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Omnisemantics: Smooth Handling of Nondeterminism
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This paper gives an in-depth presentation of the omni-big-step and omni-small-step styles of semantic
judgments. These styles describe operational semantics by relating starting states to sets of outcomes rather
than to individual outcomes. A single derivation of these semantics for a particular starting state and program
describes all possible nondeterministic executions (hence the name omni), whereas in traditional small-step
and big-step semantics, each derivation only talks about one single execution. This restructuring allows for
straightforward modeling of both nondeterminism and undefined behavior as commonly encountered in
sequential functional and imperative programs. Specifically, omnisemantics inherently assert safety, i.e. they
guarantee that none of the execution branches gets stuck, while traditional semantics need either a separate
judgment or additional error markers to specify safety in the presence of nondeterminism.

Omnisemantics can be understood as an inductively defined weakest-precondition semantics (or more
generally, predicate-transformer semantics) that does not involve invariants for loops and recursion but instead
uses unrolling rules like in traditional small-step and big-step semantics. Omnisemantics were previously
described in association with several projects, but we believe the technique has been underappreciated and
deserves a well-motivated, extensive, and pedagogical presentation of its benefits. We also explore several
novel aspects associated with these semantics, in particular their use in type-safety proofs for lambda calculi,
partial-correctness reasoning, and forward proofs of compiler correctness for terminating but potentially
nondeterministic programs being compiled to nondeterministic target languages. All results in this paper are
formalized in Coq.

1 INTRODUCTION
Today, a typical project in rigorous reasoning about programming languages begins with an
operational semantics (or maybe several), with proofs of key lemmas proceeding by induction on
derivations of the semantics judgment. An extensive toolbox has been built up for formulating
these relations, with common wisdom on the style to choose for each situation. With decades
having passed since operational semantics became the standard technique in the 1980s, one might
expect that the base of wisdom is sufficient. Yet, a style that we call omnisemantics has emerged in
recent years as a new, powerful technique with numerous applications.
In short, omnisemantics relate starting states to their sets of possible outcomes, rather than to

individual outcomes. The omni-big-step judgment takes the form t/s ⇓ Q and asserts that every
possible evaluation starting from the configuration t/s reaches a final configuration that belongs to
the set Q . This set Q is isomorphic to a postcondition from a Hoare triple. The omni-small-step
judgment takes the form t/s −→ P . It asserts both that the configuration t/s can take one reduction
step and that, for any step it might take, the resulting configuration belongs to the set P . On top
of this judgment, one may define the eventually judgment t/s −→♢ P , which asserts that every
possible evaluation of t/s is safe and eventually reaches a configuration in the set P .

On the one hand, omnisemantics can be viewed as operational semantics, because they are not far
from traditional operational semantics or executable interpreters. On the other hand, omnisemantics
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can be viewed as axiomatic semantics, because they are not far form reasoning rules; in particular,
they directly give a practical, usable definition of a weakest-precondition judgment, which can be
used for verifying concrete programs. The fact that they are both closely related to operational
semantics and to axiomatic semantics is precisely the strength of omnisemantics.

To the best of our knowledge, the ideas of omnisemantics have been studied prior to the writing
of this paper by three different groups of researchers. First, Schäfer et al. [2016] present an omni-
big-step judgment for a nondeterministic source language of guarded commands, as well as for a
deterministic target language with named continuations, using the term axiomatic semantics to refer
to this style of semantics. They establish the correctness of a function that compiles terminating
programs from the source language into the target language. Their proof is by induction on the
derivation of an omni-big-step judgment for the source program rather than on a derivation for
the target program, a key insight that we will discuss in Sections 1.3 and 6. They also present
characterizations of program equivalence and present a proof of equivalence with traditional
small-step semantics, though only in the case of a deterministic semantics. Second, Erbsen et al.
[2021] make use of both omni-big-step semantics, applied to a high-level, core imperative language
with external calls; and of omni-small-step semantics, applied to a low-level, RISC-V machine
language. They call this style of semantics CPS semantics. They establish end-to-end compiler-
correctness results for terminating programs. They also set up Separation Logic reasoning rules in
weakest-precondition style. Third, Charguéraud [2020]’s course notes make use of omni-big-step
semantics for the purpose of deriving Separation Logic triples, for both partial and total correctness.
The language considered is a nondeterministic, imperative λ-calculus, with a substitution-based
semantics. In particular, that work establishes the relationship between omni-big-step semantics
and traditional big-step semantics, in the presence of nondeterminism.

Throughout the three pieces of work, the fundamental feature of omnisemantics being exploited
is the ability to carry out proofs by induction on derivations that follow the flow of program
execution, with smooth handling of nondeterminism. Indeed, nondeterministic choices result in
universally quantified induction hypotheses at steps where nondeterministic choices are made.
Before further presenting omnisemantics, we believe that it is useful to begin by presenting in
more detail the several important problems that omnisemantics solve.

1.1 Feature #1: Stuck Terms and Nondeterminism
In an impure language, an execution may get stuck, for instance due to a division by zero or an
out-of-bounds array access. In a nondeterministic language, some executions may get stuck while
others do not. Thus, for an impure, nondeterministic language, the existence of a traditional big-step
derivation for a starting configuration is not a proof that getting stuck is impossible.

How to fix the problem? A popular but cumbersome approach is to add errors as explicit outcomes
(written err in the rules below), so that we can state theorems ruling out stuck terms. For example, if
the semantics of an impure functional language includes the rule big-let, it needs to be augmented
with two additional rules for propagating errors: big-let-err-1 and big-let-err-2.

t1/s ⇓ v1/s
′ ([v1/x] t2)/s ′ ⇓ v/s ′′

(letx = t1 in t2)/s ⇓ v/s ′′
big-let

t1/s ⇓ err

(letx = t1 in t2)/s ⇓ err
big-let-err-1

t1/s ⇓ v1/s
′ ([v1/x] t2)/s ′ ⇓ err

(letx = t1 in t2)/s ⇓ err
big-let-err-2
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Omnisemantics: Smooth Handling of Nondeterminism 1:3

The set of inference rules grows significantly, and the very type signature of the relation is
complicated. Omni-big-step semantics provide a way to reason, in big-step style, about the absence
of stuck terms in nondeterministic languages without introducing error-propagation rules.

1.2 Feature #2: Termination and Nondeterminism
In a nondeterministic language, a total-correctness Hoare triple, written total{H } t {Q }, asserts that
in any state satisfying the precondition H , any execution of the term t terminates and reaches a
final state satisfying the postconditionQ . In foundational approaches, Hoare triples must be defined
in terms of or otherwise formally related to the operational semantics of languages.

When the (nondeterministic) semantics is expressed using the standard small-step relation, there
are two classical approaches to defining total-correctness Hoare triples. The first one involves
bounding the length of the execution. This approach not only involves tedious manipulation of
integer bounds, but it is also restricted to finitely branching forms of nondeterminism. The second
approach is to define total correctness as the conjunction of a partial-correctness property (if t
terminates, then it satisfies the postcondition) and of a separate, inductively defined termination
judgment. With both of these approaches, deriving reasoning rules for total-correctness Hoare
triples becomes much more tedious than in the case of partial correctness.

One may hope for simpler proofs using a big-step judgment. Indeed, Hoare triples inherently have
a big-step flavor. Moreover, for deterministic, sequential languages, the most direct way to derive
reasoning rules for Hoare triples is from the big-step evaluation rules. Yet, when the semantics of a
nondeterministic language is expressed using a traditional big-step judgment, we do not know of
any direct way to capture the fact that all executions terminate. Omni-big-step semantics provide a
direct definition of total-correctness Hoare triples with respect to a big-step-style, nondeterministic
semantics, in a way that leads to simple proofs of the Hoare-logic rules.

1.3 Feature #3: Simulation Arguments with Nondeterminism and Undefined Behavior
Many compiler transformations map source programs to target programs that require more steps
to accomplish the same work, because they must make do with lower-level primitives. Intuitively,
we like to think of a compiler transformation being correct in terms of forward simulation: the
transformation maps each step from the source program to a number of steps in the target program.
Yet, in the context of a nondeterministic language, such a result is famously insufficient even in the
special case of safely terminating programs. Concretely, compiler correctness requires showing all
possible behaviors of the target program correspond to possible behaviors of the source program.
A tempting approach is to establish a backward simulation, by showing that any step in the target
program can be matched by some number of steps in the source program. The trouble is that all
intermediate target-level states during a single source-level step need to be related to a source-level
state, severely complicating the simulation relation.
To avoid that hassle, most compilation phases from CompCert [Leroy 2009] are carried out on

deterministic intermediate languages, for which forward simulation implies backward simulation.
Yet, many realistic languages (C included) are not naturally seen as deterministic. CompCert
involves special effort to maintain determinism, through its celebrated memory model. Rather than
revealing pointers as integers, CompCert semantics allocate pointers deterministically, taking care
to trigger undefined behavior for any coding pattern that would be sensitive to the literal values
of pointers. As a result, any compiler transformations that modify allocation order require the
complex machinery of memory injections, to connect executions that use different deterministic
pointer values. Omnisemantics make it possible to retain the simplicity of forward simulation,
while keeping nondeterminism explicit.
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1.4 Feature #4: Linear-Size Type-Safety Proofs
Type safety asserts that if a closed term is well-typed, then none of its possible evaluations gets
stuck. A type-safety proof in the syntactic style [Wright and Felleisen 1994] reduces to a pair of
lemmas: preservation and progress.

preservation: E ⊢ t : T ∧ t −→ t ′ ⇒ E ⊢ t ′ : T
progress: ∅ ⊢ t : T ⇒ (isvalue t ) ∨ (∃t ′. t −→ t ′)

The Wright and Felleisen approach, although widely used, suffers from two limitations that can be
problematic at the scale of real-world languages with hundreds of syntactic constructs.
The first limitation is that this approach requires performing two inductions over the typing

judgment. Nontrivial language constructs are associated with nontrivial statements of their in-
duction hypotheses, for which the same manual work needs to be performed twice, once in the
preservation proof and once in the progress proof. Factoring out the cases makes a huge difference
in terms of proof effort and maintainability.

The second limitation is associated with the case inspection involved in the preservation proof.
Concretely, for each possible rule that derives the typing judgment (E ⊢ t : T ), one needs to select
the applicable rules that can derive the reduction rule (t −→ t ′) for that same term t . Typically, only
a few reduction rules are applicable. The trouble is that fully rigorous checking of the proof must still
inspect all of those cases to confirm their irrelevance. A direct Coq proof, of the form “induction
H1; inversion H2”, results in a proof term of size quadratic in the size of the language1. As we
expect to handle each possible transition at most once, a proof that takes only linear work would
be more satisfying. It would also avoid potential blow-up in the proof-checking time, for languages
involving hundreds of constructs.

Interestingly, in the particular case of a deterministic language, there exists a strategy [Rompf and
Amin 2016] for deriving type safety through a single inductive proof, which moreover avoids the
quadratic case inspection. The key idea is to carry out an induction over the following statement: a
well-typed term is either a value or can step to a term that admits the same type.

∅ ⊢ t : T ⇒
(
isvalue t

)
∨
(
∃t ′. (t −→ t ′) ∧ (∅ ⊢ t ′ : T )

)
Omnisemantics allow to generalize this approach to the case of nondeterministic languages. As we
show in one of this paper’s original contributions, practical proofs of type safety can be carried out
with respect to both omni-small-step and omni-big-step semantics.

1.5 Contributions and Contents of the Paper
The contributions of this paper are as follows.
• Wepresent big-step and small-step omnisemantics for a standard imperative λ-calculus as well
as for a standard imperative while language, which we believe should make the presentation
more accessible than in prior publications. Moreover, we accompany this presentation with a
Coq formalization of all definitions and proofs.2
• We explain four key beneficial features of omnisemantics: They provide a convenient way
to reason about the absence of stuck terms (feature #1) and the absence of diverging terms
(feature #2) in nondeterministic languages, they enable forward-simulation-based correctness
proofs for compilers with nondeterministic target languages (feature #3), and they enable

1Lean matches Coq, and a proof based on Agda’s flexible dependent pattern matching still takes superlinear time to check.
2The present paper would, in particular, provide a formal publication of the results covered by the chapter on nondeterminism
and the chapter on partial correctness from Charguéraud’s Separation Logic Foundations course, Volume 6 of the Software
Foundations series. These results originally covered only omni-big-step semantics but have been extended in 2021 to cover
omni-small-step semantics as well.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Omnisemantics: Smooth Handling of Nondeterminism 1:5

type-safety proofs that avoid quadratic case inspection even in the case of a nondeterministic
language (feature #4).
• We introduce the coinductive variant of omni-big-step semantics, which yields a partial-
correctness judgment. This possibility was left as future work by Schäfer et al. [2016].
• We present numerous properties of omnisemantics, as well as their relationship to traditional
operational semantics. Some of these properties were described in Erbsen et al. [2021] but only
briefly. For example, the connection between traditional and omnisemantics only covered
traditional small-step semantics with no undefined behavior, and small-step omnisemantics
themselves were given one paragraph of description.
• We present in detail the proof techniques from two case studies on compiler-correctness
results, adapted from Erbsen et al. [2021]’s prior work.
• We present a new case study illustrating an example of a correctness proof for a compiler
transformation that increases the amount of nondeterminism. In contrast, work by Schäfer
et al. [2016] and Erbsen et al. [2021] only considered transformations that decrease the amount
of nondeterminism.

The paper is organized as follows.

• In Section 2, we introduce the omni-big-step judgment, which can be defined either induc-
tively, to capture termination of all executions; or coinductively, in partial-correctness fashion.
We also state and prove properties about the judgment, including the notion of smallest and
largest admissible sets of outcomes.
• In Section 3, we introduce the omni-small-step judgment, as well as the eventually judgment
defined on top of it and three practical reasoning rules associated with these judgments.
• In Section 4, we present type-safety proofs carried out with respect to either omni-small-step
or omni-big-step semantics. We explain the improvement over the prior state of the art, as
suggested in the earlier discussion of features #1 and #4.
• In Section 5, we explain how the omni-big-step judgment or the omni-small-step eventually
judgment can be used to define Hoare triples and weakest-precondition predicates. We
consider both partial and total correctness, and we show how the associated reasoning rules
can be established via one-line proofs (recall feature #2). Moreover, we explain how one may
derive the frame rule from Separation Logic.
• In Section 6, we demonstrate how omnisemantics can be used to prove that a compiler
correctly compiles terminating programs, via forward-simulation proofs (recall feature #3).
We illustrate this possibility through two case studies carried out on a while-language. The
first one, “heapification” of pairs, increases the amount of nondeterminism; it involves omni-
big-step semantics for both the source and the target language. The second one, introduction
of stack allocation, decreases the amount of nondeterminism; it involves an omni-big-step
semantics for the source language and an omni-small-step semantics for the target language.

Note that we leave it to future work to investigate how omnisemantics may be exploited to establish
full compiler correctness, that is, not just the correctness of compilation for terminating programs
but also that of programs that may crash, diverge, or perform infinitely many I/O interactions.

2 OMNI-BIG-STEP SEMANTICS
In the section, we introduce the omni-big-step judgment, written t/s ⇓ Q . We use this judgment
in particular for establishing type safety (§4.3), for setting up program logics (§5), and for establish-
ing compiler-verification results (§6). To present the definition of this judgment, we consider an
imperative, nondeterministic lambda-calculus, for which we first present the semantics in standard

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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big-step style (§2.1). We then discuss the properties and interpretation of the omni-big-step judg-
ment (§2.2). In particular, we focus on why the set Q that appears in t/s ⇓ Q is interpreted as an
overapproximation of the set of possible results, rather than as the exact set of possible results. We
conclude this section by presenting the corresponding coinductive judgment, written t/s ⇓co Q ,
which captures partial correctness in the sense that it allows for diverging executions (§2.4).

2.1 Definition of the Omni-Big-Step Judgment
Syntax. As a running example, we consider an imperative lambda-calculus, including a random-

number generator rand. Both this operator and allocation are nondeterministic.
The grammar of the language appears next. The metavariable π ranges over primitive operations,

v ranges over values, t ranges over terms, and x and f range over program variables. A value can
be the unit value tt, a Boolean b, a natural number n, a pointer p, a primitive operator, or a closure3.

π := add | rand | ref | free | get | set
v := tt | b | n | p | π | µ f .λx .t
t := v | x | (t t ) | letx = t in t | if t then t else t

For simplicity, we present evaluation rules by focusing first on programs in A-normal form: the
let-binding construct is the only one that involves evaluation under a context. In an application
(t1 t2), the two terms must be either variables or values. Similarly, the condition of an if-statement
must be either a variable or a value, and likewise for arguments of primitive operations. In §5.6, we
present the bind rule, which enables the evaluation of subterms under all valid evaluation contexts.

Evaluation judgments. The standard big-step-semantics judgment for this language appears in
Figure 1. States s are finite partial maps from pointers p to values v . The evaluation judgment
t/s ⇓ v/s ′ asserts that the configuration t/s , made of a term t and an initial state s , may evaluate to
the final configuration v/s ′, made of a value v and a final state s ′.

The corresponding omni-big-step semantics appears in Figure 2. Its evaluation judgment, written
t/s ⇓ Q , asserts that all possible evaluations starting from the configuration t/s reach final config-
urations that belong to the set Q . Observe how the standard big-step judgment t/s ⇓ v/s ′ describes
the behavior of one possible execution of t/s , whereas the omni-big-step judgment describes the
behavior of all possible executions of t/s . The set Q that appears in t/s ⇓ Q corresponds to an
overapproximation of the set of final configurations: it may contain configurations that are not
actually reachable by executing t/s . We return to that aspect in §2.3.

The set Q contains pairs made of values and states. Such a set can be described equivalently by a
predicate of type “val → state → Prop” or by a predicate of type “(val × state) → Prop”. In this
paper, in order to present definitions in the most idiomatic style, we use set-theoretic notation such
as (v, s ) ∈ Q for stating semantics and typing rules, and we use the logic-oriented notation Q v s
when discussing program logics. (The type of Q may be generalized for languages that include
exceptions; see Appendix C.)

Description of the evaluation rules. The base case is the rule omni-big-val: a final configuration
v/s satisfies the postcondition Q if this configuration belongs to the set Q .

The let-binding rule omni-big-let ensures that all possible evaluations of an expression letx =
t1 in t2 in state s terminate and satisfy the postcondition Q . First of all, we need all possible evalu-
ations of t1 to terminate. Let Q1 denote (an overapproximation of) the set of results that t1 may

3 In our Coq formalization, the grammar of values is restricted to closed values (i.e., values without free variables). This design
choice significantly simplifies the reasoning about substitutions. One minor consequence is that the function construct
needs to appear twice: once in the grammar of closed values and once in the grammar of terms.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Omnisemantics: Smooth Handling of Nondeterminism 1:7

big-val

v/s ⇓ v/s

big-app
v1 = (µ f .λx .t ) ([v2/x] [v1/f ] t )/s ⇓ v ′/s ′

(v1v2)/s ⇓ v
′/s ′

big-if-true
t1/s ⇓ v

′/s ′

(if true then t1 else t2)/s ⇓ v ′/s ′

big-if-false
t2/s ⇓ v

′/s ′

(if false then t1 else t2)/s ⇓ v ′/s ′

big-let
t1/s ⇓ v1/s

′ ([v1/x] t2)/s ′ ⇓ v/s ′′

(letx = t1 in t2)/s ⇓ v/s ′′

big-add

(addn1 n2)/s ⇓ (n1 + n2)/s

big-rand
0 ≤ m < n

(randn)/s ⇓m/s

big-ref
p < dom s

(refv )/s ⇓ p/(s[p := v])

big-free
p ∈ dom s

(freep)/s ⇓ tt/(s ∖ p)

big-get
p ∈ dom s

(getp)/s ⇓ (s[p])/s

big-set
p ∈ dom s

(setpv )/s ⇓ tt/(s[p := v])

Fig. 1. Standard big-step semantics (for terms in A-normal form)

omni-big-val
(v, s ) ∈ Q

v/s ⇓ Q

omni-big-if-true
t1/s ⇓ Q

(if true then t1 else t2)/s ⇓ Q

omni-big-if-false
t2/s ⇓ Q

(if false then t1 else t2)/s ⇓ Q

omni-big-app
v1 = µ f .λx .t1

([v1/f ] [v2/x] t1)/s ⇓ Q

(v1v2)/s ⇓ Q

omni-big-let
t1/s ⇓ Q1(

∀(v ′, s ′) ∈ Q1. ([v ′/x] t2)/s ′ ⇓ Q
)

(letx = t1 in t2)/s ⇓ Q

omni-big-add
(n1 + n2, s ) ∈ Q

(addn1 n2)/s ⇓ Q

omni-big-rand
n > 0

(
∀m. 0 ≤ m < n ⇒ (m, s ) ∈ Q

)
(randn)/s ⇓ Q

omni-big-ref
∀p < dom s . (p, s[p := v]) ∈ Q

(refv )/s ⇓ Q

omni-big-free
p ∈ dom s (tt, s ∖ p) ∈ Q

(freep)/s ⇓ Q

omni-big-get
p ∈ dom s (s[p], s ) ∈ Q

(getp)/s ⇓ Q

omni-big-set
p ∈ dom s (tt, s[p := v]) ∈ Q

(setpv )/s ⇓ Q

Fig. 2. Omni-big-step semantics (for terms in A-normal form)

reach, as captured by the first premise t1/s ⇓ Q1. One can think of Q1 as the type of t1, in a very
precise type system where any set of values can be treated as a type. The second premise asserts
that, for any configurationv ′/s ′ in that setQ1, we need all possible evaluations of the term [v ′/x] t2
in state s ′ to satisfy the postcondition Q .
The evaluation rule omni-big-add for an addition operation is almost like that of a value: it

asserts that the evaluation of addn1 n2 in state s satisfies the postconditionQ if the pair ((n1+n2), s )
belongs to the setQ . The nondeterministic rule omni-big-rand is more interesting. The term randn
evaluates safely only if n > 0. Under this assumption, its result, namedm in the rule, may be any
integer in the range [0,n). Thus, to guarantee that every possible evaluation of randn in a state s
produces a result satisfying the postcondition Q , it must be the case that every pair of the form
(m, s ) withm ∈ [0,n) belongs to the set Q .
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The evaluation rule omni-big-ref, which describes allocation at a nondeterministically chosen,
fresh memory address, follows a similar pattern. For every possible new address p, the pair made of
p and the extended state s[p := v] needs to belong to the setQ . The remaining rules, omni-big-free,
omni-big-get and omni-big-set, are deterministic and follow the same pattern as omni-big-add,
only with a side condition p ∈ dom s to ensure that the address being manipulated does belong to
the domain of the current state.

2.2 Properties of the Omni-Big-Step Judgment
In this section, we discuss some key properties of the omni-big-step judgment t/s ⇓ Q . Recall that
the metavariable Q denotes an overapproximation of the set of possible final configurations.

Total correctness. The predicate t/s ⇓ Q captures total correctness in the sense that it captures
the conjunction of termination (all executions terminate) and partial correctness (if an execution
terminates, then its final state satisfies the postcondition Q). Formally, let t/s ⇓ v/s ′ denote the
standard big-step evaluation judgment, and let terminates(t , s ) be a predicate that captures the fact
that all executions of t/s terminate (a formal definition is given in Appendix D). We prove:

omni-big-step-iff-terminates-and-correct :
t/s ⇓ Q ⇐⇒ terminates(t , s ) ∧

(
∀vs ′. (t/s ⇓ v/s ′) ⇒ (v, s ′) ∈ Q

)
.

In particular, if we instantiate the postcondition Q with the always-true predicate, we obtain the
predicate t/s ⇓ {(v, s ′) | True}, which captures only the termination property.

Consequence rule. The judgment t/s ⇓ Q still holds when the postcondition Q is replaced with a
larger set. In other words, the postcondition can always be weakened, like in Hoare logic.

omni-big-conseqence : t/s ⇓ Q ∧ Q ⊆ Q ′ ⇒ t/s ⇓ Q ′

Strongest postcondition. If the omni-big-step judgment holds for at least one set, then there exists
a smallest possible set Q for which t/s ⇓ Q holds. This set corresponds to the strongest possible
postcondition Q , in the terminology of Hoare logic. Formally, if t/s ⇓ Q holds for at least one Q ,
then t/s ⇓ (strongest-post t s ) holds, where the strongest postcondition is equal to the intersection
of all valid postconditions.

strongest-post t s =
⋂

Q | (t/s ⇓Q )

Q =
{
(v, s ′) ��� ∀Q, (t/s ⇓ Q ) =⇒ (v, s ′) ∈ Q

}

No derivations for terms that may get stuck. The fact that rand 0 is a stuck term is captured by the
fact that (rand 0)/s ⇓ Q does not hold for any Q . More generally, if one or more nondeterministic
executions of t may get stuck, then we have: ∀Q . ¬ (t/s ⇓ Q ).

Relationship to standard big-step semantics. The standard big-step judgment t/s ⇓ v/s ′ relates
one input configuration t/s to one single result configuration v/s ′. The omni-big-step judgment,
which relates inputs to sets of results, thus appears as an immediate generalization of the standard
big-step judgment. The following two results formalizes their relationship.
First, if t/s ⇓ Q holds, then any final configuration for which the standard big-step judgment

holds necessarily belongs to the set Q .

omni-big-and-big-inv: t/s ⇓ Q ∧ t/s ⇓ v/s ′ ⇒ (v, s ′) ∈ Q

Second, if t/s ⇓ Q holds, then there exists at least one evaluation according to the standard
big-step judgment whose final configuration belongs to the set Q .

omni-big-to-one-big: t/s ⇓ Q ⇒ ∃vs ′. t/s ⇓ v/s ′ ∧ (v, s ′) ∈ Q

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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precise-big-val

v/s ⇓′ {(v, s )}

precise-big-ref

(refv )/s ⇓′ {(p, s[p := v]) | p < dom s}

precise-big-rand
n > 0

(randn)/s ⇓′ {(m, s ) | 0 ≤ m < n}

precise-big-let
t1/s ⇓

′ Q1 ∀(v ′, s ′) ∈ Q1. ([v ′/x] t2)/s ′ ⇓ Q ′(v ′,s ′)

(letx = t1 in t2)/s ⇓′
⋃

(v ′,s ′)∈Q1

Q ′(v ′,s ′)

Fig. 3. Selected rules defining a precise variant of omni-big-step semantics, written t/s ⇓′ Q .

A corollary asserts that if t/s ⇓ Q holds with Q being a singleton set made of a unique final
configuration v/s ′, then the standard big-step judgment holds for that configuration.

omni-big-singleton: t/s ⇓ {(v, s ′)} ⇒ t/s ⇓ v/s ′

Particular case of deterministic languages. In a deterministic language, an input configuration
t/s may evaluate to at most one configuration v/s ′. In such a case, the strongest postcondition is
reduced to the singleton set {(v, s ′)}.

Nonempty outcome sets. Observe that the judgment t/s ⇓ Q , as defined in Fig. 2, can only hold
for a nonempty set Q . When designing omni-big-step rules for a new language, one has to be
careful not to accidentally include rules that allow derivations of empty outcome sets for some
programs. To illustrate the matter, consider the term “rand 0”. According to the standard big-step
semantics, this term is stuck because the rule big-rand requires a positive argument to rand. In the
omni-big-step semantics, if we were to omit the premise n > 0 in the rule omni-big-rand, we would
be able to derive (rand 0)/s ⇓ Q for any s andQ . Indeed, the premise ∀m. 0 ≤ m < n ⇒ (m, s ) ∈ Q
becomes vacuously true when n is nonpositive.

A similar subtlety appears in the rule omni-big-ref, where the fresh location p must be picked
fresh from the domain of s . This quantification could become vacuously true if the semantics
allowed for infinite states or if the set of memory locations were finite. (We discuss in §6.5 the
treatment of a language whose semantics account for a finite memory.)
The likelihood of unadequate formalization due to missing premises might be viewed as the

main weakness of omnisemantics. Yet, if needed, additional confidence can easily be restored at the
cost of minor additional work: one may consider a standard small-step semantics as reference (i.e.,
as part of the trusted code base), then relate it to the corresponding omni-big-step semantics and
use the latter to carry out big-step style, inductive proofs on nondeterministic executions.

2.3 About the Overapproximation of the Set of Results
The omni-big-step judgment t/s ⇓ Q associates an initial configuration t/s with a postconditionQ ,
which denotes an overapproximation of the set of possible final configurations. One may thus
wonder: why not associate it with a precise set of results? In this section, we show that it is
technically possible to define a precise judgment, but at the same time we argue why that judgment
is much less practical to work with than the overapproximating omni-big-step judgment.

The precise judgment, written t/s ⇓′ Q , is precise in the sense that it relates a configuration t/s
to at most one set of results Q . This precise judgment, like the overapproximating omni-big-step
judgment, guarantees safety: a judgment t/s ⇓′ Q can be derived for some Q if and only if none of
the possible executions of t/s can get stuck. Thus, the precise judgment relates a safe configuration
t/s to exactly one Q .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Figure 3 shows selected rules from the definition of the precise judgment, written t/s ⇓′ Q . The
rule precise-big-val relates a value v in a state s to the singleton set made of the pair (v, s ). The
rule precise-big-ref relates the term (refv ) in a state s to the set of pairs made of a location p
fresh from s and of the state s updated at location p with the value v . Observe how this compares
with the rule omni-big-ref, which only requires that set of pairs to be included in the result set Q .
The rule precise-big-rand follows a similar pattern, only with the premise n > 0 to ensure that
the term is not stuck.
Most interesting is the rule precise-big-let. Its first premise involves an intermediate set Q1,

which denotes exactly the set of results that t1 can produce when executed in the input state s . The
second premise describes, for each result (v ′, s ′) from the set Q1, the evaluation of ([v ′/x] t2) in
state s ′. The result of the execution is asserted to be exactly a set of configurations written Q ′

(v ′,s ′) .
Here Q ′ denotes a (possibly infinite) family of postconditions, indexed by the possible results of t1.
The final postcondition of the term (letx = t1 in t2) is obtained by taking the union over that family
of postconditions.4
In practice, working with indexed families of postconditions introduces significant overhead,

compared with the overapproximating omni-big-step judgment. Moreover, for practical applications
such as type-checking or program verification (either using weakest preconditions or Hoare triples),
we are only interested in overapproximations of the semantics. For such applications, building the
overapproximation on top of a precise judgment would only introduce a level of indirection. For
other situationswhere a notion of exact set of resultsmight be desirable, typically formetatheoretical
results (e.g., completeness results), we can always refer to the strongest postcondition, which, as
explained earlier, can be formalized as the intersection of all valid postconditions.

In summary, we believe that it is interesting to know that a precise judgment can be defined, as
it might be useful in other contexts, but for the applications that we have in mind the overapproxi-
mating omni-big-step judgment appears much better suited.

2.4 Coinductive Interpretation of the Omni-Big-Step Judgment
Let t/s ⇓co Q denote the judgment defined by the coinductive interpretation of the same set of
rules as for the inductively defined judgment t/s ⇓ Q , i.e., rules from Fig. 2. The coinductive
interpretation allows for infinite derivation trees, thus the coinductive omni-big-step judgment can
be used to capture properties of nonterminating executions.
More precisely, the judgment t/s ⇓co Q asserts that every possible execution of configuration

t/s either diverges or terminates in a final configuration satisfying Q . In particular, this judgment
rules out the possibility for an execution of t/s to get stuck, and it can be used to express type
safety, as detailed in §4. The judgment t/s ⇓co Q can also be used to define partial-correctness
Hoare triples, as detailed in §5.
Formally, we can relate the meaning of t/s ⇓co Q to the small-step characterization of partial

correctness as follows: for every execution prefix, the configuration reached is either a value
satisfying the postcondition, or it is a term that can be reduced further. Below, t/s −→ t ′/s ′

denotes the standard small-step evaluation judgment (defined in Appendix G), and val denotes the

4In Coq, we model sets with elements of typeA as functions fromA to propositions, thusQ1 is represented as a function that
takes a value and a state and returns a proposition, Q ′ is a function that takes a value, a state, another value, another state
and returns a proposition, and the union over the family of results is written λ v ′′ s′′. ∃ v ′ s′. Q1 v ′ s′ ∧ Q ′ v ′ s′ v ′′ s′′.
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omni-small-app
v1 = (µ f .λx .t )

([v2/x] [v1/f ] t , s ) ∈ P
(v1v2)/s −→ P

omni-small-if-true
P (t1, s )

(if true then t1 else t2)/s −→ P

omni-small-if-false
P (t2, s )

(if false then t1 else t2)/s −→ P

omni-small-let-ctx
t1/s −→ P1

(
∀(t ′1, s

′) ∈ P1. ((letx = t ′1 in t2), s
′) ∈ P

)
(letx = t1 in t2)/s −→ P

omni-small-let
([v1/x] t2, s ) ∈ P

(letx = v1 in t2)/s −→ P

omni-small-add
(n1 + n2, s ) ∈ P

(addn1 n2)/s −→ P

omni-small-rand
n > 0

(
∀m ∈ [0,n). (m, s ) ∈ P

)
(randn)/s −→ P

omni-small-ref(
∀p < dom s . (p, s[p := v]) ∈ P

)
(refv )/s −→ P

omni-small-free
p ∈ dom s

(tt, s ∖ p) ∈ P

(freep)/s −→ P

omni-small-get
p ∈ dom s
(s[p], s ) ∈ P
(getp)/s −→ P

omni-small-set
p ∈ dom s

(tt, s[p := v]) ∈ P
(setpv )/s −→ P

Fig. 4. Omni-small-step semantics (for terms in A-normal form)

constructor that injects values into the grammar of terms.

co-omni-big-iff-safe-and-correct
t/s ⇓co Q ⇐⇒ ∀s ′t ′. (t/s −→∗ t ′/s ′) ⇒

(
∃v . t ′ = valv ∧ (v, s ′) ∈ Q

)
∨
(
∃t ′′s ′′. t ′/s ′ −→ t ′′/s ′′

)
The judgment t/s ⇓co Q can also be used to characterize divergence, by instantiating Q as the

empty set: the predicate t/s ⇓co ∅ asserts that every possible execution of t/s diverges. Because
the judgment t/s ⇓co Q is covariant in Q , the predicate t/s ⇓co ∅ holds if and only if the predicate
t/s ⇓co Q holds for any Q . In summary, we formally characterize divergence as follows.

diverges t s ≡ (t/s ⇓co ∅) diverges t s ⇐⇒ ∀Q . (t/s ⇓co Q )

3 OMNI-SMALL-STEP SEMANTICS
In this section, we present the omni-small-step judgment, written t/s −→ P . Here, P denotes a set of
pairs each made of a term and a state. We then present the eventually judgment, written t/s −→♢ P .
We use these judgments in particular for establishing type-safety (§4.1) and compiler-verification
(§6.6) results.

3.1 The Omni-Small-Step Judgment
The omni-small-step judgment, written t/s −→ P , asserts that the configuration t/s can take one
reduction step and that, for any step it might take, the resulting configuration belongs to the set P .
It is defined by the rules from Fig. 4. There is one per small-step transition. The interesting rules are
those involving nondeterminism, namely omni-small-rand and omni-small-ref, which follow a
pattern similar to the corresponding omni-big-step rules. Observe also how the rule omni-small-
let-ctx handles the case of a reduction that takes place in the evaluation context of a let-binding,
by quantifying over an intermediate set of results named P1.
We prove that the judgment t/s −→ P captures the expected property w.r.t. the standard small-

step judgment: the configuration t/s can make a step, and for every step it might take, it reaches a
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configuration in P .
omni-small-step-iff-progress-and-correct
t/s −→ P ⇐⇒

(
∃t ′s ′. t/s −→ t ′/s ′

)
∧
(
∀t ′s ′. t/s −→ t ′/s ′ ⇒ (t ′, s ′) ∈ P

)
3.2 The “Eventually” Judgment
The judgment t/s −→♢ P captures the property that every possible evaluation of t/s is safe and
eventually reaches a configuration in the set P . Here, P denotes a set of configurations—it is not
limited to being a set of final configurations like in the previous section. The judgment t/s −→♢ P is
defined inductively by the following two rules. The first one asserts that the judgment is satisfied if
t/s belongs to P . The second one asserts that the judgment is satisfied if t/s is not stuck and that for
any configuration t ′/s ′ that it may reduce to, the predicate t ′/s ′ −→♢ P holds. The latter property is
expressed using the omni-small-step judgment t/s −→ P ′, where P ′ denotes an overapproximation
of the set of configurations t ′/s ′ to which t/s may reduce.

eventually-here
(t , s ) ∈ P

t/s −→♢ P

eventually-step
t/s −→ P ′

(
∀(t ′, s ′) ∈ P ′. t ′/s ′ −→♢ P

)
t/s −→♢ P

If Q denotes a set of final configurations, then the judgment t/s −→♢ Q can be viewed as a
particular case of the judgment t/s −→♢ P , where P denotes a set of configurations. We prove that
t/s −→♢ Q matches our omni-big-step judgment t/s ⇓ Q .

eventually-iff-omni-big-step: t/s −→♢ Q ⇐⇒ t/s ⇓ Q

3.3 Chained Rule and Cut Rule for the “Eventually” Judgment
To apply the rule eventually-step, one needs to provide upfront an intermediate postcondition P ′.
Doing so is not always convenient. It turns out that we can leverage the omni-small-step judgment
t/s −→ P ′ to provide an introduction rule for t/s −→♢ P that does not require providing P ′ upfront.
This rule, which we call the chained version of eventually-step, admits the statement shown
below. It reads as follows: if every possible step of t/s reduces in one step to a configuration that
eventually reaches a configuration from the set P , then every possible evaluation of t/s eventually
reaches a configuration from the set P .

eventually-step-chained : t/s −→
{
(t ′, s ′) ��� t

′/s ′ −→♢ P
}
⇒ t/s −→♢ P

One may wonder why we did not use this rule directly in the inductively defined judgment, and
the reason is Coq’s strict positivity requirement. The considerations for encoding sequencing here
are similar to those discussed in Appendix A in the context of the omni-big-step let-binding rule.
Another interesting property of the judgment t/s −→♢ P is its cut rule, which is derivable. It

asserts the following: if every possible evaluation of t/s eventually reaches a configuration in the
set P ′, and if every configuration from the set P ′ eventually reaches a configuration from the set P ,
then every possible evaluation of t/s eventually reaches a configuration from the set P .

eventually-cut : t/s −→♢ P ′ ∧
(
∀(t ′, s ′) ∈ P ′. t ′/s ′ −→♢ P

)
⇒ t/s −→♢ P

This cut rule also admits a chained version, which reads as follows: if every possible evaluation of
t/s eventually reaches a configuration that itself eventually reaches a configuration from the set P ,
then every possible evaluation of t/s eventually reaches a configuration from the set P .

eventually-cut-chained : t/s −→♢
{
(t ′, s ′) ��� t

′/s ′ −→♢ P
}
⇒ t/s −→♢ P

The cut rule and the chained rules are particularly handy to work with, as we illustrate in §6.6.
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3.4 Coinductive Interpretation of the Omni-Small-Step Judgment
Let t/s −→♢co P denote the coinductive interpretation of the two rules that define t/s −→♢ P .
Divergence can be captured by instantiating P as the empty set. We prove that the judgment
t/s −→♢co ∅ is equivalent to the standard small-step characterization of divergence, which asserts
that any execution prefix may be extended with at least one additional step.

co-eventually-empty-iff-small-step-diverges
t/s −→♢co ∅ ⇐⇒ ∀s ′t ′. (t/s −→∗ t ′/s ′) ⇒

(
∃t ′′s ′′. t ′/s ′ −→ t ′′/s ′′

)
Besides, we can relate the coinductive omni-small-step judgment t/s −→♢co P to the coinductive

omni-big-step judgment t/s ⇓co Q defined in §2.4. Here again, we let Q denote a set of final
configurations. We prove the following equivalence.

co-eventually-iff-co-omni-big-step: t/s −→♢co Q ⇐⇒ t/s ⇓co Q

The proofs of these two equivalences co-eventually-iff-co-omni-big-step, co-eventually-
empty-iff-small-step-diverges, as well as the proof of co-omni-big-iff-safe-and-correct from
§3.4, are interesting in that they involve yet another judgment. This judgment, written t/s −→−→∗co Q ,
is defined in terms of the standard small-step semantics, by taking the coinductive interpretation of
the following two rules.
eventually’-here
(v, s ) ∈ Q

v/s −→−→∗co Q

eventually’-step(
∃t ′s ′. t/s −→ t ′/s ′

) (
∀t ′s ′. (t/s −→ t ′/s ′) ⇒ (t ′/s ′ −→−→∗co Q )

)
t/s −→−→∗co Q

The desired equivalences are established in three steps. First, we prove that the standard small-step
characterization of partial correctness that appears in the statement of co-omni-big-iff-safe-and-
correct (§3.4) is equivalent to this new coinductive judgment t/s −→−→∗co Q . The proof is relatively
straightforward because both of these characterizations are expressed using small-step transitions.
Second, we prove that the co-eventually judgment t/s −→♢co Q is equivalent to t/s −→−→∗co Q . The

proof is relatively straightforward because the coinductive definitions for these two judgments
share a similar structure. As a corollary, by instantiating Q as the empty set, we establish co-
eventually-empty-iff-small-step-diverges.

Third, we prove that the co-omni-big-step judgment t/s ⇓co Q is equivalent to t/s −→−→∗co Q . This
third proof is the most challenging, especially for establishing the implication from the small-step
style judgment to the big-step style judgment. The proof involves a key intermediate lemma, which
consists of an inversion rule for let-bindings: if (letx = t1 in t2)/s −→−→∗co Q holds, then there exists a
set Q1 such that t1/s −→−→∗co Q1 and ∀(v1, s

′) ∈ Q1. ([v1/x] t2)/s ′ −→−→∗co Q hold. The proof of this key
lemma itself relies on two auxiliary results, whose purpose is to justify that we can take as witness
for Q1 the strongest postcondition of t1/s . The first one asserts that (letx = t1 in t2)/s −→−→∗co Q
implies t1/s −→−→∗co {(v1, s

′) | t1/s −→
∗ v1/s

′}. The second one asserts that (letx = t1 in t2)/s −→−→∗co Q
and t1/s −→∗ v1/s

′ imply ([v1/x] t2)/s ′ −→−→∗co Q . We refer to our Coq development for details.
A key observation about all the proofs involved in §2 and §3 is that they are constructive5. In

particular, we are able to establish equivalences betweeen coinductive omni-big-step semantics and
small-step style semanticswithout recourse to classical logic. This constrast with coinductive big-step
semantics [Leroy and Grall 2009], whose connection to small-step semantics requires classical logic.
We discuss this aspect further in the related work section (§7).
5 The proofs that we present do not exploit classical logic axioms. However, we do not provide a machine-checked proof
that our proofs are constructive. Indeed, our Coq development is building on top of general-purpose libraries that exploit
classical logic in various places. It would require a prohibitive amount of work to reimplement these libraries constructively.
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4 TYPE-SAFETY PROOFS USING OMNISEMANTICS
In this section, we show how the omni-small-step and omni-big-step judgments may be used to
carry out type-safety proofs. We illustrate the proof structures using simple types (STLC). As a
warm-up, we begin with a presentation of type safety on the restriction to the state-free fragment
of our running-example language.
For this section, we need to consider a different semantics for the random-number generator.

Indeed, the current rule omni-big-rand asserts that the program is stuck if randn is invoked with
an argument n ≤ 0. Since here we are interested in proving that well-typed programs do not
get stuck, let us consider a modified semantics, where randn is turned into a total function that
returns 0 when n ≤ 0.

omni-big-rand-complete
∀m. 0 ≤ m < max(n, 1) ⇒ (m, s ) ∈ Q

(randn)/s ⇓ Q

omni-small-rand-complete
∀m. 0 ≤ m < max(n, 1) ⇒ (m, s ) ∈ P

(randn)/s −→ P

Additionally, for this section, we also exclude the primitive operation free, which is not type-safe.
The grammar of types, written T , appears below.

T := unit | bool | int | T → T | refT

A typing environement, written E, maps variable names to types. The judgment ⊢ v : T asserts that
the closed value v admits the typeT . The judgment E ⊢ t : T asserts that the term t admits typeT
in the environment E. We let V denote the set of terms that are either values or variables—recall
that we consider A-normal forms to simplify the presentation. The typing rules are essentially
standard, apart from the fact that they involve side conditions of the form t ∈ V to constrain terms
to be in A-normal form. We include here two example rules; the other rules are given in appendix E.

typ-let
E ⊢ t1 : T1 E, x : T1 ⊢ t2 : T2

E ⊢ (letx = t1 in t2) : T2

typ-rand
E ⊢ t1 : int t1 ∈ V

E ⊢ (rand t1) : int

4.1 Omni-Small-Step Type-Safety Proof for a State-Free Language
A stuck term is a term that is not a value and that cannot take a step. Type safety asserts that if a
closed term t is well-typed, then none of its possible evaluations gets stuck. In other words, if t
reduces in a number of steps to t ′, then t ′ is either a value or can further reduce.

type-safety (state-free language):
(∅ ⊢ t : T ) ∧ (t −→∗ t ′) ⇒ (isvalue t ′) ∨ (∃t ′′. t ′ −→ t ′′)

The traditional approach to establishing type safety is by proving the preservation and progress
properties [Pierce 2002; Wright and Felleisen 1994].
preservation (state-free language): E ⊢ t : T ∧ t −→ t ′ ⇒ E ⊢ t ′ : T
progress (state-free language): ∅ ⊢ t : T ⇒ (isvalue t ) ∨ (∃t ′. t −→ t ′)

Each of these proofs is most typically carried out by induction on the typing judgment. One difficulty
that might arise in the type-preservation proof for a large language with dozens (if not hundreds)
of typing rules is the fact that one needs, for each case of the typing judgment E ⊢ t : T , to
inspect all the potential cases of the reduction judgment t −→ t ′. This inspection is not really
quadratic in practice, because one can filter out applicable rules based on the shape of the term t .
Nevertheless, a typical Coq proof performing “intros HT HR; induction HT; inversion HR”
does produce a proof term whose size is quadratic in the number of term constructs. Coq users have
experienced performance challenges with quadratic-complexity proof terms when formalizing PL
metatheory [Monin and Shi 2013].
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Interestingly, in the particular case of a deterministic language, there exists a known strategy
(e.g., of Rompf and Amin [2016]) to reformulate the preservation and progress statements in a way
that not only factors out the two into a single statement but also can be proved with a linear-size
proof term. This combined statement, shown below, asserts that a well-typed term t is either a
value or can make a step towards a term t ′ that admits the same type.

induction-for-type-safety, state-free, standard small-step, deterministic
∅ ⊢ t : T ⇒

(
isvalue t

)
∨
(
∃t ′. (t −→ t ′) ∧ (∅ ⊢ t ′ : T )

)
As we explain next, this approach can be generalized to the case of nondeterministic languages

using the omni-small-step judgment. Let us write t −→ P for the judgment that corresponds to
t/s −→ P without the state argument. We can state type safety by considering for the postcondition
P the set of terms t ′ that admit the same type as t .

Lemma 4.1 (induction-for-type-safety, state-free, omni-small-step, non-deterministic).

∅ ⊢ t : T ⇒
(
isvalue t

)
∨
(
t −→

{
t ′ ��� (∅ ⊢ t ′ : T )

})
Proof. The proof is carried out by induction on the typing judgment. For the case where t

is a value, the left part of the disjunction applies. For all other cases, the right part needs to be
established. We next detail two representative proof cases.
Case 1: the term t has been typed using rule typ-rand. In this case, the term t has the form

“rand t1”. The rule concludes ∅ ⊢ (rand t1) : int, from the premise ∅ ⊢ t1 : int and the premise
t1 ∈ V. The latter means that t1 is either a value or a variable (recall that we assume A-normal
form to simplify the presentation). Because t1 typechecks in the empty environment, it cannot be a
variable. Thus, it must be a value, and because this value has type int, it must be an integer value. (In
other words, ∅ ⊢ t1 : int must have been derived using the rules typ-val and vtyp-int stated in
appendix E.) Let us call n this integer. We need to establish: (randn) −→

{
t ′ ��� (∅ ⊢ t ′ : int)

}
. Recall

the rule omni-small-rand-complete introduced at the start of §4. We apply this rule (ignoring
the state component), and need to establish its premise: ∀m. 0 ≤ m < max(n, 1) ⇒ m ∈

{
t ′ ��� (∅ ⊢

t ′ : int)
}
. Consider an integerm such that 0 ≤ m < max(n, 1). We are left to prove ∅ ⊢ m : int,

which is derivable from the rules typ-val and vtyp-int.
Case 2: the term t has been typed using rule typ-let. In this case, the term t has the form

“letx = t1 in t2”. The rule concludes ∅ ⊢ (letx = t1 in t2) : T , from the two premises ∅ ⊢ t1 : T1
and x : T1 ⊢ t2 : T . We need to prove (letx = t1 in t2) −→

{
t ′ ��� (∅ ⊢ t ′ : T )

}
. By the induction

hypothesis applied to the first assumption, either t1 is a value, or t1 −→
{
t ′1

��� (∅ ⊢ t ′1 : T1)
}
.

In the first subcase, t1 is a value; let us call it v1. We exploit omni-small-let, and are left to
justify ([v1/x] t2) ∈

{
t ′ ��� (∅ ⊢ t ′ : T )

}
, that is, ∅ ⊢ ([v1/x] t2) : T . This result follows from the

standard substitution lemma applied to x : T1 ⊢ t2 : T and to ∅ ⊢ v1 : T1.
In the second subcase, we have t1 −→

{
t ′1

��� (∅ ⊢ t ′1 : T1)
}
. To prove (letx = t1 in t2) −→{

t ′ ��� (∅ ⊢ t ′ : T )
}
, we exploit omni-small-let-ctx with P1 =

{
t ′1

��� (∅ ⊢ t ′1 : T1)
}
. We need

to justify the second premise of that rule: ∀t ′1 ∈ P1. (letx = t ′1 in t2) ∈
{
t ′ ��� (∅ ⊢ t ′ : T )

}
.

Consider a particular t ′1. The assumption t ′1 ∈ P1 is equivalent to ∅ ⊢ t ′1 : T1. The proof obligation
(letx = t ′1 in t2) ∈

{
t ′ ��� (∅ ⊢ t ′ : T )

}
is equivalent to ∅ ⊢ (letx = t ′1 in t2) : T . This result follows

from the rule typ-let applied to the facts ∅ ⊢ t ′1 : T1 and x : T1 ⊢ t2 : T . □
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The statement induction-for-type-safety above entails the preservation property (for empty
environments) and the progress property.We prove once-and-for-all that the statement of induction-
for-type-safety entails the type-safety property.6

4.2 Omni-Small-Step Type-Safety Proof for an Imperative Language
Let us now generalize the results from the previous section to account for memory operations.
A store-typing environment, written S , is a map from locations to types. The typing judgment

for values is extended with a store-typing environment, taking the form S ⊢ v : T . Likewise, the
typing judgment for terms is extended to the form S ;E ⊢ t : T . The store-typing entity S only
plays a role in the typing rule for memory locations. The rules for typing memory locations and
memory operations are standard; they appear in Appendix F.
The type-safety property asserts that the execution of any well-typed term, starting from the

empty state, does not get stuck. In the statement below, ∅ denotes an empty state or an empty
store typing, whereas ∅ denotes, as before, the empty typing context.

type-safety:
(∅; ∅ ⊢ t : T ) ∧ (t/∅ −→∗ t ′/s ′) ⇒ (isvalue t ′) ∨ (∃t ′′s ′′. t ′/s ′ −→ t ′′/s ′′)

To establish a type-safety result by induction on a reduction sequence, one needs to introduce a
typing judgment for stores. A store s admits type S , written ⊢ s : S , if and only if s and S have the
same domain and, for any location p in the domain, s[p] admits the type S[p]. Formally:

⊢ s : S ≡
(
dom s = dom S

)
∧
(
∀p ∈ dom s . S ; ∅ ⊢ s[p] : S[p]

)
The preservation and progress lemmas associated with the traditional approach to proving type

safety are updated as shown below. In particular, the preservation lemma requires the output state
to admit a type that extends the store typing associated with the input state (S ′ ⊇ S ).

preservation: t/s −→ t ′/s ′ ∧ ⊢ s : S ∧ S ; ∅ ⊢ t : T
⇒ ∃S ′ ⊇ S . ⊢ s ′ : S ′ ∧ S ′; ∅ ⊢ t ′ : T

progress: S ; ∅ ⊢ t : T ∧ ⊢ s : S ⇒ (isvalue t ) ∨ (∃t ′s ′. t/s −→ t ′/s ′)

In contrast, using the omni-small-step judgment, we can establish type safety through a single
induction on the typing judgment. To that end, we formulate a lemma in terms of the predicate
t/s −→ P , instantiating the set P as the set of configurations t ′/s ′ such that t ′ admits the same type
as t and such that s ′ admits a type that extends the type of s .

induction-for-type-safety (omni-small-step, with state)(
S ; ∅ ⊢ t : T ) ∧

(
⊢ s : S

)
⇒

(
isvalue t

)
∨
(
t/s −→

{
(t ′, s ′) ��� ∃S

′ ⊇ S . ( ⊢ s ′ : S ′) ∧ (S ′; ∅ ⊢ t ′ : T )
})

4.3 Omni-Big-Step Type-Safety Proof for an Imperative Language
Traditionally, a big-step safety proof can only be carried out if the semantics is completed using
error-propagation rules. Here, we demonstrate how to establish type safety with respect to an
omni-big-step judgment, without any need for error-propagation rules. First, we introduce the
construct JT /SK to denote the set of possible outputs produced by a term of type T , well-typed in a
store of type S . Second, we describe the statement and proof for type safety.

6The generic entailment from induction-for-type-safety to type-safety holds for any typing judgment of the form
∅ ⊢ t : T and for any judgment t −→ P related to the small-step judgment t −→ t ′ in the expected way, that is, satisfying
the property omni-small-step-iff-progress-and-correct from §3.2.
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Consider a type T and a store typing S . We define JT /SK as the set of final configurations of the
form v/s such that the state s admits a type S ′ that extends S , and the value v admits type T , under
the store typing S ′. The extension S ′ involved here accounts for the fact that the evaluation of a
term t of type T may perform allocation operations that extend the store in which t is well-typed.

JT /SK ≡
{
(v, s ) | ∃S ′ ⊇ S . ( ⊢ s : S ′) ∧ (S ′ ⊢ v : T )

}

A key lemma involved in the type soundness proof asserts that, if S ′ is a store typing that enforces
more constraints than another store typing S , then JT /S ′K is a smaller set than JT /SK.

Lemma 4.2 (configuration-typing-subset).
S ′ ⊇ S ⇒ JT /S ′K ⊆ JT /SK

Proof. Assume S ′ ⊇ S . Consider a pair (v, s ) ∈ JT /S ′K. By definition, there exists S ′′ such that
S ′′ ⊇ S ′ and ⊢ s : S ′′ and S ′′ ⊢ v : T . By transitivity, S ′′ ⊇ S . We conclude that (v, s ) ∈ JT /SK
holds, by taking S ′′ as witness for the existential quantifier in the definition of JT /SK. □

We are now ready to state type safety. The coinductive omni-big-step judgment t/s ⇓co JT /SK
asserts that any evaluation of t/s executes safely, without ever getting stuck; and that if an evaluation
reaches a final configuration v/s ′, then this configuration satisfies the postcondition JT /SK. Given
our definition of JT /SK, the judgment t/∅ ⇓co JT /∅K thus captures exactly the type-safety property
associated with the typing judgment ∅; ∅ ⊢ t : T . Type safety may be established by proving the
following statement by coinduction.

Lemma 4.3 (coinduction-for-type-safety, omni-big-step, non-deterministic).
S ; ∅ ⊢ t : T ∧ ⊢ s : S ⇒ t/s ⇓co JT /SK

Proof. For technical reasons, the Coq coinduction tactic needs to be applied to the following
statement, which introduces an intermediate set Q .

S ; ∅ ⊢ t : T ∧ ⊢ s : S ∧ JT /SK ⊆ Q ⇒ t/s ⇓co Q

Observe that this alternative statement is logically equivalent to the previous one: on the one hand,
we can instantiate Q as JT /SK; on the other hand, we can exploit omni-big-conseqence to prove
t/s ⇓co Q from t/s ⇓co JT /SK and JT /SK ⊆ Q .

We carry out a proof by coinduction on that alternative statement. The coinduction hypothesis
asserts that we can assume the alternative statement to hold, provided that we have already applied
at least one evaluation rule (i.e., a coinductive constructor) to the conclusion at hand (t/s ⇓co Q).

The first step of the proof is to perform a case analysis on the typing hypothesis S ; ∅ ⊢ t : T . We
then consider each of the possible typing rules one-by-one. Let us consider two representative proof
cases: the case of rand and the case of a let-binding. In each case, the assumptions are S ; ∅ ⊢ t : T
and ⊢ s : S and JT /SK ⊆ Q ; and the goal is to prove t/s ⇓co Q .
Case 1: the term t has been typed using rule typ-rand. In this case, the term t has the form

“rand t1”, and T is int. The rule concludes S ; ∅ ⊢ (rand t1) : int, from the premise S ; ∅ ⊢ t1 : int
and the premise t1 ∈ V. Because t1 typechecks in the empty environment, it must be a value.
Because this value has type int, it must be an integer value, let us call it n. We need to establish:
(randn)/s ⇓co Q . We apply the rule co-omni-big-rand-complete, which is like omni-big-rand-
complete but part of the coinductive interpretation of the set of evaluation rules. We need to prove
its premise: ∀m. 0 ≤ m < max(n, 1) ⇒ (m, s ) ∈ Q . Consider a particularm in that range. We have
Jint/SK ⊆ Q . Thus, to show (m, s ) ∈ Q it suffices to show (m, s ) ∈ Jint/SK. By definition of the
operator JT /SK, this amounts to proving ∃S ′ ⊇ S . ( ⊢ s : S ′) ∧ (S ′ ⊢ m : int). We conclude by
taking S ′ = S and checking that ⊢ s : S and S ′ ⊢ m : int indeed hold.
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Case 2: the term t has been typed using rule typ-let. In this case, the term t has the form
“letx = t1 in t2”. The rule concludes S ; ∅ ⊢ (letx = t1 in t2) : T , from the two premises S ; ∅ ⊢ t1 : T1
and S ; (x : T1) ⊢ t2 : T . We need to establish: (letx = t1 in t2)/s ⇓co Q . We apply the rule co-omni-
big-let (which is like omni-big-let but part of the coinductive interpretation of the set of evaluation
rules) with Q1 instantiated as JT1/SK. We have to establish the two premises: t1/s ⇓ JT1/SK, and
∀(v ′, s ′) ∈ JT1/SK. ([v ′/x] t2)/s ′ ⇓ Q . The first premise follows directly from the coinduction
hypothesis applied to S ; ∅ ⊢ t1 : T1 and to JT1/SK ⊆ JT1/SK. For the second premise, consider a pair
(v ′, s ′) ∈ JT1/SK. This amounts to assuming the existence of some S ′ such that S ′ ⊇ S and ⊢ s ′ : S ′
and S ′ ⊢ v : T1. There remains to show ([v ′/x] t2)/s ′ ⇓ Q . A standard “type preservation upon
store typing extension” lemma shows that, because S ′ ⊇ S , we can refine S ; (x : T1) ⊢ t2 : T into
S ′ ; (x : T1) ⊢ t2 : T . Then, by the standard substitution lemma applied to S ′ ; (x : T1) ⊢ t2 : T
and to S ′ ⊢ v : T1, we derive S ′; ∅ ⊢ ([v ′/x] t2) : T . Besides, the lemma configuration-typing-
subset applied to S ′ ⊇ S gives JT /S ′K ⊆ JT /SK. Composing this subset relation by transitivity with
JT /SK ⊆ Q yields JT /S ′K ⊆ Q . The conclusion ([v ′/x] t2)/s ′ ⇓ Q then follows from the coinduction
hypothesis applied to S ′; ∅ ⊢ ([v ′/x] t2) : T and ⊢ s ′ : S ′ and JT /S ′K ⊆ Q .
Note that most of these arguments are easily handled by automated proof search in Coq. □

Like for the small-step settings, we proved once-and-for-all that the statement coinduction-
for-type-safety entails type-safety.

Our coinductive omni-big-step approach offers, to those who have good reasons to work with a
big-step-style semantics, a means to establish type safety without introducing error rules.

Regarding the comparison with the standard preservation-and-progress approach, at this stage
we cannot draw general conclusions on whether omni-big-step and omni-small-step type-safety
proofs are more effective, because we considered a relatively simple language. Nevertheless, it
appears that each of the two approaches that we propose results in proof scripts that (1) require
only one induction or one coinduction instead of two separate inductions, (2) are no longer than
with preservation and progress separated, and (3) avoid the issue of nested inversions requiring a
number of cases quadratic in the size of the language.

5 DEFINITION OF PROGRAM PROOF RULES
This section discusses the construction of a foundational program logic, that is, a program logic
whose reasoning rules are derived through mechanized proofs from the formal semantics of the
targeted programming language. We specifically focus on Separation Logic [O’Hearn et al. 2001;
Reynolds 2002], which has proved in the past two decades to be an invaluable tool for carrying
out practical, modular program verification, both for low-level and high-level languages—see the
broad survey by O’Hearn [2019] and the survey by Charguéraud [2020] that focuses on sequential
programs.
We first review the properties that a program logic might capture, and we describe the key

challenges in deriving a foundational Separation Logic that captures total correctness with respect
to a standard big-step semantics (§5.1). We then explain how omnisemantics overcome these
challenges, allowing one to derive a foundational, total-correctness Separation Logic judgment in
a straightforward, direct manner (§5.2). Moreover, by referring to the coinductive omni-big-step
judgment instead of the inductive one, one can similarly define partial-correctness triples. We
explain how to derive the reasoning rules (§5.3) and in particular the frame rule of Separation
Logic (§5.4). We also present reasoning rules in weakest-precondition style (§5.5), which turns out
to be even easier to derive. Finally, we present bind rules for reasoning about evaluation contexts
and thereby handling programs that are not in A-normal form (§5.6).
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5.1 Challenges in Defining Foundational Separation Logic Triples
A Hoare triple, written {H } t {Q }, describes the behavior of the evaluation of the configurations t/s
for any s satisfying the precondition H , in terms of the postcondition Q . The exact interpretation
of a triple depends on whether it accounts for total correctness or partial correctness, which differ on
how they account for termination. For nondeterministic languages, the key notions of interest for
definining a triple {H } t {Q } are as follows.
• Safety: for any s satisfying H , none of the possible evaluations of t/s can get stuck.
• Correctness: for any s satisfying H , if t/s can evaluate to v/s ′, then Q v s ′ holds.
• Termination: for any s satisfying H , all possible evaluations of t/s are finite.
• Partial correctness: safety and correctness hold.
• Total correctness: safety, correctness, and termination hold.

Most foundational program logics target partial correctness, e.g. [Cao et al. 2018; Chlipala 2013;
Jung et al. 2018; Ni and Shao 2006]. Fewer projects target total correctness. Prior to the introduction
of omnisemantics, we are aware of work by Guéneau et al. [2017] on the CakeML framework [Kumar
et al. 2014]. That work provides a foundational approach to CFML’s characteristic formulae [Char-
guéraud 2011]. The construction of foundational characteristic formulae was subsequently revisited
and simplified by Charguéraud [2021]. In those pieces of work, the underlying semantics considered
are either deterministic or deterministic up to the choice of memory addresses at allocation points.

When targeting total correctness, one key challenge in defining triples with respect to a standard
big-step semantics is that the direct definition of Hoare triples yields a judgment that does not
satisfy the frame rule of Separation Logic. The frame rule asserts that if a triple {H } t {Q } holds,
then the pre- and the postcondition may be extended with an arbitrary predicate H ′, yielding the
valid triple {H ⋆H ′} t {Q .⋆H ′}. Here, Q .⋆H denotes the postcondition λv . (Q v ⋆H ).

Concretely, consider the following definition of a Hoare triple with respect to a standard big-
step, deterministic semantics. It asserts that, for any input state s satisfying the precondition H ,
there exists a result value v and a final state s ′ such that the configuration t/s evaluates to a final
configuration v/s ′ that satisfies the postcondition Q .

Hoare {H } t {Q } ≡ ∀s . H s ⇒ ∃v . ∃s ′. (t/s ⇓ v/s ′) ∧ (Q v s ′).

For such a judgment, one can prove that, starting from an empty heap, the allocation of a
reference returns a specific memory location, say 0. For example, if the reference contains 3 and the
location l denotes its address, one can prove: Hoare {[ ]} (ref 3) {λl . [l = 0]⋆ (0 ↪→ 3)}. To see why
the judgment does not satisfy the frame rule, let us attempt to extend the pre- and the postcondition
of this triple with the heap predicate (0 ↪→ 1), which denotes a reference at location 0 storing the
value 1. We obtain: Hoare {0 ↪→ 1} (ref 3) {λl . [l = 0]⋆ (0 ↪→ 3) ⋆ (0 ↪→ 1)}. This triple does not
hold, because the separating conjunction (0 ↪→ 3) ⋆ (0 ↪→ 1) is equivalent to False.

To derive a Separation Logic judgment that does satisfy the frame rule, one can exploit the classic
technique of the baked-in frame rule [Birkedal et al. 2005]—for technical and historical details, we
refer to Charguéraud [2020, §5.1 and §10.2]. Separation Logic triples are defined as follows.

Sep. Logic {H } t {Q } ≡ ∀H ′. Hoare {H ⋆H ′} t {Q .⋆H ′}

This definition quantifies over a heap predicate H ′ that describes the “rest of the world.” The
resulting triples inherently satisfy the frame rule, as a direct consequence of the associativity of the
separating-conjunction operator. Indirectly, the introduction of H ′ rules out the judgments whose
postconditions refer to specific locations, such as in the aforementioned counterexample.

The two-stage construction presented above, for building Separation Logic triples on top of the
standard big-step judgment via the baked-in frame rule technique, can be applied to deterministic
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languages or to languages that are deterministic up to the choice of memory addresses. In what
follows, we show that, by grounding Separation Triples not on top of standard big-step semantics but
instead on top of omnisemantics, we can avoid the need to go through the two-stage construction
associated with the baked-in frame rule technique. Moreover, the omnisemantics construction
applies to the general case of nondeterministic semantics, and it unfolds similarly for both total-
and partial-correctness triples.

5.2 Definition of Hoare Triples w.r.t. Omni-Big-Step Semantics
Consider a possibly nondeterministic semantics. A total-correctness Hoare triple {H } t {Q } asserts
that, for any input state s satisfying the precondition H , every possible execution of t/s terminates
and satisfies the postcondition Q . This property can be captured using the inductive omni-big-step
judgment as follows:

total, nondeterministic {H } t {Q } ≡ ∀s . H s ⇒ (t/s ⇓ Q )

Note that an omni-big-step judgment may be interpreted as a particular Hoare triple, featuring a
singleton precondition to constrain the input state:(

t/s ⇓ Q
)
⇐⇒ total, nondeterministic {(λs ′. s ′ = s )} t {Q }.

A partial-correctness Hoare triple asserts that, for any input state s satisfying the precondition H ,
every possible execution of t/s either diverges or terminates and satisfies the postcondition. This
property can be captured using the coinductive omni-big-step judgment as follows:

partial,nondeterministic {H } t {Q } ≡ ∀s . H s ⇒ (t/s ⇓co Q )

Note that instantiating Q with the always-false predicate in the partial-correctness triple yields a
characterization of programs whose execution always diverges—and never gets stuck.

Throughout the rest of this section, we present results for total correctness. All the corresponding
results for partial correctness hold and may be found in our Coq formalization.

5.3 Deriving Reasoning Rules for Hoare Triples
In a foundational program logic, reasoning rules take the form of lemmas proved correct with
respect to the definition of triples and with respect to the semantics of the language. Consider
for example the case of a let-binding. Let us compare the semantics rule omni-big-let with the
Hoare-logic rule hoare-let, which are shown below. Throughout this section, we formulate rules
by viewing postconditions as predicates of type val→ state→ Prop, as this presentation style is
more idiomatic in program logics. We also present reasoning rules using the horizontal bar, but
keep in mind that the statements are not inductive definitions but lemmas.

omni-big-let
t1/s ⇓ Q1(

∀v ′s ′. Q1v
′ s ′ ⇒ ([v ′/x] t2)/s ′ ⇓ Q

)
(letx = t1 in t2)/s ⇓ Q

hoare-let
{H } t1 {Q1}(

∀v ′. {Q1v
′} ([v ′/x] t2) {Q }

)
{H } (letx = t1 in t2) {Q }

The only difference between omni-big-let and hoare-let is that the first rule considers one spe-
cific state s , whereas the second rule considers a set of possible states satisfying the precondition H .
By exploiting the fact that {H } t {Q } is defined as ∀s . H s ⇒ (t/s ⇓ Q ), it is straightforward to
establish that hoare-let is a consequence of omni-big-let. The corresponding Coq proof script
witnesses the simplicity of the proof: “intros. applys mbig_let; eauto.”
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As another example, consider the consequence rule. The Hoare-logic rule is, again, an immediate
consequence of the omni-big-step rule.

omni-big-conseqence
t/s ⇓ Q Q ⊆ Q ′

t/s ⇓ Q ′

hoare-conseqence
H ′ ⊆ H {H } t {Q } Q ⊆ Q ′

{H ′} t {Q ′}

5.4 Deriving The Frame Rule of Separation Logic
We next explain how to derive the frame rule for total-correctness triples. To that end, we first
need to state and prove a key lemma capturing the preservation of the omni-big-step judgment
t/s1 ⇓ Q when the input state s1 is augmented with a disjoint piece of state s2. We write s1 ⊥ s2 to
assert that s1 and s2 have disjoint domains.

Lemma 5.1 (Frame property for big-step omnisemantics).
t/s1 ⇓ Q s1 ⊥ s2

t/(s1 ⊎ s2) ⇓ (Q .⋆ (λs ′. s ′ = s2))
omni-big-frame

Proof. The proof is carried out by induction on the omnisemantics judgment. There are two
interesting cases in the proof: the treatment of an allocation (4 lines of Coq script) and that of a
let-binding (3 lines of Coq script). In each case, we assume s1 ⊥ s2.

Case 1: t is refv . The assumption is (refv )/s1 ⇓ Q . It is derived by the rule omni-big-ref, whose
premise is ∀p < dom s1. Q p (s1[p := v]). We need to prove (refv )/(s1 ⊎ s2) ⇓ (Q .⋆ (λs ′. s ′ = s2)).
By omni-big-ref, we need to justify: ∀p < dom (s1 ⊎ s2). (Q .⋆ (λs ′. s ′ = s2)) p ((s1 ⊎ s2)[p := v]).
Consider a location p not in dom s1 nor in dom s2. The predicate (Q .⋆ (λs ′. s ′ = s2)) p is equivalent
to (Q p) ⋆ (λs ′. s ′ = s2). The state update (s1 ⊎ s2)[p := v] is equivalent to (s1[p := v]) ⊎ s2. Thus,
there remains to prove: ((Q p) ⋆ (λs ′. s ′ = s2)) ((s1[p := v]) ⊎ s2). By definition of separating
conjunction and exploiting (s1[p := v]) ⊥ s2, it suffices to show Q p (s1[p := v]). This fact follows
from ∀p < dom s1. Q p (s1[p := v]).
Case 2: t is “letx = t1 in t2”. The assumption is t/s1 ⇓ Q . It is derived by the rule omni-

big-let, whose premises are t1/s1 ⇓ Q1 and ∀v ′s ′. Q1v
′ s ′ ⇒ ([v ′/x] t2)/s ′ ⇓ Q . We need

to prove (letx = t1 in t2)/(s1 ⊎ s2) ⇓ (Q .⋆ (λs ′. s ′ = s2)). To that end, we invoke omni-big-let.
For its first premise, we prove t1/(s1 ⊎ s2) ⇓ (Q1 .⋆ (λs ′. s ′ = s2)) by exploiting the induction
hypothesis applied to t1/s1 ⇓ Q1. For the second premise, we have to prove ∀v ′s ′′. (Q1 .⋆ (λs ′. s ′ =
s2))v

′ s ′′ ⇒ ([v ′/x] t2)/s ′′ ⇓ (Q .⋆ (λs ′. s ′ = s2)). Consider a particular v ′ and s ′′. The assumption
(Q1 .⋆ (λs ′. s ′ = s2))v

′ s ′′ is equivalent to ((Q1v
′) ⋆ (λs ′. s ′ = s2)) s

′′. By definition of separating
conjunction, we deduce that s ′′ decomposes as s ′1 ⊎ s2, with s ′1 ⊥ s2 and Q1v

′ s ′1, for some s ′1. There
remains to prove ([v ′/x] t2)/(s ′1 ⊎ s2) ⇓ (Q .⋆ (λs ′. s ′ = s2)). We first exploit ∀v ′s ′. Q1v

′ s ′ ⇒
([v ′/x] t2)/s ′ ⇓ Q , on Q1v

′ s ′1 to obtain ([v ′/x] t2)/s ′1 ⇓ Q . We then conclude by applying the
induction hypothesis to the latter judgment. □

Lemma 5.2 (Frame rule).
{H } t {Q }

{H ⋆H ′} t {Q .⋆H ′}
frame

where Q .⋆H ≡ λv . (Q v ⋆H )

Proof. Assume {H } t {Q }. Recall from §5.2 that this judgment is defined as ∀s . H s ⇒ (t/s ⇓ Q ).
We have to prove {H ⋆H ′} t {Q .⋆H ′}, that is, ∀s . (H ⋆H ′) s ⇒ (t/s ⇓ (Q .⋆H ′)). Consider a
particular s such that (H ⋆H ′) s . By definition of separating conjunction, we can deduce that the
input state s decomposes as s1⊎s2, with s1 ⊥ s2 andH s1 andH ′ s2. The goal is to prove: t/(s1 ⊎ s2) ⇓
(Q .⋆H ′). By exploiting ∀s . H s ⇒ (t/s ⇓ Q ) on H s1, we derive t/s1 ⇓ Q . By invoking the lemma
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omni-big-frame on this judgment and on s1 ⊥ s2, we derive t/(s1 ⊎ s2) ⇓ (Q .⋆ (λs ′. s ′ = s2)).
From there, to obtain the conclusion t/(s1 ⊎ s2) ⇓ (Q .⋆H ′), it suffices to exploit the consequence
rule omni-big-conseqence, and justify that (λs ′. s ′ = s2) entails H ′. In other words, we need to
show that for any state s ′ being equal to s2, this state s ′ does satisfy H ′. Indeed, H ′ s2 holds. (The
Coq proof script for this lemma is 4 lines long.) □

5.5 Deriving Weakest-Precondition-Style Reasoning Rules
The weakest-precondition operator, written wp t Q , computes the weakest predicate H for which
the triple {H } t {Q } holds. Here, “weakest” is interpreted w.r.t. the entailment relation, written
H ⊢ H ′ and defined as pointwise predicate implication (∀s .H s ⇒ H s ′). Weakest reasoning rules
are expressed in the form of entailments, e.g., the rule for let-bindings is as follows.

wp-let

wp t1
(
λv ′.wp ([v ′/x] t2)Q

)
⊢ wp (letx = t1 in t2)Q

Many proof tools simply axiomatize the weakest-precondition rules. In a foundational approach,
however, one needs to prove the reasoning rules correct with respect to the formal semantics of
the source language.

What is very appealing about describing the semantics of the language using an omni-big-step
semantics is that it delivers the weakest-precondition-style reasoning rules almost for free. Indeed,
the interpretation of the inductive judgment t/s ⇓ Q matches, up to the order of arguments, the
standard interpretation of the weakest-precondition operator.

wp t Q s ⇐⇒ t/s ⇓ Q

Thus, in a foundational approach, we can formally define wp t Q as λtQs . (t/s ⇓ Q ).
There remains to describe how the weakest-precondition-style reasoning rules can be derived

from the omni-big-step evaluation rules. Doing so is even easier than for deriving triples. Consider
for example the semantics rule and the wp-reasoning rule associated with a let-binding.

t1/s ⇓ Q1
(
∀v ′s ′. Q1v

′ s ′ ⇒ ([v ′/x] t2)/s ′ ⇓ Q
)

(letx = t1 in t2)/s ⇓ Q
omni-big-let

To derive the rule wp-let from omni-big-let, it suffices to instantiate Q1 as λv1.wp ([v1/x] t2)Q .
The frame rule in weakest-precondition style follows directly from the omni-big-frame lemma

established in the previous section. The rule appears below, together with a very handy corollary
named the ramified frame rule [Hobor and Villard 2013; Krishnaswami et al. 2010]. In that corollary,
the magic wand between postconditions, written Q1 .–⋆ Q2, is defined as ∀∀v .Q1v −⋆Q2v , where ∀∀
and −⋆ are the standard Separation Logic operators (see, e.g., [Charguéraud 2020, §3.2 and §7]).

wp-frame

(wp t Q ) ⋆H ⊢ wp t (Q .⋆H )

wp-ramified-frame

(wp t Q ) ⋆ (Q .–⋆ Q ′) ⊢ (wp t Q ′)

For most other term constructs, the wp rule is nothing but a copy of the omni-big-step rule
with arguments reordered. One interesting exception is that of loops. “While” loops have not
been discussed so far, but they appear in the language used for the case studies in §6. Typically,
standard weakest-precondition rules for while loops are stated using loop invariants. In contrast, an
omni-big-step rule essentially unfolds the first iteration of the loop, just like in a standard big-step
semantics. From that unfolding rule, one can derive the loop-invariant-based rule by induction, in
just a few lines of proof.
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In summary, by considering a semantics expressed in omni-big-step style, one can derive practical
reasoning rules, both in Hoare-triple style and in weakest-precondition style, in most cases via
one-line proofs. The construction of a program logic on top of an omni-big-step semantics is thus a
significant improvement, both over the use of a standard big-step semantics, which falls short in the
presence of nondeterminism; and over the use of a small-step semantics, which requires much more
work for deriving the reasoning rules, especially if one aims for total correctness. Besides, a major
benefit of considering an omni-big-step semantics is that, unlike a set of weakest-precondition
reasoning rules, it delivers an induction principle for reasoning about program executions. Such
induction principles are exploited in the case studies (§6).

5.6 The Bind Rule for Reasoning about Evaluation Contexts
In this section, we explain how to reason about programs that are not in A-normal form. We follow
the approach of the bind rule, popularized by Iris [Jung et al. 2018] in the context of program logics.
The bind rule follows the pattern of the let-binding rule but allows for evaluation of a subterm t
that appears in an evaluation context E.
For the syntax introduced in §2.1 and used so far, we can define evaluation contexts by the

following grammar, where □ denotes the hole, i.e., the empty context.

E := □ | letx = E in t | (E t ) | (v E) | if E then t else t

We write E[t] for the context E whose hole is filled with the term t . We write value t for the
predicate that asserts that t is a value. The bind rule describes how to evaluate or reason about
subterms that appear in evaluation contexts and that are not already values. The omni-big-step
bind rule takes the following form.

¬ value t t/s ⇓ Q1
(
∀vs ′. Q1v s

′ ⇒ E[v] / s ′ ⇓ Q
)

E[t] / s ⇓ Q
omni-big-bind

The premise ¬ value t could be omitted for the inductive interpretation of the omni-big-step rules.
It is required, however, for the coinductive interpretation, to prevent the construction of infinite
derivations for terms that do not diverge.
The corresponding reasoning rules, expressed using either triples or weakest preconditions,

appear next. Observe that these two rules need not include a premise of the form ¬ value t . Indeed,
the rules remain valid even in the case where t is already a value.

hoare-bind
{H } t {Q1}

(
∀v . {Q1v} E[v] {Q }

)
{H } E[t] {Q }

wp-bind

wp t
(
λv .wp (E[v])Q

)
⊢ wp (E[t])Q

6 COMPILER-CORRECTNESS PROOFS FOR TERMINATING PROGRAMS
Omnisemantics also simplify some of the characteristic complexities of behavior-preservation
proofs for compilers.

6.1 Motivation: Avoiding Both Backward Simulations and Artificial Determinism
Following CompCert’s terminology [Leroy 2009], one particular evaluation of a program can admit
one out of four possible behaviors: terminate (with a value, an exception, a fatal error, etc.), trigger
undefined behavior, diverge silently after performing a finite number of I/O operations, or be reactive
by performing an infinite sequence of I/O operations. Whether an error such as a division by zero
is considered as a terminating behavior or as an undefined behavior is a design decision associated
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with each programming language. A general-purpose compiler ought to preserve behaviors, except
that undefined behaviors can be replaced with anything.
In this paper, we focus on proofs of compiler correctness for programs that always terminate

safely. Such a result is sufficient for many practical applications in software verification where
source programs are proven to be safe, and often, the only use case for nontermination is a top-level
infinite event-handling loop, which can be implemented in assembly language [Erbsen et al. 2021].
We leave to future work the application of omnisemantics to the correct compilation of programs
that diverge, react, or trigger undefined behavior on some inputs but not others.
In the particular case of a deterministic programming language, compiler correctness for ter-

minating programs can be established via a forward-simulation proof.7 Such a proof consists of
showing that each step from the source program corresponds to a number of steps in the compiled
program. The correspondence involved is captured by a relation between source states and target
states. Such forward-simulation proofs work well in practice. The main problem is that they do not
generalize to nondeterministic languages.

Indeed, in the presence of nondeterminism, a source program may have several possible execu-
tions. As we restrict ourselves to the case of terminating programs, let us assume that all executions
of the source program terminate, only possibly with different results. In that setting, a compiler
is correct if (1) the compiled program always terminates, and (2) for any result that the compiled
program may produce, the source program could have produced that result. It may not be intuitive
at first, but the inclusion is indeed backwards: the set of behaviors of the target program must be
included in the set of behaviors of the source program.

To establish the backward behavior inclusion, one may set up a backward-simulation proof. Such
a proof consists of showing that each step from the target program corresponds to one or more
steps in the source program.8 Yet, backward simulations are much more unwieldy to set up than
forward simulations. Indeed, in most cases one source-program step is implemented by multiple
steps in the compiled program, thus a backward-simulation relation typically needs to relate many
more pairs than a forward-simulation relation.
This observation motivated the CompCert project [Leroy 2009] to exploit forward simulations

as much as possible, at the cost of modeling features of the intermediate language as deterministic
even when it is not natural to do so, and even when doing so requires introducing artificial functions
for, e.g., computing fresh memory locations in a deterministic manner. Even so, runtime input
does not fit the fully deterministic model, leading to the technical definitions of receptiveness and
determinacy (roughly, capturing the idea of determinism modulo input) so that lemmas for flipping
forward simulations into backwards simulations can be stated and proven. Omnisemantics remove
the need for this machinery.

In this section:
• We explain how omnisemantics sidestep the need for backward simulations, by carrying
out forward-simulation proofs of compiler correctness, for nondeterministic terminating
programs.
• We show how the idea generalizes to languages including I/O operations and to the case
where the source language and target language are different.

7We follow CompCert’s terminology, using “forward” and “backward” to refer to the direction of compilation, “forward”
meaning from source language to target language. We note the conflict with other literature [Lynch and Vaandrager 1995]
that uses “forward” and “backward” to refer to the direction of the state transitions.
8 The number of corresponding steps in the source program should not be zero, otherwise the target program could diverge
whereas the source program terminates. In practice, however, it is not always easy to find one source-program step that
corresponds to a target-program step. In such situations, one may consider a generalized version of backward simulations
that allow for zero source-program steps, provided that some well-founded measure decreases [Leroy 2009].
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• We present two case studies: one transformation that increases the amount of nondeterminism
and one that decreases the amount of nondeterminism.
• We comment on the fact that our second case study features an omni-big-step semantics
for the source language, whereas it features an omni-small-step semantics for the target
language.

6.2 Establishing Correctness via Forward Simulations using Omnisemantics
Consider a compilation function written C (t ). For simplicity, we assume that the source and target
language are identical, we assume that compilation does not alter the result values, and we assume
the language to be state-free—wewill generalize the results in the next subsection. In this subsection,
t ⇓ v denotes the standard big-step judgment, t ⇓ Q denotes the omni-big-step judgment, and
terminates(t ) asserts that all executions of t terminate safely, without undefined behavior. The
compiler-correctness result for terminating programs captures preservation of termination and
backward inclusion for results—points (1) and (2) stated earlier.

correctness-for-terminating-programs:
terminates(t ) ⇒ terminates(C (t )) ∧

(
∀v . C (t ) ⇓ v ⇒ t ⇓ v

)
We claim that this correctness result can be derived from the following statement, which describes

forward preservation of specifications.
omni-forward-preservation: ∀Q . t ⇓ Q ⇒ C (t ) ⇓ Q

Let us demonstrate the claim. Let us assume that terminates(t ) hold. First of all, recall from §2.2
the equivalence named omni-big-step-iff-terminates-and-correct that relates the omni-big-
step judgment and the termination judgment.

t ⇓ Q ⇐⇒ terminates(t ) ∧
(
∀v . (t ⇓ v ) ⇒ v ∈ Q

)
Exploiting this equivalence, the omni-forward-preservation assumption reformulates as follows.

∀Q .
(
terminates(t ) ∧

(
∀v . (t ⇓ v ) ⇒ v ∈ Q

))
⇒

(
terminates(C (t )) ∧

(
∀v . (C (t ) ⇓ v ) ⇒ v ∈ Q

))
The hypothesis terminates(t ) holds by assumption. Let us instantiate Q as the strongest post-

condition for t , that is, as the set {v | (t ⇓ v )}. We obtain:(
∀v . (t ⇓ v ) ⇒ (t ⇓ v )

)
⇒ terminates(C (t )) ∧

(
∀v . (C (t ) ⇓ v ) ⇒ (t ⇓ v )

)
.

The premise is a tautology, and the conclusion proves correctness-for-terminating-programs.

6.3 Omnisemantics Simulations for I/O and Cross-Language Compilation
More generally, the behavior of a terminating program consists of the final result and its interactions
with the outside world (input and output). These interactions include, e.g., interaction with the
standard input and output streams, system calls, etc. Each interaction is called an event, and the
semantics judgment is extended to collect such events into a trace τ . Figure 5 shows three illustrative
cases of how the rules from Figure 2 are augmented with traces, making the choice to treat rand
calls as observable events while reference-allocation nondeterminism remains internal.
Requiring a compiler to preserve only the nondeterministic choices recorded in the trace en-

ables us to pick and choose which (external) interactions must be preserved by compilations and
which (internal) nondeterministic choices the compiler may resolve as it sees fit. As a particu-
larly fine-grained example, the trace might record that malloc was called and succeeded but omit
the pointer it returned, to allow for optimizations that reduce the amount of allocation. To our
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omni-big-let-trace
t1/s/τ ⇓ Q1

(
∀(v ′, s ′,τ ′) ∈ Q1. ([v ′/x] t2)/s ′/τ ′ ⇓ Q

)
(letx = t1 in t2)/s/τ ⇓ Q

omni-big-rand-trace
n > 0

(
∀m. 0 ≤ m < n ⇒ (m, s, (n,m) :: τ ) ∈ Q

)
(randn)/s/τ ⇓ Q

omni-big-ref
∀p < dom s . (p, s[p := v],τ ) ∈ Q

(refv )/s/τ ⇓ Q

Fig. 5. Omni-big-step semantics with traces, selected rules

knowledge, this level of flexibility is unique to omnisemantics. For a forward-simulation-based
compiler-correctness proof, constructing a deterministic model of all internal nondeterminism can
be arbitrarily complicated (the CompCert memory model is an example).

We restrict our attention to semantics that only accept terminating commands c that do not go
wrong and do not return values, for the rest of this section. For languages of terms (that return
values) rather than commands (that do not return values), we would need a representation relation
between source-level and target-level values—we omit one here for brevity, but §6.4 tackles a similar
challenge. In the current setting, behavior inclusion holds between a source-language program and
a target-language program if all traces that the target-language program can produce (according to
traditional small-step or big-step semantics) can also be produced by the source-language program.
More formally, we define the traces that can be produced from a starting configuration c/s/τ as

traces(c, s,τ ) := {τ ′ | ∃s ′. c/s/τ ⇓ s ′/τ ′}

and say that a compiler C satisfies behavior inclusion for a command starting from the initial
source-level state ssrc related to the initial target-level state stgt and initial trace τ if TraceInclusion
as defined below holds.

TraceInclusion(c, ssrc, stgt,τ ) := traces(C (c ), stgt,τ ) ⊆ traces(c, ssrc,τ )

Assuming omni-big-step semantics ⇓src and ⇓tgt for the source and target languages, plus a
relation R between source- and target-language states, we define omnisemantics simulation, a
compiler-correctness criterion designed to be provable by induction on the ⇓src judgment, as
follows:

OmnisemanticsSimulation(c ) := ∀ssrc stgt τ Q . R (ssrc, stgt) ∧ c/ssrc/τ ⇓src Q
=⇒ C (c )/stgt/τ ⇓tgt QR

where QR (s
′
tgt, τ

′) := ∃s ′src . R (s
′
src, s

′
tgt) ∧Q (s ′src,τ

′)

Our goal in this section is to prove that an omnisemantics simulation implies trace inclusion if
the source program terminates, i.e. to show
∀c . OmnisemanticsSimulation(c ) =⇒

∀ ssrc stgt τ . terminates(c, ssrc,τ ) ∧ R (ssrc, stgt) =⇒ TraceInclusion(c, ssrc, stgt,τ )
We rely on two properties: First, soundness of omni-big-step semantics with respect to traditional
big-step semantics:

∀c s s ′ τ τ ′ Q . c/s/τ ⇓ s ′/τ ′ ∧ c/s ⇓ Q =⇒ Q (s ′,τ ′) (1)

And conversely, that a program that terminates safely and whose traditional big-step executions
all satisfy a postcondition also has an omnisemantics derivation:

∀c s τ Q . terminates(c, s,τ ) ∧ (∀s ′ τ ′. c/s/τ ⇓ s ′/τ ′ =⇒ Q (s ′,τ ′)) =⇒ c/s/τ ⇓ Q (2)
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To show trace inclusion, i.e. traces(C (c ), stgt,τ ) ⊆ traces(c, ssrc,τ ), we can assume a target-
language executionC (c )/stgt/τ ⇓ s ′tgt/τ ′ producing traceτ ′, andwe need to showτ ′ ∈ traces(c, ssrc,τ ).
By applying (2) to the source program (whose termination we assume) and setting Q (s ′src,τ

′) :=
c/ssrc/τ ⇓ s

′
src/τ

′ so that the second premise becomes a tautology, we obtain the source-level omnise-
mantics derivation c/ssrc/τ ⇓ (λs ′src τ ′. c/ssrc/τ ⇓ s ′src/τ ′). Passing this fact into the omnisemantics
simulation yields C (c )/stgt/τ ⇓ (λs ′tgt τ ′.∃s ′src.R (s ′src, s ′tgt) ∧ c/ssrc/τ ⇓ s ′src/τ ′). Now we can apply (1)
to this fact and the originally assumed target-level execution and obtain an s ′src such that R (s ′src, s ′tgt)
and c/ssrc/τ ⇓ s ′src/τ ′, which by definition is exactly what needs to hold to have τ ′ ∈ traces(c, ssrc,τ ).

6.4 Case Study: Compiling Immutable Pairs to Heap-Allocated Records
This section describes a simple compiler pass that increases the amount of nondeterminism. The
source language assumes a primitive notion of tuples, whereas the target language encodes such
tuples by means of heap allocation. This case study is formalized with respect to a language based
on commands whose arguments all must be variables. Such a language could be an intermediate
language in a compiler pipeline, reached after an expression-flattening phase.

Language syntax. We let c denote a command, x , y, and z denote identifiers, and n denote
unbounded natural-number constants. The grammar of the language is as follows.

c := x = unop (y) | x = binop (y, z) | x = input() | output(x ) | x = y[n] | x[n] = y |
x = alloc(n) | x = n | x = y | c1; c2 | if x then c1 else c2 | while x do c | skip

We actually consider two variants of this language, differing only in the types of values and in
the available unary operators unop and binary operators binop. The source language features an
inductively defined type of values that can be natural numbers n or immutable pairs of values (i.e.,
the grammar of values is v := n | (v,v )). It includes as unary operators the projection functions fst
and snd (defined only on pairs) and the Boolean negation not (defined only on {0, 1}). Its binary
operators are addition (+) and pair creation mkpair. The target language admits only natural
numbers as values. It includes only the negation and addition operators.

Omni-big-step semantics. For both languages, the omni-big-step evaluation judgment takes the
form c/m/ℓ/τ ⇓ Q , where c is a command,m is a memory state (a partial map from natural numbers
to natural numbers), ℓ is an environment of local variables (a partial map from identifiers to values,
whose type differs between the source and target languages as described above), τ denotes the
I/O trace made of the events already performed before executing c , and the postcondition Q is
a predicate over triples of the form (m′, ℓ′,τ ′). A trace consists of a list of I/O events e whose
grammar is e := IN n | OUT n.

The rules defining the judgment appear in Figure 6. They are common to both languages—only
the set of supported unary and binary operators differs. The semantics of operators are defined
by two straightforward auxiliary relations (spelled out in Appendix H), evalunop(unop,v1,v2)
asserting that applying unop to value v1 results in v2, and evalbinop(binop,v1,v2,v3) asserting
that applying binop to v1 and v2 results in v3. The load command x = y[n] requires that the local
variable y contains a natural number a and stores the value of the memory at address a + n into
variable x (and is undefined if a + n is not mapped by the memory). The store command x[n] = y
stores the natural number contained in the local variable y at memory location a + n, where a is
the address contained in local variable x , but only if memory at address a + n has already been
allocated.
The command x = input() reads a natural number n, stores it into local variable x , and adds

the event (IN n) to the event trace. The number n is chosen nondeterministically but recorded in
the trace, resulting in external nondeterminism. The language has a built-in memory allocator but,
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eval-unop
(y,vy ) ∈ ℓ evalunop(op,vy ,v )

Q (m, ℓ[x := v], τ )
(x = op (y))/m/ℓ/τ ⇓ Q

eval-store
(x ,a) ∈ ℓ (a + n) ∈ domm

(y,v ) ∈ ℓ Q (m[(a + n) := v], ℓ, τ )
(x[n] = y)/m/ℓ/τ ⇓ Q

eval-input
∀n. Q (m, ℓ[x := n], τ :: IN n)

(x = input())/m/ℓ/τ ⇓ Q

eval-alloc(
∀a v̄ . len(v̄ ) = n ∧ a, . . . , (a + n − 1) < domm

=⇒ Q (m[(a, . . . (a + n − 1)) := v̄], ℓ[x := a], τ )
)

(x = alloc(n))/m/ℓ/τ ⇓ Q

eval-while-again
(x , 1) ∈ ℓ c/m/ℓ/τ ⇓ Q1(

∀m′ ℓ′ τ ′. Q1 (m
′, ℓ′,τ ′) =⇒ (while x do c )/m′/ℓ′/τ ′ ⇓ Q

)
(while x do c )/m/ℓ/τ ⇓ Q

eval-while-done
(x , 0) ∈ ℓ Q (m, ℓ, τ )

(while x do c )/m/ℓ/τ ⇓ Q

eval-seq
c1/m/ℓ/τ ⇓ Q1 (∀m′ ℓ′ τ ′. Q1 (m

′, ℓ′,τ ′) =⇒ c2/m
′/ℓ′/τ ′ ⇓ Q )

(c1; c2)/m/ℓ/τ ⇓ Q

Fig. 6. Nondeterministic omni-big-step semantics for an imperative language (selected rules)

for simplicity, we do not deal with deallocation. The command x = alloc(n) nondeterministically
picks an address (natural number) a such that a, as well as the n − 1 addresses following a, are not
yet part of the memory, initializes these addresses with nondeterministically chosen values, and
returns a. This rule encodes internal nondeterminism, because this action is not recorded in the
event trace. Semantics of while loops are given by sequencing the first iteration with the loop itself
as long as the loop test succeeds.
In practice, we found it convenient also to derive a chained version eval-seq-chained of the

omni-big-step rule eval-seq, just like we did for omni-small-step rules in §3.2.

eval-seq-chained : c1/m/ℓ/τ ⇓
(
λm′ℓ′τ ′. (c2/m

′/ℓ′/τ ′ ⇓ Q )
)
⇒ (c1; c2)/m/ℓ/τ ⇓ Q

Note that the chained variant cannot be used to define the judgement inductively in Coq due to
the strict positivity requirement; more details on encoding choices can be found in Appendix A.

Compilation function. The compilation function C lays out the pairs of the source language on
the heap memory of the target language. This function is defined recursively on the source program.
It maps the source-language operators that are not supported by the target language as follows.

C (x = fst(y)) := x = y[0]
C (x = snd(y)) := x = y[1]
C (x = mkpair(y, z)) := tmp = alloc(2); tmp[0] = y; tmp[1] = z; x = tmp

Note that to compilemkpair, we cannot simply store the address returned by alloc directly into x ,
because if x is the same variable name as y or z, then we would be overwriting the argument. For
this reason, we use a temporary variable tmp that we declare to be reserved for compiler usage.

Simulation relation. To carry out the proof of correctness of the function C (c ), we introduce
a simulation relation R for relating a source-language state (m1, ℓ1) with a target-language state
(m2, ℓ2). To that end, we first define the relation valuerepr(v,w,m), to relate a source-language
value v with the corresponding target-language value w , in a target-language memorym. This
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relation is implemented as the recursive function shown below—it could equally well consist of an
inductive definition. A pair (v1,v2) is represented by addressw if recursively v1 is represented by
the value at addressw , and v2 is represented by the value at addressw + 1. A natural number n has
the same representation on the target-language level, i.e. we just assertw = n.

valuerepr((v1,v2),w,m) := (∃w1. (w,w1) ∈m ∧ valuerepr(v1,w1,m)) ∧
(∃w2. (w + 1,w2) ∈m ∧ valuerepr(v2,w2,m))

valuerepr(n,w,m) := w = n

The relationship R between source and target states can then be defined using valuerepr. In the
definition shown below, we writem2 ⊇ m1 to mean that memorym2 extendsm1, and we write
m2 \m1 to denote the map-subtraction operator that restrictsm2 to contain only addresses not
bound inm1. The locations bound bym2 but not bym1 correspond to the memory addresses of the
pairs allocated on the heap in the target language.

R ((m1, ℓ1), (m2, ℓ2)) := tmp < dom ℓ1 ∧m2 ⊇ m1∧
∀(x ,v ) ∈ ℓ1. ∃w . (x ,w ) ∈ ℓ2 ∧ valuerepr(v,w,m2 \m1)

Correctness proof. We are now ready to tackle the omni-forward-simulation proof.

Theorem 6.1 (omnisemantics simulation for the pair-heapification compiler).
∀c msrc ℓsrc mtgt ℓtgt τ Q . tmp < vars(c ) ∧ R ((msrc, ℓsrc), (mtgt, ℓtgt)) ∧

c/msrc/ℓsrc/τ ⇓src Q =⇒
C (c )/mtgt/ℓtgt/τ ⇓tgt QR

where QR (m
′
tgt, ℓ

′
tgt, τ

′) := ∃m′src ℓ′src . R ((m′src, ℓ′src), (m′tgt, ℓ′tgt)) ∧Q (m′src, ℓ
′
src, τ

′)

Proof. By induction on the derivation of c/msrc/ℓsrc/τ ⇓ Q . In each case, the goal to prove is
initially of the form C (c )/mtgt/ℓtgt/τ ⇓ QR , where c has some structure that allows us to simplify
C (c ) into a more concrete program snippet. We consider the resulting simplified goal as an in-
vocation of a weakest-precondition generator on that program snippet, and we view the rules
of Figure 6 as weakest-precondition rules that we can apply in order to step through the program
snippet, using the hypotheses obtained from inverting the source-level derivation c/msrc/ℓtgt/τ ⇓ Q
to discharge the side conditions that arise. Whenever we encounter a sequence of commands, we
use eval-seq-chained instead of eval-seq, so that we do not have to provide an intermediate
postcondition. In the cases where commands have subcommands, we use the inductive hypotheses
about their execution as if they were previously proven lemmas about these “functions.”
We only present the case where c = (x = mkpair(y, z)) in more detail: We have to prove a goal

of the form C (x = mkpair(y, z))/mtgt/ℓtgt/τ ⇓ QR , which simplifies to

(tmp = alloc(2); tmp[0] = y; tmp[1] = z;x = tmp)/mtgt/ℓtgt/τ ⇓ QR

Applying eval-seq-chained turns it into:
(tmp = alloc(2))/mtgt/ℓtgt/τ ⇓

(
λm′tgt ℓ

′
tgt τ

′. (tmp[0] = y; tmp[1] = z;x = tmp)/m′tgt/ℓ′tgt/τ ′ ⇓ QR
)

Applying eval-alloc turns it into:
∀ a v . len(v ) = 2 =⇒ a,a + 1 < dommtgt =⇒

(tmp[0] = y; tmp[1] = z;x = tmp)/mtgt[a..(a + 1) := v]/ℓtgt[tmp := a]/τ ⇓ QR

Note how the fact that the address a and the list of initial valuesv are chosen nondeterministically
naturally shows up as a universal quantification, and note how the memory and locals appearing
in the state to the left of the ⇓ have been updated by the alloc function. After introducing these
universally quantified variables and the hypotheses, we again have a goal of the form “. . . ⇓ . . . ”
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and continue by applying eval-seq-chained, eval-store, eval-seq-chained, eval-store, eval-
set. Finally, we prove QR for the locals and memory updated according to the various eval-. . .
rules that we applied by using map laws and the initial hypothesis R ((msrc, ℓsrc), (mtgt, ℓtgt)). □

6.5 Case Study: Introduction of Stack Allocation
This second case study illustrates the case of a transformation that reduces the amount of nondeter-
minism. The transformation consists of adding a stack-allocation feature to the compiler developed
by Erbsen et al. [2021]. Proving this transformation correct using an omni-big-step forward simula-
tion was straightforward and took us only a few days of work—most of the work was not concerned
with dealing with nondeterminism. This smooth outcome is in stark contrast to the outlook of using
traditional evaluation judgments: verifying the same transformation would have required either
more complex invariants, to set up a backward simulation; or completely rewriting the memory
model so that pointers are represented by deterministically generated unobservable identifiers, to
allow for a compiler-correctness proof by forward simulation. In fact, addressable stack allocation
was initially omitted from the language exactly to avoid these intricacies (based on the experience
from CompCert), but switching to omnisemantics made its addition local and uncomplicated.

The input language is an imperative command language similar to the one described in §6.4. The
memory is modeled as a partial map from machine words (32-bit or 64-bit integers) to bytes. The
stack-allocation feature here consists of a command let x = stackalloc(n) in c made available in the
source language. This command assigns an address to variable x at which n bytes of memory will
be available during the execution of command c . Our compiler extension implements this command
by allocating the requested n bytes on the stack, computing the address at runtime based on the
stack pointer.
The key challenge is that the source-language semantics does not feature a stack. The stack

gets introduced further down the compilation chain. Thus, the simplest way to assign semantics
to the stackalloc function in the source language is to pretend that it allocates memory at a
nondeterministically chosen memory location. This nondeterministic choice is described using a
universal quantification in the omni-big-step rule shown below, like in rule omni-big-ref from §2.

∀mnew a. (dommnew ∩ domm) = ∅ ∧ dommnew = [a,a + n) =⇒

c/(m ∪mnew)/ℓ[x := a]/τ ⇓ λm′ ℓ′ τ ′. P (m′ \mnew, ℓ
′, τ ′)

(let x = stackalloc(n) in c )/m/ℓ/τ ⇓ P
omni-big-stackalloc

In the source language, the address returned by stackalloc is picked nondeterministically, whereas
in the target language the address used for the allocation is deterministically computed, as the
current stack pointer augmented with some offset. Thus, the compiler phase that compiles away
the stackalloc command reduces the amount of nondeterminism.

Compiler-correctness proof. The compiler-correctness proof proceeds by induction on the om-
nisemantics derivation for the source language, producing a target-language execution with a
related postcondition. The simulation relation R describes the target-language memory as a disjoint
union of unallocated stack memory and the source-language memory state. Critically, the case for
stackalloc has access to a universally quantified induction hypothesis (derived from the rule shown
above) about target-level executions of C (c ) for any address a.

As the address of the stack-allocatedmemory is not recorded in the trace, we are free to instantiate
it with the specific stack-space address, expressed in terms of compile-time stack-layout parameters
and the runtime stack pointer. Reestablishing the simulation relation to satisfy the precondition of
that induction hypothesis then involves carving out the freshly allocated memory from unused stack
space and considering it a part of the source-level memory instead, matching the compiler-chosen
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memory layout and the preconditions of the stackalloc omnisemantics rule. It is this last part that
made up the vast majority of the verification work in this case study; handling the nondeterminism
itself is as straightforward as it gets.
Note that it would not be possible to complete the proof by instantiating a with a compiler-

chosen offset from the stack pointer if the semantics recorded the value of a in the trace. The
(unremarkable) proof for the input command in the previous section also has access to a universally
quantified execution hypothesis, but it must directly instantiate its universally quantified induction
hypothesis with the variable introduced when applying the target-level omnisemantics input rule
to the goal, to match the target-language trace to the source-language trace. Either way, reasoning
about the reduction of nondeterministim in an omni-forward-preservation proof boils down to
instantiating a universal quantifier.

Design decisions around proving absence of out-of-memory. In the verified software-hardware stack
described in Erbsen et al. [2021], the main bottleneck in terms of complexity that prevents us from
developping bigger applications is the program logic used to verify source programs. Therefore,
we made an effort to avoid adding more proof obligations in the program logic whenever possible.
At the same time, for the targeted application it was fine to limit the expressivity of the source
language. In particular, we decided that disallowing recursive calls is acceptable. Given that setting,
we want to avoid reasoning about out-of-memory conditions in the source language, while still
proving that the compiled program will not run out of memory, which we can achieve as follows.

In the omni-big-stackalloc rule of our source language, we deliberately use a vacuous universal
quantification if we run out of memory, because we prefer to handle out-of-memory conditions
outside of the omnisemantics judgment, in an additional external judgment. In particular, this
means that if omni-big-stackalloc is applied with a memorym whose domain already contains
all (or almost all) addresses (which are 32-bit or 64-bit words), there might be nomnew and a such
that the left-hand side of the implication above the line in omni-big-stackalloc holds, so we can
derive any postcondition P , something that we cautioned against in §2.2.
Effectively, this means that our source-language evaluation rules do not guarantee that the

program never runs out of memory. This choice simplifies the program-logic proofs for concrete
input programs but requires additional work in the compiler: the compiler performs a simple
static-analysis pass over the call graph of the program to determine the maximum amount of stack
space that the program needs. Since this analysis rejects recursive calls, the space upper bound is
not hard to compute. The compiler-correctness proof contains an additional hypothesis requiring
that at least that computed amount of memory is available in the state on which the target-language
program begins its execution.

An alternative approach would be to introduce a notion of “amount of used stack space” in the
source-language semantics and include an additional precondition in the omni-big-stackalloc
rule that requires this amount to be bounded. This approach would put more complexity into the
verification of source programs, while simplifying the compiler correctness proof. In order to allow
recursive calls and dynamically chosen stack-allocation sizes, reasoning about the amount of stack
space in the program logic seems to become unavoidable, in which case this alternative approach
would be preferrable.

6.6 Compilation from a Language in Omni-Big-Step to One in Omni-Small-Step
If the semantics of the source language of a compiler phase are most naturally expressed in omni-
big-step, but the target language’s semantics are best expressed in omni-small-step semantics, it is
convenient to prove an omni-forward simulation directly from a big-step source execution to a
small-step target execution. For instance, the compiler in the project by Erbsen et al. [2021] includes
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such a translation, relating a big-step intermediate language to a small-step assembly language.
In fact, this translation happens in the same case study described in the previous subsection. In
what follows, we attempt to give a flavor of the proof obligations that arise from switching from
omni-big-step to omni-small-step during the correctness proof.

Consider one sample omni-small-step rule, for the load-word instruction lw that loads the value
at the address stored in register r2 and assigns it to register r1:

asm-lw
(pc, lw r1 r2) ∈m (r2,a) ∈ rf (a,v ) ∈m P (m, rf[r1 := v],pc + 1,τ )

m/rf/pc/τ −→ P

Here, we model a machine state stgt as a quadruple of a memorym (that contains both instructions
and data), a register file rf mapping register names to machine words, a program counter pc , and
a trace τ . One can prove an omni-forward simulation from big-step source semantics directly to
small-step target semantics:

∀ssrc stgt P . R (ssrc, stgt) ∧ ssrc ⇓ P =⇒ stgt −→
♢ (λs ′tgt.∃s

′
src. R (s

′
src, s

′
tgt) ∧ P (s

′
src))

where R asserts, among other conditions, that the memory of the target state stgt contains the
compiled program.

Like the proof described in §6.4, this proof also works by stepping through the target-language
program by applying target-language rules and discharging their side conditions using the hy-
potheses obtained by inverting the source-language execution, with the only difference that instead
of using the derived big-step rule eval-seq-chained for chaining, one now uses the following two
rules: eventually-step-chained and eventually-cut.
Applying eventually-step-chained turns the goal into an omni-single-small-step goal with

a given postcondition, which is suitable to discharge using rules with universally quantified
postconditions like asm-lw. Applying eventually-cut, on the other hand, creates two subgoals
containing an uninstantiated unification variable for the intermediate postcondition. The unification
variable appears as the postcondition in the first subgoal, so an induction hypothesis with the
concrete postcondition from the theorem statement can be applied. In the second subgoal, this
postcondition becomes the precondition for the remainder of the execution.

7 RELATED AND FUTUREWORK
This works builds on that of Schäfer et al. [2016], Charguéraud [2020], and Erbsen et al. [2021], all
of which are discussed in the introduction (§1). We now will review some additional connections.

Relationship to coinductive big-step semantics. Leroy and Grall [2009] argue that fairly complex,
optimizing compilation passes can be proved correct more easily using big-step semantics than
using small-step semantics. These authors propose to reason about diverging executions using
coinductive big-step semantics, following up on an earlier idea by Cousot and Cousot [1992]. Leroy
and Grall’s judgment, written t/s ⇑co, asserts that there exists a diverging execution of t/s . This
judgment is defined coinductively, and a number of its rules refer to the standard big-step judgment.
For example, consider the two rules associated with divergence of a let-binding. An expression
letx = t1 in t2 diverges either because t1 diverges (rule div-let-1) or because t1 terminates on a
value v1 and the term [v1/x] t2 diverges (rule div-let-2).

t1/s ⇑
co

(letx = t1 in t2)/s ⇑co
div-let-1

t1/s ⇓ v1/s
′ ([v1/x] t2)/s ′ ⇑co

(letx = t1 in t2)/s ⇑co
div-let-2
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In contrast, the coinductive omni-big-step judgment involves a single rule, namely co-omni-big-let,
defined as part of the coinductive interpretation of the rules from Fig. 2.

t1/s ⇓
co Q1

(
∀(v1, s

′) ∈ Q1. ([v1/x] t2)/s ′ ⇓co Q
)

(letx = t1 in t2)/s ⇓co Q
co-omni-big-let

In that rule, if Q1 is instantiated as the empty set, the second premise becomes vacuous, and we
recover the rule div-let-1. Otherwise, ifQ1 is nonempty, then it describes the values v1 that t1 may
evaluate to. For each possible value v1, the second premise of the rule requires the term [v1/x] t2 to
diverge, just like in the rule div-let-2. In summary, co-omni-big-let captures at once the logic of
both div-let-1 and div-let-2.
The paper by Leroy and Grall [2009], which focuses on a deterministic semantics, points out

that the principle of excluded middle (classical logic) is required for establishing the equivalence
between a coinductive big-step semantics for divergence and the standard small-step semantics for
divergence. Interestingly, classical logic is not required for establishing the equivalence between
a coinductive omni-big-step semantics of divergence and the standard small-step semantics for
divergence. In the explanations that follow, we omit the state for simplicity, and we write t −→∞co
for the standard small-step divergence judgment, defined as ∀t ′. (t −→∗ t ′) ⇒ ∃t ′′. (t ′ −→ t ′′).

The implication that requires classical logic to be established is: (t −→∞co) ⇒ (t ⇑co). To see why,
consider a term t of the form letx = t1 in t2, where t1 corresponds to a programwhose termination is
an open mathematical problem, and where t2 is an infinite loop. Thus, no matter whether t1 diverges
or not, the program letx = t1 in t2 diverges. Yet, to establish the judgment (letx = t1 in t2) ⇑co,
one needs to know whether t1 diverges, in which case the rule div-let-1 applies, or whether t1
terminates, in which case the rule div-let-2 applies. In the general case, one has to invoke the
excluded middle to decide on the termination of an abstract term t1.
In contrast, the implication (t −→∞co) ⇒ (t ⇓co ∅), which targets a coinductive omni-big-step

semantics, can be proved without classical logic, as pointed out earlier in §3.4. Intuitively, to prove
that the same example program letx = t1 in t2 diverges, one can apply the rule co-omni-big-let,
regardless of whether t1 diverges or not. It suffices to instantiate Q1, which denotes the set of
possible results of t1, as the strongest postcondition of t1. The strongest postcondition may be
expressed in terms of the omni-big-step judgment (recall §2.2), or equivalently in terms of the
small-step judgment by instantiating Q1 as {v1 | t1 −→

∗ v1}. In particular, if t1 diverges, then
the set Q1 is empty and the second premise of co-omni-big-let becomes vacuous. What matters
for the proof of equivalence between the small-step semantics and the coinductive omni-big-step
semantics is that we do not need to decide whether Q1 is empty, i.e., whether t1 diverges or not. We
thereby avoid the need for the excluded middle.

Semantics of nondeterministic programs. An important aspect of the present paper is the set up
of semantics for nondeterministic language constructs. Let us review the key historical papers that
have focused on that task. Nondeterminism appears in the early work on semantics, including
the language of guarded commands of Dijkstra [1976] that admits nondeterministic choice where
guards overlap, and the par construct of Milner [1975]. Plotkin [1976] develops a powerdomain
construction to give a fully abstract model in which equivalences such as (p parq) = (q parp) hold.
Francez et al. [1979] also present semantics that map each program to a representation of the set of
its possible results. In all these presentations, nondeterminism is bounded: only a finite number of
choices are allowed.

Subsequent work generalizes the powerdomain interpretation to unbounded nondeterminism. For
example, Back [1983] considers a language construct x := ϵP that assigns x to an arbitrary value
satisfying the predicate P—the program has undefined behavior if no such value exists. Apt and
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Plotkin [1986] address the lack of continuity in the models presented in earlier work, still leveraging
the notion of powerdomains. Their presentation includes a (countable) nondeterministic assignment
operator, written x := ?, that sets x to an arbitrary integer in Z. More recent work by Tassarotti et al.
[2017] heavily relies on the bounded nondeterminism assumption in an extension of Iris [Jung et al.
2018] for developing a logic to justify program refinement. These authors speculate that transfinite
step-indexing [Schwinghammer et al. 2013; Svendsen et al. 2016] may allow handling unbounded
nondeterminism.

Coinductive characterization of safety. Wang et al. [2014] define a safety judgment, written
safe(t , s ), to assert that all possible executions of the configuration t/s execute safely, i.e., do not get
stuck. To reason in big-step style, and to avoid the cumbersome introduction of error-propagation
rules, they consider a coinductive definition. We reproduce below the rule for let-bindings, which
reads as follows: to establish that letx = t1 in t2 executes safely, prove that t1 executes safely and
that, for any possible resultv1 produced by t1, the result of the substitution [v1/x] t2 executes safely.

safe(t1, s )
(
∀v1s

′. (t1/s ⇓ v1/s
′) ⇒ safe(([v1/x] t2), s ′)

)
safe((letx = t1 in t2), s )

safe-let (coinductive)

Our judgment t/s ⇓co Q generalizes the notion of safety, by baking the postcondition directly into
the judgment (§2.4). It asserts not only that t/s cannot get stuck but also that any potential final
configuration belongs to Q . We formalized in Coq the following equivalence.

omni-co-big-step-iff-safe-and-correct :
t/s ⇓co Q ⇐⇒ safe(t , s ) ∧

(
∀vs ′. (t/s ⇓ v/s ′) ⇒ (v, s ′) ∈ Q

)
Our rule omni-big-let extends safe-let not just by adding the postconditionQ to the judgment

but also by changing the quantification over v1/s
′. In the rule safe-let, the quantification is

constrained by t1/s ⇓ v1/s
′, whereas in the rule omni-big-let, it is constrained by (v1, s

′) ∈
Q1, where Q1 denotes the postcondition of t1/s . The key innovation here is that, thanks to the
introduction of postconditions, we no longer need to refer to the standard big-step judgment—the
judgment t/s ⇓ Q gives a stand-alone definition of the semantics of the language.

Semantics of reactive programs. One key question is how much of a program’s internal nonde-
terminism should be reflected in its execution trace. At one extreme, one could include a delay
event, a.k.a. a tick, to reflect in the trace each transition performed by the program, following the
approaches of Danielsson [2012]. More recent work on interaction trees [Koh et al. 2019; Xia et al.
2019] maps each program to a coinductive structure featuring ticks in addition to I/O steps. Yet,
these approaches come at the cost of reasoning “up to removal of a finite number of ticks.”
A promising route to avoiding ticks is the mixed inductive-coinductive approach of Nakata and

Uustalu [2010], for distinguishing between reactive programs that always eventually perform I/O
operations and silently diverging programs that eventually continue executing forever without
performing any I/O. Despite apparent benefits, this approach seems not to have gained popularity
or evaluation in the form of sizable case studies. It would be interesting future work to investigate
whether a mixed inductive-coinductive version of omnisemantics can be defined and provide
smooth reasoning for the combined challenge of potentially infinite executions, nondeterminism,
and undefined behavior. The key challenge is to find a way to carry out compiler-correctness
proofs through a single pass that handles reasoning about both terminating and nonterminating
executions. We are also looking forward to future work on omnisemantics that could provide new
approaches to reasoning about divergence and reactivity without counting ticks.
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Compiler correctness as trace property preservation. Abate et al. [2021] define the notion of source
trace property preservation (denoted TPτ̃ ) to mean that all properties that hold on traces produced
by the source program also hold on traces produced by the target program. They allow different
trace formats in the source and target language, relating the source trace s to a target trace t by a
relation s ∼ t and quantifying over them in the same way as we quantify over the source and target
states in the definition of omnisemantics simulation (§6.3). If we instantiate the definition of Abate
et al. [2021] by traces whose single events stand for emitting final states, we obtain our definition
of omnisemantics simulation, and vice versa, if we generalize our definition to also allow different
trace formats but omit the state component, we obtain their definition. However, including the state
component in our definition makes it directly usable for a forward-style proof by induction on the
source-language derivation, even in the presence of target-language nondeterminacy. We speculate
that several proofs of example compilers in that paper could be revisited using omnisemantics.
Doing so would not only simplify the proofs but also make the results stronger by removing the
target-language determinacy assumption, which they need to derive backward simulations from
forward simulations.

Semantics of concurrent programs. Concurrency increases the amount of nondeterminism, due
to interleavings, and generally increases the sources of undefined behaviors, due in particular to
data races. The work on CompCertTSO [Ševčík et al. 2013] shows how to deal with this additional
complexity in a compiler-correctness proof. A direction for future work is to investigate the extent
to which omni-small-step semantics would help simplify proofs from CompCertTSO.
The Iris framework [Jung et al. 2018, 2015] supports reasoning about concurrent programs

in Separation Logic. In Iris, the source language is specified by means of a traditional small-step
semantics. The weakest preconditions predicate is then defined using step-indexing: one first defines
the notion of “a program is well-behaved for n steps” by induction over n; then defines the notion of
“a program is well-behaved” as “it is well-behaved for any number of steps”. Proofs are then typically
carried out by induction over the indices. Yet, the indices involved get in the way of compiler proofs
where the number of computation steps may increase or decrease throught a transformation. This
observation motivated the introduction of more advanced techniques to tame the issue, such as
transfinite step-indexing [Svendsen et al. 2016]. When reasoning about sequential programs, the
use of step-indexing appears overkill for most applications. By leveraging an inductive definition
of the weakest precondition predicate, one obtains a direct induction principle that avoids the
technicalities and limitations of step-indexing altogether.

Semantics of probabilistic programs. Probabilistic semantics aim to describe not just which ex-
ecutions are possible but also to describe with what probability each execution may happen. A
probabilistic small-step execution relation assigns a probability to every transition. One caveat is
that probabilities do not suffice to describe all nondeterminism: in particular, memory is allocated at
nondeterministically chosen addresses. We refer to Batz et al. [2019] for a solution to this challenge.
In the context of program logics, McIver and Morgan [2005] introduce a weakest preexpectation
calculus. Batz et al. [2019] generalize this notion to set up a Quantitative Separation Logic.

Additionally, there is a long line of work aiming at providing denotational models for probabilistic
programs—e.g., Staton et al. [2016]; Wang et al. [2019]. Denotational and operational semantics
serve different purposes; one important practical benefit of omnisemantics is that it is grounded
in inductive definitions, with respect to which proofs by induction can be carried out easily in a
proof assistant. An interesting question is whether omnisemantics could be adapted to provide an
inductively defined operational semantics that accounts for probabilities, by relating configurations
not to sets of outcomes but instead to probability distributions of outcomes.
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The problem of termination of probabilistic programs is particularly subtle. One the one hand,
one may be interested in capturing that any execution terminates. For example, Staton et al. [2016]
define termination as “there exists n, such that termination occurs in n steps.” However, this
approach does not apply to infinitely branching nondeterminism. On the other hand, one may
design rules to establish almost-sure termination or positive-almost-sure termination [Chakarov and
Sankaranarayanan 2013; Ferrer Fioriti and Hermanns 2015; Kaminski et al. 2016; McIver et al. 2017].

Dijkstra monads. Dijkstra monads [Ahman et al. 2017; Maillard et al. 2019] target code written
in monadic form and specified using dependent types. The type-checking process essentially
applies weakest-precondition rules and results in the production of proof obligations. In practice,
specifications are expressed in first-order logic, so that proof obligations can be discharged using
SMT solvers. Dijkstra monads encourage metareasoning using object-language dependent types
only; they do not appear to have been designed for, or demonstrated capable of, carrying out
inductions over program executions. Dijkstra monads can be instantiated in particular with the
nondeterminism monad (NDet). In the current presentation [Ahman et al. 2017], the monad models
sets of possible outcomes using finite sets, which rules out infinitely branching nondeterminism
and does not allow for abstraction in intermediate postconditions (e.g., asserting that a subterm t1
returns an even integer).
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A ON THE CHALLENGE OF DEFININGWP INDUCTIVELY
The weakest-precondition-style reasoning rule for let-bindings is traditionally stated as follows.

wp-let: wp t1 (λv ′.wp ([v ′/x] t2)Q ) ⊢ wp (letx = t1 in t2)Q .

Translating it to a big-step omnisemantics rule results in the following rule.

t1/s ⇓ {(v
′, s ′) | ([v ′/x] t2)/s ′ ⇓ Q }

(letx = t1 in t2)/s ⇓ Q
omni-big-let-chained

The rule omni-big-let-chained can be useful for reasoning when one does not want to specify an
explicit postcondition that needs to hold between t1 and t2. This chained rule can be straightfor-
wardly derived from the omni-big-let rule part of the definition of the omni-big-step semantics, by
instantiating Q1 as {(v ′, s ′) | ([v ′/x] t2)/s ′ ⇓ Q } in the first premise, then checking the tautology
associated with the second premise.

t1/s ⇓ Q1
(
∀(v ′, s ′) ∈ Q1. ([v ′/x] t2)/s ′ ⇓ Q

)
(letx = t1 in t2)/s ⇓ Q

omni-big-let

One might wonder why we do not use omni-big-let-chained directly in the inductively defined
rules. The reason is that Coq’s strict positivity requirement on the well-formedness of inductive
definitions does not allow it.

To elaborate on this point, consider the four candidate Coq rules stated below.

Notation "H1 ⊢H2" := (∀ s, H1 s→ H2 s). (* notation for entailment *)

Inductive wp : trm→ (val→ state→ Prop)→ (state→ Prop) :=
| wp_let_invalid : ∀x t1 t2 Q, (* non strictly positive occurrence of [wp]. *)

wp t1 (fun v1⇒ wp (subst x v1 t2) Q)
⊢wp (trm_let x t1 t2) Q

| wp_let_invalid' : ∀Q1 x t1 t2 Q s, (* non strictly positive occurrence of [wp]. *)

wp t1 Q1 s→

Q1 = (fun v1 s2⇒ wp (subst x v1 t2) Q s2)→
wp (trm_let x t1 t2) Q s

| wp_let_valid : ∀x t1 t2 Q, (* accepted, but with useless induction principle *)

(fun s⇒∃Q1, wp t1 Q1 s ∧ (∀ v1, Q1 v1 ⊢wp (subst x v1 t2) Q))
⊢wp (trm_let x t1 t2) Q

| wp_let_valid' : ∀x t1 t2 Q1 Q, (* accepted, with useful induction principle *)

wp t1 Q1 s→

(∀ v1 s2, Q1 v1 s2→ wp (subst x v1 t2) Q s2))→
wp (trm_let x t1 t2) Q s.

The first rule directly translates wp-let. It is rejected by Coq because it includes a non-strictly-
positive occurrence of the predicate wp.
The second rule attempts a reformulation by expanding the definition of entailment and by

introducing a variable name Q1 for the intermediate postcondition, together with an equality
constraint on Q1. Yet, Coq rejects this rule just like the previous.
The third rule modifies the first rule by introducing an existentially quantified intermediate

postcondition Q1, quantifying over the items that belong to it. This rule is accepted by Coq. Yet,
in that form, Coq (v8.14) generates a useless induction principle, which provides no induction
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hypothesis for the nested occurence of wp. (This weakness can be corrected by stating and proving
an induction principle manually, but we prefer to avoid the extra hassle.)
The fourth rule corresponds to omni-big-let. It adapts the previous rule by quantifying Q1

universally at the level of the constructor. This presentation is properly recognized by the induction-
principle generator of Coq.

B UNSPECIFIED EVALUATION ORDER
For a language that uses unspecified but consistent order of evaluation for arguments of, e.g., pairs
or applications, we can consider a generalized version of the rule omni-big-pair from the previous
section. Essentially, we duplicate the premises to account for the two possible evaluation orders.

omni-big-pair-unspecified-order
t1/s ⇓ Q1

(
∀(v1, s

′) ∈ Q1. t2/s
′ ⇓ {(v2, s

′′) | ((v1,v2), s
′′) ∈ Q }

)
t2/s ⇓ Q2

(
∀(v2, s

′) ∈ Q2. t1/s
′ ⇓ {(v1, s

′′) | ((v1,v2), s
′′) ∈ Q }

)
(t1, t2)/s ⇓ Q

To avoid the duplication in the premises, one can follow the approach described in §5.5 of the
paper on the pretty-big-step semantics [Charguéraud 2013], which presents a general rule for
evaluating a list of subterms in arbitrary order.
Note that we do not attempt to model languages that allow arbitrary interleavings in the eval-

uation of arguments, as, e.g., arithmetic expressions in the C language [Krebbers 2015]. More
generally, concurrent evaluation is out of the scope of the present paper.

C OMNISEMANTICS RULES IN THE PRESENCE OF EXCEPTIONS
For a programming language that features exceptions, the reasoning rule for let-bindings needs
to be adapted in two ways. Indeed, if the body of the let-binding raises an exception, then the
continuation should not be evaluated. Moreover, the exception raised should be included in the set
of results that the let-binding can produce.

There are two ways to extend the grammar of results with exceptions. The first possibility is to
add a constructor to the grammar of values. In this case, the postcondition Q remains a predicate
over pairs of values and states. The second possibility is to introduce a type, to capture the sum
of the type of values and of the type of exceptions. In that case, the postcondition Q becomes a
predicate over pairs of results and states.
For simplicity, let us assume in what follows that the grammar of values includes a constant

exception construct, written exn. In that setting, the omni-big-step evaluation rule for a let-binding
of the form (letx = t1 in t2) can be stated as follows. The first premise describes the evaluation
of t1. The second premise handles the case where t1 produces a normal value. The third premise
handles the case where t1 produces an exception.
omni-big-let-with-exceptions
t1/s ⇓ Q1

(
∀(v ′, s ′) ∈ Q1. v

′ , exn ⇒ ([v ′/x] t2)/s ′ ⇓ Q
) (
∀s ′. Q1 exn s ′ ⇒ Q exn s ′

)
(letx = t1 in t2)/s ⇓ Q

We proved in Coq the equivalence of this treatment of exceptions with the formalization of
exceptions expressed both in standard small-step and in standard big-step semantics.

D DEFINITION OF THE TERMINATION JUDGMENT
We introduced the termination judgment to formalize the interpretation of the omni-big-step
judgment (§2.2, omni-big-step-iff-terminates-and-correct). The predicate terminates(t , s )
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asserts that all executions of configuration t/s terminate. In this section, we present two formal
definitions of this predicate, one in small-step style and one in big-step style.

The small-step version is inductively defined by the two rules show below.

small-terminates-here

terminates(v, s )

small-terminates-step(
∃t ′s ′. t/s −→ t ′/s ′

)(
∀t ′s ′. (t/s −→ t ′/s ′) ⇒ terminates(t ′, s ′)

)
terminates(t , s )

The big-step version is inductively defined using one rule per language construct. We show
below the rules for values and for let-bindings. This definition corresponds to an inductive version
of the coinductive judgment safe from Wang et al. [2014], described in §7.

big-terminates-val

terminates(v, s )

big-terminates-let
terminates(t1, s )(

∀v1s
′. (t1/s ⇓ v1/s

′) ⇒ terminates(([v1/x] t2), s ′)
)

terminates((letx = t1 in t2), s )

E DEFINITION OF THE TYPING JUDGMENT
This section states the typing rules for the state-free language considered in §4.1. The typing rules
are given for terms in A-normal form. The judgment ⊢ v : T asserts that the closed value v admits
the type T . The judgment E ⊢ t : T asserts that the term t admits type T in the environment E.
Finally, V denotes the set of terms that are either values or variables.

vtyp-unit

⊢ tt : unit

vtyp-bool

⊢ b : bool

vtyp-int

⊢ n : int

vtyp-fix
f : (T1 → T2), x : T1 ⊢ t : T2

⊢ ((µ f .λx .t )) : (T1 → T2)

typ-val
⊢ v : T

E ⊢ v : T

typ-var
x ∈ domE E[x] = T

E ⊢ x : T

typ-fix
E, f : (T1 → T2), x : T1 ⊢ t : T2

E ⊢ (µ f .λx .t ) : (T1 → T2)

typ-app
E ⊢ t1 : (T1 → T2) E ⊢ t2 : T1 t1, t2 ∈ V

E ⊢ (t1 t2) : T2

typ-if
E ⊢ t0 : bool E ⊢ t1 : T E ⊢ t2 : T t0 ∈ V

E ⊢ (if t0 then t1 else t2) : T

typ-let
E ⊢ t1 : T1 E, x : T1 ⊢ t2 : T2

E ⊢ (letx = t1 in t2) : T2

typ-add
E ⊢ t1 : int E ⊢ t2 : int t1, t2 ∈ V

E ⊢ (add t1 t2) : int

typ-rand
E ⊢ t1 : int t1 ∈ V

E ⊢ (rand t1) : int

F EXTENSION OF THE TYPING JUDGMENT FOR STATE
This section states the typing rules for the imperative language considered in §4.2. There, the typing
judgment for terms takes the form S ;E ⊢ t : T , and the typing judgment for closed values takes
the form S ⊢ v : T , where the store typing S maps locations to types. The rules from the previous
appendix are extended simply to thread S throughout the judgment. The new rules include the rule
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for typing locations and the rules for memory operations. They are shown next.
vtyp-loc
p ∈ dom S S[p] = T

S ⊢ p : (refT )

typ-ref
S ;E ⊢ t1 : T t1 ∈ V

S ;E ⊢ (ref t1) : (refT )

typ-get
S ;E ⊢ t1 : (refT ) t1 ∈ V

S ;E ⊢ (get t1) : T

typ-set
S ;E ⊢ t1 : (refT ) S ;E ⊢ t2 : T t1, t2 ∈ V

S ;E ⊢ (set t1 t2) : unit

G DEFINITION OF THE STANDARD SMALL-STEP JUDGMENT
In §2.4, we gave a characterization of coinductive omni-big-step semantics in terms of the standard
small-step semantics, written t/s −→ t ′/s ′. For reference, we give below the rules that define the
standard small-step judgment:

small-app
v1 = (µ f .λx .t )

(v1v2)/s −→ ([v2/x] [v1/f ] t )/s

small-if-true

(if true then t1 else t2)/s −→ t1/s

small-if-false

(if false then t1 else t2)/s −→ t2/s

small-let-ctx
t1/s −→ t ′1/s

′

(letx = t1 in t2)/s −→ (letx = t ′1 in t2)/s
′

small-let-val

(letx = v1 in t2)/s −→ ([v1/x] t2)/s

small-add

(addn1 n2)/s −→ (n1 + n2)/s

small-rand
0 ≤ m < n

(randn)/s −→m/s

small-ref
p < dom s

(refv )/s −→ (s[p := v])/s

small-free
p ∈ dom s

(freep)/s −→ tt/(s ∖ p)

small-get
p ∈ dom s

(getp)/s −→ (s[p])/s

small-set
p ∈ dom s

(setpv )/s −→ tt/(s[p := v])

H EVALUATION OF UNARY AND BINARY OPERATORS
The following definitions complete the semantics described in the case study “compiling immutable
pairs to heap-allocated records” (§6.4).

evalunop(fst, (v1,v2),v1) evalunop(snd, (v1,v2),v2) evalunop(not, 1, 0)

evalunop(not, 0, 1) evalbinop(+,n1,n2,n1 + n2) evalbinop(mkpair,v1,v2, (v1,v2))
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