
HAL Id: hal-03810102
https://hal.inria.fr/hal-03810102

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A comprehensive, formal and automated analysis of the
EDHOC protocol

Charlie Jacomme, Elise Klein, Steve Kremer, Maïwenn Racouchot

To cite this version:
Charlie Jacomme, Elise Klein, Steve Kremer, Maïwenn Racouchot. A comprehensive, formal and au-
tomated analysis of the EDHOC protocol. USENIX Security ’23 - 32nd USENIX Security Symposium,
Aug 2023, Anaheim, CA, United States. �hal-03810102�

https://hal.inria.fr/hal-03810102
https://hal.archives-ouvertes.fr

A comprehensive, formal and automated analysis of the EDHOC protocol

Charlie Jacomme
Inria Paris∗

Elise Klein
Inria Nancy

Université de Lorraine

Steve Kremer
Inria Nancy

Université de Lorraine

Maïwenn Racouchot
Inria Nancy

Université de Lorraine

Abstract
EDHOC is a key exchange proposed by IETF’s Lightweight
Authenticated Key Exchange (LAKE) Working Group (WG).
Its design focuses on small message sizes to be suitable for
constrained IoT communication technologies. In this paper we
provide an in-depth formal analysis of EDHOC–draft version
12, taking into account the different proposed authentication
methods and various options. For our analysis we use the
SAPIC+ protocol platform that allows to compile a single
specification to 3 state-of-the-art protocol verification tools
(PROVERIF, TAMARIN and DEEPSEC) and take advantage of
the strengths of each of the tools. In our analysis we consider
a large variety of compromise scenarios, and also exploit
recent results that allow to model existing weaknesses in
cryptographic primitives, relaxing the perfect cryptography
assumption, common in symbolic analysis. While our analysis
confirmed security for the most basic threat models, a number
of weaknesses were uncovered in the current design when
more advanced threat models were taken into account. These
weaknesses have been acknowledged by the LAKE WG and
the mitigations we propose (and prove secure) have been
included in version 14 of the draft.

1 Introduction

EDHOC (Ephemeral Diffie Hellman Over COSE) is a key
exchange protocol designed by IETF’s Lightweight Authen-
ticated Key Exchange (LAKE) Working Group (WG) to be
used on constrained devices in the IoT. This kind of environ-
ment leads to strict requirements regarding implementation
or use: for instance, bandwidth is limited along with the mem-
ory and therefore the design must prioritize small message
sizes. Given today’s immense number of IoT devices, security
concerns are of crucial importance.

The LAKE WG was formed in 2019 and the first draft,
version 00, of EDHOC was published in July 2020. Since

∗This work was partly done while Charlie Jacomme was at the CISPA
Helmholtz Center for Information Security.

then several drafts have been released and version 12 of the
draft [21] was issued in October 2021. EDHOC is a public-
key based authenticated Diffie Hellman (DH) key exchange
protocol. It allows for different authentication methods, ei-
ther based on signatures or static long-term DH keys. It also
supports a specific version aiming at Post-Quantum secu-
rity, replacing the DH key derivation by a Key Encapsulation
Mechanism (KEM).

Automated, symbolic protocol analysis is a successful ap-
proach for finding attacks or proving their absence. The ap-
proach can be traced back to the seminal work of Dolev and
Yao [12] at the beginning of the 80’s. In the so-called Dolev-
Yao model the attacker has complete control over the net-
work and can eavesdrop, intercept and inject any messages.
Cryptography is however treated in a rather abstract way,
sometimes referred to as the perfect cryptography assump-
tion, but this abstraction significantly eases automation of
the verification. State-of-the-art verification tools, such as
PROVERIF [6] and TAMARIN [20], are indeed able today to
scale up to industrial-size, deployed protocols. They have
in particular been used successfully to find weaknesses in
early versions of the 5G standard [2] and actively assisted the
standardization process of TLS 1.3 [4, 10]. Following these
successes of formal analysis, Vučinić et al. invite the formal
analysis community to study the protocol and contribute the
results in both the symbolic and the computational model in a
short paper which summarizes the design of EDHOC [23].

Contributions. In this paper, we present a comprehensive
formal analysis of the EDHOC protocol: we provide a de-
tailed model of version 12 and perform an analysis that com-
bines several recent developments in formal methods.

• Detailed models of the protocol, properties and primi-
tives (Section 3). We provide a detailed formal specifi-
cation of version 12 of EDHOC. Our models include
the 4 possible authentication methods, the KEM based
version, and several optional checks. We also formally
state the security properties claimed by the designers, see

1

Section 3.2. Finally, we enrich our model with several
state-of-the-art advanced models of cryptographic primi-
tives, notably more precise models for signatures [14],
DH groups [11], and hashes [7] 1.

The latter aim to provide more realistic symbolic models
of cryptography, as we explain in Section 3.3. To the best
of our knowledge this is the first case-study to combine
all of these advanced models.

• Combination of tools. We used the recent SAPIC+ pro-
tocol verification platform [8]. SAPIC+ uses the applied
pi-calculus as a specification language, which can then
be exported into several security tools (Section 3.1). In
our analysis (Section 4), we exported and proved the
model first with PROVERIF [6] which allows generally
for faster results, then we used TAMARIN [20] which
allows for more precise modeling of DH exponentiation
and hash functions. We moreover exploited TAMARIN’s
interactive mode to find a hash transcript collision attack.
In addition, we exported the model to DEEPSEC [9] for
analyzing an anonymity property.

• Methodology for a modular and comprehensive analy-
sis (Section 4.1). We followed a methodology that al-
lowed us to analyze the protocol for a large combina-
tion of threat models, and protocol variants: we consider
different threat models (key compromise and leakage),
and optional protocol checks for each security property
and systematically explore all of them, identify minimal
threat scenarios for properties to hold, as well as maxi-
mal threat scenarios that violate a property. Moreover,
all models are generated from a single file to increase
maintainability, in particular to allow easy adaptation to
future versions.

• Attacks and mitigations (Sections 4.2 to 4.7). Applying
our methodology on version 12 of EDHOC, we high-
light several weaknesses in the design and propose mit-
igations. All our findings were communicated to the
LAKE WG and acknowledged. Possible mitigations
were discussed and included in the latest version 142

of EDHOC, published in May 2022.

• First results on version 14 (Section 4.8). We applied our
methodology on version 14 and easily obtained a com-
plete analysis of this version by leveraging the analysis
pipeline set up for version 12. Our analysis confirms the
security of the proposed fixes and ensures that they do
not trigger other flaws.

1In agreement with the chairs, reference [7] has been anonymized as a
major revision is under submission at USENIX Security’23. The chairs will
share [7] with the reviewers upon request.

2Draft 13 is a duplicate of draft 12 upon its expiration.

Related Work. Formal verification techniques have been
applied to many Internet standards and deployed protocols,
including the authentication protocols of the 5G-AKA stan-
dard [2], TLS 1.3 [4, 10], and the SIGNAL secure messaging
protocols [17] to name only a few.

Bruni et al. [19] performed a first formal analysis of ED-
HOC on draft 00 using the TAMARIN prover. Their results
and proposals were taken into account by the WG in draft
05. This analysis is however outdated as the protocol sig-
nificantly changed since then. Further, it did not cover the
4 authentication methods at the same time, nor the KEM-
based variant for Post-Quantum security. Also, the analysis
in [19] did not verify anonymity properties. In [8], SAPIC+

was used to analyse EDHOC draft 07. This model was rather
simple and did not cover the 4 authentication methods nor
the KEM-based variant and the analysis did not result into
any feedback to the WG. Moreover, the symbolic models
of [8, 19] both assumed perfect cryptography as usual in sym-
bolic models, and covered less key compromise scenarios.
As we demonstrate, this assumption can miss significant at-
tacks. We therefore enrich our model with state-of-the-art
advanced primitive models [7, 11, 14] as explained before,
as well as a large number of possible compromise scenarios.
These extensions were indeed crucial to uncover many of the
weaknesses.

A systematic exploration of different compromise and
threat scenarios using symbolic tools has been performed
in several other works. Basin and Cremers [3] formalize and
explore different notions of key and state compromise in
authenticated key exchange protocols. A similar methodol-
ogy has been applied to the protocols form the Noise frame-
work [13] and second-factor authentication protocols [16]
to automatically compute the strongest threat model under
which a protocol is secure. We are the first to combine the
SAPIC+ methodology of leveraging multiple tools with such
a systematic threat model analysis, as well as the combina-
tions of advanced primitive models as was done in [7] for the
particular case of hashes.

Outline. We present version 12 of EDHOC in Section 2
along with its claimed properties. We then explain how we
model the protocol, properties and weaknesses in crypto-
graphic primitives in Section 3. Finally, we describe our
methodology and results in Section 4, before concluding.

Models and reproducibility. All our formal models are
available online at [15], along with the source code of
the TAMARIN version that includes the SAPIC+ platform
needed to run them. Standard versions of the DEEPSEC and
PROVERIF tools are sufficient and not provided at [15]. Al-
ternatively, we provide a docker with the complete tool chain
preinstalled that can be obtained and browsed using the fol-
lowing commands:

$ docker pull protocolanalysis/lake-edhoc:draft-14
$ docker run -it protocolanalysis/lake-edhoc:draft-14 bash

2

Responder
Initiator

SIG STAT

SIG Method 0 Method 2
STAT Method 1 Method 3

Table 1: Authentication methods usable with EDHOC

2 Presentation of the EDHOC protocol

EDHOC is a MAC-then-Sign Diffie Hellman key exchange
protocol designed to be suitable for IoT usage. Authentication
is provided using long-term public keys: the initiator I and
the responder R can each either use a static long-term DH
key (STAT) or a public signature key (SIG), resulting in 4
possible methods (Table 1). The protocol can be completed
in three messages but allows an optional fourth message for
additional security, i.e., key confirmation for the initiator.

2.1 Protocol outline
The EDHOC protocol consists of 4 messages, the last one
being optional (and expected to be replaced by one at the
application layer):

1. I sends session setup information along with its identi-
fiers and public ephemeral key share;

2. R responds with its own identifiers, public ephemeral
key share and authenticates its credentials;

3. I authenticates its credentials;

4. Optionally, R explicitly confirms computation of the
session key.

We now explain the protocol in more details. As an illus-
tration, we display in Figure 1 the method 0 version, i.e.,
when both the initiator and responder use signature keys, with-
out the optional 4th message. We suppose that the initiator I
and responder R have long-term signature keys (skI ,pkI and
skR,pkR) or long-term, static DH keys (I,gI and R,gR).

Pseudo-random keys. Before detailing each message, we
introduce the intermediary pseudo-random keys (PRK) that are
computed during each session from the ephemeral shared key
(and possibly static DH shares) and used to derive encryption
and MAC keys:

• PRK2e — encryption in 2nd message;

• PRK3e2m — encryption in 3rd message and MAC in 2nd
message;

• PRK4x3m — encryption in 4th message and of application
data and MAC in 3rd message. This is also the final key
stored by both parties.

How each PRK is computed is method dependent and summa-
rized in Table 2.

Meth. PRK2e PRK3e2m PRK4x3m
0

kdf(GXY)

PRK2e PRK3e2m1 kdf(PRK2e,GXR)
2 PRK2e kdf(PRK3e2m,GIY)3 kdf(PRK2e,GXR)

Table 2: Derivation of intermediary keys.

First message. The initiator sends a message to the respon-
der with the setup information (the method to be used, and the
proposed cipher suite, i.e., a set of algorithm to be used for
hashes, encryption, etc.), the public ephemeral key share GX ,
a connection identifier CI (with no cryptographic purpose)
and some external authorization data EAD1 (whose precise
format is application dependent and left unspecified in [21]).

Second message. In case R agrees on the method and pro-
posed cipher suite, R generates an ephemeral key share Y
and computes the shared ephemeral key GXY , and a transcript
hash TH2 by hashing the first message, its ephemeral key
GY and connection identifier CR. Basically, R responds by
sending its ephemeral public key share GY . Authentication
is ensured by a mac MAC2 (with PRK3e2m) and (in methods
0 or 2) an additional signature (with skR) on relevant data
(pkR, MAC2, TH2, and external authorization data EAD2).
Note that when only a mac is used, PRK3e2m is derived from
GXR, i.e., involving the static, long-term DH key share R. The
signature or mac is moreover encrypted using exclusive or
with a key derived from PRK2e.

Third message. Once message2 is received, I computes
the session key GXY and the decryption key derived from
PRK2e. The signature or mac in message2 allows verifying
R’s credentials. To construct the third message I computes a
mac MAC3 on the new transcript hash TH3, on its creden-
tials (pkI or GI) and external data EAD3 using PRK_4x3m.
MAC3, along with its content is then protected (depending on
the method) by an additional signature and encrypted using an
authenticated encryption scheme (aead) with a key derived
from PRK3e2m.

When R receives message3, R will decrypt it and verify
the signature or mac to authenticate the initiator. At this point,
the protocol can stop with the session key PRK4x3m shared
between both participants.

Fourth message. The responder may send back a final mes-
sage containing external authorized data encrypted with the
session key to act as an acknowledgment.

A post-quantum secure variant. It is noted in [21] that
the proposed protocol is not post-quantum secure, in partic-
ular due to the use of a DH key exchange, relying on the
hardness of the discrete logarithm. It is suggested that the

3

skI ,pkI

INITIATOR

skR,pkR

RESPONDER

Method,Suites,GX ,CI ,EAD1

message1
let TH2 = h(h(message1)∥GY∥CR))

PRK2e = kdf(GXY)
PRK3e2m = PRK2e
MAC2 = mac(PRK3e2m,TH2∥pkR∥EAD2)

GY ,⟨GY ,sign(⟨pkR,MAC2,TH2,EAD2⟩,skR),EAD2⟩⊕kdf(PRK2e,TH2,sig-lgth),CR

message2
let TH3 = h(TH2,message2)

PRK4x3m = PRK2e
MAC3 = mac(PRK4x3m,TH3∥pkI∥EAD3)

aead(kdf(PRK3e2m,TH3),sign(⟨pkI ,MAC3,TH3,EAD3⟩,skI))

message3

Figure 1: EDHOC protocol, method 0: both initiator and responder use signature keys

protocol can be made post-quantum secure by relying on a
key encapsulation mechanism (KEM): the resulting protocol
is obtained using method 0 (instantiated with post-quantum
secure signatures), and replacing the DH by a KEM-based
key exchange.

2.2 Claimed properties
In [21], a number of properties are claimed that we present in
this section and formalize and analyze later.

2.2.1 Confidentiality

We have identified four confidentiality properties. From the re-
sponder point of view, a completed EDHOC exchange should
provide confidentiality of the key, and the responder is also
ensured that the initiator computed the same key.

Explicit Key Confirmation [21, p. 44]

After verifying message3, the Responder is assured that
the Initiator has calculated the key PRK4x3m (explicit key
confirmation) and that no other party than the Respon-
der can compute the key.

However, from the initiator point of view only the confi-
dentiality part is ensured as the fourth message is optional.

Implicit Key Authentication [21, p. 44]

After sending message3, the Initiator is assured that no
other party than the Responder can compute the key
PRK4x3m.

Confidentiality of the final session key must hold under
strong forms of compromise: either compromise of other
session keys or future compromise of the long-term keys.

Session key independence [21, p. 43]

Compromise of one session key does not compromise
other session keys.

Forward secrecy [21, p. 43]

Compromise of the long-term keys (private signature
or static DH keys) does not compromise the security of
completed EDHOC exchanges.

2.2.2 Authentication

In addition to the Explicit Key Confirmation, which has al-
ready a flavor of authentication, EDHOC should also guaran-
tee authentication of some of the exchanged data.

Authenticated transcript hash [21, p. 8]

Transcript hashes (hashes of message data) T H2, T H3,
T H4 (are) used for key derivation and as additional
authenticated data.

Authenticated data [21, p. 42]

EDHOC adds an explicit method type and expands the
message authentication coverage to additional elements
such as algorithms, external authorization data, and
previous messages.

Similar to confidentiality, some authentication should also
be preserved even in case of compromises.

Key compromise impersonation [21, p. 43]

Compromising the private authentication keys of one
party lets an active attacker impersonate that compro-

4

mised party in EDHOC exchanges with other parties
but [...] does not let the attacker impersonate other par-
ties in EDHOC exchanges with the compromised party.

2.2.3 Identity protection

EDHOC has also been designed to offer anonymity guaran-
tees, but mostly to the initiator. Indeed, a responder obviously
leaks its identity to any initiator.

Identity protection [21, p. 42]

EDHOC protects the credential identifier of the Initia-
tor against active attacks and the credential identifier
of the Responder against passive attacks.

2.2.4 Non-repudiation

Depending on the method, a participant should not be able
to deny having participated in a session. The draft specifies
that, the other user could present to a judge its own ephemeral
private key as an evidence. Note that this implies storing the
ephemeral keys, therefore violating some requirements of the
protocol.

Non-repudiation [21, p. 44]

In EDHOC authenticated with signature keys, the Ini-
tiator could theoretically prove that the Responder per-
formed a run of the protocol by presenting the private
ephemeral key, and vice versa.

3 Models for automated verification

3.1 Symbolic tools
For our analysis we use the SAPIC+ protocol verification
platform [8]. SAPIC+ allows to provide a single protocol
specification and use three state-of-the-art protocol verifica-
tion tools as backends: PROVERIF, TAMARIN and DEEPSEC.
Therefore, the strengths of each of these tools can be exploited.
Moreover, SAPIC+’s correctness proof allows reusing results
proved in one tool in the other tools. In this section we give
an overview of how protocols and properties are specified
in SAPIC+, using examples and informal explanations; the
interested reader can find a formal treatment of the complete
syntax and semantics in [8].

Messages as terms. As usual in symbolic models, messages
are represented as terms: in contrast to concrete bitstrings,
terms focus on the message structure, abstracting away imple-
mentation details. Atomic terms are used to represent fresh
values to model, e.g., a randomly sampled secret key or nonce,
as well as variables which represent unknowns, typically used
in the inputs of a protocol specification and instantiated during

executions. Cryptographic operations are represented using
function symbols. For example, digital signatures can be mod-
eled by the four following function symbols:

sign(·, ·) verify(·, ·, ·) vk(·) true

where true is a constant, i.e., does not take any argument.
Terms are either atomic or constructed by applying function

symbols to other terms. For instance, the term sign(m,sk)
may represent inside the run of a protocol the signature of a
term m with the private signing key sk.

To actually express that function symbols represent a given
cryptographic primitive we define their properties using an
equational theory. For example, the equation

verify(sign(x,y),x,vk(y)) = true

expresses that the verification of a signature of messagex
with private signing key y returns true when the verification
algorithm is given the matching messagex and corresponding
verification key vk(y). Importantly, equations specify the only
equalities that hold, i.e., the verification algorithm never re-
turns true otherwise. This hypothesis is sometimes referred
to as the “perfect cryptography assumption”, but as we will
explain in Section 3.3, we will relax this assumption, relying
on recent results.

Protocols as processes. Protocols are modeled as processes
in a dialect of the applied pi-calculus [1]. The applied pi-
calculus is a specification language for modeling crypto-
graphic protocols as communicating, parallel programs. Its
semantics takes into account that communications happen
over an adversary-controlled network: the adversary can in-
tercept any message and insert forged messages. To forge a
message an adversary may build terms from public atoms and
previously intercepted messages, possibly applying function
symbols on these.

Giving a full, formal description of the language is beyond
the scope of this paper. We rather explain the main features
on a few examples. The following snippet, for instance, repre-
sents a simplified extract of the process modeling the initiator
role.

let Init(skI, I) =
in(<method,suitesI,ID_CRED_R,C_I,EAD_1>);
new X;
event Share(X);
let G_X = g^X in
let G_I = g^I in
let m1 = <method,suitesI,G_X,C_I,EAD_1> in
out(m1);
[...]

The initiator takes the private signing key skI and the long-
term DH share I as parameters. Next the initiator inputs from
the network a tuple of values with the in instruction. These

5

values define the protocol method and cipher suite to be used,
as well as several other parameters. ID_CRED_R identifies the
credentials of the responder the initiator is going to engage
with, and C_I and EAD_1 are values that are unspecified by
the protocol. This initial input is actually provided by the
attacker and a classical trick to model worst case scenarios,
by letting the adversary choose the responder, methods, and
values that would suit it most. Next, with the new instruction,
we generate a fresh, ephemeral DH share X. Intuitively, new X

models the sampling of a fresh random value, unknown to the
attacker, that is then stored in X. We use an event instruction
to log that X is an ephemeral key share. Such an event does
not influence the execution, but is simply an annotation that
we use to specify security properties as we will discuss below.
The initiator then computes the public key shares G_X and
G_I for the ephemeral, respectively long-term keys. Here, g^a
models exponentiation of the group generator g and comes
with a built-in equational theory, expressing properties such
as (g^a)^b = (g^b)^a. Finally we prepare the tuple m1 to be
output as the first protocol message. Additionally the language
provides conditionals to verify that received messages are as
expected as in the following snippet where the initiator checks
the signature when method 0 is chosen.

if verify(SIGNATURE_or_MAC_2,<’Signature1’,
ID_CRED_R,TH_2,pkR,EAD_2,MAC_2>,pkR) = true
then
[...]

Finally, we need to explain how the different roles are run in
parallel. Consider the following main process.

!(new sk; new ltdh;
(!Init(sk, ltdh)) | (!Resp(sk,ltdh)))

Replication, denoted !, allows to spawn an unbounded num-
ber of concurrent copies of a process. Here, we can spawn
an arbitrary number of participants. For each participant we
generate long-term keys sk and ltdh and the participant can
engage in an unbounded number of sessions, either as an ini-
tiator or a responder where | denotes the parallel composition.

Properties as first-order formulas. Security properties are
expressed as first-order logic formulas over events that must
hold on all possible execution of the protocol. Again, rather
than providing the formal syntax and semantics we provide
an example to introduce the most salient features of the logic.

∀∀∀ pkI pkR k4 Y GX i j k.
AcceptR(pkI,pkR,k4,Y,GX)@i & Honest(pkI)@k
⇒⇒⇒ not K(k4)@j

This property states a simple version of confidentiality of
a key. The event AcceptR is a process annotation indicating
that the responder has accepted a session between two partici-
pants (identified here by their public keys pkI and pkR) and
that he believes they established a key k4. The event Honest
(pkI) indicates that pkI was indeed honestly generated, i.e.,

not generated by the attacker. Indeed, if the initiator were
the attacker, confidentiality of the established key would be
trivially broken. (Note that we do not need to require that the
responder is honest, as the AcceptR event cannot occur in
an adversary process.) K is a built-in event that models the
attacker knowledge, i.e., K(t) is true whenever the attacker
can deduce the term t from previously received or intercepted
messages. In the above formula i, j, k are timepoints and
the syntax @i means that the event happened at timepoint
i, but those timepoints were not exploited in this property.
We illustrate their use on the following simple authentication
property.

∀∀∀ pkI pkR k4 Y GX i k.
AcceptR(pkI,pkR,k4,Y,GX)@i & Honest(pkI)@k
⇒⇒⇒ (∃∃∃ t X GY k3. t<i &

AcceptI(pkI,pkR,k3,k4,X,GY)@t)

This property expresses that each time the responder accepts
a session (with an honest initiator), then the initiator must
have accepted a matching session before. The fact that the
sessions match is expressed by the fact that relevant event
parameters, e.g., pkR, pkI, k4, coincide. The fact that the
initiator accepted before is explicit by requiring t<i. More
advanced properties, taking into account different key com-
promise scenarios, will be discussed below.

Finally, properties may sometimes be stated as equiva-
lences. Intuitively, when two processes P and Q are equivalent,
written P ≈ Q it means that for any arbitrary process A (the
attacker process), A | P and A | Q exhibit the same behaviour.
In other words an arbitrary attacker running in parallel can-
not distinguish whether they interact with P or with Q. Such
equivalences are useful to model anonymity properties.

3.2 Protocol and properties modeling
3.2.1 Protocol model

Overview of the protocol model. Our model takes into
account an unbounded number of participants. As shown in
the code snippet of the previous section, each participant can
engage into multiple protocol sessions, acting either as the ini-
tiator, or the responder. Moreover, we model the four possible
methods, depending on whether long-term signature keys or
long-term DH keys are used for authentication. As explained
above, the adversary chooses the intended communication
partner for the initiator, and the method to be used. The at-
tacker can also generate its own key material and choose to
participate in a given session. Therefore, our model includes

• sessions between honest participants, in particular a same
agent taking both the role of the initiator and the respon-
der; hence, reflection or selfie style attacks are in the
scope of the model;

• sessions where an honest initiator engages with the at-
tacker;

6

• sessions where the attacker takes the role of the initiator
and engages with a honest responder.

We additionally modeled the KEM-based variant: in method
0, the DH based key exchange can be replaced by a KEM-
based one. Indeed, post-quantum security could be obtained
by choosing both the signature and KEM schemes to be post-
quantum secure.

Key compromise. We model a variety of (dynamic) key
compromise scenarios. At any moment, the attacker can de-
cide to compromise a key. In our model this is achieved by
making compromise events available as parallel processes.
We consider the following events, followed by the secret key
outputs.

• Compromise(k): compromise of either the long-term
signature or long-term DH key;

• LeakShare(x): compromise of the ephemeral DH key
share; note, that for convenience we always raise two
events, one with argument g^s and one with argument s,
but we always leak the secret part s of the share;

• LeakSessionKey(key): compromise of the session
key PRK4x3m.

As we will see below, our security properties will be condi-
tional on whether some keys have been compromised.

Limitations. Currently, our model lacks some features. We
do not model the cipher suite negotiation. The suite is sim-
ply a constant chosen by the attacker. However, we do verify
authentication and agreement of the chosen suite. Our model
also omits the key update mechanism, which allows achiev-
ing more efficient forward secrecy by updating the session
key PRK4x3m rather than re-running a new protocol session.
Finally, our model does not include the optional fourth mes-
sage, whose purpose is to provide explicit key confirmation
to the initiator. These extensions would add complexity to our
already rather extensive and large existing models.

3.2.2 Confidentiality properties

We analyse the 4 confidentiality properties discussed in Sec-
tion 2.2.1. Interestingly, we are able to state a single strong
confidentiality property for each of the participants that im-
plies all 4 properties. We here state the property for the ini-
tiator. (The property for the responder is stated in a similar
way.)

∀∀∀ pkR k3 k4 X GY i j k.
(AcceptI(pkI,pkR,k3,k4,X,GY)@i & KU(k4)@j
& Honest(pkR)@k)
⇒⇒⇒ (∃∃∃ t. (Compromise(pkR)@t & t < i)) |

(∃∃∃ t. LeakSessionKey(k4)@t) |
(∃∃∃ t. LeakShare(GY)@t) |
(∃∃∃ t. LeakShare(X)@t)

Intuitively, the property states that if the attacker learns the
key established (according to I) with a honest responder then
the responder’s long-term key was compromised before or the
session key was leaked or the responder share was leaked or
the initiator share was leaked.

This property indeed encodes all 4 confidentiality proper-
ties. Forward secrecy is encoded by requiring the initiator’s
long-term key to be compromised before the key is accepted
by the initiator. In other words, if the compromise happens
after the key is accepted, and the attacker learns the session
key, the property is violated (or one of the other disjunction
holds).

Session key independence is ensured as we only consider
leakage of the current session key k4. Leakage of session keys
from different sessions does not directly satisfy the property,
and so the attacker is free to leak them. As the ephemeral key
shares allow to recompute the session keys (at least in some
methods) they are handled as the session key.

Finally, the above property encodes Implicit Key Authen-
tication because the AcceptI is placed next to sending
message3. Similarly, in the responder version, the AcceptR
event is placed after having verified message3 to ensure Se-
crecy after Explicit Key Confirmation.

3.2.3 Authentication properties

Similarly, we model authentication properties. For instance,
the following property states entity authentication for the
responder, and explicit key confirmation.

∀∀∀ pkI pkR k4 Y GX i k.
AcceptR(pkI,pkR,k4,Y,GX)@i & Honest(pkI)@k
⇒⇒⇒(∃∃∃ t X GY k3. t<i &

AcceptI(pkI,pkR,k3,k4,X,GY)@t) |
(∃∃∃ t. Compromise(pkI)@t) |
(∃∃∃ t. LeakShare(Y)@t)

We basically state that each time the responder pkR accepts a
session with initiator pkI, resulting in session key k4, the ini-
tiator previously accepted a session with the same parameters,
or the attacker compromised keys that break the property triv-
ially. Note that this property also implies KCI, as an attacker
can compromise pkR without directly satisfying the property.

One may note that this is a non-injective authentication
property: as stated the property does not protect against a
replay attack, i.e., a responder might accept two sessions while
the initiator accepted only one. Therefore we additionally
prove uniqueness of the responder’s accept event, i.e., there
are no two accept events for the same initiator, responder, and
session key. This is a stronger property that entails injectivity
of the authentication. A symmetric authentication property is
shown for the initiator.

In addition, we also prove transcript authentication and
authentication of other data such as algorithms, external au-
thorization data, and previous messages. The modeling is the
same as above except that the accept events are replaced by

7

AcceptRData(...) and AcceptIData(...) which contain
arguments THx,EAD_x,mx that represent the transcript hashes,
the external authorization data, and previous messages.

3.2.4 Identity protection

We can model identity protection as an anonymity property,
expressed as an equivalence P1 ≈ P2 where Pb is defined as

! (new sk1; out(pk(sk1)); new sk2; out(pk(sk2));
! in(pkR); Init(sk1,pkR) |
! in(pkR); Init(sk2,pkR) |
! Resp(sk1) | ! Resp(sk2) |
! Init(skb,pk(sk1))

)

This process allows to create any two pairs of users. If we
consider that Init takes as parameters its secret signing key
and the responder public key it will contact, each user can
act as the initiator starting a session with an attacker chosen
responder pkR or as a responder. We finally add a test session
that depends on the challenge bit b: skb, i.e., either sk1 or sk2
initiates a test session with sk1 (here, sk1 is chosen arbitrarily;
we could have chosen sk2). The equivalence expresses that
the adversary cannot tell these two processes apart.

We note a few important details: in the test session the
attacker may not choose the responder’s identity. Otherwise,
the attacker could act as the responder and trivially break the
equivalence. Moreover, in our verification we forbid compro-
mise of sk1, as otherwise, again, the attacker could act as the
responder and trivially know b. Interestingly, we may however
allow compromise of sk2.

3.2.5 Non-repudiation

Non-repudiation is more tricky to specify. The goal is to
provide evidence to an external party (that we call a judge)
that a designated party indeed participated in a session. The
property can be split in two parts:

• Soundness: if evidence is accepted by a judge then the
designated party did participate in the session.

• Completeness: if a party did participate in a session, then
the other participant can present evidence to the judge
that will be accepted.

We focus on soundness: this property should guarantee that
the attacker cannot provide false evidence that the respon-
der participated in a session. To show that the responder is
guaranteed soundness, we use an additional judge process.
The judge inputs a non-repudiation proof proofnr and checks
its validity. If the check succeed, the judge raises an event
WasActiveR(pkr,derivedKey,proofnr): the proof proofnr
claims that the responder pkR derived key derivedKey. We
then verify the property:

∀∀∀ pkr derivedKey proofnr i j.
WasActiveR(pkr,derivedKey,proofnr)@i &
Honest(pkr)@j
⇒⇒⇒ (∃∃∃ k. DerivedRShared(pkr,derivedKey)@k) |

(∃∃∃ k. Compromise(pkr)@k)

where DerivedRShared(pkr,derivedKey) indicates that
the responder pkr computed the shared, ephemeral DH key
derivedKey. A similar modeling is used for the initiator.

We also model an injective variant of this property: the
judge will not accept two distinct evidences proving partici-
pation in a same session.

3.3 Advanced primitive modelings

As explained above, symbolic models generally idealize cryp-
tography. However, recent work [7, 11, 14] has relaxed this
idealization by explicitly modeling existing weaknesses that
exist in concrete primitives. In this work, we aim at making
our analysis as precise as possible, building on such more
precise models whenever they apply to the concrete algo-
rithms supported by EDHOC. We thus include state-of-the-
art models of cryptographic primitives, and notably capture
the following aspects.

Precise signature models (SigE, SigE-proof). The ES256
signature scheme is malleable, i.e., given a signature on a mes-
sage it is possible to forge a different signature for the same
message. The edDSA signature scheme allows to (dishon-
estly) generate keys for which the verification of a signature
will always succeed. A symbolic modeling of these and other
weaknesses, that is amenable to automation in TAMARIN, is
proposed in [14]. In [14], two models are actually proposed: a
first model explicitly adds equations for specific weaknesses,
while the second allows any behaviour that does not contradict
unforgeability assumptions of the signature. The first model,
that we denote by SigE, is better suited for attack finding;
the second model aims at security proofs, and we refer to it
as SigE-proof.

Precise DH models (DHE). Similarly, more precise models
have been proposed for DH exponentiation. First, there exists
an identity element e in the ECDH group such that ex = e for
all x. Moreover, in all curves supported in [21], there exist
small subgroups of elements (h1, . . . ,hn) [11] such that:

• many collisions of the form hx
1 = hy

2 exist;

• given gx, for all z we will have with non-negligible prob-
ability that (h1gx)z = gxz.

Models for automating the verification with these additional
capabilities have been proposed in [11] for TAMARIN. We
refer to these modelings as DHE.

8

Precise hash functions (HashE). Modeling hash functions
in the symbolic model is reminiscent of the random oracle
model, which is unrealistic. Some hash functions allow for
length extension, i.e., h(x||y) = h(h(x)||y). There may also ex-
ist chosen-prefix collisions, where for all p1, p2, the attacker
may be able to compute c1,c2 such that h(p1||c1) = h(p2||c2),
see [22] for a survey. Such weaknesses (in combination with
length extension attacks) have been found to lead to real
attacks on protocols, where [5] have exploited such weak-
nesses in SHA-1 to trigger transcript collision attacks over
TLS. [21] supports SHA-256 that allows length extensions,
but for which there is no feasible chosen-prefix collision at-
tack yet. Nevertheless, we consider it valuable to future-proof
the protocol against such weaknesses if they were to appear,
especially in the context of IoT where it may be even more
difficult to deprecate an algorithm. We also note that prac-
titioners often consider second-preimage resistance to be a
sufficient property. Chosen-prefix collisions do not contradict
second-preimage collisions and it might therefore be tempting,
e.g., for efficiency reasons, to consider hash functions that are
only second-preimage resistant, but not necessarily collision
resistant. In [7], a more precise symbolic model that accounts
for length extension and chosen prefix collisions has been
proposed and automated in both TAMARIN and PROVERIF.
We refer to this precise hash model as HashE.

Precise encryption models (⊕E, AEADE). The XOR encryp-
tion used in message2, which encrypts a triplet, is obviously
malleable. We therefore added tailored equations that allow to
modify each of the three elements. We denote this model by
⊕E. The AEAD used in message3 may only provide integrity
of the plaintext and not of the ciphertext. This can be the case
for the Mac-Then-Encrypt construction (even though not cur-
rently supported in [21]), or when the encoding and decoding
of the message containing the encryption is not fully deter-
ministic (implementation dependent). We therefore model the
possibility to re-randomize an AEAD ciphertext, and denote
this more precise model of AEAD as AEADE.

It is interesting to note that although the models from [14]
and [11] were designed for TAMARIN, it was straightforward
to port them to PROVERIF and fully integrate them inside the
SAPIC+ platform.

4 Results of the analysis

Our analysis confirms the strong design of the EDHOC proto-
col as most claimed properties are satisfied when we consider
basic threat models. However, when exploring more advanced
threat models on detailed protocol models we discovered mul-
tiple weaknesses.

We present in the following the details of the identified
weaknesses as well as mitigations to strengthen the protocol.
While most weaknesses were found using automated analy-

sis, we also manually identified some additional weaknesses.
Those were notably discovered when exploring what were
the limitations of our models w.r.t. to the draft, questioning
each limitation leading to see which points of the standard
required additional inspection.

Disclosure process. We reported each of the identified
weakness to IETF’s LAKE working group, along with rec-
ommendations and concrete proposals to mitigate them. The
weaknesses were reported as git issues, followed by discus-
sions and potential pull-requests. Due to the lack of up-to-date
implementations of the draft, we could not verify the presence
of these weaknesses in a concrete implementation. However,
each weakness was discussed with the WG: most were found
relevant and the discussions lead to the integration of major
changes to the key derivation, and several other fixes in the
editor version of the draft and later to draft 14.

4.1 Methodology
We describe here how we analysed the models described
in Section 3, in a comprehensive and modular way. We also
took into account maintainability of our models, which no-
tably allowed for a swift update from the models of draft 12
to draft 14.

Modular threat models. As explained in Section 3, even
in basic models, we consider a Dolev-Yao attacker that com-
pletely controls the network, and can manipulate messages.
Moreover, the attacker chooses the parameters of honest
agents’ sessions: notably, the attacker decides the identity
of the peer, and the attacker can actively participate using its
own set of identities. The attacker can also compromise long
term secret keys.

This core threat model is extended by multiple attacker ca-
pabilities in a modular way: compromise of ephemeral shares,
denoted by DHShareE, compromise of session keys denoted
by SessKeyE, and the advanced primitive models of Section 3
are atomic capabilities that can be combined. Our aim is to
explore the different security properties by considering all
possible combinations of those attacker capabilities.

In addition, we also implement modularly two additional
checks that the protocol may perform:

• DH-Check - Agents refuse incoming neutral DH element;

• Cred-Check - Agents refuse sessions with their own
identity as the peer.

To implement DH-Check, an agent checks whether the peer’s
ephemeral key share, GX or GY , is the identity element. Note
that when using DHE, DH-Check is insufficient to forbid the
low order points of the elliptic curves, but we did not model
a more advanced check as the WG preferred to avoid imple-
menting even the basic DH-Check. Cred-Check is an optional

9

Attacker Capabilities
SigE precise signature (for attack finding)

SigE-proof precise signature (stronger guarantees)
DHE precise DH with small subgroups

AEADE rerandomizable cyphertexts model

HashE
Hash with length-extension
and chosen prefix collisions

⊕E malleable xor encryption
SessKeyE compromise of session keys
DHShareE compromise ephemeral shares

Protocol Optional Checks
DH-Check neutral DH element check

Cred-Check own identity check

Table 3: Summary of the atomic scenarios

check for trust on first use (TOFU) : the initiator should verify
that the responder’s identity is not equal to its own.

We summarize atomic attacker capabilities in Table 3. Our
goal is to verify all possible combinations of these atomic
capabilities. However, we can be more efficient and avoid the
verification of redundant checks, similar to [7, 16]. The core
idea is that the scenarios form a lattice ordered by inclusion,
and proving that a property holds in a particular threat model
implies that it also holds in all weaker scenarios. Conversely, if
a property is violated inside a given threat model, say HashE, it
will also be violated in all stronger threat models, i.e., all threat
models that contain HashE. More redundant verifications can
be avoided as for instance the SigEcapability is weaker than
the SigE-proof.

We aim to identify for each property the maximal, i.e.,
strongest, threat models for which the property hold, as well
as the minimal, i.e., weakest, ones for which there is an attack
while pruning any redundant verifications.

Using SAPIC+ for maintainability. A core concern in our
models was to factorize the code base as much as possible,
both to avoid mistakes and ease maintainability with respect
to updates of the draft. Our process relies on SAPIC+, the cor-
responding backends PROVERIF, TAMARIN and DEEPSEC,
and the templating engine Jinja2:

1. Using Jinja2, we generate from a single file both the DH
and KEM based protocols. Moreover, for the DH version,
all four methods are derived from a shared template.

2. Using SAPIC+ and its basic preprocessing capabilities
to enable or disable an attacker capability, we generate
the file for a given list of atomic threat models and a
target verification tool.

3. We finally perform the verification on the generated file
using the corresponding tool.

Given a protocol variant, threat model, and a security prop-
erty, a single line CLI allows to streamline this process and
launch the verification. From this, we designed a few small
scripts that batch run the verifications on all relevant threat
model combinations.

Comprehensive verification with SAPIC+. As a benefit
from using SAPIC+, we can choose the most suited tool for
each verification: PROVERIF and TAMARIN are used for
authentication, confidentiality and non-repudiation proper-
ties (so called reachability properties), and DEEPSEC and
PROVERIF for anonymity (modeled as an equivalence prop-
erty). Overall, PROVERIF tends to be faster, while TAMARIN
offers a more precise model of DH exponentiation, that no-
tably includes inverse group elements, and thus provides
stronger guarantees. Even though we did not encounter this
case in our analysis, this implies that for a given threat model
PROVERIF could prove a property while TAMARIN finds an
attack.

While developing the model, we rely on PROVERIF to
perform efficient sanity checks and ensure that the proto-
col executes correctly. Interestingly, the correction result of
SAPIC+ [8] ensures that these sanity checks obtained by
PROVERIF (through SAPIC+) carry over to the TAMARIN
and DEEPSEC models. Hence we avoid running them in these
other tools, which can be cumbersome.

To perform a comprehensive verification and explore all
possible threat models, we then rely on the efficiency of
PROVERIF to first quickly comb through all the scenarios.
Whenever PROVERIF finds an attack in a given scenario, there
is no need to check it with the more precise DH theory of
TAMARIN. For maximal scenarios in which a given property
holds, we use TAMARIN with a longer time out to strengthen
the trust in this proof.

In more details, our global approach is as follows.

1. Run PROVERIF on all threat model combinations with a
timeout of 30 minutes over both the DH and the KEM
variants.

2. Extract minimal threat models required for an attack,
and maximal ones for a security proof. This allows us
to extract a small set of interesting scenarios that can be
verified by a script we prepared for reproducibility with
PROVERIF;

3. We finally use TAMARIN with a long timeout of 24 hours
to increase the trust on all maximal, i.e., strongest, threat
models identified by PROVERIF in the previous step.

As anonymity properties are harder to check we do not
consider any of the advanced primitive models and first verify
the KEM version for a bounded number of sessions with
DEEPSEC. (DEEPSEC does not support DH exponentiation
nor unbounded number of sessions.) If the property holds, we

10

verify it for an unbounded number of sessions with PROVERIF
for both the KEM and DH protocols (but restricted to method
0 for efficiency reasons).

This full process was originally developed for draft 12 and
allowed us to report several weaknesses and propose improve-
ments to the WG, most of which were integrated into draft
14. We were then able to verify draft 14 very efficiently, by
(i) updating a single model, (ii) running the batch PROVERIF
script of step 2, and (iii) the batch TAMARIN script of step 3.

Note that the same analysis and methodology could be
done without SAPIC+ by writing manually tool specific mod-
els. However, SAPIC+ greatly sped up the analysis, e.g., it
only required writing a single model (while the modeling
languages of TAMARIN and PROVERIF/DEEPSEC fundamen-
tally differ), sanity checks of the model are significantly faster
in PROVERIF. In particular, using only PROVERIF, the DH
model would have been less precise; using only TAMARIN
would complicate the anonymity analysis (support for equiv-
alence, in particular in the presence of restrictions, is less
mature in TAMARIN) and exploration of the whole threat
model lattice (as verification takes more time). Finally, it
is likely that reaching our level of maintainability would be
impossible with separate models.

We believe that the infrastructure we developed is of in-
dependent interest and could be reused out of the box for
other protocol analyses. For instance, our models are split
into multiple parts with separate header files for easy reuse of
the advanced primitive models.

4.2 Summary of the automated analysis of
draft 12

We summarize in Table 4 highlights of our analysis showing
secure and insecure scenarios. Overall, most properties hold
in the core threat model but we found multiple weaknesses
in advanced threat models for which we propose fixes to
strengthen the protocol. We provide in Table 5 a list of the
main attacks we identified. We also specify the required threat
model, the tool used to find the attack and the verification time.
Moreover, we indicate whether the weakness was fixed in the
draft 14 following our proposals. The extensive results of our
analysis, specifying the exact lemmas and considered threat
models, on both draft 12 and 14, can be found in Appendix B.

All our experiments were performed on a 64 core Intel(R)
Xeon(R) CPU E5-4650L 0 @ 2.60GHz server with 756GB
of RAM. Overall, the initial batch verification on draft 12
required 273 single threaded PROVERIF calls for an accu-
mulated runtime of 20.6 hours (verified in less than an hour
with a 64 core parallelization). We extract from this batch
verification the 50 maximal and minimal threat scenarios, that
correspond to 3h of PROVERIF accumulated runtime.

4.3 Weaknesses in the Key Derivation
In [21], the final key material consists in the key PRK4x3m, built
from the ephemeral shared DH secret, and the final transcript
hash TH4. An optional key exporter is suggested that binds
PRK4x3m and TH4. However, several attack traces found by
our tool illustrate weaknesses in this key derivation.

Leaking ephemeral secrets breaks authentication. Al-
though one might expect authentication to rely only on the
secrecy of the long-term keys, a violation of entity authenti-
cation was reported by our tool when we compromise both
the ephemeral DH shares and the session key computed by
the agents. This threat model is motivated by the use case
where a device was fully compromised, except for the long
term authentication keys that may be stored securely inside a
Trusted Execution Environment, as proposed in [21, p. 48].

The attack corresponds to a Machine-in-the-Middle attack
in which the attacker impersonates an initiator I to a responder
R, although I did not initiate any session with R. Interestingly,
this violation only occurs with methods others than 0. Indeed,
even with access to all the ephemeral secrets, the attacker
cannot forge a signature. In all other methods, the core issue
is the use of the final session key, which is leaked, as the
MAC key, allowing the attacker to forge the MAC of the last
message.

For readability, we describe in Fig. 2 the attack reported by
the tool on a simplified version of EDHOC (omitting message
fields that are not relevant). We suppose that I initiates a
session with the attacker. The attacker then simply forwards
message1 to R. Then, using I’s leaked ephemeral share X
and GY , the attacker can compute a valid message2 with
their own identity IDA. The initiator replies with message3
that would not be accepted by R, as the transcripts do not
match. However, after the leak of the session key, the attacker
forges a MAC on the expected transcript. R accepts the forged
message, and successfully finishes a session supposed to be
initiated by I, though I never started a session with R.

This attack highlights an interesting property that a key
exchange protocol should guarantee when an implementation
with a TEE is considered: entity authentication should only
rely on the long term authentication secret of an agent and
tolerate compromise of all ephemeral secrets.

Weak data authentication. It is claimed in [21] that an
additional key confirmation step implies authentication of all
the data, including TH4. However, the use of the recommended
key confirmation is not enforced, and only suggested. Recall
that the key material consists in PRK4x3m and TH4; a natural
key confirmation could only rely on PRK4x3m in which case
TH4 is not authenticated.

This behaviour was highlighted by the fact that the authen-
tication of TH4 could be broken in multiple, implementation
dependent, ways, mostly because the ciphertext contained in

11

Property Threat model

Basic AEADE DHE
DHShareE

+ SessKeyE
HashE

+ DHE
KEM variant

Confidentiality ✓ ✓ ✓ ✓ ✗ ✓
Implicit& Explicit Key Auth. ✓ ✓ ✓ ✗ ✓ ✓

Transcript Auth. ✓ ✗ ✓ ✓ ✗ ✓
Algo Auth. ✓ ✓ ✓ ✓ ✗ ✓

Session key uniqueness ✓ ✓ ✗ ✓ ✗ ✗
Non-repudiation soundness ✓ ✓ ∼ ✓ ∼ ✓

Identity protection ✗ ✗ ✗ ✗ ✗ ✗

✓: property satisfied ✗: violation of property ∼: unclear security

Table 4: Summary of the automated analysis results over draft 12

I,GI

INITIATOR

skA,pkA

ATTACKER

skR,pkR

RESPONDER

GX GX

Leak X

GY ,encGXY (ID_R,(MACGXY (TH2∥pkR∥EAD2)))

GY ,encGXY (ID_A,(MACGXY (TH2∥pkA∥EAD2)))

let k = kdf(GXY ,GIY)

AEADk(ID_I,MACk(TH3∥GI∥EAD3))

Leak session key k

AEADk(ID_I,MACk(TH′
3∥GI∥EAD3))

Figure 2: Attack authentication in the compromise device but secure TEE setting

message3 is directly included in the transcript to build TH4.
TH4 authentication could then be broken when:

• the used AEAD scheme only provides integrity of the
plaintext and not of the ciphertext (as it is the case for
Mac-then-Encrypt);

• the encoding of message3 is not fully deterministic;

• when a party recomputes the last message sent from the
internal protocol state, as specified in [21, Appendix E,
p. 73], but using a randomized signature: this leads to
two distinct, but valid versions of message3.

Out of those three possible behaviours, the first one was re-
ported automatically by the tool in the weak AEAD threat
model as an attack on data authentication, which lead us to
investigate the other two possibilities.

Session key is weaker than exported keys. In the threat
model with low order DH points (Section 3.3), our tool re-
ported that a dishonest party can actually control the key and
force it to the neutral DH element. In the KEM variant, a
dishonest responder can even fully control the key. While
session key uniqueness was not a property claimed by the
standard, there was no clear reason why the exported keys
would offer this property but not the session key.

We defined and explicitly checked in our analysis for this
property, that we called session key uniqueness (this property
is also referred to as contributiveness or attacker key control).

Our proposal. We propose to fix all the previous weak-
nesses by adding a final key derivation as part of the protocol
that would depend both on PRK4x3m and TH4. Such a ses-
sion key, intuitively derived as kdf(PRK4x3m,TH4), has the
following benefits:

12

• the session key differs from the MAC key;

• a key confirmation of the session key implies authentica-
tion of all the data;

• a dishonest party cannot control the final value of the
session key.

An additional benefit of this proposal is that the final state
of the protocol is simplified: only the session key needs to
be stored, instead of a key and a transcript. We considered
alternatives but preferred the above solution: notably they
would increase the complexity of implementations, or solve
less issues at once. One option was for instance to enforce
key uniqueness by checking that the ephemeral DH shares
are not low order points of the curve in use.

4.4 Transcript collision attacks

Using TAMARIN, which has a better support for modeling
chosen prefix collision attacks, we found that EDHOC was
vulnerable to transcript collision attacks. This is a Machine-
in-the-Middle (MitM) attack where the attacker intercepts
both ephemeral key shares, and replaces them with the neu-
tral element of the DH group. Then, both parties will have
a shared secret equal to this neutral element. Such a MitM
attack is generally avoided as parties will not agree on the
transcript hash. However, the attacker is able to use the fields
(of unbounded length) CR, CI or EAD to inject chosen data
which allows to create a collision on the hash of the tran-
scripts. Similar attacks were discussed on TLS, IKE and SSH
in [5].

Recall that a chosen-prefix collision allows for any p1, p2
to compute c1,c2 such that h(p1||c1) = h(p2||c2). We detail
the attack below by displaying the expected transcript compu-
tation TE , followed by I’s transcript TI and the R’s transcript
TR, where we denote by e the neutral DH element and c1,c2
the bytes used to obtain a chosen prefixed collision.
TE := method ∥ Suites ∥ GX ∥ CI ∥ EAD1 ∥ GY ∥ CR
TI := 0 ∥ SuitesI ∥ GX ∥ CI ∥ EAD1 ∥ e ∥ c1 ∥ gy ∥ CR
TR := 0 ∥ SuitesI ∥ e ∥ CI ∥ c2 ∥ GY ∥ CR

Due to the chosen prefix collisions, we indeed have that

h(0∥SuitesI∥GX∥CI∥EAD1∥e∥c1) = h(0∥SuitesI∥e∥CI∥c2)

and appending to both sides (GY∥CR) preserves the collision
due to the length extension property. A variant of this attack
also allows to perform a downgrade attack. While no hash
function currently in the standard does have this weakness,
we deemed it important to try to future-proof the protocol
against such attacks, especially in the IoT context where it
can be difficult to deprecate an algorithm. We proposed sev-
eral solutions to the WG, which after discussion opted for
an alternative which is to change the order of the arguments
inside the hash computation. We verified which order would

allow to avoid such attacks, and the hash transcript is now
computed as:

h(GY∥CR∥h(method∥Suites∥GX∥CI∥EAD1))

The attack was initially found automatically on the KEM
version in 16h using TAMARIN. On the DH version of the
protocol we can easily find the attack using TAMARIN’s inter-
active mode.

4.5 Key and IV-reuse
While modeling the protocol and browsing the standard, we
manually identified the following weakness. As EDHOC
may be deployed on unreliable networks, it may be necessary
to re-send the last message.

Packet loss resilience [21, Appendix E, p. 73]

An EDHOC implementation MAY keep the protocol
state to be able to recreate the previously sent EDHOC
message and resend it.

Consider message3, which is of the form aead(SIG, IV,K),
where IV and K are derived from PRK4x3m. We observe that
the computation of the IV and the key K are deterministic
w.r.t. to the state of the protocol. However, if a randomized
signature scheme is used, such as ECDSA, the plaintext is
also randomized. A well-known security issue of AEADs [18,
Section 3.1] is that an IV must only be used once for a given
ciphertext and key; otherwise no confidentiality nor integrity
property may be assumed. Thus, recomputing the message
actually leads to a nonce reuse for AEADs, and must not be
allowed when using randomized signatures.

Following our recommendation, such behaviour is now
forbidden in draft 14 and the security risk is mentioned. Note
that we did not try to capture this behaviour in our models of
draft 12 as this behaviour completely disappeared in the new
version.

4.6 Privacy leak
The initiator’s identity should be protected against active at-
tackers that do not own a public key that I is willing to ex-
change with. However, to mitigate a form of selfie attacks,
a party may check that it is not receiving one of its own
identities (modeled by Cred-Check). When modeling this par-
ticular feature, we observed that an active attacker can then
test whether a receiver and an initiator share the same identity
by observing the failure of the exchange due to the aforemen-
tioned test. In turn, as an active attacker can learn the identity
of any responder, it can also learn the identity of any initiator.

It was clarified with the WG that this mitigation was in-
tended for the Trust On First Use setting, in which anybody
can learn the identity of initiators, as they are willing to ex-
change with anybody. However, this lead to the observation

13

Attack type Requirements Found by Action

Initiator Impersonation
Ephemeral share

and Session key leaks PROVERIF (846 s) ✓(draft 14)

Secrecy & Auth. breach
& Downgrade attack

Hash Chosen-prefix collisions
and no neutral DH check TAMARIN (16 h) ✓(draft 14)

Final transcript mismatch
Leak session key

or Non deterministic encoding
or Leak share and Malleable Sig.

PROVERIF (56 s) ✓(draft 14)

Party Controlled Session key
No neutral DH check

or KEM variant PROVERIF (49 s) ✓(draft 14)

Identity leak Initiator refuses to exchange with its identity DEEPSEC (1 s) To be clarified
Duplicated non-repudiation Malleable Sig. PROVERIF (81 s) Judged irrelevant
AEAD Key/IV reuse Message recomputation from stored state Manual ✓(draft 14)

Table 5: Summary of our attacks and action takens

that in the classical setting, where each party has a list of
trusted identities, an active attacker can test whether an iden-
tity is allowed or not. This leads to a privacy leak when the
list of trusted identities for I is only missing I’s identity.

Details regarding the verification results for anonymity are
given in Appendix B. As our privacy study relies on DEEPSEC
which does not support the DH exponentiation, our results are
only for the KEM based method. In ProVerif we additionally
studied the DH version, but only for method 0 because of
scalability issues.

4.7 Non-repudiation

We specified non-repudiation (soundness) as an injective prop-
erty. This models that one proof presented to the judge should
correspond to a single session. We identified several weak-
nesses that could make the non-repudiation guarantees un-
clear. Notably, it could be tricky to implement a judge that
would need to count the number of sessions performed by a
party because:

• first, if the parties accept low-order points or the iden-
tity group element, many sessions may share the same
PRK4x3m;

• second, if the signature is malleable (i.e., given one sig-
nature for a message, it is possible to create a second
distinct signature for the same message), multiple differ-
ent proofs can be produced for the same session.

In addition, we witnessed that a dishonest agent could make
itself repudiable by choosing a weak signature key for which
verification will succeed over any message for some signature
schemes and notably ED25519. After discussions, the WG
considered that such considerations were side cases that did
not need to be detailed in the draft.

4.8 Analysis of the latest draft
Overall, we introduced in draft 14 a major change in the key
derivation by adding a final key, we updated the order of the
transcript elements, and we avoid an IV and key reuse over
an AEAD. We performed again the analysis of the most sig-
nificant scenarios with PROVERIF, confirming that previous
weaknesses are mitigated by our changes. In addition, we used
TAMARIN with a long time-out of 24 hours and 8 cores per
job to try to obtain stronger guarantees over some scenarios.
While many scenarios produced time-outs, we were able to
strengthen the guarantees for 13 advanced threat models for
an accumulated TAMARIN runtime of 82 hours.

5 Conclusion

In this paper, we illustrate how recent state-of-the-art develop-
ments from the formal method community can significantly
leveraged in the standardization processes of security proto-
cols. Concretely, we performed an automated analysis of the
EDHOC protocol (draft 12). Building on automated tools
and a systematized workflow allowed us to consider combi-
nations of strong threat models and identify multiple ways
to strengthen the protocol. Those were reported to the WG
and lead to lively interactions over GitHub issues and pull-
requests. Several of our findings lead to changes integrated in
draft 14 which we subsequently verified to confirm that the
proposed changes mitigate previously identified weaknesses.

In the future, we aim at maintaining our models up to date
with upcoming drafts until the final version of the standard, in
order to provide a reference model, in the spirit of a reference
implementation. The process of updating the models should
greatly benefit from the modular architecture that we set up.
In addition, there are multiple small ways to improve our
models notably by adding the optional message four or the
integrated session key update mechanism, but that may come
at the cost of a loss of automation and a reduction of the scope
of threat models considered.

14

Acknowledgments This work has been partly supported by
the ANR Research and teaching chair in AI ASAP (ANR-20-
CHIA-0024) and ANR France 2030 project SVP (ANR-22-
PECY-0006).

References

[1] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The
applied pi calculus: Mobile values, new names, and se-
cure communication. J. ACM, 65(1), 2018.

[2] David Basin, Jannik Dreier, Lucca Hirschi, Saša
Radomirovic, Ralf Sasse, and Vincent Stettler. A for-
mal analysis of 5g authentication. In Conference on
Computer and Communications Security. ACM, 2018.

[3] David A. Basin and Cas Cremers. Know your enemy:
Compromising adversaries in protocol analysis. ACM
Trans. Inf. Syst. Secur., 17(2), 2014.

[4] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Verified Models and Reference Implemen-
tations for the TLS 1.3 Standard Candidate. In IEEE
Symposium on Security and Privacy (S&P), 2017.

[5] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript
Collision Attacks: Breaking Authentication in TLS, IKE
and SSH. In Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2016.

[6] Bruno Blanchet, Vincent Cheval, and Cortier Véronique.
Proverif with lemmas, induction, fast subsumption, and
much more. In Proceedings of the 43th IEEE Sympo-
sium on Security and Privacy (S&P’22). IEEE Com-
puter Society Press, May 2022.

[7] Vincent Cheval, Cas Cremers, Alexander Dax, Lucca
Hirschi, Charlie Jacomme, and Steve Kremer. Hash
gone bad: Automated discovery of protocol attacks that
exploit hash function weaknesses. In 32st USENIX
Security Symposium. USENIX Association, 2023.

[8] Vincent Cheval, Charlie Jacomme, Steve Kremer, and
Robert Künnemann. SAPIC+: protocol verifiers of the
world, unite! In 31st USENIX Security Symposium.
USENIX Association, 2022.

[9] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina.
DEEPSEC: deciding equivalence properties in security
protocols theory and practice. In IEEE Symposium on
Security and Privacy (S&P). IEEE, 2018.

[10] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive
symbolic analysis of tls 1.3. In Conference on Computer
and Communications Security (CCS’17). ACM, 2017.

[11] Cas Cremers and Dennis Jackson. Prime, order please!
revisiting small subgroup and invalid curve attacks on
protocols using diffie-hellman. In 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken,
NJ, USA, June 25-28, 2019. IEEE, 2019.

[12] Danny Dolev and Andrew C. Yao. On the security of
public key protocols. Information Theory, IEEE Trans-
actions on, 1981.

[13] Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis
Jackson, Cas Cremers, and David Basin. A spectral
analysis of noise: A comprehensive, automated, formal
analysis of Diffie-Hellman protocols. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX
Association, August 2020.

[14] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon,
and Ralf Sasse. Seems legit: Automated analysis of sub-
tle attacks on protocols that use signatures. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK,
November 11-15, 2019. ACM, 2019.

[15] Charlie Jacomme, Elise Klein, Steve Kremer, and
Maïwenn Racouchot. Lake edhoc models. https://
github.com/charlie-j/edhoc-formal-analysis.

[16] Charlie Jacomme and Steve Kremer. An extensive for-
mal analysis of multi-factor authentication protocols.
ACM Trans. Priv. Secur., 24(2), jan 2021.

[17] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. Automated verification for secure messaging
protocols and their implementations: A symbolic and
computational approach. In IEEE European symposium
on security and privacy (EuroS&P 2017). IEEE, 2017.

[18] David McGrew. An Interface and Algorithms for Au-
thenticated Encryption. RFC 5116, January 2008.

[19] Karl Norrman, Vaishnavi Sundararajan, and Alessandro
Bruni. Formal analysis of EDHOC key establishment for
constrained iot devices. CoRR, abs/2007.11427, 2020.

[20] Benedikt Schmidt, Simon Meier, Cas Cremers, and
David Basin. Automated Analysis of Diffie-Hellman
Protocols and Advanced Security Properties. In 25th
Computer Security Foundations Symposium (CSF 2012).
IEEE, June 2012.

[21] Göran Selander, John Preuß Mattsson, and Francesca
Palombini. Ephemeral Diffie-Hellman Over COSE (ED-
HOC). Internet-Draft draft-ietf-lake-edhoc-12, Inter-
net Engineering Task Force, October 2021. Work in
Progress.

15

https://github.com/charlie-j/edhoc-formal-analysis
https://github.com/charlie-j/edhoc-formal-analysis

skI ,pkI

INITIATOR

skR,pkR

RESPONDER

let GX = KEM.pk(X)
Method,Suites,GX ,CI ,EAD1

message1

let GXY = KEM.key(Y,GX)
GY = KEM.encaps(GXY ,GX)
TH2 = h(h(message1)∥GY∥CR))
PRK2e = kdf(GXY)
PRK3e2m = PRK2e
MAC2 = mac(PRK3e2m,TH2∥pkR∥EAD2)

GY ,⟨GY ,sign(⟨pkR,MAC2,TH2,EAD2⟩,skR),EAD2⟩⊕kdf(PRK2e,TH2,sig-lgth),CR

message2

let GXY = KEM.decaps(GY , X)
TH3 = h(TH2,message2)
PRK4x3m = PRK2e
MAC3 = mac(PRK4x3m,TH3∥pkI∥EAD3)

aead(kdf(PRK3e2m,TH3),sign(⟨pkI ,MAC3,TH3,EAD3⟩,skI))

message3

Figure 3: EDHOC protocol, KEM method

[22] Marc Stevens. A Survey of Chosen-Prefix Collision
Attacks. London Mathematical Society Lecture Note
Series. Cambridge University Press, 2021.

[23] Mališa Vučinić, Göran Selander, John Preuss Mattsson,
and Thomas Watteyne. Lightweight authenticated key
exchange with EDHOC. Computer, 55(4), 2022.

A The KEM-based version of EDHOC

A detailed presentation of the KEM-based version of EDHOC
is depicted in Figure 3. This variant is rather similar to method
0 but replaces the DH key exchange by a KEM based one.

B Detailed analysis results

The following tables (Tables 7 and 8) present the detailed
results of our analysis, along with the required verification
times. The results are presented per lemma (expressing the se-
curity properties, as explained in Section 3.2). The four others
columns correspond to the protocol version that is analysed.
The results in Draft 12 and Draft 12 KEM correspond to the
version of the draft we originally analysed while the results
in the Draft 14 and Draft 14 KEM correspond to the new
versions of the protocol including mitigations we suggested.

For each lemma, the results are presented as follow:

• The scenario: a summary of the attacker capabilities and
optional checks that are considered in this specific run.
The explanation for the abreviations used can be found
in Table 3 and at the bottom of each table;

• The result of the verification: it can be an attack (✗) or a
proof (using PROVERIF: ✓P, or using TAMARIN: ✓T);

• The verification time.

Due to lack of space, we omit the results for secretRwhich
are similar to secretI, for auth-RI-uniquewhich are similar
to auth-IR-unique, as well as no-reflection-attacks-RI which
instantly holds when we add the Cred-Check. The full and
latest results over the draft can be found in [15].

The results on anonymity are presented in a separated table
(Table 6) indicating the precise protocol, whether the Cred-
Check test is performed and whether we test the property
for a bounded or unbounded number of sessions. ✓D and ✗D

indicate that the DEEPSEC tool was used.

Draft 12 Draft 14
KEM w/ Cred-Check ,
bounded sessions

✗D (3s) ✗D (3s)

KEM w/o Cred-Check ,
bounded sessions

✓D (3s) ✓D (3s)

KEM w/o Cred-Check,
unbounded sessions

✓P (10m) ✓P (6m)

DH w/o Cred-Check,
unbounded sessions,
only method 0

✓P (267m) ✓P (148m)

Table 6: Summary of our results for anonymity

16

L
em

m
a

D
ra

ft
12

D
ra

ft
12

K
E

M
D

ra
ft

14
D

ra
ft

14
K

E
M

se
cr

et
I

D
H

S
ha

re
E ,

S
ig
E ,

S
es

sK
ey
E

✓
P

(1
07

6s
)

D
H

S
ha

re
E ,

S
es

sK
ey
E ,

⊕
E ,

A
E

A
D
E ,

S
ig
E -

pr
oo

f
✓

P
(3

16
s)

D
H

S
ha

re
E ,

S
ig
E ,

S
es

sK
ey
E

✓
P

(1
83

3s
)

S
ig
E -

pr
oo

f,
D

H
S

ha
re
E ,

S
es

sK
ey
E ,

⊕
E ,

A
E

A
D
E

✓
P

(2
59

s)

⊕
E

✓
P

(1
04

s)
⊕
E

✓
P

(2
78

s)
A

E
A

D
E ,

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(6
8s

)
A

E
A

D
E ,

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(1
43

s)
S

es
sK

ey
E ,

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(7
8s

)
S

es
sK

ey
E ,

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(1
90

s)
-

✓
T

(4
26

m
)

au
th

-I
R

-u
ni

qu
e

-
✗

(4
9s

)
-

✗
(1

2s
)

-
✓

P
(5

1s
)

✓
T

(3
0m

)
-

✓
P

(1
1s

)
D

H
-C

he
ck

,S
ig
E ,

S
es

sK
ey
E

✓
P

(9
8s

)
D

H
-C

he
ck

,S
ig
E ,

S
es

sK
ey
E

✓
P

(6
7s

)
✓

T
(3

0m
)

D
H

-C
he

ck
,A

E
A

D
E ,

S
es

sK
ey
E

✓
P

(4
8s

)
D

H
-C

he
ck

,A
E

A
D
E ,

S
es

sK
ey
E

✓
P

(5
2s

)
✓

T
(1

14
m

)
D

H
-C

he
ck

,⊕
E ,

S
es

sK
ey
E

✓
P

(1
04

s)
D

H
-C

he
ck

,⊕
E ,

S
es

sK
ey
E

✓
P

(1
07

s)

da
ta

-a
ut

he
nt

ic
at

io
n-

IR
D

H
S

ha
re
E ,

S
ig
E

✗
(1

16
s)

D
H

S
ha

re
E ,

S
ig
E

✓
P

(2
0s

)
D

H
S

ha
re
E ,

S
ig
E

✗
(1

25
s)

D
H

S
ha

re
E ,

S
ig
E

✓
P

(2
1s

)
⊕
E

✓
P

(7
3s

)
⊕
E

✓
P

(1
3s

)
⊕
E

✓
P

(7
5s

)
⊕
E

✓
P

(1
4s

)
S

es
sK

ey
E

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(6
6s

)

S
es

sK
ey
E ,

A
E

A
D
E

S
ig
E -

pr
oo

f
✓

P
(1

2s
)

S
es

sK
ey
E

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(8
9s

)
✓

T
(1

11
0m

)

S
es

sK
ey
E ,

A
E

A
D
E

S
ig
E -

pr
oo

f
✓

P
(1

4s
)

A
E

A
D
E

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(6
5s

)

A
E

A
D
E

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(6
4s

)

Ta
bl

e
7:

D
et

ai
le

d
re

su
lts

A
tta

ck
er

s
ca

pa
bi

lit
ie

s:
S

ig
E :

pr
ec

is
e

si
gn

at
ur

es
(f

or
at

ta
ck

fin
di

ng
),

S
ig
E -

pr
oo

f:
pr

ec
is

e
si

gn
at

ur
e

(s
tro

ng
er

gu
ar

an
te

es
),

D
H
E :

pr
ec

is
e

D
H

w
ith

sm
al

ls
ub

ro
ug

ps
,A

E
A

D
E :

pr
ec

is
e

A
E

A
D

m
od

el
,⊕

E :
m

al
le

ab
le

xo
re

nc
ry

pt
io

n,
S

es
sK

ey
E :

co
m

pr
om

is
e

of
se

ss
io

n
ke

ys
,D

H
S

ha
re
E :

co
m

pr
om

is
e

ep
he

m
er

al
sh

ar
es

Pr
ot

oc
ol

op
tio

na
lc

he
ck

s:
D

H
-C

he
ck

:n
eu

tr
al

D
H

el
em

en
tc

he
ck

,C
re

d-
C

he
ck

:o
w

n
id

en
tit

y
ch

ec
k

17

L
em

m
a

D
ra

ft
12

D
ra

ft
12

K
E

M
D

ra
ft

14
D

ra
ft

14
K

E
M

da
ta

-a
ut

he
nt

ic
at

io
n-

R
I

A
E

A
D
E

✗
(5

6s
)

A
E

A
D
E

✗
(1

3s
)

A
E

A
D
E

✓
P

(6
0s

)
✓

T
(5

46
m

)
A

E
A

D
E

✓
P

(1
4s

)
D

H
S

ha
re
E ,

S
ig
E

✗
(8

63
s)

D
H

S
ha

re
E ,

S
ig
E

✗
(2

7s
)

D
H

S
ha

re
E ,

S
ig
E

✗
(8

92
s)

D
H

S
ha

re
E ,

S
ig
E

✗
(2

8s
)

S
es

sK
ey
E ,

S
ig
E

✗
(1

80
s)

S
es

sK
ey
E

S
ig
E -

pr
oo

f
✗

(1
5s

)

S
es

sK
ey
E ,

S
ig
E

✓
P

(9
0s

)
✓

T
(3

43
m

)

S
es

sK
ey
E

S
ig
E -

pr
oo

f
✓

P
(1

5s
)

⊕
E

✓
P

(1
60

s)
⊕
E

✓
P

(1
7s

)
⊕
E

✓
P

(1
87

s)

⊕
E

S
ig
E -

pr
oo

f
✓

P
(3

0s
)

ho
ne

st
-a

ut
h-

R
I-

no
n-

in
j

D
H

S
ha

re
E ,

S
ig
E ,

S
es

sK
ey
E

✗
(8

46
s)

D
H

S
ha

re
E ,

A
E

A
D
E ,

⊕
E ,

S
es

sK
ey
E

S
ig
E -

pr
oo

f
✓

P
(5

04
s)

D
H

S
ha

re
E ,

S
ig
E ,

S
es

sK
ey
E

✓
P

(7
80

s)
✓

T
(3

91
m

)

D
H

S
ha

re
E ,

A
E

A
D
E ,

⊕
E ,

S
es

sK
ey
E

S
ig
E -

pr
oo

f
✓

P
(6

9s
)

S
es

sK
ey
E

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(9
1s

)

S
es

sK
ey
E

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(1
08

s)
✓

T
(8

46
m

)
A

E
A

D
E

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(8
4s

)

A
E

A
D
E

S
ig
E -

pr
oo

f,
D

H
E

✓
P

(9
0s

)
⊕
E

✓
P

(1
04

s)
⊕
E

✓
P

(1
39

s)

re
pu

di
at

io
n-

so
un

dn
es

s
-

✗
(8

1s
)

-
✗

(1
03

s)
-

✓
P

(3
4s

)
-

✓
P

(1
5s

)
D

H
-C

he
ck

,S
ig
E

✗
(1

25
s)

D
H

-C
he

ck
,S

ig
E

✗
(3

6s
)

D
H

-C
he

ck
✗

(7
4s

)
D

H
-C

he
ck

✓
P

(2
5s

)
D

H
-C

he
ck

,A
E

A
D
E

✗
(8

6s
)

D
H

-C
he

ck
,A

E
A

D
E

✓
P

(2
8s

)

Ta
bl

e
8:

D
et

ai
le

d
re

su
lts

A
tta

ck
er

s
ca

pa
bi

lit
ie

s:
S

ig
E :

pr
ec

is
e

si
gn

at
ur

es
(f

or
at

ta
ck

fin
di

ng
),

S
ig
E -

pr
oo

f:
pr

ec
is

e
si

gn
at

ur
e

(s
tro

ng
er

gu
ar

an
te

es
),

D
H
E :

pr
ec

is
e

D
H

w
ith

sm
al

ls
ub

ro
ug

ps
,A

E
A

D
E :

pr
ec

is
e

A
E

A
D

m
od

el
,⊕

E :
m

al
le

ab
le

xo
re

nc
ry

pt
io

n,
S

es
sK

ey
E :

co
m

pr
om

is
e

of
se

ss
io

n
ke

ys
,D

H
S

ha
re
E :

co
m

pr
om

is
e

ep
he

m
er

al
sh

ar
es

Pr
ot

oc
ol

op
tio

na
lc

he
ck

s:
D

H
-C

he
ck

:n
eu

tr
al

D
H

el
em

en
tc

he
ck

,C
re

d-
C

he
ck

:o
w

n
id

en
tit

y
ch

ec
k

18

	Introduction
	Presentation of the EDHOC protocol
	Protocol outline
	Claimed properties
	Confidentiality
	Authentication
	Identity protection
	Non-repudiation

	Models for automated verification
	Symbolic tools
	Protocol and properties modeling
	Protocol model
	Confidentiality properties
	Authentication properties
	Identity protection
	Non-repudiation

	Advanced primitive modelings

	Results of the analysis
	Methodology
	Summary of the automated analysis of draft 12
	Weaknesses in the Key Derivation
	Transcript collision attacks
	Key and IV-reuse
	Privacy leak
	Non-repudiation
	Analysis of the latest draft

	Conclusion
	The KEM-based version of EDHOC
	Detailed analysis results

