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Abstract

Video question answering (VideoQA) is a complex task that requires diverse multi-
modal data for training. Manual annotation of question and answers for videos,
however, is tedious and prohibits scalability. To tackle this problem, recent methods
consider zero-shot settings with no manual annotation of visual question-answer.
In particular, a promising approach adapts frozen autoregressive language models
pretrained on Web-scale text-only data to multi-modal inputs. In contrast, we
here build on frozen bidirectional language models (BiLM) and show that such
an approach provides a stronger and cheaper alternative for zero-shot VideoQA.
In particular, (i) we combine visual inputs with the frozen BiLM using light
trainable modules, (ii) we train such modules using Web-scraped multi-modal
data, and finally (iii) we perform zero-shot VideoQA inference through masked
language modeling, where the masked text is the answer to a given question. Our
proposed approach, FrozenBiLM, outperforms the state of the art in zero-shot
VideoQA by a significant margin on a variety of datasets, including LSMDC-FiB,
iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA, TGIF-FrameQA, How2QA
and TVQA. It also demonstrates competitive performance in the few-shot and
fully-supervised setting. Our code and models are publicly available at [1].
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Figure 1: Our model FrozenBiLM builds on a pretrained and frozen bidirectional language model
(BiLM), and is trained from Web-scraped video-caption pairs. FrozenBiLM excels in the zero-shot
video question answering task without using any explicit visual question-answer supervision.

1 Introduction

Video question answering (VideoQA) is a challenging task that requires fine-grained multi-modal
understanding. State-of-the-art approaches to VideoQA [49, 119, 121] rely on large video datasets
manually annotated with question-answer pairs. Yet, collecting such annotations is time consuming,
expensive and therefore not scalable. This has motivated the development of zero-shot VideoQA
approaches [113, 114, 122], that use no visual question-answer annotation for training, see Figure 1.

Recently, a promising line of work builds on frozen large autoregressive language models [22, 75,
102, 107, 116, 123] for zero-shot visual question answering. This has been motivated by the findings
from GPT-3 [8] which exhibits strong zero-shot text-only question answering abilities from large
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autoregressive language models. Such models [8, 79, 92, 103] can predict an arbitrarily long sequence
of text, one token at each step from left to right. However, they usually require billion parameters to
work well, making them computationally expensive to train, and challenging to deploy in practice.

In contrast, recent work in natural language [72, 86, 87, 98] demonstrates strong zero-shot perfor-
mance for lighter bidirectional language models (BiLM). Such models [20, 28, 39, 48, 68, 85] can
predict a few masked tokens in an input sequence given left and right context in a single forward
pass. These works cast downstream tasks in cloze form1 [101], similar to the masked language
modeling task (MLM) [20] solved by these models at pretraining. This motivates us to tackle di-
verse zero-shot multi-modal tasks (open-ended VideoQA [109], multiple-choice VideoQA [52] and
fill-in-the-blank [73]) by formulating them in cloze form and leveraging the text-only knowledge of
pretrained BiLM.

To adapt a pretrained BiLM to multi-modal inputs, we combine it with a frozen pretrained visual
backbone and a set of lightweight additional modules including adapters [31]. We train these modules
on Web-scraped video-text data using a simple visually-conditioned MLM loss. We preserve the
uni-modal knowledge of a BiLM by freezing its weights. To our knowledge, our approach is the first
to explore the zero-shot visual-linguistic capabilities of frozen non-autoregressive language models.

We show that our approach largely improves the state of the art on various zero-shot VideoQA
benchmarks. Furthermore, we demonstrate that frozen bidirectional language models perform better
while being cheaper to train than frozen autoregressive language models [102]. Moreover, our ablation
studies show (i) the ability of our model to effectively perform zero-shot multi-modal reasoning
using both visual cues and speech transcripts, (ii) the importance of adapters combined with frozen
pretrained language models, (iii) the impact of multi-modal data scale, (iv) the impact of the language
model size and of bidirectional modeling. Our approach also performs competitively in the fully-
supervised setting. Indeed, we show the benefits of freezing the weights of a BiLM when using
VideoQA training data, while updating considerably less parameters compared to alternative methods.
Finally, we introduce a new few-shot VideoQA task in which we finetune our pretrained model on a
small fraction of the downstream training dataset, and show promising results in this setting.

In summary, our contributions are three-fold:
(i) We present FrozenBiLM, a framework that handles multi-modal inputs using frozen bidirec-

tional language models and enables zero-shot VideoQA through masked language modeling.
(ii) We provide an extensive ablation study and demonstrate the superior performance of our

framework in the zero-shot setting when compared to previous autoregressive models.
(iii) Our approach improves the state of the art in zero-shot VideoQA by a significant margin.

FrozenBiLM also demonstrates competitive performance in the fully-supervised setting and
shows strong results in the few-shot VideoQA setting which we introduce.

Our code and trained models are publicly available at [1].

2 Related Work

Zero-shot VideoQA. A vast majority of VideoQA approaches rely on relatively small, manually
annotated VideoQA datasets [3, 10, 11, 16–18, 23, 26, 27, 33, 36, 37, 40–43, 49, 50, 53, 64, 67,
76, 77, 83, 88, 89, 93, 100, 108, 112, 115, 117, 124, 128]. Recently, a few work [113, 122] have
explored zero-shot approaches for VideoQA, where models are only trained on automatically mined
video clips with short text descriptions. In contrast to VideoQA annotations, such video-text pairs
are readily-available at scale on the Web [6, 74, 121]. In particular, Yang et al. [113] automatically
generate VideoQA training data using language models [79] pretrained on a manually annotated
text-only question-answer corpus [80]. Reserve [122] uses GPT-3 [8] to rephrase questions into
sentences completed by a multi-modal model. In contrast to these prior works [113, 122], our method
does not require any kind of explicitly annotated language dataset or the use of data generation
pipelines for zero-shot VideoQA. Note that BLIP [59] studies a related setting where a model trained
on manually annotated image-question-answer triplets is transferred to VideoQA, which is a less
challenging task. Also note that VideoCLIP [110] considers a related zero-shot multiple-choice
video-to-text retrieval task as VideoQA, but in this setting the model is not provided with natural
language questions.

1“Cloze test" is an exercise test where certain portions of text are occluded or masked and need to be filled-in.
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Visual language models. As language models require large amounts of training data to perform
well [30], recent works have studied transferring pretrained language models [8, 105] to image-
text tasks. VisualGPT [13] and VC-GPT [71] showed the benefit of initializing the weights of
an image captioning model with a pretrained autoregressive language-only model. Recent work
pushed this idea further by freezing the weights of a pretrained autoregressive language model for
tackling vision and language tasks [2, 22, 75, 102, 107, 116, 123]. Our approach also leverages a
frozen pretrained language model. Similar to MAGMA [22], we also use adapter layers [31, 32].
However, we differ from these approaches as we propose to instead use lighter bidirectional masked
language models, instead of autoregressive ones, and rely on a masked language modeling objective
(MLM) instead of an autoregressive one. Moreover, our model is specifically designed for videos,
for which high-quality visual question answering annotation is even more scarce compared to still
images [22, 75, 102, 116]. We also explore the use of the speech modality, and tackle tasks which
are challenging for autoregressive language models such as video-conditioned fill-in-the-blank [73].
Finally we show in Section 4.3 the superior performance of frozen bidirectional language models in
comparison with autoregressive ones [102].

Masked Language Modeling in vision and language. The MLM objective was initially introduced
in natural language [20, 48, 68] to pretrain bidirectional transformers and learn generic representations.
This approach achieved state-of-the-art results in many language tasks after finetuning on downstream
datasets. Its success inspired numerous works to adapt it to train multi-modal transformer models
on paired visual-linguistic data [15, 24, 25, 29, 34, 44, 54, 57, 62, 60, 65, 58, 56, 69, 70, 90, 91,
96, 97, 99, 104, 106, 118, 121, 126, 127]. However, these works typically use it to learn generic
visual-linguistic representations by updating the transformer weights, and then use expensive manual
supervision to train randomly initialized task-specific answer classifiers for VQA [15, 25, 57, 58,
65, 69, 90, 91, 96, 99, 106, 118] or VideoQA [24, 54, 56, 104, 121]. In contrast, we tackle zero-shot
VideoQA, i.e. without using any manual annotation. Moreover, we do not update the transformer
weights during cross-modal training, but instead exhibit the benefits of freezing these weights after
text-only pretraining, for both zero-shot and fully-supervised VideoQA (see Sections 4.2 and 4.5).

3 Method

This section presents our approach to tackle zero-shot video question answering. Here, zero-shot
means that we do not use any visual question answering annotation and only rely on scalable data from
the Web. Our approach starts with two strong pretrained components: (i) a text-only bidirectional
masked language model (BiLM) pretrained on data from the Internet, which has the capability of zero-
shot question answering but is not capable of visual reasoning, and (ii) a vision encoder pretrained
to map images to text descriptions, but which does not have the ability to perform visual question
answering. We aim at connecting these two components while keeping the language component
frozen to avoid catastrophic forgetting [19], where the large language model would specialize to a
new task while forgetting its initial capabilities. The end-goal is to design a unified model having
the best of both worlds: visual understanding capabilities of a powerful visual encoder and question
answering capabilities of a powerful language model. This requires several technical innovations,
which are described in the rest of this section. First, we explain in Section 3.1 how we augment a
frozen pretrained bidirectional masked language model with new layers to enable joint video and
language reasoning, see Figure 2. Second, we present in Section 3.2 how we train these layers on
video-text data scraped from the Web [6]. Finally, we describe in Section 3.3 how we enable zero-shot
predictions for several video-language downstream tasks, including open-ended VideoQA, by casting
them in a cloze form, similar to the masked language modeling task solved during training.

3.1 Architecture

The proposed architecture, illustrated in Figure 2, brings together a powerful frozen pretrained
bidirectional language model with a strong visual encoder. The difficulty lies in enabling multi-modal
reasoning while keeping the large language model frozen. To address this challenge, we unify these
two models via a visual-to-text projection module together with small adapter modules inserted
within the frozen language model. Next, we describe in more detail the three main components of the
architecture: (i) the frozen pretrained bidirectional language model, (ii) the pretrained video encoder
and (iii) the lightweight modules that seamlessly connect the two components.
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Figure 2: Our training architecture consists of a large frozen bidirectional language model (BiLM) and a
frozen pretrained visual encoder (in blue), complemented with additional lightweight trainable modules (in
orange): (1) a visual-to-text projection module P (on the left), which maps the frozen visual features to the
joint visual-text embedding space and (2) a set of small adapter modules A (on the right) in between the frozen
transformer blocks. The pretrained normalization layers in the BiLM (on the right) are also finetuned.

Frozen Bidirectional Masked Language Model. Our method starts from a pretrained bidirectional
language model based on a Transformer encoder [103]. The input text is decomposed into a se-
quence of tokens x = {xi}L1 ∈ [1, V ]L by a tokenizer of a vocabulary size V . The language model,
parameterized by θ, makes use of an embedding function gθ which independently transforms each
token into a D-dimensional continuous embedding t = {ti}L1 := {gθ(xi)}L1 ∈ RL×D, a Trans-
former encoder fθ which computes interactions between all input tokens and outputs contextualized
representations t′ = {t′i}L1 , and a masked language modeling (MLM) classifier head mθ which
independently maps the D-dimensional continuous embedding for each token t′i to a vector of logits
parameterizing a categorical distribution over the vocabulary V . This distribution is referred to by
log pθ(x) := {mθ(t

′
i)}L1 ∈ RL×V . We assume that the language model is pretrained, i.e. θ has been

optimised with a standard MLM objective [20] on a large dataset of text from the Web. We show in
Section 4.2 that this text-only pretraining has a crucial importance for zero-shot VideoQA.

Pretrained Video Encoder. The video is represented by a sequence of frames y = {yi}T1 . Each
frame is forwarded separately through a visual backbone hϕ, which outputs one feature vector per
frame u = {ui}T1 := {hϕ(yi)}T1 ∈ RT×Du . In detail, the visual backbone is CLIP ViT-L/14 [21, 78]
at resolution 224× 224 pixels, pretrained to map images to text descriptions with a contrastive loss
on 400M Web-scraped image-text pairs. The backbone is kept frozen throughout our experiments.
Note that a CLIP-baseline for zero-shot VideoQA results in poor performance, see Section 4.4.

Connecting the Frozen Language and Frozen Vision components. The video features are in-
corporated into the language model as a prompt [55, 63, 125] v of length T (Figure 2, left). This
prompt is obtained by linearly mapping the visual features u to the text token embedding space via
a visual-to-text projection P ∈ RDu×D, i.e. v = {vi}T1 := {P (ui)}T1 . The prompt is then concate-
nated with the text embeddings before being forwarded to the transformer encoder that models joint
visual-linguistic interactions. We show in Section 4.2 that incorporating the input video considerably
improves zero-shot VideoQA results. In addition, to learn powerful multi-modal interactions while
keeping the transformer encoder weights frozen, we equip the transformer encoder with lightweight
adapter modules A [31] (Figure 2, right). We use an adapter which transforms the hidden state z with
a multi-layer perceptron transformation and a residual connection, i.e. A(z) = z +Wupψ(W downz)
with W down ∈ RD×Dh , Wup ∈ RDh×D, D the hidden dimension of the transformer, Dh the bottle-
neck dimension, and ψ a ReLU activation function. Dh is typically set to be smaller than D such that
the adapters are lightweight. In detail, we add an adapter module before the layer normalization, after
each self-attention layer and each feed-forward layer of the transformer encoder.
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3.2 Cross-modal training

We wish to train the newly added modules introduced in the previous section (shown in orange in
Figure 2) for the VideoQA task. This is hard because we assume that no explicit manual annotation
for the VideoQA task is available, such annotations being expensive and therefore hard to obtain at
scale. Instead we train our architecture using only readily-available video-caption pairs scraped from
the Web. Such data is easy to obtain [6, 74, 121], ensuring the scalability of our approach.

During training, we keep the weights of the pretrained BiLM and pretrained visual backbone frozen
as previously explained. We train from scratch the parameters of (i) the visual-to-text projection
module P and (ii) the adapter modules A. We show in Section 4.2 the importance of freezing the
BiLM weights combined with training the adapter modules. Note that all normalization layers [5] of
the pretrained BiLM are also updated to adjust to the new distribution of the training data. We denote
all the trainable parameters of our model by the subscript µ. In practice, they sum up to about 5% of
the BiLM parameters, hence the training of our model is computationally efficient.

We use a visually-conditioned masked language modeling objective (MLM), in which some text
tokens {xm} are randomly masked and the model has to predict these tokens based on the surrounding
text tokens and the video input. Formally, we minimize the following loss:

Lµ(x, y) = − 1

M

∑
m

log pµ(x̃, y)
xm
m , (1)

where x̃ is the corrupted text sequence, y is the sequence of video frames, pµ(x̃, y)xm
m is the probability

for the (masked) m-th token in x̃ to be xm, and M is the number of masks in the sequence x̃. In
detail, we follow [20] and corrupt 15% of text tokens, replacing them 80% of the time with a mask
token, 10% of the time with the same token and 10% of the time with a randomly sampled token.

3.3 Adapting to downstream tasks

After training, our model is able to fill gaps in the input text given an input video together with left
and right textual context as part of the input text. We wish to apply our model out-of-the-box to
predict an answer given a question about a video. The video can optionally come with textual subtitles
obtained using automatic speech recognition. To avoid using manual supervision, we formulate the
downstream tasks in cloze form [86, 101], i.e. such that the model only has to fill-in a mask token in
the input prompt similarly to the MLM objective optimized during training. The adaptation to the
downstream tasks brings several challenges, as described next. First, we describe how we formulate
the input text prompts for several downstream tasks. Then, we explain how we map the mask token
from the input text prompt to an answer via a frozen answer embedding module. Finally, we present
how we finetune our architecture in a supervised setting.

Input prompt engineering. We describe how we design the input text prompts for several down-
stream video-language tasks. Each downstream task is formulated as a masked language modeling
problem. This allows us to apply FrozenBiLM out-of-the-box. A [CLS] token and a [SEP] token are
respectively inserted at the start and the end of each sequence following [20].

Open-ended VideoQA. Given a question and a video, the task is to find the correct answer in a large
vocabulary A of about 1K answers. Answers are concise, i.e. the great majority of answers consist of
one word [35, 109, 113, 120]. We design the following prompt:
“[CLS] Question: <Question>? Answer: [MASK]. Subtitles: <Subtitles> [SEP]”

Multiple-choice VideoQA. Given a question and a video, the task is to find the correct answer
in a small number of candidates C, typically up to 5 choices [52, 60]. We set the vocabulary to
A = [Yes,No] and compute a confidence score for each candidate by using the following prompt:
“[CLS] Question: <Question>? Is it ’<Answer Candidate>’? [MASK]. Subtitles:
<Subtitles> [SEP]”
We choose the best option by selecting the candidate with the highest Yes logit value.

Video-conditioned fill-in-the-blank task. Given a video and a sentence with a blank space, the task is
to fill in the blank with the correct word from a vocabulary A of about 1K answers. We replace the
blank in the sentence with a mask token, and design the following prompt:
“[CLS] <Sentence with a [MASK] token>. Subtitles: <Subtitles> [SEP]”
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Note that all prompts are prepended with the video prompt (see Section 3.1) before being forwarded
to the transformer encoder.

Answer embedding module. For each downstream task, we wish to map the mask token in the
input text prompt to an actual answer prediction in the set of possible answers A, as described above.
For this we use the frozen MLM classifier head mθ. However, mθ ∈ RV×D covers V different
tokens where V >> N and N ≈ 1, 000 is the size of A. Therefore, we introduce a task-specific
answer classification head l which linearly maps a contextualized mask representation t′i to a vector
of logits parameterizing a categorical distribution over the vocabulary A, i.e. l ∈ RN×D. We set the
weights of this answer module l with the corresponding weights of the pretrained MLM classifier mθ

for one-token answers. In the case of multi-token answers, we average the weights of their different
tokens. We, hence, enable zero-shot inference at test time. We also discuss other alternative strategies
to handle multi-token answers in Appendix Section D.6.

Fully-supervised training. To evaluate our approach on fully-supervised benchmarks, we also
explore finetuning of our model on datasets that provide manual annotations for the target task. To this
end, we train the same parameters as explained in Section 3.2, while keeping the transformer weights
and the answer embedding module frozen. For open-ended VideoQA and video-conditioned fill-in-the-
blank, we use a cross-entropy loss on the task-specific vocabulary A. For multiple-choice VideoQA,
we use a binary cross-entropy loss applied to each answer candidate. We show in Section 4.5 the
benefit of freezing the language model weights during fully-supervised training.

4 Experiments

This section demonstrates the benefits of our FrozenBiLM framework and compares our method to
the state of the art. We first outline our experimental setup in Section 4.1. We then present ablation
studies in Section 4.2. Next we compare our bidirectional framework to its autoregressive variant in
Section 4.3. The comparison to the state of the art in zero-shot VideoQA and qualitative results are
presented in Section 4.4. Finally, we finetune our model on the VideoQA task in Section 4.5, where
we show few-shot and fully-supervised results.

4.1 Experimental setup

Frozen bidirectional language model. We use a tokenizer based on SentencePiece [47] with
V = 128, 000, and a bidirectional language model with 900M parameters, DeBERTa-V2-XLarge [28],
trained with the MLM objective on a corpus of 160G text data. We also show how our approach
generalizes to other MLM-pretrained bidirectional language models such as BERT [20] in Section 4.2.

Datasets. For training we use the publicly available WebVid10M dataset [6], which consists of
10 million of video-text pairs scraped from the Shutterstock website where video captions are
obtained from readily-available alt-text descriptions. We evaluate results on eight downstream
datasets covering a wide range of textual and video domains (e.g. GIFs, YouTube videos, TV
shows, movies), and multiple VideoQA paradigms: open-ended VideoQA (iVQA [113], MSRVTT-
QA [109], MSVD-QA [109], ActivityNet-QA [120] and TGIF-QA FrameQA [35]), multiple-choice
VideoQA (How2QA [60] and TVQA [52]) and video-conditioned fill-in-the-blank (LSMDC-Fill-
in-the-blank [73]). Unless stated otherwise, we report top-1 test accuracy using the original splits
for training, validation and test. For How2QA, we report results on the public validation set for
comparison with prior work [88, 113, 119]. For TVQA, we report results on the validation set for the
ablation studies and on the hidden test set for the comparison to the state of the art. More details are
included in Appendix Section C.1.

Implementation Details. The training for 2 epochs on WebVid10M lasts 20 hours on 8 Tesla V100
GPUs. We give further details in Appendix Section C.2.

4.2 Ablation studies

In this section, we evaluate the zero-shot performance of different variants of our method. By default,
we use the frozen pretrained DeBERTa-V2-XLarge language model and train the visual-to-text-

6



LM Frozen Adapters Fill-in-the-blank Open-ended Multiple-choice
Pretraining LM LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

1. ✗ ✗ ✗ 0.5 0.3 0.1 0.0 0.5 0.0 32.4 20.7
2. ✓ ✗ ✗ 37.1 21.0 17.6 31.9 20.7 30.7 45.7 45.6
3. ✓ ✓ ✗ 50.7 27.3 16.8 32.2 24.7 41.0 53.5 53.4
4. ✓ ✓ ✓ 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.2

Table 1: The effect of initializing and training various parts of our model evaluated on zero-shot VideoQA. All
models are trained on WebVid10M and use multi-modal inputs (video, speech and question) at inference.

Visual Speech Fill-in-the-blank Open-ended Multiple-choice
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

1. ✗ ✗ 47.9 11.0 6.4 11.3 22.6 32.3 29.6 23.2
2. ✗ ✓ 49.8 13.2 6.5 11.7 23.1 32.3 45.9 44.1
3. ✓ ✗ 50.9 26.2 16.9 33.7 25.9 41.9 41.9 29.7
4. ✓ ✓ 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.2

Table 2: Impact of the visual and speech modalities on zero-shot VideoQA. Rows 1 and 2 report results for
a pretrained language model without any visual input. Rows 3 and 4 give results for a FrozenBiLM model
pretrained on WebVid10M.

projection layer together with adapters for 2 epochs on WebVid10M. We refer to this default model
as FrozenBiLM. This model uses three input modalities in terms of video, question, and speech.

Ablation of the model training. We ablate the effect of initializing parameters of the language
model, freezing its weights and training adapters in Table 1. We observe that the language model
pretraining is crucial. Indeed, a model with randomly initialized language weights (row 1) performs
poorly compared to models initialized with language pretrained weights (rows 2 to 4). Moreover,
the model which updates the language model weights (row 2) during cross-modal training performs
considerably worse compared to variants that freeze them (rows 3 and 4). This shows the benefit of
freezing the language model for zero-shot VideoQA. We also notice the benefit of the adapter layers
by comparing rows 3 and 4, especially for multiple-choice datasets. Finally, we note that training
variants with the frozen language model is twice faster compared to updating all parameters, as there
is a significantly lower number of parameters to be trained.

Impact of modalities. Table 2 shows the impact of the visual and speech modalities on the zero-shot
performance of our model. First, we evaluate the text-only performance of our model using neither
visual input nor speech input in row 1. We can observe that adding speech (row 2) marginally
improves the results and that the importance of speech highly depends on the dataset. When adding
vision (rows 3 and 4), the performance increases significantly, e.g. +13.6% accuracy on iVQA and
+22.1% on MSVD-QA between rows 4 and 2. Finally, the model with vision also benefits from the
speech, e.g. +16.5% accuracy on How2QA and +29.5% accuracy on TVQA (compare rows 3 and 4).

Note that in practice, speech is missing for many videos, as we obtain the speech directly from the
YouTube API and many videos are no longer available. Exceptions are How2QA and TVQA for
which the authors [52, 61] provide speech for all videos. Consequently, we have speech data for
only 44.3%, 14.2%, 8.2%, 7.1% and 25.3% of test samples in LSMDC-FiB, iVQA, MSRVTT-QA,
MSVD-QA and ActivityNet-QA respectively. GIFs in TGIF-QA do not contain speech.

Training Data MSVD-QA How2QA
1. WebVid1K 13.6 53.0
2. WebVid10K 22.7 54.9
3. WebVid200K 27.8 56.0
4. WebVid2M 30.1 57.4
5. WebVid10M 33.8 58.4

Table 3: Dependency on the size of the
training set. Zero-shot results are pre-
sented for different fractions of the We-
bVid10M dataset used for training.

Size of the cross-modal training dataset. Zero-shot results
of FrozenBiLM after training for a fixed number of iterations
on different fractions of WebVid10M are shown in Table 3.
We construct these subsets such that larger subsets include
the smaller ones. We find that performance increases mono-
tonically with more multi-modal training data.

Size of the language model. In Table 4, we ablate the im-
portance of the language model size for the zero-shot per-
formance. Note that when comparing different language
models, we use no adapters to avoid biases related to the
choice of the bottleneck dimension hyperparameter [31]. We
find that using the 900M-parameter DeBERTA-V2-XLarge (row 6) outperforms the 300M-parameter
BERT-Large (row 5) which also improves over the 100M-parameter BERT-Base (row 4).
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Method Language Model # LM params Train time
(GPUH) iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA

Autoregressive
1. GPT-Neo-1.3B 1.3B 200 6.6 4.2 10.1 17.8 14.4
2. GPT-Neo-2.7B 2.7B 360 9.1 7.7 17.8 17.4 20.1
3. GPT-J-6B 6B 820 21.4 9.6 26.7 24.5 37.3

Bidirectional
4. BERT-Base 110M 24 12.4 6.4 11.7 16.7 23.1
5. BERT-Large 340M 60 12.9 7.1 13.0 19.0 21.5
6. DeBERTa-V2-XLarge 890M 160 27.3 16.8 32.2 24.7 41.0

Table 4: Comparison of autoregressive language models (top) and bidirectional language models (bottom) for
zero-shot VideoQA. All variants are trained on WebVid10M for the same number of epochs.

Method Training Data Speech Fill-in-the-blank Open-ended Multiple-choice
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

Random — — 0.1 0.1 0.1 0.1 0.1 0.1 25 20
CLIP ViT-L/14 [78] 400M image-texts ✗ 1.2 9.2 2.1 7.2 1.2 3.6 47.7 26.1

Just Ask [114] HowToVQA69M +
WebVidVQA3M ✗ — 13.3 5.6 13.5 12.3 — 53.1 —

Reserve [122] YT-Temporal-1B ✗ 31.0 — 5.8 — — — — —
FrozenBiLM (Ours) WebVid10M ✗ 50.9 26.2 16.9 33.7 25.9 41.9 41.9 29.7
FrozenBiLM (Ours) WebVid10M ✓ 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.7

Table 5: Comparison with the state of the art for zero-shot VideoQA.

Importance of the suffix. Our text input prompts include a suffix just to the right of the mask token
which consists in a point and an end-of-sentence token for the variant without speech (or a point
followed by the speech subtitles for the variant with speech). We found that removing this suffix leads
to a considerable drop of performance (e.g. the test accuracy on MSVD-QA in the row 3 of Table 2
drops from 33.7% to 2.8%). Note that we do not observe such a large drop in performance when
removing the [CLS] token e.g. the accuracy on MSVD-QA drops only from 33.8% to 33.2%. This
shows that the bidirectional nature of our framework is a key factor for the performance. Intuitively,
this suffix forces the model to provide a concise answer. Such a hard constraint cannot be given to
unidirectional autoregressive models compared next in Section 4.3. We further ablate the importance
of the prompt design in Appendix Section D.7.

4.3 Comparison with frozen autoregressive models

In this section, we compare our bidirectional framework using language models of various sizes
to the larger, autoregressive GPT-based counterparts recently used for zero-shot image question
answering [102, 116]. For fair comparison, we adapt autoregressive models to video and language
inputs similarly as our bidirectional models. In detail, autoregressive variants train a similar visual-to-
text projection by using a left-to-right language modeling loss [102]. All models in our comparison
are trained on WebVid10M for the same number of epochs. At inference, autoregressive variants
use the same template as [102] to which we prepend speech subtitles, greedily decode sequences
as [102], and use the same answer vocabulary as bidirectional models. Autoregressive variants select
the top answer that maximizes the log-likelihood when appended to the question prompt. Here
also, we use no adapters for all models, such that the architecture of autoregressive models closely
follows [102]. This is to avoid biases related to the tuning of the bottleneck reduction hyperparameter
in the adapters [31].

We compare autoregressive and bidirectional language models in terms of accuracy and efficiency
in Table 4. We observe that our bidirectional framework (rows 4-6) achieves significantly better
zero-shot performance-efficiency trade-off compared to its autoregressive counterpart (rows 1-3). For
instance, our framework with BERT-Base [20] (row 4) outperforms the autoregressive variant based
on GPT-Neo-1.3B [7] (row 1) which uses 12 times more parameters and 8 times more training time.
Likewise, our framework with DeBERTa-V2-XLarge [28] (row 6) improves over the autoregressive
variant based on GPT-J-6B [105] (row 3) that has 7 times more parameters and requires 5 times more
training time, showing the efficiency of our bidirectional framework for zero-shot VideoQA.

4.4 Comparison to the state of the art for zero-shot VideoQA

Quantitative comparison. Table 5 presents results of our method in comparison to the state of the art
in zero-shot VideoQA settings [113], i.e. when using no manually annotated visual data for training.
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Question: What is the sitting
man doing? 
GT Answer: knit sweater
Just Ask: tie cow
UnFrozenBiLM: swimming
FrozenBiLM (text-only): eating
FrozenBiLM (ours): knit sweater

Question: What item hanging on 
the wall features a tree?
GT Answer: quilt
Just Ask: christmas sock
UnFrozenBiLM: fabric
FrozenBiLM (text-only): tree
FrozenBiLM (ours): quilt

Question: What is the color of the 
cabinet door in the video?
GT Answer: red
Just Ask: dresser
UnFrozenBiLM: blue
FrozenBiLM (text-only): black
FrozenBiLM (ours): red

Question: Where is the woman
sitting on?
GT Answer: camel
Just Ask: horse yard
UnFrozenBiLM: desert
FrozenBiLM (text-only): chair
FrozenBiLM (ours): camel

Question: What is the man 
holding at the start of the video?
GT Answer: guitar, electric guitar
Just Ask: typewriter
UnFrozenBiLM: beer
FrozenBiLM (text-only): scissors
FrozenBiLM (ours): guitar

Figure 3: Zero-Shot VideoQA. Qualitative comparison between Just Ask [114] (row 3 in Table 5), our model
(row 4 in Table 5), its unfrozen variant (row 2 in Table 1) and its text-only variant (row 2 in Table 2). The first
two examples are from iVQA [113] and the last three examples are from ActivityNet-QA [120].

Method # Trained Fill-in-the-blank Open-ended Multiple-choice
Params LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

HCRN [51] 44M — — 35.4 36.8 — 57.9 — 71.4∗

HERO [60] 119M — — — — — — 74.1∗ 73.6∗

ClipBERT [54] 114M — — 37.4 — — 60.3 — —
Just Ask [114] 157M — 35.4 41.8 47.5 39.0 — 85.3 —
SiaSamRea [119] — — — 41.6 45.5 39.8 60.2 84.1 —
MERLOT [121] 223M 52.9 — 43.1 — 41.4 69.5 — 78.7∗

Reserve [122] 644M — — — — — — — 86.1∗

VIOLET [24] 198M 53.7 — 43.9 47.9 — 68.9 — —
All-in-one [104] 110M — — 46.8 48.3 — 66.3 — —
UnFrozenBiLM (Ours) 890M 58.9∗ 37.7∗ 45.0∗ 53.9∗ 43.2∗ 66.9 87.5∗ 79.6∗

FrozenBiLM w/o speech (Ours) 30M 58.6 39.7 47.0 54.4 43.2 68.6 81.5 57.5
FrozenBiLM (Ours) 30M 63.5∗ 39.6∗ 47.0∗ 54.8∗ 43.2∗ 68.6 86.7∗ 82.0∗

Table 6: Comparison with the state of the art, and the variant UnFrozenBiLM which does not freeze the language
model weight, on fully-supervised benchmarks. * denotes results obtained with speech input.

Supervision Fill-in-the-blank Open-ended Multiple-choice
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

1. 0% (zero-shot) 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.7
2. 1% (few-shot) 56.9 31.1 36.0 46.5 33.2 55.1 71.7 72.5
3. 10% (few-shot) 59.9 35.3 41.7 51.0 37.4 61.2 75.8 77.6
4. 100% (fully-supervised) 63.5 39.6 47.0 54.8 43.2 68.6 86.7 82.0

Table 7: Few-shot results, by finetuning FrozenBiLM using a small fraction of the downstream training dataset.

Our approach outperforms previous methods by a significant margin on all 8 datasets. In particular,
FrozenBiLM outperforms Reserve [122], which is trained on one billion YouTube video clips jointly
with vision, language and sound, Just Ask [114], which uses large-scale automatically generated
VideoQA data, and a CLIP baseline [78] matching the text concatenating question and answer to
the middle frame of the video. Note that FrozenBiLM performs competitively even when using no
speech input. Finally, we note that BLIP [59] has a different definition of zero-shot where a network
finetuned on the image-VQA dataset [4] is evaluated directly on VideoQA datasets. Our Appendix
presents results where we outperform BLIP [59] in their settings (Section D.1) and also includes an
analysis of results by question type (Section D.3). In summary, our evaluation shows the excellent
performance of our model in the challenging zero-shot setup.

Qualitative results. Figure 3 illustrates qualitative results of zero-shot VideoQA for our FrozenBiLM
model and compares them to Just Ask [114], as well as to variants of our approach that do not
freeze the language model (UnFrozenBiLM) and use no visual modality (text-only), as evaluated in
Section 4.2. We observe that the unfrozen variant can predict answers that lack text-only commonsense
reasoning, e.g. in the third example, it is unlikely that a sitting man is swimming. The text-only
variant does have strong language understanding, but makes visually-unrelated predictions. In
contrast, consistently with our quantitative results, our model FrozenBiLM is able to correctly answer
various questions, showing both a strong textual commonsense reasoning and a complex multi-modal
understanding. We show additional qualitative results in Appendix Section A.

4.5 Freezing the BiLM is also beneficial in supervised settings

Fully-supervised VideoQA. We next present an evaluation in a supervised setup where we finetune
FrozenBiLM on a downstream VideoQA task. We emphasize that we also keep our pretrained language
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model weights frozen all throughout finetuning. As shown in Table 6, our approach improves the state
of the art on LSMDC-FiB, iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA and How2QA. In
particular, FrozenBiLM outperforms strong recent baselines such as All-in-one [104] on 2/3 datasets,
VIOLET [24] on 3/4 datasets and MERLOT [121] on 4/5 datasets. Our approach has significantly
less trainable parameters compared to the state of the art [24, 104, 121] as we freeze the weights of the
pretrained language model. We ablate this major difference in Table 6, and find that our FrozenBiLM
with the frozen language model performs better and trains twice faster compared to UnFrozenBiLM
where we update the language model during training. This shows that freezing the language model
is not only beneficial for zero-shot but also in fully-supervised settings, therefore suggesting that
our FrozenBiLM framework also provides a parameter-efficient solution for VideoQA training. We
also note that FrozenBiLM performs competitively even without speech input, although speech helps
significantly for the performance on LSMDC, How2QA and TVQA.

Few-shot VideoQA. The low number of trainable parameters when training FrozenBiLM makes
it particularly well-suited in the low data regime. To verify this, we explore a few-shot VideoQA
setting where we finetune our pretrained model using varying fractions of VideoQA training data.
From Table 7 we observe significant improvements over zero-shot when using only 1% of training
data. Finally, we show in Appendix Section D.5 that freezing the BiLM highly benefits the few-shot
performance, consistently with the results in the zero-shot and fully-supervised settings.

5 Conclusion

We have presented FrozenBiLM, a framework that extends frozen bidirectional language models to
multi-modal inputs by training additional modules on Web-scraped data, and that tackles zero-shot
VideoQA through masked language modeling. We have provided extensive ablation studies and
shown the efficiency of our framework compared to its autoregressive variant. FrozenBiLM improves
the state-of-the-art zero-shot VideoQA on various datasets, performs competitively in fully-supervised
settings and exhibits strong performance in the few-shot VideoQA setting we newly introduce.

Limitations. Promising directions not explored in this work include scaling the size of a bidirectional
language model to several billion parameters, and additional training on large datasets of YouTube
videos with accompanying speech transcripts and/or audio [122]. Also, our model cannot be applied
out-of-the-box to complex multi-modal text generation tasks such as video captioning.

Broader Impact. We have showed the superior compute-efficiency of our bidirectional framework
compared to autoregressive models for zero-shot VideoQA, and believe it is a step towards reducing
the environmental impact of such research and its applications [95]. In addition, our models might
reflect biases present in videos and captions from Shutterstock used to train our model, the text data
used to train the language model or the images and captions used to train the visual backbone. It is
important to keep this in mind when deploying, analysing and building upon these models.
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Appendix

In this Appendix, we present the following items:

(i) Additional qualitative examples of zero-shot VideoQA predictions (Section A)
(ii) A qualitative analysis of the frozen self-attention patterns in FrozenBiLM (Section B)

(iii) Additional information about our experimental setup (Section C), including datasets (Sec-
tion C.1) and implementation details (Section C.2)

(iv) Additional experimental results (Section D), including a comparison to BLIP [59] in their
zero-shot VideoQA settings (Section D.1), results on zero-shot image-VQA (Section D.2),
detailed zero-shot VideoQA results segmented per question type (Section D.3), zero-shot
results with different random seeds (Section D.4), additional ablation studies in few-shot
settings (Section D.5), zero-shot settings (Sections D.6 and D.7) and fully-supervised settings
(Section D.8)

A Qualitative examples for zero-shot VideoQA

To complement the qualitative examples shown in Figure 3, Figure 4 and the video
video_examples.mp4 illustrate additional qualitative results of zero-shot VideoQA for our Frozen-
BiLM model and compares them to Just Ask [114], as well as to variants of our approach that do not
freeze the language model (UnFrozenBiLM) and use no visual modality (text-only), as evaluated in
Section 4.2. Consistently with the analysis done in Section 4.4, we observe that the unfrozen variant
can predict answers that lack text-only commonsense reasoning, e.g. in the first example of Figure 4b,
the word follow is grammatically incorrect; in the second example of Figure 4b, it is unlikely that
a singer plays a toad. The text-only variant does have strong language understanding, but makes
visually-unrelated predictions. In contrast, consistently with our quantitative results (see Tables 1, 2
and 5), our model FrozenBiLM is able to correctly answer various questions in the diverse VideoQA
paradigms (open-ended VideoQA, video-conditioned fill-in-the-blank, multiple-choice VideoQA),
showing both a strong textual commonsense reasoning and a complex multi-modal understanding.

Our zero-shot model still underperforms compared to VideoQA-supervised models (see Table 7) and
we analyze its failure cases in Figure 4a. Qualitatively, we find that the zero-shot model can fail on
examples requiring complex temporal or spatial understanding e.g. in the third example of the second
row, the model does not detect a toaster behind the woman; in the second example of the second row,
it gets confused as the person browses through many different tabs from their phone. It can also be
semantically inaccurate, as in the first example of the second row, the model confuses a restaurant
with a bakery; in the fourth example of the second row, it confuses a chicken with another kind of
bird.

B Qualitative analysis of the frozen self-attention patterns in FrozenBiLM

We show in Section 4.2 that the visual modality is crucial for the zero-shot VideoQA performance.
Here we further analyze qualitatively how, for zero-shot VideoQA, our model makes use of the visual
modality through self-attention layers which are frozen after text-only pretraining. Figure 5 illustrates
the self-attention patterns in FrozenBiLM for the second example in the first row of Figure 4. Despite
the freezing, we observe that these layers actually enable visual-linguistic interactions. Indeed, in the
first layer (Figure 4, left), the [CLS], [MASK] and [SEP] tokens significantly attend to the visual
tokens. Moreover, we observe substantially different patterns in the last layer (Figure 4, right): while
the [MASK] token still attends to visual tokens, the different visual tokens at different timesteps attend
between each other and the [CLS] and [SEP] tokens mainly attend to other text tokens. Consistently
with results presented in Section 4.2, this qualitative analysis suggests that the frozen self-attention
layers in FrozenBiLM do enable visual-linguistic interactions.

C Experimental setup

In this section we first present additional information on the used datasets (Section C.1) and then
describe implementation details (Section C.2).
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(a) Zero-Shot open-ended VideoQA. The first row illustrates successful predictions on the iVQA dataset [113]
(leftmost example) and the ActivityNet-QA dataset [120] (three rightmost examples). The second row illustrates
incorrect predictions on the iVQA dataset.

Question: Which category of 
sports does this sport belong to? 
GT Answer: surfing
Just Ask: second
UnFrozenBiLM: swimming
FrozenBiLM (text-only): 1
FrozenBiLM (ours): surfing

Question: What did the man with
the backpack walk into?
GT Answer: bakery, bake shop
Just Ask: stores
UnFrozenBiLM: wall
FrozenBiLM (text-only): water
FrozenBiLM (ours): restaurant

Question: What are the men 
standing in front of?
GT Answer: fireplace
Just Ask: cabinets
UnFrozenBiLM: kitchen
FrozenBiLM (text-only): building
FrozenBiLM (ours): fireplace

Question: Is there green grass on 
the roof?
GT Answer: yes
Just Ask: no
UnFrozenBiLM: no
FrozenBiLM (text-only): no
FrozenBiLM (ours): yes

Question: How many people are there in the video?
GT Answer: 1
Just Ask: 2
UnFrozenBiLM: 4
FrozenBiLM (text-only): 2
FrozenBiLM (ours): 1

Question: What organism is shown at the end of the video?
GT Answer: bird
Just Ask: worms
UnFrozenBiLM: beef
FrozenBiLM (text-only): octopus
FrozenBiLM (ours): chicken

Question: What is the person
changing on the phone? 
GT Answer: settings
Just Ask: colors
UnFrozenBiLM: camera
FrozenBiLM (text-only): phone
FrozenBiLM (ours): wallpaper

Question: What is the silver object
behind the woman on counter?
GT Answer: toaster
Just Ask: mirror
UnFrozenBiLM: salt
FrozenBiLM (text-only): coin
FrozenBiLM (ours): spoon

(b) Zero-shot video-conditioned fill-in-the-blank successful predictions on the LSMDC-FiB dataset [73].

Sentence: Someone ____ him to 
the truck and across the street.
GT Answer: chases
UnFrozenBiLM: follow
FrozenBiLM (text-only): drags
FrozenBiLM (ours): chases

Sentence: Each singer in the 
front row ____ a huge toad.
GT Answer: holds
UnFrozenBiLM: plays
FrozenBiLM (text-only): wears
FrozenBiLM (ours): holds

Sentence: A woman wraps food in newspapers and brings it over to 
their ____. 
GT Answer: table
UnFrozenBiLM: man
FrozenBiLM (text-only): home
FrozenBiLM (ours): table

Sentence: He hurries up the ____ 
walkway to his house and enters.
GT Answer: front
UnFrozenBiLM: screen
FrozenBiLM (text-only): wooden
FrozenBiLM (ours): front

(c) Zero-shot multiple-choice VideoQA. The first and second rows illustrate successful predictions on the
How2QA dataset [60] and the TVQA dataset [52], respectively.

Question: Where is the man with
glasses after Dr Lisa Cuddy leaves
the room?
A0: Leaning against the bookcase
A1: Sitting on a white chair
A2: Standing behind Dr House
A3: Laying on the floor next to 
the desk
A4: Sitting in a wheel chair
GT Answer: A1
UnFrozenBiLM: A0
FrozenBiLM (text-only): A3
FrozenBiLM (ours): A1

Question: What adjustement does
Beckett do before going to talk with
Mr caraway?
A0: She puts on lipstick
A1: She puts on glasses
A2: She ties back her hair
A3: She changes into a skirt
A4: She zips up her jacket
GT Answer: A4
UnFrozenBiLM: A2
FrozenBiLM (text-only): A2
FrozenBiLM (ours): A4

Question: What color was the bowl 
beside the stove when Robin was
making crepes?
A0: Orange
A1: Red
A2: White
A3: Blue
A4: Green
GT Answer: A4
UnFrozenBiLM: A0
FrozenBiLM (text-only): A3
FrozenBiLM (ours): A4

Question: What did Raj do after he discovered the wine bottle was
empty?
A0: Raj laughed out loud
A1: Raj called Howard on the phone
A2: Raj put the bottle down and got cake to eat from the 
refrigerator
A3: Raj ran in a circle
A4: Raj went to the bathroom
GT Answer: A2
UnFrozenBiLM: A1
FrozenBiLM (text-only): A3
FrozenBiLM (ours): A2

Question: What is the man doing
to the branches?
A0: He is burning them.
A1: He is burying them.
A2: He is throwing them in water.
A3: He’s painting them.
GT Answer: A0
UnFrozenBiLM: A3
FrozenBiLM (text-only): A2
FrozenBiLM (ours): A0

Question: When did the chef flipped over the layer of rice and 
seaweed?
A0: after she sprinkled sesame
A1: after she added cucumber
A2: after she added fish
A3: after she cut the cucumbers
GT Answer: A0
UnFrozenBiLM: A3
FrozenBiLM (text-only): A1
FrozenBiLM (ours): A0

Question: Why did the speaker 
opened a folder on his computer?
A0: to show pictures of digital 
numbers
A1: to show photographs he has 
taken
A2: to show desktop wallpapers
A3: to show programs he
downloaded
GT Answer: A0
UnFrozenBiLM: A2
FrozenBiLM (text-only): A1
FrozenBiLM (ours): A0

Question: Where is the person
in the clip most likely located?
A0: home
A1: corporate office
A2: sports stadium
A3: emergency room
GT Answer: A0
UnFrozenBiLM: A3
FrozenBiLM (text-only): A2
FrozenBiLM (ours): A0

Figure 4: Zero-Shot VideoQA. Qualitative comparison between Just Ask [114] (row 3 in Table 5), our model
(row 4 in Table 5), its unfrozen variant (row 2 in Table 1) and its text-only variant (row 2 in Table 2), for zero-shot
VideoQA. The last column of each row illustrates a single video example with two frames, while other columns
illustrate each video example with one frame. We show more examples on our webpage [1].
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Figure 5: FrozenBiLM self-attention visualization for zero-shot VideoQA. Visualization of the attention
weights between the different visual tokens from the video prompt and the textual tokens from the text embedder,
for the second example of the first row in Figure 4. A column corresponds to the weights of the different visual
and text tokens for the given token. These attention weights are averaged across all 24 heads, and renormalized
by the maximum weight for each token (i.e. each column) for the purpose of visualization. Lighter colors
correspond to higher attention weights (see the colorbar on the right). In the first layers (left), we observe that
the multi-modal interactions mainly flow through the [CLS], [MASK] and [SEP] tokens, and that there is little
interaction between the different visual tokens. In the last layers (right), we observe that visual tokens attend to
each other and the [MASK] token attends to the visual tokens, while the [CLS] and [SEP] tokens mainly attend
to text tokens. Note that the self-attention weights are frozen after text-only pretraining.

C.1 Datasets

In this section, we give further details about the downstream datasets we use. Their licenses are
mentioned in our code in the separate folder code.

LSMDC-FiB [73] is an open-ended video-conditioned fill-in-the-blank task which consists in pre-
dicting masked words in sentences that describe short movie clips [81, 82]. It contains 119K video
clips and 349K sentences, split into 297K/22K/30K for training/validation/testing.

iVQA [113] is a recently introduced open-ended VideoQA dataset, focused on objects, scenes and
people in instructional videos [74]. It excludes non-visual questions, and contains 5 possible correct
answers for each question for a detailed evaluation. It contains 10K video clips and 10K questions,
split into 6K/2K/2K for training/validation/testing.

MSRVTT-QA [109], MSVD-QA [109] and TGIF-FrameQA [35] are popular open-ended VideoQA
benchmarks automatically generated from video descriptions [12, 66, 111]. Questions are of five
types for MSRVTT-QA and MSVD-QA: what, who, how, when and where; and four types for
TGIF-QA: object, number, color and location. MSRVTT-QA contains 10K video clips and 243K
question-answer pairs, split into 158K/12K/73K for training/validation/testing. MSVD-QA contains
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1.8K video clips and 51K question-answer pairs, split into 32K/6K/13K for training/validation/testing.
TGIF-QA contains 46K GIFs and 53K question-answer pairs, split into 39K/13K for training/testing.

ActivityNet-QA [120] is an open-ended VideoQA dataset consisting of long videos [9] (3 minutes
long on average), and covering 9 question types (motion, spatial, temporal, yes-no, color, object,
location, number and other). It contains 5.8K videos and 58K question-answer pairs, split into
32K/18K/8K for training/validation/testing.

How2QA [60] is a multiple-choice VideoQA dataset focused on instructional videos [74]. Each
question is associated with one correct and three incorrect answers. It contains 28K video clips and
38K questions, split into 35K/3K for training/validation.

TVQA [52] is a multiple-choice VideoQA dataset focused on popular TV shows. Each question
is associated with one correct and four incorrect answers. It contains 22K video clips and 153K
questions, split into 122K/15K/15K for training/validation/testing. The test set is hidden and only
accessible a limited number of times via an online leaderboard.

C.2 Implementation details

Architecture hyperparameters. We truncate text sequences up to L = 256 tokens. Video features
are extracted by sampling T = 10 frames, each resized at 224× 224 pixels, from the video. These
frames are sampled at temporally equal distance, with a minimum distance of 1 second. For videos
shorter than T seconds, we pad the video prompt up to T tokens. The dimension of the visual features
from ViT-L/14 [21] is Df = 768. The transformer encoder from DeBERTa-V2-XLarge [28] has 24
layers, 24 attention heads, a hidden dimension of D = 1536 and an intermediate dimension in the
feed-forward layers of 6144. For the adapters [31], we use a bottleneck dimension ofDh = D

8 = 192.

Training. For all training experiments, we use the Adam optimizer [45] with β = (0.9, 0.95) and
no weight decay. We use Dropout [94] with probability 0.1 in the adapters and in the transformer
encoder. When finetuning the language model weights, we divide the batch size by a factor 2 so to
accommodate with the GPU memory constraints.

Cross-modal training. To train on WebVid10M, we use a total batch size of 128 video-caption
pairs split in 8 NVIDIA Tesla V100 GPUs. We use a fixed learning rate of 3e−5 for the variant with
adapters. We find that the variant without adapters that freezes the language model weights prefers a
higher learning rate of 3e−4, and that the variant UnfrozenBiLM that finetunes the language model
weights prefers a lower one of 1e−5.

Downstream task finetuning. To finetune our model on downstream datasets, we use a total batch
size of 32 video-question-answer triplets (respectively 32 video-sentence pairs) split in 4 NVIDIA
Tesla V100 GPUs for open-ended VideoQA datasets (respectively video-conditioned fill-in-the-blank
datasets) and 16 video-question pairs split in 8 NVIDIA Tesla V100 GPUs for multiple-choice
VideoQA datasets. We train for 20 epochs for all downstream datasets except LSMDC-FiB for which
we find that training for 5 epochs leads to similar validation results. We warm up the learning rate
linearly for the first 10% of iterations, followed by a linear decay of the learning rate (down to 0) for
the remaining 90%. On each dataset, we run a random search and select the learning rate based on the
best validation results. We search over 10 learning rates in the range [1e−5, 1e−4] for variants that
freeze the language model weights, and [5e−6, 5e−5] for the variant UnfrozenBiLM that finetunes the
language model weights.

Answer vocabulary for open-ended VideoQA. In the zero-shot setting, we use an answer vocabulary
composed of the top 1, 000 answers in the corresponding training dataset, following [121]. In the
fully-supervised setting, we experiment both with the vocabulary composed of the top 1, 000 answers
and the vocabulary composed of all answers appearing at least twice in the corresponding training
dataset and choose the one leading to best validation results. Following [121], questions with out-of-
vocabulary answer are not used for finetuning, and are automatically considered as incorrect during
evaluation.

D Experiments

In this section, we complement the experiments presented in Section 4. We first present a comparison
with BLIP [59] in their zero-shot settings in Section D.1. In Section D.3 we show detailed zero-shot
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Method Pretraining Data Finetuning Data iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA
BLIP [59] 129M image-text pairs VQA — 19.2 35.2 — —
FrozenBiLM (no image-VQA training) WebVid10M ∅ 26.8 16.7 33.8 25.9 41.9
FrozenBiLM (no cross-modal training) ∅ VQA 14.6 6.9 12.6 22.6 33.3
FrozenBiLM (Ours) WebVid10M VQA 34.6 22.2 39.0 33.1 43.4

Table 8: Results of our model after cross-modal training, finetuning on the open-ended image-VQA dataset [4]
and directly evaluating on open-ended VideoQA without using any VideoQA supervision, as in BLIP [59].

Method Motion Spatial Temporal Yes-No Color Object Location Number Other
Just Ask [113] 2.3 1.1 0.3 36.3 11.3 4.1 6.5 0.2 4.7
FrozenBiLM 12.7 6.8 1.6 53.2 16.5 17.9 18.1 26.2 25.8

Table 9: Zero-shot VideoQA results segmented per question type on the ActivityNet-QA dataset, compared
with Just Ask [113].

Method MSRVTT-QA MSVD-QA
What Who Number Color When Where What Who Number Color When Where

Just Ask [113] 1.8 0.7 66.3 0.6 0.6 4.5 7.8 1.7 74.3 18.8 3.5 0.0
FrozenBiLM 10.7 28.7 55.0 11.4 9.2 9.3 26.0 45.0 69.9 56.3 5.2 17.9

Table 10: Zero-shot VideoQA results segmented per question type on the MSRVTT-QA dataset (left) and the
MSVD-QA dataset (right), compared with Just Ask [113].

VideoQA results segmented per question category and compare our method with Just Ask [113]. Next
we analyze the impact of the random seed used in the cross-modal training on the zero-shot VideoQA
results in Section D.4. We also show the importance of freezing the language model in few-shot
settings in Section D.5. We present additional ablation studies in the zero-shot setting in Section D.7.
Finally we show the benefit of cross-modal training and adapter training in fully-supervised settings
in Section D.8.

D.1 Comparison with BLIP

In addition to the zero-shot results presented in Section 4.4, we here investigate a different but
related zero-shot setting defined in BLIP [59], where a network trained on manually annotated
image-VQA annotations is evaluated directly on open-ended VideoQA datasets. In detail, BLIP uses
the open-ended image-VQA dataset [4] for finetuning after pretraining on 129M image-text pairs,
including COCO [14] and Visual Genome [46] which are manually annotated. To adapt our model
to this setting, we finetune our model FrozenBiLM pretrained on WebVid10M on the image-VQA
dataset using the same procedure as for finetuning on VideoQA datasets (see Section 3.3), i.e. notably
with a frozen language model. In particular, we finetune on VQA for 10 epochs with an initial
learning rate of 1e−5 which is warmed up for the first 10% iterations, and linearly decayed to 0 for
the remaining 90% iterations. Table 8 shows that the resulting model not only improves over our
model without image-VQA finetuning (i.e. in zero-shot mode as defined in Section 1) or our model
trained on VQA only (i.e. without cross-modal training), but also substantially outperforms BLIP
on both MSRVTT-QA and MSVD-QA. These results further demonstrate the strong capabilities of
FrozenBiLM in settings where no VideoQA annotation is available.

D.2 Results on zero-shot image-VQA

We next evaluate our pretrained model on the VQAv2 [4] validation set in the zero-shot setting, i.e.,
without any supervision of visual questions and answers. Frozen [102] achieves 29.5% accuracy
in this setting using an autoregressive language model. In comparison, our FrozenBiLM model is 7
times smaller than Frozen and achieves 45.0% accuracy. We conclude that our model can perform
competitively on the image-VQA tasks despite being tailored for videos.

D.3 Detailed zero-shot VideoQA results segmented per question category

We complement the comparison to the state of the art for zero-shot VideoQA given in Section 4.4
with results segmented per question type for ActivityNet-QA in Table 9, and for MSRVTT-QA and
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Method Training Data Fill-in-the-blank Open-ended Multiple-choice
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

Random — 0.1 0.1 0.1 0.1 0.1 0.1 25 20
CLIP ViT-L/14 [78] 400M image-texts 1.2 9.2 2.1 7.2 1.2 3.6 47.7 26.3

Just Ask [114] HowToVQA69M +
WebVidVQA3M — 13.3 5.6 13.5 12.3 — 53.1 —

Reserve [122] YT-Temporal-1B 31.0 — 5.8 — — — — —
FrozenBiLM (Ours) WebVid10M 51.5±0.1 28.3±0.9 14.4±1.4 30.0±2.2 25.4±0.7 39.7±2.1 57.9±0.6 57.9±1.2

Table 11: Comparison with the state of the art for zero-shot VideoQA, reporting mean and standard deviation
over 5 cross-modal training runs with different random seeds. Results on TVQA are reported on the validation
set given that the hidden test set can only be accessed a limited number of times.

Variant Supervision Fill-in-the-blank Open-ended Multiple-choice
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

1. UnFrozenBiLM 0% (zero-shot) 37.1 21.0 17.6 31.9 20.7 30.7 45.7 45.6
2. FrozenBiLM 0% (zero-shot) 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.2
3. UnFrozenBiLM 1% (few-shot) 46.2 23.5 33.4 43.7 31.6 51.7 68.0 68.6
4. FrozenBiLM 1% (few-shot) 56.9 31.1 36.0 46.5 33.2 55.1 71.7 71.8
5. UnFrozenBiLM 10% (few-shot) 52.6 29.5 38.9 49.8 36.5 57.8 73.2 74.8
6. FrozenBiLM 10% (few-shot) 59.9 35.3 41.7 51.0 37.4 61.2 75.8 77.3
7. UnFrozenBiLM 100% (fully-supervised) 58.9 37.7 45.0 53.9 43.2 66.9 87.5 79.1
8. FrozenBiLM 100% (fully-supervised) 63.5 39.6 47.0 54.8 43.2 68.6 86.7 82.4

Table 12: Few-shot results, by finetuning FrozenBiLM using a small fraction of the downstream training dataset,
compared with the variant UnFrozenBiLM which does not freeze the language model weights. Results on TVQA
are reported on the validation set given that the hidden test set can only be accessed a limited number of times.

MSVD-QA in Table 10. Compared to Just Ask [113], we observe large and consistent improvements
over all question categories, except for the number category on MSRVTT-QA and MSVD-QA. These
results show that our approach is efficient in the diverse question categories of zero-shot VideoQA.

D.4 Impact of the random seed on zero-shot VideoQA

To verify the robustness of our approach with respect to the random seed, we run cross-modal
training for FrozenBiLM with 5 different random seeds. We report the mean and standard deviation
of zero-shot accuracy in Table 11, compared with state-of-the-art approaches that only report their
results based on a single run. We observe that the random seed does not affect the comparison to prior
work done in Section 4.4 in the main paper, as our model improves over previous work for zero-shot
VideoQA [78, 114, 122] by significant margins.

D.5 Freezing the language model is also beneficial in few-shot settings

Sections 4.2 and 4.5 demonstrate that freezing the language model combined with training adapters
outperforms finetuning the language model in the zero-shot and fully-supervised settings. In Table 12,
we further show that freezing the language model combined with training adapters outperforms
finetuning the language model in the few-shot setting as defined in Section 4.5 (compare rows 3 and
4, or rows 5 and 6). Interestingly, the difference is larger when using 1% of the downstream training
dataset (rows 3 and 4) compared to using 10% (rows 5 and 6) or 100% (rows 7 and 8). These results
demonstrate that our approach is particularly efficient in settings where VideoQA annotations are
scarce.

D.6 Ablation of the multi-token inference strategy

For multi-token answers in the open ended VideoQA setting, our FrozenBiLM simply averages the
weights of different answer tokens. However, such simple scheme does not preserve the semantic
structure of the answer. Hence we here investigate and compare another possible inference strategy
in the zero-shot setting and discuss potential sources of improvement. We take inspiration from
[38] and performs zero-shot VideoQA inference by using multiple mask tokens decoded in parallel.
Then, for each video-question pair, we do one forward pass through the model per possible number
of mask tokens (typically, 1 to 5) in order to score all possible answers in vocabulary A. The
score of a given answer is then obtained by multiplying the probability of its individual tokens,
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Inference Strategy Fill-in-the-blank Open-ended
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA

1. Average token embeddings 51.5 26.8 16.7 33.8 25.9 41.9
2. Multiple mask tokens 51.0 27.0 17.1 34.4 26.1 42.0

Table 13: Impact of the inference strategy on the zero-shot open-ended VideoQA performance.

T Dh Visual Fill-in-the-blank Open-ended Multiple-choice
Backbone LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

1. 1 192 ViT-L/14 (CLIP) 50.4 24.8 12.4 28.3 24.9 41.5 54.3 54.6
2. 10 96 ViT-L/14 (CLIP) 52.4 28.6 13.7 29.0 25.1 42.3 59.3 58.0
3. 10 384 ViT-L/14 (CLIP) 51.4 27.5 15.6 31.2 23.9 41.8 58.0 57.8
4. 10 192 ViT-B/16 (ImageNet) 49.4 23.8 13.3 25.7 25.1 36.8 56.5 57.2
5. 10 192 ViT-B/16 (CLIP) 50.8 25.5 14.6 30.3 25.6 41.0 57.6 58.2
6. 10 192 ViT-L/14 (CLIP) 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.2

Table 14: Impact of the number of frames T used by the model, the hidden dimension Dh in the adapters
and the visual backbone on the zero-shot VideoQA results. All models are trained on WebVid10M and use
multi-modal inputs (video, speech and question) at inference.

possibly normalized by its number of tokens. As shown in Table 13, we observe that such a decoding
strategy (row 2) does not significantly improve the accuracy of our model over the one used in
FrozenBiLM (row 1). We hypothesize that this is due to the fact that the current open-ended VideoQA
datasets [35, 109, 113, 120] contain a great majority of short answers, e.g. 99% of the answers in the
MSRVTT-QA test set are one-token long with our tokenizer [47]. Additionally, a possible solution to
further improve the decoding in this alternative scheme is to increase the length of the masked spans
at pretraining, as in [39]. [84] provides another potential solution to score multi-token answers in our
framework, by masking tokens one by one and computing pseudo-likelihood scores.

D.7 Additional ablation studies in the zero-shot setting

We here complement zero-shot ablation studies reported in Section 4.2. We analyze the impact of
the number of frames T used by the model, the hidden dimension in the adapters Dh and the size
and pretraining of the visual backbone in Table 14. All models use the same setting as described in
Section 4.2 and detailed in Section C. We first observe that using 10 frames significantly improves
over using a single frame (compare rows 1 and 5). Next we note that using a hidden dimension of 96
or 384 in the adapters instead of 192 does not change the results significantly (see rows 2, 3 and 6).
Moreover, we find that scaling up the size of the visual backbone is beneficial, as using ViT-L/14
instead of ViT-B/16, both being trained on CLIP [78], slightly improves the results (compare rows
4 and 6). Furthermore, we observe that the pretraining of the visual backbone is crucial, as using
ViT-B/16 pretrained on 400M image-text pairs from CLIP significantly improves over using ViT-B/16
pretrained on ImageNet-21K, i.e. 22M image-label pairs (compare rows 4 and 5).

Finally, we ablate the importance of the prompt design on the zero-shot VideoQA performance.
We report results with alternative prompts in Tables 15 and 16. We find that replacing the words
“Question”, “Answer” and “Subtitles” by “Q”, “A” and “S”, respectively, in the templates described
in Section 3.3 does not impact the zero-shot VideoQA accuracy (compare rows 2 and 1 in Tables 15
and 16). However, completely removing “Question”, “Answer”, “Subtitles” and “is it” in the templates
results in a significant drop of performance (compare rows 3 and 1 in Tables 15 and 16). We conclude
that it is important to have tokens that link the different textual inputs.

D.8 Cross-modal training and adapters are crucial for fully-supervised performance

We have examined the impact of cross-modal training and training various parameters of our ar-
chitecture on the zero-shot VideoQA performance in Section 4.2. In Table 17, we complement
these ablation studies by analyzing the importance of cross-modal training and training various
parameters for the fully-supervised VideoQA performance. For this, we train on downstream datasets
a variant with no adapters, and a variant without cross-modal training, following the same procedure
as explained in Section 3.3 and detailed in Section C. We find that cross-modal training is significantly
beneficial for the fully-supervised setting (compare rows 3 and 4). Similar to conclusions made in
Section 4.5, training adapters while freezing the language model outperforms finetuning the language
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Template iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA
1. “[CLS] Question: <Question>? Answer: [MASK]. Subtitles: <Subtitles> [SEP]“ 26.8 16.7 33.8 25.9 41.9
2. “[CLS] Q: <Question>? A: [MASK]. S: <Subtitles> [SEP]“ 27.4 16.2 32.5 25.5 41.9
3. “[CLS] <Question>? [MASK]. <Subtitles> [SEP]“ 23.1 13.6 28.0 21.6 25.2

Table 15: Impact of the prompt on the zero-shot open-ended VideoQA performance.

Template How2QA TVQA
1. “[CLS] Question: <Question>? Is it ”<Answer Candidate>”? [MASK]. Subtitles: <Subtitles> [SEP]“ 58.4 59.7
2. “[CLS] Q: <Question>? Is it ”<Answer Candidate>”? [MASK]. S: <Subtitles> [SEP]“ 57.7 58.2
3. “[CLS] <Question>? <Answer Candidate>? [MASK]. <Subtitles> [SEP]“ 47.6 55.0

Table 16: Impact of the prompt on the zero-shot multiple-choice VideoQA performance.

Cross-modal Frozen Adapters # Trained Fill-in-the-blank Open-ended Multiple-choice
Training LM Params LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

1. ✓ ✗ ✗ 890M 58.9 37.7 45.0 53.9 43.2 66.9 87.5 79.1
2. ✓ ✓ ✗ 1M 60.4 38.2 43.2 51.7 38.3 66.5 79.3 78.2
3. ✗ ✓ ✓ 30M 57.1 34.3 46.2 51.9 41.8 67.4 75.8 70.8
4. ✓ ✓ ✓ 30M 63.5 39.6 47.0 54.8 43.2 68.6 86.7 82.4

Table 17: Importance of cross-modal training and training various parameters for fully-supervised VideoQA.
All models are finetuned on downstream VideoQA datasets, and use multi-modal inputs (video, speech and
question) at inference.

model in fully-supervised settings (see rows 1 and 4). Finally, we note that training adapters has a
considerable importance on the performance in fully-supervised settings (compare rows 2 and 4).
These results further demonstrate the strength of our approach in the fully-supervised setup.
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