
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Strategies for Compiler Phase Ordering
Targeting CPUs

João Miguel Araújo Monteiro da Rocha

Mestrado em Engenharia Informática e Computação

Supervisor: Prof. Dr. João M. P. Cardoso

July 31, 2022

© João Miguel Araújo Monteiro da Rocha, 2022

Strategies for Compiler Phase Ordering Targeting CPUs

João Miguel Araújo Monteiro da Rocha

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Dr. Pedro C. Diniz
External Examiner: Dr. Cupertino Miranda, Synopsys

Supervisor: Prof. Dr. João M. P. Cardoso

July 31, 2022

Abstract

Compilers can optimize programs by performing a sequence of transformation phases. The set of
transformations, along with their order, can significantly impact the performance (e.g., execution
time and energy consumption) of the optimized program.

Using the precomputed compiler phase orders usually improves performance, but it is possible
to have better results by individually tailoring compiler sequences, known as phase ordering, to
each specific program and target pair. However, exploring sequences of phases is a complex and
time-consuming task, and an exhaustive exploration of all viable sequences is not feasible.

Selecting compiler phases alone represents a complex problem to be solved, and ordering the
phases adds further complexity, making it a long-standing problem in compiler research.

We propose to develop a Design Space Exploration (DSE) strategy to recommend phase orders
that lead to better performance than possible with the current approaches or similar results with less
exploration time, using mainly the LLVM compiler infrastructure and target computing platforms
using ARM microprocessors.

We evaluate our DSE with 30 PolyBench (v4.2.1) kernels. Results show an increase in per-
formance concerning the number of CPU cycles of up to 1.66x and a code size reduction of up
to 21% against the best LLVM (v12.0.1) standard optimizations, considering O1, O2, O3, and Os
compiler options when targeting a Cortex-A53 64-bit device.

Keywords: Phase-ordering. Design Space Exploration. Compiler. Clang. LLVM. Optimization.
Performance.

i

ii

Resumo

Os compiladores conseguem optimizar programas, executando sequências de fases de transfor-
mações. O conjunto de transformações, juntamente com a sua ordem, pode ter um impacto signi-
ficativo no desempenho (i.e., tempo de execução e consumo de energia) do programa optimizado.

Usar as ordenações de fases pré-computadas do compilador resulta, normalmente, em mel-
horias de desempenho, mas é possível obter melhores resultados adaptando individualmente as
sequências, conhecido como ordenação de fases, a cada par—programa específico e alvo. Con-
tudo, explorar as sequências de transformações é uma tarefa complexa e demorada, e a exploração
exaustiva de todas as sequências viáveis não é praticável.

Selecionar as fases de compilação já representa um problema complexo a ser resolvido, e a
ordenação das fases aumenta ainda mais a complexidade, tornando-o num problema de longa data
na área da investigação dos compiladores.

Nós propomos desenvolver uma estratégia de Exploração do Espaço de Soluções (EES) para
recomendar ordenações de fases de optimização que levem a um melhor desempenho do que o
possível com as abordagens actuais ou que levem a resultados semelhantes com menos tempo de
exploração, usando principalmente a infraestrutura do compilador LLVM e tendo como alvo as
plataformas de computação que usem os microprocessadores ARM.

Nós avaliamos o nosso EES com 30 kernels do PolyBench (v4.2.1). Os resultados mostram
um aumento no rendimento, no que diz respeito ao número de ciclos do CPU, até 1.66x, e uma
redução do tamanho do código até 21%, face às melhores optimizações standard, fornecidas pelo
LLVM (v12.0.1), considerando as opções O1, O2, O3, e Os quando tem como alvo um dispositivo
Cortex-A53 64-bit.

Palavras-chave: Ordenação de Fases. Design do Espaço de Exploração. Compilador. Clang.
LLVM. Optimização. Desempenho.

iii

iv

To my family, especially my mom, siblings, and nephews.

vi

Acknowledgments

This work benefited from the contribution of many people, and now is the time to mention and
appreciate them.

When the time to choose a thesis came, I faced the paradox of choice: too many outstanding
proposals. So, I decided to put the proposals aside and talk with professor João M.P. Cardoso with
whom I (rightly) believed I would enjoy working. However, Cardosos research areas were out of
my comfort zone.

Today I can say it was worth taking the risk. This work tested my limits, forced me to improve
and learn new skills, and sharpened my appetite for this field. For that, I feel satisfied.

My supervisor and I had more ambitions for this work, but this was what I was able to deliver
given the circumstances in which I found myself. I am indebted to him for the quality and duration
of his guidance.

I also owe a particular debt to Ricardo Nobre. His dissertation shaped this work, and he made
himself available to borrow hardware and answer any questions about his doctoral study.

An individual thanks go to João Bispo, who helped me prepare for the oral examination.
Thank the Special-Purpose Computing Systems, languages, and tools (SPeCS) group and

FEUP for making available infrastructure and resources.
On a final note, I am grateful to the committee—Pedro C. Diniz, Cupertino Miranda, and João

M. P. Cardoso—who contributed with suggestions to this document and to an examination session
that I will hardly forget. I appreciate the committee for encouraging the extension of my academic
journey.

João

vii

viii

“I think that it is extraordinarily important
that we in computer science keep fun in computing.”

Alan J. Perlis

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Contributions . 2
1.3 Document Outline . 2

2 Background and Related Work 5
2.1 Phase Ordering Problem . 5

2.1.1 The Dimension of the Search Space . 6
2.1.2 Specialized Compiler Sequences . 6
2.1.3 Related Work . 7

2.2 Best-Selection Problem . 8
2.3 Summary . 8

3 Our Approach 9
3.1 Strategies . 10

3.1.1 Strategy SS and S0 . 10
3.1.2 Strategy S1 . 11

3.2 Software Packages Developed . 12
3.2.1 Design Space Exploration Engine dervin 13
3.2.2 Experiment Framework ghopper . 15
3.2.3 Statistics and Visualization amidala 21

3.3 Summary . 23

4 Experimental Results and Discussion 25
4.1 Experimental Procedure . 25

4.1.1 Hardware and Software Requirements 25
4.1.2 Procedures . 25
4.1.3 Experiments Conducted . 27

4.2 Results . 28
4.2.1 Experiment E0 . 28
4.2.2 Experiment E1 . 30
4.2.3 Experiment E2 . 30
4.2.4 Experiment E3 . 30
4.2.5 Experiment E4 . 30
4.2.6 Experiment E5 . 35

4.3 Overview . 35
4.4 Summary . 35

xi

xii CONTENTS

5 Conclusions 39
5.1 Concluding Remarks . 39
5.2 Future Work . 39

References 41

Appendices 47

A PolyBench Benchmark Suite Adaptations 47
A.1 Adapting the File Structure . 47
A.2 Metrics Output in JSON . 47
A.3 Emit Non-Optimized Bitcodes . 48

B Optimizing a Program with LLVM 12.0.1 49
B.1 Emit Non-Optimized Bitcode . 49
B.2 Optimize Bitcode . 50
B.3 Emit Optimized Binary . 50
B.4 How to Find the Phases Executed by the Optimizer 50
B.5 Flow From Non-Optimized Bitcode to Optimized Binary 51

C Software Packages Developed 53
C.1 Package dervin . 53

C.1.1 How to Install . 53
C.1.2 Example of the Output for the Package dervin 53
C.1.3 Search Space for Strategy S0 . 54
C.1.4 Search Space for Strategy S1a . 54

C.2 Package ghopper . 54
C.2.1 How to Install . 54
C.2.2 Executing a Benchmark . 55
C.2.3 Evaluating a Benchmark Remotely . 55

C.3 Package amidala . 55
C.3.1 How to Install . 55
C.3.2 Example of Usage . 56

List of Figures

2.1 Representation of all the possible phase orders in a nondeterministic automaton
(NFA) when considering phases α , β , and γ . 6

3.1 Example of the initial graph generated from a set of phase orders. 11
3.2 Example of the initial step to generate the graph for the set Φ. 11
3.3 Example of the graph representing the set Φ, with weights normalized. 12
3.4 Example of a probability distribution for a set of phase orders. 12
3.5 A possible phase order when searching the space represented in Figure 3.4. . . . 13
3.6 Overview of the infrastructure developed. 14
3.7 Overview of the input/output of the dervin package—I. 14
3.8 Overview of the input/output of the dervin package—II. 14
3.9 Overview of the input/output of the ghopper package. 16
3.10 Class diagram depicting the experiment entity in the developed software package

ghopper 1.0.0. 18
3.11 Class diagram depicting the experiment observation entity in the developed soft-

ware package ghopper 1.0.0. 19
3.12 Sequence diagram depicting the core internal interactions of the developed soft-

ware package ghopper 1.0.0. 20
3.13 Overview of the input/output of the amidala package. 22

4.1 Phase order length per standard optimization. 27
4.2 CPU cycles reduction of the standard optimizations against -O0. 28
4.3 Percentage of maximum speedups per standard optimization against O0. 29
4.4 CPU cycles speedups and Code Size Decrease of Experiment E1 against the best -O. 31
4.5 CPU cycles speedups and Code Size Decrease of Experiment E2 against the best -O. 32
4.6 CPU cycles speedups and Code Size Decrease of Experiment E3 against the best -O. 33
4.7 CPU cycles speedups and Code Size Decrease of Experiment E4 against the best -O. 34
4.8 CPU cycles speedups and Code Size Decrease of Experiment E5 against the best -O. 36

xiii

xiv LIST OF FIGURES

List of Tables

2.1 Overview of phase ordering approaches. 7

3.1 Variations of the strategy S1 by changing the root node policy. 13

4.1 Table summarizing the performance counters available in the Raspberry Pi 3 Model
B Plus Rev 1.3. 26

4.2 Table summarizing the experiments conducted. 27
4.3 Maximum speedups of the standard optimizations against -O0 on the PolyBench

4.2.1. 29

xv

xvi LIST OF TABLES

Acronyms

ACM Association for Computing Machinery. 41–43

AMD Advanced Micro Devices. 7

ARC Advanced RISC Computing. 7

ARM Advanced RISC Machines. 2, 7, 42

CGO Code Generation and Optimization. 42

CoRR Computing Research Repository. 42

CPU Central Processing Unit. xiii, 5, 16, 21, 25, 26, 28, 30–36, 39, 47

CSV Comma-Separated Values. 13, 16, 21, 23, 55, 56

DB Database. 7

DSE Design Space Exploration. 2, 7

FIFO First In, First Out. 26

FPGA Field Programmable Gate Array. 7, 43

GCC GNU Compiler Collection. 6, 7, 42

GNU GNU’s Not Unix. 42

GPU Graphics Processing Unit. 7

IEEE Institute of Electrical and Electronics Engineers. 42, 43

JSON JavaScript Object Notation. 13, 47, 54, 55

LLVM Low Level Virtual Machine. 2, 3, 6, 8–10, 16, 25, 39–42

LPDDR Low-Power Double Data Rate. 25

LTS Long-Term Support. 25

MIT Massachussetts Institute of Technology. 10

OS Operating System. 9, 26

xvii

xviii Acronyms

PAPI Performance Application Programming Interface. 26, 49

RISC Reduced Instruction Set Computer. 7

SA Simulated Annealing. 7

SDRAM Syncrhronous Dynamic Random Access Memory. 25

SIGBED Special Interest Group on Embedded Systems. 43

SIGPLAN Special Interest Group on Programming Languages. 43

SPARC Scalable Processor Architecture. 7

SQL Structured Query Language. 23

SSH Secure Shell. 55

Chapter 1

Introduction

1.1 Motivation

Compilers initially had one objective in mind. It was to transform programs written in a more

natural language into code that the machine understands. A compiler also allows one to write a

program once and make it work in different computer systems. Nowadays, we have optimizing

compilers that, besides converting a program to machine code, optimize code to be more perfor-

mant. In order to optimize code, these compilers can perform transformations in code regions. A

code region can be a loop or an entire function.

A typical compiler can perform hundreds of transformations, commonly known as compiler

phases. These phases attempt to do multiple transformations, each of which preserves the pro-

gram’s behavior and usually improves its performance. Many of these phases also need certain

conditions to be applicable (such as loops or constants). The code transformed by an optimization

phase is the input of another phase. As a result, phases interact with each other by enabling or

disabling the chance of another phase to perform work. These interactions can produce differ-

ent optimizations, positively or negatively impacting the generated code’s performance. Hence,

searching for the best way to apply the phases is imperative. This challenge is known as the phase

ordering problem [1–3].

In the last five decades, compiler researchers have tried to solve the phase ordering problem

[3–8]. It is challenging because an optimization sequence does not have the same performance

results for every program or target architecture. Finding the best sequence of phases is essential

for every industry and individual concerned with performance.

Environments with strict non-functional requirements such as execution time or energy con-

sumption take particular advantage of performance gains. These environments are the case with

embedded systems and in high-performance domains.

1

2 Introduction

1.2 Goals and Contributions

A formal way to describe this problem is as follows. Given a program P, a set of compilation

phases S, and a set of directed graphs G that contain knowledge about S, we want to find a sequence

s of these phases so that the optimized program P∗ is optimal. We define optimal as a program

that performs better than when compiled with the best default optimizations.

We examine the performance of a set of benchmarks in three ways. We record the performance

for (1) the best default compiler optimization sequence, (2) a state-of-the-art Design Space Explo-

ration (DSE) graph-based approach [9], and (3) our approach. We propose to develop an algorithm

to search for sequences of compiler optimizations using the LLVM compiler infrastructure [10]

and targeting ARM devices [11].

Finding the optimal sequence of optimizations to achieve the best performance (such as exe-

cution time or energy consumption) for a given program and architecture is a problem remaining

unsolved. Compilers try to optimize for the generality of programs and supported architectures,

but specializing in this sequence of optimizations often results in higher performance, which leaves

space for improvement. With this study, we want to answer the following research questions:

Q1 What impact do a program’s features have in computing a heuristic to guide the search of the

solution space?

Q2 What is the efficiency of limiting the maximum number of phases in a sequence?

Q3 How does limiting the search space size affects the results achieved?

Q4 What is the impact of using combinations of graphs representing knowledge about compila-

tion phases in searching the solution space?

Q5 What is the efficiency of limiting the number of different compilation phases that can appear

in a sequence?

We present strategies to address the phase ordering problem. Solving this problem requires

finding optimization sequences and evaluating them. To find and evaluate these strategies, we

open-sourced three software packages1. The module dervin is responsible for implementing the

strategies, the module ghopper measures the impact of the given sequences, and the last module

amidala allows us to compute statistics and visualize them.

1.3 Document Outline

The organization of the remainder of this thesis is as follows. In Chapter 2, we provide back-

ground material and describe related work. Chapter 3 presents our approach, and we show the

experimental procedures and discuss the results obtained in Chapter 4. Chapter 5 concludes this

document with our contributions and future work. Appendix A describes the adaptations made

1https://github.com/jmrocha/ms-thesis

https://github.com/jmrocha/ms-thesis

1.3 Document Outline 3

to the benchmark suite evaluated. Appendix B sets out how we optimize a program with LLVM.

Appendix C describes how to install the software packages we developed, and examples of their

usage.

4 Introduction

Chapter 2

Background and Related Work

This chapter introduces the phase ordering and best selection problems, and presents state-of-the-

art approaches.

2.1 Phase Ordering Problem

A compiler can perform several transformations to the code, and we can call each transformation a

phase. Consider the for-loop in Listing 2.1. The compiler can apply the loop unrolling [12] phase

to remove the loop and transform it into five instructions (see Listing 2.2).

Listing 2.1: C code excerpt with a for-loop.

for (int = 0; i < 5; i++) {

a[i] = b[i] + c[i];

}

Listing 2.2: The code of Listing 2.1 after the loop unrolling phase.

a[0] = b[0] + c[0];

a[1] = b[1] + c[1];

a[2] = b[2] + c[2];

a[3] = b[3] + c[3];

a[4] = b[4] + c[4];

Removing the loop reduces the number of instructions to be executed. There is no need for (1)

check at each iteration if the loop has already terminated, (2) instructions to store and increment

the index value, and (3) instructions associated with the control flow for repeating the loop body.

A phase can degrade or improve the following phase, and the same pair of phases can have

different effects if their order is changed. The set of phases chosen also have side effects. We want

to find the best order of phases to apply to a given program to achieve its maximum performance

potential, be it the number of CPU cycles, code size, or energy consumption.

5

6 Background and Related Work

q0

start

q1 q2

q3

ε ε

ε
β

γ

α

α

γ

β

β
α

γ

Figure 2.1: Representation of all the possible phase orders in a nondeterministic automaton (NFA)
when considering phases α , β , and γ .

2.1.1 The Dimension of the Search Space

Considering that a compiler can perform three optimization phases α , β , and γ , the solution space

can be represented by a directed graph, assuming that all phases are compatible. In this case, the

search space is unbounded, and each sub-path is a valid sequence, as shown in Figure 2.1. It is

clear that we cannot use a brute force approach and that we need to place constraints if we want to

find a solution.

Let S be the search space, P the set of phases supported by the compiler, and N the length of

the sequence we want to search. The cardinality of S, denoted by |S|, is given by the number of

possible phase orders. Equation 2.1 shows how to calculate |S| [9].

|S|=
N

∑
k=0

Pk (2.1)

To simplify this problem, compiler researchers partitioned the problem into two categories:

phase selection [13–16] and phase ordering [17–19]. The phase selection problem is only con-

cerned with reducing the set of optimizations considered, while the phase ordering is responsible

for finding the best sequence. Considering that compilers such as the LLVM 12.0.11 are capa-

ble of more than 78 transformation phases, even dividing the problem in two, the search space is

enormous for each problem [20].

2.1.2 Specialized Compiler Sequences

Optimizing compilers can perform individual program transformations, but they ship precomputed

sequences of optimizations. In the case of GCC [21] and LLVM [10], these sequences of phases

1https://releases.llvm.org/12.0.1/docs

https://releases.llvm.org/12.0.1/docs

2.1 Phase Ordering Problem 7

Table 2.1: Overview of phase ordering approaches.

(1) (2) (3) (4)a (5) (6) (7) (8)

[18] GCC C NI PO x86, AMD, ARC ET, S, CT MiBench, Berkeley DB

[9, 22]
Clang,
CoSy

C I PO

MicroBlaze (RISC),
LEON3 (SPARCv8),
ARM,
Mor1kx (RISC)

ET,
S,
CT,
EC

Texas Instruments,
REFLECT,
PolyBench

[19, 23] Clang C H PO, PS x86 ET CBench

Note: Column headings are as follows: (1) Reference; (2) Compiler; (3) Programming Language; (4) Kind of Approach; (5) Problem
Class; (6) Target; (7) Metric; and (8) Benchmark Suite.
aExecution time (ET), energy consumption (EC), compilation time (CT), and size (S).
bPhase ordering (PO), and phase selection (PS).
cIterative (I), non-iterative (NI), and hybrid (H).

can be applied to any program by enabling the flags -O{1, 2, 3, s}, where -O1 is the least

aggressive optimization of the three, and -O3 the most aggressive, while -Os focuses in reducing

the code size. Even though the flag -O3 is the most aggressive optimization, it does not mean it

achieves the best performance, as we show in Section 4.2.2.

These pre-computed sequences of optimizations, built by the compiler writers that have deep

knowledge about these phases, do not guarantee to be representative of the functions one wants to

optimize. Also, they usually optimize for execution time or code size, while there are use cases

where energy consumption is the priority [22].

2.1.3 Related Work

The phase selection and phase ordering problems have been a longstanding problem. Compiler

researchers have mitigated these problems with iterative and non-iterative approaches, machine

learning, and hybrid approaches. Table 2.1 lists an overview of relevant approaches, which we

briefly describe in the following text. Nobre presents a Design Space Exploration (DSE) ap-

proach to evaluate different schemes for exploring phase ordering on different architectures, in-

cluding GPUs, and FPGAs, and on different compilers [9]. The DSE system relies on a graph

representing favorable optimizing phases. Then it proceeds to use a Simulated Annealing (SA

+ Graph) algorithm and a search method based on probabilistic distribution and a random factor

(IterGraph).

Nobre et al. [9, 24] uses iterative compilation and a graph-based predictive model to find new

optimization sequences. This model learns the sequences used in training programs and then

explores the most promising ones, starting the sequence at the most connected node. To avoid

not taking other paths that could give even more significant results, this model also uses a random

factor in its heuristic. They concluded that (1) the SA + Graph can achieve results with comparable

performance but with less exploration time, and (2) the IterGraph and the SA + Graph can achieve

higher geometric mean speedups than with the approaches in [25, 26].

8 Background and Related Work

Nobre et al. [22] evaluate the impact of phase ordering to reduce the energy consumed by a

set of programs compared with the LLVM standard optimizations. They show that optimizing

performance to improve energy consumption is not always successful.

Ashouri et al. [19] introduce a machine learning approach to mitigate the phase ordering prob-

lem by predicting the speedup of a complete sequence of optimizations. They go further and

improve their machine learning model through Recommender System techniques.

Martins et al. [27,28] propose clustering methods to reduce the dimension of the search space.

Based on empirical data, they identify clusters of phase sequences that result best for specific

features Given a new program, they choose the cluster that best matches its features. They propose

a Genetic Algorithm as one of the techniques to search in the set of phases found in that matched

cluster.

Fursin et al. [18] present the Milepost framework to make machine learning-based multi-

objective optimization a realistic, automatic, reproducible, and portable technology for general-

purpose production compilers. This framework starts with the observation that similar programs

may exhibit similar behavior and require similar optimizations, so it is possible to correlate pro-

gram features and optimizations, thereby predicting good transformations for unseen programs

based on previous optimization experience.

2.2 Best-Selection Problem

A different phase ordering problem dedicates to choosing the best set of phases to apply for a given

program [13–16]. This problem is not interested in what the order is and it is similar to the problem

of selecting compiler flags (a problem known as flag selection [29]). The best selection problem

can be a first step of the phase ordering problem and in that case can reduce the number of phases

to be considered. Given a program with loops, one is interested in phases related to loops, and

if given a program with constants, one may want to include phases that handle transformations

related to constants. Nevertheless, these phases can be more effective in the presence of other

phases because of the interaction between them.

2.3 Summary

This chapter presented two main problems in the compiler research field, the phase ordering and

best-selection problems. The phase ordering problem is responsible for selecting the best sequence

for a given program, while the best selection problem only focuses on choosing the best set of

phases or compiler flags.

Chapter 3

Our Approach

In order to explore the performance potential in current state-of-the-art approaches, we consider

some strategies. One of these strategies is a state-of-the-art approach developed by Nobre [9].

One of the author’s recommendations is, for example, changing the first node policy. Changing

where we start our search can profoundly impact the sequences found. Another aspect subject to

change is the heuristic because it can improve as more information is used to guide the search. An

example of such information is the features of a program. A program feature can be a static one,

such as the number of loops, or a dynamic one, such as the number of floating-point operations.

Sequences that perform well on known programs could also perform well in unseen programs

that share some of the features. Because we are not sure what the optimal sequence looks like, we

can start from a random place, and then search for phases that contribute to the functions that are

most similar to the target program. Phases also have dependencies, meaning wrong combinations

could invalidate the whole sequence. Using this information about dependencies could also be

used to improve the heuristic.

Having an engine that implements these strategies is not enough. We need a way to test how

well these strategies perform. We need a baseline to compare how well a strategy performs. A

good starting point is comparing a sequence with the best predefined sequence in LLVM1. If we

can improve the performance of a program better than the best of the compiler-provided standard

optimizations, we are up to a good start, which means optimizing the program with our sequence,

executing the program, and collecting metrics about its execution. Then we do the same for each

standard optimization and compare their metrics.

There is a lot that can influence our observations. Starting with the sequence search, since it

is not a deterministic method, we can find a great sequence and observe a substantial speedup, but

we are also subject to no speedup. Maybe a sequence only works well for a particular program

we are testing, and it is not valuable for most of the programs we encounter or even the particular

domain in which we work. The operating system itself could influence our observations; maybe

the OS was busy when we evaluated the standard optimizations, and our comparisons were not

fair. Our calculations and statistics are error-prone or may be inappropriate, and we end up taking

1https://releases.llvm.org/12.0.1/docs

9

https://releases.llvm.org/12.0.1/docs

10 Our Approach

the wrong conclusions. How we benchmark a program, which is how we measure the performance

of a program, can also introduce errors. Maybe our instruments introduce too much overhead, and

that overhead surpasses any improvement at all. Maybe we are not seeing too many speedups

and think a particular approach does not give good results, and it is all the fault of our measuring

method. So, this is to say that we need to be careful in many steps of our pipeline.

We just described what it looks like to compare, for one program, two sequences. Neverthe-

less, we want to compare a considerable amount of sequences over a set of programs. We need

to have the flexibility of collecting data using different strategies with different parameters, and

then analyzing that data, looking for patterns, and seeing what improvements we have. If those

improvements are consistent, ask what the sources for those improvements are, and then tweak the

strategies. So, this involves a pipeline that goes all the way from being able to automatically op-

timize any program with a given sequence, collecting metrics, storing the results, analyzing those

results, and visualizing those same results.

We adopt three search strategies to explore the performance potential in optimization se-

quences using the PolyBench suite.2 We built a framework that collects data on these strategies’

performance for a given benchmark suite. We developed a software package to analyze and visu-

alize this data. All software developed is open-source with an MIT license.

3.1 Strategies

This section describes the strategies we decided to implement to find optimization sequences. We

will compare later the sequences found by this strategy with other state-of-the-art approaches,

including the compiler-provided standard sequences. We open-sourced an engine that implements

these strategies, which is described later in this chapter.

The first section describes a random strategy. This strategy shows what kind of results we can

get with a simple approach and creates a much bigger and different search space than the pre-

defined sequences from the LLVM compiler that we can explore. We can change the maximum

sequence length and allow phase repetitions. The second section describes one of the approaches

developed by Nobre, where the author uses a graph-based iterative compilation [9]. Nobre ex-

plores the compiler’s predefined sequences starting at the most connected phase but prioritizes

sub-sequences appearing more often and using a random factor to explore more of the search

space. We also describe several changes to the root node policy we tried.

3.1.1 Strategy SS and S0

The standard strategy SS applies the predefined sequences present in the standard optimization

levels O0, O1, O2, O3, and Os. Strategy S0 builds an optimization sequence by choosing random

phases from a given set.

2https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

3.1 Strategies 11

p0

p1

p2

p3

70
%

30%

100%

Figure 3.1: Example of the initial graph generated from a set of phase orders.

3.1.2 Strategy S1

This is a state-of-the-art strategy developed by Nobre [9], and we describe possible variations at

the end of this section. This model finds a new phase order by choosing random phases from a

given set of phase orders, but phases with more occurrences have higher chances of being selected.

We derive variations of this strategy by choosing a different starting phase.

Given a set of phase orders, we start by representing them in a weighted directed graph as in

Figure 3.1. Nodes represent the phases, and edges preserve their order as observed. The edge’s

weight determines the chances of being followed. Then, we can build the phase order—choose a

node to start, follow a path based on random values and the probability distribution, and append

the corresponding phases to the phase sequence. Next, we describe how to construct the graph,

the probability distribution, and how to find a phase order.

Let Φ = {φ1,φ2,φ3} be the set of phase orders from which we will find a new phase order. Let

each element of this set be φ1 = [p1, p2, p3], φ2 = [p1, p4], φ3 = [p1, p2]. Where p1, p2, p3, and

p4 represent optimization phases. For each unique phase, we create a node and register each pair

of phases’ order and the number of occurrences. Figure 3.2 illustrates the graph updates for each

element of Φ.

The next step is to normalize the weights of each node on the total weight of their outgoing

edges, as shown in Figure 3.3. Consider the phase p1 from Figure 3.2c. The total weight from

the outgoing edges of p1 is 3. Therefore, the normalized weights of its outgoing edges are 2
3 and

1
3 , respectively.

p1 p2 p3
1 1

(a) After observing φ1.

p1 p2 p3

p4

1 1

1

(b) After observing φ2.

p1 p2 p3

p4

2 1

1

(c) After observing φ3.

Figure 3.2: Example of the initial step to generate the graph for the set Φ.

12 Our Approach

p1 p2 p3

p4

2
3

1
1

1
3

Figure 3.3: Example of the graph representing the set Φ, with weights normalized.

Consider the example shown in Figure 3.4. Starting at p4, p5 has 10% chance of being selected,

p6 has 20%, and p7 has 70%. This distribution is represented visually in Figure 3.4 and it is

represented by the following intervals: p4 → p5 ∈ [0,0.1[, p4 → p6 ∈ [0.1,0.3[and p4 → p7 ∈
[0.3,1]. Where pi → p j is the probability of moving from the phase pi to the phase p j. We

obtain these intervals by sort ascending the weights of the outgoing edges. Since p5 has the lowest

chances, it bounds to the lower interval.

Consider the previous example in Figure 3.4. Assume we want to find a phase order with

length three. Using the canon variation of this strategy S1a, see Section 3.1.2, we start the phase

sequence with p3. Let X1 = 0.1 and X2 = 0.05 be the random values generated. Based on these

values, we append p4 and p5 to the phase sequence. Since the phase order has the desired length,

we do not proceed further. The resulting phase order is then φr = [p3, p4, p5]. If the target length

were four, we would also return φr because p5 has no outgoing edges. Figure 3.5 illustrates this

step.

Table 3.1 describes variations of the strategy S1a by changing the phase that starts the search.

We use the term root phase to describe a phase that starts an optimization sequence.

3.2 Software Packages Developed

We developed three packages—dervin, ghopper, and amidala—that form the infrastructure

needed to evaluate the strategies we propose (Figure 3.6). Given a search space, often a graph

p1

p2

p3 p4

p5

p6

p7

100%

10
0%

100%

10
%

20%

70%

Figure 3.4: Example of a probability distribution for a set of phase orders.

3.2 Software Packages Developed 13

p1

p2

p3

x = 0.1

p4

x = 0.05

p5

p6

p7

100%

10
0%

100%

10
%

20%

70%

Figure 3.5: A possible phase order when searching the space represented in Figure 3.4.

described through a JSON file, the dervin package finds phase orders and outputs them in the

JSON format. These phase orders will be used by the ghopper module to optimize a set of

benchmarks and the results are persisted in a CSV file. The amidala module processes the

results and is capable of showing plots, a numerical summary, and presents a shell to interact with

the data.

3.2.1 Design Space Exploration Engine dervin

Given a search space, this module finds phase orders using one of the available strategies (Figure

3.7). For the strategy S0, the search space is a set of unique phases, while for the strategy S1,

the search space is a graph. These different search spaces can be generated from previous phase

orders that are stored in a text file (Figure 3.8). The new phase orders can then be evaluated on a

benchmark suite by the ghopper package.

To implement the strategies described in Section 3.1, we implemented an engine that receives

the input: strategy, maximum sequence length, base graph, or phases file, and outputs a single

sequence. This engine implements a Python library, is open-source, and allows for the extension

of other strategies, as we will show. There are two main algorithms: (1) to compute the probability

distribution of phases to be selected into a phase order and (2) to find a phase order. Given a graph

G and a set of phase orders P the COMPUTE-PROBABILITY-DISTRIBUTION procedure (Algorithm

Table 3.1: Variations of the strategy S1 by changing the root node policy.

Strategy Description

S1a (Canon) We choose the phase with the most occurrences but exclude root
phases.

S1b We choose a random phase.
S1c We choose a random phase from the set of root phases.
S1d We choose a random phase from the root phases, but the number

of occurrences increases the chances.
S1e We choose the phase with the most occurrences.

14 Our Approach

analysis

plots
numerical

summaryshellamidala

.csv

results

ghopper

.json

phase orders

dervin

.json

search space

Figure 3.6: Overview of the infrastructure developed.

phase orders

.json

dervin

new search space as graph

.json

Figure 3.7: Overview of the input/output of the dervin package—I.

dervin

new search space as  
random phase orders

.json

p1 p2 p3

p3 p2 p1 p1

p3 p4 p2 p1 p1

search space as

phase orders

.txt

new search space as graph

.json

Figure 3.8: Overview of the input/output of the dervin package—II.

3.2 Software Packages Developed 15

1) returns a graph G in which the edges weights represent the probability of that edge to be chosen

as illustrated in Figure 3.3). The procedure works as follows. We record the number of occurences

of each pair of phases as illustrated in Figure 3.2 and described in lines 28. Then we iterate over

each edge to set the definitive weight (lines 910). The definitive weight is the edge’s weight divided

by the outgoing degree of the source vertex. The procedure SEARCH-PHASE-ORDER (Algorithm

2) builds a phase order. Given a weighted graph G (that represents the search space) such as the one

returned by COMPUTE-PROBABILITY-DISTRIBUTION and a strategy S, the procedure SEARCH-

PHASE-ORDER returns a phase order π . The phase order starts with a phase returned by the

procedure GET-ROOT-PHASE. While there is a phase to be added (HAS-NEXT-PHASE), given the

last phase in the optimization sequence, a graph and strategy, NEXT-PHASE returns the next phase

to be added to the sequence π . Every strategy to be applied by this engine needs to implement

these procedures.

Algorithm 1 Algorithm to compute the probability distribution on the graph’s edges.
1: COMPUTE-PROBABILITY-DISTRIBUTION(G,P)
2: for each phase order p ∈ P do
3: for i = 0 to p.length−1 do
4: e = (pi, pi+1)
5: if HAS-EDGE(G,e) then
6: INCREMENT-WEIGHT(G,e)
7: else
8: INSERT(G,e)
9: for each edge e ∈ G.E do

10: e.weight = e.weight/e[0].outdegree
11: return G

Algorithm 2 Base algorithm to find a phase order.
1: SEARCH-PHASE-ORDER(G,S)
2: p = GET-ROOT-PHASE(G,S)
3: π[0] = p
4: while HAS-NEXT-PHASE(G,S,π, p) do
5: p = NEXT-PHASE(G,S, p)
6: insert p into π

7: return π

8: HAS-NEXT-PHASE(G,S,π,vi)
9: return π.length < M and vi.outdegree > 0 . M is the max. phase order length

Appendix C.1.1 has instructions on how to install this package and shows usage examples.

3.2.2 Experiment Framework ghopper

To understand how good a strategy is in searching for optimization sequences, we find and evaluate

multiple optimization sequences over a set of programs and compare them against a baseline. This

16 Our Approach

datetime,suite,bench,cpu_cycles,binary_size_in_bytes,l1_dcm,...

2022-02-02 12:23:22,PolyBench 4.2.1,2mm,2344,28937,7347,...

2022-02-02 12:23:30,PolyBench 4.2.1,3mm,9833,98273,5538,...

2022-02-02 12:23:42,PolyBench 4.2.1,adi,2384,13843,5587,...

2022-02-02 12:23:59,PolyBench 4.2.1,atax,9873,52988,4897,...

2022-02-02 12:24:05,PolyBench 4.2.1,bicg,83243,6623,18788,...

2022-02-02 12:24:13,PolyBench 4.2.1,cholesky,4348,5359,3887,...

...

Results

{

 "config": {

 "benchmark_suite_path": "./benchmark-suites/
polybench-4.2.1",

 "phase_orders_path": "./data/phase-orders.json",

 "benchmark_timeout_in_s": 10,

 "output_path": "./out.csv"

 },

 "metadata": {

 "benchmark_suite_name": "PolyBench 4.2.1",

 "target": "AArch64",

 "toolchain": "LLVM 12.0.1",

 "dataset_size": "mini"

 }

}

Configuration

{

 "parameters": {

 "max_length": "3",

 "cardinality": "3",

 "strategy": "s1a",

 "seed": o3

 },

 "output": [

 {

 "metadata": {

 "max_length": 3,

 "cardinality": 3

 },

 "phase_orders": [

 "p1 p2 p3”,

 “p4 p2 p1”,

 “p5 p1 p2”

]

 }

}

Phase orders

ghopper

Figure 3.9: Overview of the input/output of the ghopper package.

process involves finding optimization sequences, optimizing each program, and collecting metrics

about their execution. Figure 3.9 depicts an overview of the input/output and Figures 3.10, 3.11,

and 3.12 describe the key components of the software architecture.

The metrics we collect are the performance counters (see Table 4.1) and the binary size. We

use the Performance Application Programming Interface (PAPI)3 library to collect the CPU cycles.

The metrics, besides other data, use the CSV format. The collection of programs we chose belongs

to the PolyBench benchmark suite, and each program needs to be a non-optimized bitcode. We

describe how we optimize a program in Appendix B and how we adapt the PolyBench benchmark

suite so that this framework in Appendix A can evaluate it.

We just described how we implemented the engine to search for optimization sequences. Now,

we describe how we use that engine to evaluate the performance of each strategy. We test strategies

by requesting sequences, evaluating them, collecting data about their performance, and analyzing

them. In this section, we show how we evaluate phase orders, and collect data. Before we move

on to more complex tasks, we start with a simple one: we want to get an optimization sequence

from a specific strategy, optimize all programs from a given set with that sequence, and then store

the results in a CSV file.

Optimizing a program in the context of the LLVM toolchain means using the optimizer to

optimize the code at the intermediate representation (target-independent) level, then performing

3https://icl.utk.edu/papi

https://icl.utk.edu/papi

3.2 Software Packages Developed 17

target-dependent optimizations giving as output an object file, and converting that object file to

binary (see Appendix B.5).

The benchmarks can have dependencies or need linking with other sources. They can be in

a complex hierarchical file structure, with benchmarks inside different levels of folders. So, we

do some adaptations a priori to make it easier on the framework to find the available benchmarks,

and to compile them. These adaptations are (1) flattening the benchmarks folder, (2) emitting non-

optimized standalone bitcodes, and (3) changing the output so that our framework can easily parse

the metrics. The framework knows what libraries to link, and the header files’ location through

external input. Appendix C.2.2 shows the process of emtiting a standalone bitcode and executing

it.

This work focused on evaluating benchmarks remotely in a computer board. The connec-

tion can easily break and abort the current experiment. Appendix C.2.3 describes how we avoid

breaking the remote connection.

18
O

urA
pproach

Experiment.Metadata

experiment_datetime: datetime
toolchain: str
target: str
dataset_size: str
benchmark_suite_name: str

SubExperimentCollection.Metadata

requested_phase_order_lengths: str
requested_phase_order_cardinalities: str
strategy: str
strategy_seed: str

SubExperiment.Metadata

phase_order_max_length: int
phase_order_cardinality: int

BenchmarkSuiteConfig

benchmark_suite_path: str
benchmark_timeout_in_s: float

Experiment

benchmark_suite_config: BenchmarkSuiteConfig
sub_experiments: SubExperimentCollection
metadata: Experiment.Metadata

subscribe_observations(callback: function) �� None
on_benchmark_observed(observation: BenchmarkObservation) �� None
run() �� None

SubExperimentCollection

metadata: SubExperimentCollection.Metadata
sub_experiments: list[SubExperiment]

SubExperiment

metadata: SubExperiment.Metadata
phase_orders: PhaseOrderCollection

PhaseOrderCollection

phase_orders: list[PhaseOrder]

PhaseOrder

phase_order: str

get_length()

Metadata imported from CLI
or configuration file (YAML)

Metadata imported from
engine (dervin) output (JSON)

Sub-experiments are imported from a file,
which is the engine output.

Figure 3.10: Class diagram depicting the experiment entity in the developed software package ghopper 1.0.0.

3.2
Softw

are
Packages

D
eveloped

19

Experiment.Metadata

experiment_datetime: datetime
toolchain: str
target: str
dataset_size: str
benchmark_suite_name: str

SubExperimentCollection.Metadata

requested_phase_order_lengths: str
requested_phase_order_cardinalities: str
strategy: str
strategy_seed: str

SubExperiment.Metadata

phase_order_max_length: int
phase_order_cardinality: int

ExperimentObservation

experiment_metadata: Experiment.Metadata
sub_experiment_collection_metadata: SubExperimentCollection.Metadata
sub_experiment_metadata: SubExperiment.Metadata
benchmark_observation: BenchmarkObservation

BenchmarkObservation

benchmark_name: str
phase_order_requested: PhaseOrder
phase_orders_executed: PhaseOrderCollection
metrics: Metrics
has_error: bool
error_message: str

- benchmark suite: PolyBench
- date: 2022-01-01 10:00:01
- toolchain: LLVM 12.0.1
- target: AArch64
- dataset size: mini

- requested lengths: '10,20'
- requested cardinalities: '100,1000'
- strategy s0
- strategy seed: -O1 -O2 -O3

- length: 10, cardinality: 100
- length: 10, cardinality: 1000
- length: 20, cardinality: 100
- length: 20, cardinality: 1000

- benchmark: jacobi-2d
- phase order requested: -p1 -p2 -p3
- phase order executed: -p3 -p2 -p1
- metrics:

- cpu cycles: 1000
- code size in bytes: 2500
- ���

- has_error: False
- error_message: N/A

Figure 3.11: Class diagram depicting the experiment observation entity in the developed software package ghopper 1.0.0.

20
O

urA
pproach

App

App

Experiment

Experiment

BenchmarkSuite

BenchmarkSuite

Benchmark

Benchmark

instantiate with configuration

experiment instance

subscribe observations

run()

subscribe observations

loop [for each sub_experiment in sub_experiments]

loop [for each phase_order in sub_experiment]

optimize(phase-order)

loop [for each benchmark in benchmark_suite]

subscribe observation

optimize(phase_order)

on_benchmark_observed(observation)

on_benchmark_observed(observation)

append_metadata(observation)

on_benchmark_observed(observation)

show_feedback()

encoded = encode_csv(observation)

write(encoded)

Figure 3.12: Sequence diagram depicting the core internal interactions of the developed software package ghopper 1.0.0.

3.2 Software Packages Developed 21

3.2.3 Statistics and Visualization amidala

We developed a software package named amidala that automates the process of computing and

visualizing statistics (Figure 3.13). This software depends on two Python libraries: (1) the pandas

package to perform statistics and (2) matplotlib to plot them.

Here we are at the last stage of the pipeline, where we have all the collected data we need,

and now we are going to process it, make comparisons between strategies, and visualize some

statistics.

The first step is to compute the median of each repeated benchmark execution benchmark. We

repeat ten times each benchmark execution, so we consider the median of those ten executions as

the performance value for that benchmark.

The second step is to add a virtual benchmark for each experiment that represents the overall

performance of the set of benchmarks. We compute the virtual benchmark using the geometric

mean.

The third step is to compare one experiment A with another experiment B and add the results

in a new column whose values are given by Equation 3.1.

Metrics comparison =
Metrics of B
Metrics of A

(3.1)

This metrics comparison column is composed of multiple columns, one for each metric, and these

metrics range from the number of CPU cycles to the number of L1 cache misses.

Each strategy can create thousands of records, and we need to process this data to know how

well an approach performed against a baseline and tune its heuristics. To compare each strategy,

we compute statistics over the collected metrics stored in a CSV file, compare them against a

baseline and visualize them.

One metric that often changes per execution is the number of CPU cycles. These changes

happen because when we measure the cycles used by a program, we are actually including other

tasks the processor may be doing. To minimize that change, we repeat our experiments several

times, and consider the median of those executions. We also add a virtual program to the collected

data representing the set of tested programs to know how well the strategy performs overall. The

virtual program has the same metrics, but each metric represents the average performance.

After processing the collected data, we query the results to answer questions such as:

• The highest speedup achieved for each benchmark.

• The number of speedups more significant than 10%.

• The sequences that accomplish speedups more significant than 10%.

• The parameters (e.g., maximum sequence length allowed, cardinality) that achieve a given

speedup.

• The number of invalid optimization sequences we get.

22 Our Approach

>>> df.speedups

 cpu_cycles ... binary_size

phase_order_id benchmark

x a 1.20 ... 1.88

 b 1.33 ... 0.55

...

y a 1.11 ... 0.23

 b 1.15 ... 2.33

Shell

Numerical summary

E1 v. E2:

 Experiments description:

 E1:

 strategy: S1a

 parameters:

 max length: 130

 cardinality: 200

 E2:

 strategy: O3

 parameters: N/A

 Summary:

 Max speedup: gemm (1.34x, 64%
reduction)

 Invalid sequences: 34 out of 340
(10%)

 # of speedups > 10%: 4 out of 30

 # of speedups: 40 out of 100

 ...

Numerical Summary Plots

amidala

datetime,suite,bench,cpu_cycles,binary_size_in_bytes,l1_dcm,...

2022-02-02 12:23:22,PolyBench 4.2.1,2mm,2344,28937,7347,...

2022-02-02 12:23:30,PolyBench 4.2.1,3mm,9833,98273,5538,...

2022-02-02 12:23:42,PolyBench 4.2.1,adi,2384,13843,5587,...

2022-02-02 12:23:59,PolyBench 4.2.1,atax,9873,52988,4897,...

2022-02-02 12:24:05,PolyBench 4.2.1,bicg,83243,6623,18788,...

2022-02-02 12:24:13,PolyBench 4.2.1,cholesky,4348,5359,3887,...

...

Results

Figure 3.13: Overview of the input/output of the amidala package.

3.3 Summary 23

• The percentage of the search space that we explore.

Since there are many queries to data, we need to extract knowledge from the collected results, it

is helpful to have some tool like SQL where we have the flexibility to formulate questions. There

are tools known to be used by data analysts developed in languages such as R, Matlab, or Python.

We chose to use the Python library pandas4, where there is the concept of a data frame, a flexible

tabular data structure where we manipulate it and ask questions. Appendix C.3.2 presents an

example.

3.3 Summary

We presented four strategies to mitigate the phase ordering problem and developed the software to

evaluate them.

The first strategy applies the standard optimizations O0, O1, O2, O3, and Os; the second

chooses random phases from a set; a third strategy is a state-of-the-art approach that serves as

a reference for our work, where we also derive variations of our own. The last one considers the

program’s features to improve the search heuristic.

We open-sourced the three modules necessary to conduct this study. The first package is the

engine dervin that implements these strategies. The second package ghopper is the framework

that takes the sequences found by the engine, measures them, and outputs the results in the CSV

format. The last one, amidala, compares the experiments, and allows us to visualize statistics

about them.

4https://pandas.pydata.org

https://pandas.pydata.org

24 Our Approach

Chapter 4

Experimental Results and Discussion

In Chapter 3, we proposed strategies to mitigate the phase ordering problem and presented the

software we developed to evaluate the strategies. This chapter describes the results obtained from

the experiments and analysis of those results.

4.1 Experimental Procedure

4.1.1 Hardware and Software Requirements

Our experiments run on a Raspberry Pi 3 Model B Plus Rev 1.31 board, which includes a quad-core

processor Cortex-A53 64-bit—that has an Armv8-A architecture with the instruction set AArch64,

and it operates at a maximum frequency of 1.4 GHz—and 1 GB LPDDR2 SDRAM of memory.

The board runs the Ubuntu Server 22.04 LTS with a Linux kernel 5.15.0-1008-raspi. We use

the Python runtime environment 3.102, the tools from LLVM 12.0.13, the Performance Application

Programming Interface (PAPI) 6.0.0.14, and the software packages we developed5, dervin 1.0.0,

ghopper 1.0.0 and amidala 1.0.0.

We evaluate the performance using the benchmarks from PolyBench 4.2.16, which consists of

30 kernels.

4.1.2 Procedures

The execution time of each benchmark is the median execution time of ten runs. We define the

kernel scaling governor7 to performancewhich sets the CPU statically to the highest frequency8

(i.e., 1.4 GHz), flush 33 MB of cache before each start, and set the scheduler policy to First In,

1https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus
2https://docs.python.org/3.10
3https://releases.llvm.org/12.0.1/docs
4https://bitbucket.org/icl/papi/src/papi-6-0-0-1-t
5https://github.com/jmrocha/ms-thesis
6https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
7https://community.arm.com/oss-platforms/w/docs/528/cpufreq-dvfs
8https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

25

https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus
https://docs.python.org/3.10
https://releases.llvm.org/12.0.1/docs
https://bitbucket.org/icl/papi/src/papi-6-0-0-1-t
https://github.com/jmrocha/ms-thesis
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://community.arm.com/oss-platforms/w/docs/528/cpufreq-dvfs
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

26 Experimental Results and Discussion

Table 4.1: Table summarizing the performance counters available in the Raspberry Pi 3 Model B
Plus Rev 1.3.

Performance
Counter

Description

PAPI_L1_DCM Level 1 data cache misses
PAPI_L2_DCM Level 2 data cache misses
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_L1_DCA Level 1 data cache accesses
PAPI_L2_DCA Level 2 data cache accesses
PAPI_TOT_INS Total instructions completed
PAPI_LD_INS Load instructions completed
PAPI_SR_INS Store instructions completed
PAPI_BR_INS Branch instructions completed
PAPI_HW_INT Hardware interrupts

Source: The available performance counters were retrieved with PAPI by executing, in a shell, the following command:
papi_avail | grep Yes.

First Out (FIFO) mode to minimize the OS interference.

The PolyBench has macros to flush the cache (POLYBENCH_CACHE_SIZE_KB), set the scheduler pol-

icy (POLYBENCH_LINUX_FIFO_SCHEDULER) and collect metrics with PAPI (POLYBENCH_PAPI).

Every processor can have different performance counters, and the PolyBench authors provide

a configuration file to define what counters we want enabled. Table 4.1 describes the performance

counters available in our hardware.

The performance counters, available through hardware registers, give metrics such as the num-

ber of CPU cycles. We reset and start each counter before executing the program and stop the

counter after the program exits. Although using the CPU cycles counter is more accurate than

measuring the time—this is even more important because these benchmarks can take milliseconds

to complete if given small inputs—we will have fluctuations in our results. This fluctuation is

because the OS will take on other tasks besides the program we are evaluating, and we will be

counting those cycles too.

To increase the accuracy of our results, we evaluate the same benchmark several times and take

the median value. Besides that, we also change the Linux OS scheduler policy to FIFO to reduce

the number of tasks the OS performs when running a benchmark, and clean the cache between

executions.

Each benchmark operates on a given dataset which can vary in size, and there are five sizes

available: mini (MINI_DATASET), small (SMALL_DATASET), medium (MEDIUM_DATASET), large (LARGE-

_DATASET), and extra large (EXTRA_LARGE_DATASET).

4.1 Experimental Procedure 27

O0 O1 Os O2 O3
0

100

200

300

16

245
278

292 296

Optimization Level

N
um

be
ro

fP
ha

se
s

Figure 4.1: Phase order length per standard optimization.

4.1.3 Experiments Conducted

To answer the questions in this study, we conducted several experiments and summarized them in

Table 4.2. We consider S to be the set of the standard sequences present in O0, O1, O2, O3, and

Os, and R the set of random sequences with length L ∈ [5,296] and cardinality 105. Figure 4.1

describes how many phases each standard optimization has.

Each experiment has an id which we reference when showing the results in the next section.

We add a virtual benchmark b̄ that represents the geometric mean performance. The performance

results use the standard optimizations as baseline on the PolyBench Suite in Section 4.2.1, and

these optimizations comprise the set O0, O1, O2, O3, and Os.

In Section 4.2.3, we test the strategy S1a to predict new sequences from the standard ones

against the best -O to see if we could find better permutations.

Table 4.2: Table summarizing the experiments conducted.

ID Strategy
Maximum
Sequence Length

Cardinality Sequences
Dataset
Size

E1 SS — — — Mini
E2 S0 Random ∈ [5,296] 103 Sa Mini
E3 S1a 292 300 S Mini
E4 S1a 292 300 R Mini
E5 S1b 292 300 R Mini
E6 S1b 292 300 S Mini

aThis experiment considers the phases included in S, but not its sequences.

28 Experimental Results and Discussion

2m
m
3m

m ad
i
ata

x
bic

g

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

do
itg

en

du
rb

in

fdt
d-

2d

flo
yd

-w
ar

sh
all

ge
mm

ge
mve

r

ge
su

mmv

gra
msc

hm
idt

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d lu

lud
cm

p
mvt

nu
ss

ino
v

se
ide

l-2
d
sy

mm
sy

r2
k
sy

rk
tris

olv
trm

m b̄
0%

10%

20%

30%

40%

50%

60%

70%

80%

C
P

U
C

yc
le

s
R

ed
uc

tio
n

Strategy
-O1

-O2

-O3

-Os

Figure 4.2: CPU cycles reduction of the standard optimizations against -O0.

4.2 Results

Optimizing for a specific metric such as the number of CPU cycles can degrade other metrics

such as the memory footprint, the energy consumption, or compilation time, and we do not mea-

sure such degradation. Besides the degradation, ensuring each benchmark remains correct after

applying a sequence of transformations is another essential aspect of the evaluation.

The benchmark suite used includes internal validations to ensure the results are valid. How-

ever, such guarantees could also be subject to code transformations; ideally, we would complement

these validations with external ones. All experiments evaluated 96 unique phases.

4.2.1 Experiment E0

The best overall standard optimization from the common optimizations is -O3 with a geomet-

ric mean speedup of 2.44x against -O0 (Figure 4.2). The maximum speedup was 5.42x and

obtained on floyd-warshall by -Os. The speedup difference between the standard optimiza-

tions is about the same for most benchmarks, but there are some relevant differences, such as in

gramschmith, gemm, and jacobi-1d.

The standard optimization -O3 was responsible for 45% of the maximum performance in-

creases, while -O1 achieved the maximum speedup for three benchmarks (Figure 4.3). Table 4.3

shows that different levels of optimizations combine various code transformations that do not al-

ways result in the best performance. Standard optimizations aim to improve as many programs as

possible while balancing execution time, code size, energy consumption, and compilation time.

4.2 Results 29

O1 OsO2 O3
0%

10%

20%

30%

40%

10%

23%23%

45%

Optimization Level

Pe
rc

en
ta

ge
of

M
ax

.S
pe

ed
up

s

Figure 4.3: Percentage of maximum speedups per standard optimization against O0.

Table 4.3: Maximum speedups of the standard optimizations against -O0 on the PolyBench 4.2.1.

Benchmark Strategy Speedup Benchmark Strategy Speedup

2mm -O3 5.31 gramschmidt -O3 4.14
3mm -O3 5.41 heat-3d -O3 1.60
adi -O3 1.67 jacobi-1d -Os 2.21
atax -Os 2.66 jacobi-2d -O3 2.44
bicg -O2 1.84 lu -O1 2.39
cholesky -O1 1.97 ludcmp -O2 2.50
correlation -O3 2.51 mvt -O2 2.11
covariance -O3 2.61 nussinov -O3 4.80
deriche -Os 2.34 seidel-2d -O2 1.35
doitgen -Os 3.36 symm -O3 2.21
durbin -O3 1.99 syr2k -Os 1.71
fdtd-2d -O3 3.12 syrk -Os 2.08
floyd-warshall -Os 5.42 trisolv -O1 1.53
gemm -O2 3.91 trmm -O3 2.53
gemver -O2 2.28 b̄ -O3 2.44
gesummv -O2 1.77

30 Experimental Results and Discussion

4.2.2 Experiment E1

This experiment runs on a sub-set of benchmarks related to the maximum and minimum speedups

achieved in experiments E0 and E2. This subset comprises the benchmarks 2mm, 3mm, adi, cor-

relation, floyd-warshall, gemm, heat-3d, jacobi-1d, jacobi-2d, nussi-nov, seidel-2d.

The results in Figure 4.4 show that this experiment is the only one reducing the code size

for jacobi-1d and seidel-2d. This experiment achieves the maximum reduction size of

20.8% for seidel-2d. The jacobi-2d benchmark obtains the maximum speedup of 40.9%

concerning the number of CPU cycles.

4.2.3 Experiment E2

Figure 4.5 shows the results of applying the model of strategy S1a to predict 300 new sequences

with a length of 292, the same of -O2 (see Figure 4.1), from the compiler predefined ones and

then comparing them with the best -O (see Table 4.3).

This experiment found a phase order that reduces the number of CPU Cycles by 39.8% for

jacobi-2d against -Os. Concerning the same benchmark and metric, it achieves a maximum

of 1.5% on average against -O3. However, there are no improvements for benchmarks such as

gramschmidt, correlation, and covariance for the number of CPU cycles, and there is

no phase order that achieves an overall speedup.

This experiment is the only one that can significantly reduce the code size for the benchmarks

doitgen and gramschmidt, with a reduction of 17%.

4.2.4 Experiment E3

We want to find the impact of having the Strategy S1a searching on a more extensive search space

than the standard sequences. This experiment searches for 300 phase orders with a length of 292 in

a search space that consists of 105 random phase orders with an arbitrary length. This experiment

runs on the same sub-set of benchmarks of Experiment E1.

The results depicted in Figure 4.6 show that in the benchmark jacobi-2d, most phase orders

achieve a speedup in the CPU cycles of more than 20%. However, this experiment did not find

phase orders that can have an overall speedup, and the code size has no significant impact.

4.2.5 Experiment E4

To understand the impact of updating the first node where we start searching for sequences, we run

an experiment with the same parameters as Experiment E3, but we choose the first node randomly.

This experiment runs on the same sub-set of benchmarks that Experiment E1. It could also

find a phase order that achieves the maximum speedup for the benchmark gemm; the code size

does not have any significant impact.

No phase order can decrease the number of CPU cycles in all benchmarks, as described in

Figure 4.7.

4.2 Results 31

−350%

−300%

−250%

−200%

−150%

−100%

−50%

0%

50%

C
P

U
C

yc
le

s
R

ed
uc

tio
n

2m
m

3m
m ad

i

co
rre

lat
ion

co
va

ria
nc

e

flo
yd

-w
ar

sh
all

ge
mm

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d

nu
ss

ino
v

se
ide

l-2
d b̄

Benchmark

−20.0%

−10.0%

0.0%

10.0%

20.0%

C
od

e
S

iz
e

R
ed

uc
tio

n

Figure 4.4: CPU cycles speedups and Code Size Decrease of Experiment E1 against the best -O.

32 Experimental Results and Discussion

2m
m
3m

m ad
i
ata

x
bic

g

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

do
itg

en

du
rb

in

fdt
d-

2d

flo
yd

-w
ar

sh
all

ge
mm

ge
mve

r

ge
su

mmv

gra
msc

hm
idt

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d lu

lud
cm

p
mvt

nu
ss

ino
v

se
ide

l-2
d
sy

mm
sy

r2
k
sy

rk
tris

olv
trm

m b̄

−125%

−100%

−75%

−50%

−25%

0%

25%

C
P

U
C

yc
le

s
R

ed
uc

tio
n

2m
m
3m

m ad
i
ata

x
bic

g

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

do
itg

en

du
rb

in

fdt
d-

2d

flo
yd

-w
ar

sh
all

ge
mm

ge
mve

r

ge
su

mmv

gra
msc

hm
idt

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d lu

lud
cm

p
mvt

nu
ss

ino
v

se
ide

l-2
d
sy

mm
sy

r2
k
sy

rk
tris

olv
trm

m b̄

Benchmark

−20.0%

−15.0%

−10.0%

−5.0%

0.0%

5.0%

10.0%

15.0%

C
od

e
S

iz
e

R
ed

uc
tio

n

Figure 4.5: CPU cycles speedups and Code Size Decrease of Experiment E2 against the best -O.

4.2 Results 33

−200%

−150%

−100%

−50%

0%

50%

C
P

U
C

yc
le

s
R

ed
uc

tio
n

2m
m

3m
m ad

i

co
rre

lat
ion

co
va

ria
nc

e

flo
yd

-w
ar

sh
all

ge
mm

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d

nu
ss

ino
v

se
ide

l-2
d b̄

Benchmark

−0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

C
od

e
S

iz
e

R
ed

uc
tio

n

Figure 4.6: CPU cycles speedups and Code Size Decrease of Experiment E3 against the best -O.

34 Experimental Results and Discussion

−200%

−150%

−100%

−50%

0%

50%

C
P

U
C

yc
le

s
R

ed
uc

tio
n

2m
m

3m
m ad

i

co
rre

lat
ion

co
va

ria
nc

e

flo
yd

-w
ar

sh
all

ge
mm

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d

nu
ss

ino
v

se
ide

l-2
d b̄

Benchmark

−20.0%

−15.0%

−10.0%

−5.0%

0.0%

C
od

e
S

iz
e

R
ed

uc
tio

n

Figure 4.7: CPU cycles speedups and Code Size Decrease of Experiment E4 against the best -O.

4.3 Overview 35

4.2.6 Experiment E5

This experiment runs on the same sub-set of benchmarks that Experiment E1. To understand the

impact of changing the search space, we use the same parameters as Experiment E4, but we use as

the base graph the standard sequences.

This experiment does not find any phase order capable of achieving a speedup in the number

of CPU cycles, the code size does not have any significant impact, and no phase order reduces the

number of CPU cycles in all benchmarks (see Figure 4.8).

4.3 Overview

We evaluated the PolyBench benchmark suite, using the smallest dataset size, on a Raspberry

Pi, and measured each benchmark by taking the number of CPU cycles from the performance

counters. Each execution repeats ten times to ensure our results are the most accurate.

Additionally, we set the CPU to the max frequency, flush 33 MB of cache before each start, and

set the scheduler policy to First In, First Out. We see the importance of having different standard

optimizations because different levels achieve maximum speedups. However, most of them are

through the highest level of optimization -O3. We also see potential in the standard optimizations.

We found speedups concerning the number of CPU cycles up to 1.66x against the best opti-

mization level and an increase of 1.5% on average. We could also reduce the code size of some

benchmarks up to 21%. However, as standard optimizations do, we could not achieve speedups in

all kernels.

We see that the predefined compiler optimizations aim to improve most of programs, but that

leaves room for improvement. The speedups we measured do not consider other metrics that

could be affected by some trade-offs, such as energy consumption, the memory footprint, or the

compilation time.

4.4 Summary

We designed experiments to evaluate the impact of different strategies against the best standard

optimizations O1, O2, O3, and Os, and the effect of searching the common sequences S or the

random sequences R.

We could achieve speedups concerning the number of CPU cycles by up to 1.66x and reduce

the code size by up to 21% against the best optimization levels 1, 2, 3, and s. In the context of

our experiments, we could see a maximum speedup of the number of CPU cycles using a random

search space. We saw that only the strategy S1a could find a phase order that increases the overall

performance, although the increase is less than 1%.

While strategy S1a starts the search with the phase with the most occurrences, we study the

impact of choosing a random node to initiate the sequence by implementing strategy S1b. The

strategy S1b could not find any increase in performance when searching the space S that contains

36 Experimental Results and Discussion

−400%

−300%

−200%

−100%

0%

C
P

U
C

yc
le

s
R

ed
uc

tio
n

2m
m

3m
m ad

i

co
rre

lat
ion

co
va

ria
nc

e

flo
yd

-w
ar

sh
all

ge
mm

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d

nu
ss

ino
v

se
ide

l-2
d b̄

Benchmark

−0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

C
od

e
S

iz
e

R
ed

uc
tio

n

Figure 4.8: CPU cycles speedups and Code Size Decrease of Experiment E5 against the best -O.

4.4 Summary 37

the standard phase orders but could find a maximum speedup when searching a random search

space.

38 Experimental Results and Discussion

Chapter 5

Conclusions

5.1 Concluding Remarks

We presented the phase ordering problem of finding the best sequence for a given program. We

describe several strategies to approach this problem and compare them against the predefined

sequences of the LLVM compiler.

We conducted experiments using 30 benchmarks of the PolyBench repository. The standard

sequences could achieve reductions, in the number of CPU cycles, up to 80% with respect to O0.

The optimization level O3 represented 45% of the maximum reductions achieved. These results

show the importance of optimizations and of having different optimizing levels.

Finding new sequences from standard and random ones, we could achieve a speedup of up to

1.66x for the number of CPU cycles against the best optimization level O. We could also reduce

the code size by 21% against O. These results show that these predefined sequences specially

crafted by compiler developers are far from the optimal ones. Those can change from program to

program. We note, however, that these results did not fully check if the benchmarks remain valid

after being optimized.

In order to evaluate the proposed strategies, we developed and open-sourced three software

packages:

1. The engine dervin implements the strategies and recommends phase orders.

2. The framework ghopper takes phase orders and measures them on a benchmark suite.

3. The third software package amidala analyzes the collected data.

5.2 Future Work

Our strategies do not take advantage of the information about phase dependencies. The software

we built to conduct our experiments has limitations. More precisely, the program ghopper that

runs on the target to measure the strategies only works with an LLVM compiler and up to version

12.0.1 since other versions introduce changes to the optimizer interface. Another limitation is that

39

40 Conclusions

we are not testing the benchmark’s correctness after being optimized. The PolyBench, through

the macro POLYBENCH_DUMP_ARRAYS, sends output to the standard error we can use to validate each

program.

The target also needs to be able to run a Python environment. For some targets, this is not

possible. Our software also introduces overhead on the target because it is the target that optimizes

besides executing the benchmarks. An alternative is to cross-compile each benchmark. A C

program can listen on a socket for a pre-optimized benchmark, execute it, and send the metrics

back. This program should be pre-compiled and run directly by the target.

The proposed strategies and our engine dervin do not consider parameterized phases, such

is the case of the loop unrolling.

Additional strategies can be evaluated. An example of such strategy consists in combining a

randomness factor that allows us to explore more of the search space, with favoring phases that

contributed to the best phase order known for the training programs that share the most features

with the optimized one.

To further improve the model of our strategies, we can enhance the search heuristic with more

knowledge about the phases. For example, we could store in a graph data-structure (1) pairs of

phases to avoid and (2) phase dependencies. Information related to (1) and (2) derives from the

LLVM documentation, source code, and by trial and error. Finally, we recommend evaluating

more benchmark suites besides the PolyBench.

References

[1] M. R. Jantz and P. A. Kulkarni, “Exploiting phase inter-dependencies for faster iterative
compiler optimization phase order searches,” in 2013 International Conference on Compil-
ers, Architecture and Synthesis for Embedded Systems (CASES), 2013, pp. 1–10.

[2] S.-A.-A. Touati and D. Barthou, “On the decidability of phase ordering problem in
optimizing compilation,” in Proceedings of the 3rd Conference on Computing Frontiers, ser.
CF ’06. New York, NY, USA: Association for Computing Machinery, 2006, p. 147156.
[Online]. Available: https://doi.org/10.1145/1128022.1128042

[3] S. Kulkarni and J. Cavazos, “Mitigating the compiler optimization phase-ordering problem
using machine learning,” in Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, ser. OOPSLA ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p. 147162. [Online].
Available: https://doi.org/10.1145/2384616.2384628

[4] W. A. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Geschke, The Design
of an Optimizing Compiler. USA: Elsevier Science Inc., 1975.

[5] S. R. Vegdahl, “Phase coupling and constant generation in an optimizing microcode
compiler,” SIGMICRO Newsl., vol. 13, no. 4, p. 125133, oct 1982. [Online]. Available:
https://doi.org/10.1145/1014194.800942

[6] C. Click and K. D. Cooper, “Combining analyses, combining optimizations,” ACM
Trans. Program. Lang. Syst., vol. 17, no. 2, p. 181196, mar 1995. [Online]. Available:
https://doi.org/10.1145/201059.201061

[7] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson, “Practical exhaustive
optimization phase order exploration and evaluation,” ACM Trans. Archit. Code Optim.,
vol. 6, no. 1, Apr. 2009. [Online]. Available: https://doi.org/10.1145/1509864.1509865

[8] H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, and Z. Wang, “Automating
reinforcement learning architecture design for code optimization,” in Proceedings of the
31st ACM SIGPLAN International Conference on Compiler Construction, ser. CC 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p. 129143. [Online].
Available: https://doi.org/10.1145/3497776.3517769

[9] R. J. F. Nobre, “Efficient Target and Application Specific Selection and Ordering of Compiler
Passes,” Ph.D. dissertation, Faculdade de Engenharia da Universidade do Porto, October
2017.

[10] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation,” in Proceedings of the International Symposium on Code Generation and

41

https://doi.org/10.1145/1128022.1128042
https://doi.org/10.1145/2384616.2384628
https://doi.org/10.1145/1014194.800942
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/1509864.1509865
https://doi.org/10.1145/3497776.3517769

42 REFERENCES

Optimization: Feedback-Directed and Runtime Optimization, ser. CGO 04. USA: IEEE
Computer Society, 2004, p. 75.

[11] ARM Ltd., “Architecting a Smarter World — ARM,” https://www.arm.com.

[12] J. M. Cardoso, J. G. F. Coutinho, and P. C. Diniz, “Chapter 5 - source code transformations
and optimizations,” in Embedded Computing for High Performance, J. M. Cardoso, J. G. F.
Coutinho, and P. C. Diniz, Eds. Boston: Morgan Kaufmann, 2017, pp. 137–183. [Online].
Available: https://www.sciencedirect.com/science/article/pii/B9780128041895000053

[13] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thomson, M. Tous-
saint, and C. Williams, “Using machine learning to focus iterative optimization,” in Interna-
tional Symposium on Code Generation and Optimization (CGO’06), 2006, pp. 11 pp.–305.

[14] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and O. Temam, “Rapidly select-
ing good compiler optimizations using performance counters,” in International Symposium
on Code Generation and Optimization (CGO’07), 2007, pp. 185–197.

[15] Y. Chen, S. Fang, Y. Huang, L. Eeckhout, G. Fursin, O. Temam, and C. Wu, “Deconstructing
iterative optimization,” ACM Trans. Archit. Code Optim., vol. 9, no. 3, oct 2012. [Online].
Available: https://doi.org/10.1145/2355585.2355594

[16] A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, and C. Silvano, “Cobayn:
Compiler autotuning framework using bayesian networks,” ACM Trans. Archit. Code
Optim., vol. 13, no. 2, jun 2016. [Online]. Available: https://doi.org/10.1145/2928270

[17] P. A. Kulkarni, S. R. Hines, D. B. Whalley, J. D. Hiser, J. W. Davidson, and D. L.
Jones, “Fast and efficient searches for effective optimization-phase sequences,” ACM
Trans. Archit. Code Optim., vol. 2, no. 2, p. 165198, June 2005. [Online]. Available:
https://doi.org/10.1145/1071604.1071607

[18] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam, M. Namolaru, E. Yom-Tov,
B. Mendelson, A. Zaks, E. Courtois, F. Bodin, P. Barnard, E. Ashton, E. Bonilla,
J. Thomson, C. K. I. Williams, and M. O’Boyle, “Milepost GCC: Machine learning enabled
self-tuning compiler,” International Journal of Parallel Programming, vol. 39, no. 3, pp.
296–327, June 2011. [Online]. Available: https://doi.org/10.1007/s10766-010-0161-2

[19] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and J. Cavazos, “Micomp:
Mitigating the compiler phase-ordering problem using optimization sub-sequences and
machine learning,” ACM Trans. Archit. Code Optim., vol. 14, no. 3, Sep. 2017. [Online].
Available: https://doi.org/10.1145/3124452

[20] LLVM, “LLVM’s Analysis and Transform Passes — LLVM 12.0.1 documentation,” https:
//llvm.org/docs/Passes.html.

[21] GCC, “GCC, the GNU Compiler Collection,” https://gcc.gnu.org.

[22] R. Nobre, L. Reis, and J. M. P. Cardoso, “Compiler phase ordering as an orthogonal
approach for reducing energy consumption,” CoRR, vol. abs/1807.00638, 2018. [Online].
Available: http://arxiv.org/abs/1807.00638

[23] A. H. Ashouri, G. Palermo, J. Cavazos, and C. Silvano, Automatic Tuning of
Compilers Using Machine Learning, ser. SpringerBriefs in Applied Sciences and

https://www.arm.com
https://www.sciencedirect.com/science/article/pii/B9780128041895000053
https://doi.org/10.1145/2355585.2355594
https://doi.org/10.1145/2928270
https://doi.org/10.1145/1071604.1071607
https://doi.org/10.1007/s10766-010-0161-2
https://doi.org/10.1145/3124452
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html
https://gcc.gnu.org
http://arxiv.org/abs/1807.00638

REFERENCES 43

Technology. Cham: Springer International Publishing, 2018. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-71489-9

[24] R. Nobre, L. G. A. Martins, and J. a. M. P. Cardoso, “A graph-based iterative compiler pass
selection and phase ordering approach,” in Proceedings of the 17th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, Tools, and Theory for Embedded Systems, ser.
LCTES 2016. New York, NY, USA: Association for Computing Machinery, 2016, p. 2130.
[Online]. Available: https://doi.org/10.1145/2907950.2907959

[25] Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. Anderson, “The effect of com-
piler optimizations on high-level synthesis for FPGAs,” in 2013 IEEE 21st Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines, 2013, pp. 89–96.

[26] S. Purini and L. Jain, “Finding good optimization sequences covering program space,”
ACM Trans. Archit. Code Optim., vol. 9, no. 4, January 2013. [Online]. Available:
https://doi.org/10.1145/2400682.2400715

[27] L. G. Martins, R. Nobre, A. C. Delbem, E. Marques, and J. a. M. Cardoso, “Exploration of
compiler optimization sequences using clustering-based selection,” SIGPLAN Not., vol. 49,
no. 5, p. 6372, June 2014. [Online]. Available: https://doi.org/10.1145/2666357.2597821

[28] L. G. A. Martins, R. Nobre, J. a. M. P. Cardoso, A. C. B. Delbem, and E. Marques,
“Clustering-based selection for the exploration of compiler optimization sequences,”
ACM Trans. Archit. Code Optim., vol. 13, no. 1, Mar. 2016. [Online]. Available:
https://doi.org/10.1145/2883614

[29] U. Garciarena and R. Santana, “Evolutionary optimization of compiler flag selection by
learning and exploiting flags interactions,” in Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference Companion, ser. GECCO ’16 Companion. New
York, NY, USA: Association for Computing Machinery, 2016, p. 11591166. [Online].
Available: https://doi.org/10.1145/2908961.2931696

http://link.springer.com/10.1007/978-3-319-71489-9
https://doi.org/10.1145/2907950.2907959
https://doi.org/10.1145/2400682.2400715
https://doi.org/10.1145/2666357.2597821
https://doi.org/10.1145/2883614
https://doi.org/10.1145/2908961.2931696

44 REFERENCES

Appendices

45

Appendix A

PolyBench Benchmark Suite
Adaptations

We have made the following customizations to the PolyBench suite1: (1) changes in the file struc-

ture, (2) changes to each benchmark output a JSON with metrics, and (3) each benchmark is a

non-optimized bitcode.

A.1 Adapting the File Structure

We describe the enabled options provided by PolyBench, how we converted all the benchmarks

to bitcodes in the same folder flatted and how we updated polybench.c to give the metrics in a

JSON format with specific keys.

The reason we place all the benchmarks in the same folder and make each benchmark output a

JSON file is for convenience. The engine we developed expects all benchmarks to be in the same

folder so there is no need to parse the file directory, that each benchmark is a bitcode so the engine

does not have to know how to link each benchmark and that each benchmark outputs the metrics

in JSON with specific keys, so the engine can easily collect metrics.

A.2 Metrics Output in JSON

We updated the function polybench_papi_print() located in the file utilities/poly-

bench.c to output the CPU cycles in the JSON format. The output has the following structure:

{

"cpu_cycles": 100,

"l1_dcm": 200,

"l2_dcm": 300,

"tlb_dm": 400,

"tlb_im": 500,

1https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

47

https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

48 PolyBench Benchmark Suite Adaptations

"hw_int": 600,

"br_msp": 700,

"tot_ins": 800,

"ld_ins": 900,

"sr_ins": 1000,

"br_ins": 900,

"l1_dca": 800,

"l2_dca": 700

}

A.3 Emit Non-Optimized Bitcodes

We emit non-optimized bitcodes because it is easier to optimize each benchmark, since each

benchmark is now a standalone file without dependencies. The framework does not need to know

how to link each benchmark. See the Appendix B.1.

Appendix B

Optimizing a Program with LLVM
12.0.1

B.1 Emit Non-Optimized Bitcode

To emit non-optimized bitcode for one benchmark we run the following script:

#!/usr/bin/env bash

papi_dir=/opt/papi

includes=-I polybench -I {papi_dir}/include

defines=-D MINI_DATASET -DPOLYBENCH_LINUX_FIFO_SCHEDULER\

-DPOLYBENCH_PAPI

emit_bitcode_options=-emit-llvm -c

non_opt_bitcode_options=-O0 -Xclang -disable-O0-optnone\

-Xclang -disable-llvm-passes \

options=${includes} ${non_opt_bitcode_options}\

${emit_bitcode_options} ${defines}

clang ${options} benchmark.c

We assume that PAPI1 is installed at /opt/papi.

Then we link each bitcode with the utility polybench.bc using the llvm-link2:

#!/usr/bin/env bash

llvm-link benchmark.bc polybench.bc -o benchmark.bc

1https://icl.utk.edu/papi/software/index.html
2https://llvm.org/docs/CommandGuide/llvm-link.html

49

https://icl.utk.edu/papi/software/index.html
https://llvm.org/docs/CommandGuide/llvm-link.html

50 Optimizing a Program with LLVM 12.0.1

B.2 Optimize Bitcode

To optimize a bitcode we invoke opt3:

#!/usr/bin/env bash

opt -a -b -c benchmark.bc -o benchmark.opt.bc

In this case, we assume the phase ordering: a → b → c.

B.3 Emit Optimized Binary

To emit an optimized binary we start by using the llc4 to emit an optimized object file:

#!/usr/bin/env bash

llc -filetype=obj benchmark.opt.bc -o benchmark.o

Then, we convert the optimized object file to an executable through clang5:

#!/usr/bin/env bash

clang -lm -L${PAPI_DIR}/lib -lpapi benchmark.o -o benchmark

B.4 How to Find the Phases Executed by the Optimizer

When we optimize a program with the sequence a → b → c, the optimizer can add phases before

or after the sequence or even execute more sequences. The executed sequences can be obtained

with:

#!/usr/bin/env bash

opt -a -b -c -debug-pass=Arguments benchmark.c

The optimizer will use the standard error to output the sequences, and the output follows this

format:

Pass Arguments: -a -b -c

Pass Arguments: -d -e -f

...

3https://llvm.org/docs/CommandGuide/opt.html
4https://llvm.org/docs/CommandGuide/llc.html
5https://clang.llvm.org

https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CommandGuide/llc.html
https://clang.llvm.org

B.5 Flow From Non-Optimized Bitcode to Optimized Binary 51

B.5 Flow From Non-Optimized Bitcode to Optimized Binary

#!/usr/bin/env bash

opt -p1 -p2 -p3 program.bc -o program.bc

llc -filetype=obj program.opt.bc

clang program.opt.bc -o program

52 Optimizing a Program with LLVM 12.0.1

Appendix C

Software Packages Developed

C.1 Package dervin

C.1.1 How to Install

Installing this package can be done using the Python package installer pip1:

pip install dervin

C.1.2 Example of the Output for the Package dervin

The dervin package can run without arguments and its default behavior is to find random se-

quences from the clang optimization level O3.

dervin --pretty

{

"parameters": {

"length": "5",

"cardinality": "1",

"strategy": "s0",

"seed": "o3"

},

"output": [

{

"metadata": {

"length": 5,

"cardinality": 1

},

"sequences": [

"-lazy-block-freq -function-attrs -tailcallelim -licm

-loop-rotate"]}]}

1https://pip.pypa.io/en/stable/installation

53

https://pip.pypa.io/en/stable/installation

54 Software Packages Developed

C.1.3 Search Space for Strategy S0

One of the strategies implemented by the Design Space Exploration Engine is a strategy that builds

a random phase order from a set of phases. The engine accepts a set of phases as a file with the

same structure as the optimizer output:

Pass Arguments: -p1 -p2 -p3

Pass Arguments: -p4 -p5 -p6

...

C.1.4 Search Space for Strategy S1a

The strategy S1a uses a search space such as the one represented here:

p1 p2 p3

p4

2
3

1
1

1
3

Which is stored in a JSON file:

{

"directed": true,

"multigraph": false,

"graph": {},

"nodes": [

{"id": "p1"},

{"id": "p2"},

{"id": "p3"},

{"id": "p4"}],

"links": [

{"weight": 0.333, "source": "p1", "target": "p2"},

{"weight": 0.666, "source": "p1", "target": "p4"}

{"weight": 1.000, "source": "p2", "target": "p3"}

]

}

C.2 Package ghopper

C.2.1 How to Install

Installing this package can be done using the Python package installer pip2:

2https://pip.pypa.io/en/stable/installation

https://pip.pypa.io/en/stable/installation

C.3 Package amidala 55

pip install ghopper

C.2.2 Executing a Benchmark

We emit standalone bitcodes with llvm-link, linking the necessary sources:

#!/usr/bin/env bash

llvm-link benchmark.bc lib.bc -o benchmark.bc

Having a set of standalone benchmarks, we end up with benchmark suite folder like this:

benchmark-suite/

bench1.bc

bench2.bc

...

Then for each program, we place the optimized bitcode, the optimized object file, and the binary

in the /tmp folder, so for each execution, our /tmp folder will be like:

/tmp/

benchmark.opt.bc

benchmark.opt.o

benchmark

Finally, we execute /tmp/benchmark, delivering output in JSON with several metrics. More-

over, we collect this metric alongside other data that we will describe later and store them in a

CSV file.

C.2.3 Evaluating a Benchmark Remotely

We evaluate a benchmark remotely on a computing board through SSH. If the remote connection

is interrupted, the current experiment is aborted. To allow the experiment to run continuously, we

use the nohup program:

nohup ghopper --config experiment.yml &

C.3 Package amidala

C.3.1 How to Install

Installing this package can be done using the Python package installer pip:

pip install amidala

56 Software Packages Developed

C.3.2 Example of Usage

Given a CSV file with numerical results of multiple experiments, we can compare experiments E1

and E2 by showing a plot:

amidala plot e1 e2 plot1

We can also open a Python shell to query the data:

amidala shell e1 e2

And within the shell we have access, for example, to speedups:

>>> df.speedups

cpu_cycles ... binary_size

phase_order_id benchmark

x a 1.20 ... 1.88

b 1.33 ... 0.55

...

y a 1.11 ... 0.23

b 1.15 ... 2.33

Moreover, we can ask for a numerical summary:

amidala summary e1 e2

Numerical summary

E1 v. E2:

Experiments description:

E1:

strategy: S1a

parameters:

max length: 130

cardinality: 200

E2:

strategy: O3

parameters: N/A

Summary:

Max speedup: gemm (1.34x, 64% reduction)

Invalid sequences: 34 out of 340 (10%)

of speedups > 10%: 4 out of 30

of speedups: 40 out of 100

...

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goals and Contributions
	1.3 Document Outline

	2 Background and Related Work
	2.1 Phase Ordering Problem
	2.1.1 The Dimension of the Search Space
	2.1.2 Specialized Compiler Sequences
	2.1.3 Related Work

	2.2 Best-Selection Problem
	2.3 Summary

	3 Our Approach
	3.1 Strategies
	3.1.1 Strategy S and 0
	3.1.2 Strategy 1

	3.2 Software Packages Developed
	3.2.1 Design Space Exploration Engine dervin
	3.2.2 Experiment Framework ghopper
	3.2.3 Statistics and Visualization amidala

	3.3 Summary

	4 Experimental Results and Discussion
	4.1 Experimental Procedure
	4.1.1 Hardware and Software Requirements
	4.1.2 Procedures
	4.1.3 Experiments Conducted

	4.2 Results
	4.2.1 Experiment E0
	4.2.2 Experiment E1
	4.2.3 Experiment E2
	4.2.4 Experiment E3
	4.2.5 Experiment E4
	4.2.6 Experiment E5

	4.3 Overview
	4.4 Summary

	5 Conclusions
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendices
	A PolyBench Benchmark Suite Adaptations
	A.1 Adapting the File Structure
	A.2 Metrics Output in JSON
	A.3 Emit Non-Optimized Bitcodes

	B Optimizing a Program with LLVM 12.0.1
	B.1 Emit Non-Optimized Bitcode
	B.2 Optimize Bitcode
	B.3 Emit Optimized Binary
	B.4 How to Find the Phases Executed by the Optimizer
	B.5 Flow From Non-Optimized Bitcode to Optimized Binary

	C Software Packages Developed
	C.1 Package dervin
	C.1.1 How to Install
	C.1.2 Example of the Output for the Package dervin
	C.1.3 Search Space for Strategy 0
	C.1.4 Search Space for Strategy [a]1

	C.2 Package ghopper
	C.2.1 How to Install
	C.2.2 Executing a Benchmark
	C.2.3 Evaluating a Benchmark Remotely

	C.3 Package amidala
	C.3.1 How to Install
	C.3.2 Example of Usage

