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Abstract— Covering a given area with a team of
mobile robots in a minimum time is a well-studied
problem with many real-world applications. A rarely
studied subject, however, is the case of a weighted
plane: due to the necessity of taking time-consuming
measurements or having to traverse different kinds of
terrains, the coverage time may vary over the envi-
ronment and the path planning needs to be adapted
accordingly. In this paper, we present an adapted ver-
sion of a state-of-the-art mCPP (multi-robot coverage
path planning) approach, the DARP algorithm, to
make it suitable to deal with weighted environments.
In particular, we propose several modifications to
DARP that allow overcoming some of its limitations
and, as a result, obtain an increased convergence rate
and decreased convergence time with respect to the
original version. Furthermore, as proved by extensive
simulations, these improvements are also noticed in
the unweighted version of the problem.

I. Introduction
In the last decades, teams of cooperative autonomous

robots, and especially UAVs (unmanned aerial vehicles),
have been frequently deployed to achieve missions such
as inspection, search and rescue, and more generally
data gathering in large environments ([1], [2], [3]). A
fundamental task behind these numerous applications
is the ability to cover the entire area of interest in a
minimum time. The path-generation problem in such
situations is known as CPP (Coverage Path Planning),
or mCPP in the multi-robot case. Many algorithms have
been designed in order to approximate a solution for this
NP-hard problem [4], [5]. A first solution of reference to
this problem was presented by Hazon and Kaminka in [6].
In their work, they started from the spanning tree cov-
erage (STC) algorithm [7], and adapted it to the multi-
robot situation, proposing an algorithm robust to robot
failures. This algorithm, however, is highly dependent on
the robots’ initial position, and a poorly chosen spanning
tree may end up with a total exploration time nearly
equal to the time that would have sufficed to a single
robot. In order to solve this issue, these same authors pre-
sented in [8] a new version, relying on a heuristic to build
a spanning tree that will maximize the distance between
the robots’ initial positions. Instead of generating a single
spanning tree for the whole instance, Dong et al. chose
in [9] to build simultaneously a spanning tree for each
robot, growing towards the center of inertia of the un-
covered area. Its performances neighbor the ones of more
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Fig. 1: An example of mCPP instance of size 14×14 and
a solution obtained via the DARP algorithm.

recent centralized approaches, such as MFC presented
in [4], although with the computational advantages of
distributed algorithms. More recently, Kapoutsis et al.
proposed a new approach, called the DARP algorithm
[10], that reduces the multi-robot case into n single-robot
problems by partitioning the environment in n regions
and assigning each of them to a different robot to finally
obtain a complete coverage with no backtracking and
minimum coverage path.

In this paper, we study a variation of the classic mCPP
problem where some areas require a bigger effort or are
longer to cover than others. This can be due to the need
to physically take some samples, have a closer look at
specific zones, or just traverse more difficult terrain. The
path planning problem has thus to take into account
not only the total distance traveled by the robots to
cover the environment but also this additional workload
to optimally distribute the effort among the robots and
obtain the trajectories that minimize the mission time.

The contribution of this paper is twofold: firstly, we
show that the DARP algorithm can be adapted to deal
with this new problem formulation and able to solve the
mwCPP in most instances; secondly, we identify some
important limitations of the original version, especially
when used for mwCPP, and we propose some modifica-
tions to increase its performance in terms of convergence
rate and convergence time. Extensive results considering
several 2D environments show not only the capability
of the proposed approach to provide a solution to the
mwCPP problem, but also a significant improvement in
the unweighted case with respect to the initial DARP.

II. Problem formulation
An instance of mCPP consists of a set of nr robots,

each equipped with an identical sensing tool (camera,



radar, etc.), allowing them to cover a region of diameter
at least their size. The environment is then defined by a
grid G of identical cells. Some of these cells are defined as
“obstacles”, and are impassable: they are said occupied
and form a set B. The other cells are thus passable, and
need to be covered at some point by at least one of the
robots: they form a set L (respectively, black and white
cells in figure 1). The instance also defines the number of
robots and their different starting points, represented as
red circles in the figure. It is worth noticing that these
grids are only an approximation of truly arbitrary envi-
ronments, denominated as approximate cellular decom-
position. Such approximation techniques are commonly
used to tackle mCPPs [11].

A solution consists in a set of paths rooted in the initial
positions, one for each robot, such that each cell of L
belongs to at least one of these paths, and that the size
of the longest path is minimal (that is, we minimize the
time needed to cover all cells).

In this paper, we focus on the weighted version of the
mCPP, called mwCPP, where each cell c is assigned a
weight wc corresponding to the time necessary to cover
this cell. We thus define W :=

∑
v∈L wv, corresponding

to the total work time required to cover the space.

III. The DARP algorithm
The solution proposed in this paper is an extension and

adaptation of the DARP (Divide Areas based on Robots
initial Positions) algorithm, initially presented by Kat-
pousis et al. in [10] to solve mCPP. DARP defines paths
of nearly equal lengths for the robots, thus ensuring a
near-perfect time efficiency. Its convergence speed (cubic
in the size of the input), and its performances — near
optimal, thus much better than the precedent standard,
the optimized MSTC [8] — have made it a frequently
used mCPP algorithm ([12], [13], [14]).

The DARP algorithm proceeds in two steps. The first
part aims to split the environment in areas of nearly
equal surface, each containing the initial position of ex-
actly one robot. In a second stage, it generates spanning
trees in these regions, and has the robots circumnavigate
around them, thus defining paths. An instance of DARP
is an instance of mCPP, with the additional assumption
that the size of each cell corresponds to twice the sensing
diameter of the robots.

A. Area division
The first step corresponds to a competition between

the robots to claim the cells for themselves. We define,
for each iteration step j, an assignation matrix Aj , of size
rows × cols, that will hold the current distribution of
cells among robots. We also define, for each robot ri, 1 ⩽
i ⩽ nr and for each step j, a priority matrix Ei,j of the
same dimension. Its cells are initialized with the airborne
distances to each cell from the robot ri.

At the beginning of iteration j, the matrix Aj becomes
(argmini⩽nr

(Ei|x,y))x,y: for each cell, it takes the value

of the robot having the lowest priority in this cell. We
thus define, for each i ⩽ nr, the set Li,j of unoccupied
cells assigned to ri (or claimed by ri). We have that
∀j,

⊔
i⩽nr

Li,j = L: each unoccupied cell is assigned to
one and only one robot. We will eventually aim to satisfy
the following conditions: all robots should have (nearly)
the same number of cells, and the said assigned regions
are connected, in order to be able to define paths.

1) Regions of nearly equal size: We denote, for each
robot ki,j := |Li,j | its current number of assigned cells,
and f := |L|

nr
the ideal number of cells. We then define

J :=
∑

i⩽nr
(ki,j−f)2 as the sum of square differences to

f , thus at its smallest when each ki,j is nearly equal to f –
when each robot covers a nearly equal proportion of cells.
In order to minimize J , the option chosen by Katpousis
et al. was to implement a gradient descent. At each step,
we will define Ei,j+1 := mjiEi,j with (mj)i⩽nr

a scalar
vector. We can thus view Jj+1 as a function depending on
m (after the update of the assignation matrix A following
the changes in the Ei’s). We will then proceed to a
gradient descent on J , using a cyclic coordinate descent,
[15], to minimize J along each coordinate.

The updated value is then defined by mji := 1−η ∂J
∂mi

,
with η a constant and mi the scalar in i−th position:

mji := 1− 2 η (ki − f) ∂ki

∂mi
(1)

Then, the authors state that all these ∂ki

∂mi
are nearly

identical, and that if all these partial derivatives get
multiplied by a factor α, the obtained Ei,j+1’s still define
the same order relations between coefficients. We can
therefore approximate this value by

mji := 1 + c (ki − f) (2)

with c a positive constant, because when mi,j increases,
the values of Ei,j+1 too, thus reducing |Li,j+1| = ki,l+1.

As the evolution of J is convex along every mi, accord-
ing to the cyclic coordinate descent, we should ultimately
reach a m∗ such that ∀m ∈ Rnr , J(m∗) ⩽ J(m): at this
point, all ki’s are nearly equal.

2) Ensuring the connectivity: The objective, however,
is not only to share the cells among the robots: we also
want the Li,j to form connected regions. DARP thus
adds a corrective multiplier when updating the Ei,j to
incentivize the regions assigned to the different robots to
become connected. We define, for each robot ri,

Ci,j|x,y := min
r∈Ri,j

(||[x, y]− r||)− min
q∈Qi,j

(||[x, y]− q||) (3)

where Ri,j is the connected set of cells assigned to ri

where lies the robot’s initial position, and Qi,j the union
of all other cells assigned to ri. That is, the value in
a given cell is bigger the further it is from the initial
connected component (and the closer it gets to the other
ones). We can then define the difference matrix C ′:

C ′
i,j := 1 + µ

maxx,y(Ci,j|x,y)−minx,y(Ci,j|x,y)Ci,j (4)



Fig. 2: The DARP temporary assignation matrix on the
previous grid, at iteration steps 18 and 48.

That is, these corrective terms are seen as a difference
to 1, scaled back to the order of magnitude of a chosen
small µ. The idea is that it rewards the cells around
Ri,j , and penalizes the ones around the other connected
components. We finally define Ei,j+1 = C ′

i,j⊙(mji ·Ei,j),
where ⊙ corresponds to the elementwise product.1 It is
to note that we do not forbid disconnected component:
we actually want them to appear. However, they will be
quickly corrected, due to this aforementioned factor.

Starting from the instance described in figure 1, this
process goes, after some intermediary iterations (figure
2), to a final acceptable cell distribution (already seen in
figure 1), where all the robots get the same number of
cells, except for the pink one who gets 1 more.

B. Generating the paths
Once these regions defined, we generate the actual

paths of our robots by finding a spanning tree in each
of these regions. Thanks to the hypothesis on the cells’
diameter compared to the sensing diameter, circumnav-
igating that tree thus forms covering paths of minimal
length, as in figure 1. These paths also have the ad-
vantage of being independent of the robots’ starting
positions, and to have them return to their starting point
at the end of the process.

However, mCPP being a NP-hard problem, DARP
cannot possibly work well on all instances. The initial
work presented in [10], though, does not linger on those
edge cases, which means that such convergence failures
have not been clearly documented yet. It is one of the
objectives of this paper.

IV. Naive use of DARP for mwCPP
Looking at the different steps of DARP, we can notice

that few adaptations are sufficient to incorporate the
weight map and thus try to obtain a solution to the
mwCPP problem. To take weights into account, we can
indeed define kw,i,j :=

∑
c∈L|Aj|c=i wc, that corresponds

to the total weight assigned to the robot ri, and, in-
stead of J , try to minimize Jw :=

∑
i⩽nr

(kw,i,j − f)2,
where f still represents the ideal share but this time
corresponds to the desired weight fraction per robot, i.e.
f = 1

nr

∑
v∈L wv. It therefore seems logical to try to

1The initial article defines Ei,j+1 = Ci,j ⊙(mj i ·Ei,j), but this is
most probably a mistake, and is corrected in their implementation
of the algorithm: https://github.com/alice-st/DARP
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Fig. 3: The impact of weights in the environment parti-
tion. On the left an unweighted grid while on the right
some clustered weights force the corresponding regions
to be smaller to obtain a balance coverage time.

instance unweighted clustered weights spread weights
hills 95 108 50.006

corridor 753 70706 (2) 559
barriers 896 429 1657

cave 30502 (1) 30408 (1) 32870 (1)
konigsberg 71 395 38

TABLE I: Number of iterations required for DARP to
converge in both unweighted and weighted cases (with
clustered and spread weights) of the same grids. The
number between parentheses corresponds to the number
of divergences.

use DARP to solve mwCPP, as it does not seem much
affected in its behavior by this change. An example of
solution in a weighted scenario can be seen in figure 3.
The question then lies in how such a modification will
affect the convergence of the algorithm.

We observe that the convergence is generally slower
in the weighted case, and some cases of divergences or
suboptimal solution can even be observed in this latter
case that were not present in the unweighted case. This
is evidenced in table I (that uses some test instances
described in section VI and shown in figure 6). In partic-
ular, the instances with isolated weights are usually a bit
longer to solve, probably due to the locality induced by
the connectivity multiplier. Nevertheless, this approach,
though probably suboptimal, attests that the resolution
of mwCPP is possible through DARP. The objective is
then to identify the origin of the difference in terms of
convergence, see how can we accelerate it, and possibly
avoid the divergence in some instances.

A. Practical considerations on DARP
Working with DARP in the attempt to make it more

suitable to our problem made us aware of some issues of
the initial version, as well as of the practical impact of
some of its approximations.

1) Derivation on discrete values: The most critical
point in the DARP algorithm is that the gradient descent

https://github.com/alice-st/DARP


relies on the approximation of such a gradient that does
not always hold. The computability of DARP relies on
the passage from the equation (1) to (2). It allows us
to get rid of a partial derivative in order to reach an
expression that can be efficiently computed. The issue,
however, is that such an approximation is based on
an intuition, and is not reliable in all situations. In
particular, we have two points of concern as to this
approach. First, since the changes in ki are discrete, the
partial derivative ∂ki

∂mi
is not well-defined and its meaning

is unclear in the general case. It would be null almost
everywhere, and amount to infinity (or minus infinity) in
a finite set of points2. Second, the argument they advance
is that these different ∂ki

∂mi
are "almost identical for each

robot". This assumption, however, is no longer accurate
in the weighted case, as cells having more weight will
induce bigger partial derivatives.

But even in the unweighted case, this notion raised
some issues: through the iterations, one of the Ei can
have grown to have cells with values thousands of times
bigger than the other robots’ in most cells that it does
not claim (values ranging from 1010 to 1060 can actually
appear as early as iteration 15,000). It then seems highly
unlikely that its partial derivative will be as important
as the other ones, as it will take a great number of
iterations before any of these cells could possibly be
claimed by the other robots. Therefore, assuming that its
partial derivative is almost identical to the other robots’
proves inaccurate in many more cases than expected, and
especially in the weighted case. Thus, even though DARP
converges quickly in most (unweighted) instances, these
assumptions are less reliable in the weighted case and
require some additional consideration in order to avoid
too frequent divergences.

2) Connectivity correction multiplier: Another issue
comes from (3). These correction matrices are completely
disjoint from the gradient-like approach: they thus come
without any guarantee as to the respect of convergence
they may or may not induce. They are a corrective
multiplier applied to penalize disconnected solutions, but
may actually counter the gradient’s efforts.

This can be seen in figure 4. While the left part of the
grid gets the expected multiplier (penalizing the parts
close to the disconnected component and progressively
increasing the bonus as we get closer to the initial
connected component), we notice that the right part
just extends these multipliers in trails, and it proves
particularly problematic in the downright corner. Indeed,
here, this corner will get a substantial boost in priorities,
that we have no reason to desire: it will just cause
unnecessary future conflicts with the bottom robots.

3) Weight of the initial decisions: Another concern
on the original implementation is that the successive
multipliers (mj and Ci|x,y) are cumulative. In order

2However, we might be tempted to consider these partial deriva-
tives as a kind of averaged derivative. Such a construction has been
tried and judged inconclusive.
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Fig. 4: An example of cells assigned to the leftmost robot,
and the ensuing Ci,j matrix with horizontal trails of
equal Ci,j|x,y.

to explicit the problem raised, we will introduce the
intentionally vague notions of stable and disputed cells.
The formers are such that one of the Ei is notably
smaller than the other ones in this cell. That is, this
cell will not change attribution before a certain number
of iterations. On the contrary, disputed cells are the cells
that frequently change assignation: two or more robots
are fighting over their control. In the case of an instance
with both stable and disputed cells (which happens most
of the time, as the different cells take different amounts of
time to stabilize), the stable part will often be directly
close to the robot, and thus see its coefficient reduced
each step by Ci: the priorities of ri in these cells will
quickly become minuscule.

This has two notable downsides. The first one is that
these numbers quickly become cumbersome to handle:
as we want to compare them to each other, having such
orders of magnitude in priorities seems quite futile. It
even implies an attention as to the limits to floats’ size
in our implementation, which we would be glad to ignore.

The second one, much more impacting, is the iner-
tia it gives to the iteration process. It indeed means
that in most instances, the implied cells will not ever
change assignation, as in the meantime during which
the difference to the required threshold may gradually
decrease (which will already be quite long due to the
values’ sizes), other cells (the disputed ones, generally)
will change assignation first, thus inflecting the mi’s sign
(and by extension the reduction of these first values). An
example of such a behavior can be seen in figure 5.

V. Adapting DARP for mwCPP
A. Reducing the inertia through rooting

A solution we found to the issue reported in IV-A.3 is
to regularly scale down the values towards 1. The idea is
that while keeping the same total order between priorities
– thus not interfering with the current assignation – it
allows reducing the gap between the different priorities,
therefore making the extreme value more accessible to
the other robots. This has been done by turning all the
coefficients of the Ei’s to a power β < 1 with a fixed
period. We do not want to do it at each iteration in order



Fig. 5: Six successive iterations of DARP, where due to
the bottleneck the right-hand side is contested, while we
would want DARP to instead focus on the left-hand side.

not to ruin the gradient’s progress, yet act frequently
enough to have significance in most instances. Doing so
also prevents these coefficients from becoming too big (as
turning to this power β < 1 will eventually overpower
the multiplications by 30 multipliers close to 1), which
answers another of our remarks. We observed that this
change allows getting rid of many divergence cases and
accelerates the overall program, as seen in VI-B.1

B. Random stabilization of contested cells
Among the different situations encountered that

caused a slower convergence, a recurrent situation is what
we denote as a bottleneck: some robots are competing
over which of them will secure a path through a passage
not large enough for all of them to fit, as in figure 5.

We notice that a great number of iterations is then
“wasted” on trying to reach a connected configuration,
as the evolutions rarely form clear connected paths, but
more often random-like distribution of assignation.

In order to counter this behavior, we introduced an
additional heuristic: the contested cells now have a small
chance at each iteration to see their value in Ei0,j halved
(with i0 their current assignation). That is, we enforce
that some cells remain assigned to their robot for some
time span, in order to incentivize the formation of such
connected paths. The results linked to this modification
can be found in VI-B.2.

C. Altering the connectivity multiplier
As seen in section IV-A.2, the current way to compute

Ci may be improved. However, our attempts to do so
yielded some results, but these seemed too situational to
infer a more general behavior. A first attempt was made
in the optic of reducing the influence of Ci in far-away
cells: currently, the influence of the initial connected
component is equally strong everywhere in the “trails”.
We would, however, want this influence to reduce with
the distance. Therefore, we define instead

C ′
i,j|x,y := min

r∈Ri,j

(||[x, y]−r||)α− min
q∈Qi,j

(||[x, y]−q||)α (5)

with α < 1. The results as to these functions can be
found in VI-B.3.

A few other kinds of functions have been tried to define
Ci differently, for example to give more weight to the
regions in-between the different connected components,
but the results have not been deemed satisfying.

(a) hills: big ob-
stacles in a field

(b) corridor: corri-
dor with offices

(c) barriers: a
maze-like instance

(d) windmill: big
obstacles and clus-
tered robots

(e) cave: a bottle-
neck without clear
assignation

(f) konigsberg:
nearly isolated
areas

Fig. 6: The most recurrent test layouts, in their un-
weighted version. Black cells still represent obstacles, and
red circles the robots’ initial positions. A last recurrent
instance is the empty grid, with robots either evenly
spread, or only spread in the bottom row.

VI. Results
In this section, we present the results obtained with

the proposed approach for both weighted and unweighted
scenarios, and their comparison with the standard ver-
sion of the DARP algorithm. The code used to gen-
erate these results can be found at https://gitlab.
aliens-lyon.fr/Idir/darp-re-implementation.

A. Methodology
1) Test files: A set of tests has been designed, in order

to model the different situations in which the robots are
usually deployed. The exact layout of some instances can
be observed in figure 6.

Most of these layouts have been declined in 3 versions:
unweighted, with clustered weights, and randomly spread
weights. The full set of test files used in this work can
be found at https://gitlab.aliens-lyon.fr/Idir/
darp-re-implementation/-/tree/main/tests_txt.
This head directory, labeled “test set”, consists of the
set of usually run tests during the initial process.

2) Chosen indicators: When looking at the results ob-
tained with a set of parameters, the statistical indicators
chosen to portray the efficiency are the average (A), the
standard deviation (SD), and the geometrical average
(GA). The reason behind this last choice is that due to
the uncertainty of convergence, it is frequent that a slight
tweak changes the number of iterations on a single “hard”
instance (for example with a bottleneck) from 1000 to
2000, while speeding the other instances (taking around
100 iterations) by a factor 1.2. We would then want to
notice such a change as possibly beneficial (as we will

https://gitlab.aliens-lyon.fr/Idir/darp-re-implementation
https://gitlab.aliens-lyon.fr/Idir/darp-re-implementation
https://gitlab.aliens-lyon.fr/Idir/darp-re-implementation/-/tree/main/tests_txt
https://gitlab.aliens-lyon.fr/Idir/darp-re-implementation/-/tree/main/tests_txt


always have little control as to the convergence on hard
instances, but an acceleration on most other instances
represents a significant improvement). The geometrical
average, taking directly into account these acceleration
factors, permits a better representation of the desirability
of this set of parameters. Will also be indicated the
cumulated number of divergences (D) and of suboptimal
solutions (S) over the 185 runs for each set of tests.

The standard number of iterations is X0 = 50.000,
that is, DARP will try to find an optimal solution for
the first X0 iterations (i.e., the maximum difference d
authorized between the |Li,j | equals ⌈W

nr
⌉ − W

nr
), then

look for a slightly less-than-optimal solution (d← d + 1)
for X1 = X0

2 iterations, and so forth, up to d =
max(2, maxc∈L(wc)). Therefore, the total iteration num-
ber will never go above 2X0. In case of non-convergence,
we chose arbitrarily to set the number of iterations to
3X0, to set a clear penalty in the statistical analysis.

Lastly, due to the presence of random noise (both in
the initial implementation and in some modifications we
made), each specific instance is run five times with dif-
ferent seeds, and the result remembered for this instance
will be the average of the required numbers of iterations.

3) Confirmation set: A set of “confirmation tests” has
been designed, on which the different combinations have
not been tried before the last test phase. Its goal, just as
its machine learning counterpart, is to avoid the choice
of parameters to have been too biased by the “test set”
used when adjusting the parameter combinations. This
set can be found at https://gitlab.aliens-lyon.fr/
Idir/darp-re-implementation/-/tree/main/set_
confirmation.

All the results described in the following will consist of
the aforementioned indicators over the union of these two
sets, described as the “verification set”. The verification
set is composed of 37 different instances, half of which
are weighted.

B. Results of the different modifications
A first minor change made to DARP has been to in-

crease the potency of the connectivity multiplier. That is,
the coefficient µ defining how the Ci,j|x,y may differ from
1. Initially set to 0.01, we have found it more efficient
than to be set at a higher value, despite adding some
more instability. In the following, unless said otherwise,
we have set µ = 0.06.

1) Scaling down the priorities: Table II presents the
impact of the scaling down proposed in V-A. The results
show an undeniable impact of this scaling down, as even
a β close to 1 allows avoiding many divergences. If β
gets too small, however, the added instability prevents
us from converging, as most beginnings of solutions
are set back every so often. The optimal value of β,
at least over this set, seems to lie around 0.8. In the
following, we will thus test our other parameters with
values of β neighboring 0.8. The additional time such a
computation brings is negligible compared to the overall

β A GA SD D S
1 18294 1002 40158 15 18

0.95 10841 434 36134 12 1
0.9 6986 420 25886 7 0
0.85 3209 379 8684 1 3
0.8 3052 297 11670 2 1
0.75 2910 377 8525 0 0
0.7 6165 414 25054 6 0
0.65 9527 408 34455 11 0
0.6 9795 449 34405 11 2
0.55 10411 491 34414 10 2

TABLE II: The results in number of iterations over the
verification set, with different values of β, and such an
operation taking place every 30 iterations.

frequency β A GA SD D S
10−3 0.9 3142 344 14049 2 1

3.10−3 0.9 3524 330 14808 2 3
10−2 0.9 6933 327 27760 7 1
10−3 0.85 1681 328 4220 0 0

3.10−3 0.85 4860 338 17185 3 3
10−2 0.85 6851 315 27725 7 1
10−3 0.8 1132 269 3693 0 1

3.10−3 0.8 6015 326 23304 6 2
10−2 0.8 6416 337 26113 6 1
10−3 0.75 3682 356 15006 2 0

3.10−3 0.75 4146 311 19990 5 0
10−2 0.75 5046 297 24644 5 0
10−3 0.7 3516 311 17042 3 0

3.10−3 0.7 5288 320 24848 5 0
10−2 0.7 6849 344 27674 7 2
10−3 0.65 4848 283 26436 5 0

3.10−3 0.65 5640 275 25537 6 1

TABLE III: The results in number of iterations, depend-
ing on the frequency and threshold of this stabilization.

acceleration observed, as we merely do a linear number of
operations every 30 iterations: this tweak therefore brings
a notable acceleration - in addition to preventing most
multiplication overflows.

2) Stabilizing contested cells: In this section, we will
discuss the impact of the random stabilization of con-
tested cells, proposed in V-B. We define a cell as con-
tested if, in the last 10 iterations, its assignation changed
at least 6 times. In the table III presenting the corre-
sponding results, frequency relates to the probability for
a contested cell to be stabilized in its current assignation.

We observe that the overall number of iterations is
greatly reduced, but having too frequent such stabi-
lization seems to bring unwanted general fluctuation,
as the different regions fail to be clearly defined. This
is most notable when the robots start close to each
other, as the different robots struggle longer to define
their respective regions, due to these random (and thus
possibly unwanted) stabilizations. Therefore, we may
want to restrict this change to the situations where the
robots do not start too close to each other.

Another issue with this change is that the computation
proves more costly than before, mainly in the hardest
instances, where many cells are contested every turn.
When running the verification set with parameters such

https://gitlab.aliens-lyon.fr/Idir/darp-re-implementation/-/tree/main/set_confirmation
https://gitlab.aliens-lyon.fr/Idir/darp-re-implementation/-/tree/main/set_confirmation
https://gitlab.aliens-lyon.fr/Idir/darp-re-implementation/-/tree/main/set_confirmation


α frequency β A GA SD D S
0.8 0 0.9 9407 428 29355 1 6
0.75 0 0.85 7332 347 25769 5 3
0.8 0 0.7 8718 316 34268 10 0
0.75 3 ∗ 10−3 0.7 5156 288 24785 5 0
0.75 3 ∗ 10−3 0.65 4920 290 24626 5 0
0.75 10−3 0.85 5272 309 19684 0 2
0.8 10−3 0.7 5722 290 25145 5 1
0.75 10−3 0.65 6183 360 25773 6 0

TABLE IV: The results in number of iterations, depend-
ing on the power α in the connectivity multiplier.

that the average iteration number neighbors 2300, the
time taken with or without stabilization is more or less
the same: 3963 seconds instead of 3584 (in the same com-
puter configuration). However, when the average number
of iterations grows around 4500, we reach a computation
time of 10,000 seconds. The reduction in the number of
iterations still makes this change noteworthy, especially
as the increased computation time can be easily dealt
with, with some parallelism.

3) Connectivity correction with reduced trail: In this
section, we will discuss the impact of the random sta-
bilization of contested cells, proposed in IV-A.2, with α
playing the aforementioned role.

We observe that, while this change does not seem
to bring major stabilizations, compared to the base
connectivity, it still tends to even out the geometrical
average. Another element, less visible in this small table,
is that such an alteration tends to perform up to twice
as slowly in the presence of the bottleneck. Therefore,
due to the overall unchanging results, it proves definitely
more efficient in instances more sparse in obstacles, which
seems logical as to the issue raised with trails: while
reducing the gap between values hampers the overall
stability, it allows not to arbitrarily favor the regions
affected by the trails, which is particularly notable in
sparse instances.

VII. Conclusion

In this paper, we tackled the mwCPP, a variation
of the classic mCPP where weights are introduced to
represent different coverage times for each cell in the en-
vironment. To solve this problem, we presented a solution
based on a modified version of the DARP algorithm. The
proposed improved version cannot only solve mwCPP, a
problem for which we did not find any previous solver,
but also does so while converging in most natural cases.
It is able to converge with a considerable acceleration
compared to the initial situation, of respectively a ratio
of 6 and 3 for the average and geometrical average. This
acceleration, while much less notable, still persists in the
unweighted cases. We however need to note that there
still remain differences in the convergence speed between
the unweighted and weighted case of a same grid, though
noticeably reduced. We could consider a more localized
approach around the weighted cells to reduce this gap.

This work has also brought some first reflections as
to the situations where DARP fails to converge even
for standard mCPP scenarios. While we have not been
able to characterize them extensively nor settle on a
definitive criterion, the presence of bottlenecks or the
proximity of the robots’ initial positions seem to be
reoccurring in all the situations of divergence observed.
A more extensive analysis might prove helpful to a more
definitive characterization of these edge cases, and how
to possibly deal with them.
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