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POPULAR SCIENCE SUMMARY OF THE THESIS 
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases that 
cause shortness of breath. They affect a large portion of the population, with around 300 
million affected and 400 000 deaths from asthma, and around 400 million affected and 3 
million deaths from COPD worldwide. The most common cause of COPD is smoking, and 
about half of those who have smoked for a long time have developed COPD by the age of 75. 
In COPD, both the upper and lower parts of the airways and the blood vessels may be 
affected, which leads to impaired oxygen uptake and shortness of breath. Increased mucus 
formation may also cause coughing, as well as recurrent respiratory infections. 

Another risk factor for developing obstructive lung disease is premature birth, since the lungs 
have not had time to develop properly, and this can lead to difficulty breathing. To facilitate 
oxygen uptake, the newborn may be given extra oxygen, but since oxygen is reactive this 
may also damage the lungs further. This damage may persist into adulthood and cause 
COPD-like disorders. 

In asthma, the immune system reacts excessively to foreign substances in the air. The 
bronchial tubes contract and this causes difficulties breathing. Asthma attacks may come 
suddenly, with periods in-between with little to no symptoms, unlike COPD symptoms which 
progresses more slowly and generally is more persistent.  

Neither COPD nor asthma has any curative drug, and the symptoms are often difficult to 
treat. The wide diversity in symptoms and responses to treatment in different individuals 
suggests that the diseases may be divided into several different diseases. To identify different 
subgroups of the diseases, we have analyzed different biomolecules, primarily in 
bronchoalveolar lavage fluid obtained by rinsing the airways and alveoli in the lungs, but also 
in blood and urine. 

The amounts of the different substances vary and are called variables. To compare the 
different groups of patients, one variable at a time was studied and all variables together in a 
multivariate analysis method called orthogonal projections to latent structures (OPLS). To 
ensure that the models created were significantly better than those occurring by chance, we 
compared our models with models created after randomizing the group affiliation of the 
samples. We made this comparison for models both before selecting the most interesting 
variables and after producing new models using only the most interesting variables. We also 
included the choice of variables in the randomization itself, and thus obtained a robustness 
test for the variable choice. A tool for doing this, called roplspvs, was developed in the 
statistical programming language R. By applying this tool as well as the software SIMCA, 
which has a more user-friendly graphical user interface, to several clinical cohorts, we found 
several alterations related to asthma and COPD. 



In the Karolinska COSMIC cohort, COPD patients who are current-smokers and ex-smokers 
have been compared with healthy controls who have never smoked, and smokers with normal 
lung function to investigate gender differences in smoking-induced COPD. MicroRNAs are a 
type of important regulators for regulating protein expression in the cell. Here, we 
investigated the levels of different microRNAs in small extracellular vesicles, liquid particles 
enclosed by lipid membranes and secreted from cells, in bronchoalveolar lavage. Among the 
microRNAs that were altered, we investigated which genes they regulate. We also studied 
which mechanisms these genes regulate. The mechanisms linked to COPD and smoking were 
mainly cell growth and cell death, with p53-related mechanisms most altered, while the 
microRNAs that were weakly correlated to only COPD in men were linked to degradation by 
autophagy and proteolysis. 

In the LUNAPRE cohort, we study obstructive lung disease related to premature birth. Young 
adults who had been born very prematurely, and received oxygen therapy as infants due to 
respiratory complications (known as bronchopulmonary dysplasia, BPD) were compared 
with prematurely born individuals who did not need oxygen therapy in infancy, as well as 
healthy controls and individuals with mild asthma. It has previously been found that the BPD 
group have poor lung function, with comparable to COPD patients. Here, a comparison was 
made how the number of different immune cells differed between these groups. We found 
that certain types of immune cells were altered, with an increase in cytotoxic T-cells and 
decrease in helper T-cells in those who had BPD as newborns.  

U-BIOPRED is a pan-European cohort for the study of severe asthma. As for the other 
studies in this thesis, the focus in U-BIOPRED was on subgrouping severe asthma into 
groups more relevant for the mechanisms of the disease by investigating a large number of 
biomolecules, and use the detailed data to build so called “handprints” of the disease 
subgroups. Two projects from the cohort are included in this thesis: 1) Asthmatics had been 
grouped by using molecules found in their blood, which resulted in eight or even 16 different 
groups. These groups were compared, and differences were identified using common 
healthcare investigations including questionnaires. 2) The metabolites in urine were measured 
using mass spectrometry and the effect of eating oral corticosteroids was studied. A group of 
metabolites, carnitines, were found to be most altered in severe asthma and was not due to 
eating oral corticosteroids. 

In summary, a tool for multivariate analysis with careful significance testing of the models 
has been developed and used to compare different groups of asthmatics and COPD patients. 
Changes in the amount of miRNA, immune cells, and metabolites in samples, and changes in 
clinical picture have been identified between groups of patients. This is a small part of all the 
studies performed on these individuals. Together, this aims to identify the mechanisms for 
different variants of COPD and asthma to be able to diagnose and find new therapies for all 
subgroups of COPD and asthma, with the ultimate goal of finding cures. 



POPULÄRVETENSKAPLIG SAMMANFATTNING 
Astma och kronisk obstruktiv lungsjukdom (KOL) är båda obstruktiva lungsjukdomar som 
gör det svårt att andas. De drabbar en stor del av världens befolkning med årligen cirka 300 
miljoner drabbade och 400 000 dödsfall i astma, och cirka 400 miljoner drabbade och 3 
miljoner dödsfall i KOL. Den vanligaste orsaken till KOL är rökning, och bland dem som 
rökt länge har ungefär hälften utvecklat KOL vid 75 års ålder. Vid KOL kan både övre och 
nedre delarna av luftvägarna samt även blodkärlen påverkas, vilket leder till nedsatt 
syreupptagningsförmåga och andnöd. Ökad slembildning kan också ge hosta samt upprepade 
luftvägsinfektioner.  

En annan riskfaktor för att utveckla KOL är för tidig födsel. Vid för tidig födsel har inte 
lungorna hunnit utvecklas till fullo, och det nyfödda barnet kan då ha svårt att andas. För att 
underlätta syreupptaget kan den nyfödda få extra syre, men eftersom syre är reaktivt kan detta 
också skada lungorna ytterligare. Skadorna på lungorna kan kvarstå till vuxen ålder och ge 
KOL-liknande besvär. 

Vid astma reagerar immunsystemet överdrivet på främmande ämnen i luften. Luftrören drar 
då ihop sig och det kan bli svårt att andas. Detta kan komma i plötsliga astma-attacker, 
medans individen kan ha få till inga besvär emellan episoder, till skillnad från KOL-
symptomen som är mer långsamt tilltagande och kroniska.  

Varken KOL eller astma har något botande läkemedel och symptomen kan ofta vara 
svårbehandlade. Den stora variationen i symptom och svar på behandling hos olika individer 
tyder på att sjukdomarna var för sig skulle kunna delas upp på flera olika sjukdomar. För att 
identifiera olika subgrupper av sjukdomarna har vi analyserat olika substanser i framför allt 
bronkoalveolär sköljvätska som erhålls genom sköljning av alveolerna i lungorna, men även 
blod och urin. 

Mängderna av de olika substanserna kan variera och kallas för variabler. För att jämföra de 
olika grupperna av patienter tittade vi både på en variabel i taget och på alla variabler 
tillsammans i så kallad multivariat analys. Metoden vi använde kallas ortogonala projektioner 
till latenta strukturer, OPLS. För att försäkra oss om att modellerna vi bildade var signifikant 
bättre än de som bildas av en slump jämförde vi våra modeller med modeller som vi skapat 
efter att ha blandat om grupptillhörigheten hos proverna. Denna jämförelse gjordes både 
innan vi valt ut de intressantaste variablerna och efter att vi gjort nya modeller på bara de 
intressantaste variablerna. Vi inkluderade även valet av variabler i själva randomiseringen 
och fick på så vis ett robusthetstest av variabelvalet. Ett verktyg för att göra detta utvecklades 
i statistikprogrammet R och heter roplspvs. Verktyget gjordes så pass lättanvänt att även 
ovana användare av R kan använda det. Med hjälp av detta verktyg samt mjukvaran SIMCA, 
som har ett grafiskt användarsnitt för att konstruera OPLS-modeller, fann vi åtskilliga 
förändringar relaterade till astma och KOL. 



U-BIOPRED är en paneuropeisk kohort för studier av svår astma. Liksom de andra studierna 
i denna avhandling låg fokus i U-BIOPRED på att subgruppera svår astma i grupper med 
hjälp av ett stort antal biomolekyler, för att bygga så kallade "handavtryck" av 
sjukdomsundergrupperna. Två projekt från kohorten ingår i denna avhandling: 1) Astmatiker 
hade grupperats med hjälp av molekyler som hittades i deras blod, vilket resulterade i åtta 
eller till och med 16 olika grupper. Dessa grupper jämfördes och skillnader hittades i data 
från vanligt förekommande undersökningar i vården.  2) Metaboliterna i urinen mättes med 
hjälp av masspektrometri och effekten av att äta orala kortikosteroider studerades. En grupp 
metaboliter, karnitiner, visade sig vara lägre vid svår astma och det berodde inte på att man 
ätit orala kortikosteroider. 

Rökande och icke-rökande KOL-patienter från kohorten COSMIC jämfördes med friska som 
aldrig rökt samt rökare utan KOL. Eftersom mikroRNA är viktiga reglerare för att styra gen-
uttryck undersökte vi dem. Här tittade vi på mängden av olika mikroRNA i vesiklar 
(membranförsedda partiklar) anrikade på små extracellulära vesiklar som utsöndras från 
celler. Bland de mikroRNA som var förändrade tittade vi på vilka gener dessa reglerar och 
vilka mekanismer dessa gener i sin tur reglerar. Mekanismerna som var kopplade till KOL 
och rökning var främst celltillväxt och celldöd där p53-relaterade mekanismer var mest 
förändrade, medan de mikroRNA som var svagt korrelerade till enbart KOL hos män var 
kopplade till nedbrytning genom autofagi och proteolys. 

För att studera KOL relaterat till för tidig födsel undersöktes unga vuxna som varit för tidigt 
födda och fått syrgas jämfört med för tidigt födda utan behov av syrgas. Dessa unga vuxna 
ingår i kohorten LUNAPRE. Man hade tidigare sett att de hade dålig lungfunktion jämförbar 
med KOL-patienter. Här jämfördes hur mängden av olika immunceller skiljde sig mellan 
dessa grupper. Det visade sig att det fanns mer cytotoxiska T-celler och mindre hjälpar-T-
celler hos dem som haft syrgas länge som nyfödda. I avhandlingen visas att denna skillnad 
mest kunde härledas till de kvinnliga för tidigt födda. 

Sammanfattningsvis har ett verktyg för multivariat analys med noggrann testning av 
signifikans hos modellerna utvecklats och använts för att jämföra olika grupper av astmatiker 
och KOL-patienter. Förändringar av mängden mikroRNA, immunceller och metaboliter i 
prover samt förändringar i klinisk bild har identifierats mellan grupper av patienter. Detta är 
en liten del av de studier som gjorts på dessa individer där även andra variabler studeras i 
andra vävnader i kroppen. Tillsammans siktar detta på att finna mekanismen för olika 
varianter av KOL och astma för att kunna diagnostisera och hitta nya terapier för alla 
subgrupper av KOL och astma, med mål att slutligen finna bot. 



 

 

ABSTRACT 
Both asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung 
diseases with a large impact on global health, causing 400 000 and 3 million deaths 
respectively each year. The numbers may be underestimated, since COPD often contributes 
to death without being registered as the cause of death. There is currently no therapeutic cure 
for either of these diseases, only symptomatic relief. One problem is that the available 
therapeutics do not always work, since the diseases present a range of clinical phenotypes 
with possibly different endotypes, so-called umbrella diseases.  

The aim of this thesis was to study asthma, COPD caused by smoking, and obstructive lung 
disease related to preterm birth using systems biology approaches. This includes studying 
several analytical platforms in a range of compartments in order to subphenotype the patients 
into subgroups and elucidate the related mechanisms. Identifying these endotypes increases 
the possibility of finding effective therapeutics for all patient groups.  

Obstructive lung diseases are often studied by collecting bronchoalveolar lavage (BAL) and 
epithelial cells from the lungs during bronchoscopy. This procedure is invasive, and costly 
which is why the cohorts studied are often small. Subgrouping results in even smaller sample 
sizes, which decreases the power of statistical analysis. 

Using multivariate analysis is a means of increasing power by taking all variables into 
account. A workflow for performing the multivariate method orthogonal projections to latent 
structures discriminant analysis (OPLS-DA) to compare groups one by one in small sample 
sizes was developed using the programming language R, and was formatted into an R 
package entitled roplspvs. The roplspvs package performs OPLS modeling using the package 
ropls in R, including variable selection to extract the variables driving the separation the 
most. As OPLS models are prone to overfitting, the significance of the models was 
investigated thoroughly using permutations. Using roplspvs on small sample sizes, it was 
shown that permutations performed before variable selection (termed “sans v.s.”) and 
permutations including the variable selection step (termed “over v.s.”) are better suited to 
estimate the level of model statistics achieved by random than permutations post variable 
selection. An example of running the package was shown using a publicly available 
metabolomics dataset. 

The roplspvs packages, along with the commercially available software SIMCA and 
univariate statistics, were then applied to investigate alterations between groups in a range of 
projects, including three clinical cohorts of asthma, COPD and BPD, as well as a project 
investigating the degradation of proteins in the processing of blood samples prior to 
biobanking the evaluate protein stability. 

COPD in smokers and ex-smokers was studied by investigating the miRNA content of small 
extracellular vesicles (EVs) using OPLS modeling as well as univariate analysis, with the 
finding that COPD gave highly altered miRNA content of small EVs compared to healthy 



subjects. After stratifying the analysis by gender, potential alterations compared to smokers 
were identified in males with significant p[CV-ANOVA]=0.05 and p[permutations over 
variable selection]=0.12, but permutations sans variable selection were highly insignificant. 
The alterations were connected to potentially affected pathways through pathway analysis of 
genes regulated by the altered miRNA. Pathway affected by COPD and smoking were mainly 
connected to cell- growth and death with the p53-pathway mostly altered, while the less 
pronounced miRNA alterations related to COPD alone was connected to degradation through 
autophagy and proteolysis. 

Premature birth has been connected to lung obstruction in adults who developed 
bronchopulmonary disease (BPD) during the neonatal period. To characterize T-cells in 
adults with a history of BPD, FACS analysis was performed on BAL cells. Univariate 
analysis showed increased levels of CD8+ T-cells, and decreased levels of CD4+ T-cells in 
subjects with BPD. Applying OPLS and stratifying the analysis by gender, it was indicated 
that the alterations were mostly driven by females.  

Asthmatic subjects were subphenotyped into clusters using four platforms from blood and 
urine into phenotypic groups, which were studied using OPLS models to compare the groups. 
Clinical features were extracted that separated a large portion of the groups.  

Finally, the metabolome of urine was used to separate asthmatics into severe and mild 
asthma, stratifying the analysis by oral corticosteroids (OCS). It was found that carnitines, 
which were the strongest drivers for separating the groups, were not affected by OCS use. 
Using roplspvs, it was shown that the levels of carnitines were strongly affected by gender, 
with higher levels in males than in females.  

In conclusion, it was shown that OPLS models can be used to investigate cohorts consisting 
of small sample sizes, and that permutation procedures including variable selection efficiently 
test the significance of the models. Subgroups of COPD and asthmatic subjects were 
compared, showing alterations in miRNA levels, metabolome, and lymphocyte composition, 
as well as in clinical data connected to potential endotypes with separate disease mechanisms. 
Stratifications by gender supported earlier findings that gender has a strong effect on 
obstructive lung diseases. Together with further analysis on the cohorts in this study using 
other platforms, this is a step towards finding candidates for diagnostics and therapeutics. 
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1 INTRODUCTION 
Many diseases are so-called umbrella diseases, meaning that similar symptoms and may not 
always be caused by a range of different pathological mechanisms. The mechanism for 
developing the disease may thus differ between subjects. Subgroups related to mechanism are 
generally referred to as endotypes, whereas subgroups related to observable characteristics – 
such as symptoms or biomarkers unrelated to mechanism – are referred to as phenotypes. In 
the search for endotypes, subjects are characterized by their phenotypes. Subgrouping 
subjects with the same phenotype and performing pathway enrichment analysis is a means of 
finding different endotypes of a disease. Characterizing the different endotypes is important 
to be able to find specific diagnostics and therapeutics that are effective for each endotype. 
Systems biology is the method of studying the overall picture by integrating information 
about phenotypes.  

Both asthma and COPD are examples of umbrella diseases. They both have an increasing 
disease burden. In 2010, the number of COPD cases was estimated at 384 million globally 
[1], and this was the third most common cause of death, with 3 million COPD-related deaths 
[2]. In 2019, the number had increased to 392 million people [3]. Since the most common 
risk factors – smoking, air pollutants, and premature birth – are not decreasing worldwide, the 
disease burden is not anticipated to decrease. Even if the prevalence of smoking is 
decreasing, the population is growing, resulting in an increasing number of smokers [4]. 
There is currently no cure for the persistent airway obstruction caused by COPD, and only 
symptom relief through, e.g., bronchodilators and inhaled corticosteroids are available.  

Asthma is an endemic disease that causes morbidity in 300 million people worldwide, and 
caused 400 000 deaths during 2019 [5]. Like COPD, asthma has no cure, and the treatment 
includes symptom relief and control of inflammation. In addition to bronchodilators and 
inhaled corticosteroids used to treat COPD, the treatment for certain subgroups of asthma 
patients includes biological anti-inflammatory agents. Typical features of asthma include 
episodic narrowing of the airways due to inflammation, hyperreactivity, and increase in 
smooth muscle mass, as well as excessive mucus production which may result in wheezing, 
shortness of breath, and coughing. However, these airway modulations and symptoms exist in 
numerous variations, representing a large spectrum of asthma phenotypes [6].  

To study the local inflammation in the airways, resident immune cells, airway exudates and 
immunomodulatory biomolecules can be collected from the site of inflammation through 
bronchoalveolar lavage using bronchoscopy. Since this is an invasive procedure, the number 
of research subjects is usually scarce, and sub-phenotyping of this heterogeneous group 
results in even smaller sample sizes.  

Using univariate statistical methods sometimes gives a statistical power that is too poor to be 
able to separate different subgroups when the sample sizes are too small. One way to increase 
power is to use multivariate methods, taking a wide range of variables into account. One 
method that is especially suitable for separating groups and extracting biomarkers that drive 
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the separation is orthogonal projection to latent structures (OPLS). OPLS is a supervised 
method that has been developed from PLS, where the first principal component describe the 
variation between the groups, and the next principal components  describes the variation 
within the groups [7]. Even though the methods perform equivalently the OPLS models are 
more easily interpreted as the first principal component represents the predictive part 
separating the groups. A common tool used for OPLS modeling is SIMCA, which has a 
graphical interface. Modeling in SIMCA is time consuming, and it is easy to introduce errors 
during the tedious modeling, especially when many groups are compared. Using command 
line in R results in automated and reproducible modeling. It also makes it easy to apply the 
analysis to new data, which not only saves time, but also avoids human errors. OPLS models 
are easily overfitted, and perfect separation can always be fitted if there are too many 
variables and too few subjects. Using too many principal components in an OPLS model may 
also result in an overfitted model. Therefore, it is important not only to interpret the analysis 
visually, but also to utilize the appropriate model statistics and to test the significance of the 
models. One method for significance testing uses permutations, which involves performing 
models on randomized data to test whether models are better than a model created at random. 

Here, we present an R package that performs OPLS-DA modeling, comparing groups of 
subjects one by one and including variable selection. The development of this tool represents 
the core of this PhD dissertation, and features include significance testing using permutation 
tests both before and after variable selection, as well as including variable selection in the 
permutation procedure. In order to include the variable selection in the permutation test, 
variables are selected from both the unpermutated dataset and the permutated dataset. This 
allows for significance testing of the model itself as well as the variable selection process. 

OPLS-DA models and univariate analysis have been performed comparing subgroups of 
asthmatics and COPD subjects, using a wide range of platforms including miRNA cargo of 
extracellular vesicles (EVs), levels of lymphocytes, metabolites, and proteins, as well as 
clinical data. The script has also been used to test the performance of OPLS models on small 
sample sizes, and shows that permutations both before and including variable selection are 
useful tools for establishing a baseline significance level in order to avoid erroneously 
interpreting overfitted models as being significant. 
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2 LITERATURE REVIEW 

2.1 DATA ANALYSIS 

2.1.1 Univariate analysis  

Univariate statistical testing refers to the process of comparing the means of two populations 
or samples. There are a range of different methods available which can be roughly divided 
into parametric tests, where some assumptions are made regarding the structure and 
distribution of the data, and non-parametric tests, that do not apply any strict rules on the data 
distribution. In univariate statistics, each variable is tested independently from the others in 
the data set. This may cause an inflated false positive rate in large data sets. 

2.1.2 Multiple testing correction 

A particular challenge in the analysis of large datasets resulting from omics screening studies 
is that the datasets consist of many analytes but relatively few observations, rendering a 
“short and wide” data matrix. Under these circumstances, traditional univariate statistical 
methods may result in many false positives. One strategy to circumvent the high false 
positive rate is to do multiple testing corrections, where the p-value is adjusted to account for 
the number of tests (i.e., independent variables). Methods for p-value correction include the 
Bonferroni adjustment and the more moderate Benjamini-Hochberg procedure. With either 
approach, the result is an increase in false negatives, i.e., a loss of statistical power, as the 
false positives decrease. 

2.1.3 False findings 

There is an inherent risk of false findings (Figure 1) in research [8], and it has been proposed 
that these differ between sciences with more positive results in psychology and psychiatry 
and fewer positive result in space science compared to biological studies [9]. The likelihood 
of finding false positives, i.e., making a type 1 error, in a study using established 
methodology is a major issue in all kinds of fields, ranging from modeling [10] and micro 
arrays [11] to clinical trials [12]. The reasons for the problem have been summarized by 
Ioannidis as depending on many factors, including how many groups are involved in trying to 
find statistically significant findings and how many studies has been performed on the same 
subject, as well as publication biases due to it being more rewarding to publish positive 
findings than negative findings. Other factors that result in more false findings are hot fields, 
greater flexibility in study design, and small sample sizes. Finally, the smaller the effect sizes, 
the greater the risk of the finding being false [13]. In the field of lung research, bronchoscopy 
is often used to collect samples from the lung. The invasive procedure of bronchoscopy often 
results in small cohorts being used. As a result, when all the parameters are fixed, decreasing 
alfa lowers the number of false findings. 
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Figure 1. Confusion matrix describe outcomes when testing a condition. 

2.1.4 Power 

Statistical power is defined as the ability to identify true positives in statistical analysis 
(Figure 1). The problem with false findings must be balanced against the risk of making a 
type 2 error of not finding true positive findings, decreasing power of analysis, as decreasing 
alfa will also decrease the power. Balancing alfa should be done based on the specific 
research question, as a type 1 error is sometimes worse than a type 2 error and vice versa. The 
traditionally selected alfa of 5% and power of 80% may not always be satisfactory, as for 
example having a low power in new fields may miss out on the opportunity for further 
investigations. Factors that decrease both type 1 and type 2 errors are decreasing variance, 
increasing sample size, and increasing the effect size. Calculating the required sample size to 
achieve a desired power is strongly recommended, and is often requested in applications [14]. 
Failing to do so may result in an underpowered study, which may lead to a temptation to 
draw conclusions from too low a significance. Sample size is calculated from the power, the 
effect size, and the significance level using webtools or R.  

2.1.5 Effect size 

As mentioned above the effect size is needed for estimating required sample size is usually 
the most difficult to estimate in advance [14].  

To know if an alteration is important not only is the significance of the alteration needed but 
also the effect size.  

It is not only necessary to now if an alteration is significant but also the size of the alteration. 
Effect size is a standardized size of an alteration calculated by difference between means 
divided by the standard deviation 
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Effect size for parametric test Cohen’s d may be calculated using the cohens_d function and 
non-parametric Wilcoxon effect size using the wilcox_effsize function, both included in R 
package rstatix. 

2.1.6 Multivariate statistical modelling 

One way to avoid the problem of low power is to use multivariate analysis (MVA) [15]. In 
multivariate statistical analysis, all variables in a dataset are incorporated in one (or a limited 
number of) models, thereby reducing the number of statistical hypothesis tests performed 
compared to univariate statistics. The covariance of the data is taken into account in MVA, 
resulting in both fewer false negatives and fewer false positives. 

In multivariate methods the relationship between two matrixes, X and Y are described. Y 
contains the explained variables, also called dependent variables or responses, while X 
contains the explanatory variables, also called independent variables or predictors. In 
multivariate statistical modeling, the X matrix is projected onto latent variables called 
principal components. Multivariate analysis can be divided into the two categories, 
supervised and unsupervised. A supervised uses a definition of the group belonging, often 
times assigned in the Y matrix, while in an unsupervised method the group belonging is not 
defined in the model and is thereby data-driven. The most commonly used method principal 
component analysis (PCA) is unsupervised. It can be used to see the large structure in the 
dataset such as whether groups of subjects cluster, to identify batch effects and to find 
outliers.  

2.1.7 PLS and OPLS models 

Projection to latent structures by means of partial least squares (PLS) [16] provides a linear 
regression that explains the data block Y using the data block X. The variables in X are 
projected into a scores vector. By adding principal components to the model, additional 
scores vectors are also added to the model. The loadings explain how each variable 
contributes to modeling Y in proportion to the other variables. 

A development of PLS is orthogonal projections to latent structures (OPLS) [7], which often 
is used as a supervised method. The first predictive principal component is rotated compared 
to a classical PLS, and oriented to separate the groups as efficiently as possible, whereas the 
orthogonal components represent the subject variation within the group (e.g., technical noise 
or confounders). The predictive power of OPLS is the same as for PLS, but OPLS is easier to 
interpret [17] as the most important group separating power is described by the predictive 
component. In OPLS-DA [18] (discriminant analysis), the Y-matrix is binary and defines the 
groups as 1 or 0 (e.g., patients or healthy individuals). OPLS-DA describes models that 
efficiently separate groups. It deserves mention that OPLS can also be used in an 
unsupervised exploratory fashion to correlate two data blocks, such as in O-2-PLS [19]. 
Further expansions to allow correlation of multiple data blocks have also been developed, as 
in the O-n-PLS algorithm [20]. 
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An advantage of OPLS models is that they can model variables that are noisy and collinear, 
which makes them suitable for omics data, particularly from human cohorts where lifestyle 
factors and genetic diversity can contribute to large intra-group variance [21]. In OPLS, it is 
important for the group sizes to be as balanced as possible; otherwise, the larger group will be 
penalized. The mean of the groups will be shifted toward the larger group, and thereby, 
misclassifications of the larger group may occur [22].  

OPLS is frequently used in drug design [23] and omics data analysis [15], especially in the 
field of metabolomics. 

A common tool for performing OPLS modeling is the software SIMCA [24], which has a 
graphical interface and was developed by Umetrics, a company that is now incorporated into 
Sartorius. Tools for OPLS have also been developed in R, and a kernel-based OPLS package 
in R [25]. 

2.1.8 Validation of the models 

R2Y, often simply referred to as R2, describes how much of the variance in the data is 
explained by the model, and is calculated by subtracting 1 from the sum of squares. Q2Y, 
often simply referred to as Q2, is the goodness of prediction determined by cross-validation. 
Cross-validation is a tool frequently used in small cohorts that do not allow for the preferred 
strategy of dividing the full data set into a training set and test set. In cross-validation, models 
are iteratively created by removing a portion of the data, then classifying the removed data 
using the remaining data. Our group has previously described the minimum requirements of 
model statistics that should be presented for OPLS models, recommending that R2 and Q2 be 
reported [15]. These are now the most common statistics to present when reporting results in 
metabolomics data [26]. 

Another important means of quality control (QC) of Q2 is by permutating the dataset. E.g., in 
SIMCA, the default is to split the data by order of the data matrix, into seven-fold cross-
validation. This praxis may affect the calculated Q2 based on the order of the groups in the 
data set, especially when the sample sizes are small [27]. The confidence of Q2 may be 
determined by repeated cross-validation using multiple iterations of cross-validation sets. 

2.1.9 Overfitting OPLS models 

In univariate models, it is important to compensate for multivariable selection. This is done 
by adjusting p-values for multiple hypothesis testing bias (see section s2.1.2). It is important 
also in multivariate modeling to be aware of the effect of selecting variables from among 
many variables. Models with high R2 values can be created by applying PLS models to 
randomized data, yielding seemingly perfect separation [28]. It is well known that increasing 
the number of orthogonals results in a model that separates the groups in a score plot, at least 
by visual inspection. This can easily be tried, resulting in increased R2. In this context, it is 
essential to evaluate the effect on other model statistics. As the R2 is inflated, representing an 
overfitting of the model to the specific data set at hand, the Q2 value, representing the 
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predictive power of the model when applied to new data, decreases when too many 
orthogonals are added. It is therefore important to keep the difference between R2 and Q2 low. 
It is less well known that too many variables and too few samples can also produce a perfect 
separation according to a score plot [22] . The reason for this overfit is that the PLS and 
OPLS algorithm finds structures in the dataset and uses the variables that correlate the best 
with Y. An example is shown in Figure 2, where the model is created using 8 random 
subjects in each group and 1,016 variables. It has therefore been suggested that cross-
validated score plots should be used, which is less prone to show the overfit.[29] 

 

Figure 2. A model using many variables (k=1016) and few subjects (n=16) comparing 
groups created by randomly selected subjects from a group of women aged 61-65. 

2.1.10 Significance of model 

How the significance of models is tested in the literature varies to a large extent. Often, no 
variable selection is performed, as is the case for the multivariate models in paper V, which 
avoids overfitting caused by variable selection. Significance is sometimes tested by 
permutations that are performed before variable selection [30], but significance is often only 
tested for accuracy [31], and at other times it is unclear whether the model statistics presented 
refer to testing performed pre- or post variable selection. 

The risk of performing permutation test solemnly post-variable selection, is that models that 
truly are based on random variability in the data set can be interpreted as true positives. To 
avoid this dilemma, and to assure that the selected variables best describe the separation, 
cross-validation or permutations including the variable selection should be used, an area that 
is explored in this thesis.  

There are a number of methods for significance test that may be used on omics data, which 
usually consists of a much larger number of variables than the number of samples analyzed. 



 

8 

Such methods include but are not limited to permutation tests, decision trees, bootstrapping, 
and CV-ANOVA. CV-ANOVA [32] is a two-way analysis of variance of prediction results 
using cross-validation [33]. 

A strength of permutation tests is that it may be used as a test of significance without any 
assumption about the distribution of the population, i.e., in a non-parametric fashion [34]. 
Permutation tests are widely used to test the significance of PLS and OPLS models [35]. 
During the permutation procedure, the group labels of the subjects (Y-matrix) are 
randomized. By comparing R2 and Q2 of the un-permutated model with the permutated, the 
best model produced at random can be established for the data set, thereby setting a threshold 
for what model statistics may be considered significant. [36]  

Permutation test may be used to determine the p-value of R2 and Q2. Permutation tests are 
included in both the ropls package and the SIMCA software.  

2.1.11 Feature selection 

In order to increase the interpretability and remove noise from the analysis, nonsignificant 
variables may be removed from the analysis in a process called feature selection or variable 
selection. Feature selection is performed to remove irrelevant and redundant variables.  

A common way to select variables is by means of variable importance on projection (VIP) 
[37]. VIP measures the relative influence of each X-variable on the model, but simply 
represents a ranking of the variables centered around 1.0. If all variables influence the model 
equally, their VIP would each be 1. A common cutoff is 1. However, the fact that VIP is 
relative limits its utility in variables selection. We therefore often use scaled loadings 
(P[corr)]. Using the partial and semi-partial correlation coefficients for each variable removes 
the effect of all other variables, and makes its values robust between models. The cutoff 
|P(corr)|>0.4 correspond to an approximate p-value of 0.05 for the cohort size used in 
LUNAPRE and COSMIC [38].  

OPLS models are very well suited for extracting features to include in pathway analysis [39]. 
For this purpose, it is useful to include as many variables as possible that contribute 
significantly to the model. When extracting features for diagnostic or therapeutic purposes, it 
is useful to extract as few features as possible while still creating a significant model. 

2.1.12 Significance of variable selection 

It is essential to assure that OPLS models are not overfitted, especially when small sample 
sizes are used. Visual inspection of whether groups separate also in a non-supervised method, 
e.g., PCA, is a common way to test the reliability of an OPLS model [40]. However, in large 
scale omics data sets from human cohorts, where the groups sizes may be limited, the number 
of confounders sizeable, and the number of variables large, a unsupervised model is unlikely 
to provide a satisfactory group separation. Shrinkage, where fitted data performs worse on 
new data than on the data used to create the model, was proposed to be accounted for in the 
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Lasso and Ridge regression for linear regression. In order to account for shrinkage due to 
variable selection, different methods have been proposed to monitor this shrinkage. One way 
is to apply bootstrap over the variable selection [41], performing repeated variable selection 
in each bootstrap to estimate a p-value for the selected variables. Other options are to perform 
cross-validation on the variable selection process [42] [43] or a procedure for variable 
selection by double cross-validating the feature selection procedure [44]. Finally, the 
permutations over variable selection procedure has been suggested by Lindgren et al. [45], 
suggesting that the increase in Q2 during variable selection in models created on permutated 
data is a measure of the overestimation (overfitting) of the model due to variable selection. 
Permutations over variable selection has been used for PLS and random forest in the R 
package MUVR [46]. 

2.2 THE HEALTHY LUNG 

2.2.1 Lung physiology 

The lung is the organ in which oxygen and carbon dioxide is exchanged between the air and 
the blood. The right lung consists of three lobes: the upper, lower, and middle lobes. The left 
lung consists of two lobes – the upper and lower lobes – with the middle lobe being replaced 
by part of the upper lung, which is called the lingual and has a similar function to the middle 
lobe of the right lung. Air is breathed in by contracting the diaphragm. This creates lower 
pressure in the thoracic cavity which is transferred to the lungs via the pleura, enabling the air 
to flow into the lungs. The maximum amount of air that can be breathed out in a relaxed way 
including TV, IRV, and ERV is called the vital capacity (VC), and the amount that can be  

 

Figure 3. Spirogram showing someone breathing normally and proceeding to inhale as much 
as possible two times and exhaling as much as possible two times. FVC Force vital capacity 
Lung volumes and FEV1 forced expiratory volume at one second.  

Reprinted from Semin Fetal Neonatal Med 19(2), Gibson, A. M. and L. W. Doyle. 
"Respiratory outcomes for the tiniest or most immature infants.". 105-111, Copyright (2014) 
with permission from Elsevier 
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stressed out is called forced vital capacity (FVC). A common measure for establishing lung 
disease is to measure the amount of air that can be exhaled in one second in a forced manner, 
called forced expiratory volume (FEV1), and then compare this with FVC (Figure 3).The air 
remaining in the lungs after forced exhalation is called the residual volume (RV). The dead 
space is the volume of air that does not participate in gas exchange. This consists of alveolar 
dead space as well as the conducting zone, i.e., the nose, trachea, and bronchi, and is about 
30% of the TV.  

During inhalation, the air passes through the nasal cavity where it is humidified and filtered, 
via the trachea that divides into the right and left main bronchi, which further divides into the 
secondary bronchi leading to each lobe. The branching continues and forms a tree that on 
average divides 23 times [47] via proximal and terminal bronchioles belonging to the 
conducting zone of the lung and the respiratory bronchioles, which belong to the respiratory 
zone. Finally, the alveolar ducts, connect to the alveolar sacs containing multiple alveoli 
where the gas exchange take place. The trachea and bronchi are surrounded by hyaline 
cartilage and smooth muscles to prevent them from collapsing on expiration. The bronchioles 
are only supported by smooth muscles. 

The airway epithelium from the trachea through the proximal bronchioles primarily [48] 
consists of columnar ciliated cells and goblet cells. Goblet cells produce mucins, an important 
constituent of the epithelial lining fluid (ELF). Together, the ELF and the beating of the cilia 
form the mucociliary escalator, which clears particles, microorganisms, and other pollutants 
from the airway. In the distal and terminal airways, the goblet cells are increasingly replaced 
by the secretory Clara cells, which are nonciliated, protein-secreting cells with metabolic and 
immunological activity. Basal cells are more common in the upper airways, and are the 
primary stem cells of the lung. The epithelial cells are connected to the basement membrane, 
which is part of the extracellular matrix (ECM). The cells that produce ECM are fibroblasts, 
and they are also major players in injury repair. Infiltrating immune cells, primarily 
monocytes, macrophages, and dendritic cells, are also present in the epithelia. Mesenchymal 
stromal cells (MSCs) are progenitor cells that are resident in the lungs. 

The alveolar epithelium is 95% covered by type 1 cells, a flat thin cell type that – together 
with the endothelial cells – enables gas exchange [49]. The remaining 5% of the alveolar 
epithelium are covered by type 2 cells, a cuboidal cell type that secretes surfactant and 
epithelial lining fluid [50]. Type 2 cells are also the main progenitor cells in the alveolar 
epithelium, and may differentiate into type 1 cells which cannot divide by themselves. 
Alveolar macrophages also reside in the alveolar space. It has been proposed that there are 
two subpopulations of macrophages, M1 an M2 [51] with M1 promoting Th1 respons and 
M2 promoting Th2 respons. This classification is an oversimplification when it comes to 
resident alveolar macrophages though, and investigations with single-cell analyses indicates a 
broad repertoire of macrophage phenotypes with significant plasticity [52].   

The lung is perfused by two separate blood circulation systems [53]. The pulmonary 
circulation goes from the right ventricle of the heart to the alveolar capillaries, and returns 
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oxygenated blood to the left atrium of the heart. The bronchial circulation brings oxygenated 
blood via arteries to the airway structure of the lung. 

2.2.2 Lung development 

The development of the human lung is divided into five phases [47] during gestation (Figure 
4), but the lung continues to develop until the age of 20–25 years. During the embryonic 
stage (0–7 weeks), the lung bud forms from the foregut, further developing into the right and 
left main bronchi, with further divisions resulting in 18 major lobules and segmental bronchi 
by the end of the period. Simultaneously, the pulmonary arteries and veins start to develop. 
The pseudo glandular stage (7–17 weeks) is so called because the primitive alveoli looks like 
glandular tissue. During this phase, further branching of the respiratory tree take place. The 
cuboidal cells, which will later develop into type 2 alveolar cells, and smooth muscles form. 
During the canalicular phase (17–27 weeks), bronchioles, alveolar ducts, and primitive 
alveoli are formed. Alveolar type 1 and 2 cells are formed, and by week 24 alveolar type 2  

 

Figure 4. Embryonic development stages with gestational weak showing which parts of the 
lung are developed during each stadium. Fullterm birth (weak 37-42) is indicated. Reprinted 
from Läkartidningen. 2022;119:21214, Stern R, Um-Bergström P, Sköld M, 
”Lungkomplikationer hos vuxna ibland kopplade till tidig födsel"  with permission from 
Läkartidningen and Fuad Bahram/ Typoform 
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cells start producing surfactant. During the saccular phase (28–36 weeks), enlargement of 
acinar tubules forms saccules, resulting in thinner type 1 alveolar and endothelial cells 
leading to better gas transfer [54]. 

2.2.3 Surfactant 

Surfactant is produced primarily in the alveoli by alveolar type 2 cells, and to some extent by 
club cells in the distal airways. It consists of dipalmitoylphosphatidylcholine and other 
phospholipids, together with surfactant proteins. It lowers the surface tension between the cell 
membranes of the airway and alveolar epithelia, thereby preventing collapse of the airway 
and alveolar structure on exhalation. In 1959, it was realized that the lack of surfactant in 
early born children could cause disease. In 1972, it was shown that prematurely born rabbit 
fetuses could inhale more air after the administration of surfactant from adult rabbits. This 
was also done by Fujiwara and Maeta in 1980, when the first preterm infants with RDS were 
treated with bovine surfactant [55]. 

2.3 PRETERM BIRTH 

The prevalence of preterm birth has increased for various reasons. Worldwide, 11.1% of all 
births were preterm from 1990 through to 2010, ranging from 5% to 18% in different 
countries [56]. Preterm birth is generally divided into two categories: spontaneous early onset 
and induced early onset. The difference in prevalence is due to many factors, including 
increased use of in vitro fertilization, resulting in multiple pregnancies with a higher risk of 
premature delivery [57]. Other risk factors are intrauterine growth restriction, uterine over 
distension, previous preterm birth, low body-mass index in the mother, and pre-eclampsia or 
eclampsia and other maternal medical disorders, such as infections [58].  

2.3.1 Definitions of premature birth 

According to the 2012 WHO report “Born Too Soon: The Global Action Report on Preterm 
Birth” [36], the time of delivery is defined in three categories: 

• Preterm birth until gestational week 36 and 6 days 
• Term birth between gestational week 37 and 0 days and 41 week and 6 days 
• Post-term from gestational week 42 and 0 days 

In this definition, preterm birth is divided into three categories: 

• Extremely preterm birth until gestational week 27 and 6 days  
• Very preterm birth between gestational week 28 and 0 days and week 31 and 6 days 
• Late preterm birth between gestational week 32 and 0 days and week 36 and 6 days 

2.3.2 IRDS 

The main cause of infant respiratory distress syndrome (IRDS), also called hyaline membrane 
disease, is lack of surfactant in the lungs of preterm-born babies, leading to collapse of the 
airways and alveoli during exhalation [59]. IRDS is diagnosed by an increased rate of 
breathing, retractions during breathing, and chest x-rays showing decreased lung volumes and 
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a reticulogranular pattern. It is defined as an increasing need for oxygen during the first day 
of life [60]. 

The progression of IRDS differs between patients, even in children of the same age. In a 
study of 1340 infants born between weeks 23 and 27, it was shown that the infants recover to 
different degrees during their first two weeks of life, with 20% showing mild disease with 
consistently low fraction of inspired oxygen, 38% showing an initial recovery and 
reoccurring need for supplemental oxygen, and 43% showing severe symptoms with early 
and consistently high fraction of inspired oxygen [61].  

2.3.3 BPD 

Bronchopulmonary dysplasia (BPD) is a chronic lung disease that may develop from IRDS, 
with more severe IRDS sufferers being more prone to develop BPD [61]. The definition of 
BPD is that supplementary oxygen is needed for at least 28 days after delivery. The degree of 
BPD is determined at week 36 after conception. Mild BPD is defined as no need for oxygen 
at this time. Moderate BPD means less than 30% oxygen is needed and severe BPD means 
more than 30% is needed. 

The importance of early life events in the development of obstructive lung disease was 
recently highlighted by Lange et al. [62], who propose four distinct trajectories (TR) of 
decline in lung function over life based on observations from three large population-based 
studies (Figure 5). As opposed to the classical COPD phenotype resulting from an accelerated 
decline in lung function due to, e.g., smoking (upper dashed curve in Figure 5), two of these 
trajectories (lower curves in Figure 5) start out with a lower-than-normal peak lung function 
in the mid-twenties. This reduced maximal plateau is a result of derangements occurring due 
to early life events, e.g., frequent infections or premature birth. Even at a normal rate of lung 
function, many of these individuals will get a diagnosis of COPD early in life (lower dashed 
curve Figure 5), and lifestyle choices such as smoking, environmental or occupational 
exposure, etc. will have a larger impact on these individuals. This group may represent 
completely different pathways leading to COPD, where early life events rather than smoking 
trigger the accelerated decline in lung function leading to COPD later in life (lower line in 
Figure 5). Premature birth, and the need for oxygen treatment during the neonatal period 
(BPD) represent risk factors for developing early onset obstructive lung disease (lower 
dashed line Figure 5), as opposed to the “classical” smoking-induced sub-phenotypes of 
COPD, with onset at age 45–70 (upper dashed line Figure 5). Thanks to tremendous 
improvements in neonatal care, prematurely born infants now represent >1% of all newborns 
(4). Our knowledge and understanding of the underlying molecular mechanisms of COPD in 
this rapidly growing group, as well as in other never-smokers’ COPD phenotypes, is very 
limited.  
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Figure 5. Lung function decline over life. Two cohorts described in this thesis focus on 
different origins of COPD. In the LUNAPRE cohort we investigate preterm birth- and BPD-
related phenotypes (Reduced peak of lung function), and in the Karolinska COSMIC cohort 
we investigated gender differences in smoking-related COPD (Accelerated decline due to an 
insult such as cigarette smoking). Reprinted from Semin Fetal Neonatal Med 19(2), Gibson, 
A. M. and L. W. Doyle. "Respiratory outcomes for the tiniest or most immature infants.". 105-
111, Copyright (2014) with permission from Elsevier 

 

2.3.4 Factors influencing the development of IRDS and BPD 

There are many factors besides gestational age and weight at birth that may affect the 
different degrees of symptoms of IRDS, and its subsequent development into BPD. As 
mentioned, administering surfactant decreases the risk of severe symptoms. Surfactant is 
administered into the central airways. Administering surfactant using continuous positive 
airway pressure (CPAP) instead of forced ventilation has enhanced the treatment of 
prematurely born children, resulting in a large increase in survivals [63]. An important 
contributor to the enhanced survival of prematurely born children is the administration of 
corticosteroids to pregnant women at risk of premature delivery before 34 weeks of gestation, 
to accelerate fetal lung maturation [64]. 

Not only are the lungs poorly developed in prematurely born children, so too are the 
gastrointestinal tract and the immune system [65]. Inflammation has been suggested as one 
risk factor for developing BPD. It has been shown that antenatal diagnosis of 
chorioamnionitis increases the risk of higher FiO2 [66]. Probiotics show protective properties 
against necrotizing enterocolitis (NEC), which is a serious complication of premature birth. 
Combinations of probiotic strains have shown synergetic effects compared to administrating 
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one strain alone [67]. There are indications that BPD may also be influenced by the 
microbiome. In a study of three-day-old prematurely born children, there was reduced 
diversity in the microbiome of the airways in those developing BPD [68]. 

2.4 CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) 

2.4.1 Features, risk factors, and prevalence of COPD 

Chronic obstructive pulmonary disease (COPD) is a disease with progressive deterioration of 
lung function. The main symptoms are shortness of breath and productive cough. The main 
risk factor for COPD is smoking, but – as described above – low birth weight and premature 
birth are also risk factors [69].  

COPD is an umbrella diagnosis representing many different molecular phenotypes. 
Clinically, COPD is often subdivided into chronic bronchitis, which is more common among 
females, and emphysema, which is more prevalent in males [70]. Many patients have a 
mixture of the two phenotypes, and chronic bronchitis often precedes emphysema 
development. Emphysema also affects the airway structure, as the destruction of the alveolar 
septa may cause a collapse of the small airways, with air trapping and hyperinflation as a 
result. Females have also been shown to have a higher incidence of the disease [71, 72], and a 
faster decline in lung function especially after menopause. The decline in lung function is 
often expressed in exacerbations. In a Swedish study, it was shown that females had 
exacerbations more frequently than males [72]. 

The increased mortality in smokers due to COPD and other smoking-related diseases results 
in a loss of life expectancy of 13.2 years for males and 14.5 years for females [73]. The result 
is that COPD is now the fourth most common cause of death worldwide [74].  

As mentioned, there are risk factors other than smoking, and in a worldwide assessment 28% 
of COPD patients (according to GOLD criteria) had never smoked. When considering the 
lower limit of normal (LLN) criteria [75], 23% of the COPD patients had never smoked [76]. 
In Sweden, the corresponding figures according to GOLD criteria were 14% for males and 
27% among women. Overall, the prevalence for COPD was 7% among non-smokers and 
24% among smokers [77]. 

2.4.2 Diagnosis of COPD 

Diagnosis of COPD relies heavily on spirometry, and is generally defined by forced 
expiratory volume during one second divided by forced vital capacity (FEV1/FVC) being 
below 0.70, i.e., the patient is unable to exhale 70% of their lung volume in one second. 
Traditionally, the severity of COPD is determined by % of predicted FEV1.  

GOLD 1 (mild): FEV1 ≥ 80% 

GOLD 2 (moderate): 50% ≤ FEV1 < 80% 

GOLD 3 (severe): 30% ≥ FEV1 < 50% 
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GOLD 4 (very severe): FEV1 < 30% 

However, the latest update to the Global Initiative for Chronic Obstructive Lung Disease 
(GOLD) in 2017 [78] also emphasizes the importance of symptoms and exacerbations in 
staging of disease. In addition to the stage (A–D) determined by spirometry, the symptoms 
are also graded by breathlessness using the Modified British Medical Research Council 
(mMRC) Questionnaire and number of exacerbations. By using computed tomography (CT) 
scans, a more detailed diagnosis may be determined, including degree of disease by extent of 
bronchitis, emphysema, and air trapping [79]. 

2.4.3 Therapy for COPD 

There is currently no efficacious treatment to cure or halt the progression of COPD. The 
pharmacological treatments available for COPD all reduce symptoms, but have no proven 
effect on the long-term prognosis. The pharmaceuticals used are grouped into 
bronchodilators, which relax the smooth muscles in the bronchi, and corticosteroids, which 
show anti-inflammatory effects [80]. 

There are two kinds of bronchodilators: β2 agonists and anticholinergics [81]. β2 agonists act 
by blocking the β2 adrenergic receptor (also called the β2 adrenoreceptor) from binding to 
epinephrine, resulting in the relaxation of smooth muscles. The long-acting β2 agonists 
(LABAs) include salmeterol, formoterol, indacaterol and tiotropium. There are also short-
acting β2 agonists, such as salbutamol and terbutaline, which are more often used as “rescue 
treatments” during acute shortness of breath. Anticholinergics act by blocking cholinergic 
nerves by blocking acetylcholine receptors, resulting in the relaxation of smooth muscles. 
There are two types of acetylcholine receptors that bind to acetylcholine and muscarine 
(called muscarinic acetylcholine receptors) and to nicotine (called nicotinic acetylcholine 
receptors). An example of a long-acting anticholinergic is tiotropium, and long-acting 
muscarinic antagonists (LAMA) include aclidinium and umeclidium bromide, while 
ipratropium is short-acting.  

Other maintenance treatments used in COPD are inhaled corticosteroids (ICS), e.g., 
budesonide. ICS have many functions, including controlling inflammation by depressing 
migration of leukocytes and fibroblasts and by controlling protein synthesis. They act by 
recruiting histone deacetylase-2 (HDAC2), which inhibits the acetylation of histones via 
histone acetyltransferase (HAT) and its activation of inflammatory proteins. They also bind 
directly to glucocorticoid response elements (GRE) in promotor regions of DNA, activating 
anti-inflammatory proteins [82].  

Comparing different therapies in a meta-analysis, a combination of LABA and corticosteroids 
gave the greatest improvement in quality of life and lung function [81].  

In severe COPD, supplemental oxygen treatment and eventually lung transplantation may be 
necessary. 
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2.4.4 Immunology of COPD 

COPD involves both local and systemic inflammatory response. Locally in the lung, the 
inflammatory response is characterized by increased levels of macrophages and dendritic 
cells, which – together with epithelial cells – release chemokines and may attract neutrophils, 
monocytes, and T and B lymphocytes [83, 84]. This inflammation is further aggravated 
during exacerbations, which are initiated by bacterial or viral infections. Once triggered, the 
inflammatory cascade leading to tissue damage may continue even after smoking cessation 
[85].  

The increased manifestation of inflammation in COPD compared to the inflammation caused 
by smoking alone is due to many factors [86]. A known genetic susceptibility is deficiency of 
α1-antitrypsin, an inhibitor of neutrophil elastase. A range of mutations in this gene has been 
shown to lead to the early onset of emphysema, particularly in smokers. Main players 
affecting the inflammation are oxidative stress and the imbalance of proteinases and 
antiproteinases. Another factor is age, which affects the ability to repair tissue due to 
smoking. The frequent activation of the immune system due to infections also increases the 
inflammation. This is due to the cilia being defective in COPD, the increased mucus 
production, bronchiectasis, emphysema space formed where bacteria can grow, and the 
reduced ability of the immune system to clear the infection.  

Both the innate and adaptive immune systems are involved in COPD, and their role has been 
nicely summarized by Peter J. Barnes [83]. 

The first cells to react against an intruding agent are the innate immune system, consisting of 
macrophages, monocytes, neutrophils, dendritic cells, natural killer cells, and mast cells, all 
contributing to the inflammation of COPD.  

Macrophages play a major role in COPD, and are the main cells found in bronchoalveolar 
lavage (BAL). Their numbers are increased in BAL. Macrophages release a number of 
inflammatory mediators, including CCL2 and CXCL1 that recruit monocytes, which upon 
entry into the bronchoalveolar lumen may differentiate into alveolar macrophages. CCL2 also 
attracts dendritic cells and memory T-cells. Macrophages produce tumor necrosis factor α 
(TNF-α), inducing NF-κB, which is activated in macrophages from patients with COPD [87] 
and regulates most of the inflammatory proteins in COPD. TGFβ is also secreted by 
macrophages, and is involved in fibrosis in bronchioles acting on fibroblasts. Macrophages 
release matrix metallopeptidases (MMP-2, MMP-9, and MMP-12), which are involved in the 
degradation of extracellular matrix and emphysema formation.  

Finally, macrophages recruit neutrophils by releasing leukotriene B4 (LTB4), CXCL1, 
CXCL5, and CXCL8. Increased numbers of neutrophils are found in the lumen and correlate 
to disease severity. Neutrophils secrete myeloperoxidase (MPO), lipocalin, serine proteases, 
cathepsin G, proteinase-3, MMP-8, and MMP-9. Neutrophils also contribute to mucus 
secretion stimulated by neutrophil elastase. 
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Epithelial cells cover the airways down to the proximal bronchioles. They are key players in 
COPD, but have not been studied as thoroughly as macrophages due to the more invasive 
methods needed to collect them. They take part in the inflammatory response by secreting 
many of the chemokines that are also secreted by macrophages, including TNF- α, 
interleukin-1β, IL-6, and CXCL-8. They also secrete granulocyte-macrophage colony-
stimulating factor (GM_CSF), which stimulates stem cells to produce neutrophils and 
monocytes. 

The adaptive immune system also takes part in the immunology of COPD. Cytotoxic T-cells 
(Tc) are increased more in COPD patients than helper T-cells (Th), and the numbers correlate 
to the severity of the disease. CXCL9, CXCL10, and CXCL11 released by macrophages 
recruit T-cells to the site of inflammation by binding to CXCR3. Tc induces apoptosis in 
infected cells by releasing perforine, granxyme B, and TNF-α.  

2.4.5 Oxidative stress 

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are oxygen/nitrogen free 
radicals. Their function and pathways in health and disease are summarized by Valko et al. 
[88]. They are present in homeostasis as superoxide anion radical (O2•−), hydroxyl radical 
(•OH), peroxyl radical (ROO•), or nitric oxide (NO•), and are produced in the mitochondria. 
On exposure to cigarette smoke or other environmental toxicants, there may be 
overproduction of ROS and RNS, resulting in harmful oxidative stress and nitrosative stress. 
Peroxisomes convert ROS into hydrogen peroxide (H2O2), and if they are damaged the H2O2 
leaks out to the cytosol and contributes to oxidative stress.  

In oxidative stress, ROS may harm cell structures, nucleic acids, lipids, and proteins. 
Sulfhydryl-containing proteins are particularly susceptible to oxidation, forming mixed 
disulfides. However, many other amino acids may form carbonyl residues, which may react 
further to form advanced glycation end-products (AGEs). Our group has observed increased 
oxidative stress primarily in female COPD patients, as shown by upregulation of proteins 
involved in oxidative phosphorylation [89] and increased levels of many metabolites 
associated with fatty acid β-oxidation pathway [90]. One reason for the larger impact on 
females has been suggested to be larger downregulation of antioxidants in females [91]. 

2.5 ASTHMA 

More than 300 million people are affected by asthma worldwide causing more than 400000 
deaths related to asthma. Typical symptoms of asthma are breathing difficulties that are 
sometimes acute in so called asthma attacks, chest tightness and coughing.  

Asthma is strongly sex dependent with more (65%) boys being affected at low ages (<13 
years) and more women (65%) being affected in adulthood [92]. This indicate that asthma is 
sex hormone dependent. There is also an effect on asthma during menstruation, pregnancy 
and menopause, further supporting a role of sex hormones in asthma [93]. The mechanisms 
for this are not well understood. 
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Asthma is diagnosed by spirometry setting asthma diagnose if FEV1 improves more than 
12% and at least 200 ml post-bronchodilator [94], and the peak expiratory flow rate increases 
20% by salbutamol corticosteroids or prednisone. Provocation challenge using Methacholine 
to assess airway hyperreactivity is also used for diagnosing asthma, if FEV1 drops 20% or 
more. 

Even if many asthma symptoms overlap for individuals with asthma, there is a dramatic 
variation in severity and response to treatment. Therefore, asthma has increasingly been 
described as a disease with many endotypes [6]. Several different subphenotyping efforts has 
proposed. The classification of asthma into allergic and non-allergic asthma, origininally 
called extrinsic and intrinsic asthma, was first proposed in 1947 [95]. Allergic asthma is 
usually developed early in life and non-allergic asthma later in life. Around 37-50% of 
asthma patients are affected by allergic asthma characterized by increased numbers of 
eosinophils [96, 97]. Non-allergic asthma is often developed later in life and affects 50-63% 
of asthmatics [98]. 

A common classification in recent years is Th2 high and Th2 low or non Th2 asthma, with 
Th2 high overlapping with allergic asthma while non Th2 overlap with non-allergic asthma 
[97, 99]. Th2 high asthma affects 80% of children with asthma and 60% of adults, and is 
characterized by the Th2 associated cytokines IL-4, IL-5 and IL-13 as well as type 2 innate 
lymphoid cells. IL-5 stimulates eosinophils [100] while IL-4 and IL-13 regulate 
immunoglobulin E (IgE) and activation of mast cells [101]. Corticosteroid treatment is the 
most common treatment to reduce inflammation in asthma and can be taken orally (OCS) or 
inhaled (ICS).  In many patients treated with OCS the Th2 inflammation is not suppressed 
and 40% remain uncontrolled [102]. For Th2 low patients the CS treatment is not always 
effective. Even with the emerging biologics, with antibody treatments of anti-IL-4, anti-IL5 
and anti-IL13 [103], and tools for stratification of patients with severe asthma is important. 

Another subphenotyping that has been proposed is TAC1 (high eosinophilia), TAC2 (high 
neutrophilia), and TAC3 (moderate levels of eosinophilia) [104]. Yet another sub 
phenotyping has been proposed by Refractory Asthma Stratification Programme (RASP) to 
stratify severe asthma patients, that do not respond to CS treatment and are therefore using 
high doses, into three groups depending on adherence to treatment named RASP: The first 
group being no-adherent, the second group having impaired CS responsiveness even when 
using high doses of CS, with persistent high Th inflammation, and a third group who are non-
responsive to CS but show low Th2 inflammation [105]. 

Despite the stratifications performed the mechanisms are not fully understood, especially not 
for severe asthma. Therefore, efforts are continued to stratify asthmatics further with aim to 
find endotypes with defined mechanisms to be able to develop therapeutics. 
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2.6 EXTRACELLULAR VESICLES 

There are three groups of extracellular vesicles (EVs); microvesicles, apoptotic bodies and 
exosomes.  

Exosomes are nano sized EVs with a size of 30–100 nm and are usually referred to as small 
extracellular vesicles (sEVs). Unlike micro vesicles that bud directly from the cell membrane, 
sEVs are formed in multivesicular bodies (MVB), also termed late endosomes, and are then 
actively secreted into the extracellular space [106]. They are found in all body fluids 
including blood [107, 108], saliva [109], urine [110], amniotic liquid, seminal fluid, breast 
milk [111], BALF [112-114], and CSF. They are released from many different cell types, 
including stem cells, tumor cells [115], epithelial cells [116], BAL cells [113], B-cells [112, 
117], t-cells [118], and dendritic cells [119, 120]. SEVs have been shown to carry a cargo of 
different molecules including proteins, lipids, mRNA, and miRNA, and can transfer this 
content from one cell to another, enabling communication between cells [121]. 

There are many indications that both the formation of sEVs and the uptake of sEVs by cells 
are active processes, enabling communication with distant cells through sEVs. A gene 
TSAP6 (downstream gene of p53) seems to be necessary for both p53 and sEV production 
[122]. Endosomal sorting complex required for transport (ESCRT) is responsible for sorting 
proteins into the intraluminal vesicles which are the precursors of sEVs [123]. Rab, a family 
of membrane proteins, regulates sEV secretion with Rab 7 sorting them into lysosomes and 
degradation while Rab 11 sorts them into the extracellular space [124, 125]. Selective fusion 
of vesicles with the correct acceptor membrane is mediated by the SNARE proteins. The v-
SNARE on the sEV has to match the t-SNARE on the recipient cell before they fuse [126].  

SEVs consist of a lipid bilayer which contains many types of molecules. Both surface and 
cargo molecules may vary depending on disease and origin [127]. However, some molecules 
appear to be generically enriched in sEVs. Most sEVs have the tetraspanins; CD63, CD81, 
CD9, and heat shock protein (Hsp70), and may thus be used as crude EV markers. EV 
content also varies depending on diagnosis, including lung cancer [128], autoimmune disease 
[129], cystic fibrosis [130], and  sarcoidosis [127] and asthma [113]. Also, the number of 
sEVs secreted may be altered in diseased patients compared to healthy individuals, as shown 
for sarcoidosis [127]. 

SEVs from BAL cells have been shown to contain both MHC class I and II molecules 
together with co-stimulatory molecules [114, 117]. This shows that sEVs may both inhibit 
[131] and stimulate the immune system, as has also been shown in clinical studies [132-134]. 
SEVs from B lymphocytes induce T-cell proliferation [112, 117] and may thus be involved in 
inflammatory and allergic immune responses. SEVs from macrophages and DCs contain 
functional enzymes for leukotriene biosynthesis which are proinflammatory lipid mediators 
with a role in asthma and inflammation [135]. BALF sEVs have also shown significant 
upregulation in sarcoidosis of inflammation-associated proteins, such as leukotriene A4 
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hydrolase, together with vitamin D-binding protein [136]. Epithelial cell sEVs induce 
proliferation and chemotaxis of undifferentiated macrophages [137]. 

SEVs may also contain mRNA and miRNA, which are interesting for their ability to regulate 
gene expression in their target cells [138]. They will be discussed further in the next section. 

The effect of sEVs on the target cells may be either pathological or beneficial. In a study of 
pulmonary hypertension (PH) in mice, sEVs that were isolated from sick animals and injected 
into healthy mice induced PH changes, while mesenchymal stem cells (MSC-EXOs) 
prevented and reversed PH in the same animal model [139, 140]. In another study sEVs from 
COPD patients were given to mice and the neutrophil elastase carried by the sEVs caused 
destruction of extracellular matrix in the mice [141]. 

2.7 MIRNA 

Non-coding RNA (ncRNA) is RNA that is not translated into a protein. The first ncRNA, 
transfer RNA (tRNA), was characterized in 1965. Since then, a whole range of ncRNAs have 
been identified, including ribosomal RNA (rRNA) and small RNAs. Small RNAs are less 
than 200 nucleotides and include small interfering RNA (siRNA), microRNA (miRNA), 
Piwi-interacting RNA (piRNA), small nucleolar RNA (snoRNAs), small rDNA-derived RNA 
(srRNA), small nuclear RNA (U-RNA), and tRNA-derived small RNA (tsRNA) [142]. They 
are involved in RNA silencing. One way of silencing is RNA interference (RNAi), which is 
the ability of RNA to inhibit gene expression by degrading or inhibiting mRNA – a discovery 
for which Andrew Fire and Craig C. Mello received the Nobel Prize in Physiology or 
Medicine in 2006. RNA that may be involved in RNA interference are small interfering RNA 
(siRNA) and microRNA (miRNA), both of which are around 20–25 nucleotides in length. 
SiRNA is formed from exogenous double stranded RNA (dsRNA), while miRNA is formed 
from endogenous pre-miRNA (around 70 nucleotides in length). Pre-miRNA is cleaved by 
dicer-TRBP complex into miRNA duplex and further formation of mature miRNA via the 
RNA-induced silencing complex RISC complex and Ago2 [143]. Highly matched sequences 
and tight binding of the miRNA to the target mRNA strand results in degradation of the 
mRNA, while an imperfect match results in the repression of translation [144]. MiRNA are 
pluripotent, with each miRNA binding in average to more than 500 target sites on mRNA, 
and each mRNA may be inhibited by many different miRNAs [145]. 

2.7.1 MiRNA cargo in EV in the lung 

MiRNA may be found extracellularly, with reportedly more than 90% bound to Ago2 in 
plasma [146]. Some of it may also be found bound to high-density lipoproteins (HDL) and 
some to apoptotic bodies, but most interest has been paid to the miRNA found in or on EVs, 
including sEVs. The sEVs have been suggested to protect the miRNA from degradation by 
RNases, but extracellular miRNA has also been found to be surprisingly stable compared to 
RNA, both when bound to Ago2 [146] and when found in sEVs [147]. MiRNAs are believed 
to be selectively packed into sEVs through an intricate molecular machinery found to be 
regulated by the YBX1 protein [148, 149], among others. The secretion and uptake of the 
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sEVs by the recipient cells is tightly regulated. Different mechanisms for this selective 
extracellular export of miRNA have been suggested to involve differences in sequence [150] 
or carriers of miRNA [151]. The difference in miRNA content between cells of origin and 
with respect to diagnosis make them interesting as biomarkers of disease. 

In the lungs, sEVs have been found in BAL fluid [114] and pleural fluid [152]. Our group has 
previously shown that the miRNA content of sEV-enriched EVs from BAL fluid differed in 
mild intermittent asthma compared to healthy subjects. Significant differences were detected 
for 24 miRNAs including the let-7 and miRNA-200 families, many of them implemented in 
the IL-4 and IL-13 cytokine pathways [113]. Fujita et al. have also shown that in vitro 
stimulating human bronchial epithelial cells (HBEC) with cigarette smoke extracts 
upregulated cellular and EVs miRNA-210 and downregulated let-7. The same group also 
showed that the EVs induce myofibroblast differentiation in primary lung fibroblasts (LFs), 
and that miRNA-210 downregulates autophagy via ATG7 which is an essential component of 
autophagy [153]. Alterations in the EV contents of miRNA have been found in sputum from 
COPD patients, and several miRNAs were associated with FEV1, a measure of disease 
severity. Differences in EV miRNA content have also been observed in lungs from deceased 
newborns with BPD compared to normal preterm or term infants [154]. 

2.8 OMICS ANALYSIS 

To analyze the phenotype, a large range of platforms can be analyzed including genes, 
transcripts, proteins, metabolites, immune cells, and microbiota, as well as data from 
questionnaires and other clinical data. Several methods can be used to quantify these analytes. 
Gene entities that can be analyzed include DNA methylation and histone modification. 
Analyzing transcripts includes messenger RNAs (mRNAs), long noncoding RNAs 
(lncRNAs), or small RNAs such as microRNAs (miRNAs) and small interfering RNA 
(siRNA). Proteins can be analyzed using mass spectrometry or antibodies. A range of 
different metabolites can be analyzed including lipids, sugars, and cytokines. These analytes 
can also be analyzed in a large range of compartments including different organs, tissues, 
blood, immune cells, or extracellular vesicles (EVs). In recent years, the sensitivity of 
analysis has advanced to the degree that analyzed compartments may also consist of single 
cells rather than bulk. 

2.9 PATHWAY ENRICHMENT ANALYSIS 

A molecular pathway describes a chain of molecular reactions and how these reactions are 
regulated. All genes connected to the molecules involved in a pathway are targeted in a 
pathway analysis. Extensive efforts to construct large databases that consolidate the known 
scientific literature into consensus pathways, such as KEGG [155] and Reactome [156], have 
been an essential step towards facilitating pathway enrichment analysis. 

Pathway analysis is a means of investigating how genes affect pathways in the body. The 
altered pathways can explain the mechanism of a disease. There are different ways to perform 
pathway analysis including over-representation analysis (ORA) and functional class scoring. 
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The best-known method for functional class scoring is gene set enrichment analysis (GSEA) 
[157]. 

ORA tests whether a functional gene set (FGS) is overrepresented compared to what is 
expected with random chance, taking into account which genes are generally altered. These 
genes are gathered in altered gene sets (AGS), which can be entered as background in ORA. 
The probability that the pathways are enriched is expressed using the statistical test Fisher’s 
exact test, resulting in a p-value for the overrepresentation. 

GSEA does not use an AGS. Instead, GSEA uses the genes in the analysis under 
investigation as reference. It compares every single gene to a statistic calculated from the 
genes in the FGS. As the genes are sorted from the most to the least sorted, it uses the genes 
in the middle of the list and assumes those to be stable. These comparisons are then 
aggregated into a statistic for each pathway, and the significance for each pathway is 
assessed. 

There are many tools for performing ORA and GSEA, including Ingenuity Pathway Analysis 
(IPA) from Qiagen and open resources such as Cytoscape. Tools such as miEAA [158] 
provide both ORA and GSEA tailored for miRNA analysis. Diana, mirPath, and miRWalk 
also providing tools, and there are many pathway analysis tools in R including miRLAB, 
miRNApath, and pathfinder. 

2.10 NETWORK ANALYSIS 

Network analysis in omics research is a means of analyzing the connections between 
different biomolecules and subjects and thereby creating a network to get a comprehensive 
view of a given biological process. Usually, a network is based on clustering of variables.  

Similarity Network Fusion (SNF) on the other hand is based on clustering of subjects into 
groups [159]. It can be used to combine several different omics platforms. SNF is a non-
linear method to integrate data in an unsupervised method. Similarity network fusion has 
been used for multi-omics integration of COPD patients in the COSMIC cohort. It has been 
shown that using multi-omics data it was possible to reduce the group size from 30 to 6 and 
still keep 95% power and 95% accuracy using seven omics platforms [160]. 

Another way to combine multi-omics platforms is to create hierarchical models. Models are 
first created, for example using OPLS, for each omics dataset. The resulting scores from each 
model are used to create new models, so called a hierarchical model. Further expansions to 
allow correlation of multiple data blocks have also been developed, as in the O-n-PLS 
algorithm [20]. [161]
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3 RESEARCH AIMS 
The aim of this thesis was to investigate mechanistic differences between sub-groups of 
subjects in the umbrella diagnoses of asthma and chronic obstructive pulmonary disease 
(COPD). The cohorts studied were collected with the aim of applying systems biology 
approaches to study the lungs using a large number of platforms.  

Paper I. The aim of this project was to develop a method for generating pairwise OPLS-DA 
models with variable selection reproducibly in an automated fashion, including tools for 
discriminating models being true positives from models at risk of being a produced from 
random variability (i.e., false positives). 

Paper II. The aim of this project was to analyze alterations in the miRNA cargo of sEV-
enriched EVs isolated from bronchoalveolar lavage fluid from patients with COPD from the 
Karolinska COSMIC cohort, as well as how molecular pathways are regulated by the affected 
miRNAs. The long-term goal of the overall project is to better understand the mechanisms of 
COPD related to smoking and gender. 

Paper III. The specific aim in this study was to investigate the composition of T-cell subsets 
in the bronchoalveolar lumen from subjects from the LUNAPRE cohort, which is designed to 
investigte the mechanisms of early onset obstructive lung disease related to preterm birth and 
bronchopulmonary dysplasia. 

Paper IV. The aim of this study was to perform data-driven clustering of asthma patients from 
the U-BIOPRED cohort based on multi-omics data from blood and urine in order to identify 
molecular sub-phenotypes. The overall goal was to identify the biomolecules that drove the 
clustering, as well as to identify clinical characteristics between the subgroups.  

Paper V. The aim of this project was to investigate the urinary metabolome from individuals 
with severe-to-mild asthma from the U-BIOPRED cohort. A secondary goal was to determine 
how the metabolome was affected by the use of oral corticosteroids.  

Paper VI. The aim was to study the stability and degradation of the proteome of EDTA-
plasma samples due to delays in centrifugation and separation of plasma during biobanking. 
The overall goal was to identify biomarkers of degradation to be able to determine the delay 
in processing that occurred in samples that withdrawn from biorepositories.  
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4 MATERIALS AND METHODS 

4.1 COHORTS 

4.1.1 The MTBLS136 data set (studied in paper I) 

The dataset analyzed in paper I, MTBLS136, came from the Cancer Prevention Study II 
Nutrition Cohort, which was designed as a prospective study of cancer with 39 376 subjects. 
MTBLS136 consists of postmenopausal women, and was designed to study differences in 
metabolite content in serum associated with hormone treatment. The dataset is publicly 
available at Metabolights https://www.ebi.ac.uk/metabolights/MTBLS136/files. The women 
were aged 50 to 74. The metabolomics data set includes consists of 782 cancer cases and 782 
controls, with 17 being both cases and controls as they were diagnosed with cancer, giving a 
total of 1547. After excluding those that did not meet the inclusion criteria, 1336 women – 
667 did not receive any hormone therapy (nonusers), 332 receiving estrogen therapy only (E-
only users), and 337 receiveing both estrogen and progestin treatment (E+P users) – were 
included in this evaluation. 

4.1.1.1 Ethical approval 

The dataset is a publicly available, deidentified dataset at Metabolights CPS-II Nutrition 
Cohort that has been approved by the Emory University Institutional Review Board 
(IRB00045780).  

4.1.2 The LUNAPRE cohort (studied in paper III) 

The full LUNg obstruction in Adulthood of PREmaturely born (LUNAPRE) cohort 
(http://clinicaltrials.gov/ct2/show/NCT02923648) has been described in detail in 2019 [162]. 
It consists of 26 preterm-born young adults with a history of bronchopulmonary dysplasia 
(BPD), and has three control groups: one group with 23 preterm-born young adults without 
BPD, one group with 23 asthmatics, and one group with 24 healthy controls. Of these, 22 in 
each group and 24 of the healthy controls underwent bronchoscopy, collecting 
bronchoalveolar lavage and airway epithelial brushings. Their ages ranged from 18.2 to 23.8, 
with the two preterm groups being around one year younger on average. They were all non-
smokers and without respiratory tract infections at least three months prior to investigation. 

4.1.2.1 Ethical approval 

The study has been approved by the Swedish Ethical Review Authority (ref: 201211872-
31/4). 

4.1.3 The KAROLINSKA COSMIC cohort (studied in paper II) 

The Karolinska COSMIC (Clinical & Systems Medicine Investigations of Smoking-related 
COPD; ClinicalTrials.gov NCT02627872) cohort was collected at the Karolinska University 
Hospital, and was designed to study gender differences in protein expression in cells from the 
airways in patients with mild -to-moderate COPD compared to healthy subjects and smokers 

https://www.ebi.ac.uk/metabolights/MTBLS136/files
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with normal lung function. The cohort consists of 120 subjects in three groups: 40 subjects 
with COPD, 40 smokers without COPD, and 40 healthy never-smokers, with the same 
numbers of males and females. The inclusion criteria were that those with COPD and 
smokers with normal lung function had been smoking for more than ten pack-years and had 
smoked more than ten cigarettes per day for the past six months. COPD ex-smokers, on the 
other hand, had quit smoking more than two years before inclusion in the study. To avoid 
acute effect of smoking, the COPD patients and the healthy smokers were asked not to smoke 
for a period of eight hours before the bronchoscopy, which was confirmed by measuring 
exhaled CO [163]. Exclusion criteria included history of allergies or asthma, and use of 
corticosteroids within the past 3 months, or exacerbations during a period of three months 
before inclusion in the study allowed. The subjects were examined thoroughly using chest 
radiography, computed tomography, spirometry, and questionnaires. Only COPD patients 
with mild to moderate disease (GOLD stages I–II/A-B) were included in the study. Details of 
the full cohort are described by Karimi et al. [164]. 

BAL fluid collected by bronchoscopy in the COSMIC cohort was used for paper II. To avoid 
sampling of the proximal airways instead of distal, subjects with a recovery of BAL <35% 
were excluded [165]. In addition, five samples with less than 85% macrophages were 
excluded. Finally, samples with clear experimental problems were removed from further 
analysis. This resulted in 19 smoking and six ex-smoking COPD subjects, 21 smokers with 
normal lung function, and 20 healthy never-smokers, all aged 44–66. Details of the subgroup 
of subjects from the cohort included in this study are presented in Table 1 in paper II. 

4.1.3.1 Ethical approval 
The study was approved by the Stockholm Regional Ethical Board (ref. 2006/959-31/1, 
2006/959-31/1, 2007-743-32, 2007/748-31/3, 2008/600-32, 2009/1358-32, 2010/1064-32, 
2011/1322-32). 

4.1.4 The adult U-BIOPRED cohort (studied in papers IV and V) 

The U-BIOPRED (Unbiased BIOmarkers for the Prediction of REspiratory Disease 
outcomes) cohort is a multicenter collaboration originally led by Professor Sterk in 
Amsterdam University, now headed by Sven-Eric Dahlén at the Karolinska Institute and Ian 
Adcock at Imperial College London. The cohort was collected to integrate physiological and 
clinical variables, as well as in depth multi-omics characterizations from collected from 
blood, urine, induced sputum, bronchial biopsies, airway epithelial brushings, and exhaled 
air, in total generating 18 omics data sets, in order to be able to sub-phenotype asthmatics, 
with the final goal of identifying therapeutics that have an effect on different endotypes of 
asthma. The cohort consists of 110 smoking/ex-smoking severe asthmatics, 311 non-smoking 
severe asthmatics, 88 mild to moderate asthmatics, and 101 healthy controls, including both 
males and females. 

The inclusion criterion for the ex-smokers with severe asthma was that they had not smoked 
for 12 months and had a smoking history of at least five pack-years. Non-smoking severe and 
mild asthmatics and healthy controls had not smoked for 12 months and had less than five 
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pack-years of smoking history. Severe asthmatics had uncontrolled symptoms according to 
the Global Initiative for Asthma (GINA) and/or more than two exacerbations per year despite 
a high dose of inhaled corticosteroids (⩾1000 µg fluticasone propionate or equivalent per 
day). Mild to moderate asthmatics had controlled asthma according to GINA and used <500 
µg fluticasone propionate or equivalent per day.  

Thorough investigation included bronchoscopy and telemonitoring sessions, spirometry, 
measuring fraction of exhaled nitric oxide level (FeNO), and testing allergic status. Induced 
sputum was performed, collecting supernatants and cell pellets to obtain eosinophil and 
neutrophil counts. Exhaled breath was obtained to measure metabolites. Blood and urine were 
collected for lipidomic, proteomic, and transcriptomic analysis. Some subjects underwent 
genetic analysis, plethysmographic measurements, and high-resolution lung computed 
tomography. The subjects were reinvited 12–18 months after baseline visit to assess 
longitudinal data.  

The subjects were assessed thoroughly using a large number of questionnaires, including the 
Asthma Control Questionnaire (ACQ5), the Asthma Quality of Life Questionnaire (AQLQ), 
the Hospital Anxiety and Depression Scale (HADS), the Sino-Nasal Outcomes Test 
(SNOT20), the Epworth Sleepiness Scale (ESS), and the Medication Adherence Report Scale 
(MARS). 

Details of the cohort are described by Shaw et al. [166]. 

4.1.4.1 Ethical approval 

2011/1254-31/3. 

4.1.5 Biobank project 

The cohort studied in paper VI consisted of 16 healthy controls, with an even gender 
distribution. Whole blood samples were drawn into EDTA-plasma tubes. To study the 
stability of proteins in the samples, they were stored for one, three, eight, 24, and 36 hours at 
4°C and 22°C before centrifuging and separating plasma. 

Details of the cohort are described by Shen et al. [167]. 

4.1.5.1 Ethical approval 

2011/341-31/3, addition 2013/703-32. 
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4.2 SAMPLING THE LUNG 

4.2.1 Bronchoscopy 

In both paper II and paper III, bronchoscopy was used to collect samples. Bronchoscopy is a 
procedure to collect samples from the lung to facilitate the study of inflammation in the lung 
at the site of injury. During bronchoscopy, a flexible fiber optic tube is inserted through the 
nose to the middle-lobe bronchus. The distal airways are rinsed using phosphate-buffered 
saline (PBS) and the recollected bronchoalveolar lavage (BAL) fluid contains BAL cells 
which are immune cells including mostly macrophages, but also lymphocytes, neutrophils, 
eosinophils, and mast cells. The cell differentials vary between diagnosis, and may thus be 
used as diagnostics for lung diseases.  

The BAL fluid also contains EVs, including sEVs. As these can both inhibit and stimulate 
immune responses and their content varies depending on diagnosis, they are also interesting 
to study. 

Epithelial cells (BEC) can be collected by taking brushings during bronchoscopy. They are 
part of the immune system and release chemokines to attract immune cells to the lung. 

Lung tissue can also be collected using biopsies to study lung tissue, which can be examined 
through microscopy. Using biopsies in the COSMIC study showed alterations of Mucin 
(MUC) macromolecules in basal cells and goblet cells and of epithelial growth factor receptor 
(EGFR) in basal cells and ciliated cells [168]. 

4.3 PAPER I 

4.3.1 OPLS modeling using SIMCA 

SIMCA is a tool for multivariate analysis produced by Umetrics (now part of Sartorius). It 
uses a graphical user interface with user friendly workflow which ensures quick startup in 
modeling. However, when performing modeling more frequently this becomes tedious due to 
the manual repeated procedures. One of the multivariate methods used in SIMCA is OPLS 
discussed in section 2.1.8. SIMCA was used to produce OPLS-DA models for paper VI, 
paper II, and at the beginning of paper IV. 

When creating OPLS models in SIMCA the maximum missing values can be set which in 
this thesis is set to 25%. PCAs to analyze for detecting outliers and also to verify that the 
normalization is appropriate. 

4.3.2 Initiating the roplspvs project 

When comparing clinical differences between cluster 16 groups in SIMCA, some models that 
had been deemed significant using SIMCA CV- ANOVA and permutations post variable 
selection even if models pre variable selection were deemed insignificant using permutations 
sans variable selection. It was therefore suspected that the models could have random 
variance. To investigate whether the models were produced from random variance, they were 
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permutated over variable selection in SIMCA. Since the procedure of permutations over 
variable selection is very time-consuming in SIMCA, only five permutations were performed 
for five comparisons. This showed that four of the comparisons had permutated models with 
higher R2 than the unpermutated model, and three had Q2 that was higher indicating that the 
models might be produced from random data. To be able to create more permutations, a 
script in R that performed permutations over variable selection was created. This resulted in 
the package and workflow named roplspvs. 

4.3.3 The roplspvs workflow 

The roplspvs consists of a workflow that runs the roplspvs function which renders 
rmarkdown files to create html files. One html file is created for each comparison consisting 
of score plots and p(corr) plots that describe the predictive component separating the groups. 
In addition, figures are produced describing the optimization of the model and the 
significance of the models. Parameters are added to configure files that are separated into 
basic required settings and advanced settings containing the default settings. The identified 
variables containing potential biomarkers are returned as text files. 

 

Figure 6. Workflow of roplspvs uses rmarkdown to produce one html file for each 
comparison, one summary file summarizing all model statistics and one text file containing 
tables of selected variables for all model strategies models of all comparisons. 

4.3.4 Pre-process 

The dataset was pretreated according to the schedule in Figure 7. LLD is the lowest amount 
that can be detected during an analysis. According to FDA, LLD should be determined by 
measuring blanks and adding three times standard deviation, which should be at least three 
times the blank. LLQ is the amount that may be quantified, and should be at least ten times 
the blank. If selecting to replace 0 or NA with LLD, roplspvs calculates LLQ as the lowest 
value in the dataset after removing 0 and NA. LLD is calculated by dividing LLQ by three. 
This includes optionally replacing 0 with NA or lower limit of detection (LLD) and replacing 
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NA with LLD. A userset value for LLD may be chosen. Data filtering is performed, allowing 
for a userset missing value tolerance for each group in each comparison.  

 

 

Figure 7. Preprocessing steps in roplspvs including 0 value and missing data (NA) handling, 
filtering of NAs, transformation, mean centering and unit variance (UV) scaling. 

4.3.1 OPLS modeling using roplspvs 

PCA and OPLS modeling is performed using the R package ropls by Thevenot [169]. 
Outliers can be controlled for in the PCA plots included in the html. Roplspvs applies the 
ropls default setting using NIPAL (Nonlinear Iterative Partial Least Squares) for missing data 
if NAs are not filtered away or replaced by LLD. NIPAL is a method developed by Wold in 
66 [170] to impute a value for missing data. It builds on PCA and PLS, using an iterative 
procedure until it converges to a value for the missing data. Mean centering subtracts the 
average of all subjects from each data point. Unit variance (UV) scaling involves dividing 
each data point by the standard deviation (SD) of all subjects. The UV scaling allows 
variables with low abundance to contribute to the model equally with high abundance 
variables. If applying UV, it is therefore important to filter out variables lower than LLD to 
make sure models are not found that build on data from the blank. 

The roplspvs package creates models even if the Q2 is negative enabling the models to be 
created continuously without interruptions.  

4.3.2 Variable selection 

The features that contribute the most to the model are extracted using p(corr) or optionally 
also using VIP. P(corr) of a variable is the Pearson correlation between the raw data and the 
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scores of the model, i.e., a measure of how well a variable correlates with the model. The 
cutoff for p(corr) is set by the user either to a value or to correspond to a p-value for the 
Pearson correlation. VIP is a relative measure of how much the variable contributes to the 
model. If VIP is larger than one, the variable contributes more than average to the model.  

If no model is created due to too high p(corr) value resulting in no variables being selected, 
roplspvs returns NA. 

4.3.3 Five model strategies 

The five different model strategies in the package have different goals (Figure 8). The first 
modeling strategy enables the user to select the number of orthogonals and p(corr) cutoff. 
This allows to use the package to test the significance using permutations over variable 
selection on models optimized using other tools roplspvs. It also allows the user to investigate 
a model that has not been optimized. When model parameters are not optimized, this removes 
the bias in the permutation over variable selection of having the tested model using optimized 
p(corr) cutoff and the permutated models being less optimized by using the same p(corr) 
cutoff. 

Choosing a p(corr) cutoff corresponding to a p(pearson) cutoff in modeling strategy 2, 
includes all variables that are significantly correlated to the model. Having a larger selection 
of variables is useful for pathway analysis, as finding more genes related to a pathway 
increases the power to identify an altered pathway.  

For other purposes, it is often desirable to extract the variable that builds a model that is most 
predictive. This is achieved in modeling strategy 3. Optimizing the predictability by 
maximizing Q2 is a means of finding the variables that are most likely to be able to 
discriminate the groups in a new dataset. This is valuable in the search for biomarkers for 
diagnosis and therapeutics. At the same time as Q2 is kept high, the difference between R2 
and Q2 is kept low to avoid selecting an overfitted model. Adding too many orthogonals 
results in R2 increasing without Q2 increasing, resulting in overfitting of the model. Here, we 
aim – if possible – to keep R2–Q2 below 0.2 and p[R2 and Q2 permutated post variable 
selection] is kept low. A detailed description of how this is performed is shown in Figure 9.  

For some datasets, modeling strategy 3 still results in a large number of variables, and 
modeling strategy 4 can be used to reduce the number of variables even further. The variable 
pcorr_diff describes the minimum increase in p(corr) cutoff that can allow a 1% decrease in 
Q2 using the formula  

Δpcorr / (ΔQ2/Q2*100)< pcorr_diff 

This results in a model and fewer variables but a slightly lower Q2 than modeling strategy 3. 
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Figure 8. Overview of the five modeling strategies in roplspvs. The p(corr) cutoffs used in 
each modeling strategy are shown. 

 

 

Figure 9. Details for choosing p(corr) cutoff for modeling strategy 3 and 4 in roplspvs with 
userset parameters set in red. 

4.3.4 Number of orthogonals 

In early versions of the ropspvs script, the number of orthogonals were optimized using a 
similar procedure to when choosing p(corr) cutoff. Q2 post variable selection was optimized, 
keeping the difference between R2 and Q2 as well as p[perm post v.s.] low. Using these 
settings in the small sample investigation gave the same results as using the ropls default 
settings for the number of orthogonals, indicating that the overfit observed in the small 
sample size study was not due to overfit of the model pre variable selection. However, to 
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avoid overfitting of model pre variable selection, the default settings of the orthogonals were 
applied in the package. Orthogonals optimized post v.s. were used in models in paper III (the 
LUNAPRE project) and in paper V (the U-BIOPRED carnitines project). Orthogonals 
optimized post v.s. were used for modeling focused subjects and default ropls setting were 
used for modeling all subjects in paper IV (the U-BIOPRED handprint project). 

4.3.5 Permutations 

Model validation is performed using permutation sans, post, and over variable selection 
(Figure 10). 

The permutation procedure is initiated by randomizing the group labels of the subjects. This 
creates a new randomized dataset. Fitting a model using this randomized dataset produces a 
model created from random variation in the actual dataset to be tested. The number of 
permutations is set by the user. Finally, the statistics of the permutated models are compared 
to the statistics of the model to be validated. The percentage of a model statistic of the 
permutated models that is better than the model statistic of the model to be validated 
represents a non-parametric method for determining the p-value of that model statistic. This 
gives the p-value of R2 and Q2 permutated without variable selection termed p[R2 perm. sans 
v.s.] and p[Q2 perm. sans v.s.]. 

The permutations can also be performed by randomizing the group labels of the dataset 
containing the variables after variable selection, creating permutated models post variable 
selection. Comparing these permutated models to the model to be validated results in p-
values of R2 and Q2 permutated post variable selection, p[R2 perm. post v.s.] and p[Q2 perm. 
post v.s.].  

Using the permutated datasets sans variable selection and performing variable selection on 
each permutation results in different variables being selected for each permutation. Fitting 
models to these permutated selected datasets enables us to find permutated models over 
variable selection. By comparing those permutated models over variable selection with the 
model to be validated post variable selection, a p-value over variable selection can be 
established. This verifies that the variable selection procedure results in a model that is 
significantly better than a model post variable selection produced from random variance in a 
dataset. 

Sometimes the randomized labels happen to be the correct settings for the labels by chance. If 
this happens more often than the significance level, the model to be validated is deemed 
insignificant also when otherwise deemed significant. The smaller the sample size, the greater 
the risk of having the correct label setting at random. In some tools the randomly correct 
labeled permutations are removed, but here the permutations are performed without removing 
the correct labels. To control for having the correct labels at random, the permutation plot or 
table can be studied. The permutation plot shows the correlation between the permutated R2 
and Q2, and the correlation coefficient between permutated subject labels and unpermutated 
subject labels. The correct labels have a correlation between permutated and unpermutated 
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subject labels that equals 1. It should also be verified that the correlation in the plot is 
positive, with higher R2 and Q2 for models that have stronger correlation between permutated 
and unpermutated subjects. Permutation plots over variable selection are added by roplspvs in 
addition to the ropls permutation plots of sans and post variable selection. An example of a 
permutation plot over variable selection is shown in Figure 7 paper 1. 

 

 

Figure 10. Workflow for estimating significance level by permutations sans, post and over 
variable selection using roplspvs. 

4.3.6 Establishing an adjusted Q2  

As suggested by Lindgren et al. [45], the overfit may be established for a specific dataset by 
the difference between the average of Q2 of the permuted models over variable selection and 
the average of Q2 of the permutated models sans variable selection. This difference 
establishes the average increase in Q2 during variable selection in the specific dataset. This 
difference in Q2 may contain an actual enhancement of the model by removing unrelated 
variance, and may also contain a measure of the overfit of the model.  

By removing the calculated overfit from the Q2 post variable selection, we create an adjusted 
Q2 which should represent a prediction without overfit. If this adjusted Q2 is negative, the 
model should be rejected and considered insignificant. A limit for how low it can be and still 
represent a model remains to be evaluated. 

4.3.7 SUS plots 

To compare two models from roplspvs, correlation plots of p(corr) for each variable in each 
model are plotted in a so-called shared and unique structure (SUS) plot [171]. These are easy 
to create for models pre variable selection where all variables are present in both models. 
Models post variable selection are trickier to compare, as the variables selected in the models 
differ. Therefore, to compare models post variable selection, the variables from both models 
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were used to fit a new model. For the visualization, p(corr) is selected firstly from the original 
model and secondly from the newly fitted model. The variables are colored for being shared 
or unique to each model. The names in the plot can be substituted for new names. 
Alternatively, the length and part of the name can be userset. 

The SUS plot gives an overview of whether the same variables drive the models or whether 
the variables are unique for each model. The variables that cluster along the positive diagonal 
contribute similarly to the models, and variables that cluster along the negative diagonal 
contribute inversely. Variables along the axes contribute uniquely to one model. 

4.3.8 Qualitative variables 

To be able to analyze the clinical data in paper IV, roplspvs was developed to analyze 
variables with qualitative data. All variables containing characters are transformed into 
dummy variables using the package fastDummies. This is set to “remove selected columns”, 
which is the original column containing the character data the dummy variables are created 
from, but leaves all dummy variables by setting the variable “remove first dummy” to false. 
Keeping all dummy variable results in some redundant information, but makes it easier to 
view how all settings effect the model. 

 

4.4 PAPER II 

4.4.1 Isolation of EVs 

For paper II, the sEVs were isolated using serial ultracentrifugation starting at 3000 g for 20 
minutes to remove cell debris, followed by 10000 g for 30 minutes, 4°C using a rotor Ti45 
from Beckman Coulter to remove large to medium vesicles, and finally pelleting the EVs that 
are enriched in sEVs using 140 000 g for 2 hours at 4°C with the same rotor. This fraction 
was used for the microarray analysis. 

For next generation sequencing analysis of the miRNA, the sEVs were purified further using 
a sucrose gradient. 

4.4.2 Charaterization of EVs using flow cytometry 
In paper II isolated BALF-EVs were adsorbed onto 4 μm Aldehyde/Sulfate latex beads 
(Molecular Probes, Paisley, UK), coupled with mouse anti-human HLA-DR (T-1361 anti-human 
HLA II, Clone HKB1, BMA Biomedicals, Augst, Switzerland) as previously described (36). The 
EV-bead complexes were stained with FITC–conjugated antibodies or isotype controls 
(BioLegend, San Diego, CA, USA). 

4.4.3 RNA extraction 

For the microarray analysis in paper II, RNA extraction was performed using NucleoSpin® 
miRNA kit. RNA yield, size distribution of EVs, and cellular RNA integrity were accessed 
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by gel electrophoresis using total RNA 6000 Pico LabChips and processed on Agilent 2100 
Bioanalyzer. 

4.4.4 Microarray 

The miRNA in paper II were studied using microarray. The miRCURY 101 LNA microRNA 
power labeling kit was used to label the small RNA with Cy3-CTP. These were bybridized to 
one-color Agilent custom UCSF miRNA with 894 miRNAs for the BAL cells and the 
bronchoepithelial cells and 1212 miRNA for the EVs. The raw signals were extracted with 
Feature Extraction software after removing samples with scratches. The median feature pixel 
intensity was quantile normalized before univariate and multivariate analysis.  

4.4.5 Pathway analysis 

To investigate which pathways were affected by the miRNA, those miRNA that were drivers 
for the OPLS models, were included in pathway analysis. An overrepresentation analysis 
(ORA) was performed. The list of miRNA included in each model was submitted to the 
online tool miRWalk [172] to search for target genes. Only genes found in miRTarBase were 
selected, as they are experimentally validated. Pathway analysis was performed, inputting the 
gene list into the online application KOBAS 2.0 [173]. The pathways identified were filtered 
for KEGG pathways. Finally, the R package KEGGREST was used to remove the disease- 
and drug-related pathways from the list of pathways. 

4.4.6 Next generation sequencing on RNAse treated samples 

Treating EVs with RNase is a means of investigating whether miRNA is located inside the 
EVs or on the surface. To investigate if the miRNA analyzed using microarrays was located 
within the extracellular vesicle samples, one pool of samples from healthy individuals and 
one pool of samples from smokers were prepared. The EVs were enriched for sEVs by 
differential centrifugation and by sucrose gradient. Half of the samples were treated with 
RNase as this would result in degradation if the miRNA was located on the surface.  

The miRNA extraction was performed using the NucleoSpin miRNA kit. An miRNA library 
was prepared using the Illumina TruSeq adapter and inhouse set of indexed primers for 
multiplexing. Pippin Prep with size selection was used to collect segments of 134-170 bp. An 
adaptor length of 125 nucleotides corresponds to small RNA of 9-45 nucleotides being 
captured. The Agilent Fragment Analyzer was used for quality control. 

The UPPMAX cluster was employed to set up the workflow using Cutadapt-FastQC with 
Trim Galore to perform the trimming to around 22 nucleotides as that is the usual length of 
miRNA. The adapters were set to be autodetected. FastQC was used and showed that the 
sequence length was 15-23 bp. To choose the alignment tool, the results from Bowtie1 and 
Bowtie2 were compared. This showed that some additional miRNA were detected using 
Bowtie2. As Bowtie1 is recommended for fewer than 50 base pairs, and it was suspected that 
gaps were allowed using Bowtie2, Bowtie1 was used for alignment to mature and hairpin 
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miRNA base pairs. The sequenced miRNAs were aligned to hairpin and mature miRNAs, 
resulting in a coverage of 45-514 thousand counts and an alignment rate of 0.4-3.6%. 

The low alignment rate could be because the concentration of miRNA is very low, with only 
one miRNA copy out of 100 EVs [174]. The reason that miRNA were still present after 
RNase treatment could also be that proteins present on the surface of EVs might protect the 
RNA against degradation by binding to the miRNA. Therefore, actively bound proteins might 
still be present on the surface even though miRNA from dead cells that passively stick to the 
surface is degraded [175]. Because no protease was added to the samples, there is a risk that 
the miRNA was not degraded by the RNase even if it was present on the surface. The reason 
for the low alignment could also be that RNase is difficult to remove from the sample and 
hence risks degrading the internal miRNA. Another aspect to consider is that RNase is 
present in some bodily fluids [176], and this content could differ with diagnosis [177]. 

The data analysis was performed using EdgeR in R. The trimmed mean of M-values method 
(TMM) [178] was used for normalization as it avoids false positive rates better than other 
normalization methods do [179].  

4.5 PAPER V 

4.5.1 Mass spectrometry 

For paper V, the metabolites were analyzed with liquid chromatography–high resolution mass 
spectrometry (LC-HRMS) using a previously described method [180]. This method applied 
hydrophilic interaction liquid chromatography (HILIC) on a SeQuant ZIC-HILIC (Merck, 
Darmstadt, Germany) column, enabling the detection of hydrophilic metabolites. In addition, 
reversed phase (RP) was applied on a 1290 Infinity II ultrahigh performance liquid 
chromatography (UHPLC) system using the column Zorbax Eclipse Plus C18, RRHD to 
separate nonpolar metabolites. The LC systems were coupled to an Agilent 6550 and a 6490 
iFunnel quadrupole time-of-flight (Q-TOF) mass spectrometer equipped with electrospray 
ionization source (Agilent Technologies), using both positive and negative modes for 
hydrophilic metabolites and positive mode for the hydrophobic metabolites. A pooled sample 
for each day was prepared to use as an internal standard. 

4.6 PAPER VI 

4.6.1 Mass spectrometry 

For paper VI, the peptides derived from trypsin digestion of the proteins were analyzed with 
liquid chromatography using an analytical column from Thermo Fisher Scientific NanoViper 
Acclaim Pepmap C18 particles 3 μm (350x0.075 mm I.D.). The samples were 10-plex TMT 
with ten samples in each set. The advantage of using multiplexed isobaric labeling is that it 
minimizes variation and saves time (Figure 11). 

One of the samples was a reference sample, containing a pool with equal amounts of all 16 
study subjects. This was used to account for batch effects by expressing the levels as ratios 
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against the internal standard. Before the MS analysis, the samples were trypsin digested into 
tryptic peptides. Trypsin cleaves the peptides at arginine and lysine at the C-termini of the 
peptide, resulting in peptides from intact proteins. Semi-tryptic peptides are also formed 
which are only digested by trypsin at one end, and may be formed from degradation products 
formed during storage of the samples. To be able to analyze ten samples at a time, the 
peptides were labeled using isobaric labeling called Tandem mass tags (TMT) (Figure 11). 
This contains a reporter tag and a balancing tag with a total constant weight so that the 
labeled peptides will still weigh the same and emerge as one peak after mixing the ten 
samples. 

The eight fractions of samples were analyzed using an Orbitrap Fusion Tribrid mass 
spectrometer. Electrospray ionization source (Agilent Technologies) in positive mode was 
used. For mass spectrometry 2, the peptides were fragmented by collision induced 
dissociation (CID).  

The experimental setup for the MS analysis was that each individual was included in the 
same set, except for half of the 36-hour samples which were run in a separate set. To increase 
the number of peptides detected, a second injection was performed.  

Quantification and identification were performed using Proteome Discoverer, and a database 
search was conducted with the Mascot search engine, using the Homo Sapiens Swissprot 
database. The data was exported and analyzed at protein level, at peptide level, and using 
both tryptic and semi-trypic peptides. 

 

 

Figure 11. Workflow of mass spectrometry using tandem mass tags (TMT)  
multiplexing. The proteins are trypsin digested at arginine and lysine producing tryptic 
peptides which are TMT-labeled including balancing and reporter tag before analyzing the 
mixture of samples. The procedure decreases the variation between samples connected to 
different runs. 

 



 

 41 

5 RESULTS AND DISCUSSION 

5.1 PAPER I 

5.1.1 Results 

5.1.1.1 The roplspvs package and workflow 

Oplspvs is an R package that creates OPLS-DA models using the Bioconductor package 
ropls, and it also contains a workflow for running the package, as well as performing variable 
selection, model optimization, significance testing, creating figures, creating tables of 
biomarkers, and creating summary tables of models. Variable selection is performed using 
p(corr) cutoff, with the option of also utilizing VIP. P(corr) cutoff is defined by the user to 
optimize the predictivity of the model, as determined by cross-validation.  

The significance of the models is tested using permutations including the variable selection 
procedure, resulting in p-values for R2 and Q2 (p[R2 and Q2 perm over v.s.]) that include the 
variable selection procedure as well as permutation pre (a.k.a. sans) and post variable 
selection. The package workflow for running the package is user-friendly and flexible, with 
parameter settings in two files: one for basic parameter settings and one for advanced settings 
where default values may be changed. 

The OPLS workflow in roplspvs provides five different modelling strategies to perform 
pairwise group comparisons, including optional stratification by user-provided metadata. The 
first modeling strategy produces models with user-defined p(corr) cutoff and maximum 
number of orthogonals. This enables the user to test a model created in another software, or to 
explore another model than the one selected automatically in the script. The second 
modelling strategy includes all variables significantly correlated to the model. This selection 
of variables is optimized for pathway mapping. The third modelling strategy includes the 
variables that create the most predictive model for identifying biomarkers. The fourth 
modelling strategy provides the most stringent selection of predictive variables, and can be of 
use e.g. for selection of therapeutic or diagnostic candidates. For comparison with iterative 
modeling, a fifth modelling strategy using an iteratively increasing p(corr) cutoff is available. 
Finally, a modelling strategy 0 is also available, which provide a model without variable 
selection. After the models have been created, p(corr) of the variables in the models can be 
compared using SUS plots. Comparing models post variable selection usually involves 
comparing lists of variables that do not overlap completely. Therefore, to be able to compare 
the variables in the SUS plot, a new model including the variables from both models are 
created. For the SUS plot the p(corr) from the original model is used firstly and secondly by 
the p(corr) from the new model. Shared and unique variables of original models are indicated 
using different colors. 
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5.1.1.2 Example of an roplspvs application 

The performance of the script was demonstrated using previously published data from the 
public repository Metabolights (https://www.ebi.ac.uk/metabolights/MTBLS136/files).  

MTBLS136 is a metabolomics dataset comparing progestin (P) and estrogen (E) users with 
nonusers. We show significant models of metabolites driving separation between progestin 
and estrogen users compared to nonusers, stratifying the analysis by different age groups. 

The models comparing E+P and E-only versus nonusers were all significant using 
permutations pre, post, and over variable selection.  

Comparing E+P versus E-only gave significant models for all age groups except 56–60 and 
76–80 using permutations pre variable selection. These models also had negative Q2 pre 
variable selection, indicating models without any predictivity. Proceeding to variable 
selection, the models that were created post variable selection were significant for all age  

 

 

Figure 12. Percentage carnitines of metabolites driving models between hormone users and 
nonusers as well as between hormone users of combined hormons and single hormone users. 
Carnitines were more frequent drivers in models comparing hormone users with nonusers 
than would be expected by random contribution. Green squares: Significant model p(Q2 
permutated over variable selection)≤0.05 and positive adjusted Q2; Red squares: 
Insignificant models p(Q2 permutated over variable selection)>0.05 or negative adjusted Q2. 

https://www.ebi.ac.uk/metabolights/MTBLS136/files).
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groups except age group 76–80 using permutations over variable selection and regression 
over permutations. However, the adjusted Q2 indicated that the models were not predictive, as 
all models had negative adjusted Q2 except for the model 56–60 years old. On investigating 
which variables contributed to the models, it was found that carnitines were more frequent 
among selected variables in all age groups models compared with the frequency of carnitines 
among all metabolites (Figure 12). This is in line with what Stevens et al. showed when 
analyzing the same dataset, i.e. that acyl carnitines were lowered in post menopausal users. 

5.1.1.3 Effect of small sample sizes on OPLS model statistics 

Using the same dataset, the effect of sample size on the model statistics was investigated. A 
strong model (R2=0.57 and Q2=0.53) comparing E+P versus nonusers age group 61–65 was 
chosen representing a strong model, and a model comparing E+P versus E-only users was 
chosen as a weak model (R2=0.14 and Q2=0.10). Comparing nonusers age group 61–65 to 
each other represented a random model. A subset of samples were drawn from each group, 
creating even sample sizes ranging from four to 80 subjects. Using roplspvs, OPLS models 
were created for all sample sizes. The procedure was repeated 12 times, and the Q2 for each 
model using modeling strategy 3 was plotted against sample sizes.  

Using decreasing sample sizes resulted in increasing R2 and Q2 of models post variable 
selection to the extent that it approached 1 at the smallest sample sizes for all three 
comparisons; random model, weak model and strong model. When using permutations post 
variable selection, all models were significant including comparing nonusers with nonusers, 
i.e., in the artificial models produced as a negative reference (Figures 14A-C).  

In these models pre variable selection R2 also approached 1.0 (Figure 13), whereas Q2 only 
increased slightly in the model comparing nonusers with nonusers, was not affected in the 
weak model, and decreased in the strong model (Figures 14J-L). Using permutations sans 
variable selection discriminated well between the strong model and the model nonuser versus 
nonusers. It was only at the very small sample sizes that the strong models were insignificant. 

Using permutations over variable selection also discriminated well between the strong model 
and the model produced from nonusers versus nonusers. However, a slightly higher fraction 
of models than expected when considering significance level were deemed significant 
(Figures 14D-F). When also considering the regression over permutations, the number of 
models deemed significant on random data correlated well with the significance level 
(Figures 14G-I). 
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Figure 13. R2 of OPLS models pre variable selection of 1012 metabolites approached 1 with 
decreasing sample sizes. 

5.1.1.4 Establishing a threshold for Q2 

Q2 of models post variable selection compared to Q2 of models pre variable selection are 
compared in figure 15. The difference between Q2 post and pre variable selection in green  

 

 

Figure 15. Q2 versus group size of models comparing the groups of E+P versus Nonuser, age 
group 61-65, showing Q2 of models sans variable selection in blue, Q2 of models post 
variable selection in yellow and the difference between Q2 sans and post variable selection in 
green. Permutated overfit in purple is calculated subtracting the average of the permutated 
models sans variable selection from the Q2 of the permutated models over variable selection. 
Adjusted Q2 post variable selection in red is obtained by subtracting the overfit from Q2 post 
variable selection. 
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Figure 14. Q2 of models using Modelling strategy 3 over subsets of groups with altering size 
from a strong, a weak and a model on randomly selected subjects. The power to discriminate 
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between strong, weak model and model on random data failed using permutations post 
variable selection demonstrated by insignificant models across all samples sizes (A-C), 
colored by p[Q2 permutated post variable selection]<0.05). Permutations over variable 
selection discriminated well between resulted in the majority of the models in the weak- and 
non-models were insignificant (D-E), whereas the majority of the strong models were 
significant as long as groups were larger than 8 (F colored by p(Q2 permutated over variable 
selection). Including the significance of the correlation of the permutation correlation 
resulted in the fraction of random models being significant corresponding to significance 
level and decreasing the number of significant strong models slightly (G-I). Permutation sans 
variable selection displayed decreasing Q2 with decreasing group size (L) and resulted in the 
weak and non models being insignificant while strong models were mainly significant at 
group size larger than 8 (J-K, colored by p(Q2 permutated sans variable selection). 

show that the Q2 is increased more using small sample sizes. This represents the overestimate 
of the model but may also contain a true increase in predictability thanks to variable selection. 

That Q2 is not enhanced in the largest sample sizes indicate that this increase is only an 
overestimate. One way to estimate the overestimate is to use permuted data, subtracting Q2 of 
permutated model pre variable selection from Q2 of permutated model post variable selection 
as proposed by Lindgren et al. This overestimation in permutated models shown in purple in 
figure 15 and represent an overfit in the actual dataset under hand. To establish a Q2 that was 
not overestimated we subtracted the permutated overfit from Q2 post variable selection 
yielding a Q2 adjusted for overestimation shown in red in figure 15. 

Investigating that the overestimate of R2 and Q2 was not due to larger number of orthogonal 
components the number of orthogonals were plotted over the sample sizes (Figure 10 Paper 
1). This show that the number of orthogonals were not decreased with decreasing sample 
sizes. 

5.1.2 Discussion 

Orthogonal projections to latent structures discriminant analysis (OPLS-DA) is a supervised 
multivariate method adapted from partial least square (PLS). The workflow and package 
roplspvs were developed in the R programming platform to create an automatic and user-
friendly tool for performing the analysis and selecting variables optimized for pathway 
analysis and biomarker discovery workflows.  

The choice of using R to produce the package gives access to a large number of packages 
covering statistical and bioinformatics tools. It is highly flexible but may involve an initial 
obstacle for the user who has no previous programming experience. The workflow is 
particularly useful when the analysis is planned to be repeated on new data, but is more time-
consuming if a single analysis is to be performed 

Due to the risk of overfitting OPLS models when using small sample sizes, roplspvs includes 
thorough significance testing using permutations pre, post, and over variable selection, 
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ensuring that the models are performing significantly better than models created at random. 
Finally, the advantage of performing permutations over variable selection was demonstrated 
using the same dataset.  

Reducing sample sizes resulted in increasing R2 and Q2, which should not be the case, as 
smaller sample sizes statistically provide a lower statistical power.  

It was also shown that creating random groups from a homogenous group of subjects 
consisting of women aged 61 to 65 and modeling these groups using variable selection 
resulted in significant models using permutation post variable selection. We also showed that 
the models were deemed significant using a sample size ranging from four to 80 subjects in 
each group. This means that the procedure of variable selection has identified the biological 
variation that exists in this group. The permutations post variable selection identify these as 
significant without taking into account that these alterations were selected from a large set of 
variables.  

Using permutations over variable selection takes into account that the variables in the model 
were selected from a large number of variables. It tests whether the models are performing 
better post variable selection than models produced from random data. Here, 13% of all 
models comparing nonusers with nonusers were significant (Figures 14D) over all the 
different sample sizes used. Using a significance level of 5%, we should find 5% significant 
models. That 13% is found to be significant indicates that the model tested has been 
optimized more than the models created using random data. This may be because p(corr) has 
been optimized for the tested model, while the permutated models are not optimized and 
instead use the same p(corr) as the unpermutated model. To circumvent this effect, it is 
possible to study how the model statistics are affected by how similar the permutated group 
labels are to the correct unpermutated group labels. If the permutated group labels happens to 
be assigned with the “correct” unpermutated group labels the model statistics should be the 
same, and the more similar the permutated and unpermutated labels are, the more the model 
statistics should approach the statistics of the original model. Therefore, applying a regression 
over the permutations should result in a possitve regression coefficient for a significant 
model. When comparing nonusers versus nonusers, the regression coefficient (>0.1) and the 
p-value for the regression coefficient over the permutations (<0.05) were also considered, 
with 6% of the models being significant (Figures 14G).  

Studying the strong model comparing E+P users versus nonusers of aged 61 to 65, the 
majority of the models using small sample sizes were significant. However, reducing the 
sample sizes also resulted in many insignificant models. The reason for this may be that the 
subjects sampled in the small sample size did not represent the alteration present in the whole 
group, as the smaller the sample size is, the greater the risk for biased sampling within the 
group. Small sample sizes also increase the risk of the permutated group labels by accident 
happening to be the same as the unpermutated group labels. If more that 5% of the 
permutated group labels are accidently assigned a correct label, the model would be deemed 
insignificant, resulting in a false negative. An improvement to the script may therefore be to 
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remove the correctly labeled permutations. For now, the permutation plot or table in the html 
report or Rdata files can be investigated manually to check for correct labels.  

In conclusion roplspvs is a user friendly and automated workflow and package to run OPLS 
models including permutation over the variable selection and provides an estimate of the 
overfit due to many variables and few samples as well as an adjusted Q2 providing a 
threshold for the predictability.  

5.2 PAPER II 

5.2.1 Results 

The goal of this project was to study the miRNA cargo of extracellular vesicles (EVs) 
enriched for exosomes, isolated from BAL fluid from COPD patients versus control groups 
using the Karolinska COSMIC cohort. To avoid the strong confounding effect of current 
smoking, the aim was to compare the COPD patients with a group of smokers who had not 
yet developed COPD. The smoking effect was also studied by comparing the smokers to 
healthy never-smokers.  

5.2.1.1 Univariate and multivariate analysis 

A two-way ANOVA linear model was applied using the Limma Bioconductor package in R. 
The p-values were adjusted using the Benjamini–Hochberg method of false discovery rate 
(FDR)[181]. Given that the COSMIC cohort is designed to investigate gender differences in 
smoking-induced COPD, analyses were performed both on joint gender groups, and stratified 
by gender. The joint gender p-values were adjusted over the variables and over the joint 
gender comparisons, and the gender-separated p-values were adjusted over the gender-
separated comparisons. This resulted in large alterations when comparing COPD patients 
with healthy individuals, with 44 significantly altered miRNAs (FDR < 0.05). Comparing 
smokers with healthy individuals resulted in 40 miRNAs being significantly altered (FDR < 
0.05). Finally, comparing COPD patients with smokers resulted in no significant alterations. 

Stratification by gender in the comparisons of COPD patients versus healthy individuals 
resulted in 14 and 21 significantly altered miRNAs (FDR < 0.05) in females and males, 
respectively. The same gender stratification when comparing smokers with healthy 
individuals resulted in 26 and 14 significantly altered miRNAs (FDR < 0.05), respectively. 

Using the multivariate OPLS method via the SIMCA tool resulted in highly significant 
models comparing joint gender COPD versus healthy individuals including 41 miRNAs in 
the model (R2 = 0.75, Q2 = 0.71, p[CV-ANOVA] = 2*10-9). The significance of the model 
was also confirmed using roplspvs, which resulted in p(R2 and Q2 perm. over v.s.) ≤ 0.001. The 
gender-stratified comparisons did not generate any improvement in significance of the model, 
and the miRNAs that were altered in the joint model, to a large extent, also drove the gender-
separated models. It was therefore concluded that gender was not a major driver in these 
comparisons. 



 

 49 

Likewise, when comparing smokers with healthy individuals, the models were not improved 
following stratification by gender. The majority of the miRNAs driving both joint and 
stratified models were the same, with no strong gender dependence. The joint gender model 
was highly significant, with 36 miRNAs contributing to the model (R2 = 0.69, Q2 = 0.65, 
p[CV-ANOVA] = 1*10-8, p[Q2 perm. over v.s.] ≤ 0.001). 

In contrast, multivariate models to compare the COPD and smoking groups did not generate 
any significant model at the joint gender level. There was no significant model for females, 
but for males, a significant group separation was observed (R2 = 0.41, Q2 = 0.31, p[CV-
ANOVA] = 4.9*10-2) based on 25 miRNAs.  

The model sans v.s. had a Q2 of −0.16 and a p(Q2 sans v.s.) of 0.579, which means that the 
model before variable selection had no predictivity and was insignificant. One reason for 
developing the roplspvs script described in paper I was to evaluate whether OPLS on the 
verge of significance, such as the OPLS models comparing males with COPD and male 
smokers here, can be considered true positives based on permutating analysis. The 
permutations resulted in p(Q2 over v.s.)=0.11, whereas the model sans variable selection had 
a Q2= −0.16 with  p(Q2 sans v.s.)=0.58. Calculating the overfit of the model as proposed in 
Paper I, by the difference between average permutated Q2 post v.s. and average permutated 
Q2 sans v.s., resulting in an overfit due to small sample sizes of 0.26. Subtracting the overfit 
from the Q2 post v.s. of 0.31 resulted in the model just reaching over the threshold (adjusted 
Q2=0.05).  

5.2.1.2 Validation using qRT-PCR 

The miRNA were validated using qRT-PCR detecting 11 miRNA above LLOQ. 

5.2.1.3 Pathway analysis 

Pathway analysis by overrepresentation analysis (ORA) using the miRNA driving the OPLS 
models revealed significantly enriched pathways (p<0.001) (Table E5 paper II). Comparing 
COPD versus Healthy revealed that 18 pathways were enriched, 17 were enriched when 
comparing smokers versus healthy, and comparing male COPD patients versus smokers 
revealed that 21 were enriched. The p53 signaling pathway, as well as other cell growth and 
death pathways, were more related to smoking, and pathways related to autophagy, 
mitophagy, and tight junctions possibly being related to COPD pathology (Figure 16) 
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Figure 16. KEGG pathways targeted by the miRNAs driving the OPLS models comparing 
male COPD patients versus male healthy controls.  Related pathways are shown in the same 
color. Pathway uniquely altered in COPD patients compared to Smokers without COPD are 
circled by red rectangles. Pathways altered in both COPD vs Healthy, Smokers vs Healthy 
and COPD vs Smokers male are circled by black ovals. 

5.2.1.4 Flow cytometry of BALF-EVs 

Flow cytometry showed that surface markers CD9, CD86 and HLA-DR were more frequent 
in EVs from smokers compared to both COPD patients and to healthy controls. 

5.2.1.5 Levels of miRNA in EVs compared to epithelial cells and BAL cells 

All 134 miRNA detected in the BALF-EVs were also detected in BAL cells and all but one 
of them were also detected in BEC cells. Enrichment of miRNA in EVs compared to BAL 
cells and BEC were investigated to decipher which cells the EVs were derived from. This 
showed that twelve miRNAs were enriched in EVs in BAL compared to BAL cells and 6 
miRNAs were enriched compared to BEC (Figure E8A and B in paper II) without being 
related to abundance. The enrichment factor between BALF-EVs and BAL cells were 
significantly lower in COPD compared to Smokers for 7 miRNAs. 
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5.2.1.6 YBXI protein 

Packaging of miRNA into sEVs is an active process and the RNA-binding protein Y-box 
protein 1 (YBX1) is required for the packaging of specific miRNAs [148, 149, 182]. It was 
shown that YBX1 levels were decreased in the smokers compared to healthy individuals and 
further decreased in COPD patients (Figure E9A paper II) and that this alteration was mainly 
driven by males (Figure E9B paper II) 

5.2.1.7 RNase treated samples 

With the aim to investigate whether the detected miRNAs were located inside the EVs or on 
the surface, two pools of samples were prepared: one from healthy individuals and one from 
smokers. Half of the pooled samples were treated with RNase to degrade surface miRNA. 
After enrichment of sEVs using differential centrifugation and saccharose gradient, the 
miRNAs were sequenced using next-generation sequencing. 

The sequenced miRNAs were aligned to hairpin and mature miRNAs, resulting in a coverage 
of 45-514 thousand counts and an alignment rate of 0.4-3.6%. Of the remaining reads, 5-20% 
aligned to human ribosomal RNA, 15% aligned to genomes, and 20-65% stayed unaligned. 

Investigating the differences between the treated and untreated samples revealed that the 
miRNA contents in both samples from healthy individuals and samples from smokers were 
mostly unaffected by the RNase treatment (Figure 9A and C in paper II) and that the miRNA 
that remained detected both before and after RNase treatment correlated well (Figure 9B and 
D in paper II). Four miRNAs were degraded during RNase treatment in each pool, but there 
were also two and three, respectively, detected in the RNase-treated pools that were not 
detected before RNase treatment. 

MiRNA contents in samples from both healthy individuals and smokers correlated well 
between the RNase-treated and untreated samples. 

5.2.2 Discussion 

Several studies have shown that EVs are important factors in respiratory lung diseases. 
Alterations have been shown in cystic cystic fibrosis [130], sarcoidosis [127] and asthma 
[113, 183]. It has been shown that smoke induces EV release from lung epithelial cells which 
in its turn secreted full-length CCN1 and facilitated interleukin (IL)-8 and vascular 
endothelial growth factor (VEGF) release, as well as increased protease and matrix 
metalloproteinase (MMP)-1 production [184].  

A study has earlier shown small effects of COPD on EVs in BAL compared to healthy 
subjects and no effect of smoking [185]. By comparison large effects of COPD and smoking 
on the miRNA cargo of sEVs as well as on surface markers are shown in this study. 44 
miRNAs significantly altered (fdr<0.05) when comparing COPD patients with healthy 
individuals’ huge alteration which involves 39% of the 105 miRNA detected above the LLQ. 
Most of these alterations were shown to be due to smoking, with 40 miRNAs (35% of 
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detected miRNAs) were altered due to smoking alone (FDR<0.05). Smoking has also earlier 
been found to have strong effect on the proteome in the same cohort, with 50% of the 
proteins being altered in BAL cells [38].  

Using the overrepresentation analysis the p53 pathway was found to be the most significantly 
affected pathway in COPD patients, both compared to smokers with normal lung function, 
and to healthy never-smokers. Also, other pathways related to p53 pathways were indicated 
to be affected such as cell cycle-, cellular senescence and FoxO signaling pathways. P53 
mRNA has earlier been found to be increased primary human bronchial epithelial cells 
(HBECs) from COPD patients compared to cells from smokers [186]. Also, cells that lack 
p53 has been shown to not secrete sEVs and resume secretion if the p53 target gene transcript 
designated tumor suppressor activated pathway-6 (TSAP6) is upregulated [122].  

TNF signaling pathway, which was also targeted by miRNA from male COPD versus 
smokers, regulates NF kappa B which is a known player in COPD [187]. NF kappa B has 
also been suggested to be involved in both regulating and being regulated by p53 [188].  

The differential comparison of male current-smoker COPD patients with smokers with 
normal lung function represent the effect of COPD pathology, without confounders from 
smoking. In summary the model of COPD versus non-COPD smokers had an adjusted Q2 
that showed a predictive power just above the threshold, a significance using CV-ANOVA 
just below the 5% significance level, and a significance at a 11th percentile when using the 
relatively stringent permutation over variable selection. It is challenging to study COPD 
because of the large confounding effect of smoking that is obvious from the large alteration 
between smokers and healthy individuals. Also, considering the importance of EVs has on 
the immune system. A study indicates that EVs are involved in the damaging effect of 
cigarette smoke on epithelial cells [184]. We therefore considered a 11% significance level 
taken together with model falling above the threshold for random model to be sufficient 
evidence for a true positive, and thus performed downstream pathway analysis on this 
relatively weak male model of COPD versus smokers. However, the results should be 
considered with caution. 

The 25 miRNA driving the model correlated significantly with FEV1% predicted (r=0.65, 
p=0.04) (paper II Figure 4A). 

The male alteration of autophagy and mitophagy is in line with gender specific alterations 
that were earlier observed in the same cohort with proteome alterations in the phagocytotic 
pathways in BAL cells from females [189]  and lysosomal pathway in the same females using 
gel electrophoresis instead of mass spectrometry [89]. Both could be connected to defect 
mitochondria with dysregulation of macroautophagy. Macroautophagy is one of 3 autophagic 
pathways and has been connected to COPD [190]. The alterations in mTOR signaling 
pathway which regulates autophagy further support this connection. Both sEVs and 
lysosomal degradation originates from the late endosomes further strengthens the link. 
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MicroRNA-423-5p, which was increased in COPD patients compared to healthy in our study, 
has been identified to promote Autophagy in Cancer Cells [191]. This microRNA was also 
one out of the three identified as altered, however in opposite direction, in earlier study on 
miRNA in Evs in BAL from COPD patients [185] 

YBX1 protein has been shown to be required for packaging of sEVs [148, 149]. Here 
stepwise decreasing levels of YBX1 protein in smokers and further decreased in COPD both 
in joint gender and in males indicating a dysfunction of packaging of sEVs in COPD. 

The presence of Alix and the tetraspanins CD9, CD63 and CD81, and absence of Calnexin, 
indicates that sEVs were enriched. CD9 was increased in smokers both compared to COPD 
patients and compared to healthy.  This is interesting as mice deficient in both CD9 and 
CD81 have been shown to develop emphysema-like condition [192]. It has also been 
suggested that CD9 has a protective role against inflammation induced by smoking [193]. 
The decreased amount of CD9 in COPD patients compared to smokers may thus indicate loss 
of protection against the effect of smoke in COPD. Deficiency of tetraspanins CD9 and CD81 
has been associated with increased MMP-2 and MMP-9 production [194], both associated 
with alveolar destruction in emphysema [195].  

In conclusion, large alterations were observed in miRNA content in sEVs due to COPD and 
smoking compared with healthy never-smokers that were related to p53 pathways. Also, 
possible minor alterations in COPD compared to smokers in males which was linked to 
decrease in mitophagy and autophagy pathways. It was also proposed that the protective role 
against smoke, that CD 9 has been suggested to have, may be EV-mediated. Altogether this 
indicates that sEVs may have a protective role against smoking and that this is impaired in 
COPD effecting packaging of miRNA and secretion of sEVs. 

5.3 PAPER III 

5.3.1 Results  

In paper III, the LUNAPRE cohort was used to study the effect of bronchopulmonary 
dysplasia (BPD) in preterm born young adults. The LUNAPRE cohort is described in detail 
in table E1 in paper III and consists of a group of preterm born with BPD (gestational week 
24-31) and one without BPD as well as healthy controls and asthmatics. Previous study on 
this cohort has shown that the BPD group had lower FEV1 than healthy controls, asthmatics 
and preterm born [162]. 

The composition of surface markers of immune cells collected by bronchoalveolar lavage 
was studied in young prematurely born adults with a history of BPD, compared to control 
groups of prematurely born without BPD, as well as healthy and asthmatics born at term. 
Increased numbers of CD8+ T-cells were identified together with decreased numbers of 
CD4+ T-cells, indicating immunological alterations that correspond to the alterations found 
in previous studies investigating COPD caused by smoking [196].  
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The alterations were studied using the nonparametric Wilcoxon test and FDR analysis, 
adjusting for multiple comparisons of groups and many variables. Effect sizes were also 
calculated (Figure E5 in paper III).  

Comparing the BPD group with healthy controls, the CD8+ T-cells were higher (p = 0.005; 
P<0.03; Figure 17B). and the CD4+ T-cells was lower (p=0.014; Figure 17A) then in healthy 
controls. This result in a CD4/CD8 ratio in the BPD group being lower compared to healthy 
controls (p = 0.007; Figure 17C). The monoclonal antibody CD69 is a marker for T-cell 
activation. Comparing the preterm group with healthy controls, the proportion of 
CD69+CD4+ T-cells was lower (p = 0.01; Figure E2A paper III). When comparing the BPD 
group with the preterm group, the proportion of CD69+CD8+ T-cells increased (p = 0.01; 
Figure 17D).  

Regarding FoxP3+ T-cells, the BPD group as well as the preterm group had lower percentage 
of FoxP3+CD4+ T-cells than the asthma group and the preterm group had lower percentage 
FoxP3+CD8+ T-cells than the asthma and healthy groups. 

ELISA was used to analyze the CD8 specific markers of activity granzyme B and perforin 
was analyzed. The BPD group and the preterm group had lower concentration of granzyme B 
than healthy group (p=0.4, Figure 5A paper III) and asthma group (p=0.02 for both Figure 5B 
paper III). No significant alterations were observed for perforin over the groups. 

Significant correlations to FEV1/FVC z-scores were observed for T-CD8+ cells (r=-0.41, 
P=0.01; Figure E3B paper III) for the pooled preterm groups. There were also significant 
correlations for the pooled preterm group between FEV1 z-scores and T-CD4+ cells (r=0.38, 
P=0.026, Figure 6A paper III) as well as T-CD8+ cells (r=-0.44, P=0.009; Figure 6B paper 
III). Further, significant correlations to reversibility FEV1 z-scores were observed for T-
CD4+ cells (r=0.49, P=0.005) as well as T-CD8+ cells (r=-0.47, P=0.007); (Figure E4A and B 
paper III). Finally, PD 20 also correlated significantly with for CD4+ T-cells (r=0.47, P=0.02) 
as well as CD8+ T-cells (r=-0.60, P=0.002); (Figure E4 D and E paper III) with the pooled 
preterm groups. 

Decreased levels were observed in naïve T-cells and central memory cells in the preterm 
group (Figure 3A and B in paper II) 
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Figure 17. Comparing percentage CD4+, CD8+, ratio CD4+/ CD8+ and CD69+CD8+ of 
CD3+ cells in BPD, Preterm, Asthma and healthy groups analysed using FACS. Significance 
using wilcoxon rank sum test is indicated. 

5.3.2 Discussion 

In this paper the earlier known decrease in FEV1 in young adults born preterm with BPD 
were linked to alterations in T-cell subsets. BPD was linked to elevated levels of CD8+ T-
cells and decreased levels of CD4+ T-cells. This also correlated with poorer lung function 
with elevated percentage of CD8+ T-cells, and better lung function with more CD4+ T-cells. 
Higher levels observed for activated T-cells in the BPD group were also in line with the 
mentioned effects.  

Altogether this points in the direction that preterm born subjects with BPD have more CD8+ 
T-cells and lower CD4+ T-cells in their lungs. This indicate a disturbed balance between 
CD4+ T-cells and CD8+ T-cells.  

There is also indication that preterm birth in itself without BPD have altered T-cell content in 
their lungs, as shown by alteration in the preterm group alone. 

A number of studies have seen increased levels of FoxP3+CD4+ T-cells in BAL from 
smokers mainly with bronchitis [197] [198] 

These results correlate with findings in patients with COPD related to smoking. The elevated 
CD8+ T-cells in BAL in young adults born preterm who developed BPD is in line with 
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previous studies, indicating higher levels of CD8+CD103+ T-cells in BAL cells of smokers 
with and without COPD [197]. This strengthens the view that CD8+ T-cells have a tissue-
damaging effect, with a negative correlation to FEV1 [196].  

There were also contradictory results, with decreased FoxP3+CD4+ cells in BPD and preterm 
compared to asthma, while the levels of FoxP3+CD4+ were increased in smokers compared 
with never-smokers [197]. It has been proposed that FoxP3+CD4+ has a protective role. It is 
plausible that smokers with COPD have a protective effect of FoxP3+CD4+ that is lacking in 
individuals born very-to-extremely preterm, both with and without BPD. This would make 
this group particularly susceptible to smoking-induced COPD, and life style choices may be 
of great imporantance to these individuals.  

5.4 PAPER IV 

5.4.1 Results 

Multiomics analysis was used to subphenotype asthma patients from the U-BIOPRED 
(Unbiased BIOmarkers in PREDiction of respiratory disease outcomes) cohort using omics 
data obtained from blood and urine. Transcriptomics using microarrays from Affymetrix in 
whole blood, plasma lipidomics using mass spectrometry (MS), urine metabolomics using 
MS, and serum somalogics using SOMAmers from 223 severe asthmatics who do not smoke, 
77 severe asthmatics who smoke, and 72 mild to moderate asthmatics were subjected to 
similarity network fusion (SNF) followed by consensus clustering. This resulted in 16, eight 
and four stable clusters.  

To try to extract the variables that drove the separation of the clusters more easily and also to 
extract the clinical differences between the clusters, more homogenous clusters were created. 
Subjects were identified that grouped together independently on the number of clusters in an 
attempt to weed out the core subjects that are driving the clusters. First, subjects that cluster 
similarly between the eight and 16 clusters were selected. If less than 50% of the subjects in a 
group in cluster 16 also clustered together in cluster eight, the whole cluster 16 group was 
removed. Next, subjects that clustered similarly between clusters one and eight were selected. 
The remaining subjects were called focused subjects, and created so-called focused clusters. 
The procedure is shown in Figure 2 in paper IV. 

The clinical variables most related to the clinical picture of asthma were selected by clinicians 
in the U-BIOPRED consortium. This preselection increases the possibility of finding 
statistically significant alterations in the clinical picture. The univariate analysis using a 
statistical method suitable for the selected clinical features was performed, finding a large 
number of clinical alterations between the clusters (Table 1 in paper IV). 

To further investigate the clinical differences between the groups, OPLS modeling using 
roplspvs in paper I was performed. Pairwise comparisons were performed between all groups 
for the three different levels of clustering granularities, with four, eight and 16 clusters 
respectively, using both the selected clinical variable data set, as well as using the full clinical 
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variable data set. Creating models for all these comparisons resulted in a vast number of 
models. After attempts to perform this task using the SIMCA software, it became evident that 
this would be too time-consuming. It was also noticed that there was a need for performing 
permutation over variable selection, to control for the large differences in group sizes 
between the different cluster granularities, as well as between the full- and focused cohorts. 
This was one of the reasons for developing roplspvs workflow in paper I. The application on 
clinical data also required making it compatible with both quantitative and qualitative data in 
the independent variables. Creating models including all clinical variables was very time-
consuming, and with 1000 permutations the UPPMAX server was needed to perform parallel 
computing.  

The predictivity post variable selection for models of stable clusters on all clinical data over 
four, eight and 16 clusters are shown in Table 3 paper IV. Using only the focused subjects 
modeling the 16 cluster groups, 69% of the models were significant. For the eight clusters 
76% of focused subjects were significant, and for the four clusters 67% of models were 
significant. This means that dividing the asthmatics into 16 clusters still gave approximately 
as many significant models as when using four clusters.  

Initially, the models were created comparing groups in clusters four, eight and 16 using the 
procedure of selecting the number of orthogonals by optimizing Q2 post variable selection. 
After editing the script to use the number of orthogonals set by ropls, the 16 cluster models 
were also created using this method performing the analysis including all subjects and not 
only focused subjects. These 16 cluster models including all subjects are compared to the 16 
clusters including only stable subjects and also showing models pre variable selection is 
shown in Table 1. 

Using all subjects to create models of 16 clusters, 57% of the models pre variable selection 
were significant (p[Q2 permutated sans v.s.]<0.05), which resulted in 60% of the models post 
variable selection being significant (p[Q2 permutated over v.s.]<0.05). This can be compared 
to using only focused clusters with 51% of the models pre variable selection being significant 
and as mentioned 69% post variable selection. 

This indicates that only using the focused subjects did not enhance the models to any large 
extent. Among the models including all subjects, the number of significant models varied 
greatly between the cluster groups.  
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The number of significant models differed between the clusters indicating that some clusters 
were more related to specific clinical features. Cluster group 13 had 9 models post variable 
selection that were significant, and also had significant models pre variable selection for 
focused subjects. Including all subjects, the number of significant models in both pre and post 
variable selection increased to 13 out of 15 models. Group 16 also had 13 models that were 
significant post variable selection, but only six of these were also significant pre variable 
selection. This can be compared to cluster 12, which only had one model that was significant 
in both pre and post variable selection. 

SUS plots were created after developing a script to create SUS plots in R, including variables 
from both models to be compared. 

In addition to the OPLS models, decision trees were used for predictive modeling of the 
focused clusters to compare the clinical data. Using the selected set of variables resulted in 
75% accuracy when including all groups in the eight-cluster granularity, and 89% for the 
four-cluster granularity. This showed that the number of neutrophils was important at the 
eight-cluster level, while the number of eosinophils were important at the four-cluster level.  

5.4.2 Discussion 

Despite many treatment alternatives for asthma, there are still a sizeable group of asthma 
patients who do not get relief from the treatments currently available. Many of these patients 
are classified as severe asthmatics, and experience debilitating symptoms and frequent 
exacerbations. The overall aim of the U-BIOPRED consortium was to sub-group asthmatics 
in a data-driven manner based on molecular data, with the aim of identifying the mechanism 
that differs between the newly identified subgroups of asthmatics. This would allow possible 
new treatments to be identified. However, it is also of great interest to identify any clinical 
characteristics associated with these newly identified sub-groups of patients, in order to create 
synergy between novel molecular findings and established clinical features of asthma. As in 
any type of clustering, the result will be a core of individuals that define the core clinical 
features, and a number of less well characterized subjects that may lay in between two or 
several clusters. Here we applied a method to choose patients who are similar to each other, 
as determined by them clustering in a similar pattern across the three levels of clustering 
granularities created, referred to here as the focused clusters.  

The clinical differences were investigated using OPLS modeling resulting in significant 
differences between cluster groups in 4 group, as well as in 8 group and 16 group clusters 
using OPLS modeling. Similar proportion of models were found significant using the 
different number of groups in clusters. This indicate that there were clinical differences in 
between all cluster groups. The significance was to a large portion confirmed using 
permutation pre variable selection. Comparing the models of 16 clusters using all subjects 
resulted in only slightly larger number of significant models post variable selection but 
slightly smaller number pre variable selection. This could be an effect of a slight overestimate 
of models post variable selection using fewer subjects in the focused clusters. It could also be 
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due to a real advantage of selecting variables using the more homogenous subjects in the 
focused cluster producing more significant models post variable selection. The clinical 
differences were also investigated using random forest for predictive modelling. This also 
confirmed that there were clinical differences.  

This study is important as it identifies clusters of asthmatics with diverse clinical 
characteristics. This has previously been performed for COPD [160] in our group, which has 
shown that integration of multiple omics platforms from same subject may improve the 
statistical power significantly, and accordingly the sample sizes may be reduced without a 
penalty in the accuracy of group classification [160]. In that study, the number of subjects in 
the groups could be decreased to n=6 when integrating data from seven omics platforms, 
while still maintaining 95% accuracy. Here, four platforms were used, obtaining 89% 
accuracy when clustering the subjects into eight cluster groups, with the resulting group sizes 
ranging from n=10 to n=37. The slightly inferior performance may be due to the larger 
variability allowed in the inclusion criteria in the U-BIOPRED cohort, where e.g. oral 
corticosteroids were allowed. Also, the multicenter study design which involves samples 
being collected by different people using different equipment is bound to add to the overall 
variance of the study. In comparison, the Karolinska COSMIC cohort that the multi-omics 
power calculation study was performed on is a single center study with inclusion and 
exclusion criteria designed to create a homogenous study group.  

The weakness of this study is that no validation cohort is available to test the identified 
clustering models. This is a common dilemma with extensive multi-omics cohorts such as U-
BIOPRED and the Karolinska COSMIC cohort.  

However, the fact that the clinical differences observed between the groups identified by the 
multi-molecular clustering are highly significant provides a means of validation. Using 
univariate analysis, the most significant differences were the number of neutrophils, the use 
of daily oral corticosteroids, and alterations in alpha 1 microglobulin levels. While these are 
known variable of importance in asthma phenotyping, the more complex clinical picture 
provided by the significant OPLS models may be more informative.  

The clinical characteristics of several of the newly identified sub-groups, particularly in the 
16-granularity clusters, are likely to describe actual asthmatic endotypes that should be 
treated differently. Thus, this represents a small first step towards being able apply a more 
personalized treatment for patients with asthma. 

This paper show that there are eight or even 16 different sub-clusters of asthmatics with 
distinct clinical properties. This is an important step towards personalized treatment of 
asthma, which consists of many disease endotypes. 
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5.5 PAPER V 

5.5.1 Results 

Metabolomics analysis was performed on urine for 310 severe asthmatics who do not smoke 
(SANS), 108 severe asthmatics who smoke or have smoked, 87 mild to moderate asthmatics 
(MMAs), and 100 healthy controls from the U-BIOPRED adult cohort. 

To investigate which types of molecules were connected to alterations due to asthma, 
hierarchical cluster analysis was performed. This clustering of metabolite abundance 
identified seven groups of metabolites with alterations between the asthmatic groups. 

Using univariate methods, significant alterations (FDR < 0.05) in 40 metabolites from urine 
were found to be due to asthma. Severe asthmatics showed lower abundance of metabolites in 
clusters A (amino acids) and B (amino acids) and higher abundance in clusters C (carnitines), 
D (mixture of metabolites), and F (dietary and drug metabolites). To investigate how the 
metabolites were affected by asthma treatment, the analysis was stratified by treatment. 
Alterations in 23 metabolites due to oral corticosteroid (OCS) use were identified. Most of 
the metabolites were affected by OCS treatment, but clusters C and F were identified to be 
unaffected. 

Additionally, the multivariate method principal components–canonical variate analysis (PC-
CVA) showed that the strongest alterations that were not affected by OCS use were found in 
carnitine levels.  

Gene set variation analysis (GSVA) enrichment score (ES) was used to connect the genes to 
enrichment in pathways. The results showed that β-oxidation decreased with asthma severity 
in sputum and that fatty acid metabolism decreased with severity in sputum and in bronchial 
brushings. It was also shown that the carnitine transporter SLC22A5 was lower in severe 
asthmatics.  

To investigate what drove the alterations in carnitine levels, the entire collection of clinical 
data from the U-BIOPRED cohort was used. The carnitines were converted into a carnitine 
component, and the subjects with the highest versus the lowest quartiles were compared. 
Using roplspvs, this resulted in a significant (p[Q2 perm. over v.s.] < 0.05) model, with R2 = 
0.30 and Q2 = 0.21. The loading plot (Figure 18) shows that gender was the largest driver for 
separating subjects with high and low carnitine levels. In the MMA, sans, and healthy groups, 
the carnitine levels were higher in males (Figure E5A in paper V), and the alterations in 
carnitine levels between asthma groups were driven mainly by males (Figure E5B in paper 
V). The carnitine transporter SLC22A5 decreased with asthma severity in both sputum and 
bronchial brushings, and these alterations correlated with the FEV1% of predicted value. The 
pattern was also followed for TAC classifications, where TAC1 and 2 were lower compared 
with TAC3 in sputum fatty acid metabolism, and the sputum SLC22A5 expression was also 
lower. When comparing groups of different T-helper cells class 2 (TH2) classifications, the 
connection was not as clear. The low TH2 group had significantly lower carnitine scores than 
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the healthy controls did, but the high TH2 group did not show an altered carnitine score. A 
clear decrease was also observed for SLC22A5. 

 

Figure 18. Loading plot of clinical variables driving the separation in OPLS model 
comparing subjects with highest quartile to lowest quartile of carnitine levels. P(corr): 
Scaled loading of clinical variables 

 

5.5.2 Discussion 

The decreased levels of carnitines in severe asthmatics were identified that was independent 
of OCS treatment. 

The reduced carnitine levels, reduced β-oxidation and fatty acid metabolism, and lower levels 
of carnitine transporter SLC22A5 together with the lower carnitine levels in severe 
asthmatics indicated mitochondrial dysfunction.  

Both free carnitines and acetylated carnitines have previously been shown to be decreased in 
females [199]. Oral contraceptive use further reduces levels of free carnitines and acetyl 
carnitines compared with nonuse [200]. As mentioned in paper I, the carnitines as a group, 
specifically the acyl carnitines, were also decreased in by hormone replacement therapy in 
postmenopausal women [201]. Acyl carnitines were also, together with 12-
hydroxyeicosatetraenoic acid, the most driving metabolites separating patients with COPD 
from smokers [90]. In the same cohort, the ratio between medium and long-chain carnitines 
was lower (p < 0.05) in females with COPD versus female smokers, indicating fatty acid β-
oxidation. Women are also more affected by COPD, and women display a faster decline in 
lung function after menopause [202]. This suggests that carnitines might have a role in the 
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known connection between lung disease and sex hormones [203]. One study showed that 
reduced L-carnitines levels were associated with emphysema progression in a mouse model, 
and that supplementation improved their lung function [204]. 

In conclusion, this represents the first large-scale study identifying urine metabolites 
associated with OCS- and asthma disease, with carnitines as the largest OCS-independent 
drivers. This suggests that mitochondrial functions might be disturbed in asthma and that 
carnitine supplementation could be a potential therapy. 

5.6 PAPER VI 

5.6.1 Results 

The proteome stability in EDTA-plasma was investigated with multiplexed MS-based 
proteomics using tandem mass tags (TMT). Blood samples from healthy donors, which had 
been stored for one, three, eight, 24, and 36 hours at 24°C before centrifugation, were 
analyzed using both univariate and multivariate statistical methods. Multivariate analysis 
using PCA and OPLS modelling in SIMCA software was performed to compare samples 
from each time point with the one-hour sample (baseline) as well as with each adjacent time 
point. The analysis was performed both on joint gender groups and stratified by gender. The 
analyses were performed both at the protein level, at the tryptic peptide level, and using also 
semi tryptic peptides.  

PCA analysis showed that the sets had a tendency to cluster, indicating batch effects (Figure 
1 in paper VI). We therefore attempted to correct for theses batch effects using different 
methods for normalization, including the selection of stable peptides as normalization factors, 
using quantile normalization as well as normalizing across batches and subjects. No 
improvement in model performances was observed after normalizations, and analyses were 
performed without further normalization. Also, PCA showed that all subjects were within 
Hotelling’s T2 95% confidence interval and was not altered by normalization indicating that 
no normalization was need. 

Analysis using protein level information revealed no significant models comparing the time 
points to each other. To force a model a method of overfitting the models before variable 
selection was applied. This removes the advantage of using multivariate methods and 
approaches a method using univariate methods to filter variables.  

Comparing models in terms of protein level, resulted in significant models (CV-
ANOVA<0.05) for all timepoints comparing to baseline (Table 1 paper V1).  Comparing 
adjacent timepoints resulted in significant models (CV-ANOVA<0.05) only for the 24-hour 
sample compared to the 36-hour sample (Table 2 in paper VI). The models comparing time 
points stratified by gender did not result in better performing models.  

When comparing timepoints using peptide level information, better performing models were 
obtained when including only tryptic peptides, with all models comparing against baseline as 
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well as adjacent time points being significant. After stratifying by gender, models comparing 
against baseline were also largely significant, but as no major improvement was achieved by 
gender stratification, analysis of the joint gender groups was prioritized.  

To also include degradation-products of proteins degrading during the delay of processing, 
semi-tryptic peptide levels were also investigated. Semi-tryptic peptide models were created, 
but no enhancement of models compared to tryptic peptide models was observed. 

As the OPLS models of the joint gender comparing tryptic peptide levels were the most 
significant, we compared the peptides that were driving these models. Comparing peptide 
level models comparing 3, 8, 24 and 36 hours to one hour samples resulted in 11, 7, 18 and 5 
peptides respectively driving the OPLS models (Table 3 in paper VI). The same comparisons 
resulted in 3, 1, 3, and 34 peptides respectively being altered (p<0.05) using univariate 
analysis (data not shown).  Comparing adjacent time points i. e. 3 versus 1 hour, 8 versus 3 
hours, 24 versus 8 hours and 36 versus 24 hours resulted in 11, 7, 14, and 6 peptides 
respectively driving the OPLS models (Table 4 in paper VI). Using univariate analysis 
comparing the same adjacent time points resulted in 3, 1, 1 and 20 peptides respectively being 
significantly (p<0.05) altered using univariate analysis (data not shown). 

The peptide with sequence NIQSLEVIGK was shared by all models (Figure 19) and was also 
significant (p<0.05) comparing peptide levels at all time points to one hour sample using 
univariate analysis. The stability profile showed increasing levels over time (Figure 20A). 

MFLSFPTTK was shared driving models between 3, 8 and 24 hours to 1 hour sample (Figure 
19). 

The peptide with sequence IDSLLENDR was the peptide most driving the model between 3-
hour and 1 hour sample (Figure 19) and also driving the gender separated models. The 
degradation profile had a minimum of peptide levels at 3 hours (not shown). 

The primary driver of the separation between 8- versus 1-hour time points was 
AQGYSGLSVK, and it was also one of the most driving peptides of the separation between 
the 24- versus 1 hour samples. The degradation profile showed increasing levels of peptide 
during the 36-hour period (Figure 20B). 

DYIEFNK was the most driving out of the 5 peptides driving the separation between 1 and 
36 hours (Figure 19).  LLGEVDHYQLALGK was share between the peptides modeling the 
separation of 1 versus 24-hour and 1 versus 36-hour models (Figure 19). 

Taken together that no significant models were obtained without using an overfitted model, 
and that the number of peptides significantly altered (p<0.05) was very low with 
NIQSLEVIGK being the only significantly altered after adjusting the p-value, contribute to 
the conclusion that the proteins were stable over the time period studied of 36 hours. Also, 
calculating relative standard deviation (RSD) over all subjects and all time points at 22°C  
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Figure 19. Venn diagram showing OPLS models comparing ratio of peptide levels at 3, 8, 24 
and 36 hours to 1 hour storage at 22°C. The sequences and numbers of shared and unique 
tryptic peptides driving the models are displayed. 

 

Figure 20. Stability profiles for peptide with sequence NIQSLEVIGK which was 
significantly altered at all time points (p<0.05) and included in all OPLS models 
comparing to levels at 1 hour and AQGYSGLSVIK which was altered at 24 hours (p<0.05) 
compared to levels at 1 hour and included in OPLS model comparing 8 and 24 hours to 1 
hour. 
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resulted in 95.5% of the peptides having RSD lower than 0.3 (Figure E3 in paper VI) also 
confirmed that the proteins were stable. 

5.6.2 Discussion 

Plasma samples have sometimes been processed with delays before being stored in 
biorepositories. As such, the aim of this study aimed at finding biomarkers for degradation to 
be able to determine if samples have been exposed to processing delays. The stability of 
proteins in EDTA-plasma was assessed to investigate effect on the proteome due to delays in 
processing before freezing. Mass spectrometry with isobaric tandem mass tags (TMT) was 
used to quantify protein degradation after incubating samples at 1, 3, 8, 24 and 36 hours in 
room temperature. Analysis was performed both at the protein and peptide level, as well as by 
including semi tryptic peptides in the evaluation.  

OPLS modeling and univariate methods were used to compare the levels of peptides at all 
time points to the baseline levels at 1 hour, and also comparing all adjacent time points to 
each other. No significant models were obtained using the regular workflow, showing that the 
peptides and proteins were stable in plasma over the time period studied of 36 hours at 22°C. 
Taken together, the number of peptides altered between the time points were very limited 
when assessed with univariate statistics, and only one peptide was altered after adjusting the 
p-value (FDR< 0.05). The fact that more than 95% of the peptides had RSD below 0.3 further 
confirmed that most peptides were stable. 

Despite that most peptides were stable, further analysis using multivariate and univariate 
methods was performed to try to identify also minor alterations, and to find biomarkers of 
such processes. Models were created using an overfitting procedure in the models pre 
variable selection. NIQSLEVIGK was the only peptide driving the separation between all 
time points compared to the one hour baseline sample (Figure 18). The peptide is derived 
from the pro-platelet basic protein (PPBP, a.k.a. CXCL7, Uniprot accession no. P02775). 
PPBP is released from platelets when they are activated, and can be cleaved into 10 
polypeptide chains with different biological functions, all containing the NIQSLEVIGK 
sequence. PPBP is precursor of the 2 platelet alpha-granule proteins, the platelet basic protein 
(PBP) as well as the connective tissue-activating peptide III (CTAP3) which are further 
processed into beta-thromboglobulin (TGB) and neutrophil-activating peptide-2 (NAP2). 
NIQSLEVIGK showed increasing levels over the time period studied. NIQSLEVIGK is also 
a biomarker for preeclampsia, a complication in pregnant women, which has been validated 
[205].  

IDSLLENDR showed quickly decreasing amounts and was the most significantly altered 
tryptic peptide after 3 hours. It is derived from Clusterin (P10909) which is a protein involved 
in apoptosis [206]. 

AQGYSGLSVK is a degradation product from the adhesive glycoprotein thrombospondin-1 
(P07996) which is involved in cell-to-cell interactions and platelet aggregation [207]. This 
peptide was altered both at the 8h and 24 h time points as compared to the baseline. 
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DYIEFNK was the peptide most driving the model comparing 36-hour samples to 1 hour 
sample and is derived from Zinc-alpha-2-glycoprotein (P25311) which is a protein 
stimulating lipolysis.  

Shen et al [167] has analyzed the same samples using multiplex proximity extension assay 
which uses antibodies. They found that 40 proteins out of 139 analyzed were altered using 
Bonferroni corrected p-values (p<0.05). They suggest that the altered peptides were a result 
of proteins leaking out of cells into plasma during delay to processing, which explain the 
increasing levels we observed in the AQGYSGLSVK and NIQSLEVIGK peptides. They did 
not identify alterations in PPBP, as it was not included in their panel. This suggests that there 
is a need to run both targeted and non-targeted proteomics methods when searching for 
biomarkers. 

This study showed that proteins in EDTA-plasma were stable over the 36-hour time period 
studied at 22°C and also samples at 4°C were stable as analyzed using TMT-MS. This means 
that the effect of processing delays up to 36 hours before processing and storing samples in 
freezers probably has minor effect on the result if protein levels are to be studied. Still, a few 
altered proteins were identified using the multivariate method OPLS.  If these specific protein 
classes or platelet-related processes are to be studied, it is important to add freezer as soon as 
possible since release of these proteins occur within the 3-hour time frame. Given the 
robustness of the ROC curves generated with the identified peptides (AUC= 0.89-0.98, 
Figure 2 paper VI), the findings from this project have the potential to be formatted into 
biomarkers of stability to create a model that can predict how long the samples have been 
delayed before freezing. This would have potential to contribute to better utilization of 
biobank repositories, which are currently underused.[208-210]
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6 CONCLUSIONS 
The three diseases studied in this thesis – asthma, COPD, and BPD – are all obstructive lung 
diseases. They are mainly caused by environmental factors, but are also influenced by genetic 
factors. Both COPD and asthma are so-called umbrella diseases, which means that they show 
a whole range of endotypes with some being treatable while others show symptoms despite 
treatment with currently used therapeutics. 

Alterations between subphenotypes of asthma and COPD were identified using several 
platforms, including miRNA in EVs, metabolome, and lymphocyte composition, as well as 
clinical data. The alterations in miRNA cargo of sEVs in smokers with COPD compared with 
healthy never smokers – as well as alterations in metabolome when comparing severe 
asthmatics with mild asthmatics – were connected to alterations in pathways, indicating the 
mechanism for the endotypes.  

The workflow and package in paper I created to perform OPLS-DA analysis in R show the 
need for better approaches to significance testing than the commonly used permutation post 
variable selection, since this approach was shown to produce significant models using 
random data. Performing permutations sans variable selection was shown to better separate 
significant models from insignificant models. Finally, permutation over variable selection 
ensures that the variable selected can still be used to separate the groups significantly. It was 
also shown how decreasing sample sizes resulted in increasing R2 and Q2 of the models, and 
that permutations over variable selection are a means of testing whether the models are still 
significant when the sample sizes are small. The tool is user friendly also for people who are 
not familiar with R, and provides a tool to efficiently compare many study groups; these 
stratifications can be used on all kinds of data in a reproducible workflow, offering the 
possibility to provide a useful and necessary tool for extracting biomarkers that can be used 
not only for airway diseases, but also for other diseases. 

The workflow was applied to groups of subjects affected by COPD and BPD, as well as 
asthmatics, to identify alterations in a range of compartments. 

In paper II the alterations in miRNA cargo in EVs due to COPD and smoking linked to the 
p53 signaling pathway as well as other cell growth and cell death pathways seemed mostly 
related to smoking, while pathways related to autophagy, mitophagy, and tight junctions were 
more often linked to COPD alone. These pathways have protective effects in other diseases, 
and it is conceivable that the effects of smoking observed in the sEVs could contribute to 
protecting against the effect of smoking. This could open up a new area of treatment for 
COPD, and would be enormously welcome as there is currently no cure for this deadly 
disease. 

In paper III the elevated CD8+ T-cells and reduced levels of CD4+ T-cells in BAL among 
young adults born preterm who developed BPD identified in paper III indicate the same 
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damaging effect of CD8+ T-cells in both COPD caused by smoking and young adults born 
preterm who developed BPD. Multivariate analysis using OPLS with stratification by gender 
indicated that the alterations in CD4+ and CD8+ were mainly driven by females. This is in 
line with female infants with BPD needing oxygen for a longer time than male infants [211]. 
The understanding of the BPD mechanism is a step towards managing the malfunction of the 
lungs in youths born with BPD. 

In paper IV, the roplspvs method developed in paper I was used to identify clinical 
differences in clusters of asthmatics that had been clustered by means of integrated multi-
omics data into four, eight and 16 clusters. The clinical differences that were identified by 
pairwise OPLS comparisons were confirmed using permutation pre, post, and over variable 
selection in the roplspvs workflow. This indicate that asthmatics may be divided into separate 
endotypes and is a step towards more individualized treatment of asthma.  

Our finding in paper V, that carnitines were the most altered metabolites not related to OCS 
demonstrates that severe asthma may be linked to mitochondrial dysfunction. The gender 
differences identified indicate that carnitine levels may connect sex hormones and lung 
disease. The potential therapeutic target provided by carnitines is an important contribution to 
the field, as severe asthmatics lack efficient treatment for their symptoms on top of the 
incurable disease that asthma represents.  

In paper VI, the findings that most proteins in plasma were stable at 22°C for 36 hours may 
contribute to increased use of biobank repositories in a range of biological areas. However, 
given that proteins related to platelet activation were identified as altered as quickly as 
withing 3 hours raises some concerns. In studies associated with these processes or proteins, 
it may be important to assess the quality of biobank samples used, or to place samples in 
freezers as soon as possible. 
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7 POINTS OF PERSPECTIVE 
The studies in this thesis are a small part of a huge work to find the mechanisms of all the 
endotypes of asthma, COPD and BPD that affect people. Analyzing all different kinds of 
omics data and decipher the mechanisms of these diseases is an enormous challenge. The 
technology improvements have taken huge steps in recent years enabling analyses that were 
not possible a few years ago. Next generation sequencing together with development of 
computer technology has allowed to routinely perform whole genomes sequencing. 
Sensitivity of analysis has developed to the degree that it is now possible to analyze contents 
of single cells.  

This revolution in omics data analysis including more platforms result in a bottleneck in 
analyzing all data. The challenge of putting data together from many platforms to understand 
the big picture of systems biology has just begun. New tools are being developed enabling 
easier and more robust analysis.  

One challenge is to know that the findings are truly significant. This is challenging when the 
number of variables studied are in another dimension than when the statistical tools were 
developed making the risk of false findings increasing largely.  

This has brought a growing need to validate findings in other cohorts and this also increases 
the need for collaborations. For this reason, among others, has led to collecting samples to be 
studied in biobanks which is accessible for all researchers. A challenge is the need for each 
platform to have their own quality controls.  

Both collecting data and analyzing data use a lot of computer power this has brought 
computer clusters into frequent use. This brings another need for large collaborations. 

Last but not least has the knowledge bank grown enormously bringing another need for 
collaborations as one person cannot know everything. With collaborations there is a great 
chance of solving many puzzles. 

The long-term goal is to identify endotypes enabling individualized medicine to find 
diagnostics and therapeutics for everyone with asthma or COPD. As these diseases affect 
around 300 million people each and COPD is the third or fourth leading cause of death, this 
would substantially enhance the quality of life for a large number of people all over the globe. 
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