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Atrial fibrillation (AF) is the most common sustained arrhythmia in the population and
is associated with a significant clinical and economic burden. Rigorous assessment of
the presence and degree of an atrial arrhythmic substrate is essential for determining
treatment options, predicting long-term success after catheter ablation, and as a
substrate critical in the pathophysiology of atrial thrombogenesis. Catheter ablation
of AF has developed into an essential rhythm-control strategy. Nowadays is one
of the most common cardiac ablation procedures performed worldwide, with its
success inversely related to the extent of atrial structural disease. Although atrial
substrate evaluation remains complex, several diagnostic resources allow for a more
comprehensive assessment and quantification of the extent of left atrial structural
remodeling and the presence of atrial fibrosis. In this review, we summarize the current
knowledge on the pathophysiology, etiology, and electrophysiological aspects of atrial
substrates promoting the development of AF. We also describe the risk factors for its
development and how to diagnose its presence using imaging, electrocardiograms,
and electroanatomic voltage mapping. Finally, we discuss recent data regarding fibrosis
biomarkers that could help diagnose atrial fibrotic substrates.
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INTRODUCTION

Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with
a substantial economic burden and significant morbidity and mortality (1, 2). AF can be
asymptomatic or lead to symptoms such as palpitations, dyspnoea, and dizziness. The condition
is associated with an increased risk of serious complications, including stroke (3), dementia (4),
ventricular dysfunction, and death (3, 5). With a rising prevalence, it is estimated to affect nearly
17 million people in Europe by 2030, primarily driven by the aging of the population and increased
survival with chronic cardiovascular diseases (3, 6–9).

In the past two decades, the knowledge of AF pathophysiology has led to significant
developments in the treatment options, particularly regarding catheter ablation (10–13).
Paroxysmal forms of AF are thought to primarily depend on triggers, primarily from the pulmonary
veins (PV), while persistent forms involve a more significant modification of the atrial substrate (14,
15), promoting multiple re-entrant waves that maintain the arrhythmia.
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Since a significant percentage of AF patients may have
an indication for catheter ablation, analysis of the potential
arrhythmogenic substrate is an essential part of the clinical
evaluation of AF patients. Moreover, identifying the various risk
factors promoting the development of a fibrotic substrate will
enable a comprehensive approach to correct these factors, thus
preventing the future progression of the arrhythmic substrate and
increasing long-term therapeutic success.

Fibrotic atrial cardiomyopathy (FAC), a clinical entity
proposed by Kottkamp (16), and one of the EHRAS atrial
cardiomyopathy consensus classes (17), is a primary form
of atrial pathology, characterized by extensive fibrosis as
the substrate underlying atrial arrhythmias. This concept has
been evolving ever since, and some authors (18) have used
it more broadly to define significant atrial fibrosis due to
several insults from different aetiologies. Understanding the
multiple factors and mechanisms contributing to the complex
development of atrial fibrosis and the management of AF
based on arrhythmogenic substrates represents a challenge for
interventional electrophysiology. At the same time, it may
contribute to a more personalized approach, as the presence of
atrial fibrosis and its characterization may guide the operator
to modify the atrial substrate beyond PV isolation and estimate
prognosis based on fibrosis characteristics.

Although atrial fibrosis has different clinical manifestations
(like cardiac conduction disease and atrial thrombus formation),
in this manuscript, we will review the role of the atrial
fibrotic substrate in the context of AF. We will discuss the
electrophysiology of the atria, the pathophysiology of atrial
fibrillation, the molecular and genetic aspects, and the risk
factors for fibrosis development. We will also review the principal
elements of diagnosing the presence of atrial fibrosis using
the 12-lead electrocardiogram, imaging, and electroanatomic
voltage mapping and will discuss the most clinically relevant
fibrosis biomarkers.

PATHOPHYSIOLOGY OF ATRIAL
FIBRILLATION IN THE FIBROTIC ATRIAL
SUBSTRATE

Conceptual Framework for Atrial
Fibrillation Pathophysiology
Atrial fibrillation has a multi-factorial nature and complex
pathogenesis. Underlying mechanisms involve structural and
electrical remodeling, autonomic nervous system dysfunction
(19), and calcium dysregulation (20–23). The pathophysiological
triangle for AF comprises triggers (for the arrhythmia initiation),
a structural (typically fibrotic) substrate (for the maintenance
of AF), and different modulators (that promote the propensity
to AF through multiple potential mechanisms) (9, 16, 24, 25)
(Figure 1). Re-entry is considered the primary mechanism
for AF maintenance. Generally, it requires a vulnerable
substrate characterized by slow conduction and short effective
refractory periods, combined with a trigger to initiate the
unidirectional block.

Cardiac structural remodeling is characterized by atrial
enlargement, a vital determinant of the persistence of AF-
maintaining re-entry, and tissue fibrosis, characterized by
the excessive accumulation of collagenous material in the
extracellular space (12, 20, 26). Fibrotic atrial cardiomyopathy
is a progressive disease with heterogeneous expressions, from
mild to severe, and wide clinical variations, from asymptomatic
to multiple arrhythmic manifestations (12, 16, 25, 27). Fibrosis
is promoted by various risk factors (discussed below). It is
involved in nearly all types of heart disease, including different
ischemic and non-ischemic aetiologies (28). In many patients,
AF can be understood as a manifestation of pre-existing
atrial fibrosis, integrated into a gradual remodeling process
(20, 27), albeit with a highly variable rate of progression
determined by the dynamics of the fibrosis-promoting risk
factors (29). In addition, AF itself promotes atrial fibrosis,
which will contribute to AF progression and the development of
therapeutic resistance in patients with long-standing arrhythmia
(20, 30). Atrial fibrosis can interfere directly with impulse
propagation by forming barriers to electrical conduction and
separating the well-connected syncytium (31, 32). The increase
in the extracellular matrix will disturb the continuity of the fibers
bundle, causing local conduction disturbances (33). Additionally,
direct electrical fibroblast-cardiomyocyte interactions may
cause changes in cardiomyocyte electrophysiology (20, 34).
Cardiac fibroblasts express multiple ion channels (35). Even
though fibroblasts do not generate action potentials, they may
influence cardiac electrophysiology by electrical coupling via gap
junctions with cardiomyocytes (36). Finally, perivascular fibrosis
around intracoronary vessels may impair oxygen and nutrient
availability, promoting myocyte ischemia (37).

Prevalence and Mechanisms of Atrial
Fibrosis
Cardiac fibrosis is pathological extracellular matrix (ECM)
remodeling resulting in abnormal matrix composition (38). The
cardiac ECM serves as a mechanical scaffold and is involved in
the transmission of contractile force (39). The ECM consists of
several proteins (40) like type I collagen (the most abundant
protein), type III collagen, and a wide range of glycoproteins,
glycosaminoglycans, and proteoglycans, and is a reservoir of
stored latent growth factors and proteases, that can be rapidly
activated following injury (41). Tissue remodeling results from
an imbalance in the equilibrium of the normal synthesis process
and degradation of ECM components (42). Extracellular matrix
deposition is a physiologic and protective process essential for
wound healing (Figure 2), but excessive or prolonged deposition
can impair tissue function (43).

In the normal heart, thin layers of perimysium and
endomysium surround myocardial bundles and individual
myocytes, respectively. The walls of the blood vessels also contain
adventitial fibroblasts that contribute to the endomysial collagen
network (44). In histologic analyses, two predominant types of
myocardial fibrosis can be identified: interstitial fibrosis and
replacement fibrosis (40). In a typical example of necrosis -
myocardial infarction - necrotic cardiomyocytes are replaced by
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FIGURE 1 | Pathophysiological dynamics in atrial fibrillation. Adapted from Kottkamp and Schreiber (24). JACC Clin Electrophysiol. AF, atrial fibrillation; PV,
pulmonary veins.

collagen-based scar, causing ‘replacement fibrosis.’ ‘Interstitial
fibrosis’ (also called “reactive”) (45) describes the expansion of the
endomysial and perimysial space caused by the net accumulation
of ECM proteins in the absence of significant cardiomyocyte loss.
The term ‘perivascular fibrosis’ is used to describe the expansion
of the microvascular adventitia (46).

In the heart, ECM deposition is primarily mediated by the
activation of fibroblasts in response to injury, transforming them
into ECM-secreting myofibroblasts (47). Fibroblast-mediated
fibrosis can affect every tissue and is a frequent pathological
feature of chronic inflammatory diseases (48, 49). Similarly,
expansion of the cardiac interstitium and deposition of ECM
proteins are consistently noted in experimental models of
heart failure (HF) and human patients with cardiomyopathic
conditions, regardless of etiology (50).

Fibroblasts are the primary regulator of cardiac ECM. In
response to disease stimuli, cardiac fibroblasts undergo cell state
transitions to a myofibroblast phenotype (51). This transition
is a dynamic state that underlies the fibrotic response (52).
Most activated myofibroblasts in the infarcted and pressure-
overloaded hearts derive from resident fibroblast populations
(47). Myofibroblasts are fibroblast-smooth muscle cell hybrid
that more effectively secretes and remodels the ECM positioned
between all myocytes (53). Myofibroblasts have typically been
defined by critical phenotypic features, including the de novo
expression of markers including α-smooth muscle actin and
periostin, increased production of ECM, and the ability to
contract (54). Myofibroblasts are intimately associated with

hypertrophic fibrotic scars in various injury models, and
differentiation from fibroblast to myofibroblast is promoted by
transforming growth factor-β (TGF-β), cytokines, the ECM, and
other growth factors (55).

Several cytokines, chemokines, and growth factors are induced
in the injured heart. In conjunction with elevated wall tension,
specific signaling pathways and downstream effectors are
mobilized to initiate myofibroblast differentiation (53). While
the signaling mechanisms governing fibroblast to myofibroblast
conversion are not fully elucidated, much has been discovered.
Transforming growth factor β1 (TGFβ1) is considered a master
regulator (56). The TGFβ-Smad signaling pathway has long
been known to be involved in this process and is arguably one
of the most potent inductive mechanisms (57). TGFβ drives
fibroblast activation via the activation of phosphorylation of
Smad2 and/or Smad3, which complex with Smad4, translocate
to the nucleus and form a transcriptional complex that can
directly bind to and transactivate essential ECM genes such
as those encoding type I collagen (58). TGFβ may also work
via a parallel non-canonical signaling pathway involving the
activation of protein kinases such as p42/p44 MAPK (59).
Several potential critical drivers of fibroblast activation post-
MI include IL-1α/β, TGF-β1, collagen, fibronectin, osteopontin,
thrombospondin-1, and secreted protein acidic and rich in
cysteine (SPARC) as well as mechanical signals (e.g., scleraxis,
TRPC, and MRTF/SRF) (60).

This is an area of intense and prolific investigation,
leading to a rapid evolution of knowledge. Recent data on
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FIGURE 2 | Fibroblast and Fibrin Activity in tissue healing. Visual representation of the pathophysiological process of reparative fibrosis after an injury to the cell.

transcriptome maturation suggest that muscle blind-like 1
(MBNL1) is a post-transcriptional switch, controlling fibroblast
state plasticity during cardiac wound healing (52). In this study,
in healthy mice, cardiac fibroblast-specific overexpression of
MBNL1 transitioned the fibroblast transcriptome to that of a
myofibroblast and, after injury promoted myocyte remodeling
and scar maturation.

Nonetheless, there are important existing knowledge gaps,
the complete list of factors that involve fibroblast activation still
needs to be identified, and the importance of individual factors
ranked (51).

The gold standard for determining atrial structural
remodeling is histology, which is challenging to apply in
the clinical setting. Nevertheless, a few studies have included
histological analyses, mainly in the surgical context. In these
studies, hypertrophy of myocytes and areas of fibrosis,
particularly in the left atrium, constitute the basis for AF in
hypertensive patients (61). In addition, in valvular heart disease,
severe fibrosis and hypertrophy with degenerative changes
in atrial cardiomyocytes are the most prominent histologic
findings in AF patients (62). Patients with long-standing
persistent (‘chronic’) AF undergoing mitral valve surgery
displayed abundant collagen fibers, inflammatory infiltrates,
and sympathetic nerve twigs surrounding individual atrial

cardiomyocytes, thus breaking up their clusters typically seen in
sinus rhythm patients (63).

In a study investigating whether patients who develop
postoperative AF show pre-existent alterations in right-
atrial histopathology (64), the investigators analyzed samples
from the right atrial appendage (immediately collected after
opening the pericardium) from seventy patients undergoing
elective coronary revascularization. The histologic abnormalities
associated with the development of postoperative AF in 22 (31%)
patients were interstitial fibrosis, vacuolization, and nuclear
derangement of myocytes. In multivariate analysis, myocyte
vacuolization and nuclear derangement represented independent
predictors of postoperative AF.

MOLECULAR ASPECTS OF ATRIAL
FIBROGENESIS

The development of fibrosis is a highly complex, multifactorial,
and patient-specific process (Figure 3). Despite the growing
interest in the subject over the past few years, the precise
molecular mechanisms and signaling pathways involved in
developing the human AF substrate are not entirely understood.
Nevertheless, three interrelated signaling pathways appear to

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 July 2022 | Volume 9 | Article 879984

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-879984 June 28, 2022 Time: 16:23 # 5

Cunha et al. AF Substrate

FIGURE 3 | Etiology of atrial fibrosis. Different pathological insults, risk factors, and certain genetic diseases induce atrial fibrosis. Atrial fibrosis is characterized by
myofibroblast growth and extracellular matrix (ECM) remodeling.

play a central role: the renin-angiotensin system (RAAS), the
transforming growth factor-β1 (TGF-β1), and the oxidative stress
pathways (65–67).

The RAAS plays a crucial role in cardiac structural remodeling
and the development of myocardial fibrosis in several diseases
states, including cardiomyopathy (65). Activation of the RAAS
induces oxidative stress, which contributes to cardiovascular
inflammation, fibrosis, and dysfunction (68). Angiotensin-
converting enzyme (ACE) overexpression results in atrial fibrosis
in several animal models (69–71), whereas the use of ACE
inhibitors delays atrial fibrosis and reduces AF vulnerability
and AF progression (65, 72, 73). In the right atrial tissue of
patients undergoing open-heart surgery (74), the increase of
atrial collagen deposition observed in atrial samples from AF
patients undergoing open-heart surgery was also attenuated in
those previously under ACE-inhibitor therapy, and the atrial
micro-capillary density in these patients was similar to patients
in normal sinus rhythm. In agreement, other studies have
shown that ACE-inhibitor therapy is associated with a significant
reduction in recurrent AF (75–77).

TGF-β1 is implicated in tissue repair and development
of fibrosis, including atrial myocardial fibrosis, by enhancing
collagen synthesis (18).

Inflammation has been implicated in various AF-related
pathological processes, including oxidative stress, fibrosis, and
thrombogenesis (78). Inflammation and oxidative stress may
promote AF, as suggested by increased C-reactive protein (CRP)

and evidence of oxidative injury seen during AF (79–81). AF
induces substantial oxidative stress in fibrillating atrial tissue (14).

In many diseases, tissue inflammation is a significant
trigger for fibrosis development (82). The inflammatory
response is mediated by inflammasomes, which are intracellular
multiprotein complexes that can trigger the host-defense
response (83). The inflammasomes comprise a family of
cytosolic pattern-recognition receptors called nucleotide-
binding oligomerization domain (NOD)–like receptors (NLRs)
that are involved in innate immune recognition of pathogen-
associated molecular patterns as well as intracellular and
extracellular damage-associated molecular patterns (84).
Functionally, inflammasomes are sensors and receptors of the
innate immune system that can induce inflammation in response
to pathogens and molecules derived from host proteins. In
response to these “cellular danger signals,” the inflammasomes
activate caspase-1 and release both IL-1β and IL-18 via pores
formed by the N-termini of gasdermin-D, which are cleaved by
activated caspase-1 (85). Activation of the NLR family pyrin
domain containing 3 (NLRP3) inflammasome is increased in
patients with paroxysmal and long-standing-persistent AF (86),
patients that go on to develop post-operative AF (87), and
patients with risk factors for AF such as diabetes and obesity
(88, 89) via both priming (increased expression of components
of the NLRP3 inflammasome) and triggering (assembly of the
NLRP3 complex) mechanisms. Activating NLRP3 selectively in
atrial cardiomyocytes is sufficient to promote atrial structural
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remodeling (atrial hypertrophy), spontaneous premature atrial
contractions, and inducible AF (86). The previously cited and
fascinating clinical study (87) analyzed tissue from patients with
postoperative AF, preexisting Ca2+-handling abnormalities, and
activation of NLRP3-inflammasome/CaMKII signaling were
evident in atrial cardiomyocytes.

Inflammasome signaling and downstream cytokine responses
mediated by the inflammasome have been found to play an
important role not only in wound healing but also in fibrosis.

Inflammasome activation induces the differentiation of
quiescent fibroblasts to myofibroblasts (84). In addition, it is
hypothesized that chronic dysregulation of the inflammasome
promotes the differentiation of myofibroblasts, leading to
excessive extracellular matrix accumulation and subsequent
failure of the affected organ (90). The inflammasome regulates
the secretion of IL-1β and IL-18 cytokines (91), and both are
critical for repairing damaged tissue and play a role in fibrosis.
Inflammasome-mediated activation of IL-18 in the myocardium
is a crucial trigger for the cytokine cascade and macrophage
infiltration in the heart, leading to adverse cardiac remodeling
(92). However, what dictates the delicate balance between routine
wound healing versus fibrosis is yet to be fully elucidated (90).

Several studies have linked fibrosis to perturbations in cardiac
(myo)fibroblast calcium (Ca2+) handling and electrophysiology,
providing a basis for future investigation of molecular targets
for the prevention of fibrosis progression (93, 94). For example,
transient receptor potential (TRP) channel remodeling has been
implicated in profibrotic atrial remodeling in large animal models
and human samples. TRP melastatin-related 7 (TRPM7) is a
Ca2+-permeable channel upregulated in atrial fibroblasts from
AF patients, likely in a TGF-β1-dependent manner (95). TRPM7
downregulation reduced basal AF fibroblast differentiation as
well as TGF-β1 induced fibroblast differentiation in culture (95).
Similarly, TRP canonical 3 (TRPC3) expression is upregulated
in atria from AF patients, goats with electrically maintained
AF, and dogs with tachypacing-induced HF, whereas TRPC3
knockdown decreased canine atrial fibroblast proliferation (96).
Moreover, in vivo administration of the TRPC3 blocker pyrazole-
3 suppressed AF in dogs while decreasing fibroblast proliferation
and extracellular matrix gene expression (96). Various molecules
have been associated with disturbances in atrial Ca2+ handling
in AF. Patients with AF have elevated atrial endothelin-1 levels,
associated with increased atrial preexcitation (97), inadequate
Ca2+ leak, and increased intracellular overload. Additionally,
mice with cardiac-specific knockout of liver kinase B1 (LKB1),
a protein highly expressed in the heart and responsible for
regulating myofilament response to Ca2+, developed early-onset
atrial cardiomyopathy (98). Fibrosis progression has also been
associated with atrial ion channel remodeling (36). Wiedmann
et al. (99) showed that the TASK-1 [two-pore-domain potassium
(K+) channel that contributes to the regulation of atrial action
potential duration] is decreased in AF-prone transgenic mice,
leading to both FAC and AF progression. For some K+ channels
expressed in atrial fibroblasts, their profibrotic effects have been
attributed to increasing the driving force for fibroblast Ca2+

entry, e.g., in the case of HF-related upregulation of KCNJ2,
underlying the inward-rectifier K+ current (100). Similarly,

mutations in the voltage-gated sodium channel have been
associated with LA dilatation (101).

GENETIC BASIS OF ATRIAL
FIBRILLATION

Atrial fibrillation has precise genetic determinants, including
common and rare gene variants with variable penetrance (17,
102–104). Over the last decades, multiple studies have observed
familial aggregation of individuals with lone AF (105). A family
history of AF in a first-degree relative independently increases
AF risk twofold (7), with the most substantial risks associated
with young age at AF onset and multiple affected relatives (106).
Genome-wide association studies have identified genetic variants
associated with increased susceptibility to atrial fibrillation, with
the strongest hits clustering on chromosome 4q25, close to
the gene for the homeobox transcription factor PITX2 and
single nucleotide polymorphisms in T-box (TBX)5 (107–110).
However, in most individuals, atrial fibrillation is a complex trait
reflecting the combined effects of aging, genetic predisposition,
comorbidities, and environmental factors (111). Both standard
and rare genetic variants increase susceptibility to AF in the
presence of specific risk factors (104).

Inherited arrhythmia syndromes are commonly known
as ‘channelopathies,’ highlighting that mutations in genes
encoding cardiac ion channels are the predominant cause
of these conditions (112). There is considerable overlap
in ion channel genes responsible for causing arrhythmia
syndromes between atria and ventricles, with genetic defects
recognized to cause episodic arrhythmias in either chamber
(113). Similarly, in a significant percentage of patients atrial
dilated cardiomyopathy with the fibrotic structural substrate
may represent the counterpart of idiopathic ventricular dilated
cardiomyopathy, which is often of genetic origin (114).
Still, very little information is about the genetic causes of
specific atrial cardiomyopathy. Nevertheless, some studies have
identified variants in non-ion channel genes as a cause of
primary arrhythmogenic atrial cardiomyopathy in the last years.
Hodgson-Zingman et al. (115) reported a genetic mutation
in the atrial natriuretic peptide gene – Natriuretic Peptide
Precursor A (NPPA) – in a large family with AF. They
demonstrated the novel observation of the effects of this neuro-
hormone on the action potential of the atrial myocardium.
Subsequent work has implicated this gene mutation in inherited
atrial cardiomyopathy (114). They investigated the evolving
arrhythmic substrate in 5 patients with isolated arrhythmogenic
atrial cardiomyopathy, caused by NPPA gene mutation, with
repeated electroanatomic mapping and tomographic evaluations
and reported that the evolution of the arrhythmic patterns
to sinus node disease with atrial standstill was associated
with giant atria with extensive areas of low voltage and
atrial scarring. They concluded that the evolution of the
amount and distribution of atrial scarring/fibrosis constitutes
the structural substrate for the different types of atrial
arrhythmias in a pure genetic model of arrhythmogenic
atrial cardiomyopathy.
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Peng et al. (116) identified a family with heritable atrial
cardiomyopathy manifesting as progressive atrial−selective
electromechanical dysfunction, tachyarrhythmias, and
bradyarrhythmias requiring pacemaker implantation. Myosin
light−chain 4 (MYL4), encoding the atrial−selective essential
myosin light chain, was identified as a candidate gene. Genetically
modified rat models knocking out the MYL4 gene or knocking
in the human MYL4 p.E11K mutation showed early atrial
fibrosis associated with enhanced proapoptotic and profibrotic
signaling associated with atrial cardiomyopathy featuring atrial
arrhythmia, atrial contractile failure, and atrial enlargement.
The C allele and CC genotype of rs4968309 in MYL4 were also
associated with AF onset and recurrence in patients after catheter
ablation (117).

Interestingly, in silico and functional studies suggest that
atrial fibrillation-associated genetic variants generate an
arrhythmogenic atrial cardiomyopathic substrate (111). A better
understanding of AF heritability will improve AF prediction
models and be the next step toward more efficient personalized
treatment strategies (118). Nevertheless, most patients have
significant acquired risk factors predisposing to this fibrotic
response, which we will describe in the next section.

RISK FACTORS FOR THE
DEVELOPMENT OF ATRIAL FIBROSIS

Numerous risk factors have been identified as contributors
to fibrosis and AF’s development and dynamic progression.
They include but are not limited to advanced age, HF, obesity,
hypertension, sleep-disordered breathing, and diabetes (119).

Aging
Incidence and prevalence of AF are age-dependent (7, 120),
with increasing fibrosis being a characteristic of the aging heart
(49, 121). Age-associated changes of the atria include global
and regional reductions in atrial voltage with an increased
heterogeneity, conduction slowing (with alterations of the
wavefront propagation), prolongation of atrial refractoriness,
fractionated electrograms, and double potentials (122, 123).

Heart Failure
Atrial fibrillation and congestive HF are commonly encountered
together, and each condition predisposes to the other. In the
Framingham cohort (124), HF was significantly associated with
AF risk in both sexes (OR, 4.5 for men and 5.9 for women).
The prevalence of AF in patients with HF increases from <10%
in those with New York Heart Association (NYHA) functional
class I HF to approximately 50% in those with NYHA functional
class IV HF (125). Moreover, diastolic dysfunction appears to
be a potent precursor of AF, with an independent, graded
relationship between the severity of diastolic dysfunction and the
development of AF (126). Patients with HF who have concurrent
AF have worse outcomes (127).

The HF and AF share common mechanisms, including
myocardial fibrosis and dysregulation of intracellular calcium
and neuroendocrine function (128). In animal models of HF
induced by rapid ventricular pacing, there was a more significant

atrial interstitial fibrosis than in AF induced by rapid atrial
pacing (129). This study’s histological analysis displayed extensive
interstitial fibrosis accompanied by cell loss, degenerative
changes, and hypertrophy. The connective tissue was composed
of increased numbers of fibroblasts, large amounts of collagen,
ground substance, and occasionally fat cells. These changes were
more extensive in LA. Subsequent work (130) revealed that
apoptosis, leukocyte infiltration, and an increased cell death
rate occur before arrhythmogenic atrial structural remodeling
associated with experimental HF. These authors suggested that
apoptosis is more likely associated with the pathophysiological
mechanisms leading to the AF substrate rather than a result of
AF per se.

Although both experimental paradigms promote AF, the
atrial cellular electrophysiological substrate produced by HF
is different from that seen with atrial tachycardia-induced
remodeling. Similarly, HF and cAF produce distinct electrical
and calcium-handling remodeling in human atrial samples, with
repolarization shortening in cAF but not HF (131). By contrast,
protein levels of ECM components are significantly increased
in HF patients (131), suggesting a significant role of re-entry-
promoting structural remodeling in AF development. Thus, HF
promotes the presence of AF (by producing an altered substrate),
and, in turn, the presence of AF worsens the prognosis of the
patient with HF. It should be highlighted that CHF has different
dynamic components with distinct time courses, which can
further modulate the interaction between AF and HF (29).

Obesity
There is a strong correlation between obesity and AF (132–
134). In a meta-analysis of 16 studies (135), obesity increased
the risk of developing AF by 49% in the general population.
Additionally, obesity is usually accompanied by several other risk
factors predisposing to developing AF (136). Epicardial adipose
tissue is metabolically active (137), with its cardiometabolic risk
being comparable to other visceral fat stores. Specifically, it can
directly affect the atrial myocardium by releasing adipokines,
which promote inflammation and fibrosis (138). Epicardial
adipose tissue accumulation is closely associated with atrial
and ventricular arrhythmias and electrocardiographic signs
associated with arrhythmogenesis (139). Patients with AF have
higher levels of epicardial adipose tissue than controls, and those
with chronic AF are more likely to have a higher volume of
epicardial adipose tissue than those with paroxysmal AF (140,
141). Volume or thickness of epicardial adipose tissue, measured
on cardiac computed tomography (CT) and cardiac magnetic
resonance (CMR), are predictors of the presence, severity, and
recurrence of AF (142).

Hypertension
There is a well-established association between hypertension and
AF (143–146). Although, from an epidemiological perspective,
it is still unclear whether the risk of AF rises linearly with
blood pressure (BP) or whether there is a BP threshold above
which the risk increases (147). In the Framingham study,
hypertension added an excess risk for AF of 50% in men
and 40% in women (124). In animal models of experimental
hypertension, the high BP rapidly induced LA hypertrophy,
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fibrosis, and inflammation (14). In humans chronic systemic
hypertension with left ventricular hypertrophy is accompanied by
atrial remodeling characterized by slowing of global and regional
conduction, increase in low voltage areas, and easier inducibility
of sustained AF (148). LA enlargement and associated P-wave
changes predict AF occurrence in hypertensive patients (149,
150). Hypertension is also a risk factor for arrhythmia recurrence
after AF ablation, but it is unclear whether this is independent of
other factors such as atrial size (17).

Sleep-Disordered Breathing
Sleep-disordered breathing (SDB) has been linked to long-
term adverse outcomes and is proposed as an additional and
independent risk factor for cardiovascular diseases (151). SDB
is highly prevalent among AF patients (from 21 to 74%),
promotes arrhythmogenesis, and impairs treatment efficacy (152,
153). There is evidence that SDB – may – promote atrial
fibrosis in animal models. Previous studies showed that SDB
induces conduction slowing decreases matrix metalloproteinase-
2, changes atrial connexin-43 expression and distribution, and
significantly increases atrial fibrous tissue content (154, 155).
In the clinical setting, the atria of SDB patients have extensive
areas of low voltage and conduction abnormalities (156).
A meta-analysis of observational studies concluded that SDB
was associated with AF recurrence after catheter ablation (157).
Patients with SDB had a 31% greater risk of AF recurrence
after successful catheter ablation than patients without SDB.
Importantly, in the same study, the efficacy of catheter ablation
for AF was similar between patients without SDB and those with
SDB undergoing continuous positive airway pressure treatment.

Diabetes Mellitus
Diabetes mellitus (DM) is an independent risk factor for the
development and progression of AF (158). Patients with DM
have a 40% higher risk of developing AF than patients without
DM (159). They have increased levels of angiotensin II, TGF-β
signaling, adipose tissue, systemic inflammation Campo (160),
larger atria, lower atrial voltage, and higher recurrence of AF after
ablation (161). Evidence of widespread fibrotic deposits in the
atria was also found in DM animal models (162).

Sex
There are well-established sex differences in AF regarding its
epidemiology, with a lower age-specific prevalence in women
(women presenting at a later age) and its clinical presentation,
with women more likely to be symptomatic (163). Globally the
number of men and women with AF are similar since, on average,
women live longer than men (164), and after 75 years of age,
about 60% of the people with AF are women. Women with
AF have an increased risk of stroke and death compared to
men (165), which, besides differences in treatment, might in
part be explained by the interesting observation that women
with AF have a more significant atrial fibrosis burden, which
may predispose them to more AF-associated complications. In
a study with CMR in 939 patients (166), advancing age and
female sex were associated with a higher burden of atrial fibrosis
in AF patients. Women with a prior history of stroke also
had more fibrosis than women and men without a history of

stroke. In another study, female sex and AF persistence were
independently associated with the presence of fibrosis on delayed
enhancement CMR (167). The delayed enhancement was variably
distributed in this population but more frequently detected in the
posterior wall. Thus, females may have a higher probability of
the presence of atrial fibrosis and atrial myopathy. Despite these
observations, the mechanisms underlying differences between
sexes are mainly unknown.

IDENTIFYING FIBROTIC ATRIAL
SUBSTRATES BY
ELECTROCARDIOGRAM

The electrocardiogram (ECG) during normal sinus rhythm could
be a tool to characterize the fibrotic substrate and predict AF
risk (168). Interestingly in a study with 285,933 individuals (169),
compared with the reference group (P wave duration of 100–
105 ms), individuals with very short (≤89 ms; hazard ratio [HR]
1.60, 95% confidence interval [CI] 1.41–1.81), and very long
P-wave duration (≥130 ms; HR 2.06, 95% CI 1.89–2.23) had an
increased risk of incident AF.

The rationale behind using ECG as a prediction tool is that
atrial remodeling is associated with an increased risk of AF and
can be detected by a shift in the P-wave axis (170). The terminal
force of the P wave during sinus rhythm in lead V1 (PTFV1)
correlates with LA anomalies (171). A PTFV1 > 0.06 mm/s is
associated with an increased risk for the development of AF
(hazard ratio 4.02, 95% confidence interval 1.25–17.8; P = 0.018)
(172, 173), and PTVF1 is independently related to cryptogenic,
cardioembolic and ischemic strokes (174, 175). Suppose this
evidence of inter-atrial conduction block is present in the absence
of chamber enlargement or ischemia (especially in elderly
patients with P-wave duration >140 ms). In that case, it can be
a marker of short-term development of AF, an association called
Bayés syndrome (176). Furthermore, PTFV1 ≥0.04 mm/s, along
with P-wave duration ≥125 ms and P-wave dispersion ≥40 ms,
are predictors of AF recurrence post-PVI (P wave duration
>125 ms had 60% sensitivity, 90% specificity, positive predictive
value of 72% and negative predictive value of 83.7%) (177).

Recently, a deep convolutional neural network trained on
>1 million 12-lead resting ECGs predicted new-onset AF
within 1 year (178). This model classified 62% of all patients
who experienced an AF-related stroke within 3 years of the
index ECG as being at high risk for new-onset AF. Thus,
electrocardiographic analysis during sinus rhythm could be an
additional tool to detect the presence of a vulnerable atrial
substrate. However, the exact pathophysiological features and
mechanisms detected by such approaches remain incompletely
understood. A better insight into the underlying mechanisms
may help improve early tailored treatment to prevent substrate
progression and the occurrence of adverse outcomes. Even
though the ECG is one of the oldest ancillary exams in cardiology,
the widespread availability of standardized digital ECGs provides
an opportunity for deep learning to make a significant clinical
impact in cardiac electrophysiology, including characterization of
the atrial cardiomyopathy (179).
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CHARACTERIZING ATRIAL
STRUCTURAL REMODELING BY
NON-INVASIVE IMAGING

Non-invasive imaging is a powerful tool for identifying patients
with atrial fibrosis. Echocardiography, CT, and CMR are useful
for assessing the LA structure.

Echocardiography
Echocardiography is the modality of choice for screening patients
with cardiac pathologies, including those involving the LA (180).
Given the non-uniform nature of remodeling (17), real-time
3D echocardiography (3DE) technology compared with CMR
reference is more accurate than conventional 2D-based analyses,
resulting in fewer patients with undetected atrial enlargement
[3DE-derived LA Volume values showed higher correlation with
CMR than 2DE measurements (r = 0.93 vs. r = 0.74 for maximal
LAV; r = 0.88 vs. r = 0.82 for minimal LAV)] (181).

Increased LA size on echocardiography is associated with a
higher recurrence rate of AF treated with ablation (182) and
an increased risk of stroke in patients with non-valvular AF
(183, 184). Assessment of LA function can be performed by
pulsed-wave Doppler measurements. Certain features, like LA
active relaxation and contraction, are altered in AF patients
compared to subjects with sinus rhythm, regardless of LA
size and age (185). Total atrial conduction time during sinus
rhythm can be estimated as the interval from the beginning
of the P-wave on the body-surface ECG to the peak A’-
wave on the tissue-doppler imaging (TDI) tracing of the
LA lateral wall on echocardiography. This echocardiography-
derived PA-TDI duration reflects electrical and structural
changes to the atria (186). PA-TDI is prolonged in AF
patients, including those without overt cardiovascular disease
(idiopathic AF) (187), and is associated with AF recurrence
after ablation in paroxysmal AF patients (188). Two-dimensional
speckle-tracking echocardiography, a method to quantify atrial
deformation, has also been used as a sensitive marker to
detect early functional remodeling before anatomical alterations
occur (189). Reduced atrial strain, as calculated using speckle-
tracking, has been correlated with reduced atrial compliance
and increased fibrosis. In a study by Rivner et al. (168), it was
reported that global compliance tended to be an independent
determinant of the presence of low-voltage zones (odds ratio
1.347, P = 0.046) and is a predictor of the development of AF
and AF recurrence after ablation.

Cardiac Computed Tomography
Cardiac CT is a method with excellent spatial resolution
compared to CMR (190), enabling accurate assessment of atrial
volume and LA wall thickness. On the other hand, it has a low
contrast-to-noise ratio, which reduces its ability to distinguish
between normal myocardium and scar (191). Before catheter
ablation, LA volume and LA asymmetry (asymmetry over
60% predicted AF recurrence with 74% sensitivity and 73%
specificity), predict the likelihood of maintaining sinus rhythm
post-AF ablation (192, 193). CT-based local wall deformations

correlate better with extended low-voltage areas than other
remodeling surrogates (194). The progression of the shape of the
LA roof determined by CT correlates with the development of
non-PV arrhythmic substrate in patients undergoing AF ablation
(195, 196).

Cardiac Magnetic Resonance
Cardiac magnetic resonance has become the gold standard in
volumetric LA structure and function assessments.

Contrast-enhanced CMR with gadolinium is additionally used
to detect atrial fibrosis (197, 198) and can non-invasively identify
atrial scar, which has been shown to spatially correlate with low-
voltage areas (199). Other studies have reported the feasibility
of delayed-enhancement CMR to quantify fibrosis in the LA
and show that a high degree of delayed enhancement in the
LA is associated with a more complex and extensive ablation
with AF termination as the endpoint (200). Spragg et al. (201)
reported a sensitivity and specificity of LGE for discrimination
of low-voltage areas of 0.84 and 0.68, respectively. Delayed-
enhancement CMR correlates with surgical biopsy results and
is strongly associated with AF recurrence after catheter ablation
(202, 203).

Marrouche’s group introduced the Utah scoring system (204).
This score classified patients by the extent of enhanced LA area
into four groups: 1 (<5%), 2 (5–20%), 3 (20–35%), and 4 (>35%).
In this study, procedural outcomes were predicted by the baseline
LA scar burden. During follow-up, all patients in group 1 were
free of AF, but in group 4, only 4% of patients remained AF free.
Other studies also found that LA fibrosis detected by CMR is
associated with appendage thrombus and spontaneous contrast
(205) and is an independent risk factor for stroke in patients with
AF (206, 207).

Technological developments have expanded CMR use, and
atrial 4-dimensional flow CMR recently emerged as a novel
non-invasive approach that characterizes Campo’s atrial flow
dynamics. It allows measurement of 3D blood flow and
the derivation of stasis maps, providing visualization and
quantification of potentially thrombogenic stasis in the LA and
left atrial appendage (208–211). Similarly, non-invasive digital
atrial twins based on patient-specific CMR imaging can integrate
anatomical, structural, and functional determinants of atrial
electrophysiology and arrhythmogenesis (29). Proof-of-concept
studies have shown the promise of this approach for guiding
AF ablation, and initial randomized trials comparing simulation-
guided versus standard clinical therapy are ongoing (119). With
these recent advances, CMR imaging can provide comprehensive
images of the heart in patients with various cardiac diseases,
adding prognostic value (212).

IDENTIFYING ATRIAL FIBROSIS BY
ELECTROANATOMIC VOLTAGE
MAPPING

Electroanatomic voltage mapping (EAVM) plays an essential
role in diagnostic and therapeutic mapping and ablation in
AF patients (17), providing information regarding local voltage
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abnormalities that may be used as a surrogate marker of
myocardial health (213). Animal studies have demonstrated
the histological correlation between low voltage areas (LVA)
and atrial scars (214). However, the methodology for defining
LVA has not been standardized, and a clear voltage threshold
for abnormality has never been histologically validated (215).
Several studies have compared the voltage maps with CMR
findings, correlating the bipolar voltage with late gadolinium
enhancement (203, 214, 216). In one of these studies, the
overlap of late gadolinium enhancement areas with LVA (defined
as <0.5 mV) had a sensitivity of 84% but a specificity of
only 68% (201). One potentially confounding factor is the
atrial rhythm during mapping, an important determinant of
voltage (217). The voltage of bipolar signals during AF is
significantly reduced compared to sinus rhythm (218). It has been
suggested that the correlation between LVA and posterior LA
delayed enhancement on CMR (219) is significantly improved
when acquired during AF compared to sinus rhythm because
the fixed-rate and wavefront characteristics present during
sinus rhythm may not accurately reflect underlying functional
vulnerabilities responsible for AF maintenance. This is an
important area of investigation to improve the correlation
between voltage mapping and atrial fibrosis. New technological
developments like omnipole mapping and dynamic voltage
attenuation may further enhance the detection of the abnormal
atrial substrate (220).

During the last decade, technological developments of EAVM
have helped identify different arrhythmia patterns and locations,
generating new insights into the pathophysiological mechanisms
of AF. In addition, progress in body-surface mapping and
computer processing has allowed non-invasive mapping of atrial
activation with increasing accuracy (221). For example, Metzner
et al. (222) reported that non-invasive epicardial and endocardial
electrophysiology systems produce comparable characterization
of rotational sources with invasive mapping. A non-invasive
evaluation of segmented images (223), used to construct
personalized 3D models of the fibrotic atria with biophysically
realistic atrial electrophysiology, demonstrated that AF in fibrotic
substrates is perpetuated by re-entrant drivers (rotors). This
and several other observations have led to the hypothesis that
fibrillation mechanisms may exist along a continuous spectrum,
with the specific electrophenotype determined by the degree
of remodeling of the underlying myocardial substrate (224)
particularly the extent of atrial fibrosis.

Finally, the presence of LVA could be considered in
thromboembolic risk stratification, as the presence of LA LVA
correlates with a higher incidence of previous stroke or the
presence of pre-existing procedure-independent silent cerebral
events on cerebral delayed enhancement MRI (225).

BIOMARKERS OF ATRIAL FIBROSIS

Several biological markers reflecting atrial stress, inflammation,
endothelial dysfunction, kidney dysfunction, and atherosclerosis
have been associated with future AF events, further supporting
the correlation between inflammation (and fibrosis) and atrial

dysfunction in a population at risk for AF (226). The utility
of these markers is the possible identification of the presence
of atrial myopathy during incipient stages of the disease and
the identification of ’high-risk’ patients for thromboembolic
complications and stroke. For example, inflammation and
fibrosis biomarkers (CXCL16, FABP3, PIGF, and MMP-9) were
higher in subjects with worse LA reservoir function (227)
in a population at risk of AF. Furthermore, blood-derived
biomarkers (such as markers of inflammation, coagulation
activity, cardiovascular stress, myocardial injury, and cardiac and
renal dysfunction) can contribute to refining risk assessment
for stroke outcomes and mortality in the presence of AF (228),
since currently used clinical scores (e.g., CHA2DS2-VASc) only
provide modest discrimination of stroke risk. Recent studies of
biomarkers in AF have shown that they significantly improve risk
stratification (229, 230).

Troponin
Elevated troponin levels have been associated with an increased
incidence of AF (231–233). However, the optimal cut-off to
determine the risk of AF is unclear. There are no AF primary
prevention studies using troponin screening, so it is unclear
how detectable troponin levels in the absence of AF will
change clinical management (234). Troponin levels increase
immediately after AF ablation. More significant elevation of
troponin levels is related to favorable outcomes after ablation and
more significant reversal of structural remodeling. In multivariate
analysis, the TnT level was the only independent predictor for
responders (odds ratio 90.1; 95% confidence interval 14.95–
543.3; P < 0.0001) (235). The reason for this paradoxical
observation may be the presence of healthy myocardium,
as more troponin T would be released by radiofrequency
ablation in a healthy LA than in a ‘sick’ LA (in which the
myocardium had already degenerated into fibrous tissue) and
postprocedural troponin levels may therefore reflect preservation
of healthy LA myocardium.

Natriuretic Peptides
Some studies have shown that natriuretic peptides are elevated in
patients with paroxysmal AF compared with matched controls
in sinus rhythm (236, 237). Natriuretic peptides levels fall
rapidly after restoring sinus rhythm (238, 239). However,
the usefulness of natriuretic peptide (NT-proBNP) levels to
predict the maintenance of sinus rhythm after successful
cardioversion remains controversial (240, 241). Nevertheless, the
addition of NT-proBNP to the CHADS2 and CHA2DS2-VASc
risk stratification models significantly improves discrimination
performance (242). Hijazi et al. (228) reported an adjusted
hazard ratio of 4.0 (95% confidence interval, 3.2 to 5.0;
P < 0.001).

Collagen
There are two significant biomarkers of collagen metabolism,
the procollagen type-III N-terminal propeptide (PIIINP) and
collagen type-I carboxy-terminal telopeptide (ICTP). PIIINP
reflects collagen synthesis and degradation, whereas ICTP reflects
collagen degradation only (243). In a large cardiovascular
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disease-free, multi-ethnic, and middle-aged sample population,
PIIINP and ICTP predicted new onset of AF during a
median follow-up of 10 years (244). A combination of
circulating biomarkers reflecting excessive myocardial ICTP
is also associated with higher AF prevalence, incidence, and
recurrence after ablation (245). In the later study, the adjusted
hazard ratio for AF recurrence was 3.4 (p = 0.008).

ST2
Suppression of tumorigenicity 2 (ST2) is a member of the IL-
1 receptor (IL-1R) family that plays a major role in immune
and inflammatory responses (246). In recent years, knowledge
about ST2’s role in the pathophysiology of cardiovascular diseases
has expanded, with strong links to myocardial dysfunction,
fibrosis, cardiovascular stress, and remodeling (247). Although
ST2 concentrations do not improve risk discrimination in AF
patients (231) its levels are of prognostic value in patients
on anticoagulation (248). Concentrations of sST2 were also
significantly associated with the risk of mortality, even after
adjusting for the CHA2 DS2 -VASc score [HR: 1.007 (1.001–
1.013); P = 0.014] (248). ST2 has been proposed as a screening
tool to detect atrial fibrosis in AF patients to allow a more
aggressive therapy (234). Likewise, ST2 may be an objective
biomarker to predict the risk of arrhythmia recurrence after
ablation, emergency admission, or HF events (249, 250). In
a study by Kim et al. (251), mean ST2 was higher in AF,
persistent AF, and symptomatic AF and decreased after ablation.
Another study, in a population of patients scheduled for
cryoballoon catheter ablation (252) analyzed the relationship
between ST2 and recurrence of AF. ST2 was the only
independent parameter predicting AF recurrence [sensitivity:
77.3%, specificity: 79.5%; area under the curve was 0.831
(p < 0.001)]. It might therefore be a useful marker for
detecting patients with high-grade fibrosis who will benefit less
from ablation.

Galectin-3
Galectin-3 is a marker of myocardial fibrosis, which may be
involved in AF-promoting atrial remodeling (253). Galectin-3
levels correlate with LA volume and are increased in AF patients
(254). In a study that compared galectin-3 levels in patients with
myocardial infarction and with or without AF (255) the patients
with AF had higher levels of C-reactive protein (p < 0.01) and
galectin-3 (p < 0.05) than those without AF. Patients with high
galectin-3 had 4.4 times greater odds of having AF. Galectin-3
levels were lower in patients without AF (p < 0.01) than in those
with permanent/persistent AF.

A recent meta-analysis showed that higher galectin-3 levels
might be associated with an increased risk of AF recurrence in
catheter ablation patients (256).

Transforming Growth Factor-β1
Several stimuli that promote AF converge in increased expression
levels of TGF-β1, which in turn provokes interstitial fibrosis
(257). TGF-β1 is a profibrotic cytokine and a central growth
factor involved in regulating atrial fibrosis (258). Upon binding
to its receptor, TGF-β1 leads to the activation of intracellular

signaling cascades, which ultimately alter the expression of genes
involved in differentiation, chemotaxis, and proliferation (259).

High plasma levels of TGF-β1 have been correlated
with increased LA volumes and reduced bipolar voltage on
electroanatomic voltage mapping (260), but results regarding its
effect on the incidence of AF have been contradictory (261–263).

Therefore, researchers have been actively looking for
additional biomarkers to predict therapeutic failure or
morbidity mortality in patients with AF in the last decades.
The measurement of several of the above-described biomarkers,
such as troponin and natriuretic peptides, has consistently been
demonstrated to improve risk prediction in addition to the
clinical risk stratification models. However, there are still several
significant uncertainties concerning its real value in detecting
underlying atrial disease, partly due to these biomarkers’
unspecific nature.

TREATMENT

Determining the degree of the atrial fibrotic substrate
is important for deciding the therapeutic strategy. This
determination may help identify patients with the highest
probability of success if treated with ablation therapy or, on the
contrary, the population of patients with evidence of advanced
disease and should be managed with medical treatment only.

Medical Treatment
Preclinical and Investigational Pharmacological
Agents That May Directly Modulate the Fibrotic
Substrate
As previously stated, diffuse excessive production and deposition
of ECM is the primary manifestation of fibrosis. Despite extensive
research in this area, there is a lack of efficacious therapies
for inhibiting or reversing cardiac fibrosis, mainly due to the
complexity of the cell types and signaling pathways involved
(264). As an example, a clinical study that sought to determine
whether matrix metalloproteinase (MMP) inhibitor, PG-116800,
reduced left ventricular (LV) remodeling after myocardial
infarction (MI) failed to show this objective and improve clinical
outcomes (265).

The TGFβ is one of the regulators in the heart remodeling
after injury. By this, the targeting of the TGFβ signaling pathway
(266) has been explored as a potential therapy to inhibit
fibrosis. In this context, Inhibitors of TGFβ Receptors I and II
(receptors that activate the TGFβ signaling) have been tested.
These inhibitors have demonstrated that they reduce myocardial
fibrosis in animal models of Chagas disease and myocardial
infarction (267, 268). Despite these beneficial effects, increased
mortality and inflammation were observed (269, 270), and in
long-term inhibition, cardiac toxicity (271). Nonetheless, novel
TGFβ receptor inhibitors in experimental studies to treat cardiac
fibrosis revealed an improved pharmacokinetic profile (272) and
minimal toxic effects (273).

In the clinical setting, Pirfenidone (a drug that is inhibitory
of TGFβ signaling) is approved as an oral anti-fibrotic drug for
the treatment of idiopathic pulmonary fibrosis (274), and its use
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in treating cardiac fibrosis is actively studied (275). The recently
published PIROUETTE trial (276) showed that pirfenidone
appeared to be beneficial at reducing myocardial fibrosis among
patients with heart failure with preserved ejection fraction. This
medication was associated with a modest reduction in myocardial
fibrosis, as assessed by cardiac MRI, compared with placebo.
Despite this observation, presently, its clinical significance is
still undetermined.

Tranilast is a drug used to treat allergic disorders (277–279)
and dermatological diseases (280) has been demonstrated to
inhibit collagen deposition by inhibiting fibroblast proliferation
(281) and limit TGF-β-induced collagen synthesis by keloid-
derived fibroblasts (282). Suppression of TGF- β, and more
specifically, its action against tumor cells, is a proven action
of tranilast that could have practical therapeutic applications
(283, 284). Laboratory studies conducted on various populations
of fibroblasts showed that tranilast inhibited its proliferation
(285, 286). Notwithstanding clinical and experimental evidence
supporting the anti-fibrotic effects of tranilast, its prolonged use
can have hepatic toxicity (287), limiting its clinical application.

After the observation that in Galectin-3 knockout mice,
left ventricular hypertrophy was prevented and left ventricular
function was ameliorated (288), the possible application of
Galectin-3 inhibition as a therapeutic target capable of slowing
the progression of cardiac fibrosis (289) has been considered. Up
to date, no clinical studies have been published.

As it is thought that endothelin can play a role in the
pathophysiology of fibrosis, the endothelin receptor blockade has
been considered another potential therapeutic target, but clinical
studies have shown disappointing results (290, 291).

Clinical Use of Pharmacological Agents That May
Modulate the Fibrotic Substrate
The guidelines from the principal Cardiac Societies (292)
recommend established HF therapies that target neurohumoral
pathways and may reduce mortality in HF patients, at least
in part through inhibition of progressive structural remodeling
(Table 1). Some of these therapies have also been studied in
the population of patients with AF, and data on the potential
usefulness in modifying the substrate using this so-called
‘upstream therapy’ have been published. These pharmacologic
agents are ACE inhibitors (as explained previously), AT1
receptor blockers, mineralocorticoid antagonists (293, 294), and
β-adrenoceptor blockers. However, the results have not been
consistent (295–297). Other therapies like statins have also been
studied because these agents seem to exert antifibrotic effects,
modulate metalloproteinases, and interact with endothelial nitric
oxide synthase that protects atrial myocardium during ischemia.
However, results have been either neutral or inconsistent (298–
301).

Debatable results have also been reported for the effects of fish
oils (327). These conflicting data may be related to diverse study
populations, differences in AF history, and concomitant diseases,
resulting in heterogeneous baseline remodeling, in combination
with the limited reversibility of structural remodeling once it has
been established (328).

Ablation
Although pulmonary vein isolation (PVI) is very effective in
maintaining sinus rhythm in patients with paroxysmal AF (329),
it is much less so in persistent AF, with a reported 5-year
AF freedom rate of 20% after a single and 45% after multiple
procedures (330, 331). Progression of paroxysmal to persistent
forms of AF occurs in 4–15% of patients per year, depending
on risk factors (332–334). In recent years, several studies have
shown that the earlier the treatment of patients with AF, the better
the results regarding arrhythmia recurrence, hospitalization,
and repeat procedures (329, 335–337). Also, early catheter
ablation was superior to antiarrhythmic drug therapy in patients
with drug-refractory paroxysmal AF in delaying progression
to persistent AF (338). This suggests that early intervention
can slow the substrate development and the progression to
established atrial fibrosis and highlights a potential role for
(non-invasive) characterization of the atrial substrate in guiding
therapeutic decisions.

Considerable research has shown that patients with persistent
AF have a more advanced atrial disease than those with
paroxysmal AF (339), and different studies have shown that
the extent of fibrosis before ablation is independently associated
with the likelihood of AF recurrence (340). The higher the
burden of atrial fibrosis, the lower the probability of sinus
rhythm maintenance. These observations led to the assessment
of various strategies for modifying the arrhythmic substrate
beyond PVI. Clinical and experimental studies suggest that
re-entrant drivers (i.e., rotors) might maintain persistent AF
(341, 342). A clinical study to evaluate the relationship between
fibrosis imaged by delayed-enhancement CMR and atrial
electrograms in persistent AF reported that 90 percent of complex
fractionated atrial electrogram sites occur at non-delayed-
enhancement and patchy delayed-enhancement LA sites (343).
A fascinating animal study (344), which analyzed the histological
characteristics of Complex Fractionated Electrograms (CFAE)
with atrial myocardial thickness and fibrosis sites, found the
presence of a thicker wall and a more significant amount
of fibrosis. The atrial myocardium was significantly thicker
at CFAE sites (1757.5 ± 560.5 µm) than at non-CFAE sites
(1279.5± 337.2 µm) (p = 0.036). At CFAE sites, it was filled with
substantially more considerable fibrotic tissue than at non-CFAE
sites (22.8± 6.9% versus 7.2± 4.7%, p < 0.001).

A 3D, biophysically detailed computational modeling
study in patient-derived atrial models with individualized
fibrosis distributions – derived from late enhancement CMR
- showed that AF is inducible by programmed electrical
stimulation in models with a sufficient amount of fibrosis.
The induced AF is perpetuated by re-entrant drivers
that persist in spatially confined regions. The latter areas
constitute boundary zones, between fibrotic and non-fibrotic
tissue characterized by high fibrosis density and entropy
values (223).

Invasive electrical mapping data from a 64-pole basket
catheter have been employed in a clinical computational
mapping approach, revealing sustained electrical rotors and
repetitive focal beats during human AF (345). Based on these
observations, these authors have pioneered the CONFIRM
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TABLE 1 | Potential antifibrotic mechanisms of currently used pharmacologic agents.

Pharmacologic agent Target Mechanism Description

Beta- blockers β−adrenergic−receptor Blocking the effects of beta-agonism,
therefore
reducing sympathetic overactivity
decreasing inflammation (302).
Anti-inflammatory and pro-angiogenic
properties (increase cytokine IL-10;
decrease cytokine IL-1β) (303).

β−adrenergic−receptor agonists, including
epinephrine and norepinephrine, could produce
cardiac hypertrophy and fibrosis in vivo (304).
Cardiac fibroblasts have adrenergic receptors, and
stimulation of the β2−adrenergic receptor leads to
increased proliferation of human and rodent cardiac
fibroblasts (305, 306).

Mineralocorticoid
receptors antagonists

mineralocorticoid receptors Reduce the proinflammatory and profibrotic
effects of aldosterone (307–309)

Aldosterone stimulates the expression of profibrotic
molecules, such as transforming growth factor-β1
(TGF-β1), plasminogen activator inhibitor 1 (PAI-1),
endothelin 1 (ET-1), placental growth factor (PGF),
connective tissue growth factor (CTGF),
osteopontin, and galectin-3 (310).

ACE
inhibitors/Angiotensin
receptor blockers

Prevent the hydrolysis of Angiotensin I
to Angiotensin II

Angiotensin-converting enzyme (ACE)
promotes inflammation in the heart, kidney,
and vasculature through Angiotensin II as
the effector (311, 312).
Angiotensin II induces fibrosis via the
stimulation of TGF-β (313).

ACEIs reduce inflammation and fibrosis through the
reduction of IL-6 and TNF-α (312).
ACEIs have an effect on reducing TGF-β1, TGF-β2,
and Th2 cytokines (314).
Induce the apoptosis of cardiac fibroblasts (315).
Reduction of sST2 (316).

Statins Pleiotropic effects, e.g.,
anti-inflammatory, antifibrotic, and
immune-modulatory (317).

Statins may have a beneficial effect on
various factors that promote fibrosis, such
as endothelial dysfunction, VEGF, IL-6, and
TNFα (318).
They have been found to improve
endothelial function, exert an
anti-inflammatory effect and lower the
expression of VEGF (319).

Reduce the differentiation of MRC5 fibroblasts into
myofibroblasts (320).
Induce fibroblast apoptosis (321).
Suppress epithelial-mesenchymal transition (EMT)
by attenuating TGF-β signaling (322, 323).
Reduce the expression of transforming growth
factor (TGF)-β1, connective tissue growth factor
(CTGF), RhoA and cyclin D1 (324, 325).
Inhibition of geranylgeranylated Rho protein (326).

study (346), in which the ablation in patients with persistent
AF, guided by the computational mapping approach when
compared with the conventional approach, showed higher
freedom from AF (82.4% versus 44.9%; p < 0.001) after
a single procedure. Although this focal impulse and rotor
modulation (FIRM) approach initially gained some popularity,
a meta-analysis that evaluated the results of PVI versus
PVI + FIRM ablation demonstrated no therapeutic benefit of
the additional focal impulse and rotor modulation approach over
PVI alone (347).

A personalized substrate modification has been tested in
the last decade, essentially with ablation targeting LA LVA or
guided based on CMR-derived fibrosis patterns. Four strategies
have been evaluated: Isolation of fibrotic areas (Box Isolation
of the Fibrotic Area, BIFA) (348), homogenization of the LVA
(349, 350), selective ablation of atrial LVA (351) and different
combinations of part of these strategies (352). A meta-analysis
that included studies with linear ablation or ablation of complex
fractionated electrograms found disappointing results (353). In
this meta-analysis in comparison with PVI alone, the addition
of complex fractionated atrial electrograms (CFAE) ablation
[RR 0.86; 95% confidence intervals (CI) 0.64, 1.16; P = 0.32]
or left atrial linear ablation (LALA) at the roof and mitral
isthmus (RR 0.64; 95% CI 0.37, 1.09; P = 0.10) offered no
significant improvement in arrhythmia-free survival. However,
adjunctive CFAE ablation was associated with significant
increases (P < 0.05) in procedure and fluoroscopy times.

Another meta-analysis that analyzed specifically studies
with a voltage-guided substrate modification by targeting
LVA in addition to PVI found that this approach was
more effective, safer, and with a lower proarrhythmic
potential than conventional approaches (354). A common
finding in different studies is that the absence of LVA
identifies patients who respond well to a PVI−based ablation
strategy (355).

Nonetheless, a recently published randomized controlled
trial (VOLCANO trial, (356)) demonstrated that LVA ablation,
in addition to PVI, had no beneficial impact on rhythm
outcomes in patients with paroxysmal AF undergoing AF
ablation. Patients with LVAs showed lower AF−recurrence−free
survival rates (88%) than those without LVA (57%, P < 0.0001;
C, 53%, P < 0.0001), and so, the presence of LVA strongly
predicted AF recurrence (356). Similarly, recently presented
(357) results of the DECAAFII trial suggest that fibrosis-
guided ablation was not superior to conventional PVI in
reducing atrial arrhythmia recurrence but significantly increased
adverse events.

This is an area of active research, and probably soon,
we will have data that will allow us to perform ablation
tailored to the substrate observed in the particular patient.
Based on the information from the different studies cited
above, the most consistent finding is that the greater the
degree of the atrial fibrotic substrate, the less probable is sinus
rhythm maintenance.
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CONCLUSION

Catheter ablation for AF has developed as an important
rhythm-control strategy and nowadays is one of the most
common cardiac ablation procedures performed worldwide.
A rigorous assessment of the presence of atrial fibrotic
substrate is important for determining the treatment
options and as a predictor of long-term success after
catheter ablation.

In humans, the progression from paroxysmal AF to persistent
forms is marked by structural alterations of the atrial tissue
(358). Although the clinical phenotype (paroxysmal vs. persistent
AF) typically determines therapeutic choices, it may not be
the primary driver determining the success of catheter ablation
treatment. Instead, the underlying factors, primarily the extent of
atrial fibrosis, may be decisive.

Despite the complexity of atrial substrate evaluation, we
currently have several diagnostic resources (imaging, ECG,
biomarkers, etc.) that enable a comprehensive assessment and
quantification of the extent of LA structural remodeling and
the presence of fibrotic atrial substrates. Given the central

role of fibrosis in AF pathophysiology and therapy, such
a comprehensive understanding is expected to improve AF
management and patient outcomes.
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