, since this embedding is fully homomorphic, it preserves every computation

performed, and this is the main reason why there are more security issues, as we explain

in the next chapter.



Chapter 4

Security

In this chapter, we discuss some security related topics regarding Gribov’s encryption

scheme.

First of all, notice that since this scheme is private-key (even though some informa-

tion has to be public, specially to allow third-party private search), discussing security is

slightly different compared to a scheme that is public-key.

Nonetheless, we are going to check why this scheme is secure against ciphertext only at-

tacks, as well as why accumulating encryptions of 0 will not necessarily endanger original

plaintexts. Then we move to another topic, aimed at the case where the database of plain-

texts has ring structure and therefore we can perform a fully homomorphic embedding

onto Sn. Within this discussion, we share some experiments as well as an analysis of a

couple of enhancements suggested by the authors of the original scheme.

4.1 Security against ciphertext-only attacks

For an homomorphic encryption scheme, security against ciphertext-only attacks, i.e., the

attacker only has access to a set of ciphertexts, seems to be difficult to achieve since if an

attacker has access to enough ciphertexts he/she may be able to obtain several (plaintext,

ciphertext) pairs using the homomorphic properties of the encryption function. Then, the

attacker is able to perform a known-plaintext attack.

If original plaintexts come from Zp, then one can easily identify three ways for an

attacker to obtain a pair (plaintext, ciphertext) from ciphertexts only:

31
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1. Since Zp is commutative, for any a, b ∈ Zp, we have ab − ba = 0. Then, by the

homomorphic property of the encryption function, xy− yx = E(0), for any x, y in the

encrypted database of plaintexts.

2. For any a ∈ Zp, a + ... + a = 0 (p times), then, x + ... + x = E(0) (p times) for any x in

the encrypted database.

3. For any a ∈ Zp, by Fermat’s little theorem we have ap−1 = 1, then, xp−1 = E(1) for x

in the encrypted database.

In this scheme, Sn is isomorphic to a direct sum of copies of Zp, as mentioned before.

Therefore, we have that ab − ba = 0, a + ... + a = 0 (p times) and ap−1 = 1. This lets

us conclude that from ciphertexts only, the attacker cannot obtain any non-trivial pair

(plaintext, ciphertext).

This, however, means that an attacker might be able to accumulate encryptions of 0

through several queries. In the next subsection, we will explain why this is not necessarily

an issue.

4.1.1 Accumulating encryptions of zero

In the previous subsection we showed that an attacker cannot obtain any non trivial (plain-

text, ciphertext) pairs. However, he/she can indeed obtain several different encryptions

of 0, i.e., elements of our ideal I, through several queries to the encrypted database. Our

goal is to show that this is not necessarily an issue with this encryption scheme.

Note that the ideal I has finite dimension, which means that, in theory, with enough

queries against the encrypted database, the attacker can eventually collect every element

of this ideal. The obvious solution would be to increase the dimension of I such that it

would be harder to gather every single one of its elements, however this would make the

encryption scheme less practical which is not what we seek.

Even if we do not make any sort of enhancement, and supposing that the attacker is

able to recover the ideal I, this just means that he can, from now on, recognize encryptions

of 0. Moreover, this will not affect, in any way, the security of non-zero elements since in

order for the attacker to be able to decrypt non-zero elements correctly he needs to have

knowledge not only of the ideal I but also the specific mapping ρmentioned in Section 3.1.

In the following example, we simulate a scenario in which we attempt to perform

decryption on a ciphertext using a different mapping ρ.
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4.1.1.1 Example

In this example we are going to be able to see what happens if we, as an attacker that has

no knowledge of the mapping ρ, attempted to perform decryption on a ciphertext.

In the first part of this example we will be doing key generation and then encrypting

a random plaintext as usual. For the second part we assume the role of an attacker that

has already gathered every element of our ideal I. However, a different mapping will

be chosen, i.e., we will find a different basis for the ideal I, and then attempt to perform

decryption, only to come to the conclusion that the result is not our initial plaintext.

As always, the very first step is to set the parameters,

n = 2, r = n + 2 = 4, p = 3.

Then, we proceed to key generation, and, once again with the aid of our function prikwe

get

w2 = x1

w3 = x2x3,

which leads us to our ideal I:

I = ⟨x3 − x1, x4 − x2x3⟩.

Finally we choose a plaintext at random, e.g., x2 − x1, and encrypt it, obtaining

c = E(x2 − x1) = x2 − x3 + x4x3x1 − x2x3x1,

where h1 = −1 and h2 = x1x3.

Recall that we perform decryption by substituting each xi by wi−1, starting with i = r

and ending with i = n + 1, therefore our map from S2 to S4/I is given by xi → wi−1.

We now take on the role of the attacker, which already knows every element of I.

However, we wrongly assume that I has been generated as follows

I = ⟨x3 − x1 + x4 − x2x3, x4 − x2x3⟩.

Then, we consider the following map:

1→ 1 x3 → x3 x2 → x2
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x1x2 → x1x2 x2x3 → x2x3 x1x3 → x1x3

x1x2x3 → x1x2x3 x4 → x2x3

x1 → x3 + x4 − x2x3.

If we attempt to decrypt c using this mapping, we get x2 − x3, which is not the original

plaintext.

The previous example shows that accumulating encryptions of 0, even to the extent

where we get every element of the ideal I, would not endanger non-zero elements, as long

as the attacker is not aware of our chosen map ρ.

If the embedding from our database onto Sn is one-to-one, and not homomorphic, then,

even if an attacker was able to obtain a non-trivial pair plaintext / ciphertext, this would not

help him recover any other pair of such kind, since there is no algebraic correlation between

encryptions of plaintexts. Concluding that with such embedding, is not enough for the

attacker to correctly decrypt an element of Sr, since he still has to figure the correspondent

element in our database, which is very unlikely with a one-to-one embedding.

On the other hand, if the embedding is homomorphic, correctly decrypting a ciphertext,

might be enough to expose the original element of our database.

4.2 Security issues with an homomorphic embedding

4.2.1 Encryptions of the unity

As we mentioned towards the end of the previous subsection, when the embedding from

our original database to Sn is an homomorphism, there are some security liabilities, since

an attacker can use homomorphic properties to recover the original plaintext or even use

certain known encryptions to aid him/her recover more pairs (plaintext, ciphertext).

In the previous subsection, three main ways an attacker can recover a pair (plaintext,

ciphertext) were mentioned, even though he/she could not obtain any non-trivial pairs.

This, however, can still be a problem, since with an homomorphic embedding, obtaining

an encryption of 1 is much more significant due to the homomorphic properties of the

embedding function.

Let us consider a computational unbounded attacker with access to the encrypted

database, and which has accumulated enough distinct encryptions of 0 such that he/she is
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able to recognize future encryptions of 0. This attacker can just go over every ciphertext

and check which ones are idempotents modulo I, noting that with p prime the only

idempotents of Zp are 0 and 1. Therefore, with an homomorphic embedding, the only

ciphertexts that are idempotents modulo I would be the respective encryptions of the

idempotents of Zp.

Then, having the pair (1, E(1)), the attacker can use a brute force attack in the following

way: for a certain ciphertext w, he/she goes over every m ∈ Zp and checks if w−E(1)m ∈ I,

where due to the homomorphic properties we have E(1)m = E(m). Therefore, if the

attacker verifies this for any pair (m, w), it means that w is an encryption of m.

There is also another way, although not as practical, for an attacker to obtain E(1).

Knowing that the encryption of an element k ∈ Zp is of the form ku + e, where e ∈ I and u

is the idempotent of Sn in which the element 1 has been embedded to, he/she can just go

over every m ∈ Zp and divide the ciphertext ku + e by m until the result is an idempotent

modulo I, because if it is, then it must be of the form u + e′ where e′ ∈ I. Having this

encryption of 1 he/she can now replicate the procedure above.

4.2.2 Mutual null coordinates across ideal generators

First of all, note the following result.

Proposition 4.1. Let K be a field and R = Kn. The ideals of R are exactly its subsets of the form
n⊕

i=1
Ai where for each i, Ai = 0 or Ai = K.

Proof. Let I be an ideal of R and let F be the set of all i ∈ {1, ..., n} such that the i-th coordinate

of all elements of I is null. It is clear that I ⊆
n⊕

i=1
Ai where Ai = 0 if and only if i ∈ F.

For every j < F, exists u in I such that u j , 0. Let u( j) denote an element of I where u j , 0.

Since K is a field, u j has an inverse u−1
j , and taking y = (0, ..., u−1

j , ..., 0) one has (0, ..., 1, ..., 0) =

u( j)y ∈ I.

Finally, the sum of all these elements is equal to u′ = (..., 1, ..., 0, ..., 1, ...) ∈ I, where the null

coordinates are given by the set of indices F. Then, for any u ∈ R we have that uu′ = u ∈ I.

Therefore,
n⊕

i=1
Ai ⊆ I, where Ai = 0 iff i ∈ F. □

We have already seen that Sr can be published explicitly as a direct sum of copies of

Zp. Then, by the above proposition, one can conclude that every element of an ideal of

Sr would have some coordinates with random values from Zp, while others would just
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be equal to 0 (in vector form regarding the orthogonal basis), which means that some

elements of the original plaintext could be exposed, since the encryption process is a

simple addition. In other words, given a plaintext as a vector, we perform encryption

by adding a random element of I to the original plaintext, however we now know that

elements of I might have some coordinates null, which means that the vector resulting

from adding our original plaintext with a random element of I would have some of its

coordinates unchanged, which are exactly the exposed elements of the original plaintext.

Remark 4.2. This proposition was also very important on the optimization of our code,

because now we can generate a random element of I with one computation only, which

was not the case until this point. The way we do this is by first checking what are the

mutual null coordinates among the generators of the ideal, as vectors, in the orthogonal

basis of Sr. Let the set of these coordinates be N, we then generate a random vector of size

2r with coefficients in Zp where we annihilate every coordinate in N.

Recall the example in Subsection 4.1.1.1, where we had:

w2 = x1

w3 = x2x3,

which leads us to (as described in Example 3.3),

w2 = (0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)

w3 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1).

These are the coordinates of w2 and w3 in the orthogonal basis of S4. If we compute the

coordinates of x3 and x4 on this basis, we get

x3 −w2 = (0, 4, 0, 1, 0, 4, 0, 4, 1, 0, 1, 0, 4, 0, 1, 0)

x4 −w3 = (0, 0, 0, 0, 1, 0, 0, 1, 4, 1, 1, 4, 1, 1, 0, 0).

Then, N = {0, 2, 6, 15} is the set of mutual null coordinates between these two generators

of our ideal I. Because of the above proposition, we know that any element of I will have

every coordinate with random values, except the coordinates in N which will be always

equal to 0. This means that we can compute E(0) as

E(0) = (0, a1, 0, a3, a4, a5, 0, a7, a8, a9, a10, a11, a12, a13, a14, 0),

where ai ∈ Z5, randomly chosen.

Suppose that now we wish to encrypt a plaintext m = (m0, ..., m15). Recall that E(m) =

m + E(0), therefore
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E(m) = (m0, a1 + m1, m2, a3 + m3, a4 + m4, a5 + m5, m6, a7 + m7, a8 + m8, a9 + m9, a10 +

m10, a11 + m11, a12 + m12, a13 + m13, a14 + m14, m15).

We can easily see that some coordinates of E(m) are just the coordinates of the original

plaintext, which means that certain parts of the original plaintext might be exposed if

the attacker is aware of which are the mutual null coordinates across the ideal generators.

Even though this is most likely not the case, since the generators of the ideal I are part of the

private-key, we decided to perform an experiment where we assume that an attacker has

access to the encrypted database and attempts to recover these mutual null coordinates.

The description of this experiment, as well as the obtained results are presented in the

following subsection.

4.2.2.1 Mutual null coordinates experiment

In this section, we perform an experiment to show that one might be able to identify the

mutual null coordinates across the ideal generators only by having access to the encrypted

database and, therefore, be able to potentially recover certain elements of the plaintexts.

Notice that, with an homomorphic embedding, our database will be represented in Sn

by multiples of our initial idempotent, i.e., the one chosen as the embedding of 1.

This example will be divided in two parts. In the first part, we use an homomorphic

embedding to show that an attacker can easily identify the mutual null coordinates, and

therefore can expose parts of a plaintext. Since it is not easy to build an example where

we can choose an homomorphic embedding such that this scenario does not happen, in

the second part of this example we use a one-to-one embedding to show the difference

between a poorly chosen embedding and a good embedding.

Similar to Example 3.4, suppose our database is Z10007 and consider the following

parameters:

n = 4, p = 10007, r = 7.

Let α(1) = m, where m is a random monomial of S4. Then, α can be completely determined

as follows:

α( j) = jm,

for j ∈ Z10007.



38 Fully Homomorphic Encryption and its application in Private Search

After performing this embedding, we now have an unencrypted database with ele-

ments of S4. The next step is to encrypt this database, i.e., encrypt every single element of

our database using the method described before.

A set of functions was developed, in Python, to illustrate that if an attacker has access

to this encrypted database he/she can then compute the average value in every coordinate

across every element. Therefore, in this way he/she is able to observe a different behaviour

from the mutual null coordinates across the generator of the ideal I used for encryption.

The developed functions are presented in the Appendix A.2, and the following figure

shows the results of this experiment.
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(a) n = 4, p = 10007, DB size = 10007

Figure 4.1: Mutual null coordinates - Homomorphic Embedding

As expected, we can clearly observe a different behaviour from some coordinates,

that are exactly the mutual null coordinates across the generators of our ideal I used for

encryption.

As mentioned, since it is not easy to build a good homomorphic embedding, in the

second part of this experiment we use a one-to-one embedding to demonstrate that with

an adequate embedding it is possible to diffuse these coordinates among the rest.

Consider our database to be the first k prime numbers, where k is a parameter of our

choice. Since this set does not have a ring structure we perform a one-to-one embedding

of each prime number into an element of Sn.

Given a prime number q, there are αi ∈ {0, 1, ..., p− 1} such that,

q =
2n∑

i=0

αipi = αi + αip + αip2 + ... + α2np2n
,
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then, the embedding is performed as follows:

q −→ α0 + α1x0 + ... + αimi + ... + α2nx0...xn,

where mi is the i-th monomial of Sn.

After performing the previous embedding for every element of the original database,

we now have an unencrypted database with elements of Sn. The next step is to encrypt

this set.

From now on, we will specify our parameters and present the results obtained for each

of them, in plot form.

Consider the following parameters:

n = 4, p = 1000003, r = 7

Recall that the following figures represent the average value of every coordinate, through-

out all elements of our encrypted database, with the parameters mentioned above:
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(a) n = 4, p = 1000003, DB size = 1000
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(b) n = 4, p = 1000003, DB size = 10000

Figure 4.2: Mutual null coordinates - One-to-one “poor” Embedding

In both figures, we can clearly observe a different behavior in some coordinates, that

correspond exactly to the mutual null coordinates among the ideal generators. However,

this is an example of a “poor” embedding from our elements in Sn, since almost every

coordinate of every tuple in our database is null. Due to computer limitations, we were

not able to build a database as big as we wanted. However, in theory, if the last element

of our database was a prime number with 140 bits, then this behavior would not be as

obvious.

To try to illustrate this argument, let us slightly change the previous conditions. In

the following scenario p is a prime number with 20 bits, and our database is the set of k
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consecutive prime numbers such that the latest is the greatest prime number with 20 · r

bits. Consider, then, the following parameters:

n = 4, p = 1048583, r = 7, #Database = 1000/10000.

The results obtained are presented in Figure 4.3.
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(a) n = 4, p = 1048583, DB size = 1000
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(b) n = 4, p = 1048583, DB size = 10000

Figure 4.3: Mutual null coordinates - One-to-one“good” Embedding

We can immediately notice a different behavior in both plots, specially on the one on

the right, i.e., as we increase the size of our database, the coordinates where we could

previously observe a different behavior begin to blend in with the rest.

In conclusion, in order to omit, as much as possible, these mutual null coordinates

across the ideal generators, we need to have in consideration the embedding used, i.e.,

we wish to have an embedding that guarantees that most elements in Sn are going to be

used, the more the better. Recall once again that the second part of this example was

to show the reader the difference between choosing a bad embedding instead of a good

one. Nonetheless, the results are similar with an homomorphic embedding. However, as

mentioned, it is not trivial to find an example of a good homomorphic embedding, which

is an interesting future research topic.

4.2.3 2n mutual null coordinates

When performing the previous experiment we noticed a interesting behavior regarding

the mutual null coordinates among the ideal generator, this being the fact that in every test

performed, the number of mutual null coordinates was always 2n. Therefore, we decided
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to look deeper into this question trying to prove that this does in fact happen every time,

since we consider this to be a relevant aspect regarding the security of the encryption

scheme.

We wish to show that among the generators xm −wm−1 for every m ∈ {n+ 1, ..., r}, where

wm−1 is a random idempotent from Sm−1, there is always 2n mutual null coordinates. In

order to make this argument as intuitive as possible, note the following claims:

1. Each element of the orthogonal basis of Sn has exactly 2r−n non-null coordinates in

the orthogonal basis of Sr;

2. Given an arbitrary element of the orthogonal basis of Sn, half of its non-null coordi-

nates are also non-null coordinates of xi,∀i ∈ {n + 1, ..., r}.

Before getting into each claim, recall that the elements of the orthogonal basis of Sn are of

the form:

eF =
∏
i∈F

xi ·
∏
j<F

(1− x j),

for F ⊆ {1, ..., n}. From this expression we know that each eF represents a sum of monomials

with coefficients alternating between 1 and −1.

Proposition 4.3. Let F = {1, ..., n} \ F, then, the monomials of eF are of the form,

mJ = (−1)|J| ·
∏
i∈F

xi ·
∏
j∈J

x j,

for J ⊆ F.

Proof. To prove that all monomials of eF have this form, we need to prove that their sum,

for every J ⊆ F is equal to eF, i.e.,

∏
i∈F

xi ·
∏
j∈F

(1− x j) =
∑
J⊆F

Ñ
(−1)|J| ·

∏
i∈F

xi ·
∏
j∈J

x j

é
,

which means that is enough to prove that,∏
j∈F

(1− x j) =
∑
J⊆F

(−1)|J| ·
∏
j∈J

x j.

Let us proceed by induction over the size of F. If |F| = 0, then J = {}, nd its obvious that

we verify the expression above. Now, let F = {b} for b ∈ {1, ..., n}, then J ∈ {{}, {b}}, so we
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have,

1 · (1− xb) = (−1)0
∏
j∈{}

x j + (−1)1
∏
j∈{b}

x j =
∑
J⊆F

(−1)|J| ·
∏
j∈J

x j.

Suppose that this is true when |F| = k − 1. Now, consider |F| = k and let G be a set such

that G ⊆ F and |G| = k− 1, i.e., G = F \ {a} for an element a ∈ F.

We have,

∏
j∈F

(1− x j) =
∏
j∈G

(1− x j) ·
∏
j∈{a}

(1− x j) =

Ñ∏
j∈G

(1− x j)

é
· (1− xa).

By the induction hypothesis,

=

Ñ∑
J⊆G

(−1)|J| ·
∏
j∈J

x j)

é
· (1− xa) =

=
∑
J⊆G

(−1)|J| ·
∏
j∈J

x j −
∑
J⊆G

(−1)|J| · xa

∏
j∈J

x j =

=
∑
J⊆G

(−1)|J| ·
∏
j∈J

x j +
∑
J⊆G

(−1)|J∪{a}| ·
∏

j∈{a}∪J

x j.

Note that in the left sum J can be every subset of F that does not contain {a}, and in the

right sum J can be every subset of F that contains {a}. Therefore, we have,∑
J⊆G

(−1)|J| ·
∏
j∈J

x j +
∑
J⊆G

(−1)|J∪{a}| ·
∏

j∈{a}∪J

x j =
∑
J⊆F

(−1)|J| ·
∏
j∈J

x j

□

Now that we know the form of any monomial of an idempotent of a certain orthogonal

basis, we can begin to prove the above claims.

For the first claim, consider,

AF =
∑

T⊆{n+1,...,r}

e′F∪T,

for F ⊆ {1, ..., n}, where e′ denotes elements from the orthogonal basis of Sr.

Our intention is to show that AF = eF, where eF is an element from the orthogonal basis

of Sn, noting that AF is a sum of 2r−n parcels. Firstly, let F′ ⊆ {1, ..., n} \F and T ⊆ {n+ 1, ..., r}.

Suppose m is a monomial of AF, such that m is not a monomial of eF, i.e., m is of the form,∏
i∈F

xi ·
∏

j∈F′∪T

x j,
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where T , ∅. We can then rearrange m as follows,∏
i∈F

xi ·
∏
j∈T

x j ·
∏
k∈F′

xk,

and, for every T′ ⊆ T, we have,∏
i∈F

xi ·
∏
j∈T′

x j ·
∏

k∈T\T′
xk ·
∏
l∈F′

xl =

=
∏

i∈F∪T′
xi ·

∏
j∈F′∪(T\T′)

x j.

Firstly note that we consider the complement sets relative to {1, ..., r}. That said, if F′ ∪ (T \

T′) ⊆ F∪ T′ then m is a monomial of e′F∪T′ , for every T′ ⊆ T.

Proposition 4.4. Let F′ ⊆ {1, ..., n} \ F, T ⊆ {n + 1, ..., r} and T′ ⊆ T, then

F′ ∪ (T \ T′) ⊆ F∪ T′.

Proof. First, note that F∪ T′ = F∩ T′. Let x ∈ F′ ∪ (T \ T′), then

x ∈ F′ or x ∈ T \ T′.

Suppose x ∈ F′, then it is obvious that x ∈ F and since T′ ∩ F′ = ∅we have that x ∈ T′.

On the other hand, suppose x ∈ T \ T′, i.e., x is an element of T and not an element of T′,

then it is obvious that x ∈ T′, and since F∩ T = ∅we have that x ∈ F. □

We now know that the coefficient of a monomial m of e′F∪T, with T , ∅, in AF, is given

by the sum of its coefficients in each e′F∪T′ , where T′ goes through all the subsets of T. Let

|T| = k and |F′| = l, by Proposition 4.3 we know that the coefficient of m in each e′F∪T′ is

given by

(−1)|F
′
∪(T\T′)| = (−1)l+k−|T′|.

Noting that there are
(a

b

)
subsets of size b in a set of size a, which means that there are

(k
s

)
subsets of T with size s. Concluding that the coefficient of m in AF is equal to

k∑
i = 0

(−1)l+k−i

Ç
k
i

å
.

This expression is equal to 0 for any values of l and k, so we come to the conclusion that

any term of AF that is not a term of eF has coefficient zero. On the other hand, it is easy to

see that every term of eF is a term of AF, therefore AF = eF. Since the coordinates of eF in

the orthogonal basis of Sr are unique, the first claim is proved.
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To prove the second claim, lets first prove that any xi, for n + 1 ≤ i ≤ r has exactly 2r−1

non-null coordinates in the orthogonal basis of Sr.

We can prove this with a similar argument to the one used for the first claim. Let

B =
∑
T⊆{i}

e′
{i}∪T.

Suppose that there is a monomial m in B different from xi, but that contains xi, i.e.,

m = xi ·
∏
j∈T

x j,

for T ⊆ {i} such that T , ∅. Then, for any T′ ⊆ T, we can rearrange m as follows

m = xi ·
∏
j∈T′

x j ·
∏

k∈T\T′
xk,

and since it is obvious that T \ T′ ⊆ {i} ∩ T′, we have that m is a monomial of e′
{i}∪T′ , for

every T′ ⊆ T. Following the argument used in the first claim, we have that the coefficient

of m in B is equal to
k∑

i = 0

(−1)k−i

Ç
k
i

å
,

which is equal to 0. Therefore, B = xi.

To prove the claim, let eF be an arbitrary element of the orthogonal basis of Sn, then,

by the first claim we know that

A =
⋃

T⊆{n+1,...,r}

{F∪ T},

represents the set of its non-null coordinates in the orthogonal basis of Sr. Now consider

the following set

A′ =
⋃

T⊆{n+1,...,r}\{i}

{F∪ {i} ∪ T}.

for some i ∈ {n + 1, ..., r}. We can easily see that A′ ⊆ A and A′ is also a subset of the set

of non-null coordinates of xi, for n + 1 ≤ i ≤ r. Therefore, A′ represents 2r−n−1 common

non-null coordinates between eF and some xi. To conclude the proof, we just have to

note that if there were more common coordinates between an eF and xi, this would be a

contradiction with the above result regarding the number of total non-null coordinates of

xi.
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Now that we have proved the two previous claims, we can move onto the main proof

of this subsection.

Proposition 4.5. Let I be the ideal of Sr generated by ⟨xn+1 −wn, ..., xk −wk−1⟩, where wm are

random idempotents of Sm, for m ∈ {n, ..., r− 1}. Then, these generators have exactly 2r−k mutual

null coordinates in the orthogonal basis of Sr.

Proof. First, notice that any idempotent of Sn can be written as a linear combination of

elements from its own orthogonal basis and each of the elements from the orthogonal

basis of Sn can be written as a linear combination of elements from the orthogonal basis

of Sr as follows:

wn =
∑

F⊆{1,...,n}

αFeF,

where αF ∈ {0, 1}. By the first claim, we know that

αFeF = αF

∑
G⊆{n+1,...,r}

e′F∪G,

where e′F∪G are elements from the orthogonal basis of Sr. We can easily conclude that for

any two distinct idempotents, eF1 and eF2 , their set of non null coordinates in the orthogonal

basis of Sr is disjoint, which means that every coordinate correspondent to the elements

e′F∪G, has one and only one coefficient, αF.

By our second claim, we also know that for this set of coordinates, half of its elements

are also non null coordinates of xn+1. Notice that every non null coordinate of any xi

has coefficient 1 (since every xi is an idempotent). Then, in xn+1 −wn, half of the set of

coordinates of an idempotent eF of Sn has coefficient−αF while the other half has coefficient

1 − αF, which means that independently of the value of αF, half of these coordinates in

xn+1 −wn will be equal to 0. Across 2n idempotents, we would have exactly 2r−n−12n = 2r−1

null coordinates.

Without loss of generality, suppose thatαF = 0. Then, for the set of non null coordinates

of eF, the ones that are not mutual with xn+1 will be null coordinates. Recall from our

second claim that these coordinates correspond to

A =
⋃

T⊆{n+2,...,r}

{F∪ T},

which are also the set of coordinates of an idempotent from Sn+1 which takes part in the

linear combination used to generate wn+1, with a coefficient β j. Similarly to what happens

with xn+1 −wn, the generator xn+2 −wn+1 also splits A in two sets of coordinates:
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• A1 - Mutual coordinates with xn+2;

• A2 = A \A1;

where, for any β j, the null coordinates of xn+2 −wn+1 are either the coordinates in A1 or A2,

which will also represent the subset of every mutual null coordinates between xn+1 −wn

and xn+2 −wn+1, since A1, A2 ⊆ A. This subset will have exactly 2r−n−2 elements, therefore,

across 2n possible eF, we have a total of 2r−2 mutual null coordinates, i.e., |A|/2.

The rest of the proof will be done by induction over the size of the set of generators of

our ideal I.

For a set of size 2 we saw above that it is true. Suppose that it is true for a set of size

k − 1. Now consider a set of k generators. By the inductive hypothesis among the first

k − 1 generators there are 2r−k+1 mutual null coordinates. On the other hand, using the

same argument as above for the k− 1-th and the k-th generator we can easily conclude that

in this set of k generators we would have 2r−k+1/2 = 2r−k mutual null coordinates among

them. □

Since in our scheme the set of generators has always size r− n, we conclude that there

will always be 2n mutual null coordinates between the generators in this set, i.e., every

element of our ideal I would have at least 2n null coordinates.

4.2.3.1 Enhancements

Even though the authors of the original scheme did not explicitly explore this previous

result, they did, however, briefly present a couple enhancements that the user can perform

in order to avoid this problem. Thanks to the process we had to go through to be able to

prove the above proposition, we are now capable of doing a more complete analysis on

the enhancements presented.

These enhancements are the following:

1. Change the form of the generators of our ideal I used for encryptions of 0;

2. Apply a linear transformation on the orthogonal basis of Sr.

The first enhancement consists of changing the form of the generators of our ideal from

xm − wm−1 to xi1 ...xikxm − wm−1 where all i j < m. The protocol is similar, but we have to

take into account that everything we did before with xm, we now have to do with the new



4. Security 47

monomial, in particular, the order in the substitution step is defined similarly to what we

have seen before, i.e., starting with the monomial that involves xr and ending with the one

that involves sn+1. We can easily see that decryption is still unique.

Lets now check the maximum and minimum number of mutual null coordinates that

one can obtain when using this enhancement.

Let H = {i1, ..., ik} and Mt = xtxi1 ...xik . By the previous subsection, we know that the

non-null coordinates of Mn+1 are given by

A =
⋃

T⊆H∪{n+1}

{{n + 1} ∪H ∪ T}.

Notice that given an arbitrary idempotent from the orthogonal basis of Sn, eF, it has mutual

non-null coordinates with Mn+1 if and only if H ⊆ F. There are 2n−k subsets F ⊆ {1, ..., n}

where H ⊆ F, i.e., this is the number of elements in the orthogonal basis of Sn that have

mutual non-null coordinates with Mn+1.

We can then split the coordinates of Mn+1 −wn into two sets:

(a) Union of the sets of coordinates of eF, for every F such that H ⊈ F,

(b) Union of the sets of coordinates of eF, for every F such that H ⊆ F.

Recall that,

wn =
∑

F⊆{1,...,n}

αFeF,

where αF ∈ {0, 1}. Which means that the set of coordinates in (a) would have coefficients

−αF, for every F where H ⊈ F. To explore the worst case scenario, i.e., the case where we

would get the most amount of mutual null coordinates possible, we want every coordinate

in (a) to have coefficient 0, meaning that we have (2n
− 2n−k) · 2r−n null coordinates already,

so, the total number of null coordinates in the first generator is equal to

(2n
− 2n−k) · 2r−n + 2n−k2r−n−1 = 2r

· (1− 2−k−1),

since the set of coordinates in (b) have the same behaviour as the cases explored in the

proof of Proposition 4.5, which means that no matter what, half of these coordinates have

coefficient 0 in Mn+1 −wn. We can easily see that the number of null coordinates increases

as k increases. Therefore, we can also conclude that the maximum number of mutual null

coordinates across all generators is at most equal to the number of null coordinates in the

first generator, since every following generator, in the worst case scenario, has a greater

number of null coordinates than the first.
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Let us then consider k = n in order to guarantee the most amount of null coordinates in

the first generator, then Mn+1 = xn+1xn...x1. Our goal now is to prove that the maximum

number of mutual null coordinates is exactly the maximum number of null coordinates in

the first generator. For k = n, we have H = {1, ..., n}, i.e., there is only one idempotent, eF,

that has mutual coordinates with Mn+1, this being when F = {1, ..., n}. We know that the

set of non-null coordinates of e{1,...,n} is

B =
⋃

T⊆{n+1,...,r}

{{1, ..., n} ∪ T}.

However, these are not all common with Mn+1. Splitting B into the following two sets of

coordinates:

B1 =
⋃

T⊆{n+2,...,r}

{{1, ..., n} ∪ T},

and

B2 =
⋃

T⊆{n+2,...,r}

{{1, ..., n, n + 1} ∪ T},

we can easily see that B2 is the set of non-null coordinates of Mn+1, which means that it

is also the set of mutual non null coordinates between Mn+1 and e{1,...,n}. Then, in the first

generator, the coordinates in B1 will have coefficient −α{1,...,n}, while the coordinates in B2

will have coefficient 1− α{1,...,n}, where α{1,...,n} ∈ {0, 1}.

Suppose that α{1,...,n} = 0. Then, in the first generator, the coordinates in B1 are null,

which means that the set of non-null coordinates in the first generator is exactly B2.

To conclude our argument we want to show that it is possible that every non-null

coordinate in the remaining generators is in B2. Suppose they are all of the form Ml −wl−1,

where

Ml = xlxl−1...x1, for n + 1 < l ≤ r.

Then, with a similar argument used for the first generator, i.e., considering every coefficient

in the linear combination of wl−1 correspondent to the idempotents that do not share non-

null coordinates with Ml, to be null, we know that the non-null coordinates of a generator

Ml −wl−1, belong to the set,

Cl =
⋃

T⊆{l+1,...,r}

{{1, ..., n, n + 1, ..., l} ∪ T}.
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Finally, since Cl ⊆ B2 for every l we can then conclude that it is indeed possible for the

total amount of mutual null coordinates among the ideal generators to be equal to the

maximum amount of null coordinates in the first generator, i.e., 2r
· (1− 2−n−1).

With a similar but simpler argument, we can show that in the best case scenario there

are no mutual null coordinates. Consider the first generator as we did above, however,

in this case, instead of choosing every coordinate in (a) to have coefficient 0, we choose it

to be 1. Consider also the same sets of coordinates B1 and B2 and recall that in the first

generator their coordinates have coefficients −α{1,...,n} and 1− α{1,...,n}, respectively.

Once again, suppose α{1,...,n} = 0, then the set of null coordinates in the first generator

is exactly B1. Now, to conclude our argument, we just have to show that it is possible the

second generator not to have any null coordinates in B1, meaning that there would not be

any mutual null coordinates across all generators, independently of the remaining.

Consider the second generator as above and let, however, every coefficient in its set

(a) be equal to 1 (instead of 0). One can easily see that the coordinates in B1 are also in

(a). That said, we conclude that in the best case scenario, the minimum number of mutual

null coordinates is zero.

The second enhancement consists in applying a random linear transformation after

applying the random permutation on the orthogonal basis.

Before we define this linear transformation, consider the following proposition.

Proposition 4.6. Let w j =
n∑

i=1
ai, jbi, where B = (b1, ..., bn) is a basis of a vector space V and

A = (ai, j)i, j. Then, B′ = (w1, ..., wn) is a basis of V if and only if A is invertible.

Proof. Suppose B′ is a basis of V, then w1,...,wn are linearly independent, i.e.,

n∑
j=1

α jw j = 0,

if and only if α1 = ... = αn = 0. It is also true that

n∑
j=1

α jw j =
n∑

j=1

Ñ
α j

n∑
i=1

ai, jbi

é
=

n∑
j=1

Ñ
b j

n∑
i=1

αia j,i

é
.

Since B is a basis of V, this latter sum is equal to 0 if and only if
n∑

i=1
αia j,i = 0 for every

i ∈ {1, ..., n}. However, the sum is equal to 0 if and only if α1 = ... = αn = 0, therefore

for every j, a j,i are linearly independent. This is equivalent to say that (a j,i) j (the columns
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of A) are linearly independent. Finally, we use the fact that the columns of A are linearly

independent if and only if A is invertible to conclude our proof. □

The linear transformation is defined as follows

f j = e j +
∑
i< j

ciei, (4.1)

where ci ∈ {0, 1} and ei are the elements of the orthogonal basis of Sr. By the above

proposition, we know that f j form a new basis if and only if the matrix A, which coefficients

we obtain from the above expression, is invertible.

In this case, the matrix A obtained is the following,

A =



1 c1 c1 . . . c1

0 1 c2 . . . c2

0 0 1 . . . c3
...

...
...

. . .
...

0 0 0 . . . 1


.

We can easily see that A is invertible, since it is an upper triangular matrix and there are

no null entries in its main diagonal, therefore we conclude that f j form a new basis of Sr.

This new basis is no longer orthogonal, which means that multiplications will not be

as effective. On the other hand, note that, if we compute fa fa, we obtain

fa fa =

Ñ
ea +
∑
i<a

ciei

é
·

Ñ
ea +
∑
i<a

ciei

é
=

= ea + 2ea

∑
i<a

ciei +
∑
i<a

ciei = ea +
∑
i<a

ciei = fa.

Then every f j is an idempotent, which means that f j form a new idempotent basis of Sr.

With this enhancement it is possible to give an example of the best case scenario,

however it is not trivial to analyze the worst case, since it depends on the shape of the

generators in the orthogonal basis as well as on the parameter p.

In the best case it is possible to have no mutual null coordinates as we will show with

the following example.

Example 4.1. Considering our parameters as n = 2, p = 5 and r = 4, with the aid of our

software we obtain a pair of generators of the ideal I, where one of them is the following

x3 + x1x2 − 1→ (−1,−1,−1, 0,−1, 0, 0,−1, 0,−1, 0, 1, 0, 0, 0, 1),
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then, considering c3, c10 = 1 and the remaining to be null, we obtain (applying 4.1),

f j = −1 for j ∈ {1, 2, 3, 4, 6, 7, 9, 12, 16},

and,

f j = −2 for j ∈ {5, 8, 10, 11, 13, 14, 15}.

Therefore, we do not have any mutual null coordinates, in this basis, among our

generators.

On the other hand, for the worst case scenario, there is not much we can conclude,

besides the fact that there is a possibility of obtaining more than 2n mutual null coordinates.

Example 4.2. Consider the example above,but now assume that ci = 0 for i ∈ {1, ..., 16}.

This means that the first generator would have null coefficients in f j for j ∈ {4, 6, 7, 9, 11, 13, 14, 15}.

The second generator of the ideal I is

x4 + 2x1x2x3 − x1x2 − x1x3 − x2x3 + x1 + x3 + x4 − 1→

(−1, 0,−1, 0, 0,−1, 0, 1,−1, 0, 1, 0, 0, 1, 0, 1).

Then, considering c8, c9 = 1 and the remaining equal to 0, we obtain,

f j = 0 for j ∈ {2, 4, 5, 7, 9, 10, 12, 13, 15},

which means that among these generators there are 5 mutual null coordinates in this new

basis. Recall that in the orthogonal basis of Sr, without any enhancements, there were

only 2n = 4.

This is, however, not a complete analysis, since we do not know how likely to happen

are each of these scenarios, in either enhancement. So, in order to have a better idea

of what to expect when using these enhancements, a program was developed (available

at Appendix A.3) that tests key-generation with each of these enhancements with the

purpose of checking how many mutual null coordinates one would obtain.

In Table 4.1, are presented the results of our main experiments.

The first conclusion we can take from these results is that the second enhancement is

much more effective than the first one. In fact, the first enhancement strategy rarely shows

improvements, and if it does, it is a very slight difference to the number of mutual null

coordinates we obtain without any enhancement.

We can also observe that with the second enhancement, the average number of mutual

null coordinates decreases when we increase the number of generators involved. The
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variation of the other two parameters, n and p, does not show obvious patterns, however

we can notice that when n increases. we begin to see that changing the value of p has more

effect in the results, specially between p = 11 and the other values of p.
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Table 4.1: Results of Enhancement Testing

Nº of mutual null coordinates (mean across 100 runs)

n p r− n
Enhancement 1

(Generators)

Enhancement 2

(New Basis)
Standard

3

11

1 8.14 3.63

8

2 7.87 1.22

3 7.89 0.26

10007

1 7.83 3.69

2 7.88 1.36

3 7.91 0.24

1073741827

1 7.91 4.19

2 8.23 1.31

3 7.77 0.21

5

11

1 33.03 7.95

32

2 32.10 1.03

3 33.41 0.31

10007

1 32.70 7.06

2 32.95 1.05

3 33.47 0.30

1073741827

1 31.74 6.84

2 31.92 0.96

3 32.48 0.37

7

11

1 129.11 21.32

128

2 129.87 4.31

3 127.72 1.05

10007

1 127.76 6.93

2 129.91 0.66

3 128.57 0.16

1073741827

1 129.50 6.90

2 129.77 0.42

3 128.53 0.19
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Chapter 5

Private Search

A possible application for the encryption scheme presented is what the authors of the

original scheme call private search, i.e., the ability to verify if a certain element belongs to

an encrypted database. In order to perform private search, we need to introduce a new

step in the general process, that is going to be performed by the database keeper (e.g. the

cloud).

What makes this application a non-trivial problem is the fact that this scheme has

probabilistic encryption, which means that every time Alice (the owner of the database of

plaintexts) encrypts the same x, E(x) is likely to be different, therefore Carl (the database

keeper) has to do something more than just trying to match our E(x) to the encrypted

elements on the database. What Carl actually has to do is to take advantage of the fact

that E(x)− E(y) is equal to E(x− y) modulo I (same ideal used when encrypting) and then

he should compute the following product:

P(x) =
∏

E(y)∈E(D)

(E(x)− E(y)) =
∏

E(y)∈E(D)

E(x− y), (5.1)

where E(D) represents the encrypted database. Since the encryption function is also an

homomorphism for the usual product, we have that P(x) = E(
∏

E(y)∈E(D)(x− y)) modulo I,

and this allows Alice to decrypt P(x) in order to obtain
∏

E(y)∈E(D)(x− y)), meaning that, in

general, E(x) is an element of the encrypted database if the result of Alice’s decryption is

0. However, this might not be the case every time, i.e., there is a possibility of obtaining a

false positive as we will explain in Subsection 5.1.2).

Finally, the authors of the scheme present the idea of extending this concept to a third-

party to allow it to perform private search in our encrypted database. In the next section,

we will discuss this further, starting with a brief explanation of the adjustments that we

55



56 Fully Homomorphic Encryption and its application in Private Search

need to make in the encryption process, and then moving to a description of our design

thinking to build a program, with the goal of testing a third-party private search scenario.

5.1 Third-Party Private Search

The general idea of this application is to allow for a third-party (Bob) to check, privately,

if the encryption of certain elements belongs to the encrypted database.

Even though this scheme is private-key, some information has to be shared with Bob,

so he is able to perform private search. The first thing that Bob has to know is how to

embed his real life plaintext into an element of Sn. Consequently, Alice has to share the

way to do this with Bob. Bob also has to know how to encrypt an element of Sn such that

Alice (or anyone for that matter) is not capable of knowing which element Bob is planing

to use private search on.

Then, Alice has to publish E(D) using the orthogonal basis of Sr+k for some k ≥ 1,

noting that these additional k generators would allow Bob to encrypt his plaintexts (as an

elements of Sn).

In the next subsection, we explain, in more detail, the protocol of the encryption process

within the context of third-party private search.

5.1.1 Encryption Process

The overall encryption process is similar to what we have seen on Chapter 3. However, in

this context, we also need to have into account that Bob needs to perform encryption and

decryption. Therefore, we need to generate a private-key for Bob in the key-generation

step.

5.1.1.1 Key-Generation

As always, the first step is key-generation, and, in this context, we generate a key for Bob

and one for Alice. In order to generate a private-key for Bob we will need a new input, k.

Then, we proceed to compute the generators of Alice’s ideal I, as well as the generators

of an ideal J that will be used by Bob, similarly to how Alice uses I. Note also that J is

an ideal of Sr+k generated by ⟨xr+1 − w(1)
n , ..., xr+k − w(k)

n ⟩, where w(i)
n , for i ∈ {1, ..., k}, are

random idempotents of Sn.
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Another new step within the key-generation process is the encryption of Alice’s

database, that consists of encrypting each element with Alice’s encryption key.

5.1.1.2 Encryption

As mentioned in the beginning of this section, this step as well as decryption, within the

context of third-party private search, have a slight difference compared to the standard

encryption process.

We assume that Bob is already aware on how to do the embedding from the original

database to Sn. Let x be the element of Sn that Bob wants to perform private search on.

Then, the first step is to encrypt x, and Bob does this as follows,

EB(x) = x + g,

where g is a random element of Bob’s ideal J. Bob, then, sends EB(x) to Alice, expressed in

the standard basis of Sr+k, since the conversion from the standard basis to the orthogonal

basis is part of Alice’s private-key.

After receiving EB(x) from Bob, Alice encrypts this element, i.e., Alice computes

EA
(
EB(x)

)
= EB(x) + h,

where h is a random element of the ideal I.

Finally, before Alice sends this to Carl, she converts this element to the orthogonal

basis of Sr+k.

5.1.1.3 Cloud Computations

As was refereed in the beginning of this chapter, Carl is going to be responsible for

returning the product P(x) to Alice. However, in the context of third-party private search,

P(x) is slightly different, since Alice receives P(x) from Carl, she will not be able to know if

the product is 0 or not, due to the fact the she is oblivious about the ideal J, which is part

of Bob’s private-key.

That said, Carl returns to Alice the following product

P(x) =
∏

EA(y)∈EA(D)

Ä
EA

(
EB(x)

)
− EA(y)

ä
,
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then, modulo the ideal I + J, we verify the following

P(x) =
∏
y∈D

Ä
EA

(
EB(x)− y

)ä
= EA

Ñ∏
y∈D

(
EB(x)− y

)é
.

Note that the fact that every element is the orthogonal basis of Sr+k makes the computation

of such product way more effective, which was the goal of the orthogonal basis all along.

Since when performing private search, the number of multiplications is going to be equal

to the number of elements in the database, for a large database, the computation of this

product may be computationally very expensive, even with the aid of the orthogonal basis

properties. In Subsection 5.1.3, this will be seen in more detail.

5.1.1.4 Decryption

Finally we have the decryption part,which includes two decryptions processes, one that

has to be done by Alice and the other one by Bob.

When receiving P(x) from Carl, Alice performs her decryption as usual, obtaining

Q(x) =
∏
y∈D

(
EB(x)− y

)
.

Alice then sends Q(x) to Bob, that performs decryption with his own private-key, by the

standard process, i.e., by substituting every xm by w(m−r)
n , starting with m = r + k and

ending in m = r + 1.

Since EB(x) = x + g, and neither x or y have any terms involving xm for m ∈ {r +

1, ..., r + k}, they are not affected by Bob’s decryption. On the other hand, g ∈ J, and since

the purpose of Bob’s decryption is to annihilate the ideal J, we can then conclude that the

results of his decryption would be ∏
y∈D

(x− y).

We mentioned in the beginning of this chapter that usually, E(x) is an element of the

encrypted database if the returned product is 0, noting that there is a slight possibility of

false positives. In the next subsection, we explain how can these false positives happen as

well as how one can previously choose the parameters in order to have the probability of

a false positive as low as possible.
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5.1.2 False Positives

If our plaintexts are elements of a ring with zero divisors, then there are non-zero elements

a, b such that ab = 0. In our scheme, plaintexts are elements of Sn which is isomorphic

to a direct sum of 2n copies of Zp. For p prime, we know that Zp has no zero divisors,

meaning that for any a, b ∈ Zp, if ab = 0 then a = 0 or b = 0. This means that for any two

non-zero elements u1, u2 in Sn, to have u1u2 = 0, one has to have 0 in every coordinate in

the orthogonal basis, either in u1 or u2 (or both). That is, for any two elements of Sn

u1 = (a1, ..., a2n)

u2 = (b1, ..., b2n),

if u1u2 = 0, then for every i ∈ {1, ..., 2n
}, one has

aibi = 0,

i.e., ai = 0 or bi = 0.

However, the product that Carl computes involves N elements, which is the size of

our database. Therefore, to obtain a false positive, we need to have 0 in every coordinate

of at least one of the N elements involved in the product.

To be able to give an estimate probability, we consider that Zp has a uniform distri-

bution, therefore the probability of having 0 in a certain coordinate would be equal to
1
p , which allows us to compute an upper bound for the probability of a false positive as

follows.

The probability of having a certain coordinate null in at least one of the elements in

the product is equal to

1−

Ç
p− 1

p

åN

, (5.2)

where
(

p−1
p

)N
is the probability of not existing any elements with 0 in a given coordinate.

We can rewrite expression 5.2 as
pN
− (p− 1)N

pN , (5.3)

and, since (p− 1)N is equal to

N∑
i=0

Ç
N
i

å
pN−i(−1)i = pN

−NpN−1 +
N∑

i=2

Ç
N
i

å
pN−i(−1)i−1,
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we can substitute in our expression to get

NpN−1 +
N∑

i=2

(N
i

)
pN−i(−1)i−1

pN . (5.4)

Let us now show that NpN−1 is an upper bound of the numerator of the expression above,

i.e.,
N∑

i=2

Ç
N
i

å
pN−i(−1)i−1

≤ 0,

which is equivalent to prove that

N∑
i=2

Ç
N
i

å
pN−i(−1)i

≥ 0.

Simplifying this sum, we get

N∑
i=2

Ç
N
i

å
pN−i(−1)i = (p− 1)N

− pN + NpN−1 = (p− 1)N
− pN−1(p−N).

That said, we can simply prove the following,Ç
1−

1
p

åN−1

≥
p−N
p− 1

. (5.5)

Let us prove this by by induction over N. For N = 1, we haveÇ
1−

1
p

å0

= 1 ≥ 1 =
p− 1
p− 1

.

Suppose this is true for N = k, where k ∈N, i.e.,Ç
1−

1
p

åk−1

≥
p− k
p− 1

.

Now, let us prove that it holds for N = k + 1. We have,Ç
1−

1
p

åk

=

Ç
1−

1
p

å
·

Ç
1−

1
p

åk−1

≥

Ç
1−

1
p

å
·

Ç
p− k
p− 1

å
=

p− k
p

= 1−
k
p

≥ 1−
k

p− 1
=

p− k− 1
p− 1

,

Where the first inequality comes from our induction hypothesis. We concluded that NpN−1
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is an upper bound for the numerator in expression 5.4. Then, we obtain the following

upper bound for the probability
NpN−1

pN =
N
p

. (5.6)

This is, however, not enough to have a false positive, since this needs to happen across all

coordinates. Therefore, an upper bound for the probability of a false positive is
(

N
p

)2n

.

Now that we have an estimate for the probability of a false positive, that depends on

the size of the database and on the value of p, we are able to choose these parameters such

that we minimize as much as possible the probability of a false positive. In Section 5.2,

we share an example where we illustrate a poor choice of such parameters leading to false

positives.

Notice that with an adequate choice of parameters, we did not obtain any false positives

during our tests.

5.1.3 Code Walkthrough

In this section, we share the thinking process we used to design our program as well as

some of the results obtained.

We start with a few observations regarding the implementation, then, we move to a

more detailed walk-through of our code, not only discussing its final version, but also

explaining the optimizations that were made along the way.

5.1.3.1 Design Thinking

The main goal of our implementation was to build a program that allowed us to replicate

a third-party private search scenario in order to analyze the following two aspects:

• Reliability of this process regarding the amount of false positives;

• Processing time required to perform private search.

Since we were the only users of this program, we came to the conclusion that applying a

permutation on the orthogonal basis is not a relevant step. We also omitted the embedding

part, since we already mentioned that Bob, in order to perform third-party private search,

has to have knowledge of the embedding. Therefore, our input is the element of Sn that

we want to do private search on the encrypted database.
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5.1.3.2 Key-Generation and Database

Recall that the function prik, as mentioned before in Subsection 3.5, was used for key-

generation when using the standard encryption process. Now, we introduce the function

Tprik that is used for key-generation within the context of third-party private search, and

which is available at Appendix A.1.

This function has suffered several adjustments throughout this work. First, we at-

tempted to replicate the encryption process step by step, which meant that we worked

with polynomials in every step except during Carl’s computations. However, this proved

to be very time-consuming because of our computational resources. Then, the code was

improved to take advantage of the efficiency on multiplying elements in the orthogonal

basis. This was used to improve almost every step in the whole encryption process.

Therefore, in the final version of our code, shared in Appendix A.1, we have an optimized

function Tprikwhich, given inputs n, p, r and k, returns the following:

• e: Orthogonal basis of Sr+k

To generate this basis we apply the expression introduced in Section 3.4, and then

store the results in a list;

• m: Monomials in Sr+k

Given the generators of Sr+k, i.e., {1, x0, ..., xr+k−1}, we create a list with the element

1 and then add to this list the product between the next generator and all elements

already in the list, this results in something similar to

[1, x0, x1, x0x1, x2, x0x2, x1x2, x0x1x2, ..., x0x1...xr+k−1];

• t: Coordinates of the generators of Sr+k in the orthogonal basis of Sr+k (in vector

form)

We write all the generators of Sr+k, {1, x0, ..., xr+k−1}, in the orthogonal basis of this

same ring;

• E: Coordinates of the monomials of Sr+k in the orthogonal basis of Sr+k (in vector

form)

In order to ease the conversion from the standard basis to the orthogonal basis, we

use t and a similar process to the one used to create m. However, in this case, we

begin with the vector (1, ..., 1), of length 2r+k;
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• Edb: The first 2n elements of E;

Since t is built similarly to m, we guarantee that the first 2n of E are the monomials

of Sn. We then take advantage of this to ease the process of building the database.

• rr: Random idempotents for Alice

In the first versions of the code, in order to obtain an idempotent of Sn, we used

to generate a random element of this ring and then check if it was an idempotent

or not. However, we now use the fact that any idempotent of Sn can be written as

a linear combination of elements from the orthogonal basis of Sn with coefficients

0 and 1. Therefore, in order to generate r − n random idempotents, for Alice’s

encryption, from Sn, Sn+1,...,Sr−1, respectively, we simply generate random vectors

with coefficients 0 and 1 with length 2n,2n+1,...,2r−1. Then, we compute

len(am)∑
j=0

am[ j] · em[ j], (5.7)

where am represents the random vector generated with length 2m and em is the

orthogonal basis of Sm. Finally, with the aid of E, we can easily convert the result of

this sum to vector form.

• rk: Random idempotents for Bob

Although Bob does not have knowledge of the orthogonal basis, we still use it in

order to generate idempotents faster. However, in this case, we do not convert into

vector form, i.e., the result remains a polynomial.

• ac: Generator of the ideal I used for Alice’s encryptions

This was one of the major differences when attempting to optimize our code. In

the early stages we followed the protocol strictly, which means that to generate a

random element of the ideal I we had to generate r − n random elements of Sr+k

and, then, compute a linear combination of these elements and the generators of

I. However, when analyzing other issues, we came across a new point of view

regarding all ideals of Sn, that allowed us to generate a random element of I much

faster. We already showed a brief example of how we do this, but notice that, in our

code, ac is a vector of 1’s except in the coordinates that are mutually null across the

generators of the ideal, meaning that all we have to do is generate a random element

of Sr+n+k and then compute the product between that element and ac (the product

defined in Section 3.4) and we obtain a random element of I.
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Although we consider the construction of the database as well as its encryption to be

part of the key-generation process, we decided to build separate functions to perform such

tasks.

Our initial goal was to replicate the experiment mentioned by the authors of the

original scheme, where they claim to have tested with a database that has 106 elements.

However, along the way, we realised that we could not generate 106 random elements in

a reasonable period of time. As a matter of fact, even 104 elements was already very time

consuming, when using the suggested parameters by the authors of the original scheme.

One step of our optimization process was to build the database in a way that its elements

are already in the orthogonal basis, saving a great amount of time when compared to

previous versions where we had to convert these elements to the orthogonal basis.

To encrypt the database we simply apply Alice’s encryption method to every element

in the database of plaintexts (explained in the following subsection).

In the pursue of an optimized code, one of the question discussed was whether it

would be better to work with polynomials or converting every element to the orthogonal

basis as soon as possible. A benefit from working with polynomials is how much easier

it is to generate a random element of an ideal I, due to built-in functions of Sage. On the

other hand, every time we need to perform big computations, working with polynomials

was not the optimal option.

Comparative Analysis

We now describe the tests that were performed to compare the three main versions of our

program over time. Consider that:

• OB 1st is our first version of the program considering the optimization related to the

orthogonal basis;

• Polynomial refers to a version of our code where we worked with elements in

polynomial form as much as possible;

• OB Final refers to the latest version of our code, which we share in Appendix A.1.

In our experiments we had measured the processing times for three different processes

(key generation, database construction and database encryption) and for different sizes of

the database (1, 1000, 10000 and 100000, whenever possible).
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In Table 5.1, are presented the processing times of our first experiment, were we

considered the following parameters:

n = 3, p = 1031, r = 6, k = 1.

Table 5.1: First Comparison of Code Performance

Nº of elements OB 1st Polynomial OB Final

Key Generation ——- 0.39 s 0.12 s 0.2 s

DB Build

1 0.0003 s 0.0007 s 0.0003 s

1000 0.006 s 0.02 s 0.18 s

10000 0.06 s 0.2 s 1.66 s

100000 0.6 s 1.7 s 13.9 s

DB Encryption

1 0.023 s 0.02 s 0.003 s

1000 15 s 15.3 s 2.68 s

10000 143.25 s 129.82 s 26.5s

100000 1463.28 s 1308.28 s 382.97 s

Notice that the first version of the code, as well as the Polynomial one, take a longer time

to encrypt when compared with OB Final. This is due to the fact that, somewhere within

the encryption process, a conversion to the orthogonal basis has to be done, which is not

the case in the final version of our code. Therefore, we were able to save a significant

amount of time in the encryption process, even though there is a small increase in the

processing time required to build the database.

In the second experiment, whose results are shown in Table 5.2, the parameters n and

p were increased and a clear difference can now be seen between the performance of the

different code versions. The parameters considered in this case were:

n = 5, p = 1048583, r = 8, k = 1.
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Table 5.2: Second Comparison of Code Performance

Nº of elements OB 1st Polynomial OB Final

Key Generation —– 28.67 s 3.58 s 1.56 s

DB Build

1 0.0002 s 0.0001 s 0.0006 s

1000 0.015 s 0.03 s 0.19 s

10000 0.14 s 0.33 s 4.37 s

DB Encryption

1 0.10 s 0.18 s 0.016 s

1000 85.15 s 181.04 s 9.52 s

10000 866.29 s 1745.71 s 108.42 s

Finally, in our last experiment, the parameters considered were the ones suggested by the

authors of this scheme, which are:

n = 7, p = 1073741827, r = 10, k = 1.

In Table 5.3, the results are shown for databases of size 1 and of size 1000. Due to limitations

of time and computation power, we were not able perform the comparison for databases

of sizes 10000 or 100000. However, the results obtained already show a huge difference

between the processing times of the different versions of the code.

Table 5.3: Third Comparison of Code Performance

Nº of elements OB 1st Polynomial OB Final

Key Generation —– 585 s 14.5 s 23.65 s

DB Build
1 0.0002 s 0.0002 s 0.0009 s

1000 0.035 s 0.037 s 1.50 s

DB Encryption
1 41.8 s 3.18 s 0.063 s

1000 >2000 s >2000 s 49.15 s

Notice that, in a real-life application, the key-generation process is performed only

once and we do not have to build the database of plaintexts. Therefore, the elapsed times

obtained for the encryption process are the ones that are most important. Given this, it is

clear from the results in Table 5.7 that OB Final has a much better performance than the

previous versions of the code.
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5.1.3.3 Bob and Alice Encryption

In this section, we discuss the encryption process. Recall that Bob is the one performing

private search. Therefore, we start by explaining how the Bob encryption process works

within our program.

The first thing we do is to generate a random element from the ideal J. The reason for

us to not use a similar optimization to the one used for the ideal I is due to the fact that

usually J has one generator (according to the suggested parameters), which means that

the whole process is still quite fast even without optimization.

After generating this element we simply add it to the plaintext that was given as input,

by Bob, which is an element of Sn. Finally, we convert the result to vector form, where

each coordinate is the coefficient regarding a specific monomial, according to the list m

mentioned in Subsection 5.1.3.2.

Alice performs encryption similarly to what we have seen in Chapter 3, having ac

generated in key-generation, we simply generate a random element, in this case, from

Sr+k. We then compute the product of this element with ac, obtaining a random element

of I. Then we just have to convert the output of Bob’s encryption into the orthogonal basis

of Sr+k, and we can simply add the random element from I previously computed. Note

that every other element involved is already in the orthogonal basis of Sr+k.

5.1.3.4 Carl’s Computation

Carl’s task is to compute the product

P(x) =
∏

EA(y)∈EA(D)

Ä
EA

(
EB(x)

)
− EA(y)

ä
,

and send it back to Alice.

Without any optimization, this task would be significantly harder. However, thanks to

the fact that every element is in the orthogonal basis, Carl is able to compute this product

quite fast.

5.1.3.5 Bob and Alice Decryption

The decryption from Alice and Bob is similar, therefore we only explain Alice’s decryption

since Bob’s just differs in certain parameters.
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After obtaining the product from Carl, we first convert it back to the standard basis,

such that we are able to perform decryption, i.e., substitute every xm by rr[m−n− 1] (also

converted to the standard basis), starting with m = n + r and ending with m = n + 1. To

do this we use the built-in function of Sage named .subs().

After decrypting, Alice sends the result to Bob, where he perform his own decryption,

obtaining either something different from 0 (meaning that the element does not belong to

the database) or obtaining 0 (which either means that the element belongs to the database

or is a false positive).

5.1.3.6 Testing function

Finally, we built a function called Testing, presented in Appendix A.1, where given an

input k ∈ N, it runs a third-party private search scenario as described above, k times,

where each time the input is a random element of Sn, simulating a query from Bob. At the

end we get the following output:

• Correct

This happens when the element tested does not belong to the database and the final

result is different from 0, or when the element tested belongs to the database and the

final result is 0;

• False Positives

As we mentioned in its respective section, there is a slight probability of false posi-

tives if we do not choose our parameters carefully. Obviously, false positives happen

when the final result is 0 even though the initial element does not belong to the

database;

• False Negatives

Although it is not possible to have a false negative in this scheme, we decided to

have this counter, which was very useful in the early stages of our program, to help

us notice any irregular behaviour;

• Error (%);

• Elapsed Time (seconds).
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5.2 Experimental Results

In this section we share the results of some experiments using the function Testing

mentioned in the previous subsection. First, we present the results of some tests where

we intentionally selected not so good parameters, leading to false positives.

In order to make this a simple example we consider our database to have size 1000,

k = 1 and r = n+ 3. Recall that an upper bound for the probability of a false positive (FP),

in this example, is given by
(

1000
p

)2r+k

. The results obtained are presented in Table 5.4.

Table 5.4: Third-party private search with “poor” parameters

Results over 500 runs

p r Majorant for FP prob. FP obtained Error % Elapsed Time

11

5 100% 500 100% 14.11 s

6 100% 500 100% 27.72

7 100% 500 100% 65.32 s

1009

5 56% 30 6.0% 22.85 s

6 32% 1 0.2% 48.80 s

7 11% 0 0.0% 124.57 s

As we can see, if we do not choose our parameters carefully, we may increase our

chances of obtaining a false positive whenever a private search is performed, which is not

what is desired.

Finally, we present some results obtained for several combinations of parameters, this

time chosen properly, so that, ideally, we would not get any false positives.

Notice that since we could not replicate the execution times mentioned by the authors

of the original scheme, it is difficult for us to show results using the suggested parameters,

however we will attempt to present at least one run of a third-party private search scenario

using such parameters.

In Table 5.5, are shown the results obtained when 1000 runs were performed for each

combination of parameters, where we simply vary the values of r+ k, considering r = n+ 3

and k = 1, i.e., only the value of n varies, which is enough since what matters is the sum

r + k. We also vary the value of p, choosing it adequately to prevent false positives.
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Table 5.5: Third-party private search results over 1000 runs

Results over 1000 runs

DB Size p r+k Elapsed Time

1000

5003

7 95.16 s

8 256.67 s

9 824.58 s

10007

7 94.51 s

8 260.54 s

9 778.80 s

10000

50021

6 264.54 s

7 508.04 s

8 920.64 s

100003

6 249.42 s

7 474.20 s

8 889.71 s

As expected we did not obtain false positives in any of the tests performed. We can

also observe that for a given database size, the difference in elapsed time between the

different values of p is not significant. Also, as mentioned above, the upper bound for the

probability of a false positive is
(

DBsize
p

)2r+k

, and since this value is always very close to 0,

on this last experiments, we decided not to have a column with such data in the last and

next tables.

Table 5.6 presents the results obtained for a database with size 100000. Even though we

wanted to have results for bigger parameters, the elapsed time started to be impractical.

Consequently, we have limited this experiment to 100 runs.
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Table 5.6: Third-party private search results over 100 runs

Results over 100 runs

p r+k Elapsed Time

500009
6 222.75 s

7 411.79 s

1000003
6 213.40 s

7 462.51 s

Once again, the upper bound for the probability of a false positive is very close to zero.

Therefore, we did not obtain false positives in any of the these tests.

Finally, we attempted to perform this experiment with the parameters suggested by

the authors of the original scheme, i.e.,

n = 7, p = 1073741827, r = 10, k = 1 #Database = 10000.

It is clear that the upper bound for the probability of a false positive is very small, since p

is much greater than the size of our database. The function Tprikwas used to perform 10

runs with these parameters, obtaining the results presented in Table 5.7.

Table 5.7: Third-party private search results over 10 runs

Results over 10 runs

p r+k FP obtained Error % Elapsed Time

1073741827 11 0 0% 262.49 s

We did not obtain any false positives, however, we can observe that the elapsed time

has increased significantly when compared to what we saw in the previous tables, where

the number of runs performed was much greater. Therefore, we can conclude that we are

limited not only in the number of runs we can perform but also in the database size we

choose, since that every attempt to perform this experiment with a database of 100000 was

unsuccessful.
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Chapter 6

Conclusion

In this project we analyzed, with detail, a suggested fully homomorphic encryption scheme

that does not use bootsrapping, as mentioned in the introduction. We were able to present

some results we consider to be relevant, that were not discussed in the original article,

specially in Section 4.2.2.1 where we show how an attacker ca use a simple method in

order to recover parts of a plaintext, having only access to an encrypted database, and

in Section 4.2.3 where we prove that without any type of enhancement, the number of

mutual null coordinates across the generators of the ideal I used for encryption, is always

equal to 2n.

To conclude this project we explored the suggested application, for this scheme, which

is private search. More specifically, the application suggested is for a third-party that

wishes to perform private search. We then built a program in which we could simulate

this scenario, i.e., we generate a random element, that is to be interpreted as a legit query

from a third-party and then follow the protocol mentioned in Section 5.1.

Even though we were not able to exactly replicate the tests performed by the authors,

we performed a variety of tests for several combinations of parameters, obtaining positive

results in most, i.e., if we chose our parameters carefully then we could almost guarantee

a satisfactory result, or in other words, no false positives.

This project also raised some questions that we believe to be worth of future research,

such as, a possible enhancement in the encryption part, where we rely on a different

ideal J in order to give the attacker a harder time when attempting to recover our ideal

I used for encryption. Finally, another question that we consider to be worth of further

exploring is the quest to build a good homomorphic embedding between our database

and Sn. In this project, we were able to present a simple homomorphic embedding that,

73
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as we saw, was not good enough to prevent an attacker from uncovering the mutual null

coordinates among the generators of the ideal I and, therefore, possibly expose certain

parts of plaintexts.
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Appendix A

Appendix

A.1 Main Code

First we share the code used for standard encryption and decryption as well as for Third-

Party Private Search. Note that we start by defining some functions that make the remain-

ing of our code much simpler.

1 import time

2 import random

3 import numpy

4 #------------------------------

5 # FULLY HOMOMORPHIC ENCRYPTION

6 #------------------------------

7 #--------------------

8 # HELPFUL FUNCTIONS

9 #--------------------

10 # CREATES POLYNOMIAL RING

11 def ring(n,p):

12 if n == 1:

13 R = PolynomialRing(Zmod(p),’x0’,1);

14 R.inject_variables(None, None);

15 else:

16 R = PolynomialRing(Zmod(p),’x’,n);

17 R.inject_variables(None, None);

18

19 return R

20

21

22

23

77
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24 # CREATES QUOTIENT RING

25 def Qring(n,p):

26 if n == 1:

27 R = PolynomialRing(Zmod(p),’x0’,1);

28 R.inject_variables(None, None);

29 S = R.quotient([p**2-p for p in R.gens()]);

30 S.inject_variables(None, None);

31 L = S.lifting_map();

32 else:

33 R = PolynomialRing(Zmod(p),’x’,n);

34 R.inject_variables(None, None);

35 S = R.quotient([p**2-p for p in R.gens()]);

36 S.inject_variables(None, None);

37 L = S.lifting_map();

38

39 return S, L

40

41 # RETURNS COORDINATES OF f IN m (BASIS)

42 def vec(n,p,m,f):

43 R = ring(n,p);

44 f = R(f);

45 q = [];

46 for p in m:

47 q.append(f.monomial_coefficient(p))

48

49 q = vector(q);

50

51 return q

52

53 # BUILDS ORTHOGONAL BASIS OF Sn OVER Zp, ALL ELEMENTS ARE IDEMPOTENTS

54 def ideb(n,p):

55 S, L = Qring(n,p);

56 c = Subsets(S.gens(),submultiset=True);

57 d = c.list();

58 e = [];

59 e.append(prod((1-d[c.cardinality()-1][i]) for i in

60 range(len(d[c.cardinality()-1]))));

61

62 for j in range(1,c.cardinality()-1):

63 e.append((prod((d[j][i]) for i in

64 range(len(d[j]))))*(prod((1-d[c.cardinality()-1-j][i])

65 for i in range(len(d[c.cardinality()-1-j])))));

66

67 e.append(prod((d[c.cardinality()-1][i]) for i in

68 range(len(d[c.cardinality()-1]))));
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69

70 e = [L(e[i]) for i in range(len(e))];

71

72 return e

73

74 # RETURNS RANDOM IDEMPOTENT FOR ALICE

75 def ridea(n,p):

76 V = VectorSpace(Zmod(2),2**n);

77 v = V.random_element();

78 h = v.list();

79

80 return h

81

82 # RETURNS RANDOM IDEMPOTENT FOR BOB

83 def rideb(n,p):

84 V = VectorSpace(Zmod(2),2**n);

85 v = V.random_element();

86 h = [];

87 for i in range(len(v)):

88 if v[i] != 0 :

89 h.append(i);

90 else:

91 i = i+1;

92

93 e = ideb(n,p);

94 r = sum(e[i] for i in h);

95

96 return r

97

98 # GIVEN b AS A LIN. COMB. OF ei RETURNS b EXPRESSED IN THE BASIS xi

99 def unorto(b,e):

100 uno = sum(int(b[i])*e[i] for i in range(len(b)));

101

102 return uno

103

104 # CREATES MONOMIALS LIST (ORDER)

105 def mon(n,p):

106 R = ring(n,p);

107 m = [R(1)];

108 for l in R.gens():

109 for i in range(len(m)):

110 m.append(l*m[i])

111

112 return m

113
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114 # INCREASES VECTOR LENGHT (WITH ZEROS)

115 def exvec(v,n):

116 v1 = list(v);

117 vl = v1 + [0]*(2**(n)-len(v));

118 vl = vector(vl, immutable = True);

119

120 return vl

121

122 # BUILD T

123 def ti(n,p):

124 V = VectorSpace(Zmod(int(2)),n);

125 F = Zmod(p);

126 k = 0

127 l = len(V.basis());

128 v1 = [V[0]]+ [x for x in V.basis()];

129 while len(v1) != 2**l :

130 v2 = [];

131 for v in V.basis():

132 for i in range(k,len(v1)):

133 s = v + v1[i];

134 if s not in v2 and s not in v1:

135 v2.append(s)

136 k = len(v1);

137 v1 = v1 + v2;

138

139 A = column_matrix([x for x in v1]);

140 t = [a.list() for a in A];

141 for i in range(len(t)):

142 for j in range(len(t[i])):

143 t[i][j] = F(t[i][j])

144

145 t = numpy.array(t);

146

147 return t

148

149 # E BUILD

150 def Ebld(n,t):

151 m = [numpy.array([1 for _ in range(2**n)])];

152 for l in t:

153 for i in range(len(m)):

154 p = l*m[i]

155 m.append(p)

156

157 m = numpy.array(m);

158
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159 return m

160

161 #Check null entries in common (ideal generators)

162 def listint(a,b):

163 l = [x for x in a if x in b];

164

165 return l

166

167 def checknull(ac):

168 ind = [x for x in range(len(ac[0]))];

169 for k in ac:

170 ind1 = [];

171 for i in range(len(k)):

172 if k[i] == 0:

173 ind1.append(i)

174 ind = listint(ind,ind1)

175

176 return ind

177

178 #--------------------------------

179 # STANDARD ENCRYPTION/DECRYPTION

180 #--------------------------------

181 #-----------------

182 # KEY GENERATING

183 #-----------------

184 def prik(n,p,r):

185 R = ring(n+r,p);

186 m = mon(n+r,p);

187

188 # Build Vector Space

189 e = ideb(n+r,p);

190 e_ = [];

191 for i in range(len(e)):

192 e_.append(vec(n+r, p, m, e[i]));

193

194 V = VectorSpace(Zmod(p),2**(n+r))

195 W = V.subspace_with_basis(e_);

196 t = [W.coordinate_vector(vec(n+r, p, m, k)) for k in R.gens()];

197

198 # Generate r random idempotents

199 rf = [];

200 for i in range(r):

201 rf.append(W.coordinate_vector(vec(n+r, p, m,ride(n+i,p))));

202

203 return e, W, rf, m, t
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204

205 #-------------

206 # ENCRYPTION

207 #-------------

208 def Enc(mc):

209 mf = W.coordinate_vector(vec(n+r, p, m, mc));

210

211 # Generate r random elements of Sr

212 hi = [];

213 for i in range(r):

214 hi.append(W.random_element())

215

216 # Encryption

217 O = sum(W([x*y for (x,y) in zip((t[n+i]-rf[i]),hi[i])])

218 for i in range(r));

219 cr = mf+O ;

220

221 return cr

222

223 #-------------

224 # DECRYPTION

225 #-------------

226 def Dec(c):

227 Sr, L = Qring(n+r,p);

228

229 # Return to the standard basis

230 c1 = unorto(c,e);

231 c1 = L(Sr(c1));

232 rd = [unorto(k,e) for k in rf];

233

234 # Decryption

235 for i in range(r):

236 c1 = c1.subs({L(Sr(’x%d’%(n+r-1-i))):rd[r-1-i]});

237 c1 = L(Sr(c1));

238

239 cf = L(Sr(c1));

240

241 return cf

242

243 #-----------------------------

244 # THIRD PARTY PRIVATE SEARCH

245 #-----------------------------

246 #----------------

247 # KEY GENERATING

248 #----------------
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249 def Tprik(n,p,r,k):

250 tii = time.time()

251 R = ring(n+r+k,p);

252 m = mon(n+r+k,p);

253

254 # Build Vector Space

255 e = ideb(n+r+k,p);

256

257 # Build t

258 t = ti(n+r+k,p);

259

260 # Build E

261 E = Ebld(n+r+k,t);

262

263 Edb = E[:2**n];

264

265 rr = [];

266 for i in range(r):

267 ra = rideb(n+i,p);

268 ve = vec(n+r+k,p,m,ra);

269 s = sum(ve[j]*E[j] for j in range(len(ve)));

270 rr.append(s);

271

272 # Generate k random idempotents for BEnc

273 rk = [];

274 for i in range(k):

275 rk.append(rideb(n,p))

276

277 ac1 = [(t[n+i]-rr[i]) for i in range(r)];

278 ac2 = checknull(ac1);

279 ac = numpy.array([1 for _ in range(2**(n+r+k))]);

280 for l in ac2:

281 ac[l] = 0;

282

283 tf = time.time()

284 print(tf-tii)

285

286 return e, rr, rk, m, t, E, Edb, ac

287

288 #-----------------

289 # DATA BASE BUILD

290 #-----------------

291 def DBb(size):

292 ini = time.time();

293 Fa = Zmod(p);



84 Fully Homomorphic Encryption and its application in Private Search

294 a = Fa.random_element();

295 Fb = Zmod(2**n);

296 b = Fb.random_element();

297 DB = [(a+i)*Edb[(b+i)] for i in range(size)];

298 end = time.time()

299 print(end-ini)

300

301 return DB

302

303 #---------------------

304 # DATA BASE ENCRYPTION

305 #---------------------

306 def DBE():

307 ini = time.time();

308 eDB = [];

309

310 # Encryption

311 for l in DB:

312 ha = numpy.array([Zmod(p).random_element() for

313 _ in range(2**(n+r+k))]);

314 a = l + ac*ha;

315 eDB.append(a)

316

317 end = time.time()

318 print(end-ini)

319

320 return eDB

321

322 #-----------------

323 # BOB ENCRYPTION

324 #-----------------

325 def BEnc(bm):

326 Sr1, L = Qring(n+r+k,p);

327 V = VectorSpace(Zmod(p),2**(n+r+k));

328 bm = Sr1(bm);

329

330 # Generate k random elements of Sr

331 hbv = [V.random_element() for _ in range(k)]

332 hb = [];

333 for l in hbv:

334 hb.append(Sr1(sum(m[i]*l[i] for i in range(len(l)))))

335

336 tb = [];

337 for l in t:

338 tb.append(Sr1(unorto(l,e)))
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339

340 # Encryption

341 O = sum((tb[n+r+i]-rk[i])*hb[i] for i in range(k));

342 cr = L(Sr1(bm+O));

343 cr1 = vec(n+r+k,p,m,cr);

344

345 return cr1

346

347 #-----------------

348 # ALICE ENCRYPTION

349 #-----------------

350 def AEnc(bc):

351 ba = sum(bc[i]*E[i] for i in range(len(bc)));

352

353 ha = numpy.array([Zmod(p).random_element() for _

354 in range(2**(n+r+k))]);

355 cr = ba + ac*ha;

356

357 return cr

358

359 #-----------------

360 # CLOUD COMPUTATION

361 #-----------------

362 def Carl(some):

363

364 # Product

365 pr = prod(k-some for k in eDB);

366

367 return pr

368

369 #-----------------

370 # ALICE DECRYPTION

371 #-----------------

372 def ADec(pr):

373 Sr1, L = Qring(n+r+k,p);

374 R = ring(n+r+k,p);

375

376 # Return to the standard basis

377 pr = unorto(pr, e);

378 c1 = L(Sr1(pr));

379

380 # Decryption

381 rda = [unorto(l,e) for l in rr];

382 for i in range(r):

383 c1 = c1.subs({L(Sr1(’x%d’%(n+r-1-i))):rda[r-1-i]});
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384 c1 = L(Sr1(c1));

385

386 cf = L(Sr1(c1));

387

388 return cf

389

390 #-----------------

391 # BOB DECRYPTION

392 #-----------------

393 def BDec(cf):

394 Sr1, L = Qring(n+r+k,p);

395 R = ring(n+r+k,p);

396 c1 = L(Sr1(cf));

397

398 # Decryption

399 for i in range(k):

400 c1 = c1.subs({L(Sr1(’x%d’%(n+r+k-1-i))):rk[k-1-i]});

401 c1 = L(Sr1(c1));

402

403 ct = L(Sr1(c1));

404

405 return ct

406

407 #---------

408 # GLOBAL

409 #---------

410 def tpps(bm):

411 eb = BEnc(bm);

412 ac = AEnc(eb);

413 pt = Carl(ac);

414 cf = ADec(pt);

415 ct = BDec(cf);

416

417 return ct

418

419 #----------

420 # TESTING

421 #----------

422 def Testing(tries):

423 ini = time.time();

424 Sr1, Lr1 = Qring(n+r+k,p);

425 m1 = mon(n+r,p);

426 V1 = VectorSpace(Zmod(p),2**(n+r));

427 po = 0;

428 fp = 0;



Bibliography 87

429 fn = 0;

430 for i in range(tries):

431 v = V1.random_element();

432 vte = exvec(v,n+r+k);

433 te = sum(m1[i]*v[i] for i in range(len(m1)));

434

435 te = Lr1(Sr1(te));

436 ct = tpps(te);

437

438 if (ct == 0 and te in DBu) or (ct != 0 and te not in DBu):

439 po = po + 1;

440 else:

441 if ct == 0 and te not in DBu:

442 fp = fp + 1;

443 else:

444 fn = fn + 1;

445

446 end = time.time();

447 print(’Results with: n = ’,n,’, p = ’,p,’, r = ’,r,’, k = ’,k)

448 print(’ ’)

449 print(’ ’)

450 print(’Corretos: ’, po)

451 print(’ ’)

452 print(’Falsos Positivos: ’,fp)

453 print(’ ’)

454 print(’Falsos negativos: ’,fn)

455

456 tf = fp + fn;

457 per = (round(tf/tries, ndigits = 3))*100

458

459 print(’ ’)

460 print(’Erro: ’,per, ’%’)

461 print(’ ’)

462 print(’Time elapsed: ’, round(end-ini, ndigits = 5), ’ secs’)
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A.2 Mutual null coordinates experiment

The following code was used to generate the plots 4.1, 4.2 and 4.3 in section 4.2.2.1. Some

functions used in this code were introduced in A.1.

1 #-----------------------------------------

2 #BUILD DATABASE WITH GOOD 1 TO 1 EMBEDDING

3 #-----------------------------------------

4 def DBb(size):

5 ini = time.time();

6

7 DBi = [];

8 DBi.append(previous_prime(2**(20*(n+r))));

9 for _ in range(size -1):

10 DBi.append(previous_prime(DBi[-1]))

11

12 DBif = [k.digits(p) for k in DBi];

13

14 DB = [];

15 for l in DBif:

16 a = sum(l[i]*Edb[i] for i in range(len(l)))

17 DB.append(a)

18

19 end = time.time()

20 print(end-ini)

21

22 return DB

23

24 #-----------------------------------------

25 #BUILD DATABASE WITH BAD 1 TO 1 EMBEDDING

26 #-----------------------------------------

27 def DBb(size):

28 ini = time.time();

29

30 DBi = [];

31 DBi.append(2);

32 for _ in range(size -1):

33 DBi.append(next_prime(DBi[-1]))

34

35 DBif = [k.digits(p) for k in DBi];

36 DB = [];

37 for l in DBif:

38 a = sum(l[i]*Edb[i] for i in range(len(l)))

39 DB.append(a)

40
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41 end = time.time()

42 print(end-ini)

43

44 return DB

45

46 #---------------------------------------------

47 #BUILD DATABASE WITH BAD HOMOMORPHIC EMBEDDING

48 #---------------------------------------------

49 def Dbhomo(size):

50

51 ini = time.time();

52 F = Zmod(2**n);

53 a = F.random_element();

54 ae = E[a];

55 DB = []

56 DB.append(ae);

57 for i in range(2,size):

58 DB.append(i*ae);

59

60 end = time.time()

61 print(end-ini)

62

63 return DB

64

65 #-------------------------------------------------------

66 #COMPUTE MEAN OF EVERY COORDINATE ACROSS ALL GENERATORS

67 #-------------------------------------------------------

68 def analy(eDB):

69 Xs = [];

70 t = len(eDB);

71 for i in range(len(eDB[0])):

72 a = sum(int(eDB[j][i]) for j in range(t));

73 Xs.append(a/t)

74

75 return Xs
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A.3 Enhancements testing

To conclude this appendix we share the code used to compute the data in table 4.1. We

only had interest in the number of mutual null coordinates among the ideal generators,

therefore all we had to do was to slightly change our key-generating function defined in

A.1.

1 #---------------------

2 # CHANGE TO fj BASIS

3 #--------------------

4 def change_basis(elm):

5 ef = [];

6 ef.append(elm[0]);

7 c = [randint(0,1) for _ in range(2**(n+r)-1)];

8 for i in range(1,2**(n+r)):

9 f = elm[i]+sum(c[l]*elm[l] for l in range(0,i));

10 ef.append(f)

11

12 eff = numpy.array(ef);

13

14 return eff

15

16 #---------------------------------------------------

17 # KEY GENERATING (Optimization in ideal generators)

18 #---------------------------------------------------

19 def prikg(n,p,r):

20 R = ring(n+r,p);

21 m = mon(n+r,p);

22

23 # Build Vector Space

24 e = ideb(n+r,p);

25

26 # Build t

27 t = ti(n+r,p);

28

29 # Build E

30 E = Ebld(n+r,t);

31 Edb = E[:2**n];

32

33 # Generate r random idempotents for Enc

34 rr = [];

35 for i in range(r):

36 ra = rideb(n+i,p);

37 ve = vec(n+r,p,m,ra);

38 s = sum(ve[j]*E[j] for j in range(len(ve)));
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39 rr.append(s);

40

41 #Generate r random monomials

42 Ep = [];

43 for i in range(r):

44 a = randint(0,2**(n+i)-1);

45 Ep.append(E[a]);

46

47 ac1 = [(t[n+i]*Ep[i]-rr[i]) for i in range(r)];

48 ac2 = checknull(ac1);

49 leac = len(ac2);

50

51 return leac

52

53 #----------------------------------------------

54 # KEY GENERATING (Optimization in basis change)

55 #----------------------------------------------

56 def prikb(n,p,r):

57 R = ring(n+r,p);

58 m = mon(n+r,p);

59

60 # Build Vector Space

61 e = ideb(n+r,p);

62

63 # Build t

64 t = ti(n+r,p);

65

66 # Build E

67 E = Ebld(n+r,t);

68 Edb = E[:2**n];

69

70 # Generate r random idempotents for Enc

71 rr = [];

72 for i in range(r):

73 ra = rideb(n+i,p);

74 ve = vec(n+r,p,m,ra);

75 s = sum(ve[j]*E[j] for j in range(len(ve)));

76 rr.append(s);

77

78 ac1 = [(t[n+i]-rr[i]) for i in range(r)];

79 ac1f = [change\_basis(k) for k in ac1];

80 ac2 = checknull(ac1f);

81 leac = len(ac2);

82

83 return leac
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84

85 #---------------------

86 #TESTING ENHANCEMENTS

87 #---------------------

88 def testoti(oti,reps,n,p,r):

89 ini = time.time();

90 s = 0;

91 for i in range(reps):

92 l = oti(n,p,r);

93 s = s + l;

94

95 sf = round(s/reps, ndigits = 3);

96

97 end = time.time();

98 print(end-ini)

99

100 return sf

101

102 #Notes:

103 #oti is either prikb or prig

104 #reps is the number of repetitions we wish to perform
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