
HAL Id: hal-03810911
https://hal.inria.fr/hal-03810911

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Indirect Positioning of a 3D Point on a Soft Object
Using RGB-D Visual Servoing and a Mass-Spring Model

Fouad Makiyeh, Maud Marchal, François Chaumette, Alexandre Krupa

To cite this version:
Fouad Makiyeh, Maud Marchal, François Chaumette, Alexandre Krupa. Indirect Positioning of a 3D
Point on a Soft Object Using RGB-D Visual Servoing and a Mass-Spring Model. ICARCV 2022 -
17th International Conference on Control, Automation, Robotics and Vision, Dec 2022, Singapore,
Singapore. pp.1-8. �hal-03810911�

https://hal.inria.fr/hal-03810911
https://hal.archives-ouvertes.fr


Indirect Positioning of a 3D Point on a Soft Object
Using RGB-D Visual Servoing and a Mass-Spring Model

Fouad Makiyeh1, Maud Marchal2, François Chaumette1, Alexandre Krupa1

Abstract— In this paper, we present a complete pipeline for
positioning a feature point of a soft object to a desired 3D
position, by acting on a different manipulation point using a
robotic manipulator. For that purpose, the analytic relation
between the feature point displacement and the robot motion
is derived using a coarse mass-spring model (MSM), while
taking into consideration the propagation delay introduced by
a MSM. From this modeling step, a novel closed-loop controller
is designed for performing the positioning task. To get rid
of the model approximations, the object is tracked in real-
time using a RGB-D sensor, thus allowing to correct on-line
any drift between the object and its model. Our model-based
and vision-based controller is validated in real experiments
for two different soft objects and the results show promising
performance in terms of accuracy, efficiency and robustness.

I. INTRODUCTION

Robotic manipulation of rigid objects has been studied and
successfully implemented in several traditional application
fields. However, the manipulation of deformable objects is
still an open problem since the object response to an external
mechanical action cannot be predicted in the same simple
manner as for rigid objects. Manipulating a cable, tearing
a 2D cloth, controlling the 3D shape of biological tissues
are some examples of challenging soft object manipulations.
The automation of these tasks combines many areas such
as control, perception and modeling/learning to name a few,
where several issues complicate it: i) the material properties
of the object, such as its stiffness, mass and viscosity, ii) the
object geometry (dimension and shape), iii) the forces to be
applied (localization, direction and magnitude).

In this work, we focus on the indirect positioning of a soft
object where a feature point of the latter is driven to a desired
position by acting on another point of the object. Some
pioneering works in the literature have already focused on
this task. The reader can refer to Wada et al. who introduced
the problem of indirect simultaneous positioning for soft
objects [1]. They further developed a control law based on
a PID controller and a MSM, which has been validated in
simulation for small deformations [2]. In addition, Shibata
et al. studied how to tune the parameters of this PID
controller for the indirect positioning of a point in a 1D linear
spring [3]. Kinio et al. used a H∞ controller and modeled the
object using the Finite Element Method (FEM) to perform
the positioning task [4]. Other methods that do not depend

*This work was supported by the GentleMAN (299757) and the
BIFROST (313870) projects funded by The Research Council of Norway.

1F. Makiyeh, A. Krupa, F. Chaumette are with Inria, Univ.
Rennes, CNRS, IRISA, Campus de Beaulieu, 35042 Rennes, France.
Firstname.Name@inria.fr

2M. Marchal is with Univ. Rennes, INSA, IRISA, Inria, CNRS, France
and IUF. Maud.Marchal@irisa.fr

on physical models are based on the numerical estimation
of a deformation Jacobian [5]–[7] that relates the feature
point motion to the manipulated point motion. The main
limitations of these model-free methods are their sensitivity
to measurement noise and their inability to guarantee if the
desired deformation can be reached in advance. In case the
deformation is not feasible, the soft object can be destroyed,
which is a main concern for some applications such as the
robot-assisted surgery. On the contrary, a physical model
of the object could be used to predict the feasibility of its
deformation.

A physical model is used to mimic the actual behavior
of the object under its exposure to any external force. This
model does not consider only the object geometric shape that
is generally described by a 3D mesh, but also its mechanical
properties. In order to simulate the object dynamics, it is
required to update the position of every point in the model
by solving a Partial Differential Equation (PDE). Many
approaches can be used, as for example the FEM, which
is a continuum-based method and one of the most popular
to solve PDE on irregular grid [8]. Another more simple
model is the Mass-Spring Model (MSM), where the object is
discretized with masses connected with springs. In this paper,
MSM is chosen because it is simple to build and provides
real-time capability.

A main challenge when working with physical models is
to know the material properties of the object, such as stiffness
for MSM. These parameters can be identified from physical
interactions with the object. Since the identification of these
parameters is not our main concern, we rely on the approach
proposed in [9] for providing a rough approximation of the
object stiffness. However, using coarse parameters prevents
the MSM from imitating perfectly complex deformations and
therefore leads the model to drift from the reality. Combining
visual tracking with a coarse physical model allows reducing
those limitations. That is why in our presented solution, the
real object is tracked in each frame of a RGB-D camera
using a similar method as in [10]. In case a drift occurs,
an external constraint on the object surface is applied to the
model for compensating it.

This paper presents a vision-based and model-based de-
formation control of soft objects whose main contributions
are:

• A new analytical form of the relation between the
motion of a feature point and the motion of a ma-
nipulated point is derived. This relation is based on a
MSM taking into consideration its propagation delay. It
is developed for two cases: a static manipulation and
a dynamic one. For the static manipulation case, the



relation is developed for a simple 1D mesh and the
model is considered in its equilibrium state before a
new displacement is applied by the manipulator. This
assumption is not considered in the case of dynamic
manipulation, which is used in practice, and the relation
is directly developed for a general 3D mesh.

• A novel control law is designed for indirectly position-
ing a feature point to a 3D desired position, by acting
on a distant point. This control law contains a feedback
term and a feedforward term whose values are computed
from the modeling step, while previous approaches only
considered a numerically-estimated feedback term [2],
[5], [6].

An overview of our approach is presented in Fig. 1. The

Fig. 1. Block diagram of the dynamic manipulation with visual tracking
part in blue, physical simulator in green, and closed-loop control scheme in
red.

main steps can be outlined as:
1) Compute the velocity to be applied to the manipulated

point (see Section III).
2) Update the physical model using the semi-implicit

Euler equations (see Section II-A).
3) Reduce the gap between the physical model and the

real object by applying external constraints to the
model surface from observations provided by the RGB-
D camera (see Section IV-B).

4) Compute the error between the 3D position of the
feature point and its desired position (see Section III).
If this error is not low enough, go to step 1).

Note that steps 1, 3 and 4 run at the camera frame rate, i.e.,
30 Hz, while step 2 runs at 600 Hz. In what follows, we
use dt to denote the model update step time and ∆t the step
time of the camera and the control law.

The experimental validation of our method is presented in
Section IV. It involves a robot manipulating two different
objects with different geometries and materials.

II. DEFORMABLE OBJECT MODELING

The proposed controller is based on a dynamic model
of the object. Hence, Section II-A reviews the mass-spring
model that we selected. Then, Section II-B describes how its
parameters have been determined.

A. MSM dynamic behavior
A MSM approximates the behavior of a deformable object

by the dynamics of a set of masses (points), linked by mass-

less springs with dampers as connections to create a volumet-
ric mesh. We consider a general mass-spring system, where
a mass point Pi is linked to finite neighbors Pj with springs
of rest length l0ij and stiffness Kij = diag(kx, ky, kz), where
(kx, ky, kz) represent respectively the spring stiffness along
the three axes (x, y, zx, y, zx, y, z). Using Newton’s law, the dynamic
behavior of point Pi is described as:

miẍxxi = fsfsfsi + fDfDfDi + fGfGfGi + fgfgfgi + fcfcfci = fff i. (1)

where:
• mi is the mass of point Pi where i ∈ N = [1, ..., N ]

and N is the number of points in the mesh;
• (xxxi, ẋxxi = vvvi, ẍxxi = ai) are respectively the 3D coordi-

nates of Pi, its velocity and its acceleration;
• fsfsfsi is the 3D force vector acting on Pi due to springs

with stiffness Kij connecting Pi to its neighbors, Pj ,
∀j ∈ νννi ⊂ N , given by:

fsfsfsi =
∑
j∈νννi

fsfsfsij =
∑
j∈νννi

Kij(∥xxxi − xxxj∥ − l0ij)
(xxxj − xxxi)

∥xxxj − xxxi∥

=
∑
j∈νννi

αijKij(xxxj − xxxi) (2)

where αij =
∥xxxi−xxxj∥−l0ij

∥xxxj−xxxi∥ , and νννi denotes the indices in
N of the points in the neighborhood of Pi.

• fDfDfDi = −Dvvvvi is the 3D force vector acting on Pi due
to the damping Dv;

• fcfcfci is the 3D force vector representing additional exter-
nal constraints. This force is activated each time a new
image is acquired for correcting the drift between the
model and the real object. It will be discussed in more
details in Section IV-B.

• (fGfGfGi, fgfgfgi, fff i) are respectively the 3D gravitational force,
the normal force induced by the support on which the
object lies, and the summation of all forces exerted on
Pi.

The mechanical behavior of the object described by (1)
must be solved for updating the position of the points at
each time t. We use the semi-implicit Euler integration [11],
also called backward integration, for its simplicity and com-
putational efficiency [12]:

ẋxxt+dt
i = ẋxxt

i +
fififi

t

mi
dt (3)

xxxi
t+dt = xxxi

t + ẋxxt+dt
i dt (4)

B. MSM parameters identification

Regarding the model parameters, some of them are fixed
by the object mesh, such as point coordinates xxxi

t=0 and
length of springs l0ij , ∀i ∈ N , j ∈ νννi at rest state. Assuming
the objects are homogeneous for dealing with the simplest
model, the mass of the object is equally distributed on all
points, i.e., mi = m1,∀i ∈ N .

Concerning the spring stiffness Kij , Lloyd et al. derived
an analytical expression of the stiffness of every tetrahedron
constituting a mesh [9]. It is proportional to the volume
of the tetrahedron and the Young’s modulus. The latter is



considered constant. Furthermore, during the object defor-
mation, the volume of the tetrahedra constituting the mesh
changes and consequently the stiffnesses of the springs.
Based on [13], the bigger stiffness corresponding to the
biggest volume that could appear is chosen to be the same for
all springs in order to prevent collisions between mesh points.
The stiffness matrix Kij therefore depends on three constant
values (kx, ky, kz) while kmax is the maximum value in
Kij . An additional constraint concerning the stiffness is that
kmax < m1

π2dt2 [12].
Regarding the damping value, it is calculated as presented

in [12] in order to guarantee the numerical stability of the
system: 2

√
m1kmax ≤ Dv ≤ ∥ẋxxt

i
m1
dt +fffi

t∥
∥ẋxxi

t∥ for ∥ẋxxi
t∥ ≠ 0 and

Dv = 0 when ∥ẋxxi
t∥ = 0 since the damping has no effect on

a static point. In this work, we choose Dv = 2
√
m1kmax.

Despite the simplicity of the selected model parameters,
which allows high-speed real-time capacities, we will see that
it is possible to consider large deformations on real objects
thanks to the proposed closed-loop strategy, both in terms of
control and model/object registration.

III. MANIPULATION CONTROLLER DESIGN

In this section we present the main contribution of this pa-
per that concerns the generation of velocities to be applied to
a manipulated point xxxm to drive automatically another point
xxxf to a desired position xxxdes

f . Note that our velocity-based
controller has 3 Degrees of freedom (Dof) since it acts on the
position of point xxxm. We first formulate the displacements
of the mesh points when an external displacement ∆m is
imposed on xxxm, using an example of four particles along a
single axis (for explanation purpose) as represented in Fig. 2.
Then we derive in Section III-B this relation for a general
3D mesh model using a series of displacement instead of
just one.

We recall that the dynamics of the mesh points follows (1)
and their positions are updated using (3) and (4). At time t+
dt, we then obtain for any point Pi, i ∈ N−{m}:

xxxi
t+dt = xxxi

t +
dt2

mi
fsfsfs

t
i + (dt− dt2

mi
Dv)ẋxx

t
i +

dt2

mi
fefefei (5)

with fefefei = fGfGfGi+fgfgfgi+fcfcfci. For the manipulated point Pm, its
position xxxm is imposed by the robotic manipulator since it is
attached to it. Moreover, we consider that the forces fsfsfs and
fDfDfD are the dominant effects for the deformation, because they
depend on the model parameters (stiffness and damping).
Hence, we neglect the effects of the external forces fefefe from
the control modeling by considering their effects as small.

Point P1 in Fig. 2 is considered as the manipulated point.
It is subject to a displacement ∆1 < l012. P2 and P3 are
free to move while P4 is a fixed point. At time t0, these
particles are considered at rest state. The displacement ∆1

of P1 propagates first to its neighbor and then to the neighbor
of its neighbor, until finally reaching the farthest point. Let
γt
i be the propagation coefficient variable that denotes the

displacement ratio of Pi with respect to ∆1 at every discrete
time t. At t1 = t0+dt, only P2 moves and xt1

2 = xt0
2 +γt1

2 ∆1,
due to the propagation delay introduced by the MSM. At t ≥

Fig. 2. An example of 1D MSM with 4 nodes.

t2 = t0 + 2dt, we have xt
2 = xt0

2 + γt
2∆1, xt

3 = xt0
3 + γt

3∆1

and xt
4 = xt0

4 . Using (5), we can find γt
i at each time t:

1) γt
2 = γt−dt

2 − Kx
dt2

m1
(γt−dt

2 − γt−dt
3 ) + Kx

dt2

m1
(1 −

γt−dt
2 )+(1− dt

m1
Dv)(γ

t−dt
2 −γt−2dt

2 ) for t ≥ t0+2dt,
with γt0+dt

2 = Kx
dt2

m1
.

2) γt
3 = γt−dt

3 −Kx
dt2

m1
(γt−dt

3 )+Kx
dt2

m1
(γt−dt

2 −γt−dt
3 )+

(1 − dt
m1

Dv)(γ
t−dt
3 − γt−2dt

3 ) for t ≥ t0 + 3dt, with
γt0+2dt
3 = Kx

dt2

m1
γt0+dt
2 and γt0+dt

3 = 0.
Using the same methodology for a complete 3D mesh,

it is possible to determine γγγi, a 3D propagation matrix, for
any point of the mesh (for the fixed point, we have of course
γγγi = 0).

We now propose to derive the analytical form of the
relation that gives the displacement of a feature point of a
soft object in function of the motion of a manipulated point.
This relation is derived for two cases. Static manipulation
refers to the case where a new control displacement is applied
on the manipulated point only once the MSM reached its
equilibrium state from the previous control displacement.
This means that a large number of iterations of the MSM
model are required to obtain its equilibrium state before
applying the next control motion. In contrast, the dynamic
manipulation case does not require the MSM to reach its
equilibrium before applying the next control motion and has
therefore the advantage to take into account the transient
dynamics of the model.

A. Static manipulation

For the static manipulation case, we again take the simple
model in Fig. 2 and consider that a displacement is imposed
on P1 at t0, but we wait for the model to reach a new
equilibrium state at t∞. After multiple iterations, the propa-
gation variable for each free point γt

i converges to a nonzero
stable value γt∞

i . This convergence is guaranteed by the
choice of the model parameters. As discussed in Section II-
B, these parameters were chosen for ensuring the numerical
stability of the system subject to internal and external forces,
thus avoiding oscillations and divergence. As a result, the
convergence of γi is asserted. Hence, for the simple mesh
presented in Fig. 2, once a displacement ∆1 is applied on
P1, P2 and P3 move respectively by xt∞

2 − xt0
2 = γt∞

2 ∆1

and xt∞
3 − xt0

3 = γt∞
3 ∆1.

Finally, in order to perform an indirect positioning of P3

to a desired position xdes
3 , a simple strategy is to apply the

displacement ∆1 on P1 given by:

∆1 = −(γt∞
3 )−1(xt0

3 − xdes
3 ) (6)

γt∞
3 in (6) is a nonzero scalar whose calculation was derived

above. In this case, the displacement ∆1 is just given by a
proportional gain, (γt∞

3 )−1, multiplied by the initial error
(xdes

3 − xt0
3 ) of the positioning task. This result is similar to



the use of a simple PID controller as proposed in [2], [3].
We will further discuss this approach in Section IV-C.

We can already notice that if the desired position is
close to P3, P3 will reach this desired position. However,
if the desired position is far from P3, then a large ∆1 may
be required. A large external displacement can induce the
divergence of the model or the destruction of the object, so
a succession of smaller motions have to be applied on P1

instead of a large one. We recall that, from the previous
developments, it is necessary to wait until the model reaches
its stationary state before applying a new displacement. That
is why, in the following section, we are interested in the
application of successive movements without waiting for the
system to reach its new equilibrium state between each of
them.

B. Dynamic manipulation

For the dynamic manipulation case, a general 3D mesh
is considered and the displacement on Pm is expressed as
a series of displacements with a frequency of 30 Hz. Let
us denote b as a positive integer number. The displacement
applied on Pm at time t = b∆t is given by ∆∆∆

(b+1)∆t
m =

∆t ẋxx(b+1)∆t
m . It is considered constant for all time t such that

b∆t ≤ t < (b+ 1)∆t. Moreover, we use the left superscript
(ind) to denote that the corresponding vector is independent
of ∆∆∆(b+1)∆t

m between b∆t ≤ t < (b+ 1)∆t.
By integrating (5) between b∆t and (b + 1)∆t, it results

that the displacement of any point Pf due to Pm motion is
given by:

xxx
(b+1)∆t
f = xxxb∆t

f + γγγ
(b+1)∆t
f ∆t ẋxx(b+1)∆t

m + indrrr
(b+1)∆t
f (7)

The intermediate equations used to obtain (7) are developed
in the Appendix.

It has to be noted that γγγ(b+1)∆t
f has to be calculated for

each new displacement on Pm. Its value is given by (21)
and denotes the propagation ratio of the motion on Pf

imposed by Pm between b∆t and (b + 1)∆t. The term
indrrrf

(b+1)∆t is calculated using (22). It combines the effects
of the spring and damping forces exerted on Pf between
b∆t and (b + 1)∆t, regardless the new motion exerted on
Pm at b∆t. Recall that γγγ(b+1)∆t

f ̸= 0 in (7). This means that
the displacement on Pm is propagated to all mesh points,
and specifically to Pf , even if it is far away from Pm. This
assumption is valid because the model is updated using (5) at
600 Hz, providing a sufficient number of iterations for which
the displacement of Pm propagates to all model points before
a new one takes place.

Finally, by using ẋxx
(b+1)∆t
f =

xxx
(b+1)∆t
f −xxxb∆t

f

∆t in (7), we
obtain:

ẋxx
(b+1)∆t
f = γγγ

(b+1)∆t
f ẋxx(b+1)∆t

m +
indrrr

(b+1)∆t
f

∆t
(8)

The term γγγ
(b+1)∆t
f is equivalent to the numerically-estimated

deformation Jacobian used in the model-free approaches [5],
[6], while in this work we analytically derive its value. Note
that these model-free approaches do not consider the second

term indrrr
(b+1)∆t
f /∆t, which represents the transient dynam-

ics of the system. This leads to a proportional-like controller,
while the one we propose contains also a feedforward term.
Indeed, in order to drive the feature point Pf to its desired
position xxxdes

f with an exponential decoupled decrease, a
closed-loop can be performed by imposing ẋf

(b+1)∆t =
−Gpeee

b∆t, with eeeb∆t = xxxf
b∆t−xxxdes

f the positioning error and
Gp a proportional positive gain. By identification with (8),
the closed-loop control law to be applied by the robot on
Pm is given by:

ẋxx(b+1)∆t
m = −(γγγf

(b+1)∆t)†(Gpeee
b∆t +

indrrr
(b+1)∆t
f

∆t
) (9)

with (γγγf
(b+1)∆t)† the pseudo-inverse of γγγ(b+1)∆t

f in case its
rank is less than 3. Otherwise, (γγγf

(b+1)∆t)† = (γγγ
(b+1)∆t
f )−1.

Eq. (9) presents an exclusive relation between the error
of the positioning task and the manipulated point velocity at
time (b+1)∆t according to the model parameters. All terms
at the right hand side of (9) can be calculated by updating
the model between b∆t and (b+ 1)∆t regardless ∆∆∆

(b+1)∆t
m

(see more details in the Appendix).
The validation and robustness of this novel control law

is analyzed in the next section through experimental results.
Concerning the complexity, since we rely on a MSM, only a
low computational cost is required, which allows the control
law to run efficiently in real-time.

IV. EXPERIMENTAL RESULTS

A. Setup & Implementation
Our experimental setup is composed of a Viper 850, 6-Dof

anthropomorphic robot arm from ADEPT, equipped with an
ATI’s Gamma IP65 force/torque sensor and a rigid stick used
as an end-effector distal tool.

To control the robot, we use the ViSP library [14]. The
visual feedback is acquired with a RGB-D Intel Realsense
D435 static camera. The RGB-D camera simultaneously ac-
quires color and depth images, with a (640x480) resolution,
at 30 frames per second (fps).

A physical simulator has been developed in C++ to
represent the model of the deformable object and update its
point positions. The control velocity (9) is generated in the
camera frame, which is different from robot base frame. That
is why an eye-to-hand calibration is performed once at the
start of the experiments, since our camera and the robot base
frames are stationary. The overall setup is shown in Fig. 3.

Fig. 3. 1: Viper 850. 2: RGB-D camera. 3: Rigid stick. 4: Soft object. A:
Manipulation point. B: Marker which is considered as feature point.



B. Model tracking and correction using point clouds

Concerning the model representing the object, a surface
mesh is first obtained from the RGB-D data using the PCL
library, and then a volumetric mesh is generated. Since the
object is positioned on a flat table, the part of the object
lying on it is not visible, introducing a lack of measurements
for this part. The PCL library provides a simple way to
determine the plane on which the object lies [15]. Then,
the surface points are generated by selecting the points lying
inside the plane hull. A surface mesh is therefore generated
by connecting these points with each other, ending up with
a continuous polygon mesh constituted by triangle faces.
Finally, a volumetric mesh is generated by filling the surface
mesh by tetrahedra using Gmsh tool [16].

The model is then updated using (5) by taking into account
the internal forces that depend on the model parameters, the
known external forces that depend on the object configura-
tion, and the manipulator point displacement. Since the MSM
is an approximation of the real behavior of the object, the
error between the model and the reality will be aggregated
during the manipulation and the gap between them could
lead to unrealistic object representation. In order to adjust the
model and preventing it from drifting from reality, the model
is adjusted each time the camera acquires a new image. For
that, the object is first segmented using the BGSLibrary [17],
an OpenCV C++ background subtraction.

Then, let us denote the model surface by xxxs =
[xxxs1

T , ...,xxxsw
T ]T , ∀ 1 ≤ i ≤ w, si ∈ N where w is

the number of the mesh surface points and si is the indices
of their corresponding points in N . The segmented surface
object using the RGB-D camera is denoted by ppps. Hence,
by tracking xxxs and ppps, the drift can be detected. It appears
when these two point clouds are no more superimposed.
To compensate the drift, the model is adjusted by rigidly
aligning xxxs on ppps, using an iterative closest point (ICP) pro-
cedure. As a result, ppps corresponds to some points of xxxs and
they serve as the input displacements to xxxs. In [10], Petit et
al. considered these displacements as external forces exerted
by ppps on xxxs and then integrated them to the mechanical
model using co-rotational FEM. In a similar way, we use
the same procedure but using the MSM. We consider the
external forces as external constraints fcfcfc. For every point
xxxsi ∈ xxxs,∀ 1 ≤ i ≤ w, si ∈ N , we denote by p̂ppsi ∈ ppps its
correspondent point on the point cloud of the real object.
In order to get this correspondence, we apply the same
matching technique as in [10]. Two sets of nearest neighbor
correspondences from xxxs to ppps and from ppps to xxxs are
determined. Finally the correspondence p̂ppsi is calculated as a
trade-off between these last two correspondences, therefore
fcsi = Kij(p̂pp

si − xxxsi). For the remaining mesh points not
belonging to the surface, no external constraint is applied to
them, i.e., fcfcfc = 0. However, the effect of the force applied
on the outer points of the model is propagated to the inner
points with (5). As a result, the correction phase leads the
volumetric model to approach the real object deformation
behavior.

Since correction is performed in sequences with a fre-
quency of 30 Hz (camera frame rate) while the model is

updated with a frequency of 600 Hz, the external constraints
are considered constant until a new image is acquired, i.e.,
for b∆t ≤ t < (b+ 1)∆t.

C. Results
We assume in all experiments that the rigid stick of the

robot is in contact with the deformable object at t = 0. Its
position is used as the manipulated point of the object.

The deformation control scheme has been tested for two
different objects made of different soft materials, as pre-
sented in Fig.4. To validate our approach, the 3D positional
error between the desired position of the feature point and its
position are measured at each time step, where our objective
is to drive this error to zero. In this paper, we only present
the results for the half ball due to paper length limitation.
Additional results obtained with the second planar object are
presented in the accompanying video1.

We first determined the parameters of the object model as
detailed previously in Section II-B. Then a coarse estimation
of Kij = diag(30, 10, 30) N.m−1,∀i ∈ N , j ∈ νννi and
Dv = 0.35 N.s.m−1 are used.

Many deformations were first performed in simulations
for determining the possible gains to be applied to the
proposed controller (9). Two main criterion were studied:
system stability and time-to-convergence. The proportional
gain finally used is Gp = 0.7. Then the controller has been
validated using the real robot for different manipulated point
positions and feature point positions.

One example of deformation task is presented in Fig. 5.
The distance between the manipulated point and the feature
point is chosen arbitrary and is about 75 mm. The object
is restricted on one of its side to prevent its free 3D
translational movement. The error of the positioning task
is directly measured by the RGB-D camera. The measured
depth contains oscillations in a range of 2 mm that is due to
the depth measurement noise specific to this type of camera.
Therefore, the convergence is considered when the error
norm is around 1 mm. The green point in Fig. 5 presents the
position of the feature point in the image. A visual marker
is rigidly attached to the object at that point so that it is
easily tracked using the ViSP library [14]. The white point
indicates the desired position of the feature point. The yellow
rectangle presents the restricted side of the object. Fig. 5.(a)
and Fig. 5.(b) depict respectively the initial and final state
for a positioning task example using our proposed approach
(PA). The red, green, blue and black solid lines in Fig. 5.(c)
represent respectively the evolution of the positioning error
along (x, y, zx, y, zx, y, z) axes and the error norm when using the
PA. The proposed controller drives the error norm within
1 mm, between the dashed magenta lines, with an initial error
around 55 mm. We can notice the nice exponential decrease
of this error, which validates the modeling proposed in the
previous section. We can also notice the fast convergence
since the desired position is reached in about 12 seconds.

We also performed different tests where the positions of
the manipulated point and the feature one are close (N)
and far apart (F). This distance can be represented as the

1https://youtu.be/QeyK73ZYFVA



Fig. 4. Two different soft objects used to validate our approach. Left: Half
of an ellipsoid ball. Right: 2D object.

Fig. 5. (a) Soft object at its rest state. The red, green and blue oriented
axes correspond to a local coordinate system with origin the initial feature
point 3D position. (b) Soft object after the deformation process. (c) Error
measured at each time step for the positioning task applied to the half of
the ball when using our proposed control and the simple PID used in [2],
[3]. The convergence of the error is assumed when its norm lies between
the dashed magenta lines, 0 (mm) and 1 (mm).

distance between the center of the two blue circles A and
B in Fig. 3. In addition, the controller has been tested for
two types of deformations. We call small deformation (S)
when the desired position of the feature point is far from
its initial position by a distance less than 10% of the largest
dimension of the object, i.e., height, width and thickness, and
large deformation (L) when this distance is between 12% to
30% of the latter. In what follows, we use some notations,
such as S-N to represent small deformations and the case
where the manipulated point is near to the feature point.
Small deformations allow us to compare our results with
the approach introduced in [2], [3]. Since their approach is
independent of the mesh, their results are obtained using a
simple PID controller by stating: ẋxxm = −(Gpeee + Gd

∆e∆e∆e
∆t +

Gi

∫
eee) with Gp, Gd and Gi being proportional, derivative

and integral gains respectively.
The main problem when using this simple PID controller

alone is the fine-tuning of the gains of the controller for
each task to be accomplished. For a small proportional gain
and depending on the soft object, the error either converged
towards zero, or diverged, or converged towards a minimum
other than zero. For a large proportional gain, the error
either diverged, or oscillated around a local minimum, and
sometimes destroyed the object. Therefore, we tried to adjust
the parameters for the simple PID method by a trial and
error method. Unlike this controller, our PA does not need
any parameter setting except the approximate physical model
parameters and the control proportional gain, which has been
discussed at the beginning of this section. Additionally, since
the robot used is equipped with a force sensor, the applied
forces are measured during the deformation. Due to space

limitations, the comparison results are summarized in Table I.
The comparison also highlights the effect of the indrrrf and

γγγ†
f terms in (9), which represent an important difference with

respect to all previous approaches.
The table shows that when the manipulated point is near

the feature point, the proposed method and the PID converge
similarly without any problem. For the other cases, our
method ensures the convergence of the error norm while
it is not the case for the simple PID controller. The table
summarizes the statistics of the different tests carried out
since many experiments have been done for each case.
For example, for S-N case, many manipulated positions are
chosen around the feature point within the same distance.
An example of the initial state for the near case is presented
in Fig. 6. In addition, the measured forces clearly show
that the robot applies less force to the object using the PA,
which could be sometimes half and sometimes quarter of the
applied force using the simple PID controller [2], [3]. The
importance of this characteristic is that when working with
some elastic objects, a high force can cause the object to
loose its elasticity. Moreover, for the L-F case represented
in Fig. 5, the error initially decreased and then diverged using
the simple PID controller (see dashed lines in Fig. 5(c)).

(a): S-N, error (8,15) pixels (b): L-N, error (24,32) pixels

Fig. 6. (a), (b) represent respectively the initial position of the feature
point and its desired position for the S-N and L-N cases. The figures also
present the initial absolute error in terms of pixels.

Additional experiments are illustrated in Fig.7 where the
variation of the error norm is presented for a L-F case,
using five different configurations of the controller. The red
graph presents the error norm evolution when the simple PID
controller is used. We can see that the error oscillates around
a local-minimum then a divergence occurs, as expected from
Table. I. On the other hand, the error converges with a nice
exponential decrease when our PA and the identified model
parameters are used (see blue graph).

In the third configuration (see green graph), we experi-
mentally tested the robustness of the PA against the model
parameters change. They were changed arbitrary by doubling
the stiffness and halving the damping. We can observe on
Fig.7 that the error norm converged to zero, but with some
perturbations in the exponential decrease. The black graph
presents the result after multiplying by 6 the real stiffness.
In that case, the system failed in a local minimum. As a
conclusion, our controller is robust to a large extent to coarse
model parameters. Finally, the cyan graph presents the error
norm when our PA is used with a reduced mesh resolution for
the object model. The object mesh used in this experiment
contains 2059 nodes instead of a high mesh resolution of
7103 nodes used in the previous experiments. We can notice
that such reduction induces perturbations (but no divergence)



to the system behavior, while the error still converges.

TABLE I
PA VERSUS A SIMPLE PID FOR DIFFERENT EXPERIMENTS WITH

DIFFERENT INITIAL ERRORS, IN TERMS OF FINAL AVERAGE ERROR ∥eee∥
AND THE MAXIMAL NORM OF THE MEASURED FORCE MAX ∥FFF∥ (N).

Initial error (mm) Proposed Simple PID
S-N ∥eee∥ Max ∥FFF∥2 ∥eee∥ Max ∥FFF∥2

(15,10,-5) 0.7 2 0.7 4
S-F ∥eee∥ Max ∥FFF∥2 ∥eee∥ Max ∥FFF∥2

(10,10,0) 0.9 5 Diverged > 33
L-N ∥eee∥ Max ∥FFF∥2 ∥eee∥ Max ∥FFF∥2

(35,-30,10) 0.9 10 0.9 12.25
L-F ∥eee∥ Max ∥FFF∥2 ∥eee∥ Max ∥FFF∥2

(35,-30,10) 1.1 13 Diverged > 30

Fig. 7. Evolution of the positioning task error norm for a L-F case
(illustrated on the right of the figure) and for five different controller
configurations.

V. CONCLUSIONS
In this paper, we presented a physically-based method

to control the 3 Dof of an industrial robot using a RGB-
D camera to perform the positioning of a feature point
belonging to a soft object by manipulating a distant point.
We also carried out a tracking step for minimizing the gap
between the coarse MSM model used and the observed de-
formations. The proposed approach was carefully evaluated
in real experiments and appealing results were presented for
small and large deformations. Moreover, the robustness of
the proposed controller was experimentally tested and results
showed that the approach can work with coarse model pa-
rameters and low mesh resolution. Unlike existing methods,
we proposed an original approach that uses the analytical
structure of the underlying system of equations. In addition,
we avoided nonlinear optimization procedures, which could
be computationally expensive. Finally, our approach works
in real-time thanks to its low computational cost.

As future work, we will not only focus on the positioning
task of a single 3D feature point but on a set of 3D feature
points while manipulating multiple points. Moreover, the
proposed control law (9) is general in the sense that it can
consider a model in which the springs could have different
stiffnesses and the points could have different masses. That
is why we also would like to test our method on non-
homogeneous objects, which would require to estimate more
accurately its internal parameters.

APPENDIX
We demonstrate in this appendix how Eq. (7) given

in Section III-B is obtained. Recall that the displacement
applied on Pm between b∆t and (b + 1)∆t is given by
∆∆∆

(b+1)∆t
m and it is considered constant. Moreover, given the

positions of all points at time b∆t, the objective is to find
their positions at time (b+1)∆t. In this case, the position of
any point Pi at t = b∆t is known. For example, when b = 0,
the position of the points corresponds to their initial position.
We use the same methodology presented at the beginning of
Section III. We first develop the required equation for the
neighbors of the manipulated point Pm, then generate it for
all points.

For any point PM in the neighborhood of Pm, we obtain
its position at b∆t+dt using (5). We start by exploring fsfsfs

t
M

using (2) with t = b∆t, and to simplify the equations, we
denote dddtij = (xxxt

j − xxxt
i):

fsfsfs
t
M =

∑
j∈νννM

fsfsfs
t
Mj =

∑
j∈νννM

KMj(∥dddtij∥ − l0ij)
dddtij
∥dddtij∥

=
∑

j∈νννM−{m}

fsfsfs
t
Mj + fsfsfs

t
Mm (10)

In (10), we know that
∑

j∈νννM−{m} fsfsfs
t
Mj is independent

of ∆∆∆
(b+1)∆t
m because its effect starts at b∆t + dt. Regard-

ing fsfsfs
t
Mm, it is a function of (xxxt

M ,xxxt
m), i.e., fsfsfs

t
Mm =

fsfsfs
t
Mm(xxxt

M ,xxxt
m) = fsfsfs

t
Mm(xxxt

M ,xxxb∆t
m + ∆∆∆

(b+1)∆t
m ). Using a

first order approximation of fsfsfstMm, we get:

fsfsfs
t
Mm = fsfsfs

t
Mm(xxxt

M ,xxxb∆t
m ) +

∂fsfsfsMm

∂xxxt
m

∆∆∆(b+1)∆t
m (11)

Moreover, we have:

∂fsfsfsMm

∂xxxm
=

∂fsfsfsMm

∂dddMm

∂dddMm

∂xxxm
= KMmI3x3

−KMml0Mm

∥dddMm∥2I3x3 − dddMmdddTMm

∥dddMm∥3
(12)

Therefore, by using (12) in (11), then in (9), we obtain:

xxxM
t+dt = xxxM

t+
dt2

mM

∑
j∈νννM−{m}

fsfsfs
t
Mj+(dt− dt2

mM
Dv)ẋxx

t
M

+
dt2

mM
fsfsfs

t
Mm(xxxt

M ,xxxb∆t
m ) +

dt2

mM

∂fsfsfsMm

∂xxxm
∆∆∆(b+1)∆t

m (13)

Eq. (13) shows that the last term in xxxM
t+dt is the only

term that depends on ∆∆∆
(b+1)∆t
m . Therefore, we propose to

decouple the model point position of any point Pi into two
parts:

xxxi
t = indxxxi

t + γγγt
i∆∆∆

(b+1)∆t
m , (14)

The first part indxxxi
t is independent of the motion ∆∆∆

(b+1)∆t
m

imposed on Pm between b∆t < t ≤ (b+ 1)∆t. The second
part γγγt

i represents the effect of the latter. In what follows, the
left superscript (ind) is used to denote that the corresponding
vector is independent of ∆∆∆(b+1)∆t

m between b∆t ≤ t < (b+
1)∆t.



It has to be noted that the effect of ∆∆∆(b+1)∆t
m on Pi will

not take place instantaneously at t = b∆t, but at t′i with
b∆t ≤ t′i < (b+1)∆t. It depends on the position of Pi with
respect to Pm. Then, for all t < t′i, we have γγγt

i = 0. Finding
t′i is an easy problem once we know Pm. The mesh can be
considered as a graph, with Pm as a root and its neighbors as
the leaves. Then, t′i depends on the number of layers between
the root and Pi. If this number is r−1, then t′i = b∆t+rdt.
For the example presented in Fig.2, we have b = 0 and P2 is
directly attached to Pm, then r = 1, t′2 = dt. For P3, there is
one intermediate layer between P1 and P3 then r = 2, i.e.,
t′3 = 2dt. Returning to t, for the points Pi that they are not in
the neighborhood of Pm, γγγt

i = 0 in (14) at t = b∆t+dt. We
suppose that the proposed decoupling for any Pi concerned
in (14) is true at time t, b∆t ≤ t < (b+1)∆t. Then, we will
prove it by mathematical induction, by showing its validity
at t+ dt. Using (14), we obtain:

ẋxxt
i =

xxxi
t − xxxi

t−dt

dt
=

(indxxxt
i − indxxxt−dt

i )

dt

+
(γγγt

i − γγγt−dt
i )∆∆∆

(b+1)∆t
m

dt
, (15)

Then, we also have:

fsfsfs
t
i =

indfsfsfs
t
i + γsγsγs

t
i∆∆∆

(b+1)∆t
m . (16)

Indeed, from (2), we have :

fsfsfs
t
i =

∑
j∈νννi

fsfsfs
t
ij =

∑
j∈νννi

Kij(∥dddij∥ − l0ij)
dddij
∥dddij∥

(17)

=
∑
j∈νννi

fsfsfs
t
ij(

indxxxt
i + γγγt

i∆∆∆
(b+1)∆t
m , indxxxt

j + γγγt
j∆∆∆

(b+1)∆t
m )

Using a first order approximation of fsfsfstij , and using ∂fsfsfsij

∂xxxj
=

∂fsfsfsij

∂dddij

∂dddij

xxxj
= −∂fsfsfsij

∂xxxi
, (17) can be rewritten as:

fsfsfs
t
i =

∑
j∈νννi

indfsfsfs
t
ij +

∑
j∈νννi

∂fsfsfsij
∂xxxj

(γγγt
j − γγγt

i)∆∆∆
(b+1)∆t
m (18)

By comparing (18) to (16), we set: indfsfsfs
t
i =

∑
j∈νννi

indfsfsfs
t
ij ,

and γsγsγs
t
i =

∑
j∈νννi

∂fsfsfsij

∂xxxj
(γγγt

j − γγγt
i). Furthermore, from (13),

we have γγγm = I3x3.
Returning to our hypothesis represented by (14), we obtain

by updating the model using (5) and by the intermediate of
(14) and (16):

xxxi
t+dt = indxxxi

t+dt + γγγt+dt
i ∆∆∆(b+1)∆t

m (19)

with:

indxxxi
t+dt = indxxxi

t +
dt2

mi

indfsfsfs
t
i + (dt− dt2

mi
Dv)

indẋxxt
i,

γγγt+dt
i = γγγt

i +
dt2

mi
γsγsγs

t
i + (1− dt

mi
Dv)(γγγ

t
i − γγγt−dt

i )

Eq. (19) thus validates our hypothesis concerning the decou-
pling. Furthermore, for all fixed nodes, we have γγγi = 0.

Finally, by integrating (19) between b∆t and (b + 1)∆t
with a step time dt, we obtain ∆t

dt equations. By summing
these equations we obtain:

xxxi
(b+1)∆t = xxxi

b∆t+γγγ
(b+1)∆t
i ∆∆∆(b+1)∆t

m + indrrri
(b+1)∆t (20)

with:

γγγ
(b+1)∆t
i =

(b+1)∆t−dt∑
t′i

dt2

mi
γsγsγs

t
i + (1− dt

mi
Dv)γγγ

((b+1)∆t−dt)
i

(21)

indrrri
(b+1)∆t =

(b+1)∆t−dt∑
t=b∆t

(
dt2

mi

indfsfsfs
t
i + (dt− dt2

mi
Dv)

indẋxxt
i)

(22)

REFERENCES

[1] T. Wada, S. Hirai, and S. Kawamura, “Indirect simultaneous posi-
tioning operations of extensionally deformable objects,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), vol. 2, 1998, pp.
1333–1338.

[2] T. Wada, S. Hirai, S. Kawamura, and N. Kamiji, “Robust manipulation
of deformable objects by a simple pid feedback,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), 2001, pp. 85–90.

[3] M. Shibata and S. Hirai, “Soft object manipulation by simultaneous
control of motion and deformation,” in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2006, pp. 2460–2465.

[4] S. Kinio and A. Patriciu, “A comparative study of h∞ and pid control
for indirect deformable object manipulation,” in IEEE Int. Conf. on
Robotics and Biomimetics (ROBIO). IEEE, 2012, pp. 414–420.

[5] D. Navarro-Alarcon, H. M. Yip, Z. Wang, Y.-H. Liu, F. Zhong,
T. Zhang, and P. Li, “Automatic 3-d manipulation of soft objects by
robotic arms with an adaptive deformation model,” IEEE Trans. on
Robotics, vol. 32, no. 2, pp. 429–441, 2016.

[6] R. Lageau, A. Krupa, and M. Marchal, “Automatic Shape Control
of Deformable Wires based on Model-Free Visual Servoing,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 5252–5259,
October 2020.

[7] D. Navarro-Alarcon, Y.-H. Liu, J. G. Romero, and P. Li, “Model-
free visually servoed deformation control of elastic objects by robot
manipulators,” IEEE Trans. on Robotics, vol. 29, no. 6, pp. 1457–1468,
2013.

[8] C. A. Felippa, “A systematic approach to the element-independent
corotational dynamics of finite elements,” Report CU-CAS-00-03,
Center for Aerospace Structures, Colorado, 2000.

[9] B. Lloyd, G. Székely, and M. Harders, “Identification of spring param-
eters for deformable object simulation,” IEEE Trans. on Visualization
and Computer Graphics, vol. 13, pp. 1081–94, October 2007.

[10] A. Petit, V. Lippiello, G. A. Fontanelli, and B. Siciliano, “Tracking
elastic deformable objects with an rgb-d sensor for a pizza chef robot,”
Robotics and Autonomous Systems, vol. 88, pp. 187–201, 2017.

[11] M. L. Michelsen, “Application of semi-implicit runge—kutta methods
for integration of ordinary and partial differential equations,” The
Chemical Engineering Journal, vol. 14, no. 2, pp. 107–112, 1977.

[12] Y. Bhasin and A. Liu, “Bounds for damping that guarantee stability in
mass-spring systems,” Studies in health technology and informatics,
vol. 119, pp. 55–60, February 2006.

[13] Y. Duan, W. Huang, H. Chang, W. Chen, J. Zhou, S.-K. Teo, Y. Su,
C.-K. Chui, and S. Chang, “Volume preserved mass-spring model
with novel constraints for soft tissue deformation,” IEEE Journal of
Biomedical and Health Informatics, vol. 20, no. 1, pp. 268 – 280,
2016.

[14] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robotics and Automation Magazine, vol. 12, no. 4, pp. 40–52,
2005.

[15] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Transactions on Mathematical
Software, vol. 22, no. 4, p. 469–483, December 1996.

[16] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh
generator with built-in pre- and post-processing facilities,” Int. Journal
for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309–1331,
2009.

[17] A. Sobral and T. Bouwmans, “Bgs library: A library framework for
algorithm’s evaluation in foreground/background segmentation,” 2014.


