
HAL Id: hal-03812916
https://hal.inria.fr/hal-03812916

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Host and Plugins : Parameter Automation Without
Crossing the Audio Thread Barrier

Dylan Batisse, Antoine Vidal-Mazui, Jean-Philippe Carlens, Antoine Cousson,
Michel Buffa

To cite this version:
Dylan Batisse, Antoine Vidal-Mazui, Jean-Philippe Carlens, Antoine Cousson, Michel Buffa. Host
and Plugins : Parameter Automation Without Crossing the Audio Thread Barrier. WAC 2022 - Web
Audio Conference 2022, Jul 2022, Cannes, France. �hal-03812916�

https://hal.inria.fr/hal-03812916
https://hal.archives-ouvertes.fr

Host and Plugins : Parameter Automation Without
Crossing the Audio Thread Barrier

Dylann Batisse, Antoine Cousson, Antoine Vidal Mazuy, Jean-Philippe Carlens, Michel Buffa
Université Côte d’Azur

(firstName.lastName)@univ-cotedazur.fr

ABSTRACT
WebAudio Modules 2.0 (aka WAM) is a standard for developing

interoperable host and plugins that can be written using different

development approaches (JavaScript, build systems, TypeScript,

FAUST, Csound, front-end frameworks, etc.). The WAM standard

has been designed with high performance host-plugin

communication in mind when both the host and plugins are running

in the audio thread. This is the case when the host is written as an

Audio Worklet (AW) and when plugins are also AW based. We

have developed for the WAM standard an example of such a host:

a very simple DAW using Audio Worklets to manage the audio

buffers for each track. In a typical way, each track is associated to

a chain of plugins, to bring for example real time effects on the

signal. This DAW is an interesting example to study for developers

who would like to write this type of program: not only does it show

how to manage audio buffers with sample accuracy (in order to

have very precise loops), but it also shows how, thanks to the tools

offered by the WAM standard, you can automate a large number of

plugin parameters at the sample rate in a very efficient way (using

Shared Array Buffers and Ring Buffers), much more than what is

possible with the management of the parameters offered by the

WebAudio API.

1. Introduction
In 2015 Jari Kleimola and Oliver Larkin created Web Audio

Modules (WAM) [2], a standard for creating reusable and

interoperable plugins implemented as WebComponents, the core of

which was written in C/C++.

This initiative was aimed primarily at developers of native plugins

(i.e. VST plugins). Since then, this standard has evolved in a new

“Web Audio Modules 2.0” version [1], taking into account

feedback from developers of the first version and the evolution of

web standards (with WebAssembly, WebComponents, WebMidi

etc.). The WAM distribution is open source and distributed as four

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, July 6–8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

Figure 1: A multi-track DAW prototype with a pedalboard WAM plugin in the plugin

chain associated to the selected track.

GitHub repositories and as npm modules (MIT License)1. One of

these repository, the wam-example github repository, contains

different plugins and hosts that cover a variety of programming

languages and approaches. WAM v2.0 creators asked us to develop

some host examples written as AudioWorklets (AW), with and

without the use of WebAssembly modules, to show some features

of the standard, in particular how WAM events can be used to

automate a large amount of plugin parameters without leaving the

audio thread (this is the case when both the host and plugins are

written as AW running in the audio thread).

2. WebAudio API limitations for

parameter handling
Since the WAM standard aims to allow maximum flexibility for

developers, WAM authors have decided that WebAudio API’s

AudioParams should not appear explicitly in the WAM API. Some

WAM design patterns do not make use of any stock WebAudio API

nodes, and while it is possible to define custom parameters for

AudioWorklet, in many cases it would be too heavy / cumbersome

to expose the potentially hundreds of parameters residing in

WebAssembly code via that API. Furthermore, the parts of the

WebAudio API having to do with parameters were conceived

before developers had any direct access to the audio thread, forcing

parameter updates to be scheduled asynchronously from the main

thread far enough in advance to account for crossing the thread

barrier. This aspect of the WebAudio API is not compatible with

the goal to support synchronous, ‘just in time’ interaction between

hosts and plugins on the audio thread as in native plugin

environments. To get around these limitations the WAM standard

has its own WamParameter API to handle parameter updates,

designed to facilitate many different WAM design patterns and

interaction between hosts and plugins on either thread.

3. Plugin parameters and host-plugin

communication
Sample-accurate event scheduling is a critical requirement for

professional audio applications. The WebAudio API does allow for

sample-accurate scheduling of AudioParams, and this capability is

leveraged in the WAM SDK to facilitate WAMs that incorporate

one or more stock Web Audio nodes. However, as mentioned

before the automation API for AudioParams is not useful for many

WAM design patterns, and we wanted to show how WAM supports

sample-accurate processing of other kinds of events such as MIDI

messages or parameter automation messages. The WAM API

facilitates event scheduling through a unified interface that is

mirrored on both the main thread and audio thread. Hosts
operating entirely on the main thread will still be required to

schedule events with some lookahead to ensure that they are

processed at the intended time, as these messages must still cross

the thread barrier. However, hosts with a presence on the audio

thread can schedule events at the beginning of the rendering block

in which the events should occur. This is the case of the DAW we

will demo.

4. Related works
At the time of writing (April 2022) the most advanced DAWS

available on the Web platform are commercial. The oldest one,

1 https://github.com/webaudiomodules and

https://www.npmjs.com/settings/webaudiomodules/packages

2 https://wavesurfer-js.org/

oundtrap.com belongs to Spotify, and is mainly based on high level

WebAudio API nodes, and is not open to third-party plugins. The

same code base seems to be used for a mobile version. Bandlab.com

belongs to an Asian company that sells music gear on the Web, and

is also available on mobile devices. The technology used is not

public, but it seems that the mobile version and the Web version do

not share the same code base. AmpedStudio.com uses

AudioWorklet and C++ cross compiled plugins a lot, and does not

have yet a specific version for mobile devices…It supports

different sorts of plugins, including the WAM standard. We have

been working with a developer’s version of AmpedStudio and

managed to load successfully some WAM 2.0 plugins in it. All

these DAWs support audio and MIDI tracks, plugin chains for

instruments and effects, automation, and some of them are

collaborative.

Sequencer.party is a mix between Ableton Live and Google Docs,

it’s a sequencer 100% collaborative. The sequencer itself is a WAM

host and most modules are WAM2 plugins, also available on

GitHub.

Gridsound is a more traditional open source DAW, that has been

developed since 2015. It supports audio and MIDI, but does not yet

supports an interoperable plugin format. It is based on

“components” whose format is specific to Gridsound.

There are also popular JS librairies for developing a multitrack

player/recorder, such as wavesurfer.js2 or waveform-playlist3, and

some audacity like audio buffer editors such as AudioMass4.

None of the open source DAWs have their core audio player based

on AudioWorklet, and only AmpedStudio.com takes care about the

audio thread isolation optimization for host-plugins

communications. This is why our prototype can be a good way to

see how to implement such features.

5. Settings for the demo
Our host can record/play/edit different tracks with a customizable

plugin chain associated to each track. We propose to show some

audio projects we prepared, that use a large number of plugins and

parameters with automation. During the demo, attendees will also

be able create projects from scratch and / or edit existing projects.

We also propose to show some source code extracts and explain

how this DAW uses the features of the WAM2 standard for host-

plugins interaction (discovering/managing plugins and automation

curves, etc.).

6. REFERENCES
[1] M. Buffa, S. Ren, O. Campbell, T. Burns, S. Yi, J. Kleimola,

O. Larkin, "Web Audio Modules 2.0, an open Web Audio

plugin standard", In Companion Proceedings (Developer’s

track) of the The Web Conference 2022, April 2022, Lyon,

France.

[2] J. Kleimola and O. Larkin. Web audio modules. 12th Sound

and Music Computing Conference (SMC15). Maynooth,

Ireland.

3 https://github.com/naomiaro/waveform-playlist

4 https://github.com/pkalogiros/AudioMass

https://github.com/webaudiomodules
https://www.npmjs.com/settings/webaudiomodules/packages

	1. Introduction
	2. WebAudio API limitations for parameter handling
	3. Plugin parameters and host-plugin communication
	4. Related works
	5. Settings for the demo
	6. REFERENCES

