
HAL Id: hal-03805304
https://hal.inria.fr/hal-03805304

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What’s new in the faust ecosystem and community?
Stéphane Letz, Romain Michon, Yann Orlarey

To cite this version:
Stéphane Letz, Romain Michon, Yann Orlarey. What’s new in the faust ecosystem and community?.
IFC 22 - International Faust Conference, Jun 2022, Saint-Etienne, France. �hal-03805304�

https://hal.inria.fr/hal-03805304
https://hal.archives-ouvertes.fr

Proceedings of the International Faust Conference (IFC-22), Université Jean Monnet, Saint-Étienne, France, June 7-8, 2022

WHAT’S NEW IN THE FAUST ECOSYSTEM AND COMMUNITY?

Stéphane Letz

Univ Lyon, GRAME-CNCM, INSA Lyon,
Inria, CITI, EA3720, 69621 Villeurbanne,

France
letz@grame.fr

Romain Michon

Univ Lyon, Inria, INSA Lyon, CITI, EA3720,
69621 Villeurbanne, France

romain.michon@inria.fr

Yann Orlarey

Univ Lyon, GRAME-CNCM, INSA Lyon,
Inria, CITI, EA3720, 69621 Villeurbanne,

France
orlarey@grame.fr

ABSTRACT

This paper presents an overview all the new developments
and contributions in the FAUST programming language since the
2020 International FAUST Conference. It shows a growing and
dynamic community with artistic projects, plugins, standalone ap-
plications, integration in audio programming environments, devel-
opment tools, research projects, embedded devices, Web applica-
tions, etc., produced by a large variety of contributors.

1. INTRODUCTION

The FAUST [1] community is growing steadily. This paper sum-
marizes all the activity that have taken place since IFC 2020. Sec-
tion 2 details new developments done in the compiler, architectures
files, and various complementary tools. Section 3 explains efforts
conducted to improve the documentation. Section 4 lists the var-
ious places and programs where FAUST is taught and part of the
curriculum. Section 5 details new recently added libraries. Sec-
tion 6 present the FAST (Fast Audio Signal-processing Technolo-
gies on FPGA) project. And finally, section 7 is about the tools
that have been implemented to strengthen the FAUST community
itself.

2. DEVELOPMENTS

2.1. New Backends

Three new backends have been developed. They allow us to use
DSP programs in a larger set of targets and to reach new commu-
nities.

2.1.1. DLang + faust2dplug

D (Dlang) 1 is a general-purpose programming language with static
typing, systems-level access, and C-like syntax. A backend and
several architecture files have been contributed by Ethan Recker,
with the help of GRAME.

The goal is to generate D code for Dplug, 2 an open-source
audio plug-in framework existing since 2013 and allowing for the
production of VT23, VST3, AUv2, AAX, and LV2 plugins for
macOS, Windows, and Linux. A faust2dplug script has then
been developed to simplify the production of Dplug projects start-
ing from the FAUST DSP source code.

1https://dlang.org
2https://dplug.org

2.1.2. CSharp

C# is a general-purpose, multi-paradigm programming language
used in some games engines. A backend and several architec-
ture files have been contributed by Mike Oliphant, with the help
of GRAME.

2.1.3. Julia

Julia 3 [2] is a general-purpose programming language for scien-
tific computing that appeared in 2012. It uses an LLVM-based
compiler, a dynamic type system with parameterized polymor-
phism and distributed parallel execution. It can be easily inter-
faced with existing languages like C, Fortran, or Python. For the
programmer, it comes with a REPL (Real Eval Print Loop) model
allowing for a simple and fast interaction with the system.

An integration of the libfaust compiler into Julia was first de-
veloped by Cora Johnson-Roberson. 4 A Julia backend was then
added to the FAUST compiler. It allows us to generate Julia code
on the fly from any FAUST DSP program to then compile it and
run it directly in the Julia environment. A set of architecture files
(meta.jl, UI.jl, MapUI.jl, GTKUI.jl, OSCUI.j) were
implemented to:

• control the DSP with a graphical interface or an OSC inter-
face

• interface it to an audio layer based on the PortAudio project
(with the audio.jl and portaudio.jl files).

Test tools have also been developed:

• the minimal.jl file shows how the generated Julia code
can be used in a minimal program that allocates and in-
stantiates the DSP, and calls the compute function. The
MapUI.jl file is used to eventually control the DSP. The
command line 5 should be used to create a foo.jl file
ready to be tested,

• the faust2portaudiojulia tool transforms a FAUST
DSP program into a fully functional Julia source file that
uses the PortAudio library for real-time audio rendering,
and can be controlled with OSC messages. By default, it
starts with the GTK-based GUI. It uses the MapUI.jl,
OSCUI.jl and GTKUI.jl architecture files.

The Julia ecosystem contains over 4,000 packages that are reg-
istered in a general registry.6 A Faust.jl package originally de-

3https://julialang.org
4https://github.com/corajr/Faust.jl
5faust -lang julia -a julia/minimal.jl foo.dsp

-o foo.jl
6https://juliahub.com

1

http://grame.fr
http://grame.fr
http://grame.fr
mailto:letz@grame.fr
https://www.inria.fr/fr
https://www.inria.fr/fr
mailto:romain.michon@inria.fr
http://grame.fr
http://grame.fr
http://grame.fr
mailto:orlarey@grame.fr
https://dlang.org
https://dplug.org
https://julialang.org
https://github.com/corajr/Faust.jl
https://juliahub.com

Proceedings of the International Faust Conference (IFC-22), Université Jean Monnet, Saint-Étienne, France, June 7-8, 2022

veloped by Cora Johnson-Roberson has been extended.7 It allows
for the use of the libfaust library and the FAUST backend of Julia.

This groundwork will facilitate further developments in the
area of machine learning applied to audio and DSP, where the Ju-
lia environment and language are increasingly used. The integra-
tion of libfaust in Julia allowed – for example – Cora Johnson-
Roberson to do some experiments using neural networks 8. We
can imagine in the long run more advanced integration in this do-
main with the FAUST backend directly producing Julia code.

2.2. Modular Synthesis

Modular synthesizers are made of separate modules with differ-
ent functions. Modules can be connected together using cables or
a matrix connection system. The outputs (voltages) of the mod-
ules can function as (audio) signals, control voltages, or logic/time
conditions. Typical modules are wave generators, effects, envelope
generators, etc.

While modules were traditionally implemented using analog
electronic circuits, digital modules are slowly becoming the norm.
Such systems usually combine a processor (e.g., microcontroller,
DSP chip, etc.) and an audio ADC/DAC. Their form factor and in-
terface is standardized (following the Eurorack standard,9 for ex-
ample). They are then assembled in racks, and controlled by an
external patching system.

Applications like VCV-Rack 10 allow a software emulation of
this modular synthesis principle. The plugins are then developed
in C++ with an SVG-based interface.

In this context, developments have been carried out to allow
for the prototyping of plugins for the VCV-Rack format using the
FAUST programming language.

2.2.1. The faust2vcvrack Tool

The faust2vcvrack tool compiles a FAUST DSP program into
a folder containing (i) the C++ source code of the VCV-Rack plu-
gin and (ii) a MakeFile to compile it. By default, the resulting C++
code is then compiled and installed in the VCV-Rack application.

The FAUST DSP code classically produces audio signals in
the range [-1..1]. Since the VCVs expect audio signals in the
range [-5v..5v], they are automatically converted in the architec-
ture file. CV commands in the range [0v..10v] are assigned to the
[min..max] range of the controllers.

Polyphonic modules can be created using the -nvoices <n>
parameter up to 16 voices. The freq/gate/gain convention11 can be
used in the DSP code. VCV Rack follows the 1V/octave conven-
tion for MIDI pitch values, so MIDI signals are automatically con-
verted to freq using this convention. Gain and gate signals (using
the [0v..10v] range) are converted to [0..1] values.

Controllers (typically buttons, sliders, or bar graphs) are auto-
matically transformed into GUI elements (like switches, buttons,
or leds). But they can also be connected to CV inputs/outputs by
using a [CV:N] metadata used in the input (typically sliders or
nentry) or output (typically bargraphs) controllers to connect them
to the CV signal instead of the GUI parameters.

7https://github.com/sletz/Faust.jl
8https://github.com/corajr/faust_nn
9https://en.wikipedia.org/wiki/Eurorack

10https://vcvrack.com
11https://faustdoc.grame.fr/manual/midi/

#midi-polyphony-support

2.2.2. VCV Prototype

The VCV Prototype Module runs scripting languages for proto-
typing, learning, and live coding. It can currently be programmed
using JavaScript, Lua, Vult, or PureData. A generic GUI with 6 in-
puts/outputs (either audio or CV signals), 6 knobs, 6 lights (RGB
LEDs) or 6 switches (with RGB LEDs) is defined.

FAUST support has been added thanks to libfaust embedding
the Interpreter backend. It allows us to edit/compile/execute DSP
programs on the fly, with acceptable performances (even if using
the LLVM JIT would allow us to generate faster code, but at the
expense of a much more complicated installation procedure).

2.3. Embedded Platforms

2.3.1. The Daisy Board

Daisy12 is an embedded platform for music developed by Electro-
smith. It combines on a single board a low-consumption ARM
embedded processor, SDRAM memory, as well as a stereo audio
codec. Several boards hosting the Daisy Seed13 have been devel-
oped on top of the same chip.

They are distributed with a software library which abstracts
low-level embedded software development for the boards and pro-
vide support for a number of languages including C++, Arduino,
and Max/MSP Gen.̃ Specific developments have been carried out
to program this new device with FAUST.

2.3.2. The faust2daisy Tool

The faust2daisy tool compiles a Faust DSP program into a
folder containing the C++ source code and a Makefile to compile
it. Options to compile polyphonic DSP and add MIDI control are
available. Specific architecture files have been written:

• faust/gui/DaisyControlUI.h: to be used with the
DSP buildUserInterface method to implement but-
ton, checkbox, hslider, vslider controllers, and interpret the
specific metadata used to describe the hardware,

• faust/midi/daisymidi.h: implements a
midi_handler subclass to decode incoming MIDI events.

The current faust2daisy tool can only be used to program
the POD14. On this board, the 2 switches and 2 knobs can be con-
nected to UI controllers using metadata.

The programming model still needs to be extended to sup-
port more devices and better support their heterogenous memory
model.

2.4. Exported Box and Signal API

The FAUST compiler can be used in applications or plugins using
the libfaust library, embedding the LLVM backend and allowing
DSP code to be dynamically compiled and executed. A set of C
and C++ headers are available to access the API.

Work has been done to give access to other intermediate points
in the compilation chain, so that new use-cases can be considered,
like developing graphical language interfaces or connecting with
machine learning models.

12https://www.electro-smith.com/daisy
13https://www.electro-smith.com/daisy/daisy
14https://www.electro-smith.com/daisy/pod

2

https://github.com/sletz/Faust.jl
https://github.com/corajr/faust_nn
https://en.wikipedia.org/wiki/Eurorack
https://vcvrack.com
https://faustdoc.grame.fr/manual/midi/#midi-polyphony-support
https://faustdoc.grame.fr/manual/midi/#midi-polyphony-support
https://www.electro-smith.com/daisy
https://www.electro-smith.com/daisy/daisy
https://www.electro-smith.com/daisy/pod

Proceedings of the International Faust Conference (IFC-22), Université Jean Monnet, Saint-Étienne, France, June 7-8, 2022

The compilation chain of the FAUST compiler is composed of
several steps (see Figure 1):

Figure 1: The compilation chain.

Starting from the DSP source code, the Semantic Phase pro-
duces signals as conceptually infinite streams of samples or con-
trol values. Those signals are then compiled in imperative code
(C/C++, LLVM IR, WebAssembly, etc.) in the Code Generation
Phase.

The Semantic Phase itself is composed of several steps (see
Figure 2):

Figure 2: The semantic phase.

The initial DSP code using the Block Diagram Algebra (BDA)
is translated in a flat circuit in normal form in the Evaluation,
lambda-calculus step. The list of output signals is produced by the
Symbolic Propagation step. Each output signal is then simplified
and a set of optimizations are done (normal form computation and
simplification, delay line sharing, typing, etc.) to finally produce a
list of output signals in normal form.

The Code Generation Phase translates the signals in an inter-
mediate representation named FIR (FAUST Imperative Represen-
tation) which is then converted to the final target language (C/C++,
LLVM IR, WebAssembly, etc.) with a set of backends.

2.4.1. Accessing the Box Stage

A new intermediate public entry point has been created in the Se-
mantic Phase, after the Evaluation, lambda-calculus step to allow
the creation of a box expression, then beneficiate of all remaining
parts of the compilation chain.

It means that a box expression can be programmatically built
(using the box C++ API, or the C box API version), evalutated
to the list of output signals, translated to the FIR format, and fi-
nally converted to the final target language, as a ready-to-use C++
class, LLVM or Interpreter factories, to be used with all existing
architecture files.

2.4.2. Compiling Box Expressions

To use the box API, the following steps must be taken:

• creating a global compilation context using the
createLibContext function,

• creating a box expression using the box API, progressively
building more complex expressions by combining simpler
ones,

• compiling the box expression using the
createCPPDSPFactoryFromBoxes function to cre-
ate a DSP factory (or some variants),

• finally destroying the compilation context using the
destroyLibContext function.

DSP factories allow for the creation of DSP instances, to be
used with audio and UI architecture files, outside of the compi-
lation process itself. The DSP instances and factory have to be
eventually deallocated when not used anymore.

Here is an example, creating and compiling the DSP code:

process = + ~ _;

With the box API code:

// Create global context
createLibContext();

// Create the box expression
Box box = boxRec(boxAdd(), boxWire());

// Compile it as a factory
string error_msg;
llvm_dsp_factory* factory =

createDSPFactoryFromBoxes("FaustDSP",
box, 0, nullptr, "", error_msg);

// Create a DSP instance
dsp* dsp = factory->createDSPInstance();

// Use dsp with all existing architecture
files

...
// Delete dsp and factory
delete dsp;
deleteDSPFactory(factory);

// Destroy the global context
destroyLibContext();

2.4.3. Accessing the Signal Stage

A new intermediate public entry point has been created in the Se-
mantic Phase allowing for the creation of a signal graph (as a list
of output signals) then benefiting from all remaining parts of the
compilation chain.

The signal C++ API (or the C signal API version) allows us to
programmatically build the signal graph, then compile it to create
a ready-to-use DSP as a C++ class (or LLVM Interpreter factories)
to be used with all existing architecture files.

2.4.4. Compiling Signal Expressions

To use the signal API, the following steps must be taken:

• creating a global compilation context using the
createLibContext function,

• creating signals outputs using the signal API, progressively
building more complex expressions by combining simpler
ones,

3

Proceedings of the International Faust Conference (IFC-22), Université Jean Monnet, Saint-Étienne, France, June 7-8, 2022

• compiling the list of outputs using the
createCPPDSPFactoryFromSignals function to cre-
ate a DSP factory (or some variants),

• finally destroying the compilation context using the
destroyLibContext function.

The DSP factories allow for the creation of DSP instances, to
be used with audio and UI architecture files, outside of the com-
pilation process itself. The DSP instances and factory will finally
have to be deallocated once used no more.

Here is an example, using the previous recursive DSP code
and the signal API:

// Create global context
createLibContext();

// Create the signal expression
tvec signals;
Signal in1 = sigInput(0);
signals.push_back(sigRecursion(sigAdd(

sigSelf(), in1)));

// Compile it as a factory
string error_msg;
llvm_dsp_factory* factory =

createDSPFactoryFromSignals("FaustDSP",
signals, 0, nullptr, "", error_msg);

// Create a DSP instance
dsp* dsp = factory->createDSPInstance();

// Use dsp with all existing architecture
files

...
// Delete dsp and factory
delete dsp;
deleteDSPFactory(factory);

// Destroy the global context
destroyLibContext();

2.4.5. Creating a Language Based on Those APIs

Generating complex expressions by directly using the box or sig-
nal APIs can quickly become tricky and impracticable. So a lan-
guage created on top of them is usually needed. This is exactly
what the Block Diagram Algebra is all about, and the entire FAUST
language itself.

But giving access to the box and signal APIs allows for com-
pletely new audio languages to be created, while taking advantage
of the compiler infrastructure and existing architectures.

The Elementary audio language, 15 for instance, is built over
signal language resembling the one previously described, and uses
JavaScript as the upper layer language to help create complex sig-
nal graphs programmatically. A similar approach could be pro-
posed with the FAUST signal API. Other approaches using graphi-
cal based tools could certainly be tested.

15https://www.elementary.audio

2.5. Debugging and Optimisation Tools

When FAUST DSP programs are used in demanding projects, the
programmer may have to carefully check the behaviour of the gen-
erated code, and possibly optimize it as much as possible. Several
tools have been developed to help with this.

2.5.1. Debugging the Code

The FIR (FAUST Imperative Representation) backend can possibly
be used to look at a textual version of the intermediate imperative
language. It displays various statistics, like the number of opera-
tions done in the generated computemethod, or the DSP memory
layout.

2.5.2. Using -ct and -cat Options

Using the -ct and -cat compilation options allows us to check
table index range, by verifying that the actual signal range is com-
patible with the actual table size. Note that since the interval cal-
culation is imperfect, you may see false positives especially when
using recursive signals where the interval calculation system will
typically produce [-inf, inf] range, which is not precise enough to
correctly describe the real signal range.

2.5.3. Using -me Option

Starting with FAUST version 2.37.0, mathematical functions which
have a finite domain (like sqrt defined for positive or null values,
or asin defined for values in the [-1..1] range) are checked at
compile time when they actually compute values at that time, and
raise an error if the program tries to compute an out-of-domain
value.

If those functions appear in the generated code, their domain
of use can also be checked (using the interval computation sys-
tem) and the -me option will display warnings if the domain of
use is incorrect. Note that again, because of the imperfect inter-
val computation system, false positives may appear and should be
checked.

2.5.4. Optimizing the Code

Developments have been done to ease the deployment of C++ (or
LLVM IR) generated code in real demanding environments.

2.5.5. Compiling for Multiple CPUs

On modern CPUs, compiling native code dedicated to the tar-
get processor is critical to obtain the best possible performances.
When using the C++ backend, the same C++ file can be compiled
with gcc of clang for each possible target CPU using the appropri-
ate -march=cpu option.

When using the LLVM backend, the same LLVM IR code can
be compiled into CPU specific machine code using the
dynamic-faust tool. This step will typically be done using the
best compilation options automatically found with the faustbench
tool or faustbench-llvm tools. A specialized tool has been
developed to combine all the possible options.

4

https://www.elementary.audio

Proceedings of the International Faust Conference (IFC-22), Université Jean Monnet, Saint-Étienne, France, June 7-8, 2022

2.5.6. The faust2object Tool

The faust2object tool 16 either uses the standard C++ com-
piler or the LLVM dynamic compilation chain (the dynamic-faust
tool) to compile a FAUST DSP to object code files (.o) and wrapper
C++ header files for different CPUs.

The DSP name is used in the generated C++ and object code
files, thus allowing to generate distinct versions of the code that
can finally be linked together in a single binary.

3. TECHNICAL DOCUMENTATION

3.1. Documentation of the Architecture Files

The FAUST compiler produces the DSP processing code in the
form of a module (e.g., a C++ class) that must then be connected to
the outside world. The program will be integrated into the audio ar-
chitecture of the target machine (i.e., a computer, a smartphone, or
a web page) and used with a control interface – typically a graph-
ical interface (possibly deported to another machine) – or in the
form of gesture controls, if a smartphone with accelerometers or a
gyroscope is used for example.

This connection to the outside world is made through what is
called an architecture file. Initially developed for our own needs,
the architecture files will have to be used by external developers
who want to use FAUST in their projects.

An exhaustive documentation about the architecture files and
their use has been written to facilitate their work.17 It covers the
classical requirements for deployment on computers, smartphones
and tablets, web pages, as well as embedded hardware. The de-
ployment of generators or monophonic effects, but also polyphonic
instruments controllable by MIDI is described. The use of existing
architecture files is explained, as well as the development of new
custom files for specific needs.

3.2. Additional Resources

Additional pages/resources have been added progressively to de-
scribe:

• how to integrate the dynamic compiler (in the form of the
libfaust library) into programs,18

• how to deploy Faust programs on the Web,19

• a Frequently Asked Questions (FAQ) page.20

4. LEARNING FAUST

FAUST is now taught at several places/institutions in the world.

4.1. Center for Computer Research in Music and Acoustics
(CCRMA)

Several courses or tutorials around FAUST are given at CCRMA
21:

16https://github.com/grame-cncm/faust/tree/
master-dev/tools/benchmark#faust2object

17https://faustdoc.grame.fr/manual/
architectures/

18https://faustdoc.grame.fr/manual/embedding/
19https://faustdoc.grame.fr/manual/deploying/
20https://faustdoc.grame.fr/manual/faq/
21https://ccrma.stanford.edu

• Julius Smith’s FAUST tutorial,22

• Romain Michon’s FAUST tutorials,23

• Music 250a (Physical Interaction Design for Music) course
which hosts various tutorials on FAUST and hardware,24

• Music 320c (Audio Plugin Development in FAUST and C++),25

• Embedded DSP With FAUST Workshop. 26

4.2. TU Berlin

The regular sound synthesis class at the Audio Communication
Group, TU Berlin, makes use of FAUST for exploring the basics of
different synthesis algorithms. Student projects based on FAUST
include Eurorack modules, standalone drum machines and synthe-
sizers, as well as data sonification approaches. The class is taught
by Henrik von Coler, who is director of the Electronic Studio at
the TU. HPI Potsdam

The class Data Sonification & Opportunities of Sound at Hasso
Plattner Institute, University of Potsdam Potsdam, is an interdisci-
plinary format, exploring the use of sonification and sound syn-
thesis in the context of design thinking, neurosience, and medical
applications. The signal processing part is taught by Henrik von
Coler.

4.3. Université Paris 8

A 24 hours introduction to FAUST is given by Alain Bonardi during
the first semester to undergraduate students (L3, 3rd year after the
french ’baccalauréat’) as part of the “Programming Languages in
Computer Music 1” course offered in the “Music creation with
computers” minor.

4.4. Universidad Nacional de Quilmes

Faust / DSP courses in Spanish, prepared by Juan Ramos. They
include the classes of the “Update Seminar on Sound, Science and
Technology II,” held at the National University of Quilmes (Ar-
gentina) with an intro video 27 and several classes. 28

4.5. RIM & RAN Professional Masters Program

The RIM & RAN professional Masters programs aim at shaping
young professionals in the fields of electronic and digital technolo-
gies applied to the arts in the prospect of becoming “Producer in
Computer Music” (RIM - Réalisateur en Informatique Musicale)
and in Digital Arts (RAN - Réalisateur en Arts Numériques).

These producers play an important role in musical and artistic
productions, and work at the interface between software develop-
ers, applied computer scientists, composers, artists, etc. and all
people likely to integrate video, image, and sound in their activi-
ties.

22https://ccrma.stanford.edu/~jos/aspf/
23https://ccrma.stanford.edu/~rmichon/

faustTutorials/
24https://ccrma.stanford.edu/courses/

250a-winter-2022/
25https://ccrma.stanford.edu/courses/320c/
26https://ccrma.stanford.edu/workshops/

faust-embedded-19/
27https://www.youtube.com/watch?v=DnBI7r273BE
28https://www.youtube.com/channel/

UCD6aeS3GdkEmt86KUehr8LQ/videos

5

https://github.com/grame-cncm/faust/tree/master-dev/tools/benchmark#faust2object
https://github.com/grame-cncm/faust/tree/master-dev/tools/benchmark#faust2object
https://faustdoc.grame.fr/manual/architectures/
https://faustdoc.grame.fr/manual/architectures/
https://faustdoc.grame.fr/manual/embedding/
https://faustdoc.grame.fr/manual/deploying/
https://faustdoc.grame.fr/manual/faq/
https://ccrma.stanford.edu
https://ccrma.stanford.edu/~jos/aspf/
https://ccrma.stanford.edu/~rmichon/faustTutorials/
https://ccrma.stanford.edu/~rmichon/faustTutorials/
https://ccrma.stanford.edu/courses/250a-winter-2022/
https://ccrma.stanford.edu/courses/250a-winter-2022/
https://ccrma.stanford.edu/courses/320c/
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://www.youtube.com/watch?v=DnBI7r273BE
https://www.youtube.com/channel/UCD6aeS3GdkEmt86KUehr8LQ/videos
https://www.youtube.com/channel/UCD6aeS3GdkEmt86KUehr8LQ/videos

Proceedings of the International Faust Conference (IFC-22), Université Jean Monnet, Saint-Étienne, France, June 7-8, 2022

Most of the courses about signal processing are given around
through the FAUST language (M1 Romain Michon 12h / M2 Yann
Orlarey 20h).

4.6. Aalborg University in Copenhagen

FAUST is taught by Romain Michon at Aalborg University in Copen-
hagen (Denmark) as part two one week workshops opened to Mas-
ters students of the Sound and Music Computing (SMC) masters
program of the medialogy department. The first workshop typ-
ically happens in the Fall and focuses on the use of FAUST for
programming embedded systems for real-time audio applications.
The second workshop takes place in the Spring and is about phys-
ical modeling of musical instruments in FAUST.

5. LIBRARIES

5.1. Standard Libraries

Among the significant contributions received in the two last years
on the Faust Libraries project, 29 we can mention:

• the fds.lib library developed by Riccardo Russo allow-
ing the modelling of physical models by finite difference,

• the wdmodels.lib library developed by Dirk Roosen-
burg allowing WDF (Wave Digital Filter) modelling,

• the aanl.lib developed by Dario Sanfilippo. This li-
brary provides aliasing-suppressed nonlinearities through
first-order and second-order approximations of continuous-
time signals, functions, and convolution based on antideriva-
tives. This technique is particularly effective if combined
with low-factor oversampling, for example, operating at 96
kHz or 192 kHz sample-rate,

• the webaudio.lib contributed by GRAME, implement-
ing WebAudio filters using their C++ version as a starting
point, taken from Mozilla Firefox implementation. This
work was done to simplify porting audio effects written us-
ing the Web Audio API.

5.2. Community Contributions

Several contribution from the community have appeared in the last
two years.

5.2.1. abclib library

The abclib library 30 is released by the CICM / MUSIDANSE
(Centre de Recherches Informatique et Création Musicale, Paris
8 University) and is the result of 20 years of research, teaching,
and creation in mixed music, expressed as a set of codes in the
FAUST language.

The main topics addressed are: spatial sound processing and
synthesis using ambisonics, multi-channel sound processing, util-
ity objects for mixed music.

29https://faustlibraries.grame.fr
30https://github.com/alainbonardi/abclib

5.2.2. Edge of Chaos

This repository 31 contains libraries including some essential build-
ing blocks for the implementation of musical complex adaptive
systems in FAUST programming.

It includes a set of time-domain algorithms, some of which
are original, for the processing of low-level and high-level infor-
mation as well as the processing of sound using standard and non-
conventional techniques.

It also includes functions for the implementation of networks
with different topologies, linear, and nonlinear mapping strategies
to render positive and negative feedback relationships, and differ-
ent kinds of energy-preserving techniques for the stability of self-
oscillating systems.

5.2.3. realfaust

The realfaust library 32 contains a set of functions representing
domain-limited versions of all FAUST primitives and math func-
tions that can potentially generate INF or NaN values.

The goal of the library is to be able to implement DSP net-
works that, structurally, are free from INF and NaN values. Hence,
the resulting programs should be rock-solid during real-time per-
formance and virtually immune to crashes regardless of how mer-
cilessly a network is modulated or how unstable a recursive system
is made.

5.2.4. bitDSP-faust

BitDSP 33 is a set of FAUST library functions aimed to help explore
and research artistic possibilities of bit-based algorithms.

BitDSP currently includes implementations of bit-based func-
tions ranging from simple bit operations over classic delta-sigma
modulations to more experimental approaches like cellular automata,
recursive Boolean networks, and linear feedback shift registers.

A detailed overview of the functionality is in the paper "Cre-
ative use of bit-stream DSP in FAUST" presented at IFC 2020.

5.2.5. SEAM library

Sustained Electro-Acoustic Music is a project inspired by Alvise
Vidolin and Nicola Bernardini. The SEAM libraries 34 have been
developed for this project.

6. FAST: A FUNDED RESEARCH PROJECT AROUND
FAUST

FAST35 (Fast Audio Signal-processing Technologies on FPGA) is
a research project funded by the Agence Nationale de la Recherche
(ANR – the French National Research Agency). It gathers the
strengths of GRAME-CNCM,36 CITI Lab (INSA Lyon),37 and
LMFA (École Centrale Lyon)38 towards two goals:

31https://github.com/dariosanfilippo/edgeofchaos
32https://github.com/dariosanfilippo/realfaust
33https://github.com/rottingsounds/bitDSP-faust
34https://github.com/s-e-a-m/faust-libraries
35https://fast.grame.fr/
36https://www.grame.fr
37http://www.citi-lab.fr/
38http://lmfa.ec-lyon.fr/?lang=en

6

https://faustlibraries.grame.fr
https://github.com/alainbonardi/abclib
https://github.com/dariosanfilippo/edgeofchaos
https://github.com/dariosanfilippo/realfaust
https://github.com/rottingsounds/bitDSP-faust
https://github.com/s-e-a-m/faust-libraries
https://fast.grame.fr/
https://www.grame.fr
http://www.citi-lab.fr/
http://lmfa.ec-lyon.fr/?lang=en

Proceedings of the International Faust Conference (IFC-22), Université Jean Monnet, Saint-Étienne, France, June 7-8, 2022

• facilitate the design of ultra-low latency embedded systems
for real-time audio signal processing,

• use such systems in the context of active control of acous-
tics.

FAUST plays a central role in this project by facilitating the
programming of FPGAs for real-time audio signal processing ap-
plications. A “FAUST to FPGA” toolchain is in the process of being
implemented. It already allows us39 to run simple FAUST programs
on Xilinx-based FPGA boards such as the Digilent Zybo Z7 (see
Figure 3) and the Genesys 2, reaching unparalleled audio latency
performances [3].

Figure 3: Digilent Zybo Z7 board equipped with a custom-made
control interface designed as part of FAST.

7. THE FAUST COMMUNITY

7.1. Communication Channels

In addition to existing solutions such as the website, discussion
lists and the compiler and applications GitHub development site,
more modern communication tools have been put in place:

• a dedicated channel has been created on the Slack collabo-
rative communication platform, organised in channels cor-
responding to many discussion topics. It currently gathers
more than 300 developers (see Figure 4),

• the Audio Programmer website 40 animated by Joshua Hodge
hosts a very large community of audio DSP developers. A
FAUST channel has been created on this platform, which
allows in particular to extend the visibility of the language
and its ecosystem beyond the already interested or identi-
fied programmers (see Figure 5).

7.2. The “Powered by Faust” Page

A page listing all the significant “Powered with FAUST” projects is
maintained: musical pieces or artistic projects, plugins, standalone
applications, integration in audio programming environments, de-
velopment tools, research projects, embedded devices, Web appli-
cations, etc are listed.

This page is regularly enriched and as of march 2022, more
than 110 projects are described (see Figure 6).

39https://github.com/inria-emeraude/syfala
40https://theaudioprogrammer.com

Figure 4: Faust Slack channel.

Figure 5: Faust Discord channel.

8. ACKNOWLEDGMENTS AND CONCLUSIONS

This paper reflects the richness and diversity of the contributions
done in the last two years. Thanks to all contributors for all the
different components and projects that have been described!

7

https://github.com/inria-emeraude/syfala
https://theaudioprogrammer.com

Proceedings of the International Faust Conference (IFC-22), Université Jean Monnet, Saint-Étienne, France, June 7-8, 2022

Figure 6: Part of the "Powered by Faust" list

9. REFERENCES

[1] Yann Orlarey, Dominique Fober, and Stéphane Letz, “Faust
: an Efficient Functional Approach to DSP Programming,”
in New Computational Paradigms for Computer Music, Edi-
tions Delatour France, Ed., pp. 65–96. 2009.

[2] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edel-
man, “Julia: A fast dynamic language for technical comput-
ing,” ArXiv Preprint, 2012.

[3] Maxime Popoff, Romain Michon, Tanguy Risset, Yann Or-
larey, and Stéphane Letz, “Towards an fpga-based compila-
tion flow for ultra-low latency audio signal processing,” in
Proceedings of the 2022 Sound and Music Computing Confer-
ence (SMC-22), Saint-Étienne, France, 2022, Paper accepted
to the conference but not published yet.

8

	1 Introduction
	2 Developments
	2.1 New Backends
	2.1.1 DLang + faust2dplug
	2.1.2 CSharp
	2.1.3 Julia

	2.2 Modular Synthesis
	2.2.1 The faust2vcvrack Tool
	2.2.2 VCV Prototype

	2.3 Embedded Platforms
	2.3.1 The Daisy Board
	2.3.2 The faust2daisy Tool

	2.4 Exported Box and Signal API
	2.4.1 Accessing the Box Stage
	2.4.2 Compiling Box Expressions
	2.4.3 Accessing the Signal Stage
	2.4.4 Compiling Signal Expressions
	2.4.5 Creating a Language Based on Those APIs

	2.5 Debugging and Optimisation Tools
	2.5.1 Debugging the Code
	2.5.2 Using -ct and -cat Options
	2.5.3 Using -me Option
	2.5.4 Optimizing the Code
	2.5.5 Compiling for Multiple CPUs
	2.5.6 The faust2object Tool

	3 Technical Documentation
	3.1 Documentation of the Architecture Files
	3.2 Additional Resources

	4 Learning Faust
	4.1 Center for Computer Research in Music and Acoustics (CCRMA)
	4.2 TU Berlin
	4.3 Université Paris 8
	4.4 Universidad Nacional de Quilmes
	4.5 RIM & RAN Professional Masters Program
	4.6 Aalborg University in Copenhagen

	5 Libraries
	5.1 Standard Libraries
	5.2 Community Contributions
	5.2.1 abclib library
	5.2.2 Edge of Chaos
	5.2.3 realfaust
	5.2.4 bitDSP-faust
	5.2.5 SEAM library

	6 FAST: a Funded Research Project Around Faust
	7 The Faust Community
	7.1 Communication Channels
	7.2 The ``Powered by Faust'' Page

	8 Acknowledgments and Conclusions
	9 References

