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Abstract

Medical imaging plays an important role in the detection, diagnosis and
treatment monitoring of brain disorders. Neuroimaging includes different
modalities such as magnetic resonance imaging (MRI), X-ray computed
tomography (CT), positron emission tomography (PET) or single-photon
emission computed tomography (SPECT).

For each of these modalities, we will explain the basic principles of
the technology, describe the type of information the images can provide,
list the key processing steps necessary to extract features and provide
examples of their use in machine learning studies for brain disorders.
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1. Introduction

Medical imaging plays a key role in brain disorders. In clinical care, it
is vital for detection, diagnosis and treatment monitoring. It is also an
essential tool for research to characterise the anatomical, functional and
molecular alterations in brain disorders, to better understand the patho-
physiology, or to evaluate the effects of new treatments in clinical trials
for instance. Medical imaging of the brain is referred to as neuroimag-
ing and involves different modalities such as X-ray computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography
(PET) or single-photon emission computed tomography (SPECT).

Most neuroimaging modalities have been developed in the 1970s (Fig-
ure 1). The first CT image of a brain was acquired in 1971 [1, 2]. This
technology results from the discovery of X-rays by Wilhelm Röntgen in
1895 [3]. A few years later, PET [4] and then SPECT [5, 6] cameras were
developed. Both modalities result from the discovery of natural radioac-
tivity in 1896 by Henri Becquerel [7]. The first MR image of a brain goes
back to 1978 [8] following the discovery of nuclear magnetic resonance
in 1946 by Felix Bloch [9]. Some of these imaging modalities were later
combined into hybrid scanners. The first prototype combining PET and
CT was introduced into the clinical arena in 1998 [10] while the first
PET and MR images of a brain simultaneously acquired were reported
in 2007 [11, 12]. The first commercial SPECT/CT system dates back to
1999 [13] while SPECT/MR systems are still under development [14].

CT and MRI are the modalities of choice when studying brain anatomy
while SPECT and PET are used to image particular biological processes.
Note that MRI is a versatile modality that allows studying both the
structure and function of the brain, through the acquisition of different
sequences. The use of these imaging modalities differs between clinical
practice and research contexts. For example, CT is the main modality
used in hospitals on adults [15] while MRI is by far the modality the most
used for the study of brain disorders with machine learning (Figure 2,
top). The two most studied disorders with machine learning are brain
tumours and dementia, mainly Alzheimer’s disease (Figure 2, bottom).

This chapter will start by shortly describing the nature of neuroim-
ages, detailing the type of features that can be extracted from them and
listing software tools that can be used to do so. We will then briefly de-
scribe the principles of the imaging modalities the most used in machine
learning studies: anatomical, diffusion and functional MRI, CT, PET
and SPECT. For each modality, we will report the processing steps often
perform to extract features, explain the type of information provided and
give examples of their use in machine learning studies.

Machine Learning for Brain Disorders, Chapter 8
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CT 5%

SPECT 3%

PET 6%

Diffusion MRI 4%

Functional MRI 12%

MRI (other or
unspecified) 70%

Epilepsy 3%
Multiple sclerosis 5%

Developmental disorders 5%

Parkinson’s disease
and related disorders 5%

Cerebrovascular disorders 10%

Psychiatric disorders 11%
Alzheimer’s disease

and other dementias 24%

Brain tumours 37%

Figure 2: Distribution by imaging modality (top) and brain disorder
(bottom) of 1327 articles presenting a study using machine learning.
Note that these numbers should only be taken as rough indicators as
they result from a non-exhaustive literature search. The Scopus query
and the resulting articles (after some manual filtering) are available as a
public Zotero library (https: // www. zotero. org/ groups/ 4623150/
neuroimaging_ with_ ml_ for_ brain_ disorders/ library ).

2. Manipulating neuroimages

In clinical routine, neuroimages are primarily exploited through visual
inspection by a radiologist (or a neuroradiologist, who is a radiologist
with an additional specialisation in brain imaging, in expert hospitals)
or a nuclear medicine physician. This results in a radiological report
that is a written text describing the characteristics of the brain of the
patient, its alterations and possibly the most likely diagnosis. Note that
neuroimaging exploration is usually requested by a neurologist or a psy-
chiatrist, and is associated with an indication that may correspond to
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the exploration of a set of symptoms (for instance the exploration of a
dementia syndrome) or to the confirmation of a potential diagnosis. Neu-
roimaging alone will thus usually not provide a diagnosis. It will rather
bring arguments in favour, or against, a potential diagnosis (for instance,
in the exploration of a dementia syndrome, MRI can bring positive argu-
ments for a diagnosis of Alzheimer’s disease due to the observed atrophy
in specific areas or on the contrary exclude this diagnosis by showing
that the syndrome is due to a different cause such as for instance a brain
tumour). Overall, the diagnosis will generally be made by the neurologist
or the psychiatrist based on a combination of clinical examination and a
set of multimodal data (clinical and cognitive tests, radiological report,
biomarkers, etc.).

However, the use of neuroimages goes way beyond visual inspection
and is subject to quantification using image processing procedures. This
is particularly true in research even though image processing tools are
also increasingly used in clinical routine. A characteristic of these tools
that differentiates them from general purpose image processing tools is
their ability to handle three-dimensional (3D) images.

2.1 The nature of 3D medical images

Most medical imaging devices acquire 3D images. This is the case of
all the ones presented in this chapter (MRI, CT, PET and SPECT). If
2D images are essentially 2D arrays of elements called pixels (for picture
elements), 3D images are 3D arrays of elements called voxels (for volume
elements). Depending on the imaging modality, voxel values will repre-
sent different properties of the underlying tissues. For example, in a CT
image, they will be proportional to linear attenuation coefficients. The
shape and size of a voxel will also depend on the imaging modality (or
the type of sequence in MRI). When its three dimensions are of equal
lengths, the voxel is isotropic; otherwise it is anisotropic (see Figure 3).
For instance, a typical voxel size for a T1-weighted MR image is about
1×1×1 mm3, while it is about 3×3×3 mm3 for a functional MR im-
age. Most neuroimaging modalities will have a voxel dimension between
0.5 mm and 5 mm.

Even though most neuroimages are 3D, they are visualised as 2D slices
along different planes: axial, coronal or sagittal (see Figure 4). Multiple
tools exist to visualise neuroimages. Several are available within suites
such as FSLeyes1, Freeview2 or medInria3, while others are independent

1FSLeyes: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
2Freeview: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide
3medInria: https://med.inria.fr
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such as Vinci4, Mango5 or Horos6. Note that viewers may interpolate
the images they display, which may be misleading (see Figure 5 for an
illustration).

Isotropic voxels Anisotropic voxels

Figure 3: Most neuroimaging modalities are three dimensional. Left:
volume rendering of an excavated T1-weighted MR image Middle: voxel
grid with isotropic, i.e., cubic, voxels overlaid on the MRI. Right: voxel
grid with anisotropic, i.e., rectangular, voxels overlaid on the MRI.

Axial slices

Coronal slices

Sagittal slices

Figure 4: Axial, coronal and sagittal slices extracted from a T1-weighted
MR image.

4Vinci: https://vinci.sf.mpg.de
5Mango: http://ric.uthscsa.edu/mango
6Horos: https://horosproject.org
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No interpolation Linear interpolationNo interpolation Linear interpolation

Voxel size: 1 mm3 Voxel size: 2 mm3

Figure 5: Axial slice of a T1-weighted MRI with an isotropic voxel
size originally of 1×1×1 mm3 (left) and downsampled to 2×2×2 mm3

(right) displayed without interpolation or with linear interpolation. If the
difference with or without interpolation is subtle at 1×1×1 mm3, it is
well visible at 2×2×2 mm3.

2.2 Extracting features from neuroimages

When using machine learning to analyse images, one will often extract
features. These features can be grouped into four categories that we will
now describe and are illustrated in Figure 6. Note that these features are
conceptually the same for the different modalities but their actual content
will differ (e.g., volume of a region for anatomical MRI vs average uptake
in this region for PET). Modality-specific preprocessing and corrections
often need to be applied before neuroimages can be analysed, these will
be described in Sections 3, 4 and 5.

Voxel-based features As mentioned previously, all the imaging modal-
ities described in this chapter produce volumetric images. The whole 3D
image can be used as input of a machine learning algorithm. In that
case, each subject is seen as a collection of values at each voxel of the
image. These values can simply be the intensity of the image at each
voxel after some minimal preprocessing (which is very often what is used
in deep learning) or some more complex value extracted from the image
(for instance grey-level density from anatomical MRI, see Section 3.1).
A prerequisite is often to align the images studied in a common space,
by registering each image to a template and/or by performing a group-
wise registration, thus guaranteeing a voxel-wise correspondence across
subjects [16]. Note that this correspondence becomes particularly im-
portant when using an machine learning algorithm that takes as input a
vector whose each component implicitly represents the same information
for each subject (e.g., logistic regression or support vector machine).

Machine Learning for Brain Disorders, Chapter 8
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Vertex-based features Studying the surface of the cortex is natural
given its shape: it is a convoluted ribbon delimited by inner and outer
surfaces. Moreover, surface-based characteristics can provide useful infor-
mation such as for developmental or neurodegenerative diseases. Surfaces
can be represented as meshes consisting of vertices, edges and faces. The
vertices encode position and properties such as cortical thickness. In the
vertex-based feature scenario, each subject is seen as a collection of values
at each vertex of the surface. Classical values computed at each vertex
include cortical thickness and local surface area (see Section 3.1). As
for voxel-based features, images studied are usually aligned in a common
space to ensure a vertex-wise correspondence across subjects [17, 18].

Regional features The brain can be divided into sub-regions accord-
ing to different criteria that can be anatomical or functional [16]. When
considering regional features, each subject is seen as a collection of val-
ues for each region of the brain defined by an atlas. Many atlases exist,
either anatomical or functional, with different degrees of granularity. A
list can be found online7. Classical values include the volume of a given
region or the average image signal within a region.

Graph-based features A last way to represent an image is through a
graph where nodes will correspond to brain regions and edges will encode
a particular property (for instance anatomical or functional connections,
possibly together with their strength). Graphs can directly be used as
features but network indices characterising global and local graph topol-
ogy, e.g., efficiency or degree, can also be computed [19].

2.3 Neuroimaging software tools

The features described above can be obtained using neuroimaging soft-
ware tools. However, an important step before any preprocessing or anal-
ysis is to properly organise data. The neuroimaging community proposed
the Brain Imaging Data Structure [20], which specifies how to organise
data in folders and sub-folders on disk, and how to name the files. It also
details the metadata necessary to describe neuroimaging experiments.

Many tools exist to process neuroimages8. The historical generic

7List of atlases: https://www.lead-dbs.org/helpsupport/knowledge-base/

atlasesresources
8List of open source medical imaging software tools: https://idoimaging.com
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Vertex-based features

Spatial 
normalisation + 

surface extraction

Spatial + intensity 
normalisation + 

surface projection

x ϵ ℝ! where p is the number of vertices

Cortical 
thickness

18F-FDG 
PET SUVR

18F-FDG 
PETT1w MRI

Voxel-based features

Spatial normalisation
+ cushion removal

Spatial + intensity 
normalisation

x ϵ ℝ! where p is the number of voxels

123I-FP-CIT 
SPECTCT CT

123I-FP-CIT 
SPECT

Regional features

x ϵ ℝ!
where p is the 

number of 
regions

Artefact correction 
+  diffusion tensor 

modelling

Extraction of 
regional values 

using an 
anatomical atlas

Diffusion MRI
Fractional 
anisotropy

Regional fractional 
anisotropy

Graph-based features
Functional MRI

Artefact correction 
+  time series 
extraction + 

correlation matrix 
construction

Connectome 
construction

Correlation 
matrix Connectome

x ϵ 𝒢 where 𝒢 is the 
ensemble of graphs

Figure 6: Examples of voxel, vertex, regional and graph features that
can be extracted from neuroimages. It is for instance possible to extract
voxel-based features from CT and SPECT images, vertex-based features
from anatomical T1-weighted (T1w) MRI or PET images, regional fea-
tures from diffusion MRI and graph-based features from functional MRI.
Note that the modalities are just examples. For instance, voxel-based fea-
tures can be extracted for any modality. See sections 3, 4 and 5 for a
description of the imaging modalities.

Machine Learning for Brain Disorders, Chapter 8
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frameworks include SPM9 [21], FSL10 [22], FreeSurfer11 [23] or ANTs12 [24].
Some tools are modality-specific such as MRtrix13 [25], dedicated to diffu-
sion MRI, or AFNI14 [26], dedicated to functional MRI. Recent initiatives
aim to make the use of neuroimaging tools easier by distributing them in
containers (e.g., BIDSApps15 [27]), by providing in a single environment
tools from preprocessing to machine learning (e.g., Nilearn16 [28]), or by
providing automatic pipelines that do not require a particular expertise
in image processing (e.g., Clinica17 [29]). Other tools facilitate the ap-
plication of deep learning approaches to neuroimages or medical images
in general: for instance MONAI18, TorchIO19 [30] or ClinicaDL20 [31].

3. Magnetic resonance imaging

Magnetic resonance imaging is the modality of choice to study brain
anatomy thanks to its high resolution and excellent soft-tissue contrast,
but the applications of MRI go well beyond studying anatomy. This tech-
nique can be used to examine tissue micro-architecture (diffusion MRI,
covered in Section 3.2) or neuronal activity (functional MRI, covered
in Section 3.3), but also to visualise the brain vasculature (MR angiog-
raphy), study tissue perfusion and permeability (perfusion MRI), assess
iron deposits and calcifications (susceptibility-based imaging) or measure
the levels of different metabolites (MR spectroscopy). Note that MRI is
an extremely versatile modality and that new sequences are constantly
developed to study other brain characteristics.

3.1 Anatomical MRI

3.1.1. Basic principles

In MRI, most images are obtained by exploiting a magnetic property,
called spin, of the hydrogen atomic nuclei found in the water molecules

9SPM: https://www.fil.ion.ucl.ac.uk/spm
10FSL: https://fsl.fmrib.ox.ac.uk
11FreeSurfer: https://surfer.nmr.mgh.harvard.edu
12ANTs: http://stnava.github.io/ANTs
13MRtrix: https://www.mrtrix.org
14AFNI: https://afni.nimh.nih.gov
15BIDSApps: https://bids-apps.neuroimaging.io/apps
16Nilearn: https://nilearn.github.io
17Clinica: https://www.clinica.run
18MONAI: https://monai.io
19TorchIO: https://torchio.readthedocs.io
20ClinicaDL: https://clinicadl.readthedocs.io

Machine Learning for Brain Disorders, Chapter 8

https://www.fil.ion.ucl.ac.uk/spm
https://fsl.fmrib.ox.ac.uk
https://surfer.nmr.mgh.harvard.edu
http://stnava.github.io/ANTs
https://www.mrtrix.org
https://afni.nimh.nih.gov
https://bids-apps.neuroimaging.io/apps
https://nilearn.github.io
https://www.clinica.run
https://monai.io
https://torchio.readthedocs.io
https://clinicadl.readthedocs.io


Neuroimaging 11

present in the human body. In the absence of a strong external magnetic
field, the directions of the proton’s spins are random, thus cancelling
each other out (Figure 7, a). When the spins enter a strong external
magnetic field (B0) they align either parallel or anti-parallel and they all
precess around the B0 axis, referred to as the z axis (Figure 7, b). As a
result, they cancel each other out in the transverse (x, y) plane but they
add up along the z axis. The result of this vector addition, called net
magnetisation M0, is proportional to the proton density (Figure 7, c).
With the application of a radio frequency pulse denoted as B1, the system
of spins and the net magnetisation are tipped by an angle determined
by the strength and duration of the radio frequency pulse. For a 90◦

radio frequency pulse, the magnetisation along the z axis (Mz) becomes
zero and the magnetisation in the transverse plane (Mxy) becomes equal
to M0 (Figure 7, d). As this radio frequency pulse provides energy, or
excites, the spins, we also talk of radio frequency excitation.

z

y

x

M0 B0

z

y

x

M0

B0

(a) (b) (c) (d)

Figure 7: MRI physics in a nutshell. (a) In the absence of a mag-
netic field, the directions of the proton’s spins are random. (b) When
the spins enter a strong external magnetic field (B0) they align either
parallel or anti-parallel and they all precess around the B0 axis. (c) The
net magnetisation M0 is proportional to the proton density. (d) With
the application of a radio frequency pulse, the system of spins is tipped.

When the radio frequency pulse is then turned off, two phenomena
occur. First, the system of spins relaxes back to its preferred energy state
of being parallel with B0 in a time T1, called longitudinal or spin-lattice
relaxation time, and the longitudinal magnetisation Mz slowly recovers
to its original magnitude M0. Second, each spin starts precessing at a
frequency that is slightly different from the one of its neighbouring spins
because the field of the MRI scanner is not uniform and because each
spin is influenced by the small magnetic fields of the neighbouring spins.
When the spins are completely dephased, they are evenly spread in the
transverse plane andMxy becomes zero. Mxy decreases at a much faster

Machine Learning for Brain Disorders, Chapter 8
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rate than that at which Mz recovers to M0. The transverse relaxation
time T2, also called spin-spin relaxation time, describes theMxy decrease
because of interference from neighbouring spins, while T2* describes the
decrease because of both spin-spin interactions and non-uniformities of
B0. Finally, the MRI signal is obtained by measuring the transverse
magnetisation as an electrical current by induction.

The contrast in MR images depends on three main parameters: the
proton density, the longitudinal relaxation time T1, and the transverse
relaxation time T2. These parameters can be adjusted by changing the
time at which the signal is recorded, called echo time, and the interval be-
tween successive excitation pulses, called repetition time. A T1-weighted
image is created by choosing a short repetition time, a T2-weighted im-
age by choosing a long echo time and a proton density (PD)-weighted
image by minimising both the T1 and T2 weighting of the image (long
repetition time and short echo time). The corresponding images are
referred to as T1-weighted MRI, T2-weighted MRI and PD-weighted
MRI. Note that many variations of these sequences exist (for instance
gradient-echo vs spin-echo) and the corresponding implementation by
different manufacturers usually comes with a specific commercial name
(e.g., MPRAGE is a T1-weighted sequence available on Siemens scan-
ners). Furthermore, many more anatomical sequences exist including
T2*-weighted, T2-FLAIR (fluid attenuated inversion recovery) or DIR
(double inversion recovery). Examples are displayed in Figure 8. The set
of sequences chosen by the radiologist will depend on the potential dis-
ease that is being investigated. Some examples in the context of machine
learning are given in Section 3.1.3.

T1-weighted T2-weighted T2-FLAIR

Figure 8: Example of anatomical MR images. T1-weighted, T2-weighted
and T2-FLAIR images of a patient with multiple sclerosis from the
MSSEG MICCAI 2016 challenge data set [32, 33].

Machine Learning for Brain Disorders, Chapter 8
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3.1.2. Extracting features from anatomical MRI

Several preprocessing steps are often necessary before analysing anatom-
ical MR images to correct imperfections and ease their comparison.

Bias field correction MR images can be corrupted by a low frequency
and smooth signal caused by magnetic field inhomogeneity. This bias
field induces variations in the intensity of the same tissue in different lo-
cations of the image, which deteriorates the performance of image anal-
ysis algorithms such as registration or segmentation. Several methods
exist to correct these intensity inhomogeneities, the most popular being
the N4 algorithm [34] available in ANTs [24].

Intensity rescaling and standardisation As MRI is usually not a
quantitative imaging modality, MR images can have different intensity
ranges and the intensity distribution of the same tissue type may be
different between two images, which might affect the subsequent image
preprocessing steps. The first point can be dealt with by globally rescal-
ing the image, for example between 0 and 1 using the minimum and
maximum intensity values. More robust choices exist such as the z-score
normalisation (at each voxel, one subtracts the mean intensity of the im-
age and the result is divided by the standard-deviation across the image),
which can be made even more robust by only considering a percentile of
the intensities for computing the mean and standard deviation. Inten-
sity standardisation, to solve the second point, can be achieved using
techniques such as histogram matching [35].

Skull stripping Extra-cranial tissues can be an obstacle for image
analysis algorithms [36]. A large number of methods have been developed
for brain extraction, also called skull stripping. Some are available in
neuroimaging software platforms such as FSL [22] or BrainSuite [37],
and others as independent tools2122 [38, 39]. Note that these methods
can be sensitive to the presence of noise and artefacts, which can result
in over or under segmentation of the brain.

Image registration Medical image registration consists in spatially
aligning two or more images, either globally (rigid and affine registration)
or locally (non-rigid registration), so that voxels in corresponding posi-
tions contain comparable information. A large number of software tools
have been developed for MRI-based registration [40]. They are available

21HD-BET: https://github.com/MIC-DKFZ/HD-BET
22SynthStrip: https://surfer.nmr.mgh.harvard.edu/docs/synthstrip
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in all the major platforms (e.g., SPM [21], FSL [22], FreeSurfer [23] or
ANTs [24]).

Image segmentation Medical image segmentation consists in parti-
tioning an image into a set of non-overlapping regions. When processing
brain images, these regions can correspond to tissue types, e.g., grey
matter, white matter and cerebrospinal fluid [41], but also to anatomical
(e.g., hippocampus, pons) or functional (e.g., language network, sensori-
motor network) regions defined by an atlas [42]. As for registration, many
tools have been developed for MRI-based segmentation and are available,
among others, in SPM [21], FSL [22], FreerSurfer [23] or ANTs [24].

Resulting features Based on the combination of one, several, or all,
of the previously mentioned preprocessing steps, various types of features
can be extracted that correspond to those described in Section 2.2. For
deep learning algorithms, which usually exploit voxel-based features, it
is quite common to perform only very basic preprocessing. At the sim-
plest, it can be intensity normalisation (this step is mandatory for deep
learning methods to work correctly). It is often combined with a bias
field correction and a linear registration to a common space. Another
common type of voxel-based features is that of tissue density maps (e.g.,
grey matter or white matter density) [43]. Their extraction involves bias
field correction, registration to a common space and tissue segmentation.
Common vertex-based features are the local thickness and the local sur-
face area [44]. Regional features are usually the volume of different re-
gions of the brain but they can also be the average intensity within the
region or the average of another image-derived value. They can as well
be related to lesions (for instance the volume of multiple sclerosis lesions
or of different compartments of a brain tumour) rather than anatom-
ical regions. Finally, graph-based features can also be computed from
anatomical MRI [45] even though this representation is more common
for diffusion MRI and functional MRI.

3.1.3. Examples of applications in machine learning studies

T1-weighted MRI is the sequence the most commonly found in machine
learning studies applied to brain disorders. Several features can be ex-
tracted from T1-weighted MRI such as the volume of the whole brain or
of regions of interest, the density of a particular tissue, e.g., grey matter,
or the local cortical thickness and surface area. All these features, as well
as the raw T1-weighted MR images, have for example largely been used
for the computer-aided diagnosis of dementia, in particular Alzheimer’s

Machine Learning for Brain Disorders, Chapter 8
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disease, as they highlight atrophy, i.e., the neuronal loss that is a marker
of neurodegenerative diseases [46, 47, 48, 49].

T1-weighted MR images acquired with and without the injection of
a contrast agent are often used in the context of brain tumour detec-
tion and segmentation, progression assessment, and survival prediction as
they allow distinguishing active tumour structures [50]. Such tasks also
typically rely on another sequence called T2-weighted fluid-attenuated
inversion recovery (T2-FLAIR) that allows visualising a wide range of
lesions on top of tumours [51], such as those appearing with multiple
sclerosis [52, 53] or age-related white matter hyperintensities (also called
leukoaraiosis, which is linked to small vessel disease).

3.2 Diffusion-weighted MRI

3.2.1. Basic principles

Diffusion MRI [54, 55] allows visualising tissue micro-architecture thanks
to the diffusion of water molecules. Depending on their surroundings,
water molecules are able to either move freely, e.g., in the extracellular
space, or move following surrounding constraints, e.g., within a neuron.
In the former situation the diffusion is isotropic while in the later it is
anisotropic. Contrast in a diffusion MR image originates from the fact
that, following the application of an excitation pulse, water molecules
that move in a particular direction, and so the protons they contain, do
not have the same magnetic properties as the ones that move randomly
but not far from their origin point. The excitation pulse is parametrised
by a weighting coefficient b: the higher the b-value, the more sensitive the
acquisition is to water diffusion, but the lower the signal-to-noise ratio.
Several diffusion MRI volumes, each volume corresponding to a particular
b-value and gradient direction, are usually acquired. See examples in
Figure 9 (top row).

3.2.2. Extracting features from diffusion MRI

Diffusion MR images are typically acquired with echo-planar imaging,
a technique that spatially encodes the MRI signal in a way that en-
ables fast acquisitions with a relatively high signal-to-noise ratio. How-
ever, echo-planar imaging induces geometric distortions and signal losses
known as magnetic susceptibility artefacts. Other artefacts include eddy
currents (due to the rapid switching of diffusion gradients), intensity in-
homogeneities (as for anatomical MRI) and potential movements of the
subject during the acquisition. These artefacts need to be corrected be-
fore further analysing the images. Various methods exist to do so, they

Machine Learning for Brain Disorders, Chapter 8



16 Burgos

FA AD MDRD

b = 0 s/mm2 b = 1000 s/mm2

Figure 9: Example of diffusion-weighted MR images. Top: Diffusion
volumes acquired using different b-values (0 and 1000 s/mm2) and gradi-
ent directions. Bottom: Parametric maps resulting from diffusion tensor
modelling (fractional anisotropy - FA, axial diffusivity - AD, radial dif-
fusivity - RD, and mean diffusivity - MD).

are reviewed in [56]. Two widely used tools enabling the preprocessing of
diffusion MR images are FSL [22] and MRtrix [25], but others exist23 [56].

Once artefacts have been corrected, diffusion MR images can be anal-
ysed in different ways. One of the earliest strategy for modelling water
diffusion is the diffusion tensor imaging (DTI) model [57]. Such model
can output parametric maps describing several diffusion properties: frac-
tional anisotropy (FA - directional preference of diffusion), mean diffusiv-
ity (MD - overall diffusion rate, also called apparent diffusion coefficient),
axial diffusivity (AD - diffusion rate along the main axis of diffusion) and
radial diffusivity (RD - diffusion rate in the transverse direction). Ex-
amples of parametric maps are displayed in Figure 9 (bottom row). DTI
tractography [58] goes one step further by reconstructing white matter
tracts. Other diffusion models have been developed to better characterise
tissue micro-architecture. This is for example the case of neurite orien-
tation dispersion and density imaging (NODDI) [59], which enables the

23List of tools and software packages to process diffusion MRI: https://github.
com/dmripreprocessing/neuroimage-review-2022
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study of neurite morphology by disentangling neurite density and orien-
tation dispersion that both independently influence fractional anisotropy.

One can then again compute most of the different types of features
covered in Section 2.2. Voxel-based features will represent the value
of a given parametric map (e.g., FA, MD). Surface-based features are
seldom used because diffusion MRI often focuses on the white matter
even though it is in principle possible to project maps that are of interest
in the grey matter onto the cortical surface. Regional features represent
the average of a given map (e.g., FA, MD) in a set of anatomical regions.
Graph-based features can be computed as follows: vertices are often
regions of the cortex, and edges correspond to the connection strength,
which can be derived for instance from the number of tracts connecting
two regions or the average FA within those tracts.

3.2.3. Examples of applications in machine learning studies

Machine learning studies have mainly used diffusion MRI to assess white
matter integrity. This has been done in a very wide variety of disorders.
For example, fractional anisotropy and mean diffusivity have been used
to differentiate cognitively normal subjects from patients with mild cog-
nitive impairment or Alzheimer’s disease [60, 61]. Diffusion MRI has also
been exploited to perform tumour grading or subtyping [62] following the
assumption that the cellular structure may differ between cancerous and
healthy tissues.

3.3 Functional MRI

3.3.1. Basic principles

When a region of the brain gets activated by a cognitive task, two phe-
nomena occur: a local increase in cerebral blood flow and changes in
oxygenation concentration [63]. Functional MRI (fMRI) is used to mea-
sure the latter phenomenon. The blood oxygen level dependent (BOLD)
contrast originates from the fact that haemoglobin molecules that carry
oxygen have different magnetic properties than haemoglobin molecules
that do not carry oxygen.

Task fMRI consists in inducing particular neural states, for example
by performing tasks involving the visual or auditory systems, and then
comparing the signals recorded during the different states. As the differ-
ences observed are small, it is important to preserve at best the signal-
to-noise ratio that could be degraded because of head motion or polluted
by fluctuations of the cardiac and respiratory cycles. This is done by
quickly acquiring multiple image volumes with echo-planar imaging. The

Machine Learning for Brain Disorders, Chapter 8



18 Burgos

BOLD signal also varies when the brain is not performing any particular
task [64]. These spontaneous fluctuations are studied with resting-state
fMRI.

3.3.2. Extracting features from functional MRI

The preprocessing of functional MR images has two main objectives:
limit the effect of non-neural sources of variability and correct acquisition-
related artefacts [65]. Preprocessing steps can for example include suscep-
tibility distortion correction (as for diffusion MRI); head-motion correc-
tion, by registering each volume in the time series to a reference volume
(e.g., the first volume); slice-timing correction, to eliminate differences
between the time of acquisition of each slice in the volume; or physiologic
noise correction, by temporal filtering [63, 65]. These preprocessing steps
can be performed using tools such as SPM [21], FSL [22] or AFNI [26],
but also using the dedicated fMRIPrep workflow [65].

The majority of machine learning studies in brain disorders focuses
on resting-state rather than task fMRI [66]. This can be explained by the
fact that the resting-state protocol is simpler and allows multi-site stud-
ies (as it is less sensitive to changes in local experimental settings) [66],
which should result in larger samples. Depending on the application,
preprocessed resting-state fMRI data may be further processed to ex-
tract features. One can directly use voxel-based features (or vertex-based
features by projecting the functional MRI signal onto the cortical sur-
face) [67]. Nevertheless, to the best of our knowledge, the most common
features are graph-based. Indeed, most supervised algorithms for clas-
sification or regression use brain networks extracted from resting-state
time-series. In these networks, also called connectomes, the vertices cor-
respond to brain regions, which size may vary, and the edges encode the
functional connectivity strength, which corresponds to the correlation
between time-series.

3.3.3. Examples of applications in machine learning studies

Machine learning methods exploiting resting-state fMRI data have been
used to investigate brain development and aging, but also neurodegen-
erative and psychiatric disorders [66]. Functional connectivity patterns
have for instance been used to distinguish patients with schizophrenia
from healthy controls [68] or discriminate schizophrenia and bipolar dis-
order from healthy controls [69].
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4. X-ray imaging

X-ray imaging is built on the work of Röntgen who observed that if a
‘hand be held before the fluorescent screen, the shadow shows the bones
darkly, with only faint outlines of the surrounding tissues’ [3].

4.1 X-ray and angiography

When an X-ray beam passes through the body, part of its energy is
absorbed or scattered: the number of X-ray photons are reduced by at-
tenuation (Figure 10, left). On the opposite side of the body, detectors
capture the remaining X-ray photons and an image is generated. In an
X-ray image, the contrast, defined as the relative intensity change pro-
duced by an object, originates from the variations in linear attenuation
coefficient with tissue type and density.

X-ray imaging provides excellent contrast between bone, air and soft-
tissue but very little contrast between the different types of soft-tissue,
hence its limited use when studying brain disorders. However, coupled
with the injection of an iodine-based contrast agent, X-ray imaging en-
ables visualising cerebral blood vessels and detecting potential abnormal-
ities such as an aneurysm. This technique is called X-ray angiography.

Ii

Io

µ

Δx

Figure 10: Left: Attenuation of X-rays by matter. As it passes through
a material of thickness ∆x and linear attenuation coefficient µ, the x-ray
beam is attenuated. Its intensity decreases exponentially with the distance
travelled: Io = Ii e−µ∆x, where Ii and Io are the input and output X-
ray intensities. Right: Third generation CT. A 3D image is created by
rotating the X-ray source and detectors around the body.
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4.2 Computed tomography

4.2.1. Basic principles

Although the X-ray images produced were originally in 2D, X-ray com-
puted tomography enables the reconstruction of 3D images by rotat-
ing the X-ray source and detectors around the body (Figure 10, right).
Rather than using the absolute values of the linear attenuation coeffi-
cients, CT image intensities are expressed in a standard unit, the Hounsfield
unit (HU). The tissue attenuation coefficient is compared to the attenu-
ation value of water and displayed on the Hounsfield scale

xHU = 1000× xµ − µwater

µwater − µair

where µwater and µair are the linear attenuation coefficients of water and
air, respectively. For example, air has an attenuation of -1000 HU, water
of 0 HU and cortical bone between 500 and 1900 HU.

As for 2D X-ray imaging, the injection of an iodine-based contrast
agent improves the visualisation of cerebral blood vessels. This technique,
called CT angiography, is not the only one relying on a contrast agent.
CT perfusion tracks the bolus of contrast agent over time and measures
the resulting change in signal intensity. Perfusion parameters such as the
cerebral blood flow or volume can then be derived [70].

4.2.2. Extracting features from CT images

Contrary to MRI, CT images usually do no require extensive preprocess-
ing steps [71]. It can however be useful to extract the head from the
hardware elements visible on the image (e.g., the bed or pillow) or ex-
tract the brain. This can be done using thresholding and morphological
operators. Another common step is spatial normalisation.

In the context of stroke, non-contrast CT is useful to detect an in-
tracranial haemorrhage, which appears brighter than the surrounding
tissues, or to estimate the extent of early ischemic injury, which results
in a loss of grey-white matter differentiation. CT angiography can help
identify a potential intracranial arterial occlusion and CT perfusion al-
lows differentiating the regions with nonviable/non-salvageable tissue,
which have very low cerebral blood flow and volume, from the viable and
potentially salvageable regions [70]. These techniques may also be em-
ployed in the context of brain tumours. In particular, contrast-enhanced
CT can detect areas presenting a blood-brain barrier breakdown [72]. An
example of CT acquired before and after contrast injection is displayed
in Figure 11.
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Non-contrast CT
(bone window)

Non-contrast CT
(brain window)

Contrast-enhanced CT
(brain window)

Figure 11: Example of CT images. Non-contrast CT images, whose
window levels were adjusted to better visualise bone or brain tissues, and
contrast-enhanced CT image of a patient with lymphoma. Case courtesy
of Dr Yair Glick, Radiopaedia.org, rID: 94844.

To the best of our knowledge, CT is most often used in machine
learning in the form of voxel-based features (the image intensities after
some minimal preprocessing steps).

4.2.3. Examples of applications in machine learning studies

The vast majority of machine learning studies relying on CT images,
particularly non-contrast CT, focus on cerebrovascular disorders [73, 74].
Non-contrast CT images were for example used for the detection of in-
tracranial haemorrhage and its five subtypes [75]. A first neural network
was in charge of identifying the presence or absence of intracranial haem-
orrhage and a second of determining the intracranial haemorrhage sub-
type, which depends on the bleeding location [75]. In [76], non-contrast
CT and CT perfusion images were used to segment the core of stroke le-
sions, as the lesion volume is a key measurement to assess the prognosis
of acute ischemic stroke patients.

5. Nuclear imaging

In X-ray CT imaging, the photons that are detected originate from an
X-ray source. In nuclear imaging, and more precisely emission computed
tomography, the photons detected are emitted from a radiopharmaceu-
tical that has been intravenously injected to the patient.
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5.1 Positron emission tomography

5.1.1. Basic principles

Positron emission tomography is an imaging technique that requires the
injection of a substance labelled with a positron-emitting radioactive iso-
tope [77]. The labelled substance is distributed throughout the patient’s
body by the blood circulation and accumulates in target regions. The
positrons emitted by the radioactive isotope combine with the electrons
present in the tissues and annihilate. Each annihilation produces two
nearly colinear photons (Figure 12). The two photons are simultaneously
detected by two opposing detectors and a coincidence event is assigned
to a line of response connecting the two detectors.

e-

e+

γ (511keV)

γ (511keV)180°

Figure 12: PET annihilation. When a positron (e+) and an electron
(e−) collide, they annihilate and create a pair of collinear gamma rays
(γ).

Note that the most common isotope in clinical routine is fluorine-18
(18F), which has the advantage of a relatively long half-life (110 min) and
thus does not require the presence of a cyclotron at the scanning site.
Nevertheless, other isotopes are used. In particular, carbon-11 (11C),
which has a shorter half-life (20 min), is often used in research facilities
equipped with a cyclotron.

In a time of flight PET system, the difference in arrival times between
the two coincident photons is measured. Without time of flight informa-
tion, the annihilation is located with equal probability along the line of
response, while with time of flight information, the annihilation site can
be reduced to a limited range (Figure 13), thus decreasing the spatial
uncertainty and increasing the signal-to-noise ratio. Once reconstructed,
the PET image is a map of the radioactivity distribution throughout the
body.

Two main protocols exist when acquiring PET data. Most acquisi-
tions are static: the radiotracer is injected several minutes before the
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Without time of flight With time of flight

Figure 13: Illustration of PET data detection. Without time of flight,
the annihilation is located with equal probability along the line of response,
while with time of flight, it is located in a limited portion of the line of
response.

acquisition (e.g., between 30 and 60 min), which gives the tracer time to
diffuse in the body and accumulate in the target regions. The subject
is then placed in the scanner and the acquisition lasts typically around
15 min. In the dynamic protocol, the subject is first installed in the
scanner and the acquisition starts at the same time the tracer is be-
ing injected. This allows recording how the tracer diffuses in the body.
Dynamic acquisitions are less common than static ones because of their
duration of 60–90 min, which reduces patient throughput. In both the
static and dynamic protocols, the acquisition is often split in frames of fix
(in the static case) or increasing (in the dynamic case) duration. A static
acquisition of 15 min can typically be split into three frames of 5 min, re-
sulting in three PET volumes, each corresponding to the average amount
of radioactivity detected at each voxel during the time frame.

18F-fluorodeoxyglucose (FDG) is the most widely used PET radio-
pharmaceutical [78, 77]. As an analogue of glucose, FDG is transported
to a cell but, unlike glucose, it remains trapped in the cell. This radio-
pharmaceutical is an excellent marker of changes in glucose metabolism.
In the brain, FDG acts as an indirect marker of synaptic dysfunction and
is part of the diagnosis of epilepsy and neurodegenerative diseases, such
as Alzheimer’s disease [79].

If 18F-FDG is a non-specific tracer, other radiopharmaceuticals target
specific molecular or biological processes and are thus preferentially used
for studying specific diseases. Amyloid tracers, such as the 11C Pitts-
burgh compound B, 18F-florbetapir, 18F-florbetaben and 18F-flutemetamol,
which bind to fibrillar Aβ plaques, or tau tracers, such as 18F-flortaucipir
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and 18F-MK-6240, which bind to neurofibrillary tangles, are for exam-
ple used in the diagnosis of dementia syndromes [80]. Examples are
displayed in Figure 14. Of note, the so-called amyloid tracers are in
fact not specific of amyloid and also bind to myelin in the white mat-
ter, making them of interest for demyelinating disorders such as multiple
sclerosis [81]. 11C-methionine and 18F-fluoroethyltyrosine are both used
in neuro-oncology [82]. Note that these are just examples of tracers and
dozens of tracers exist for imaging specific molecular or biological pro-
cesses.

FDG PET Tau PET Amyloid PET

Figure 14: Example of PET images. Left: 18F-FDG PET displaying
brain glucose metabolism. Middle: 18F-flortaucipir PET displaying the
presence of tau neurofibrillary tangles. Right: 18F-florbetapir PET dis-
playing the presence of amyloid plaques. All the images correspond to the
same Alzheimer’s disease patient from the ADNI study [83].

5.1.2. Extracting features from PET images

The reconstruction procedure of the PET signal already includes sev-
eral corrections (e.g., attenuation and scatter corrections), but several
processing steps can be performed before further analysing PET images.
The first one is often motion correction. This is typically done by rigidly
registering each frame to a reference frame. The registered frames are
then averaged to form a single volume. To allow for inter-subject com-
parison, brain PET images need to be intensity normalised, for example
to compensate for variations in the patients’ weight or dose injected.
Standardised uptake value ratios (SUVRs) are generated by dividing a
PET image by the mean uptake in a reference region. This region can be
obtained from an atlas, and in this case chosen depending on the tracer
and disorder suspected, or in a data-driven manner [84]. Partial volume
correction can be performed to limit the spill-out of activity outside of
the region where the tracer is meant to accumulate [85] using tools such
as PETPVC [86]. Finally, PET images can also be spatially normalised.
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If an anatomical image (preferably MRI but also CT) of the subject is
available, the PET image is rigidly registered to the anatomical image
and the anatomical image is registered to a template, often in standard
space. By composing the two transformations, the PET image is spa-
tially normalised. Alternatively, if no anatomical image is available, the
PET image can directly be registered to a PET template, for example as
implemented in SPM [87]. Dynamic PET images are further processed
to extract quantitative physiological data using kinetic modelling, which
is introduced in [78, 77].

One can then obtain different types of features, as described in Sec-
tion 2.2. Voxel-based features will very often be the SUVR at each voxel,
usually after spatial normalisation. Vertex-based features will generally
be the SUVR projected onto the cortical surface [88]. Regional features
will usually correspond to the average SUVR in each region of a parcella-
tion. Graph-based features are less used than for diffusion or functional
MRI but are still employed to study the so-called ‘metabolic connectiv-
ity’ [89].

5.1.3. Examples of applications in machine learning studies

Machine learning studies have mainly exploited brain PET images in the
context of dementia [90]. For example, the usefulness of 18F-FDG PET to
differentiate patients with Alzheimer’s disease from healthy controls and
patients with stable mild cognitive impairment from those who subse-
quently progressed to Alzheimer’s disease has been shown in [48, 91, 92].
18F-FDG PET has also been used to differentiate fronto-temporal de-
mentia from Alzheimer’s disease [93]. In neuro-oncology, 11C-methionine
has been used to predict glioma survival [94] or to differentiate recurrent
brain tumour from radiation necrosis [95].

5.2 Single-photon emission computed tomography

5.2.1. Basic principles

Single-photon emission computed tomography is an imaging technique
that requires the injection of a substance labelled with an isotope that
directly emits gamma radiation. Typical isotopes employed in neurol-
ogy are technetium-99m (99mTc) and iodine-123 (123I). As for PET, the
labelled substance is distributed throughout the patient’s body by the
blood circulation and accumulates in target regions. The photons emit-
ted are detected by one to three detector heads, called gamma cameras,
that rotate around the patient. Having multiple heads allows reducing
image acquisition time and improving sensitivity as more photons can
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be detected. Collimators are placed in front of the detector heads to
localise the origin of the gamma rays: a gamma ray moving from the
patient towards the camera has a higher probability of being detected
if its direction aligns with the collimator (Figure 15) [96]. Once recon-
structed, the SPECT image is a map of the radioactivity distribution
throughout the body. Both dynamic and static protocols exist when
acquiring SPECT data.

D
et

ec
to

r D
etector

Parallel hole collimator

Figure 15: Illustration of a two-head SPECT system with a parallel hole
collimator. The photons whose emission direction is perpendicular to the
detector heads have a higher probability of being detected (solid lines).

SPECT is able to visualise and quantify changes in cerebral blood flow
and neurotransmitter systems, such as the dopamine system [97, 98]. To
image cerebral blood flow, the two most widely used tracers are 99mTc-
HMPAO and 99mTc-ECD [97, 99]. These tracers can for example be
employed in the context of dementia as a decrease in neural function will
result in a decrease in cerebral blood flow in different regions. SPECT
plays a key role when studying Parkinsonian syndromes, which are char-
acterised by a loss of dopaminergic neurons. In this context, tracers
targeting the dopaminergic system, such as 123I-β-CIT and 123I-FP-CIT
(also called DaTscan), are employed to differentiate essential tremor from
neurodegenerative Parkinsonian syndromes or distinguish dementia with
Lewy bodies from other dementias [98]. Examples of SPECT images are
displayed in Figure 16.

5.2.2. Extracting features from SPECT images

After the reconstruction of a SPECT image, which includes several cor-
rections, two processing steps are typically performed: intensity normal-
isation and spatial normalisation [97, 98]. As for PET, the intensity of
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99mTc-HMPAO SPECT 123I-FP-CIT SPECT
Control Patient Control Patient

Localizing Value of Ictal–Interictal SPECT 
Analyzed by SPM (ISAS)
https://onlinelibrary.wiley.com/doi/full/10.1111
/j.1528-1167.2005.06705.x

PPMI

Figure 16: Examples of SPECT images. Left: 99mTc-HMPAO SPECT
images of a normal control and an epileptic patient (http: // spect.
yale. edu ) [100]. Right: 123I-FP-CIT SPECT images of a normal con-
trol and a patient with Parkinson’s disease from the PPMI study [101].

a SPECT image can be normalised using a reference region, and the im-
age can be spatially normalised by directly registering it to a SPECT
template or by registering it first to an anatomical image.

As for PET, the most common feature types are voxel-based (the
normalised signal at each voxel) and regional features (often the average
normalised signal within a region). To the best of our knowledge, vertex-
based and graph-based features are rarely used although they could in
principle be computed.

5.2.3. Examples of applications in machine learning studies

Machine learning studies have mainly exploited brain SPECT images for
the computer-aided diagnosis of Parkinsonian syndromes [102]. 123I-FP-
CIT SPECT was for instance used to distinguish Parkinson’s disease from
healthy controls [103, 104], predict future motor severity [105], discrimi-
nate Parkinson’s disease from non-Parkinsonian tremor [104], or identify
patients clinically diagnosed with Parkinson’s disease but who have scans
without evidence of dopaminergic deficit [104].

In studies targeting dementia, both 99mTc-HMPAO [106] and 99mTc-
ECD [107] tracers were used to differentiate between images from healthy
subjects and images from Alzheimer’s disease patients.
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CT FDG PET T1-w MRIPET-CT fusion PET-T1 fusion

Figure 17: Example of 18F-FDG PET, CT, T1-weighted MRI and fused
images.

6. Conclusion

Neuroimaging plays a key role for the study of brain disorders. If some
modalities provide information regarding the anatomy of the brain (CT
and MRI), others provide functional or molecular information (MRI,
PET and SPECT). To provide a complete picture of biological processes
and their alterations, it is often necessary to combine multiple brain imag-
ing modalities (Figure 17). This can be done by acquiring images with
multiple standalone systems or with hybrid systems such as SPECT/CT,
PET/CT or PET/MRI scanners [108].

When analysing neuroimages, both modality-specific and modality-
agnostic processing steps must often be performed. These should be
performed with care to obtain reliable features. Machine learning and
deep learning are widely used to analyse neuroimaging data. The most
common tasks are classification for computer-aided diagnosis, progno-
sis and disease subtyping, and segmentation to characterise anatomical
structures and lesions.
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