Learning Materials in Biosciences

Kota Miura
Natasa Sladoje Editors

N

Bioimage Data
Analysis Workflows —

Advanced Components and Methods

A =
Ocosk X
EEEEEEEEEEEEEEEEEEE neubiassty

£ & TECHNOLOGY ERNCIIECRReIN G 2 Y

OPEN ACCESS @ Springer

Learning Materials in Biosciences

Learning Materials in Biosciences textbooks compactly and concisely discuss a specific biological, bi-
omedical, biochemical, bioengineering or cell biologic topic. The textbooks in this series are based on
lectures for upper-level undergraduates, master’s and graduate students, presented and written by au-
thoritative figures in the field at leading universities around the globe.

The titles are organized to guide the reader to a deeper understanding of the concepts covered.

Each textbook provides readers with fundamental insights into the subject and prepares them to
independently pursue further thinking and research on the topic. Colored figures, step-by-step proto-
cols and take-home messages offer an accessible approach to learning and understanding.

In addition to being designed to benefit students, Learning Materials textbooks represent a valua-
ble tool for lecturers and teachers, helping them to prepare their own respective coursework.

Kota Miura - Natasa Sladoje
Editors

Bioimage Data
Analysis Workflows
— Advanced

Components and
Methods

@ Springer

Editors

Kota Miura Natasa Sladoje

Nikon Imaging Center Department of Information Technology
University of Heidelberg Uppsala University

Heidelberg, Germany Uppsala, Sweden

ISSN 2509-6125 ISSN 2509-6133 (electronic)
Learning Materials in Biosciences
ISBN 978-3-030-76393-0 ISBN 978-3-030-76394-7 (eBook)

https://doi.org/10.1007/978-3-030-76394-7
© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original au-
thor(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-76394-7
http://creativecommons.org/licenses/by/4.0/

Acknowledgement

Funded by
the European Union

ocosk

EUROPEAN COOPERATION
IN SCIENCE & TECHNOLOGY

This textbook is based upon the work from COST Action CA15124 NEUBIAS,
supported by COST (European Cooperation in Science and Technology).

COST (European Cooperation in Science and Technology) is a funding agency
for research and innovation networks. Our Actions help connect research initiatives
across Europe and enable scientists to grow their ideas by sharing them with their
peers. This boosts their research, career, and innovation.

» www.cost.eu

http://www.cost.eu

Vil

Contents

1 IntrodUuction o i
Natasa Sladoje and Kota Miura

2 Batch Processing MethodsinlmageJ...
Anna Klemm and Kota Miura

3 Python: Data Handling, Analysis and Plotting...............................
Arianne Bercowsky Rama

4 Building a Bioimage Analysis Workflow Using Deep Learning.............
Estibaliz Gomez-de-Mariscal, Daniel Franco-Barranco,
Arrate Murioz-Barrutia and Ignacio Arganda-Carreras

5 GPU-Accelerating ImageJ Macro Image Processing Workflows
Using CLI ... o
Daniela Vorkel and Robert Haase

6 How to Do the Deconstruction of Bioimage Analysis Workflows:
A CaseStudy withSurfCut........... i
Marion Louveaux and Stéphane Verger

7 i.2.i. with the (Fruit) Fly: Quantifying Position Effect Variegation in
Drosophila Melanogaster...................coooiiiiiiiiii i
Bertrand Cinquin, Joyce Y. Kao and Mark L. Siegal

8 A MATLAB Pipeline for Spatiotemporal Quantification of Monolayer
Cell Migration. e
Yishaia Zabary and Assaf Zaritsky

http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1
http://dx.doi.org/10.1007/978-3-662-62112-7_1

Editors and Contributors

About the Editors

Kota Miura Nikon Imaging Center, University of Heidelberg, Heidelberg, Germany
e-mail: kota.miura@gmail.com

Natasa Sladoje Centre for Image Analysis, Department of Information Technology,

Uppsala University, Uppsala, Sweden
e-mail: natasa.sladoje@it.uu.se

Contributors

Ignacio Arganda-Carreras Departamento de Ciencias de la Computacion e Inteligencia
Artificial, Facultad de Informatica, Universidad del Pais Vasco, Guiptzcoa, Spain
e-mail: ignacio.arganda@ehu.cus

Arianne Bercowsky Rama EPFL SV IBI-SV UPOATES AI 3133 (Batiment Al) Station
19, Lausanne, Switzerland
e-mail: arianne.bercowskyrama@epfl.ch

Bertrand Cinquin UMS3750, IPGG — Institut Pierre Gilles de Gennes, Paris, France
e-mail: bertrand.cinquin@espci.fr

Daniel Franco-Barranco Donostia International Physics Center (DIPC), Guipuzcoa,
Spain
e-mail: daniel.franco@dipc.org

Estibaliz Gomez-de-Mariscal Department of Bioengineering and Aecrospace
Engineering, Biomedical Imaging and Instrumentation Group, Universidad Carlos
111 de Madrid, Leganés, Spain

e-mail: esgomezm@pa.uc3m.es

Robert Haase DFG Cluster of Excellence “Physics of Life”, Technische Universitét
Dresden, Dresden, Germany
e-mail: robert.haase@tu-dresden.de

JoyceY.Kao Department of Computer Science, Swiss Federal Institute of Technology
(ETH) Ziirich, Zirich, Switzerland
e-mail: joyceykao@gmail.com

Editors and Contributors

Anna Klemm SciLifeLab Biolmage Informatics Facility and Department of
Information Technology, Uppsala University, Uppsala, Sweden
e-mail: anna.klemm@it.uu.se

Marion Louveaux Institut Pasteur, Paris, France
e-mail: marion.louveaux@pasteur.fr

Arrate Muioz-Barrutia Department of Bioengineering and Aerospace Engineering,
Biomedical Imaging and Instrumentation Group, Universidad Carlos I1I de Madrid,
Leganés, Spain

e-mail: mamunozb@ing.uc3m.es

Mark L. Siegal Center for Genomics and Systems Biology, Department of Biology,
New York University, New York, NY, USA
e-mail: mark.siegal@nyu.edu

Stephane Verger Umea Plant Science Center, Department of Forest Genetics and
Plant Physiology, Swedish University of Agricultural Sciences, Umea, Sweden
e-mail: stephane.verger@slu.se

Daniela Vorkel Center for Systems Biology Dresden, Max Planck Institute for
Molecular Cell Biology and Genetics, Dresden, Germany
e-mail: vorkel@mpi-cbg.de

Yishaia Zabary Department of Software and Information Systems Engineering, Ben-
Gurion University of the Negev, Beersheba, Israel
e-mail: yshaayaz@gmail.com

Assaf Zaritsky Department of Software and Information Systems Engineering, Ben-
Gurion University of the Negev, Beersheba, Israel
e-mail: assafzar@gmail.com

Reviewers

Chapter 2: Jan Eglinger, FMI, Basel, Switzerland

Chapter 3: Uwe Schmidt, Center for Systems Biology MPI-CBG, Dresden,
Germany

Chapter 3: Martin Weigert, EPFL, Lausanne, Switzerland

Chapter 4: Sébastien Tosi, IRB Barcelona, Barcelona, Spain

Chapter 5: Dominic Waithe, University of Oxford, Oxford, UK

Chapter 6: Mafalda Sousa, 13S — Advanced Light Microscopy, University of
Porto, Porto, Portugal

Chapter 7: Jonas Qgaard, Research Institute of Internal Medicine, Oslo Univer-
sity Hospital, Oslo, Norway

Chapter 8: Simon F. Nerrelykke, ETH Zurich, Ziirich, Switzerland

® :

Check for
updates

Introduction

Natasa Sladoje and Kota Miura

Contents

1.1 Introduction - 2

References - 5

© The Author(s) 2022
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows—-Advanced Components and Methods,
Learning Materials in Biosciences, https://doi.org/10.1007/978-3-030-76394-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76394-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-76394-7_1

N. Sladoje and K. Miura

1.1 Introduction

Bioimage analysis is often regarded as a technical task that can be solved simply by
the development of new and more sophisticated image processing algorithms. This
may be true to a large extent, but the complexity encountered in the actual usage
of those algorithms during the analysis leads to a number of challenges that leave
researchers with a thought that ““Bioimage analysis is difficult” .

To provide structure and organization in this complexity, and by that to enable
and simplify users’ navigation through it, the Network of European Bioimage Ana-
lysts (NEUBIAS) has been systematically looking at the computational tools and
algorithmic resources of bioimage analysis with a slightly higher resolution, identify-
ing components, collections, and workflows (Miura et al., 2020). Each of these terms
define different types of computational tools. Component is an implementation of
a certain image processing or analysis algorithm; Collection is a software package,
or a library, that includes many valuable (possibly independent) components, and is
offered as a collection of downloadable files, ready to be used; Workflow is created
by assembling the components (e.g., from one or more collections) into a sequence of
image processing and analysis steps, to solve a certain biological question. Workflows
typically take raw image data as input and aim at delivering parameters of biological
systems and/or visualization of the system analysis results as an output.

For creating a workflow, knowledge of the characteristics of various components
and their behavior against image data is required. At the same time, one needs to
know some standard methods for assembling components into workflows. Further-
more, the ability of a user to use programming language becomes mandatory, as it
dramatically enhances the range of components one can select from, and increases
the efficiency of automated analysis. Moreover, presenting a workflow in the form of
a computer program can be regarded as a highly recommended scientific practice for
method reproducibility. Therefore, the training in bioimage analysis should ideally
include the three main elements: component-related literacy, programming language
fluency, and workflow design.

In the previous textbook (Miura and Sladoje, 2020) prepared by, and for, the
NEUBIAS community, as well as in the earlier BIAS textbook (Miura, 2016b), we
focused primarily on introducing the main principles of workflow design, and how
to implement workflows using scripting languages such as Image] Macro, MAT-
LAB, and R. We selected this particular approach with an aim to reduce the imbal-
ance between the vast amount of already existing literature and textbooks focused
on image processing and analysis algorithms (i.e. components), in comparison with
scarce resources for learning how to design and implement bioimage analysis work-
flows. Contributing authors were asked to provide a holistic view of a bioimage
analysis task, starting with introducing the biological background relevant for their
chapter, and describing the biological research question that they want to address
by a fully-coded and reproducible image analysis workflow. In addition, they were
expected to provide a detailed explanation of the code, and — finally — interpretation
of the results of the performed analysis, in terms of the biological question in focus.
These contributions narrowed the gap, at least to some extent as we believe, between
the ever growing number, excellence, and complexity of image analysis components
on one side, and the biological questions to be addressed by them, on the other side.

Introduction

The textbook was warmly endorsed by the community of life scientists, as well as
bioimage analysts, who have been using it as a valuable resource.

The Network of European Bioimage Analysts has been continuously growing,
in terms of size and competence. Via education and communication, supported by
numerous training sessions, dedicated conferences, research collaborations, discus-
sion forums and several other activities, our members have learned many of the tech-
niques used in the highly multidisciplinary field of bioimage analysis. To best respond
to their needs, we have decided to widen the scope of this new Bioimage Analysis text-
book in two ways.

Firstly, we have included several chapters devoted to components, in response to
the increasing demand to use the cutting-edge algorithms and follow the most recent
trends in the field of bioimage analysis. In our opinion, this demand is a direct con-
sequence of the narrowed gap in interdisciplinary competences and communication
between life scientists (biologists) and computer scientists, and increased competences
of bioimage analysts who have become more skilled in bridging those two fields.
We appreciate this as a valuable outcome of various efforts made by the NEUBIAS
community: Increased interest and utilization of high-end components in life sciences
result from the presence of the new experts. Note that, however, the authors of these
“component” chapters preserved the main flavour of our textbooks — the biologi-
cal context, exemplified by use-cases of the presented components, possibly within
workflows.

Secondly, the increase in the number of bioimage analysts, but also in the level of
their skills and competences, has motivated us to include another novel form of con-
tributions: “workflow deconstruction” chapters. This pedagogical approach in bioim-
age analysis training has been proposed by Jean-Yves Tinevez and Kota Miura,
inspired by the “Deconstruction” concept introduced by postmodern philosopher
Jaques Derrida, and developed during the NEUBIAS Training Schools for Bioim-
age Analysts in several editions between years 2016 and 2020. The aim has been to
maximize the learning experience in workflow design by learning to generalize the
knowledge and techniques gained from a small sample of well selected examples of
workflows, deconstructed and discussed in detail with respect to how components
are assembled and critically evaluated within the design. This approach was suitable
for the trainees proficient in computer programming and experienced in usage of a
variety of components; these were primarily professional bioimage analysts. We hope
that “workflow deconstruction” chapters included in this book provide insight in the
essence of workflow design, and also ignite readers’ creativity in suggesting their own
novel bioimage analysis workflows.

As a result, this Volume 2 collection includes seven chapters. The book starts
with discussion on ““Batch Processing Methods in ImageJ” (» Chap. 1), and presenta-
tion of tools available in “Python: Data handling, analysis and plotting” (» Chap. 2),
both aiming to increase the fluency in programming languages, ““tidy’’ data handling,
and environments widely used in bioimage analysis. The subsequent chapters are
focused on components: ““Building a Bioimage Analysis Workflow using Deep Learn-
ing”” (» Chap. 3) and “GPU-accelerating ImageJ Macro image processing workflows
using CLIJ” (» Chap.4); both describe ways to include cutting-edge components
into a variety of workflows, responding to clear demands from the bioimage anal-
ysis community. We continue, and conclude, with three chapters devoted to work-
flow deconstruction, putting in focus three different biological problems, and sug-

http://dx.doi.org/10.1007/978-3-030-76394-7_1
http://dx.doi.org/10.1007/978-3-030-76394-7_2
http://dx.doi.org/10.1007/978-3-030-76394-7_3
http://dx.doi.org/10.1007/978-3-030-76394-7_4

N. Sladoje and K. Miura

gesting and analysing their original suggested solutions: “‘SurfCut macro deconstruc-
tion” (» Chap.), “i.2.i. with the (fruit) fly: Quantifying position effect variegation in
Drosophila melanogaster” (» Chap. 6), and “4 MATLAB pipeline for spatiotemporal
quantification of monolayer cell migration” (» Chap. 7). These chapters require cer-
tain literacy in programming, but offer numerous valuable tips out of which many
are generally applicable. In particular, » Chap. 5 aims to provide an introduction to
the concept and practice of “workflow deconstruction”, demonstrating the process
in detail. » Chapters 6 and 7 follow with examples of very successful original designs
and utilization of image analysis workflows to perform detailed and unique analysis
of extracted biological parameters.

» Chapters 1, 3, 4, 5, and 6 require some basic knowledge of ImageJ macro lan-
guage. If lacking it, the readers are referred to “Image] Macro Language” (Miura,
2016a). » Chapters 2 and 3 assume basic knowledge of Python programming.
» Chapter 7 requires basic knowledge of MATLAB programming. There are numer-
ous available resources to support readers to meet these requirements; in particular,
we mention “Introduction to MATLAB” (Monzel and Mohl, 2016) and “Introduc-
tion to MATLAB” (Nerrelykke, 2020), the former being general and basic, and the
latter slightly more advanced.

This textbook is the 2" bioimage analysis textbook published as an output of
the common efforts of NEUBIAS, funded under COST Action CA15124. We would
like to thank the project workgroup (WG) leaders: Sebastian Munck, Arne Seitz, and
Florian Levet (WG1 ““Strategy’); Paula Sampaio and Irene Fondon (WG2 “Out-
reach”); Gaby Martins and Fabrice Cordeliéres (WG3 ““Training); Perrine Paul-
Gilloteaux and Chong Zhang (WG4 “Webtool biii.eu’); Sébastien Tosi, Graeme Ball
and Raphaél Marée (WGS “Benchmarking and Sample Datasets”); Julia Fernandez-
Rodriguez and Clara Prats Gavalda (WG7 ““Short-Term Scientific Missions and
Career Path’); and Julien Colombelli (the Action Chair). Their efforts to create a
synergistic effect of the diverse workgroup activities towards the establishment of
“Bioimage Analysts” is the strong backbone that has led to the successful realization
of this book as a result of WG6 “Open Publication” (led by Editors). We are very
much grateful to the reviewers of each chapter: Jan Eglinger, Uwe Schmidt, Martin
Weigert, Sébastien Tosi, Dominic Waithe, Jonas @gaard, Mafalda Sousa, and Simon
F. Norrelykke. Their critical comments largely improved the presented content. We
are particularly grateful to the authors of each chapter: Anna Klemm, Kota Miura,
Arianne Bercowsky Rama, Estibaliz Gomez-de-Mariscal, Daniel Franco-Barranco,
Arrate Mufloz-Barrutia, Ignacio Arganda-Carreras, Daniela Vorkel, Robert Haase,
Bertrand Cinquin, Joyce Y. Kao, Mark L. Siegal, Marion Louveaux, Stephane
Verger, Yishaia Zabary, and Assaf Zaritsky; for their selfless commitment to meet the
demanding requirements of the publication format that we have chosen. The publi-
cation of this book was enabled by the financial support from the COST Association
(funded through EU framework Horizon2020), through the granted project “A New
Network of European Bioimage Analysts (NEUBIAS, COST Action CA15124)”.
Finally, we wish to thank all members of NEUBIAS who, with their enthusiasm and
commitment to the network’s diverse activities, have contributed to keep the momen-
tum of the initiative constantly high, a vital element to enable it to reach its objectives,
including the publication of this book.

http://dx.doi.org/10.1007/978-3-030-76394-7_5
http://dx.doi.org/10.1007/978-3-030-76394-7_6
http://dx.doi.org/10.1007/978-3-030-76394-7_7
http://dx.doi.org/10.1007/978-3-030-76394-7_5
http://dx.doi.org/10.1007/978-3-030-76394-7_6
http://dx.doi.org/10.1007/978-3-030-76394-7_7
http://dx.doi.org/10.1007/978-3-030-76394-7_1
http://dx.doi.org/10.1007/978-3-030-76394-7_3
http://dx.doi.org/10.1007/978-3-030-76394-7_4
http://dx.doi.org/10.1007/978-3-030-76394-7_5
http://dx.doi.org/10.1007/978-3-030-76394-7_6
http://dx.doi.org/10.1007/978-3-030-76394-7_2
http://dx.doi.org/10.1007/978-3-030-76394-7_3
http://dx.doi.org/10.1007/978-3-030-76394-7_7

Introduction

References

Monzel C and M6hl C (2016) Introduction to MATLAB. In: ‘Bioimage Data Analysis. Wiley-VCH, Wein-
heim, pp 63-97. https://analyticalscience.wiley.com/do/10.1002/was.00050003

Miura K (2016a) ImageJ Macro Language In: Miura K (ed) Biomage data analysis. Wiley-VCH, pp 19-62.
https://analyticalscience.wiley.com/do/10.1002/was.00050003

Miura K (ed) (2016b) Bioimage data analysis. Wiley-VCH, Weinheim. https://analyticalscience.wiley.com/
do/10.1002/was.00050003

Miura K, Paul-Gilloteaux P, Tosi S, Colombelli J (2020) Workflows and Components of bioimage analy-
sis. In: Miura K, Sladoje N (eds) Bioimage data analysis workflows. Learning materials in biosciences.
Springer International Publishing, Cham, pp 1-7. https://doi.org/10.1007/978-3-030-22386-1_1

Miura K, Sladoje N (eds) (2020) Bioimage data analysis workflows. Learning materials in biosciences,
Springer. OCLC: 1127266601. https://doi.org/10.1007/978-3-030-22386- 1

Norrelykke SF (2020) Introduction to MATLAB. In: Miura K, Sladoje N (eds) Bioimage data analysis
workflows. Learning materials in biosciences. Springer International Publishing, Cham, pp 97-141.
https://doi.org/10.1007/978-3-030-22386-1_5

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s Creative Com-
mons license, unless indicated otherwise in a credit line to the material. If material is not included in the
chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

https://analyticalscience.wiley.com/do/10.1002/was.00050003
https://analyticalscience.wiley.com/do/10.1002/was.00050003
https://analyticalscience.wiley.com/do/10.1002/was.00050003
https://analyticalscience.wiley.com/do/10.1002/was.00050003
https://doi.org/10.1007/978-3-030-22386-1_1
https://doi.org/10.1007/978-3-030-22386-1
https://doi.org/10.1007/978-3-030-22386-1_5
http://creativecommons.org/licenses/by/4.0/

® :

Check for
updates

Batch Processing Methods
in ImageJ

Anna Klemm and Kota Miura

Contents

2.1 Introduction -9

2.2 Types of Batch Processing Methods in ImageJ - 9
2.3 Tools-10

24 Dataset - 10

2.5 Core Workflow for Processing a Single Image - 10
2.6 GUI-Based Methods - 12

2.7 Scripting-Based Methods - 13

2.7.1 Preparing the Code for Batch Processing — 13
2.7.2 Imagel) Macro, 1J1 - 13

2.7.3 Two Different Methods to Get User Input - 17
274 ImageJ Macro, Scijava — 18

2.7.5 Command-Line Headless Methods — 19

2.8 Collecting Measurement Results During Batch
Processing - 21

2.8.1 Collecting Measurements Within an Array — 21

2.8.2 Collecting Measurements Within a Table - 22

283 Collecting Measurements When Using SciJava - 23

29 Application to Bioimage Analysis - 23

Solutions to the Exercises - 25

This Chapter has been reviewed by Jan Eglinger, FMI Basel, Switzerland.

© The Author(s) 2022
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows—-Advanced Components and Methods,
Learning Materials in Biosciences, https://doi.org/10.1007/978-3-030-76394-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76394-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-76394-7_2

8

A. Klemm and K. Miura

References - 27

What You Will Learn in This Chapter

In this chapter you will learn how to execute a workflow on not only one image but on
several images in ImageJ —a technique that is called ‘“Batch Processing”. Various ways of
doing this are possible in the Fiji distribution of ImageJ, and the characteristics of each and
how-to are cxplaincd.l

2.1 Introduction

As many people may think, the most prominent power of a computer is the automa-
tion. This is also the case with image analysis in life sciences: the automation of
bioimage analysis. While many tasks can be done fully manually, those workloads of
analysis become much less by automating some of those tasks. Moreover, you will be
able to scale up the number of analysis results by automation, which leads to more
reliable results. Finally, the automation of bioimage analysis avoids human errors.
The probability of the occurrence of human errors increases as manual working time
increases, but with automated processing, this does not happen.

Batch Processing is a way of automation. With this technique, many images are
processed one-by-one by repeated iteration of image loading, analyzing, and saving
of the results. In addition to the advantage of automating the analysis, it allows to
economize the usage of computer memory as only a single image is analysed per loop.

2.2 Types of Batch Processing Methods in Image)

With Fiji, there are multiple ways to do batch processing and analysis (Schindelin et al.,
2012; Schneider et al., 2012). They are redundant with their goal, but are different in
the way they are designed and used. Each method is optimized for certain usage, and
it is good to know all of them so that you can select a suitable method depending on
the situation.

The GUI-based method is convenient if you are unsure about your capability
in writing macros. You just need to acquire macro commands using the Command
Recorder, and copy & paste those commands in the GUI (see » Sect. 2.6). This method
is also good when you need to quickly document and provide information how to
process many images by batch processing. One weak point of the GUI method is that
it does not allow you to customize the saving of images and analysis results. We will
see this later.

Though the GUI-based method is easy to use, the scripting based method of
batch processing is more flexible to customize. If you know how to run for-loops
with ImagelJ macro, to include batch processing might be quite an easy job. In
that case you just need to know how to handle file path operations and file nam-
ing (see » Sect.2.7.2). Moreover, by using an ImageJ2 functionality called ‘‘script
parameters” (Rueden et al., 2017), it is possible to further enhance the generality of
the scripts (see » Sect. 2.7.3). This allows you to use the ‘“batch” button in the Script

1 This chapter was communicated by Jan Eglinger, FMI Basel, Switzerland

10

A. Klemm and K. Miura

Editor (see » Sect. 2.7.4), or to run the macro from command line in ‘“headless” mode
(see » Sect.2.7.5).

Finally, we will explore how to handle collecting data during batch processing
(see » Sect. 2.8), and demonstrate a simple application example of batch processing
for data inspection (see » Sect. 2.9).

2.3 Tools

= Fiji
—Download URL: » https://imagej.net/Fiji/Downloads
== Command Line Interface
—Windows: Install Git for Windows. It comes with a BASH terminal (Git BASH).
— Download: https://gitforwindows.org/
—Mac: Terminal.app comes as default with the OSX system and can be used as it
is.

2.4 Dataset

The dataset that we will work on to demonstrate batch processing consists of 3-channel
images (16-bit) of the HeLa cells. Channel 1 represents the microtubules, Channel 2
shows a GFP-labelled nuclear protein, and Channel 3 contains the nuclei labelled
with the marker DAPI.

For downloading codes and sample image data used, please access the following
repository:

> https://github.com/NEUBIAS/neubias-springer-book-2021

All files that appear in this chapter are freely downloadable from there.

2.5 Core Workflow for Processing a Single Image

Our task here is to analyze a large number of images (in the provided dataset) and
get results for each of them —i.e., to perform batch processing and analysis. But
before making the batch processing workflow, we need to define the main part of the
processing, the steps which are to be done for each single image.

The ImageJ macro file, which you can find in the code repository,” is a simple
workflow that runs on an open, active single image. It segments the nuclei (Channel
3, C3) by setting a global automatic threshold, gets the outlines of the single nuclei,
and measures the area, in pixels, of each nucleus. Let us see the actual code. There
are roughly three steps.
== line 11-12: Duplication of C3 (Nuclei) to isolate the image for further analysis

2 01_Basic_Workflow_raw.ijm

https://imagej.net/Fiji/Downloads
https://github.com/NEUBIAS/neubias-springer-book-2021

Batch Processing Methods in ImageJ

1 Stack.setChannel (3) ;
12 run("Duplicate...", "title=C3_" + title); //Duplicate
— only C3 for further processing

01_Basic_Workflow_raw.ijm

== line 14-20: Filtering C3 and converting it to a binary image for segmentation

14 //median filtering to smoothen the image
15 run("Median...", "radius=10");
16 //set an auto threshold and binarize

17 setAutoThreshold("Li dark");

18 setOption ("BlackBackground", true);
19 run ("Convert to Mask");

20 run("Fill Holes");

01_Basic_Workflow_raw.ijm

== Line 23: Measuring the area of each nucleus and generating a Results Table, and
the ROI Manager listing the outlines of each nucleus. Nuclei that are touching the
border of the image are excluded from the measurements.

23 run("Analyze Particles...", "size=1000-Infinity
< display exclude add");

This macro® does not save any output (binary image, a window with the results,
ROI Manager; see 8 Fig. 2.1). They are only visible on the desktop after running the
macro. However, it is our aim to save the binary image and the ROI Manager (both
as quality control output), as well as the measurement results of each image. We will
introduce the saving techniques as we explain each batch processing method below.

9 Exercise 1
Go through the simple workflow macro 01_Basic_Workflow_raw.ijmline-by-line,
analyse each command and make sure to understand what each of them is doing.

[ROI Manager - O X I Results - o X
A Add Y File Edit Font Results
Update |Label |area | =
" Delete | |1 C3_Plate2d_DD5_4tit 14357
Rename. | |2 C3_Plate24_DD5_4tit 13955
weasure | (3 CB_Plate24_DD5_4tit 13681
00080652 o] C3_Plate24_D0S5_4tr 13640
0009-0738 - 5 C3_Plate24_D0S_4tif 14336 M
00100894 Froperties-.) |6 C3_Plate24_D05_4tit 14983
i _FlatenlF] |17 3 _plate24_D05_4.4f 14628
Mores |18 C3_Plate24_D05_4tit 15002
" showAll ||g C3_Plate24_D05_4tit 14769 ol
w | |Labels " i = i z Ty

I»]

O Fig. 2.1 The output of the core workflow

3 01_Basic_Workflow_raw.ijm

12

A. Klemm and K. Miura

2.6 GUI-Based Methods

A very easy method to execute code on an entire set of images is to use the so-called
Batch Processor. The Batch Processor is a GUI found under [Process > Batch >
Macro..].

Let us have a look on the settings of the Batch Processor (B Fig.2.2).

Set input and output folder. Input is the folder where you store the images to be
processed. Output is where the Processor will automatically store output images.
Enter a path for both input and output directories or choose the output via dialog
windows by clicking on ‘‘Input../*‘Output..”.

Specify the format for saving the images by the drop-down menu of ‘‘Output
format”.

Within the large text field, enter the code to be executed on the images by either
copy&pasting to the window, or by opening the simple workflow macro.*

Click the button ‘‘Process” to run the code on all images.

While running the batch-processor, we can observe that no image is opened in

display; images are processed in the background. Regarding the output, we can find
our binary control-images in the output folder, together with one big Results Table
containing the measurements of all nuclei of all the (4) images we have worked with.
However, ROIs that were in the ROI Manager were not saved.

| #4 Batch Process

1 linput._. || |[C:Wsers\Anna\Desktopll)_batchimages\

Output]|C'-U5ers\v‘unnaDesHuu‘JJ_:mch'.cuinur.
2 Output format [TIFF -l
Add macro code: '.’Selec! from lis] j

File name contains

run{"Duplicate. ", "title=C3_" + title); //Duplicate only C3 for further processing

/fmedian filtering to smoothen the image

run("Median...", "radius=10")

/iset an auto threshold and binarize

setAutoThreshold("Li dark™)

3 setOption("BlackBackground”, true)

run("Convert to Mask”)

run("Fill Holes")

/luse the "Analyze Particles” command to get the outlines and the
measurements

run("Set Measurements. .", "area display redirect=None decimal=3")
run("Analyze Particles. ", "size=1000-Infinity display exclude add”)

fIClean-up
run("Close All")

_m Open. __Sa.«e

Process | Cancel |

4

O Fig.2.2 Batch Processor Interface

4

01_Basic_Workflow_raw.ijm

Batch Processing Methods in ImageJ

This nicely shows the power but also the disadvantages of the Batch Processor: it
is very fast to run code on an entire set of images, however we do not have full control
over what is saved (in this case, the ROIs were not saved). Also, if we would decide
to save the, ¢.g., median filtered image as quality control, this would not be possible.
Another disadvantage of the Batch Processor is that it does not handle subfolders,
but only processes images on the level of the selected input folder.

2.7 Scripting-Based Methods

In order to have full control over the batch-processing, we need to write all the steps
into our full IJ macro script.

2.7.1 Preparing the Code for Batch Processing

Before we execute our code on an entire set of images we want to make sure that

the code includes commands to ‘‘clean-up” the traces of processing and analysis after

each processed image.’

= We want to make sure that the ROI Manager does not contain ROIs of another
image.

== Depending on the situation we can collect all results in one table or create and save
one Results Table for each image. In the latter case we need to clean the Results
Table between images.

== We want to close all open images after we analyzed one of the input-images, in
order to have a fresh start for the next input image.

In the IJ macro language we can ensure doing so using the following commands for
clearing the ROI Manager and Results Table:°

roiManager ("reset") ;
run("Clear Results");

To close all images in the end, we can run:

‘run(”Close AlLLl");

With these ‘‘clean-ups”, we are now ready.

2.7.2 Imagel) Macro, 1J1

Now that we have prepared the code for the core workflow, we can work on the script
to enable batch-processing. As a starting point for writing, a template of a batch-
processing macro is available within the Script Editor under [Templates > ImageJ 1.x
> Batch > Process Folder (IJ Macro)].

5 Ensuring a clean start is general good practice, not only when aiming for batch execution.
6 See 01lb_Basic_Workflow prepared.ijm

14

20

21
22
23
24
25
26
27
28

29
30
31

A. Klemm and K. Miura

/*
* Macro template to process multiple images in a folder
*/

#@ File (label = "Input directory", style = "directory") input
#@ File (label = "Output directory", style = "directory") output
#@ String (label = "File suffix", value = ".tif") suffix

// See also Process_Folder.py for a version of this code
// in the Python scripting language.

processFolder (input) ;

// function to scan folders/subfolders/files to find files with
— correct suffix
function processFolder (input) {
list = getFileList (input);
list = Array.sort(list);
for (1 = 0; 1 < list.length; i++) {
if(File.isDirectory(input + File.separator +
— list[i]))
processFolder (input + File.separator +
o list[i]);
if(endswith(list[i], suffix))
processFile(input, output, list[i]);

function processFile(input, output, file) {
// Do the processing here by adding your own code.
// Leave the print statements until things work, then remove

< them.
print ("Processing: " + input + File.separator + file);
print("Saving to: " + output);

template_Process_Folder.ijm

The template contains three main sections:

== Line 5-7: Getting input folder, output folder and the type of the image to be
analyzed;

= Line 15-24: processFolder function registers files to be analyzed and searches

also in subfolders;
== Line 26-31: processFile function contains the core workflow processing the

individual files.

Getting Input Folder, Output Folder

The first several lines of the template (template_Process_Folder.ijm) are utilizing
so-called script parameters. For now, we will not use the script parameters and will
instead hard-code input directory, output directory and the file suffix. The modified

Batch Processing Methods in ImageJ

code is in another file, which we will call the macro with hard-coded path.” The script
parameters have been commented out and instead input, output, and suffix were
specified as follows:

input = "C:/Users/Anna/Desktop/IJ_batch/images";
output = "C:/Users/Anna/Desktop/IJ_batch/output";
suffix = ".tiff";

02a_Process_Folder_Path.ijm

Let us make some remarks related to the path: (1) Make sure to adapt the paths
to your local computer; (2) When copied from your system, the path contains either
\ or /, depending on your operating system. If the path contains a backslash \ (older
Windows OS) it is best to simply replace it by a slash /. If you want to use a \ you
need to insert a second backslash: \\. This is called an escape character; (3) Instead of
\ or / you can also use File.separator, which ‘‘Returns the file name separator
character (/ or \)”® that is used by your system.

ProcessFolder Function

We have defined the input and output folders, and the suffix (file type). Let us now
examine the processFolder function line-by-line. processFolder takes a path
as argument. The path points to the folder with the input images, as defined by the
user. First, in Line 16, getFileList acquires all the filenames in the directory as
an array: each element of this array is a filename, and the length of the array is equal
to the number of files within the directory. Array.sort (1ist) sorts this array in
alphanumeric order.

Once we have the sorted list, we loop over it from Line 18, starting at i = 0 —since
the index 7 of the first element of an array is 0 —until i is smaller than 1ist.length,
which gives the number of elements (= number of filenames) in 1ist. For each file-
name, we create the full path of the file in Line 19 (input + File.separator +
list[i]). Noteagaintheusage of File.separator. Once the full pathiscreated,
we check whether the path is a directory using the command File.isDirectory.
If yes, we call the processFolder function recursively in Line 20. In other words
we now take the path of the detected directory as input and repeat the process of
getting the FileList and checking each file of this new directory. Only if an item
list[i] of our list of filenames is not a directory and endsWith the desired suf-
fix, the function processFileis called. processFile in Line 22 will contain our
core workflow and we can finally process and analyze the image. If a file is neither a
directory, nor ends with the right file suffix, nothing happens.

0 Exercise 2
Change the structure of your input folder. Create subfolders and subsubfolders and
copy some of the images into them. Rename the images with e.g. **_levell”. Run the
Process_Folder.ijm template as it is and follow in which order the files are processed.

7 02a_Process_Folder_Path.ijm
8 » https://imagej.net/ij/developer/macro/functions.html#File.separator

https://imagej.net/ij/developer/macro/functions.html#File.separator

16

28
29
30

3
3
33
34
35
36
37
38
39
40
41
)

A. Klemm and K. Miura

ProcessFile Function
The function processFile is executed on each file of the desired file type. Within
the function, we want to first open an image, then run the core workflow to process
and analyze the image, and finally save the output.

For opening a file, we use:

‘open(input + File.separator + file);

file is the filename stored in 1ist[i] and passed on to the processFile
function as the third argument: processFile (input, output, file).

Until this point, we have modified processFile such that it opens an image.
For processing the opened image, we can then copy & paste our simple workflow
prepared for batch ° within the function processFile.

Here you can see the first lines of our core workflow in the function:
function processFile(input, output, file) {

// Do the processing here by adding your own code.
// Leave the print statements until things work, then remove

< them.
print ("Processing: " + input + File.separator + file);
print ("Saving to: " + output);

//opening the image

open (input + File.separator + file);

filename_pure File.nameWithoutExtension;

saving_prefix = output + File.separator + filename_pure;

//preparations

roiManager ("reset");

run("Clear Results");

run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");
— //we remove the scaling

Finally, we also want to save the output. Using scripting, we have full control over
what to save. In the macro with hard-coded path, you can find the following strategy
for saving:!?

1. Line 36: Get the pure filename (the file name without the file extension) directly
after opening the image. The function on the right-hand side gets ‘“The name of
the last file opened with the extension removed” !!.

2. Line 37: Create a saving prefix string that contains the output folder, the
File.separator and the pure filename.

3. Lines 66—69:

66 savelAs ("results", saving prefix + "_results.csv'"); //use saveAs
«— command to save results
67 //save the isolated C3 (binary image)
68 selectWindow ("C3_" + title);
69 saveAs ("tiff", saving prefix + "_C3.tif"); //use saveAs command to

<> save an image

9 01b_Basic_Workflow_prepared.ijm
10 02a_Process_Folder_Path.ijm
11 » https://imagej.net/developer/macro/functions.html#File.nameWithoutExtension

https://imagej.net/developer/macro/functions.html#File.nameWithoutExtension

11

Batch Processing Methods in ImageJ

Save the Results window and the binary image, by using saveAs (format,
path). Let us read the documentation of the saveAs command:

» Saves the active image, lookup table, selection, measurement results, selection XY coordinates
or text window to the specified file path. The format argument must be ““tiff’, *‘jpeg’,

“gif’, “‘zip’, “‘raw’, “‘avi’, ““bmp’, ““fits’, “‘png’, “‘pgm’, ‘‘text image’, “‘lut’,
“‘selection’, “‘results’, ‘‘xy Coordinates’ or ‘“text’.

5 ¢
s

LT

In consequence, for saving the Results window, we use ‘‘results” as format, and
for saving an image as tif-file, we use ‘‘tiff” as format. Note that the active image
is the one which is saved, so we need to make sure to activate the binary image by
selectWindow ("C3_" + title);.

4. Save ROIs in the ROI Manager. We use one of the roiManager functions:

71 roiManager ("save", saving_prefix + " _rois.zip"); //drag&drop
— zip-file on Fiji to reopen ROIs

It creates a zip file. We can re-open this zip-file afterwards by drag&drop into Fiji:
all ROIs will reappear within the ROI Manager.

We use the variable saving_prefix that we had built in the step before. It helps
us to easily create the paths for the final output-file: we just need to add a suffix
and file-ending, e.g. _rois.zip.

2.7.3 Two Different Methods to Get User Input

In the macro with hard-coded path,'? paths and (file name) suffix are fixed.

input = "C:/Users/Anna/Desktop/IJ_batch/images";
output = "C:/Users/Anna/Desktop/IJ_batch/output";
suffix = ".tiff";

02a_Process_Folder_Path.ijm

This is useful e.g. when we develop a workflow and do not want to interactively
select a file every time we run the code.
If we do want to allow for user input, we can devise graphical user interfaces,

GUIs, as exemplified in the macro with user interface.!?
input = getDirectory("Choose a Directory");
output = getDirectory("Choose a Directory");
suffix = getString("File suffix", ".tiff");

02b_Process_Folder_Dialog.ijm

Here getDirectory returns a string with the path pointing to the directory chosen
by the user. getString returns a string entered by the user, or the default-string
““.tiff’if nothing is changed by the user. The output strings are assigned to the variables
input, output or suf fix, respectively.

12 02a_Process_Folder_Path.ijm
13 02b_Process_Folder_Dialog.ijm

18

A. Klemm and K. Miura

Note that there is also a family of macro commands that starts with pialog., which
allow us to create more complex GUISs for user input. Please refer to the command
reference'* if you are interested in more details.

Script parameters

Another option is to use script parameters.'>

#@ File (label = "Input directory", style = "directory") input
#@ File (label = "Output directory", style = "directory") output
#@ String (label = "File suffix", value = ".tiff") suffix

02c_Process_Folder_ScriptingParameters.ijm

Script parameters are by default used in the Process_Folder. ijm batch tem-
plate —we had replaced them with the actual path in the macro with hard-coded
path.!6

#@ initiate any Script Parameter, followed by the Type of variable. #@ File,
for example, hands over a path to a file, #@ String a String etc. The appropriate
dialog window is automatically generated according to Type. The dialog window
can then be further customized using the options within a single parenthesis after
#@ Type. As an example, see Line 11 of the code shown above. The options within
parentheses specify the message within the dialog box (File suffix) and propose a
default value (““.tiff”). You can find more information about script parameters on the
Image]J website.!’

2.7.4 ImagelJ Macro, Scijava

Once we use script parameters, we can take advantage of a very convenient way to
execute code in batch.

Let us have a look on 03_SciJava.ijm. When we compare it with the script
parameter macro with loops,'® we can see that both contain the same lines for choosing
input- and output-folder, and suffix, via script parameters. 03_SciJava.ijm also
contains the same commands for saving the output files (Results window, binary
image, ROI Manager), as discussed in » Sect.2.7.2. However, 03_SciJava.ijm
does not contain any code to batch execute the workflow — neither searching for
files, nor looping over several files. To still be able to batch-execute this code, we
click ““batch” within the Script Editor. The GUI displayed in 8 Fig. 2.3 opens. Select
““Input” as parameter to batch and add files to the Input files list.!* After clicking OK,

14 Built-in Macro Functions: » https://imagej.nih.gov/ij/developer/macro/functions.html
15 02c_Process_Folder_ScriptingParameters.ijm

16 02a_Process_Folder_Path.ijm

17 » https://imagej.net/Script_Parameters

18 02c_Process_Folder_ScriptingParameters.ijm

19 There are many ways to populate the list of files: (1) Select any number of files and drag them into
the list field; (2) Use the “*Add files...” button; (3) Select a folder and drag it onto the ‘*Add folder
content...” button; (4) Click the ‘Add folder content...” button and then select a folder.

https://imagej.nih.gov/ij/developer/macro/functions.html
https://imagej.net/Script_Parameters

Batch Processing Methods in ImageJ

|#4 Choose batch processing parameters X
Which input parameter to batch? | input v
C:\Users\Anna\Desktop\1]_batch\images'\Plate24_DOS_4.tff Add files...

C:\Users\Anna\Desktop\1)_batch\images\Plate24_E08_1.6ff
C:\Users\Anna\Desktop\IJ_batch\images'\Plate24_E08_2.4ff
C:\Users\Anna\Desktop\IJ_batch\images'\Plate24 E11_1.4ff

Add folder content...
Input files

Clear st

oK Cancel

O Fig. 2.3 Interface for selecting input parameters and files

we see the dialog window for choosing the output directory and the file suffix. Once
everything is set, all files listed in the ‘‘Input files” field will be processed.’

2.7.5 Command-Line Headless Methods

Why do we have script parameters? Macro commands include the getsString,
getNumber and pialog family commands that allow us to create a user-interface
— why should we need another way?

This is because script parameters are designed to be generic and universal in
terms of interface. This means that the interface for input and output parameters
can take any form, including GUI and Command-Line Interface (CLI). As we have
seen already, script parameters only declare the type and the name of the variable.
How these variables are provided is automatically determined depending on how the
macro is called. If you run it with the ‘‘Run”button in the Script Editor, the input GUI
is automatically generated and shows up on the screen. If you click the ‘‘Batch” but-
ton, the file names are automatically passed to the variable one-by-one, and images
are processed in batch. This is in contrast to the get commands and pialog com-
mands of the Build-in macro functions, which are limited only to the input via dialog
windows.

Now, using this generic and flexible characteristic of script parameters, we can
try to run the batch processing macro from command line, without launching Fiji
on your desktop. We call this way of running a software ‘‘the headless mode”, as
the main menu bar (here Fiji) never appears on your screen. This headless usage is
especially important when you want to run the macro on a remote server, or a cluster
without display.

20 Since the input is now handled via the Batch button, we do not need to specify label and style anymore
as arguments of the Script Parameter. #@ File (label = "Input directory", style =
"directory") input can therefore be shortened to #@ File input.

20

A. Klemm and K. Miura

The command line interface is available in Windows (Git BASH), in Mac OSX
(Terminal.app), and in Linux (e.g. Gnome).>! The first thing to do is to create a

command line alias for Fiji. This can be done with the following command:
Windows

‘ alias fiji='/<Path-to-Fiji>/Fiji.app/ImagedJ-win64.exe'

Mac OSX

‘ alias fiji='/<Path-to-Fiji>/Fiji.app/Contents/Mac0OS/ImageJ-macosx'
Linux

‘ alias fiji='/<Path-to-Fiji>/Fiji.app/Imaged-linux64'

In all these cases, <Path-to-Fiji> should be replaced by the actual path to Fiji in
your local machine. For example, if Fiji is located in the Applications folder of your
Mac, the full path to the Fiji executable is:

‘ alias fiji='/Applications/Fiji.app/Contents/MacOS/Imaged-macosx'

Then, try the following:
| fiji --help

If your alias setting was successful, this command should print all the options that
can be used in the CLI for running Fiji.

The second step is to prepare an example batch processing macro. Here, we can
take an example from the Script Editor, just like we did in » Sect.2.7.2 Macro
1J1. Open a new Script Editor, and select the menu item [Template > ImageJ
1.x > Batch > Process Folder (IJ1 macro)].Savethe generated example as it is
somewhere in your file system. Now, let us just run it from the Script Editor by click-
ing the ““Run” button. You are asked for the locations of an input folder and an
output folder, so please choose a folder that contains several TIFF images as the
input directory, and choose any folder as the output. After clicking OK, you should
see that all TIFF image file names appear printed in the Log window.??

Using exactly the same script that we tried above, let us run the macro in headless
mode. Instead of setting the file paths to input and output folder in the dialog window,
we can feed this information as options to the command.??

fiji --i1ij2 --headless -run "<path-to-the-macro>"
«— 'input="<path-to-in-folder>", output="<path-to-out-folder>""

Each option sets the following conditions:

== __ij2 :use ImageJ2 instead of ImageJ1;

== __headless : run in headless mode;

= __run<macro> [<arg>] :run <macro> in Image], optionally with arguments
separated by comma.

21 In all these OS, command line interfaces by default use BASH, the most widely used Unix shell
commands.

22 As this is a demo macro, it does not actually process and save images. It only shows that the macro
can batch-access files in a folder.

23 For more details, see » https://imagej.net/Scripting_Headless

https://imagej.net/Scripting_Headless

21
Batch Processing Methods in ImageJ

Note how arguments of ~-run <macro> [<arg>] for paths to input and output
folders are set in the above command. Both options are surrounded together by
single quotes, and inside them, each path is surrounded by double quotes. The parts
surrounded by single quotes are handed over as a single option to the script parameter
resolver for macro. Before the execution of the macro, paths specified for variables
input and output are separately interpreted as script parameters and used during the
macro execution. In this way, options can be nested for different handling.

If you are successful in running the command, the CLI output will list the files
from the selected input directory. The code can then be extended just like we have
already done in previous sections to include the actual workflow.

Have on mind that macro that work on Desktop (GUI) sometimes fail to work
in CLI. This is because some ImagelJ functions are tightly associated with GUI and
cannot run in the headless mode. For example, a macro that uses the ROI Manager
does not work in the headless mode, as the ROI Manager relies heavily on GUI. In
such a case, overlays can be used as an alternative to ROIs.

2.8 Collecting Measurement Results During Batch Processing

In this section, we discusses how to collect values that result from analysis of different
images. As an example, we will collect the number of detected/analyzed nuclei per
image and then calculate the mean and the standard deviation of the number of nuclei
per image. We aim for the output of a style: ““On average, there were 35.3+10.5 nuclei
analyzed per image (number of images=4).”.

2.8.1 Collecting Measurements Within an Array

A popular way to collect the measurements is to use an array that is filled with values
every time we execute our workflow while iterating over the images. Here, we refer to
such an array as ‘‘data storage array”. The data collecting macro®* demonstrates the
usage of such a data storage array. This macro is based on a macro that we already
discussed, the one that uses script parameters and explicitly contains the code for
looping.?’

We start by creating an empty array in the beginning of the code.

‘ collect_nNuclei = newArray();

04_CollectWithinArray.ijm

We do not specify the length of the array in this case, which is crucial since at
this point of execution 1J has not searched for the files and does not know how many
values we will collect.

To now fill the array step-by-step, we execute the following procedure:

24 04_CollectWithinArray.ijm

25 02c_Process_Folder_ScriptingParameters.ijm

22

A. Klemm and K. Miura

20

95
96

36

We pass the data storage array collect_nNuclei as input parameter of the
function processFolder. Additionally, we introduce the data storage array
collect_nNuclei also as the returned value of processFolder. In this way,
the data storage array is passed to processFolder, can be modified within the
function and then the modified array collect_nNuclei will be returned as
output. The final function call looks like this:

‘collectanuclei = processFolder (input, collect_nNuclei) ;

We extract the number of analyzed nuclei in each image. As discussed above,
processFolder is searching for files (not directories) that end with a defined
suffix —““.tiff”. When such a file is found, the function processFile is called.
processFile contains the image-processing workflow. We need to modify it in
order to extract the number of analyzed nuclei. We get the number of analyzed
nuclei by using roiManager (“count”), and take this as the returned value of
the processFile function using return:

nROIs = roiManager ("count");
return nROIs; //output of the processFile function

Note again that we need to change how processFile is called:
‘nNuclei = processFile(input, output, 1list[i]);

In the final step we need to add the output nNuclei to our collecting array
collect_nNuclei. This happens within the processFolder function: we
extend the collecting array with the new value nNuclei by concatenation.

‘collect_nNuclei = Array.concat (collect_nNuclei , nNuclei);

9 Exercise 3

Explain why we cannot create the data storage array within the processFolder
function.

2.8.2 Collecting Measurements Within a Table

Very often we want to collect measurements from different images and save them in a
Results Table. We can do so by creating a table, filling it up with the measured values,
and once this is done, we can convert the table to an 1J1 Results table. We can easily
add summary statistics to an IJ1 Results table using a native function.?

To do this, we first create a table, and initialize an index variable rowIndex for

filling up the table.

Table.create ("Numbers") ;
rowIndex = 0;

For adding a value to the table we use:

selectWindow ("Numbers") ;
Table.set ("nNuclei", rowIndex++, nNuclei);

26 04b_CollectWithinTable.ijm

26
27
28
29

23
Batch Processing Methods in ImageJ

Finally, in order to use the analysis tools available for a Results table we need
to rename the table to ‘‘Results”. With this, we can get the summary statistics of
measured values:

selectWindow ("Numbers") ;
Table.update;

Table.rename ("Numbers", "Results");
run("Summarize") ;

2.8.3 Collecting Measurements When Using SciJava

In » Sect.2.7.4 we have seen how to utilize the Batch button to conveniently batch
execute code using script parameters, without having to explicitly list the files and
folders. Similarly, we can collect and output measurements in a very convenient way
using script parameters.”’ Using the macro 03_SciJava.ijm as start, we only
need to add an output parameter and assign our measurement of interest (number of
nuclei) to the output variable. The output parameter is defined in the beginning using
#Q@output

‘#@output nROIs

The number of nuclei is assigned to nROIs in the end of the workflow:

‘nROIs = roiManager ("count") ;

Foreachimage that we analyze, the output variable nrots isadded to a [J2/SciJava
table that is hidden during the macro execution. This is a different kind of table
than the 1J1 Results table, and appears on the desktop when the macro is completed.
The table can be saved as CSV file using the menu command [File/Export/
Table...]. Just as any CSV file, it can be reopened in Fiji. If you rename the
opened CSV file to ““Results”, you can also use the summarize-functions to calculate
some statistics, as demonstrated in the previous section.

2.9 Application to Bioimage Analysis

» Example: Preparing Microscopy Image Files for Visual Inspection

When performing an imaging-based experiment, the first step of the analysis should be a
visual inspection of the images. What do you see in the images taken under, or related to,
different conditions (e.g. wildtype vs. mutant, treated vs. untreated)? Typical parameters
in biology are e.g. changes in intensity of a protein of interest or changes in cell shape.
For such an analysis, it is necessary to compare a few, ideally randomly chosen, images
reflecting the different conditions side by side. In a standard microscopy experiment, that
often means: opening the vendor-format via Bioformats in Fiji, selecting the same plane or
channel in all image files, and setting the same brightness and contrast limits for all files.
This is time-consuming and error-prone. However, all these steps can be easily recorded
using the Command Recorder and then performed on all images in a folder. «

27 04c_CollectScidava.ijm

24

B w0 =

A. Klemm and K. Miura

We take as an example the 3-channel images already used in this chapter. For easy

comparison we:

== Extract the signal channel (Channel 2) by duplication.

== Change the look-up-table (LUT) to gray, since a gray LUT is best inspected by a
human eye.

== Set defined values as minimum and maximum contrast. This is essential for com-
paring the intensities for different images (see also Exercise 3).

These steps can be recorded:*

run("Next Slice [>]");

run("Duplicate...", "duplicate channels=2-2");
run("Grays") ;

setMinAndMax (0, 2000);

The only output we aim to save is the contrast-adjusted Channel 2. Therefore, the eas-
iest solution would be to simply copy the code snippet from the Command Recorder
to the Batch Processor and execute it after choosing input- and output-folder. The
extracted and contrast-enhanced Channel 2 of the different image files are saved to
the output folder. These visually enhanced images can then be re-opened in Fiji and
easily visually compared. However, when we inspect the saved output files, we observe
that they are saved under the same name as the original input files. This bears the risk
of errors (e.g. deleting the original files by mistake).

In order to have more control over the saving process it is better to choose the Sci-
Java solution discussed in » Sect. 2.7.4. For this we need to specify the input and ask
the user to select the output-folder via script parameters. Command open (input)
opens the file. We then prepare for easy saving by extracting the filename without
file ending. After the short workflow we then save the image and clean-up for the
next image. This code runs in batch-mode when clicking on ‘‘Batch” within the Script
Editor and after adding the files to batch process to the files list (see @ Fig. 2.3).

#@ File input
#@ File (label = "Output directory", style = "directory") output

open (input) ;
filename_pure = File.nameWithoutExtension;
saving_prefix = output + File.separator + filename_pure;

run("Duplicate...", "duplicate channels=2-2");

run("Grays"); //a gray LUT is best to inspect for the human eye
setMinAndMax (0, 2000); //defining fixed values for the image

< contrast.

saveAs ("tiff", saving prefix + " _C2.tif");

//Clean-up
run("Close Al1l");

Example_Adapted_Scidava.ijm

28 Example_asRecorded.ijm

25
Batch Processing Methods in ImageJ

9 Exercise 4
Which command is recorded when you click the ““Auto” button in the Brightness/Con-
trast window? How does this command work and how does it compare to setMinAnd-
Max? Why is it wrong to use ‘*Auto” when we want to compare the intensity of a signal
in different images?

Take-Home Message

In Fiji, there are various methods to construct batch-processing workflows. Each
method has its own characteristics, advantages and disadvantages, and users can choose
ones that best suit their needs in a given situation.

Solutions to the Exercises

Q Exercise 1
‘title = getTitle();
Gets the name of the image and assigns it to the variable title.
‘run(“Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");

Removes the physical calibration, since it is incorrect (inches). All measurements are
expressed in pixels.

‘Stack.setchannel(3);

Activates Channel 3 of the stack.

‘run(“Duplicate...", "title=C3_" + title);

Makes a copy of the activated Channel 3, naming it "C3_" + title.

‘run(“Median...“, "radius=10") ;

Smoothing of the duplicated Channel 3 by applying a median filter with radius 10.
Median filtering preserves the edges of the nuclei.

‘setAutoThreshold("Li dark")

Calculation of a binary threshold using the auto-threshold method Li (Li and Tam,
1998). A most suitable auto-threshold method for the dataset was determined visually
beforehand.

‘setOption(“BlackBackground“, true) ;

Command automatically recorded when using the "Threshold.." command in Fiji.
Reflects the settings under [Process>Binary>Options].

‘run("Convert to Mask");

This line was automatically recorded when the "Threshold.." command was used in Fiji.
Applies the automatically determined binary threshold and creates the binary mask.

26

A. Klemm and K. Miura

‘run(”Fill Holes")

Fills holes in the binary objects. Holes are background pixels fully surrounded by fore-
ground pixels.

run("Set Measurements...", "area display redirect=None
— decimal=3");

Sets the type of measurements performed: We measure the area, display the label, mea-
sure on the active image (redirect=None), and display the measured values with a
precision of three digits below the decimal point (decimals).

run("Analyze Particles...", "size=1000-Infinity display exclude
— add");
Runs the [Analyze Particles...] command, which executes a connected com-

ponent analysis. We exclude objects smaller than 1000 pixels, display the results in the
Results Table, exclude objects that touch the border, and add the outline of the valid
objects to the ROI Manager.

0 Exercise 2

Folders are processed one after the other. Example of 3 layers of folders (paths shortened
for clarity):

/Plate24_DO05_4.tiff

/Plate24_EO08_1.tiff

/Plate24_E08_2.tiff

/Plate24_E11_1.tiff
/subfolderl/Plate24_E08_2_levell.tiff
/subfolderl/Plate24_E11_1 levell.tiff
/subfolderl/subfolder2/Plate24_D05_4_level2.tiff
/subfolderl/subfolder2/Plate24_E08_1_level2.tiff

O Exercise 3

Inside the function processFolder, we call processFolder recursively when the
path in list[i] is a directory. This allows the processing of all files in all subfolders. Cre-
ating collect_nNuclei by collect_nNuclei = newArray () within the function
processFolder would cause overwriting of collect_nNuclei each time when a
new subfolder is processed.

Q Exercise 4

When clicking ‘“Auto” in the Brightness/Contrast window, the following command is
recorded: run ("Enhance Contrast", "saturated=0.35").Thesecond argu-
ments indicates that the saturation of pixel values is 0.35, which means that the 0.35%
darkest and brightest pixels of the image will all be set to 0 and 65535 (in case of 16-bit
image), respectively, by computing appropriate minimum and maximum pixel values to
satisfy the requested percentage of pixels to become saturated. At the same time, other
pixels with values between these minimum and maximum become scaled linearly. This
means that images with different brightness will be scaled differently e.g. a darker image
will be enhanced more. Consequently, by applying ‘‘auto-contrast”, an image with the
maximum value = 500, would look similar to an image with the maximum value of 1500
by different degree of enhancements. Thus, applying auto-contrast is quite misleading

27
Batch Processing Methods in ImageJ

if one needs to compare images to inspect the difference in the intensity of a structure,
e.g. the expression level of a protein.

To scale and enhance images to the same degree, we can specify the minimum and
the maximum values by using setMinAndMax (0, 2000). With this command, we
are scaling all images using fixed limits (minimum and maximum pixel values) and by
that we can compare the images after the enhancement. Note that these limits should
fit within the range of all pixel values in all images.

Acknowledgements Images were recorded with the help of Susanne Hasse, Mihail
Sarov lab, MPI-CBG, Dresden, Germany. We thank Jan Eglinger (FMI Basel,
Switzerland) for thoroughly reading the text, testing the code, and giving valuable
suggestions for further improvements.

Further Readings The textbook ‘‘Bioimage Data Analysis”, (Miura et al., 2016), con-
tains a chapter aimed at helping to learn ImageJ macro language. If you are not
familiar with this language, please consider going through that chapter. The book is
freely downloadable from the website: » https://bit.ly/bias-wiley

References

Li CH, Tam PKS (1998) An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit
Lett 19(8):771-776

Miura K, Tosi S, Mohl C, Zhang C, Paul-Gilloteaux P, Schultz U, Nerrelykke SF, Tischer C, Pengo, T
(2016) Bioimage Data Analysis. Wiley-VCH, Weinheim. » https://analyticalscience.wiley.com/do/10.
1002/was.00050003/full/

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2:
Image] for the next generation of scientific image data. BMC Bioinform 18(1):529. https://doi.org/
10.1186/s12859-017-1934-z

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012)
Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676—682. Publisher:
Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. https://
doi.org/10.1038/nmeth.2019

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to Image]: 25 years of image
analysis. Nat Methods 9(7):671-675. Publisher: Nature Publishing Group ISBN: 1548-7091.
http://www.nature.com/doifinder/10.1038/nmeth.2089

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

https://bit.ly/bias-wiley
https://analyticalscience.wiley.com/do/10.1002/was.00050003/full/
https://analyticalscience.wiley.com/do/10.1002/was.00050003/full/
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.nature.com/doifinder/10.1038/nmeth.2089
http://creativecommons.org/licenses/by/4.0/

® 2

Check for
updates

Python: Data Handling,
Analysis and Plotting

Arianne Bercowsky Rama

Contents

3.1 Tools to Follow the Chapter - 30

3.2 Why Python? - 31

3.2.1 Python Versions - 31

3.2.2 Python Packages and Environments — 31
3.23 Anaconda - 32

3.24 Jupyter Notebook — 33

3.3 pandas: Python Data Analysis Library - 35
3.3.1 Syntax: Creating a DataFrame — 36

3.3.2 Basic Numeric Operations — 38

3.3.3 Import Data Using pandas - 41

334 Reshape the Data: How to Create Tidy Data — 42
335 Split-Apply-Combine - 45

34 Python Visualization Landscape - 51
34.1 JavaScript - 51

References - 57

This Chapter has been reviewed by MartinWeigert, Ecole Polytechnique Fédérale de Lau-
sanne, and Uwe Schmidt, Myers lab, Center for Systems Biology Max Planck Institute for
Molecular Cell Biology and Genetics, Dresden.

© The Author(s) 2022
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows—-Advanced Components and Methods,
Learning Materials in Biosciences, https://doi.org/10.1007/978-3-030-76394-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76394-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-76394-7_3

30

A. Bercowsky Rama

What You Will Learn in This Chapter

When performing an image analysis pipeline, a programming language like Python is mainly
used for two distinctive applications: (1) the analysis of the acquired images, such as back-
ground removal, noise reduction, object segmentation, measurements of biological struc-
tures and events, etc. and (2) the analysis of the data obtained as a result of the image
analysis, such as a calculating a histogram from the noise-removed image or statistics on
the shape of the segmented object. The aim of this chapter is to show how Python can be
used as a tool to analyze the data obtained as the final step of a bioimage analysis work-
flow. We will learn how to arrange the data into a tidy form, which is a way to structure the
data to simplify the later analysis. Python libraries pandas, for data handling, and bokeh
and holoviews, for data plotting, are discussed along this chapter. Jupyter notebooks
are fully available to follow the examples, however, minimal Python knowledge is required
(the concepts of Python lists, dictionaries and arrays should be known).!

3.1 Tools to Follow the Chapter

This chapter uses Anaconda? as the Python Distribution and Jupyter Notebooks? to
run the Python code. As mentioned, Jupyter Notebooks (specified at the beginning
of each section) are available for the reader to follow the examples and to try out the
Python code:

L.

NB-0-Installation_Guide.ipynb: Installation of Python distribution and all the
packages needed to follow the chapter.

2. NB-1-Python_Introduction.ipynb: Brief introduction to basic operations in
Python, which will be useful if you are new to Python.

3. NB-2-Pandas_Data_Handling.ipynb: This notebook covers » Sect. 3.3, how to
handle data using the package pandas.

4. NB-3-Bokeh_Plotting.ipynb: This notebook covers » Sect. 3.4, specifically 3.4.1—
using Bokeh to create interactive figures.

5. NB-4-Holoviews_Plotting.ipynb: This notebook covers » Sect. 3.4, specifically
3.4.1—using HoloViews to create interactive figures.
These notebooks are available in Github.*

1 This chapter was communicated by Uwe Schmidt (Center for Systems Biology MPI-CBG, Dresden,
Germany) and Martin Weigert (EPFL, Lausanne, Switzerland).

2 » https://www.anaconda.com/products/individual.

3 » https://jupyter.org.

4 » https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch03_Python_Data_

handling_analysis_and_plotting.

https://www.anaconda.com/products/individual
https://jupyter.org
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch03_Python_Data_handling_analysis_and_plotting
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch03_Python_Data_handling_analysis_and_plotting

31
Python: Data Handling, Analysis and Plotting

3.2 Why Python?

Python is a high-level programming language designed in the early 1990s by Guido

van Rossum. It executes instructions without the need of a compiler—i.c., it is an

interpreted language—and its operations are done at run-time—i.e., it has dynamic

semantics—making it a fast language to prototype in. For at least two decades it has

been widely used, which makes it beginner-friendly due to the amount of tutorials

and documentation that exist on the web. In fact, in the past years Python has shown

a huge growth in demand, due to the increase in:

== Publications: Books, conferences, journals;

== Users: Number of downloads and number of uses. A trend calculated by Stack-
Overflow,’ which counts the tags and posts on the platform, shows a very high
and still increasing popularity of the Python language.

= Applications: web and internet development, scientific and numeric computing,
education (teaching programming), desktop GUTIs (graphical user interface), soft-
ware development among other applications.®

The purpose of this chapter is to show one way to use Python as a tool to ana-
lyze data and obtain browser-interactive figures which are easy to share. We will use
Anaconda as our Python distribution to simplify the package installations. As our
web-based application for writing and running Python code we will use Jupyter Note-
books, which combine code with narrative text, equations, and visualizations. There
are some other great notebook alternatives, like for example Google Colaboratory’
(Colab for short) that allows the execution of Python in a browser without the need
for any prior installations and with free access to GPU.

3.2.1 Python Versions

Since the first release in 1994, there have been several Python versions. Newer versions
add features either in the language itself, its built-in functions, or in standard library
support modules (Mertz, 2015). The two most recent versions are Python 2 and 3.
Python 2 has not received further updates or bug-fixes as of January 2020.% In this
chapter we will be using Python 3.6 or higher.

3.2.2 Python Packages and Environments

Python, like many other programming languages, allows modular programming. This
means that the code can be broken down to create smaller and more manageable
scripts named modules. Grouping these modules can then result in a Python package.
For example, NumPy (» https://numpy.org) is a package for scientific computing

» https://stackoverflow.com.
» https://www.python.org/about/apps/.
» https://colab.research.google.com.

0 N N W

» https://www.python.org/doc/sunset-python-2/.

https://numpy.org
https://stackoverflow.com
https://www.python.org/about/apps/
https://colab.research.google.com
https://www.python.org/doc/sunset-python-2/

32

A. Bercowsky Rama

(Harris et al., 2020) which we will be using later in this chapter. Depending on what
we want to achieve, we will need different packages that already exist.

There are several ways to install packages which will be explained later. Once the
packages are installed, in order to use them we have to make them available in our
code. For example, to use all the functions in the NumPy package, we first need to
import NumPy using the import statement:

[1]: import numpy as np

Here we have imported the package NumPy which is now bound to the name we
have chosen, np (which in this case is standardized). This means that whenever we
want to call a NumPy function, e.g. to calculate the square root of 4, we will use:

[2]: np.sgrt(4)

The same way Python has different versions, the packages have them as well.
Depending on the project we work on, we might need different package versions.
However, it could be problematic if two different projects need different versions.
This is where the environments® are very useful. They allow the creation of an isolated
environment for each of the different projects, where the package versions are inde-
pendent in each environment. There are several ways to set up a virtual environment
depending on the tools used to run Python. Later in this chapter we will learn one of
the many ways to do so.

3.2.3 Anaconda

Jupyter Notebook: NB-0-Installation_Guide.ipynb
Python and installation of packages can sometimes be complicated, which is why

here we describe an easy way to do so, with the minimal amount of potential problems.

There are many ways to set up a Python environment for scientific computing or for

any other purpose. Two common ones are:

1. Installing packages on demand from the Python Package Index (PyPI), a repos-
itory of software for the Python programming language. As of today, there are
more than 250,000 packages which can be downloaded from PyPI using the pack-
age installer pip.

2. Downloading a Python distribution that already contains many of the most pop-
ular packages needed. One of the major distributions, and the one we are using
in this chapter, is Anaconda !’ which contains conda to manage and install pack-
ages. You could also install Miniconda,'' which is a free minimal installer using
conda.

9 » https://docs.python.org/3/library/venv.
10 » https://www.anaconda.com.
11 » https://docs.conda.io/en/latest/miniconda.

https://docs.python.org/3/library/venv
https://www.anaconda.com
https://docs.conda.io/en/latest/miniconda

33
Python: Data Handling, Analysis and Plotting

O Table 3.1 Main differences between pip and conda. For a more detailed explanation, visit
» https://www.anaconda.com/blog/understanding-conda-and-pip

pip conda

Installs packages from PyPI Installs packages from Anaconda Repository and
Anaconda Cloud

Installs Python Packages Installs packages written in any language

Python interpreter must be installed before Installs Python packages as well as the Python
using pip interpreter directly

Has no built-in support for environments— Is also an environment manager
relies on tools like virtualenv or venv

pip is the recommended tool for installing packages from PyPl. pip installs
Python software, but may require that the system has compatible compilers, and
possibly libraries, installed before invoking pip. Another installer tool is conda,
which can handle both Python and non-Python installation tasks. conda is an open-
source cross-platform package and environment manager that can install and manage
packages from the Anaconda repository, Anaconda Cloud and other channels such
as conda-forge.!? There is never a need to have compilers available to install conda
packages. Additionally, as mentioned before, the packages may also contain C or
C++ libraries, R packages, or any other software.

We will use conda to install the packages for this chapter. However, it is good
to understand the main differences between these two package managers—pip and
conda—to know when to use which of them. They are summarized in 8 Table 3.1.

As mentioned earlier, we will use Anaconda (» https://docs.anaconda.com/
anaconda) as our Python distribution to simplify Python and package installations.
Moreoever, Anaconda is a package manager, an environment manager, a Python/R
data science distribution, and a collection of over 7500 open-source packages. It was
created with the aim to simplify package management and deployment. Package ver-
sions in Anaconda are managed by the package management system conda. It also
includes a graphical user interface (GUI), Anaconda Navigator (B Fig. 3.1), which is
an alternative to the command-line interface.

3.2.4 Jupyter Notebook

Once Python is installed, there are many ways to run Python code, for example using
the command-line or terminal by typing in python (or python3, depending on the
installation) and hitting enter. However, in this chapter we will run Python code in a
web-browser in a way which allows that we mix code, text, and equations, such that
it resembles a notebook.

When Anaconda is installed, we get Python installed, and—conveniently—in addi-
tion we get installed several commonly used packages for scientific computing and

12 » https://conda-forge.org.

https://www.anaconda.com/blog/understanding-conda-and-pip
https://docs.anaconda.com/anaconda
https://docs.anaconda.com/anaconda
https://conda-forge.org

34

A. Bercowsky Rama

Anaconda GUI

{2) ANACONDA N/ : [522 o soaconsn it |
f Applications on
I Ervionments o o - -
e 'IF\:I’ g
“ o & 3
&% Community JupyterLab Hobebeook Soydar
Jupyter Notebook
Fle EGt Vew Wmet Cel Ke W Command Palette

B+ x A B + + HAm B C W

J[=] = —— RISE Slide show

Importing external packages

In [1]: import numpy as np
import pandas as pd
from bokeh.palettes import brewer
from bokeh.plotting import figure, output_notebook, show

Example notebook Markdown cell

Markdown cell 1o write down text or equations or even uploead figures.

" 1]
JfT»g;lM'm -n-|J| =j:

<d=&

f(r) = glr)dr

In [2]: output_notebook()

N =18 Code cell
df = pd.DataFramse(np.random.randint{18, 188, size=(15, N}}).add_prefix('y')
p = figure(x_range=(&, len{df)-1}, y_range=(2, 8@8), plot_width=48@, plot_height=2@8)
p.grid.miner_grid_line_color = '#eeeeee’
names = ["y%d" % i for i in range(N)}]
p.varea_stack|stackers=names, x='index', color=brewer['Spectral'l[N], source=df]
show(p)
() BokehJS 1.3.4 successfully loaded.
5 o
7o : = Save Menu Shortcuts
B0O b |
s + New cell below
o = @ o Cut, copy, paste selected cells
+ + Move selected cells up and down
00
100 wen m o » Run cell, interrupt, restart kernel, run all
3 2 . H M [coce J Select type of cell: Markdown or code
O Fig.3.1 Upper panel: Anaconda GUI included with the Anaconda distribution. It contains, among

others, Jupyter Lab (which is a more interactive version of the Jupyter Notebook), Jupyter Notebook
(which we will be using in this chapter) and Spyder which is more similar to Matlab (it contains a
variable explorer which resembles Matlab work-space). In the Anaconda Navigator we can manage
the environments and the packages. We can also do this by using the Anaconda Prompt (command
line shell). Lower panel: Example of a Jupyter notebook with the two main types of cell: Markdown,
for text and equations and Code, for writing Python code (you could also set it up to write R, Julia,
Groovy, Java...). The Command Palette shows keyboard shortcuts

data science and some applications, including Jupyter Notebook (which can also be
installed without Anaconda, using pip).

35
Python: Data Handling, Analysis and Plotting

Project Jupyter is a non-profit, open-source project, born out of the IPython
Project (» https://ipython.org) in 2014, as it evolved to support interactive data sci-
ence and scientific computing across many programming languages (» https://jupyter.
org). Jupyter Notebooks allow to write code, Markdown text and equations and save
the notebooks as Hypertext Markup Language (HTML) or even as Portable Doc-
ument Format (PDF). Figure 8 3.1 shows an example of a Jupyter Notebook and
some of the basic commands to start using it. However if this is the first time you are
using Jupyter Notebook, you might want to check the Project Jupyter recommended
documentation: » https://jupyter.readthedocs.io.

Once we have Anaconda Distribution and we have downloaded all the packages
and ran a Jupyter Notebook, we are ready to start handling and plotting data in the
following sections. If you have not done this yet, NB-0-Installation_Guide.ipynb will
guide you through the installation steps.

3.3 pandas: Python Data Analysis Library

Jupyter Notebook: NB-2-Pandas_Data_Handling.ipynb

As part of an image analysis pipeline, we will likely be handling and analyzing
measurements of experimental image data. One of the most time-consuming parts
is often arranging the data so that it is in a suitable format to perform the analysis
and visualization of the results. pandas is a powerful tool for working with tabular
data in the Python ecosystem. This section describes the use of pandas and how to
arrange the data in a tidy format to make the analysis and visualization easier.

pandas is an open source library which allows efficient manipulation, reading and
writing of (tabular) data. It was initiated by McKinney et al. (2011) and since then, it
has been widely used in the Python community with the aim to be a fundamental high-
level building block for doing practical, real world data analysis in Python (» https://
pandas.pydata.org/). pandas makes it easy to work with labeled data: we can handle
and arrange the data but, we can also label information on the data points, making
it a powerful tool for handling metadata."
The standard way to import pandas package is by using:

[1]: import pandas as pd
import numpy as np

Moreover we will also use the NumPy package which is why we are also importing
it at the beginning of our code. In the following sections we will explore the power of
pandas primary data structure, the DataFrame. We will also learn how to import/-
export data with pandas and how to arrange the data so that it is easier to perform
statistical analysis and plotting.

13 Data that provides information about other data, e.g. the metadata for a microscopy movie could be
the pixel size, image dimensions, acquisition settings like laser power, exposure time, etc.

https://ipython.org
https://jupyter.org
https://jupyter.org
https://jupyter.readthedocs.io
https://pandas.pydata.org/
https://pandas.pydata.org/

36

A. Bercowsky Rama

Series DataFrame

I I ST columns ndex

Index labels

rows

0
1
2
3

w|np|=]o
w|np|=]|o

Data

O Fig. 3.2 Basic structure of a DataFrame and a Series. The name of each component is
important—we will be using them along the chapter

3.3.1 Syntax: Creating a DataFrame

pandas library is built on top of the NumPy package, which means that most of
the NumPy functions are available for the pandas objects. However, what makes
pandas so useful with respect to NumPy objects is the way the data is structured.
pandas data structures have rows and columns with a similar appearance as the
tables in Excel or CSV files (among others), which makes statistical analysis easier.
But before we get into more complicated data wrangling methods, we first define the
most fundamental units of the pandas data structures: a Series and a DataFrame.

Series
pandas has two main data structures: Series, for 1-dimensional labeled data, and
DataFrame, for 2-dimensional labeled data. They have similar structure: index col-
umn, column(s) and rows (8 Fig. 3.2). Each column has a name associated with it,
also known as label.

A Series is the simplest concept, therefore we will start by understanding how
we can create one. The following line of code shows how to initialize a Series.

[2]: pd.Series(data, index, dtype)

Here, data can be a Python dictionary, a NumPy array or a scalar value. The next
parameter, index, is a list of axis labels (which is not the same as the column label). If
no index is passed, one will be created having values [0, ..., len(data) - 1].
Also, as a NumPy array, a pandas Series supports dtype which can be float,
int, bool, etc.

Here are three examples of how to initialize a Series:

[3]: pd.Series(np.random.randn(7), index=["N", "E", "U",
||BH, "I“, IIAH, HSII])

-0.995606
-1.160779
-0.454513
-0.590617
-0.699399

HwacH[Zz

37
Python: Data Handling, Analysis and Plotting

A 2.248658
S -0.189257
dtype: float64

[4]: pd.Series({"A":0, "B":1, "C":2}, dtype=float)

[4]:]|A 0.0

B 1.0

C 2.0

dtype: float64
[5]: pd.Series (10, index=["a", "b", "c"], dtype=int)
[5]:]a 10

b 10

c 10

dtype: int64

A Series is a NumPy array-like, which means that it can be passed into most
NumPy methods expecting a NumPy array. However, a key difference between
pandas Series and NumPy ndarray is that operations among Series automati-
cally order the data based on the index. Therefore, if we need an actual ndarray, we
can use the command Series.to_numpy ().

DataFrame

The most commonly used pandas concept is a DataFrame, a 2-dimensional labeled
data structure with columns of potentially different types. Similar to a Series, a
DataFrame object can be created using the following line of code.

[6]: pd.DataFrame (data, index, columns, dtype)

The data can be a Python Dictionary of 1D arrays, lists, dicts or Series,
as well as a 2-D NumPy array or another DataFrame. The DataFrame has
labeled axes: rows (axis=0) and columns (axis=1). The rows and columns can be
accessed by the index and columns attributes, respectively: DataFrame. index and
DataFrame.columns

Once the DataFrame has been defined, we can select, add, and delete columns in
similar ways as a Python dictionary.

[7]: df = pd.DataFrame({"A":["a", "b","c"], "B":[1,2,311})
daf
[7] A B
0 a 1
1 b 2
2 ¢ 3

38

A. Bercowsky Rama

[8]: # Add a column
df[ucn] = [||DH,IIFII,IIG||]

df
[8] A B C
0 a 1 D
1 b 2 F
2 ¢ 3 G
[9]: # Delete a column
del df["A"]
daf
[9] B C
0O 1 D
1 2 F
2 3 G

By default, a column is inserted at the end of the DataFrame. However, using
the insert function, we can specify the location (1oc) of the new column and the
values we want to insert.

[10]: df.insert(loc,column,value)

DataFrames areindexed by columns, df [column_name], but we can also select
both rows and columns by using:

[11]: df.insert (row_index, column_name)

There are several ways to index a DataFrame; some of them are summarised in
O Table 3.2.

3.3.2 Basic Numeric Operations

Pandas has methods and functions to carry out binary operations'* for matching and
broadcasting behaviour. In the following example we initialize two DataFrames,
df1l and df2, using two dictionaries, d1 and d2:

[12]: # Dictionary
dl — {"abC"Z [Hall, “b", Hclll IIaIII Hbul IICII] , \
"123": [1, 2, 3, 4, 5, 61, \

IIABCH:[HAH, IIAII, ||BH, IIBII, ||CH, IICII]’ \
"num": ["one" , "two", " three" , " four" ,
nfiveu’ HSiXH]}

14 Binary operation: calculation that combines two elements to produce another element.

39
Python: Data Handling, Analysis and Plotting

O Table 3.2 Indexing a DataFrame is intuitive to help getting and setting subsets of the
data-set. For more information on indexing DataFrames, visit » https://pandas.pydata.org/
pandas-docs/stable/user_guide/indexing.html

Syntax Description

df [column name] Select a column. Results in a Series.

df [[column names]] Select one or more columns. Results in a
DataFrame.

df.loc[label] Select a row by a label. Results in a Series.

df.iloc[loc] Select a row by an integer location. Results in a
Series.

df[2:5] Slice the rows. Results in a DataFrame.

d2 = {"abc“: [udu’ ||d||, Hen, ||C||, an, ||e||], \
"123":. [7, 8, 9, 10, 11, 121, \

IIABCH:["D”, IIDHI HEII, IIAIII ||Bll, IIAII]I \
"num": ["seven", "eight", "nine", "four",
“five”, ”SiX“]}

DataFrame from a Dictionary
dfl = pd.DataFrame (dl)
df2 = pd.DataFrame (d2)

dfl

[12]: abc 123 ABC num
A one
A two
B three
B four
C five
C six

U WN P o
Qoo Q0w
oUW

Some basic binary operations are addition add (), subtraction sub (), multipli-
cation mul (), and division div (). The following example shows the addition of a
column of df1 and a column of df2.

[13]: dfl["123"].add(df2["123"1)

[13]:]0 8
1 10
2 12
3 14
4 16

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html

40

A. Bercowsky Rama

5 18
Name: 123, dtype: int64

The same result can be achieved by computing df1["123"1+df2["1231], but
using the add () method allows us to choose the dimensions and labels we want to
use. The axis parameter allows using index (axis=0) or columns (axis=1) for the
addition operation. Moreover, in the case of missing data, there are operations that
include the parameter £i11_value. If £111_value=0, the missing values, which
in DataFrame by default are NaN values, are treated as zeros. If the same values
are missing in both DataFrames, they will continue to be NaN. When computing
Af1["123"1+df2["123], if there is a missing value, a NaN will be added in that
position.

Witha Series oraDataFrame itisvery simple to compute descriptive statistics,
e.g., as the mean value is computed in the following line of code:

[14]: df.mean(axis, skipna,numeric_only)

In this example we apply the mean operation to the axis we choose (axis = 0
for index, axis = 1 for columns). In case there are missing values which have been
replaced with a NaN, the skipna parameter, which is true by default, will exclude
all NaN values from the computation. Finally, we can choose whether we want to
include only float, int or boolean columns in the calculation, by specifying the param-
eter numeric_only. There are many other descriptive statistics; some examples are
shown in @ Table 3.3. For more examples, visit the website. !>

O Table3.3 Examples of descriptive statistics for DataFrame and Series

Function Description

count Number of non-NaN observations
sum Sum of all values

mean Mean of all values

median Median of all values

std Standard deviation of all values
min Minimal value

max Maximal value

describe Generates descriptive statistics

T Transpose index and columns

15 » https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#basics-stats.

https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#basics-stats

41
Python: Data Handling, Analysis and Plotting

3.3.3 Import Data Using pandas

In the previous section we learned how data is structured in the pandas Series and
DataFrame. When performing image analysis tasks we will most likely be using some
other software, such as Fiji (Schindelin et al., 2012), to perform segmentation, cell
tracking, protein co-localization analysis, etc. The outcome of such analysis usually
comes in the form of a table. A usual next step is to export this table-like data into
some software, such as R, Python, MATLAB, etc, to extract useful information.

With pandas we are able to read and write different data types: Microsoft Excel
files (pd.read_excel (), pd.to_excel()), comma separated values files—
CSV (pd.read_csv (), pd.to_csv()), JSON files (pd.read_json(),
pd.to_json()), HTML (pd.read_html(), pd.to_html()), HDFS5
(pd.read_hdf (), pd.to_hdf ()), and more.

In this chapter, we focus on CSV files, since they are easy to read into data struc-
tures in many programming languages. As a general rule, we should always try to
save the data in file formats that are open and readable in many contexts regardless
of the specific software of choice.

To read a csv file into a DataFrame, we use the following line of code:

[15]: pd.read_csv(filepath_or_buffer, sep, usecols,
manage_dupe_cols, na_values)

Here we show only some of the many parameters to choose from the CSV reader.
They help creating a DataFrame that best describes the data. To check all of the
available parameters, visit the website.'©
= filepath_or_buffer: Any valid string path.
== gep: Delimiter to use. By default, it is assumed that the data is separated by

commas (sep=",").
== header: Row number(s) to use as column names for the DataFrame. For exam-

ple, (header=[0, 1, 371) will use the rows 0, 1 and 3 as headers, and will skip row

2. The default is to use the first row as column header (header=0).
== ysecols: Returns a subset of the columns. For example, using integer indices of

the data columns usecols=[0, 1, 2] or strings that correspond to the names of

the columns in the data ["A", "B", "C"].
== mangle_dupe_cols: If there are two or more columns with the same name, by
default they will be written as "Col", "Col.1l", "Col.2".Ifmangle_dupe

_cols=False, columns with the same name will be overwritten.

= na_values: Additional string values to be recognized as NaN. By default, any
blank space will be recognized as a NaN, but also some other strings such as <NaN>
and nan. This allows to apply statistics in a missing-value-friendly manner. This
option allows other strings to be specified to also be included in the DataFrame
as a NaN.

Once the data is imported and we are satisfied with the DataFrame we created,
the next step, that helps to get the most out of the data, is to "tidy" this data-set. In
the following section we will learn how to accomplish this with our already created,
or imported, DataFrame.

16 » https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

42

A. Bercowsky Rama

3.3.4 Reshape the Data: How to Create Tidy Data

Great part of the time and effort invested in analyzing a data-set goes to organizing the
data and handling missing values, among many other preparation steps performed
every time new data is collected. The way we build, e.g., an Excel file, is the most
intuitive way for human perception, however, we should always try to convert the
data into their tidy form. Tidy data-sets are data-sets that are arranged such that
each variable is a column and each observation is a row (Wickham et al., 2014). This
section gives a general explanation of what is tidy data, how it can be accomplished,
and some of the benefits of analyzing a tidy data-set. Wickham defines data tidying as
a standard way to clean the data. This allows us to map the meaning of a data-set to
its structure (its physical layout). This structuring of the data facilitates the analysis
specially if one is using vectorized programming languages, such as R or Python with
NumPy. Specifically, tidy data complements panda’s vectorized operations. We will
see some examples in the following sections.

A messy data-set would be any other arrangement of the data. In @ Table 3.4,
we have two examples of typical representations of messy data-sets. The data-table
on the left represents results of a titration experiment in which the goal is to check
how a measurable, e.g., mean fluorescence intensity of a gene expression marker,
changes with different pulse duration (columns) and drug concentrations (rows). In
this table, both the columns and the rows are labeled. The data-table on the right
represents a similar experiment in which the same measurable should be checked,
but in this case using two concentrations of DMSO (Dimethyl sulfoxide) as control
and two concentrations of a drug being tested. In this case we observe what is called
multi-index, with two levels of columns.

To convert the examples of messy data shown in 8 Table 3.4 into their tidy forms,
we need to identify the variables which should form the columns in our tidy data-set. In
the first case, the pulse duration and the concentration of the treatments will be the two
variables (the measures of two attributes). In the second case we will have two different
treatments: Drug and DMSO and the concentration of these treatments: 0.1%, 0.5%,
10 uM, 50 uM. Following this rearrangement, we can obtain a corresponding tidy
data-set (B Table 3.5):

Now we know what a tidy data-set is. The next step is to learn how to implement
pandas functions to transform the structure of the data into a cleaned and ready-to-
analyze tidy form.

D Table 3.4 Examples of two messy data sets. Table to the left includes labeled rows and
columns. Table to the right contains multi-index: two concentrations for DMSO treatment and
two more for the Drug treatment

Concentration 5 19 29 39 DMSO Drug
min min min min 0 1 0/ 0 5 0/ 10 M 50 M
500 LM 23 92 125 169 T | e © ©
100 uM 54 99 133 170 20 100 32 78
20 uM 32 98 135 174 28 102 47 98
34 103 53 96

10 M 48 92 142 177

43
Python: Data Handling, Analysis and Plotting

O Table3.5 Example of a tidy form of the data-sets. In both cases (left and right), the columns
in the tables are variables, whereas rows are observations: the result of one pulse duration with
a specific drug concentration (left), and the result of a concentration from a given treatment

(right)
Concentration Dfl):;l:ieon Result Treatment Concentration Result
0,
500 uM 5 min 23 DMSO 0.1 0/0 20
100 M 5 min 5.4 DMSO 0.10/0 28
20 uM 5 min 32 DMSO 0.1 0/0 34
10 M 5 min 4.8 DMSO 0.50/0 100
500 uM 10 min 92 DMSO 0.5% 102
10 uM 30 min 17.7 Drug 50 uM 96

Changing the Layout of the Data-Set to Get Tidy Data with pandas
One of the most useful functions to tidy our data-setsispd .melt (df) . This function
allows us to gather columns into rows from a DataFrame, which means to go from
wide format (like in table @ 3.4) to long format (like in table @ 3.5). One thing to
consider before melting the DataFrame is to specify what are the values and what
are the variables:

[16]: pd.melt (DataFrame, id_vars, value_vars, var_name,
value_name, col_level)

O Figure 3.3 illustrates the meaning of each of these parameters and how they will
help to reshape our data into a tidy form.

The data in its tidy form is convenient for analysis. However, once we have finished
all the analysis, we might want to have the data back in a form which is prettier to
visualize as a table. To go in the opposite direction, i.e., from long to wide format, we
can pivot our DataFrame:

[17]: pd.pivot (DataFrame, index, columns, values)

B Figure 3.3 also shows the parameters from the pd.pivot (df) function, used
to reshape the data into a wide form.

Going back to the messy data examples from the previous section (8 Table 3.4),
we can use pandas function pd.melt () to convert them into their tidy form
(@ Table 3.5).

[18]: dfl =
pd.read_csv("./Data/PulseVsConcentration.csv")
dfl_melted = pd.melt(dfl, id_vars="Concentration",
var_name="Pulse Duration", wvalue_name="Result")

44 A. Bercowsky Rama

Index columns melt

0
—_— 3
4——
? pivot 2
3
4
5

pd.melt (DataFrame, |id_vars, [value vars, Ivar_name / Ivalue_name ,| col_level)
[0 ‘ 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4 ‘
5 5 5 5 |
Index columns

_ pivot reset index

- 3 — 0

L L []

w|v| =|o

pd.pivot(DataFrame,|index,| |columns,| |va1ues|)

B

O Fig. 3.3 Graphical examples of how to melt and pivot DataFrames. Here we show what each
parameter represents for the methods melt and pivot, to better understand how the data can be
re-arranged and re-shaped. Inspired from the cheat-sheet by Irv Lustig from Python Data Wrangling
Cheat-sheet (» https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf)

After reading and saving the CSV file data into a DataFrame, we use the
pd.melt () function. "Concentration" is already a column, so we assign it as our
identifier variable. Next, we create a variable column called "Pulse Duration", which
is currently the first row (5 min, 10 min, 20 min and 30 min). Finally, we rename the
last column, which contains the intensity measured values, as "Result".

[19]: df2 = pd.read_csv("./Data/DMSOVsDrug.csv",
header=[0,1])
df2_melt = pd.melt(df2, var_name=["Treatment",
"Concentration"], value_name="Result")

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

45
Python: Data Handling, Analysis and Plotting

In this second example we also read and save the CSV file data into a DataFrame,
but in this case, we specify that the first two rows contain the variables which will
become the headers. The next step is to melt the DataFrames. In this case there are
two rows which we have to convert into variable columns: "Treatment" (DMSO and
Drug) and "Concentration" (0.1%, 0.5%, 10u M, 50 M). Finally, we rename the last
column "Result" which contains the measured intensity for a treatment at a given
concentration.

Now we have created tidy data, and we can manipulate, model, and visualize it
easily and effectively. In the following section we will learn how to manipulate a tidy
data-set.

3.3.5 Split-Apply-Combine

Usually, we perform some analysis based on some attributes of the data that we
want to compare, or extract meaningful information, by performing statistical and/or
numerical analysis. Intuitively, to do so, we (1) split the data into groups according
to some criterion; (2) apply some functions to analyze the split-up data; and, finally,
(3) combine the results to be saved in a new data set. The good news is that there is
a conceptual framework to apply these steps—it is called the Split-Apply-Combine
strategy, and was first formalized by Wickham et al. (2011). In this article Wickham
describes the strategy as: "break up a big problem into manageable pieces, operate on
each piece independently, and then put all the pieces back together". An R package
was created with this strategy, but now pandas has its own way to implement the
same idea.

This strategy only makes sense if the data is in a tidy format, because it will be
split-up according to the selected columns. Therefore, we can apply functions to this
newly grouped data and combine the results into a new data-set.

For an extensive tutorial on how to apply the split-apply-combine strategy using
pandas, please visit the website.!’

Split

The df . groupby operation performs the splitting step using any data axis. It allows
the grouping of a DataFrame usually by one or more of the columns. The result is
a DataFrameGroupBy object. Let us take the two DataFrames from B Table 3.5
(in a tidy format) as an example; we can apply simple grouping operations:

[20]: # (1) Group the melted DataFrames according to some
category (column)
dfl_groupby =
dfl_melt.groupby ("Pulse Duration")
Group df2 by the Treatment category
df2_groupby = df2_melt.groupby("Treatment")

17 » https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html.

https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html

46 A. Bercowsky Rama

[21]: | # Show the groups from groupby method
print ("dfl groups: ", dfl_groupby.groups.keys())
print ("df2 groups: ", df2_groupby.groups.keys())

[21]:]dfl groups: dict_keys(['1l0 min', '20 min', '30 min',
'5 min'])
df2 groups: dict_keys(['DMSO', 'Drug'])

Once the data is grouped, we can split it by using the df . get_group () method.
For example, we grouped the melted DataFrame dfl_melt according to pulse
duration, which gave rise to the groups: 5 min, 10 min, 20 min and 30 min. Now, we
can get one of these groups.

[22]: dfl_groupby.get_group("10 min")

[22]: Concentration Pulse Duration Result

4 500 um 10 min 9.2

5 100 um 10 min 9.9

6 20 um 10 min 9.8

7 10 um 10 min 9.2
Apply

Once the data has been grouped and split-up, we can apply different functions to the

newly created DataFrames. For this, we may use one of the following operations:
1. Aggregation: Computes one or more summary statistics to the group_ by object.

The following example computes the mean and the sum using a NumPy function.

[23]: dfl_groupby.agg([np.mean, np.sum]).reset_index()
[23]: Pulse Duration Result
mean sum
0 10 min 9.525 38.1
1 20 min 13.375 53.5
2 30 min 17.250 69.0
3 5 min 3.925 15.7

By default, the grouped columns from the aggregation will be the indices of the
returned object. In order to have the indices restored, we can use reset_index ().
The aggregation functions reduce the dimension of the returned object. Moreover,
we can apply different functions to different columns:

[24]: dfl_groupby.agg({"Result":np.mean,
"Pulse Duration":np.size})

[24]: Result Pulse Duration
Pulse Duration
10 min 9.525 4

47
Python: Data Handling, Analysis and Plotting

20 min 13.375 4
30 min 17.250 4
5 min 3.925 4

If we want to show a summary of all statistics, one way to do that is by using the
describe method:

[25]: dfl_groupby.describe ()

This leads to the following:

Pulse Count Mean Std Min 25% 50% 75% Max
Duration

10 min 4.0 9.525 0.377492 9.2 9.200 9.5 9.825 9.9
20 min 4.0 13.375 0.699405 12.5 13.100 134 13.675 14.2
30 min 4.0 17.250 0.369685 16.9 16.975 17.2 17.475 17.7
5 min 4.0 3.925 1.426826 2.3 2.975 4.0 4.950 5.4

2. Transformation: Performs some computation to a specific group. This method
returns an object which has the same size and index as the grouped object. In the
following example we take the grouped object and we select one of the groups to
apply two functions to the corresponding values; in this case we compute the square
root and an exponential:

[26]: dfl_groupby.get_group("10 min") .transform([np.sqgrt,

np.expl)
[26]: Result
sqgrt exp
4 3.033150 9897.129059
5 3.146427 19930.370438
6 3.130495 18033.744928
7 3.033150 9897.129059

We can also create our own functions and apply them with the transformation
method (see example in @ Fig. 3.4). Some other built-in useful transformations are
(1) rolling (), which applies rolling window calculations (there are several window
types: Gaussian, Hamming, etc.), and (2) expanding (), which accumulates a given
operation for all the members of each particular group.

3. Filtration: Discards some groups according to some group criteria. When we
apply a function to a group as a filter argument, the output will be Boolean (true
or false). The example below groups the DataFrame df2_melt by the category
Concentration. The filter method will then look in the Result column for all
the values from each concentration group (50 uM, 0.1%...) that have a higher mean
value than the overall mean in the column. This is performed by iterating over all

48

A. Bercowsky Rama

the groups mean values of the DataFrame using the lambda'® function which will
return a true/false value for each of the rows in the filtered column. The printed results
will be the ones which were evaluated as true.

[27]: df2_melt.groupby("Concentration").filter (lambda x:

np.mean (x["Result"])>np.mean (df2_melt["Result"]))
[27]: Treatment Concentration Result

3 DMSO 0.5% 100

4 DMSO 0.5% 102

5 DMSO 0.5% 103

9 Drug 50 um 78

10 Drug 50 um 98

11 Drug 50 um 96

x is the equivalent to each concentration group from which we compute the mean
value from the Result column and compare it with the overall mean. As a result, we
get that the concentrations of 0.5% of DMSO and 50 u M of Drug have higher mean
values than the overall mean.

There are some functions which, when applied to a DataFrame, can act as a filter,
returning a reduced shape but with unchanged index. For example, when a Series
or a DataFrame are extremely long, but we still want to visualize how the data has
been organized in the columns and rows, the functions head () and tail () come
in handy. To view a small sample of a Series or a DataFrame object, we can use
the DataFrame.head () method to display the initial (by default, five) values and
use the DataFrame. tail () method to display the last (by default, five) values.

Combine

The function pd.concat([dfl,df2], axis) allows to concatenate
DataFrames along a particular axis; an example is shown in @ Fig. 3.4. Once the
data is analyzed, we can then combine them into new DataFrames and export them
into any of the available file formats (using pd. to_fileformat ()). In the follow-
ing example, we combine the results from two transformation methods into one new
DataFrame by using the pd.concat () function. Depending on the axis, we can
combine the two DataFrames horizontally or vertically.

[28]: # We split the data according to the treatment and we
apply a transformation (a square root and an
exponential) to each group: Drug and DMSO
df2_resultl = df2_groupby.get_group ("DMSO")
.transform([np.sqgrt, £f_expl)
df2_result2 = df2_groupby.get_group("Drug")
.transform([np.sqgrt, f_expl)

18 Lambda functions are commonly used in many programming languages. In Python they allow to create
anonymous functions. To learn more about Lambda functions, follow the documentation » https://
docs.python.org/3/tutorial/controlflow.

https://docs.python.org/3/tutorial/controlflow
https://docs.python.org/3/tutorial/controlflow

49
Python: Data Handling, Analysis and Plotting

df Tidy data set

- 1. Split

1

2 0 2 6

3 1 3 7

4 4 8

5 5 9

6

7 grouped = df.groupby(by=-)

8

1= d.get

- gl = grouped.get_group ([

2. Apply

grouped.aggregate(np.mean).reset_index()

grouped.mean().reset_index()

gl.transform([np.sqrt, np.exp])
def f exp(x):
return np.exp(x) grouped.filter(lambda x: len(x) > 3)

def f sqgrt(x):
return np.sqrt(x)

2
gl.transform([f_sqrt, f_exp]) 3
; len([> 3
5
6 6
7 7
5 : len(D > 3
9 g
3. Combine

d.concat([dfl,df2
dft p ([1)

df1
B ©:-conces([af1,af2), axis-) NN
° e -
1

—_— 0 0
df2 T df2 — [

| E

1

1

B Fig. 3.4 Split-Apply-Combine strategy in Python starting from a tidy data-set df. (1) Split the
data based on some criteria, using the df.groupby (). We can then access each of these groups
by using the get_group () function. (2) Apply either an aggregation, a transformation, or a filter
operation. Aggregations apply an operation to a group giving one value as a result, such as the mean.

Transformations apply a function to all the values of a given group. These functions can be built-

in, like np.exp () from NumPy, or custom-defined. Filtration applies an operation which returns
Boolean indices and, as a result, only the values with true index are shown. Usually the dimensions
get reduced from the original size. (3) Combine the results using operations like pd.concat () to
concatenate DataFrame, to later export them into CSV or any other table file format

50 A. Bercowsky Rama

The next step is to combine the results using the concatenation function.

[29]:

[29]:

df2_concat = pd.concat([df2_resultl, df2_result2],
axis=0)
df2_concat

Result

sgrt f_exp
0 4.472136 4.851652e+08
1 5.291503 1.446257e+12
2 5.830952 5.834617e+14
3 10.000000 2.688117e+43
4 10.099505 1.986265e+44
5 10.148892 5.399228e+44
6 5.656854 7.896296e+13
7 6.855655 2.581313e+20
8 7.280110 1.041376e+23
9 8.831761 7.498417e+33
10 9.899495 3.637971e+42
11 9.797959 4.923458e+41

We combine now the two results from the Drug treatment and the DMSO treat-
ment, again using the concatenation, but in this case we use the other dimension:
pd.concat (axis=1).

[30]:

df2_concat = pd.concat ([df2_resultl.rename (index=str,

columns={"Result": "DMSO"}) ,
df2_result2.rename (index=str,
columns={"Result": "Drug"})], axis=1l, sort=False)

df2_concat

DMSO Drug

sqgrt f_exp sqgrt f_exp
0 4.472136 4.851652e+08 NaN NaN
1 5.291503 1.446257e+12 NaN NaN
2 5.830952 5.834617e+14 NaN NaN
3 10.000000 2.688117e+43 NaN NaN
4 10.099505 1.986265e+44 NaN NaN
5 10.148892 5.399228e+44 NaN NaN
6 NaN NaN 5.656854 7.896296e+13
7 NaN NaN 6.855655 2.581313e+20
8 NaN NaN 7.280110 1.041376e+23
9 NaN NaN 8.831761 7.498417e+33
10 NaN NaN 9.899495 3.637971le+42
11 NaN NaN 9.797959 4.923458e+41

51
Python: Data Handling, Analysis and Plotting

As a result, the two DataFrames were horizontally concatenated, but
according to their index. Therefore, in order to reset the index, we will use the
df .reset_index (drop=True) tomake theindex start from 0in both DataFrames.
To avoid the formation of a new column with the index values, we use the drop=True.

[31]: df2_concat = pd.concat([df2_resultl.rename (index=str,

columns={"Result": "DMSO"}) ,
df2_result2.reset_index (drop=True) .rename (index=str,
columns={"Result": "Drug"})], axis=1)

df2_concat

[31]: DMSO Drug

sqgrt f_exp sqgrt f_exp
0 4.472136 4.851652e+08 5.656854 7.896296e+13
1 5.291503 1.446257e+12 6.855655 2.581313e+20
2 5.830952 5.834617e+14 7.280110 1.041376e+23
3 10.000000 2.688117e+43 8.831761 7.498417e+33
4 10.099505 1.986265e+44 9.899495 3.637971le+42
5 10.148892 5.399228e+44 9.797959 4.923458e+41

3.4 Python Visualization Landscape

One of the main advantages of using pandas data structures, besides the easy
handling of the data, is the creation of plots. The structure and metadata inside a
DataFrame can be easily used to create plots. There is a wide range of different
visualization tools available in Python, which should be selected depending on a par-
ticular visualization purpose. In this chapter we will focus on Bokeh and HoloViews,
JavaScript based packages which produce interactive figures in the browser with the
Jupyter Notebook.

3.4.1 JavaScript

JavaScript is a high-level programming language which enables creation of interactive
web pages and is frequently used in web applications. Python has many visualization
libraries based on JavaScript in order to take advantage of browser interactivity.
Currently, having tools which allow easy distribution of the visualization of the data
can be very powerful. To learn more about how to turn raw data into interactive
web visualizations using a combination of Python and JavaScript, Dale (2016) is a
recommended read.

Bokeh

Jupyter Notebook: NB-3-Bokeh_Plotting.ipynb

Bokeh is a popular interactive data visualization library for Python which allows
to easily share figures. Moreover, Bokeh can handle large and streaming data-sets.
To create a figure with Bokeh, the following are the basic steps:

52

A. Bercowsky Rama

1. Before creating any plot, the first step is to import all the packages and subpackages
that will be used to create the figures:

[1]: import pandas as pd
import numpy as np
from bokeh.plotting import figure, output_file,
output_notebook, show
from bokeh.palettes import Spectralll

2. Prepare the data we want to plot, which can be a NumPy array, Python lists, or
a pandas DataFrame, as in this example:

[2]: | # Define two DataFrames with random numbers
dfl = pd.DataFrame ({"A":np.random.random(60),
"B":np.random.uniform(0,10,60)1})
df2 = pd.DataFrame({"A":np.random.random(60),
"B":np.random.uniform(0,10,60)1})

Choose the columns to be plotted
x = "A"
y = "B"

3. Define where to generate the output file, using either output_file () (to gen-
erate output saved to a file), or output_notebook (to generate output in notebook
cells):

[2]: | # Specify where to output the figure
output_notebook ()

4. Create a figure () object. This will generate a plot with the default options.
We can later customize axis labels, title and tools. In this case, we choose some of the
most frequently used plot tools which are later explained in more detail in @ Fig. 3.5.
These tools can be used to zoom-in and -out of the plot, change range extents or to
add, edit and delete the graph, etc.

[3]1: # Specify the tools if you want to add or remove any
TOOLS = "crosshair,pan,wheel_zoom,box_zoom, reset,
box,select, lasso_select"

Create a figure
p = figure(width=400, plot_height=300, tools=TOOLS)

5. Add a graph, whichcanbe 1ine (), scatter(), vbar(), hbar(),and
many others we can choose from. Some more examples are shown in 8 Fig. 3.6. More-
over, we can choose color and size of the graphs, label sizes etc.

53
Python: Data Handling, Analysis and Plotting

Bokeh Scatter plot Box Select
& https://docs.bokeh.org/ ‘

g @ |+ Pan

® Lasso Select
Box Zoom
o 3
@ Box Select

Wheel Zoom
Reset

[]
.&b P Crosshair
o) d. N, e’/

04 o8 o8 1 tools

O Fig.3.5 Example of a Bokeh scatter plot and its tools. Two DataFrames were used to generate
this plot. To the left, there are some of the tools we can activate in the £igure () section to allow
more interactivity. Also, we can have interactive legends which allow you to observe one data-set at
a time

[4]: # Define the graph
p.circle(x=x, y=y, source=dfl, size=15,
color=SpectrallO[5], line_color="black")
p.circle(x=x, y=y, source=df2, size=15,
color=8SpectrallO[1l], line_color="black")

6. Choose whether to show the figure, show (p) or save it save (p) . We cannot
generate a vector output like PDFs (Portable Document Formats) or EPS (encap-
sulated PostScrip) but Bokeh allows us to save in SVG (Scalable Vector Graphics)
format.

[5]: show(p)

The code to generate all of these figures can be found in the Jupyter Notebook:
NB-3-Bokeh_Plotting.ipynb.

This generates a scatter plot like the one shown in 8 Fig. 3.5, with the assigned
tools. We can add more tools and customize them. Moreover, the plotting parameters
can also be adapted, as suitable for a particular figure (visualisation task), but the
process always includes all the described basic steps. Some other examples of how to
create plots like histograms, box-plots, bar plots and line plots are shown in @ Fig. 3.6.

Bokeh has great interactive features. It is a high-level library, but it requires all the
described steps to generate a figure. HoloViews will make the process of generating a
figure even easier. Their philosophy is: "Stop plotting your data—annotate your data
and let it visualize itself" (» http://holoviews.org).

http://holoviews.org

54

A. Bercowsky Rama

p.segment ()

Load the DataFrame 6] p-circle() 5, PoreCt()
" p.line()
df = pd.read_csv('Data/ > "
PulseVsConcentration.csv') 2 “
£ 10 12
Concentration Smin 10min 20 min 30 min S & o 500uM % 10
3 100 uM g
o s00um 23 82 125 169 S 5 hod £ 8
o 20uM .
1 Wum 84 99 133 170 4 o 10uM
2 Wum 32 88 135 174 2 4
T T 1 + T 1 2
EY 10 um 48 a2 142 1T 5 10 15 20 25 30
10um 100 um 20um 500 um
o — 77’?‘9 {"””J Concentrations
jan fluorescent intensity during ttration
Melt the DataFrame p.quad()
15 p.vbar ()
Concartration Pulse Duration Flesult 3
] 500 um Smn 23 g1 N
< $
1 100 um 5 min 54 g 5 %
2 20um Smn 32 = |_| s
0 .y Lt T &
a 10 um Smn 48 S S S eSS
4 500 um tomn 82 BN DI IO
.
.

O Fig. 3.6 Examples of different types of Bokeh plots. On the left panel: The DataFrame used to
generate the plots. This data was already melted and split-up in » Sect. 3.3.5. On the right panel:
Some other examples, the code to generate them is in the NB-3-Bokeh_Plotting.ipynb

HoloViews

Jupyter Notebook: NB-4-Holoviews_Plotting.ipynb

HoloViews is an open-source Python library for simple and easy data analysis
and visualization. The approach is that each data-set should have an intrinsic way to
be used for its visualization. The intention with this library is to produce intelligent
visualizations based on how the data is structured. However, one important point to
take into account is that the data must be tidy!

HoloViews can be rendered using either Matplotlib, Bokeh, or Plotly. To do so, we
need to specify an extension: hv.extension ("bokeh") (we will be using Bokeh).
Now the plots will be rendered using Bokeh. Next, we generate the figure following
the steps below:

1. As before, start by importing the packages needed for creating a figure using
HoloViews:

[1]: import pandas as pd
import numpy as np
from holoviews import opts
from bokeh.palettes import Spectralll
import holoviews as hv
hv.extension ("bokeh")

2. Create the data, in this case two DataFrames. Specify which columns of the
DataFrames should be plotted in the figure.

[2]: # Prepare the data you want to plot
dfl = pd.DataFrame ({"A":np.random.random(60),
"B":np.random.uniform(0,10,60)1})
df2 = pd.DataFrame ({"A":np.random.random(60),

55
Python: Data Handling, Analysis and Plotting

"B":np.random.uniform(0,10,60)1})

Choose the columns you want to plot
5% = UAL

y = "B"

3. Choose a type of plot (e.g., scatter, box-plot, histogram, heat-map, etc.).

[3]: # Type of plot
scatterl = hv.Scatter(dfl, x, vy)
scatter2 = hv.Scatter(df2, x, vy)

With these steps we created two objects which will then be rendered with Bokeh
(because we chose this extension). Next step is to choose the styling elements for better
visualization, using hv.opts ().

[4]: | #Plotting options
scatterl.opts(color="#feel08b", size=15,
line_color="black", padding=0.1, tools=TOOLS)
scatter2.opts(color="#3288bd", size=15,
line_color="black", padding=0.1, tools=TOOLS)

Finally, we choose how we want to visualize the two plots. There are two types of
containers: a layout (HoloViews objects displayed side by side, achieved using "+")
or an overlay (HoloViews objects displayed overlaid, with the same axes, achieved
using "x").

[5]: # Create layout
scatterl * scatter2

The output from this scatter plot using HoloViews is shown in 8 Fig. 3.7. As with
Bokeh, the plots have, by default, a set of tools which allow more interaction with the
data. In this figure there are also some other examples which are explained in more
detail in the Jupyter Notebook:

NB-4-Holoviews_Plotting. ipynb.

56 A. Bercowsky Rama

Holoviews Scatter plot

Q https://docs.bokeh.org/ Hist

"16® _ ° .
8, o & Pan = {:;
. - b! D Lasso Select 4 § S
. ép % 804 Box Zoom §‘5 % s
= ; (&}&. % Cg - BoxSelect £10 § [
’ &. Wheel Zoom o 2 s -
b § 205
ey : | -
e . et Swave_g R0, 10000 18000 A% Totsi Cases Totsl Deathe. Hosphizations 101
° e o4 o8 o 1 X Cases by calegory
a tools
Scatter-Curve-Errorbar plot

bt |
i 2000
J-H
i o e
s bom X, 1 o O 5000 10000 15000 20000 25000
2020-00 202004 2020-05 200006 Total cases cases cumul cases hcp cases hosp cases iy ceaths_curml
Total cases Cases by calegory

O Fig. 3.7 Examples of plots created using HoloViews. The scatter plot corresponds to the step-
by-step figure we generated before (B Fig. 3.5). The histogram, bar plot, box plot, scatter plot, and
scatter-curve-errorbar plot are examples of figures that can be generated using HoloViews (with the
Bokeh extension). The plots were generated using a data-set from Covid-19 cases in 2020 in Ireland
(» https://zenodo.org/record/3901250#. XykEDil17FZI)

— Take-Home Message

This chapter provides a guide to use Python as a tool for analyzing and plotting the
data as the last step of an image analysis pipeline. With the great increase in number of
tools and software to acquire and analyze images, we are able to extract large amount
of data (often in the form of tables). pandas is a powerful tool for importing and han-
dling tabular data in Python. However, we need to invest some time to tidy the data in
order to get the most out of it when we perform the analysis and the visualization of the
results. If we achieve this, we can compute high-level and interactive plots using Bokeh
and HoloViews. Tools like the Jupyter Notebooks are very powerful for visualization
and data sharing. Utilizing a combination of the interactivity of JavaScript-based visu-
alization libraries (like Bokeh and HoloViews) and efficient handling and analysis tools
(like pandas), we can build useful data-analysis pipelines which can be easily shared
with others.

Acknowledgements [would like to thank my supervisor, Professor Andrew Charles
Oates (EPFL, Lausanne) for the constant support and for the encouragement and
freedom to create open science. I would also like to thank Martin Weigert (EPFL,
Lausanne) and Uwe Schmidt (CSBD / MPI-CBG) for reviewing this chapter and pro-
viding excellent feedback and suggestions. The material for this chapter was initially
developed for teaching in courses for NEUBIAS Training schools. I am extremely
grateful to the NEUBIAS community for all the discussions and feedback obtained
during these meetings. Last but not least, I would like to thank Joan Rué Queralt for
reading the chapter and for the great comments.

https://zenodo.org/record/3901250#.XykEDi17FZI

57
Python: Data Handling, Analysis and Plotting

Further Readings Most of the reading references are provided in the main text. How-
ever, for exercises and more examples on this topic, visit » http://bois.caltech.edu.
Professor Justin Bois has prepared excellent material for learning data analysis and
plotting using Python (specifically, Jupyter notebooks).

References

Dale K (2016) Data visualization with python and javascript: scrape, clean, explore & transform your data.
O'Reilly Media, Sebastopol

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J,
Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del R10 JF,
Wiebe M, Peterson P, G’erard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke
C, Oliphant TE (2020) Array programming with NumPy. Nature 585(7825):357-362. https://doi.
org/10.1038/s41586-020-2649-2

McKinney W et al (2011) pandas: a foundational python library for data analysis and statistics. Python
High Perform Sci Comput 14(9):1-9

Mertz D (2015) Picking a Python version: a manifesto : from_future_import Python. O’Reilly Media,
Sebastopol. https://books.google.ch/books?id=LV74vQEACAAJ

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat
Methods 9(7):676-682

Wickham H et al (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40(1):1-29

Wickham H et al (2014) Tidy data. J Stat Softw 59(10):1-23

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

http://bois.caltech.edu
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://books.google.ch/books?id=LV74vQEACAAJ
http://creativecommons.org/licenses/by/4.0/

® 59

Check for
updates

Building a Bioimage
Analysis Workflow Using
Deep Learning

Estibaliz Gomez-de-Mariscal, Daniel Franco-Barranco,
Arrate Murioz-Barrutia and Ignacio Arganda-Carreras

Contents

4.1 Why You Should Know About Deep Learning - 61
4.2 Dataset - 63
4.3 Tools - 64

4.4 Workflow - 64

4.4.1 Step 1: Setting up a Google Colaboratory Notebook - 64

44.2 Step 2: Download and Split the Data into Training, Validation
and Test - 65

443 Step 3: Train a Deep Learning Model for Binary
Segmentation - 66

444 Step 4: Evaluating the Trained Model — 75

445 Step 5: Building a Deeplmage) Bundled Model to Process
New Data - 76

44.6 Step 6: Process All Images in Fiji Using Deeplmage) and
MorpholibJ - 79

Appendix - 80

Training Hyper-Parameters — 80

Optimizer - 81

Halo and Receptive Field of a Network - 81
Data Augmentation — 82

This Chapter has been reviewed by Sébastien Tosi, IRB, Barcelona.

© The Author(s) 2022
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows—-Advanced Components and Methods,
Learning Materials in Biosciences, https://doi.org/10.1007/978-3-030-76394-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76394-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-76394-7_4

Solutions to the Exercises — 85

References - 86

61
Building a Bioimage Analysis Workflow Using Deep Learning

What You Will Learn in This Chapter

The aim of this workflow is to quantify the morphology of pancreatic stem cells lying on
a 2D polystyrene substrate from phase contrast microscopy images. For this purpose, the
images are first processed with a Deep Learning model trained for semantic segmentation
(cell/background); next, the result is refined and individual cell instances are segmented
before characterizing their morphology. Through this workflow the readers will learn the
nomenclature and understand the principles of Deep Learning applied to image processing.
Having followed all the steps in this chapter, the reader is expected to know how to use
Google Colaboratory (Bisong, 2019) notebooks, ImageJ/Fiji (Rueden et al., 2017; Schin-
delin et al., 2012; Schneider et al., 2012), Deeplmage] (Gémez-de Mariscal et al., 2019) and
MorpholibJ (Legland et al., 2016). This complete workflow sets the basis to develop further
methods in the field of Bioimage Analysis using Deep Learning. All the material needed
for this chapter is provided in the following GitHub repository (under chap 4): » https:/
github.com/NEUBIAS/neubias-springer-book-2021. 1

4.1 Why You Should Know About Deep Learning

The workflow presented in this Chapter extracts binary masks for cells in 2D phase
contrast microscopy images, identifies the cells in the image and quantifies their mor-
phology. The central component of the workflow is the step to obtain a binary mask to
distinguish the pixels belonging to the cells from the rest of pixels in the image. In par-
ticular, we will train a well established Deep Learning architecture called U-Net (Falk
et al., 2019; Ronneberger et al., 2015) to perform this task.

Machine Learning and Deep Learning have become common technical terms in
life-science. They are now large fields of study that have boosted both research and
industry. While both are strongly related, they also belong to a larger field called
Artificial Intelligence, which pursues mimicking (or even surpassing) human intelli-
gence with a machine (Goodfellow et al., 2016). The techniques to extract the proper
information and use it in an intelligent way is what we call Machine Learning (ML).
The ML techniques are commonly divided into two main groups: supervised and
unsupervised methods. Supervised learning is the task of learning a function that
maps an input to an output based on sample input-output pairs. Namely, it infers
such a function from labeled training data consisting of a set of training examples.
When no labels or information about the correct output are given, then we are talk-
ing about unsupervised learning, and the corresponding function is inferred using the
data structure only. All the clustering methods are thus included in the latter.

A simple example of ML is a linear classifier, technically called perceptron (Rosen-
blatt, 1961), which is able, for example, to split a set of 2D points into two different
classes. In practice, ML classifiers operate on objects of way higher dimensions (e.g.,
images) and solve tasks far more complex than classifying input data into two groups.
For this reason, in practice, multiple perceptrons are stacked together to build what is
known as an Artificial Neural Network (ANN). That is, we define deep architectures
to support better mathematical representations of our data. This, combined with a
suitable training schedule, allows the computer to learn the correct patterns to per-

1 This chapter was communicated by Sébastien Tosi, IRB Barcelona, Spain.

http://dx.doi.org/10.1007/978-3-030-76394-7_4
https://github.com/NEUBIAS/neubias-springer-book-2021
https://github.com/NEUBIAS/neubias-springer-book-2021

62

E. Gbmez-de-Mariscal et al.

form the desired task. This is called Deep Learning (DL from now on) and, at the
moment, it has proven to be among the most powerful frameworks for supervised
learning.

What sets apart DL from classical approaches is that the system learns automati-
cally from the data without any definition or explicit programming of complex heuris-
tic rules. A pioneer work using DL for bioimage analysis is the Convolutional Neural
Network (CNN) architecture called U-Net (Ronneberger et al., 2015). It was first
introduced to the community in 2015 at the International Symposium on Biomedical
Imaging (ISBI) and then published at the Medical Image Computing and Computer
Assisted Interventions (MICCAI) conference, two of the most important conferences
for biomedical image analysis. Since then, a growing number of manuscripts (about
390 in 2020 according to PubMed) related to biomedical image analysis using DL are
published every year (Litjens et al., 2017).

Note that DL techniques do not only require sophisticated algorithms but also
large sets of (manually) annotated images and an enormous amount of computa-
tional power. Data collection itself could be a whole project in Computer Vision
(Roh et al., 2021), not only for being critical for the success of ML techniques, but
also for the complexity that handling large amounts of data involves and the related
time and economical costs. In contrast with other fields in Computer Vision, the
availability of useful, large and robustly annotated datasets in bioimage analysis is
still a bottleneck for the use of DL. This is due to the high economical cost that
their acquisition implies, and the need for expertise to generate manual annotations.
Indeed, preparing manual annotations can be tedious and many times non-viable.
Some freely available annotation tools are QuPath (Bankhead et al., 2017), 3D Slicer
(Kapuretal., 2016), Paintera,” Mastodon,’ Catmaid (Saalfeld et al., 2009), TrakEM2
(Cardona et al, 2012), Napari (Sofroniew et al., 2020) and ITK-SNAP (Yushkevich
et al., 2006); they offer a wide range of possibilities to simplify the annotation process
and make it reasonably efficient. However, there is still a need for a general approach
to annotate complex structures in higher dimensions (i.e., 3D, time, multiple chan-
nels, multi-modality images). Additionally, the large variability among the images
acquired following exactly the same setup but in a different laboratory or by a differ-
ent technician prevents the transfer of trained DL models. For this reason, we want to
warn the reader about the necessity of retraining the DL model provided on the target
data to be processed. Fortunately, as it will be demonstrated, this is quite simple to
do with a basic knowledge of Python and some libraries such as TensorFlow (Abadi
etal., 2016), Keras (Chollet et al., 2015), or Pytorch (Paszke et al., 2019), which release
the user from many computational and programming technicalities. Other even more
user-friendly frameworks are Ilastik (Berg et al., 2019), ImJoy (Ouyang et al., 2019),
ZeroCostDL4Mic (von Chamier et al., 2020), and the ones integrated in Fiji/Image],
CSBDeep (Weigert et al., 2018), and deepImage] (Gémez-de Mariscal et al., 2019).
These tools allow the direct use and/or retraining of DL models using zero-code.

(Re)training DL models requires considerable computational power. The use of a
graphics processing unit (GPU) such as the ones found in modern graphics boards, or
specialized tensor processing units (TPU), is strongly recommended in most cases to
speed up the training process. Access to these resources is possible through non-free

2 » https://github.com/saalfeldlab/paintera.
3 » https://github.com/mastodon-sc/mastodon.

https://github.com/saalfeldlab/paintera
https://github.com/mastodon-sc/mastodon

63
Building a Bioimage Analysis Workflow Using Deep Learning

cloud computing services such as the ones provided by Amazon or Google. Fortu-
nately, there is a free alternative available for Google users through the Google Colab-
oratory ("Google Colab") framework (Bisong, 2019). It provides serverless Python
Jupyter notebooks running on this hardware with pre-installed DL libraries. The use
of these resources is limited but most of the time sufficient to train and test bioimage
analysis (BIA) models.

4.2 Dataset

The original data processed by this workflow can be found on the web page of the Cell
Tracking Challenge (CTC) (Maska et al., 2014; Ulman et al., 2017).* It is provided
as two independent datasets (training and challenge) since it aims to benchmark
(evaluate) cell segmentation and tracking computational methods. The training set is
the only one for which Ground Truth® (GT) is publicly available. Additionally, the
CTC provides a set called Silver Truth® (ST). The ST set is much larger than the GT
set, so it is more suitable for DL tasks. An example of training data is illustrated in
O Fig.4.1.

For this work, we will use the training set of the challenge and the ST annotations
to train and evaluate our method. The ST is processed to extract the contours of
each cell that will be used by the workflow (B Fig.4.1). A ready-to-use dataset is
provided.” Note that the data is distributed into three groups (training, validation
and test). We will elaborate more on this in the following sections. For the final step
of the workflow, we will apply the trained models to unseen data for which manual

Mask with
Full-size image Ground Truth Cell contours 3 labels

B Fig. 4.1 Example of training data. From left to right: phase contrast microscopy image (scale
bar: 150 um), ground truth (GT) manually annotated cells, corresponding cell-contours, and a mask
with 3 labels (background, cell or cell contour)

~

» http://celltrackingchallenge.net/2d-datasets/.

5 Ground Truth: It refers to manually annotated images or to the output of controlled simulations. It
is the ideal solution that we expect from a computational processing.

6 Silver Truth: It refers to the combination of all the predictions for this particular dataset of the best
performing algorithms in the challenge.

7 » https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/

Ch04_Building_a_Bioimage_Analysis_ Workflow_using_Deep_Learning/datadnotebooks.zip.

http://celltrackingchallenge.net/2d-datasets/
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/data4notebooks.zip
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/data4notebooks.zip

64

E. Gbmez-de-Mariscal et al.

annotations are not available. For this, we will use the challenge data provided at
the CTC web page.® In a real case scenario, the trained models are always applied to
unseen data, with no GT available, otherwise we would not need to train any method!

43 Tools

Some tools and software packages need to be installed to run the workflow:
= Fiji’
—Download URL: » https://imagej.net/Fiji/Downloads
—MorphoLibJ plugin. IJPB update site URL: » https:/sites.imagej.net/IJPB-
plugins/
—Deeplmagel plugin. Update site URL: » https://sites.imagej.net/Deeplmagel/
To install Fiji plugins, in Fiji, click on Help > Update. .. Once the ImagelJ
Updater opens, click on Manage update sites. There you need to select the
1JPB-plugins for MorpholibJ. To install deepImageJ, you need to click on Add
update site. Then, fill the fields with Name: Deeplmage] and update site
URL. Click on Close and Apply changes.
= Python Notebooks: they can be executed locally or in Google Colaboratory'®
which provides free access to cloud GPU. The latter requires a Google account.
—Link to the notebook.'!
— Link to open the notebook directly in Google Colaboratory.'? It is recommended
to make a local copy of the Notebook, as it will be editable.

4.4 Workflow

The steps of the workflow covered in this chapter are summarized in @ Fig. 4.2.

4.4.1 Step 1:Setting up a Google Colaboratory Notebook

After opening a Google Colab notebook, we configure the hardware needed for its
execution. In this case, we set up a GPU runtime (B Fig. 4.3). Now we can run the
notebook. The way to proceed is by clicking on the "play" button on the left side of
each code cell. For example, the first cell will install the correct version of the required

8 » http://data.celltrackingchallenge.net/challenge-datasets/PhC-C2DL-PSC.zip.
9 All the steps described in this chapter are reproducible in Fiji and ImageJ.
10 » https://colab.research.google.com/.

11 » https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/
U_Net_PhC_C2DL_PSC_segmentation.ipynb.

12 » https://colab.research.google.com/github/NEUBIAS/neubias-springer-book-2021/blob/
master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/
U_Net_PhC_C2DL_PSC_segmentation.ipynb.

https://imagej.net/Fiji/Downloads
https://sites.imagej.net/IJPB-plugins/
https://sites.imagej.net/IJPB-plugins/
https://sites.imagej.net/DeepImageJ/
http://data.celltrackingchallenge.net/challenge-datasets/PhC-C2DL-PSC.zip
https://colab.research.google.com/
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://colab.research.google.com/github/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://colab.research.google.com/github/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://colab.research.google.com/github/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb

65
Building a Bioimage Analysis Workflow Using Deep Learning

CTC train-
ing data Evaluate
the model
l T Fan Y
—
Split it = Process g
. . Train seg- new data Quantify
into train-
A mentation (CTC cell mor-
validation- — bl
method challenge olo
test data 8 | P &Y
data) kg
=
DO Fig. 4.2 Summary of the proposed workflow
. ©) U_Net_PhC-C2DL-PSC_segmentation.ipynb
" File Edit View Insert Runtime Tools Help
+ Code + Text & Ci Run all 3/ Crl+F9
B Run before M /CurleFR
<»
b U‘NEt for CE” £ Run selection % /Ctri+ Shift+Enter
= Run after %/Cul+F10
Introduction Notebook settings
This is a notebook that I-like network to None or
and Tensorflow. The air phase contrast t @
TPU
(background, foregroun Faciory reset runtime ! Eolab. avoid
e Leam more
Change runtime type
D Dmit adl
Mnnagn- Sessions
CANCEL SAVE
a b

O Fig. 43 Setting up a Google Colab notebook. (a) Go to "Change runtime type" and (b) make
sure to choose GPU hardware

DL libraries (TensorFlow and Keras). This is critical for results reproducibility since
functions performance can differ among different versions, or the code may even
crash (B Fig.4.4).

4.4.2 Step 2: Download and Split the Data into Training, Validation
and Test

When using ML methods, we need to split the available annotated (GT) data into
three exclusive sets: training, validation and test. The training set is used to train the
method and let it learn the task of interest (e.g., binary segmentation). Such set needs
to be large enough as to cover all representative scenarios (e.g., poor signal-to-noise
ratio, blurred images) and events visible in the data (e.g., artifacts, debris, mitosis,

66

o R BV TN S

E. Gbmez-de-Mariscal et al.

~ Getting started

First, we make sure we are using Tensorflow version compatible with DeeplmageJ (<= 1.15).

° 1 # Use Tensorflow and Keras versions compatible with DeepImageJ
2 %pip install tensorflow-gpu==1.15
3 %pip install keras==2.2.4

O Fig. 4.4 Execution of the first code cell. Every piece of code is run by clicking on the play button
(red square) of each code cell

apoptosis, clusters of cells). The validation set, as indicated by its name, serves to
evaluate the performance of the method during training, to ensure that it is learning
and to prevent over-fitting.!> The test set will be used to assess the performance of the
method once the training procedure has finished. Both validation and test sets need
to be independent of the training set, so that when the accuracy of the model becomes
acceptable on the validation set, we can be confident that it is because the model is
properly trained and that it has not over-fit the training set. The evaluation of the
model performance on the test set aims to assess its ability to generalize to unseen
data.

The GT data, in this particular case, consists of two independent time-lapse videos
(sequences 01 and 02). Some frames from sequence 01 are used as training data
while some other frames from the sequence 02 are used for both validation (frames
140, ..., 250) and test (frames 151, 152, ..., 248, 249). This data organization is com-
piled in a zip file that needs to be downloaded and unzipped (in the cloud, if running
the workflow in Google Colab). These operations are performed in the second code
cell by the following commands:

with zipfile.ZipFile(path2zip, 'r') as zip_ref:
zip_ref.extractall('/conter dataset/')

code cell[l], U_Net_PhC_C2DL_PSC_segmentation.ipynb

After decompression, the new folder called dataset contains three sub-folders
(input, binary_masks and contours) for the three different sets.

4.4.3 Step 3:Train a Deep Learning Model for Binary Segmentation

A U-Net DL network is designed and trained to segment the cells in the images. We
train the network by using the original 2D phase contrast microscopy images as input,
and a set of three binary masks as output: 1) background mask (with pixel values of
1 for the background and 0 for the rest), 2) cell mask (1 cells and 0 the rest) and 3)

13 When the model processes the training data accurately but fails to generalize the accurate prediction
to the test set, we say that it over-fits the training data.

67
Building a Bioimage Analysis Workflow Using Deep Learning

cell contour (1 cell contour and 0 the rest). In other words, the network will learn
to classify each input pixel as belonging to one of these three classes: background,
foreground or contour.

Since the classification is performed per pixel, this process is called semantic seg-
mentation, as opposed to instance segmentation, for which the model outputs a unique
label per object of interest (here, independent cells).

Step 3.1: Preparing the Data for Training
Read the images for training and store them into memory by running the following
code:

Path to the traini:
train_input_path '
train_masks_path
train_contours_path = t t
Read the list of file names anc rt them to have a match
train_input_filenames = [x for x in os.listdir(train_input_path) if x.endswith(".tif")]
train_input_filenames.sort ()
train_masks_filenames = [x for x in os.listdir(train_masks_path) if x.endswith(".tif")]
train masks_filenames.sort ()
train_contours_filenames = [x for x in os.listdir(train_contours_path) if x.endswith(".png")]
train_contours_filenames.sort ()
(' Numb

between images and masks

raining input ' 4 str(len(train_input_filenames)))
ning mages: ' + str(len(train_masks_filenames)))
r(len(train_contours_filenames)))

training images (input, mask
train_img = [cv2.imread(os.path.join(train_input_path, x), cv2.IMREAD_ANYDEPTH) for x in train_input_filenames]
train_masks = [cv2.imread(os.path.join(train_masks_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in train_masks_filenames]
train_contours = [cv2.imread(os.path.join(train_contours_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in

<> train_contours_filenames]

display the image

plt.figure(figsize=(10,5))

plt.subplot(l, 3, 1)

plt.imshow(train_img[0], 'gray')

plt.axis('off')

plt.title('Full-size training image')

its "mask"

plt.subplot(1l, 3, 2)

plt.imshow(train_masks[0], 'gray')
plt.axis('off")

plt.title('Bine k)

and cell conto
plt.subplot(l, 3,
plt.imshow(train_contours([0], ‘'gray')
plt.axis('off')

plt.title('Ot
Concatenate v and contours to get one array with the training data

train_output = [np.transpose(np.array([train_masks[i],train_contours([i]]), [1,2,0]) for i in range(len(train_masks))]

code cell[2-4], U_Net_PhC_C2DL_PSC_segmentation.ipynb

You should get the following message together with the figures from @ Fig. 4.5.

Number of training input images: 101
Number of training binary mask images: 101
Number of training contour images: 101

output of code cell[2-4], U_Net_PhC_C2DL_PSC_segmentation.ipynb

The U-Net network we are going to train has ~ 500, 000 trainable parameters, which
requires a large amount of memory. Thus, to reduce memory usage and make it fit
to the hardware offered by Google Colab, we crop small random patches of size
256 x 256 pixels from the original images. To do so, we create a function that crops
a fixed number of patches from each image. We need to make sure that the part
cropped out from the input image and the output patches (annotation binary masks)
correspond to each other. Then, we use this function to crop out patches from the
training data in the following code section:

68

E. Gbmez-de-Mariscal et al.

Full-size traning image Binary mask Object contour

O Fig. 4.5 Output of "Preparing the data for training" code section displaying one training image
and corresponding annotations

, masks, num_patches, shape):

batches out of a list of images

original_size = imgs[0].shape
input_patches = []
output_patches = []
£ len(imgs)):

for n in range(0,
image = imgs[n]
mask = masks[n]

for i in range(num_patches):

r = np.random.randint (0,original_size[0]-shape[0])

¢ = np.random.randint (0,original_size[1]-shape([1])

input_patches.append(image[r : r + shape[0], ¢ : c + shape[l]])
output_patches.append(mask[r : r + shape(0], ¢ : c + shape[l]])

eturn input_patches
ethod to c sized patches r image
create_random_patches (train_img, train_output,6, [256,256])

alize be 0 and 1

in train_input_patches] # nc
_dims (X_train, axis=-1)
} patches to train the network'.format(len(X_train)))

part of code cell[7], U_Net_PhC_C2DL_PSC_segmentation.ipynb

We choose to normalize the intensity values of the input and output images between
0.0 and 1.0. This way, a common range of values for all the images is set without
changing the differences among them or their properties. This helps the network to
find the optimal parameters which give generality to the model and in some cases, to
speed up the training.

Note that the class of each pixel is mathematically written using a one-hot encoding
representation, for which we need three binary matrices (one per class) for each image.
Hence, a pixel in the background is encoded as[1, 0, 0], as [0, 1, 0] for foreground and
as [0, 0, 1] for cell contour. This is performed by the following code section:

-hot fashion, so rst channel for background,

we will store the target labels for the network in a or

“ell contours)

< d for foregrounc o ce
Y_train = [np.stack([1l - x[0] - x[:,:,11, x[:,:,0],
axis=-1) for x in train_output_patches]

Y_train = np.asarray(Y_train)

part of code cell[7], U_Net_PhC_C2DL_PSC_segmentation.ipynb

[N

©

69
Building a Bioimage Analysis Workflow Using Deep Learning

0 Exercise 1
Repeat the same procedure for the validation set. You should obtain two variables
X_val and Y_val with shapes n x 256 x 256 x 1 and n x 256 x 256 x 3, respectively,
n being the total number of patches generated from the validation set. We recommend
to generate 6 patches for each image as there are only 11 images in the validation set
and you will only crop small patches from them.

Step 3.2: Building a U-Net Shaped Convolutional Neural Network

The key component of any DL method used for image analysis are the convolutional
layers: A filter kernel, convolution matrix, which is a small matrix that is convolved
with the input image (see 8 Fig.4.6a). Convolution is a (linear) operation of sum-
ming elements in a local neighbourhood in the image, each weighted by the given
kernel coefficients, with an aim to cause an effect on the input image (i.e., blurring,
enhancement, edge detection). In the DL context, we use the word kernel when refer-
ring to this small matrix. The coefficients of the matrix are called the kernel weights.
The learning process consists of finding the optimal weights for each convolutional
kernel. Most of the time, the features extracted with the convolutional layers are not
complex enough as to represent and analyze the relevant information in the image. A
common strategy is to encode the features into a high dimensional space, process them
and recover the original spatial representation by decoding the processed features. In
the encoding path, the number of filters in the convolutional layer is increased and
the size of the image decreased. This way, a higher dimensional space of features is
reached (see B Fig. 4.6b). To recover the original spatial representation, the number
of filters is decreased as the spatial dimensions are increased (see 8 Fig. 4.6d). The
architectures that follow this schema are called encoder-decoders. A well established
encoder-decoder for biomedical image analysis is the U-Net, which has encoding
levels in the contracting path (the encoder), a bottleneck and decoding levels in the
expanding path (decoder). See @ Fig. 4.7 for a graphical description of the U-Net-like
architecture used in the current workflow.

Thelayersin Keras can be defined as output = Operation (number of filters,
size) (input). Some additional arguments that can be specified are: the type of acti-
vation function used in the convolutional layer (activation), the initial distribution
of the weights (kernel_initializer), and whether to use zero padding or not to
preserve the size of the images after every convolution (padding).

The encoding path of the U-Net can be programmed simply by a downsampling of
the image. Here we use AveragePooling2D.'* Similarly, the decoding can be achieved
by upsampling. However, in this case, we decided to use transposed or inversed con-
volutions (Conv2DTranspose) that need to be trained as well as the convolutional
layers. The final configuration is as follows:

We leave the height and width of the input image as "None" so the network can
later us
inputs = Input
Contracting pa
cl = Conv2D(16, (3, 3
cl = Dropout(0.1) (cl
cl = Conv2D(16, (3, 3
pl = AveragePooling2D

any size.

s 1)

, activation='elu', kernel_initializer='he normal', padding='same') (inputs)
, activation='elu', kernel_initializer='he normal', padding='same') (cl)

)
)
)
((2, 2)) (1)

14 More pooling layer types at » https://keras.io/api/layers/pooling_layers/.

https://keras.io/api/layers/pooling_layers/

70 E. Gébmez-de-Mariscal et al.

a
Input image Output of the convolution
(256x256) (256x256)
Convolution with kernel size 3x3
125 Jooo [0 oot
T
o Jis [0 [=
o oo
s [w0 [[B
1BE
a1 [s0 e |n
Convolutional layer
b (9x3x3)

Convolutional layer
(3x3x3) Downsampling

(2x2)

Full-size image

Output of (9x64x64)
the convolutions
(3x256x256)
Output of
the convolutions
(9x128x128)
Upsampling Convolutional layer
C (3x3x3)
Upsampling Convolutional layer

(2x2) (4x3x3)

(9x64x64)

. Kernels .

(9x128x128) |of size 3 Output of Kernels

of size 3

the convolutions

(4x128x128)

Output of

the convolutions
(3x256x256)

(4x256x256)

O Fig.4.6 (a) Convolution of an image using a kernel of size 3 x 3. (b) 2 level encoding of an input
image into a feature space using convolutions and downsamplings. (c) 2 level decoding of a set of
features into the original spatial dimension. In (b) and (c), the convolutional layers have 3 and 9, and
4 and 3 filters, respectively. All the kernels have size 3 x 3 and their weights are trainable parameters
that are optimized during the training. Downsampling and upsampling have size 2 x 2, so the image
size is halved and doubled, respectively

71

Building a Bioimage Analysis Workflow Using Deep Learning

input » output
image image

¥

256 x 256
256 x 256
256 x 256
256 x 256
256 x 256
56 x 25
256 x 256

4
A 4

. = conv 3x3, ELU

HH E B E
¥ 64 64 128 64 2 & average pooling 2x2
-> -> = skip connection
SH M3 % s % 4 up-conv 2x2

L 4 128 4+ = conv 1x1, Softmax

B Fig. 4.7 Architecture of the U-Net-like convolutional neural network used in the workflow

c2 Conv2D(32, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (pl)
c2 Dropout (0.2) (c2)

c2 Conv2D(32, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (c2)
p2 = AveragePooling2D((2, 2)) (c2)

c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (p2)
c3 = Dropout(0.3) (c3)

c3 = Conv2D(64, (3, 3), activation='elu',6 kernel initializer='he normal', padding='same') (c3)
p3 = AveragePooling2D((2, 2)) (c3)

Bottleneck

c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (p3)
c4 = Dropout (0.4) (c4)
c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (c4)

Expanding path

u5 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c4)

u5 = concatenate([u5, c31)

c5 Conv2D(64, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (u5)
c5 = Dropout(0.3) (c5)

c5 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (c5)
u6 Conv2DTranspose (32, (2, 2), strides=(2, 2), padding= me') (c5)

u6 concatenate([u6, c2])

c6 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (u6)
c6 = Dropout(0.2) (c6)

c6 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (c6)
u7 = Conv2DTranspose (16, (2, 2), strides=(2, 2), padding='same') (c6)

u7 = concatenate([u7, cl], axis=3)

c7 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he normal', padding='same') (u7)
c7 = Dropout (0.1) (c7)

c7 = Conv2D(16, (3, 3), activation='elu',6 kernel_initializer='he normal', padding='same') (c7)

The output will consist of 3 neurons (one per class) with softmax activation
so they represent probabilities
outputs = Conv2D(3, (1, 1), activation='softmax') (c7)

model = Model (inputs=[inputs], outputs=[outputs])

model . summary ()

part of code cell[10], U_Net_PhC_C2DL_PSC_segmentation.ipynb

72

E. Gbmez-de-Mariscal et al.

Note that the layers are sequentially connected, that is, the output of a layer is the
input of the following layer.

Step 3.3: Loss and Accuracy Measures

The training schedule is a common optimization process. During each iteration of
the training, the output of the CNN is compared with the corresponding GT through
a loss function (summarizing the differences between them as a numerical value).
Hence, the learning process consists in minimizing the loss function. To perform this
optimization, the gradient of the loss function is computed and the network param-
eters (the kernels weights) are updated accordingly in the direction of the gradient
variation by step sizes proportional to the learning rate.

The most common loss functions are the mean squared error (MSE), the binary
cross-entropy (BCE) and the categorical cross-entropy (CCE). MSE is used for regres-
sion problems (when the output is not a class but a continuous value), while BCE and
CCE are used in classification tasks. Patterson and Gibson (2017) provide further
details about loss functions in DL. TensorFlow and Keras have also implemented
quite many ready-to-use loss functions.!> Standard optimizers for neural networks
are the Stochastic Gradient Descent (SGD) (Kiefer et al., 1952), Root Mean Square
propagation (RMSprop)'® and Adaptive Moment Estimation (Adam) (Kingma and
Ba, 2014). The latter is an optimization algorithm specifically designed for DL.

Here, we use the CCE loss function (Eq.4.1), and the Adam optimizer with a
learning rate set to 0.0003 (experimentally estimated but learning rates are typically
in this range of values; see comments in Appendix):

C
CCE(.p) == _ yiclogpi.c) (4.1)

c=1

where y is the GT, p the predicted value, C the total number of classes (C = 3 in
this case); y; . = 1 if the class of the observation i is ¢ and 0, otherwise, and p; . is
the predicted probability for the observation i of being of class c¢. The values of the
loss function are usually difficult to interpret since the better the performance is, the
lower its value. The accuracy measure gives an indication of how close is the output
of the network to the Ground Truth. This metric is easier to interpret and visualize
than the loss value but it is not suitable to guide the network optimization during
training. Its values are limited to the [0, 1] range, 1 being a perfect match between
the result and the GT. Some standard accuracy measures for classification are the
Jaccard index (also called Intersection over Union (IoU)), the Dice coefficient, the
Hausdorff distance and the rate of True or False Positives and Negatives.

In Keras, many standard loss functions are available but we need to define a
suitable accuracy measure for the problem at hand. As we deal with a segmentation

15 » https://www.tensorflow.org/api_docs/python/tf/keras/losses.
16 G. Hinton, 2012 (» https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf).

https://www.tensorflow.org/api_docs/python/tf/keras/losses
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

73
Building a Bioimage Analysis Workflow Using Deep Learning

task, we will use the Jaccard index, a good indicator of the overlap between our
predicted and target segmented cells. It is defined for a binary image as:

ol TP
lyupl TP+ FN 4+ FP

J,p) (4.2)

where y is the GT, p the predicted value, TP the true positives, FN false negatives and
FP false positives. Note that the Jaccard index measures the ratio of correctly classi-
fied pixels. Although the network output has three channels (background, foreground
and object-contours), we compute the accuracy measure as the average Jaccard index
of the last two classes (channels). Since many pixels belong to the background class,
including them into the computation would produce misleadingly high Jaccard index
values. A function computing this metric can be implemented in TensorFlow as fol-
lows:

def jaccard_index(y_true, y_pred, skip_background=True):

""Define Jaccard index for multiple labels.

sor): ground truth masks

of the true labels

ntation of predic

. _hot (tf.math.argma:
tf.cast(y_pred_, dtype=tf.int32)
s already one-hot encoded

tf.cast(y_true, dtype=tf.int32)

skip background pixels from the Jaccard index calculation
skip_background:
y_true_ = y_true_[...,1:]
v_pred_ = y pred_[...,1:]

TP = tf.math.count_nonzero(y_pred_ * y_true_)

FP = tf.math.count_nonzero(y_pred_ * (y_true_ - 1))

FN = tf.math.count_nonzero((y_pred_ - 1) * y_)

: TP / (TP + FP + FN),
))

jac = tf.cond(tf.greater ((TP + FP + FN), 0),
ambda: tf.cast(0.000, dtype='flo

return jac

code cell[9], U_Net_PhC_C2DL_PSC_segmentation.ipynb

Once the network and all the required functions have been defined, we can compile
the model by calling:

Finally compile the model with Adam as
opt = keras.optimizers.Adam(lr=0.0003)
model.compile (optimizer=opt, loss='cate

nction and Jaccard as metric

rate

=[jaccard_index])

part of code cell[10], U_Net_PhC_C2DL_PSC_segmentation.ipynb

Step 3.4: Executing the Training Schedule

We set up the training schedule with a maximum of 100 epochs!’ and a batch size!
of 10. The validation accuracy is monitored during the training. If it does not change
for a certain number of epochs (i.e., patience), then the training process is interrupted
and the best performing instance of the model is returned. Patience is initially set to
50 using the EarlyStopping callback of Keras.

8

17 Epochs: the number of times that the whole data is covered in the learning process.
18 Batch size: the number of training examples seen by the network before updating its weights.

74 E. Gbmez-de-Mariscal et al.

To execute the training process, we just need to specify the training (X_train
and Y_train)and the validation data (X_val and Y_val). During the training, the
model (variable model) is automatically updated:

1 # Training parameters

2 numEpochs = 100 # maximum numb f epochs to train

3 patience = 50 it before stopping if no improvement

4 batchSize = 10 tch

5 # Define early stopr > training when the network does not improve

6 earlystopper = Earlystopplng(patlence patience, verbose=1, restore_best_weights=True,

7 monitor='val_jaccard_index', mode='max')

8 # Train!

9 history = model.fit(X_train, Y_train, validation_data = (X_val, Y_val),

10 batch_size = batchSize, epochs=numEpochs,

11 callbacks=[earlystopper])

12 # # Save the model weights HDF5 file

13 model.save_weights('unet tic_cell_segmentation_best.h5')

14 >>>> Output of the code

15 606/606 [] - 27s 45ms/step - loss: 0.4661 - jaccard_index: 0.0060 - val_loss: 0.2805 -
< wval_jaccard_index: 0.0027

16 Epoch 2/100

17 606/606 [] - 15s 24ms/step - loss: 0.2581 - jaccard_index: 0.3045 - val_loss: 0.1572 -
<> val_jaccard_index: 0.4238

18 .

19 Epoch 100/100

20 606/606 [1 - 15s 24ms/step - loss: 0.0395 - jaccard_index: 0.8098 - val_loss: 0.0539 -
<> val_jaccard_index: 0.7784

code cell[11l], U_Net_PhC_C2DL_PSC_segmentation.ipynb

It is possible to store the details of the training for each epoch (variable history in
the code) and plot them afterwards (8 Fig. 4.8):

1 plt.figure(figsize=(14,5))
2 # summarize history for loss
3 plt.subplot(1l, 2, 1)

4 plt.plot (history.history[
5 plt.plot (history. hlstory[
6

7

8

plt.title(model
plt.ylabel ('l

plt.xlabel('e
9 plt.legend(['train ‘val'l, loc=' r left')
10 # summarize history hv Jaccard ir
11 plt.subplot(l, 2, 2)
12 plt.plot (history.history['jac
13 plt.plot (hist
14 plt.title('mode
15 plt.ylabel ('J

16 plt.xlabel ('er
17 plt.legend(['tra
18 plt.show()

code cell[12], U_Net_PhC_C2DIL_PSC_segmentation.ipynb

In @ Fig. 4.8, we can observe that the loss value in the training dataset decreases after
each epoch while the loss for the validation data does only decrease until epoch 40
and then starts to increase slightly. This is a sign that the training cannot further
improve the model and could even degrade it by over-fitting to the training dataset.
A similar behavior can be observed when looking at the Jaccard index. It seems that
the method can still do it better for the training dataset but not for the validation set.
This is the second hint pointing that the model was optimized as much as possible
given the training data.

6 Exercise 2
Train the network using a smaller amount of images. This can be done easily, by
reducing the file lists train_input_filenames, train_masks_filenames and
train_contours_filenames, in Step 3.1. You will notice that when using few
images the accuracy of the network on the validation and test data is decreased. We
suggest to increase the number of epochs so you can also visualize any existing over-
fitting or whether the network needs a longer training process.

AU R W —

75
Building a Bioimage Analysis Workflow Using Deep Learning

4.4.4 Step 4: Evaluating the Trained Model

Keras enables simple evaluation of the performance of the method as long as the same
information as for the training is available for the test dataset (input and GT images).
For this, we just need to initialize two variables X_test and Y_test, see Exercise 3.

Evaluate the model on the test data using ‘evaluate’

results = model.evaluate(X_test, Y_test , batch_size=1)

print('test loss CCE: {0}, Jaccard index: {1}'.format(results[0], results[1]))
>>>> Output of the code

90/90 [1 - 11s 118ms/step

test loss CCE: 0.09035193290975359, Jaccard index: 0.7407998955328148

code cell[1l6], U_Net_PhC_C2DL_PSC_segmentation.ipynb

Q Exercise 3
Same as what was asked in Exercise 1, read the images in the test folder and create
two normalized Numpy arrays X_test and Y_test. However, note that random
patches are not adopted this time as we want to evaluate the performance on the whole
image. Additionally, the size of the network input needs to be a multiple of 16 due
to the downsampling layers and skip connections (B Fig.4.7). Hence, crop the largest
possible (560 x 704 pixels) central patch for each image and its manual annotations. The
expected shapes of X_test and Y_test are 90 x 560 x 704 x 1 and 90 x 560 x 704 x 3,

respectively.
model loss model Jaccard index
— train 0.8
— val
0.7
0.4+
0.6
s 0.5
0.3 3
o £
S T 04
= 5
S
0.2 203
0.2
0.14 0.1
—— train_jacc
0.0 —— val_jacc
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

D Fig.4.8 Plotting the training loss and Jaccard index per epoch. The training was set to 100 epochs
and values stored in the variable history are displayed. Two metrics are calculated: Categorical
Cross Entropy (CCE) and Jaccard index, as loss and accuracy. The values for the training data are
shown in blue, and for validation in orange

76

I NV N

B -

DR L —

E. Gbmez-de-Mariscal et al.

4.4.5 Step 5:Building a Deeplmage) Bundled Model to Process
New Data

Step 5.1: Saving the Trained Model in TensorFlow’s Format

DeepImagel is a plugin toolset in Fiji/ImageJ designed to load and run TensorFlow
models. Next, we show how to store the model in a SavedModel ProtoBuffer format
(default file format in TensorFlow), so that deepImage] can read it and process an
image directly loaded from ImageJ using the trained model:

Folder in which t
OUTPUT_DIR = "Deep J -
builder = tf.saved_model.builder.SavedModelBuilder (OUTPUT_DIR)
signature = tf.saved_model.signature_def_utils.predict_signature_def (

inputs = {'in model.input},

outputs = {'ou : model.output})
signature_def_map = { tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature }
builder.add_meta_graph_and_variables(K.get_session(), [tf.saved_model.tag_constants.SERVING],
<> signature_def_map=signature_def_map)
builder.save()

This folder must not exist.

code cell[18], U_Net_PhC_C2DIL_PSC_segmentation.ipynb

A new folder called DeeplmageJ-model is created with two items inside:
saved_model.pb and a folder variables. We recommend to compress this folder into a
DeepImageJd-model . zip file and download it so you can work on it locally with
Fiji/lmagel:
rom google.colab import files

o] eepll‘naglemodel -r DeepImageJ-model/

Down.
files.download("DeepImageJ-model.zip")

load!

code cell[23], U_Net_PhC_C2DIL_PSC_segmentation.ipynb

Unzip the file in your local machine. Note that the folder should look exactly like the
one we had in the cloud (Deeplmage-model).

Step 5.2: Creating a Deeplmagel) Bundled Model
Deeplmagel] comprises three different plugins: Run, Explore and BuildBundled
Model. First, the TensorFlow model needs to be converted into a deepImagel’s bun-
dled model. Click on ImageJ > Plugins > DeepImageJ > Build BundledModel and
open an example image for this processing. We opened the image £199.tif from
the test set. A dialog box pops up indicating the steps to follow (see @ Fig. 4.9).

The pre-processing ImageJ macro'? is used to normalize the input images:

22-bith);
getRawStatistics (nPixels, mean, min, max, std, histogram);
run("Divide...”, "value=" + max);

it

Imaged macro for pre-processing in DeepImaged

If no post-processing macro is set, we get the raw output of the network (8 Fig. 4.10).
However, we would like to identify each independent cell in the mask (i.e., instance

19 Macro available at » https:/github.com/NEUBIAS/neubias-springer-book-2021/tree/master/
Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/preprocessing.
txt.

https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/preprocessing.txt
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/preprocessing.txt
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/preprocessing.txt

77
Building a Bioimage Analysis Workflow Using Deep Learning

deeplmage) deeplmage] deeplmage|

g g 14 1 e Mg mrasdely s s g 18 1 g lnaing msckeiy A i 16 i g e et

Building Bundied Model Load Deeplmagel-model

05g STOpTeRpImaGe

Tensor organization of Deoplmagel-model

W for wicth (axis X) ¢ axs ¥). N for batch, C fo

th.saved_model.tag_constants. SERVING -

signatureDel

T T
| |

|
s |
4 | L
- tf.saved modelsignature_constants. DEFAULT_SERVING... |+ |
output N -[n -lw - -
Browse Shaw the Network Asch., | |
Next Cancel Help Back Next Cancel Help Back Next

a) b) c)
deeplimage) deeplimage) deeplmage)

A imiagel Shepn to ru deap e modes 20 iruaga phagn 1 run deag- narrarg modls At teruagel phagn b2 run deag- bnarrang medss

Input size constraints General information Prepracessing Macr
Patch size (G i

patch de

Full name Despimag
Authors Arganda.Camaras, E. Gomaz-de-Mansca

Multiple factor
Credits

Fixed padding (recommended) -

= s e T

Specific padding size

Allow patch decomposition = Varshon

Pregetermined input size &30 Date

. 0
ST 0. & <Select o usual macro commands -
cancel Help | Back | mem cancel Help | Back Next Cancel | Help Back Hext

d) e) D)

deepimage) deepimage] deepimage]
e e st s i A gt s s i e
Pastprocessing Macrs Run a tast n MomejuserFlikappimodels/Deeplimage)l-mc Browse
: . Sihect.On Fput n.Runa Saving Bun, Model

exampleimage.tiff «

fun a test

Test Deepimage)-model

<Select a usual macre command> - Save Bundied Model
Cancel Halp Back Next Cancal Help | Back Next Cancel Help Back Fisish

) h) D

DO Fig. 49 Deeplmage] build bundled model process: (a) Open a test image in Fiji and call Build
Bundled Model; (b) Load a model indicating the path to the unzipped DeeplmageJ-model folder; (c)
Specify input and output dimension order (N: batch number, H: height, W: width, C: channels);
and also (d) input size (32) and padding (47); (e) Write the name of the model, authors, credits,
citations or any other relevant information; (f, g) Write the pre- and post-processing macro routines
needed for the correct image processing; (h) Run the image processing routine and test that you get
the desired output; (i) If so, specify a new name for the bundled model and save it under Imagel’s
recently created models folder

78 E. Gbmez-de-Mariscal et al.

Input image Background Foreground Cell contours

1.00

Full-size image

0.50

U-Net prediction

0.25

=
=)
g
=
=
IS
3
o
=
&}

0.00

O Fig. 4.10 Example of network output. Given an input image (top-left, scale bar: 150 um), the
output of our U-Net is an image with three channels, each of them indicating the probability of being
background, foreground or cell contour (columns 2—4). The color intensity of the three channels is
equally calibrated from 0 to 1. Notice these predictions contain continuous values from 0 to 1 so
they need to be post-processed in order to get a binary mask for each class as in the GT (last row).
Note that the cells touching the image borders are discarded from the CTC GT

segmentation). So, a distance transform Watershed routine is included in the post-
processing macro”” together with some morphological operations to split cell clusters
and refine the results:

1

2

3 2

4 "grayscale") ;

5 pseudo-"argmax" operation (from one-hot encoding to 0-1-2 labels)
6 setThreshold (0.5, 0)

7 setOption("Blac e

8 ground=Dark black");
9

10

11 run("Multi

12 setSlice(2

13 run("Multi

14 setSlice(3

15 run("Multi L, 2 C ;

16 run ("7 ect...", "projec ntensity]");
17 rename (" i

18 close(")

19 / d (1) label only

20 run

21 close

22 selectWindow

23 // Fill

24 run("Fil

25 close("arc

26 C

27 run ti 5.000")

20 Macro available at » https:/github.com/NEUBIAS/neubias-springer-book-2021/tree/master/
Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/postprocessing.
txt.

https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/postprocessing.txt
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/postprocessing.txt
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/postprocessing.txt

79
Building a Bioimage Analysis Workflow Using Deep Learning

output=[32 bits] normalize dynamic=1

zeFilt");

ormap=[Golden angle] background=White shuffle");

resetMinAndMax () ;

Imaged macro for post-processing in DeepImaged

4.4.6 Step 6: Process All Images in Fiji Using Deeplmagel) and
MorpholibJ

We are now reaching the final stage of the workflow! We are ready to quantify the
morphology of the cells from the test set. Download the data from the CTC web page
(» Sect. 4.2) and unzip it. Use the Fiji/Image] macro provided in this chapter’! to
process the new images. Please, update the path in the macro with the location of the
unzipped CTC images in your computer.

With this macro, the individual masks of the cells extracted from the downloaded
CTC images will be stored (one label image per input image) together with their corre-
sponding morphological measurements in an easy-to-read comma-separated values
(CSV) file (see @ Fig.4.11). More precisely, for each segmented cell, the area, perime-
ter, circularity, Euler number, bounding box, centroid coordinates, equivalent ellipse,
ellipse elongation, convexity, maximum Feret diameter, oriented box, oriented box
elongation, geodesic diameter, tortuosity, maximum inscribed disc, average thickness
and geodesic elongation will be recorded. For a detailed description of each measure-
ment, see the latest version of MorphoLibJ manual.??

— Take-Home Message

In this chapter, we have presented a complete bioimage analysis workflow leveraging
a DL model to segment cells from phase contrast images. The proposed workflow is
versatile and meant to be customizable to other image segmentation-related tasks. As
was demonstrated, DL models for bioimage processing can be easily used in Fiji/lmage].
However, trained models do not perform generally as well on new (and different) images
unless they are re-trained. That being said, the proposed workflow can be effortlessly
applied to new (similar) datasets by simply modifying the input folders and reproducing
the steps described in this document.

21 Macro available at » https:/github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch04_Building_a_Bioimage_Analysis_ Workflow_using_Deep_Learning/ij-macros/Step-5-process-
folder.ijm.

22 » https://github.com/ijpb/MorphoLibJ/releases/download/v1.4.3/MorphoLibJ-manual-v1.4.3.pdf.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/Step-5-process-folder.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/Step-5-process-folder.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/Step-5-process-folder.ijm
https://github.com/ijpb/MorphoLibJ/releases/download/v1.4.3/MorphoLibJ-manual-v1.4.3.pdf

80

E. Gébmez-de-Mariscal et al.

O Fig. 4.11 Final step. From an ImageJ macro, the images stored in the folder images_to_process
are processed using the trained model and for each detected cell, a complete list of morphological
features are calculated

Acknowledgements This work is partially supported by the Spanish Ministry of
Economy and Competitiveness (TEC2015-73064-EXP, TEC2016-78052-R and
PID2019-109820R B-100) and by a 2017 and a 2020 Leonardo Grant for Researchers
and Cultural Creators, BBVA Foundation. We thank the program "Short Term Sci-
entific Missions" of NEUBIAS (network of European bioimage analysists). We also
want to acknowledge the support of NVIDIA Corporation with the donation of the
Titan X (Pascal) GPU board used for this research. We would like to thank the contin-
uous support of Deeplmage] contributors: C. Garcia-Lopez-de-Haro (UC3M) and
D. Sage (EPFL).

Appendix

Training Hyper-Parameters

The hyper-parameters of a DL model (e.g., number of filters) affect the training
process and the final result or instance of the model. The study of how to optimize
hyper-parameters is a field itself in Computer Vision. Note that the training is a
stochastic procedure for which it is almost impossible to reproduce exactly the same
training schedule. Additionally, optimizing the combination of hyper-parameters is

81
Building a Bioimage Analysis Workflow Using Deep Learning

an exhausting task due to the large amount of time and complexity it requires. In

the following paragraphs, we provide you with some tips on how to adjust the most

common hyper-parameters:

== Size of the convolution kernels: The larger the kernel size is, the wider the receptive
field of the CNN is. Namely, the size of the region in the input that produces the
feature is larger. However, it is unusual to see kernel sizes larger than 5 x 5 as it
compromises the use of memory. Note that 3D convolutions are also available in
Keras (conv3p) and are defined using 4 dimensions: filters and size of the kernel.

== Number of features in the convolutional layers: The more layers and features in a
network, the deeper it is and, in theory, the higher its generalizing capacity. For the
U-Net, it is recommended to start at least with 16 features in the first convolutional
layer and double it as the encoder path becomes deeper (8 Fig. 4.7).

== Learning rate: We choose 0.0003 since experimentally, it was the value for which
we got best results. Nevertheless, we tried other values such as 0.001, 0.0005 and
0.0001, as the choice of an optimal learning rate value still remains a trial-and-error
problem.

== Number of training epochs: It is recommended to set a high value, monitor the
training and stop it once you are satisfied with the result (high accuracy, no over-
fitting) or you see no improvement.

Optimizer

There are three most common optimizers (SGD, Adam and RMSprop). We chose
Adam empirically as, for this dataset, it makes the training improving faster. Adam
is also a very common choice, since it is a computationally efficient optimizer that
adapts the learning rate to produce smooth convergence. SGD, on the other hand,
maintains a single learning rate value for all weight updates during the whole training
and can therefore get stuck in local minimum. That being said, and although SGD
takes more time to train the model, it sometimes leads to a better generalization of
the network.

Halo and Receptive Field of a Network

The output of a single convolution has a smaller size than the input image, unless
extra values are added around the image (i.e., padding is performed). For CNN, the
pixels in the contours of the output image need to be discarded. The halo is equal
to the cumulative padding performed along the CNN and it is determined by the
receptive field of one pixel (R) in the U-Net:

R=2 (1 (%)) +2i§2i (1 (1%1)) (4.3)

where k is the kernel size for each convolutional layer, p is the number of poolings,
and / is the number of convolutional layers at each level of the U-Net. In our case

82

E. Gbmez-de-Mariscal et al.

k =3,p =3and/ = 2, so the receptive field is 44 (see B Fig.4.7). In Eq.4.3, it is
assumed that the encoding and decoding paths are symmetrical (i.e. same number of
down and up-samplings). Likewise, it is assumed that all convolutional kernels are
squared and are all of the same size. The last one, as it is of size 1 x 1, does not affect
the final result of R. See Appendix in the notebook for a computational solution when
the analytical expression for R is not available.

Data Augmentation

Increasing the amount of data when training a DL model can improve its capacity to
generalize and its performance. However, and often in the biomedical field, obtaining
annotated data is difficult and expensive. Therefore, a common technique called data
augmentation (DA) is used in DL to provide the model with more unseen data. It con-
sists on creating new images applying some transformations to the original ones (i.e.,
flips, shearing, shifting, zooming). More complex techniques such as elastic trans-
formations, contrast changes or blurring can also be used.”® The goal is to generate
plausible images, so not all the transformations may necessarily improve the training
process. For instance, applying contrast variations in the DA process may hinder the
learning process if those are not present in the real image data set.

Here we present a common DA implementation based on Keras class
ImageDataGenerator and its inner £low () function, that allows us to choose
between a bunch of different transformations.?* Its implementation enables DA on
the fly: it applies a random transformation to each image patch before feeding it to
the network. Hence, in each iteration, a new sample not seen before is used to train the
network. Note that the channels of each mask should be transformed together with
their corresponding image. This can be ensured by (1) choosing the same generator
configuration for each of the channels in the masks and the input images (X_train),
and (2) setting the seed parameter to the same value for all the cases.

The following code contains a function that creates a DA generator to trans-
form the image patches. By default, the applied transforms include a random choice
between 90, 180 or 270 rotations, and vertical and horizontal flips:

rom tensorflow.keras.preprocessing.image impc ImageDataGenerator
om skimage import transform
join_generators(x_gen, y_genl, y_gen2, y_gen3):
while True:
x = x_gen.next ()
vyl = y_genl.next ()
y2 = y_gen2.next ()
v3 = y_gen3.next ()
vield x, np.concatenate((yl, v2, y3), axis=-1)
Random rotation of an image by a multiple of 90 degrees
ef random_90rotation(img):
eturn transform.rotate(img, 90*np.random.randint(0, 5), preserve_range=True)
Runtime data augmentation
ef get_train_val_generators(X_train, Y_train, X_val, Y_val,
batch_size=32, seed=42, rotation_range=0,
horizontal_ flip=True, vertical_flip=True,
width_shift_range=0.0,
height_shift_range=0.0,
shear_range=0.0,
brightness_range=None,
rescale=None,

23 A good python library to implement DA generators with a wide variety of transformations: » https:/
github.com/aleju/imgaug.

24 Notebook with the implementation: » https://github.com/NEUBIAS/neubias-springer-book-2021/
blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/
U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb.

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb

83
Building a Bioimage Analysis Workflow Using Deep Learning

22 preprocessing_function=None,

23 show_examples=False) :

24 # Image data generator distortion options

25 data_gen_args = dict(rotation_range = rotation_range,

26 width_shift_range=width_shift_range,

27 height_shift_range=height_shift_range,

28 shear_range=shear_range,

29 brightness_range=brightness_range,

30 preprocessing_function=preprocessing_function,

31 horizontal_flip=horizontal_ flip,

32 vertical_flip=vertical_flip,

33 £ill_mode='reflect')

34

35 # Train data, provide the same seed and keyword arguments to the fit and flow methods

36 # (one datagen per class)

37 Y_datagenl = ImageDataGenerator (**data_gen_args)

38 Y_datagen2 ImageDataGenerator (**data_gen_args)

39 Y_datagen3 = ImageDataGenerator (**data_gen_args)

40

41 Y_trainl = np.expand_dims(Y_train[:,:,:,0], axis=-1)

42 Y_train2 = np.expand_dims(Y_train(:,

43 Y_train3 = np.expand_dims(Y_train(:,:,:

44

45 data_gen_args(['rescale'] = rescale # rescale only X, not Y

46 X_datagen = ImageDataGenerator (**data_gen_args)

47

48 X_datagen.fit (X_train, augment=True, seed=seed)

49 Y_datagenl.fit(Y_trainl, augment=True, seed=seed)

50 Y_datagen2.fit(Y_train2, augment=True, seed=seed)

51 Y_datagen3.fit(Y_train3, augment=True, seed=seed)

52

53 X_train_augmented = X_datagen.flow(X_train, batch_size=batch_size, shuffle=True, seed=seed)
54 Y_train_augmentedl = Y_datagenl.flow(Y_trainl, batch_size=batch_size, shuffle=True, seed=seed)
55 Y_train_augmented2 = Y_datagen2.flow(Y_train2, batch_size=batch_size, shuffle=True, seed=seed)
56 Y_train_augmented3 = Y_datagen3.flow(Y_train3, batch_size=batch_size, shuffle=True, seed=seed)
57

58 # Validation data, no data augmentation, but we create a generator anyway

59 X_datagen_val = ImageDataGenerator (rescale=rescale)

60 Y_datagen_vall = ImageDataGenerator ()

61 Y_datagen_val2 ImageDataGenerator ()

62 Y_datagen_val3 = ImageDataGenerator ()

63

64 Y_vall = np.expand_dims(Y_vall:,:,:,0], axis=-1)

65 Y_val2 np.expand_dims(Y_vall[:, ,11,

66 Y_val3 = np.expand_dims(Y_vall:, ,21, axis=-1)

67

68 X_datagen_val.fit (X_val, augment=True, seed=seed)

69 Y_datagen_vall.fit(Y_vall, augment=True, seed=seed)

70 Y_datagen_val2.fit(Y_val2, augment=True, seed=seed)

71 Y_datagen_val3.fit(Y_val3, augment=True, seed=seed)

72

73 X_val_augmented = X_datagen_val.flow(X_val, batch_size=batch_size, shuffle=ralse, seed=seed)
74 Y_val_augmentedl Y_datagen_vall.flow(Y_vall, batch_siz atch_size, shuffle=rFalse, seed=seed)
75 Y_val_augmented2 = Y_datagen_val2.flow(Y_val2, batch_size=batch_size, shuffle=False, seed=seed)
76 Y_val_augmented3 = Y_datagen_val3.flow(Y_val3, batch_size=batch_size, shuffle=False, seed=seed)
77 if show_examples:

78 plt.figure (figsize=(20,15))

79 # Column titles

80 cols = ['Original', 'Augmented’', 'Augmented Binary Mask', 'Augmented Binary Mask', 'Augmented Contour Mask']
81 4 Create a augmentor just to show original images together with samples

82 X_train_original = X_datagen_val.flow(X_train, batch_size=batch_size, shuffle=True, seed=seed)
83 # generate samples and plot

84 for i in range(3):

85 # Original image plot

86 ax plt.subplot(3,5,1 + 5*%i)

87 ax.title.set_text (cols[0])

88 batch = X_train_original.next ()

89 image = batch[0]

90 plt.imshow(image[:,:,0], vmin=0, vmax=1, cmap='gray')

91 # Augmented image

92 ax = plt.subplot(3,5,1 + 5*i+l)

93 ax.title.set_text(cols[1])

94 batch = X_train_augmented.next ()

95 image = batch[0]

96 plt.imshow(image[:,:,0], vmin=0, vmax=1, cmap='gray')

97 # Augmented Binary Mask (Background)

98 ax = plt.subplot(3,5,1 + 5*i+2)

99 ax.title.set_text(cols[2])

100 batch = Y_train_augmentedl.next ()

101 image = batch[0]

102 plt.imshow(imagel[:,:,0], cmap='gray', interpolation='nearest')

103 # Augmented Binary Mask (Cells)

104 ax = plt.subplot(3,5,1 + 5*i+3)

105 ax.title.set_text(cols[3])

106 batch = Y_train_augmented2.next ()

107 image = batch[0]

108 plt.imshow(image([:,:,0], cmap='gray', interpolation='nearest')

109 #Augmented Contour Mask

110 ax = plt.subplot(3,5,1 + 5*i+4)

111 ax.title.set_text(cols[4])

112 batch = Y_train_augmented3.next ()

113 image = batch[0]

114 plt.imshow(imagel[:,:,0], cmap='gray', interpolation='nearest')

115 plt.show()

116 del X_train_original

84

117
118
119
120
121
122
123
124
125
126
127
128
129

Soxuouswo—

11
12
13
14

E. Gbmez-de-Mariscal et al.

sugmented 5 Augmented Binary Mask Augmented Binary Mask Augmented Contour Mask
a
< = %
‘ - - 300
-
- ‘ 150 150
4
\ 00 00
) 7/
Vel £ | =0 =0 5
% 100 18 e Ho

O Fig.4.12 Output of previous code displaying an original image and the transformation made by
the generators. The binary masks have been transformed in the same way

X_train_augmented.reset ()
Y_train_augmentedl.reset ()
Y_train_augmented2.reset ()
Y_train_augmented3.reset ()

combine generators into one which yields image and masks

n_train = X_train_augmented.n

train_generator = join_generators(X_train_augmented, Y_train_augmentedl,

Y_train_augmented2, Y_train_augmented3)

n_val = X_val_augmented.n

val_generator = join_generators(X_val_augmented, Y_val_augmentedl,
Y_val_augmented2, Y_val_augmented3)

return train_generator, val_generator, n_train, n_val

code cell[11l], U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb

As the network is fed with generators, a validation data generator needs to be created.
Note that we create it without applying any transformation to the data, as it needs to
be unchanged and always the same to ensure a correct validation of the model.

The following code calls the previous function to create the data generators and
displays a few images ensuring that the generators produce a transformed version of
the original ones together with their associated masks (see @ Fig.4.12):

train_generator, val_generator, \

n_train, n_val = get_train_val_generators(X_train=X_train,
Y_train=Y_train,
X_val=X_val,
Y_val=Y_val,
rescale=None,
horizontal flip=True,
vertical_flip=True,
shear_range=0,
zoom_range=0,
rotation_range = 0,
batch_size=batchsSize,
preprocessing_function=random_90rotation,
show_examples=True)

code cell [14], U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb

As we are training with generators, on this version of Tensorflow the function to train
the network must be changed to fit_generator () instead of £it (). Thus, the
following code should be used:

history = model.fit_generator(train_generator, validation_data=val_generator,
steps_per_epoch=int (n_train/batchSize),
validation_steps=int (n_val/batchSize),
epochs=numEpochs, callbacks=[earlystopper])

code cell [15], U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb

85
Building a Bioimage Analysis Workflow Using Deep Learning

Solutions to the Exercises

O Exercise 1

1 # Path to the validation images
2 val_input_path = '/ lidation_input'
3 val_masks_path ='/content/dataset/s ion_binary mask
4 val_contours_path ' /content/dataset lidation_contours
5 # Read the list of file names and sort them to have a match between images and masks
6 val_input_filenames = [x for x in os.listdir(val_input_path) if x.endswith(".tif")]
7 val_input_filenames.sort()
8 val_masks_filenames = [x for x in os.listdir(val_masks_path) x.endswith(".tif")]
9 val_masks_filenames.sort ()
10 val_contours_filenames = [x for x in os.listdir(val_contours_path) if x.endswith(".png")]
11 val_contours_filenames.sort ()
12 # read tra g images
13 val_img = [cv2.imread(os.path.join(val_input_path, x), cv2.IMREAD_ANYDEPTH) for x in val_input_filenames]
14 val_masks = [cv2.imread(os.path.join(val_masks_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in val_masks_filenames]
15 val_contours = [cv2.imread(os.path.join(val_contours_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in
> wval_contours_filenames]
16 # concatenate binary masks and contours
17 val_output = [np.transpose(np.array([val_masks([i],val_contours[il]), [1,2,0]) for i in range(len(val_masks))]
18 # Create the validation patches
19 X_val, val_output_patches = create_random patches(val_img, val_output, 6, [256,256])
20 # In Y_val we will store e one-hot respresentat he labels

21 Y_val = [np.stack([l - x[0] - x[:,:,11, x[: ,111, axis=-1) for x in val_output_patches]
2 Y_val = np.asarray(Y_val)

23 # In X_val we store the input patches of the validation set

24 X_val = [np.expand_dims(x, axis=-1) for x in X_vall

25 X_val = np.asarray(X_val)

code cell [6], U_Net_PhC_C2DL_PSC_segmentation.ipynb

O Exercise 2
Add the following lines to the code in Step 3.1, right after reading the files in the training
data directory. It will reduce the training data set to 10 images:

1 # Create 10 random numbers to reduce the training data set:

2 import numpy as np

3 index = np.random.randint (len(train_input_filenames)-1, size=10, dtype=np.int)

4 # Reduce the training set

5 train_input_filenames = [train_input_filenames[i] for i in index]

6 train_masks_filenames = [train_masks_filenames[i] for i in index]

7 train_contours_filenames = [train_contours_filenames([i] for i in index]

8 r f trai ' r(len(train_input_filenames)))

9 + str(len(train_masks_filenames)))

10 len(train_contours_filenames)))

Alternative code cell [3], U_Net_PhC_C2DL_PSC_segmentation.ipynb

For this example, we set the number of epochs to 1000 in the Step 3.4, and run the entire
code to train the network from scratch using 10 images. The result is as follows:

1 Train on 60 samples, validate on 66 samples

2 Epoch 1/1000

3 60/60 [] - 13s 2l4ms/step - loss: 0.5979 - jaccard_index: 0.0075 - val_loss:
<> 0.4125 - val_jaccard_index: 0.0000e+00

4 P

5 Epoch 418/1000

6 60/60 [] - 2s 32ms/step - loss: 0.0377 - jaccard_index: 0.8101 - val_loss: 0.0789
<> - val_jaccard_index: 0.7415

7 Restoring model weights from the end of the best epoch

8 Epoch 00418: early stopping

9 # Evaluation of the model in the test set:

10 test loss CCE: 0.12604248134626284, Jaccard index: 0.705814957143211

Results of Exercise 2

O Exercise 3

Now we load some unseen images for testing
test_input_path

test_masks_path =

' /content/da et/test_input’

/content/da t/test_binary_m

test_contours_path = '/content/d set/t _contours'
test_input_filenames = [x for x in os.listdir(test_input_path) if x.endswith(".tif")]
test_input_filenames.sort ()

test_mask_filenames = [x for x in os.listdir(test_masks_path) x.endswith(".tif")]

test_mask_filenames.sort ()
test_contours_filenames = [x for x in os.listdir(test_contours_path) if x.endswith(".png")]

© UL AW —

86

E. Gbmez-de-Mariscal et al.

10 test_contours_filenames.sort ()
11 # Read test images

12 test_img = [cv2.imread(os.path.join(test_input_path, x), cv2.IMREAD_ANYDEPTH) for x in test_input_filenames]
13 test_masks = [cv2.imread(os.path.join(test_masks_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in test_mask_filenames]
14 test_contours = [cv2.imread(os.path.join(test_contours_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in
<> test_contours_filenames]
15 # concatenate binary masks and contours
16 test_output = [np.transpose(np.array([test_masks[i],test_contours([i]]), [1,2,0]) for i in

en(
] an appropriate size using the same function as before

utput_patches = create_random_patches(test_img, test_output, 1, [560,704])

test_input_patches] # normalize between 0 and 1

21 X_test = [np.expand_dims(x, axis=-1) for x in X_test]
22 X_test = np.asarray(X_test)
23 # One-hot label representation
24 Y_test = [np.stack([l - x[:,:,0] - x[:,:,1], x[:,:,0], x[:,:,1]], axis=-1) for x in test_output_patches]
25 Y_test = np.asarray(Y_test)
code cell [14-15], U_Net_PhC_C2DL_PSC_segmentation.ipynb
References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al.
(2016) Tensorflow: A system for large-scale machine learning. In: 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), p 265283

Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray
RT, Murray LJ, Coleman HG et al (2017) Qupath: open source software for digital pathology image
analysis. Sci Rep 7(1):1-7

Berg S, Kutra D, Kroeger T, Strachle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy
M, Eren K, Cervantes JI, Xu B, Beuttenmueller F, Wolny A, Zhang C, Koethe U, Hamprecht FA,
Kreshuk A (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16:1226—
1232. https://doi.org/10.1038/s41592-019-0582-9

Bisong E (2019) Google colaboratory. Building machine learning and deep learning models on google
cloud platform. Springer, Berlin, pp 59-64

Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Harten-
stein V, Douglas RJ (2012) Trakem?2 software for neural circuit reconstruction. PLoS One 7(6):¢38011

Chollet F, et al. (2015) keras

Falk T, Mai D, Bensch R, Cicek O, Abdulkadir A, Marrakchi Y, BShm A, Deubner J, Jickel Z, Seiwald
K et al (2019) U-net: deep learning for cell counting, detection, and morphometry. Nat Methods
16(1):67-70

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge. http://www.
deeplearningbook.org

Kapur T, Pieper S, Fedorov A, Fillion-Robin JC, Halle M, O’Donnell L, Lasso A, Ungi T, Pinter C, Finet
J et al (2016) Increasing the impact of medical image computing using community-based open-access
hackathons: the NA-MIC and 3d slicer experience. Med Image Anal 33:176—-180

Kiefer J, Wolfowitz J et al (1952) Stochastic estimation of the maximum of a regression function. Ann
Math Stat 23(3):462-466

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. eprint: 1412.6980

Legland D, Arganda-Carreras I, Andrey P (2016) Morpholibj: integrated library and plugins for mathe-
matical morphology with imagej. Bioinformatics 32(22):3532-3534

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken
B, Sanchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60-88

Gomez-de Mariscal E, Garcia-Lopez-de Haro C, Donati L, Unser M, Mufioz-Barrutia A, Sage D (2019)
Deepimagej: a user-friendly plugin to run deep learning models in imagej. bioRxiv p 799270

Maska M, Ulman V, Svoboda D, Matula P, Matula P, Ederra C, Urbiola A, Espafia T, Venkatesan
S, Balak DM et al (2014) A benchmark for comparison of cell tracking algorithms. Bioinformatics
30(11):1609-1617

Ouyang W, Mueller F, Hjelmare M, Lundberg E, Zimmer C (2019) Imjoy: an open-source computational
platform for the deep learning era. Nat Methods 16(12):1199-1200

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga
L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang

https://doi.org/10.1038/s41592-019-0582-9
http://www.deeplearningbook.org
http://www.deeplearningbook.org

87
Building a Bioimage Analysis Workflow Using Deep Learning

L, Bai J, Chintala S (2019) Pytorch: An imperative style, high-performance deep learning library. In:
Wallach H, Larochelle H, Beygelzimer A, d’ Alché-Buc F, Fox E, Garnett R (eds) Advances in neural
information processing systems, vol. 32. Curran Associates, Red Hook, p 8024-8035. http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Patterson J, Gibson A (2017) Deep learning: a practitioner’s approach. O'Reilly, Beijing. https://www.
safaribooksonline.com/library/view/deep-learning/9781491924570/

RohY,Heo G, Whang SE (2021) A survey on data collection for machine learning: a bigdata-Al integration
perspective. IEEE Trans Knowl Data Eng 33(4):1328—-1347

Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmen-
tation. International conference on medical image computing and computer-assisted intervention.
Springer, Berlin, pp 234241

Rosenblatt F (1961) Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Tech.
rep., Cornell Aeronautical Lab Inc Buffalo NY

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Imagej 2:
Imagej for the next generation of scientific image data. BMC Bioinf 18(1):529

Saalfeld S, Cardona A, Hartenstein V, Tomancak P (2009) CATMAID: collaborative annotation
toolkit for massive amounts of image data. Bioinformatics 25(15):1984-1986. https://doi.org/10.
1093/bioinformatics/btp266. https://academic.oup.com/bioinformatics/article-pdf/25/15/1984/5553
62/btp266.pdf

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat
Methods 9(7):676-682

Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat
Methods 9(7):671-675

Sofroniew N, Lambert T, Evans K, Nunez-IglesiasJ, Yamauchi K, Solak AC, Bokota G, ziyangczi, Buckley
G, Winston P, Tung T, Pop DD, Hector, Freeman J, Bussonnier M, Boone P, Royer L, Har-Gil H,
Axelrod S, Rokem A, Bryant, Kiggins J, Huang M, Vemuri P, Dunham R, Manz T, jakirkham, Wood
C, de Siqueira A, Chopra B (2020) napari/napari: 0.3.8rc2. https://doi.org/10.5281/zenodo.4048613

Ulman V, Maska M, Magnusson KE, Ronneberger O, Haubold C, Harder N, Matula P, Matula P, Svo-
boda D, Radojevic M et al (2017) An objective comparison of cell-tracking algorithms. Nat Methods
14(12):1141-1152

von Chamier L, Jukkala J, Spahn C, Lerche M, Hernandez-Pérez S, Mattila PK, Karinou E, Holden
S, Solak AC, Krull A, Buchholz TO, Jug F, Royer LA, Heilemann M, Laine RF, Jacquemet G,
Henriques R (2020) Zerocostdl4mic: an open platform to simplify access and use of deep-learning
in microscopy. https://doi.org/10.1101/2020.03.20.000133. https://www.biorxiv.org/content/early/20
20/03/20/2020.03.20.000133, https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133.full.
pdf

Weigert M, Schmidt U, Boothe T, Miiller A, Dibrov A, Jain A, Wilhelm B, Schmidt D, Broaddus C, Culley
S, Rocha-Martins M, Segovia-Miranda F, Norden C, Henriques R, Zerial M, Solimena M, Rink J,
Tomancak P, Royer L, Jug F, Myers EW (2018) Content-aware image restoration: pushing the limits
of fluorescence microscopy. Nat Methods 15(12):1090-1097. https://doi.org/10.1038/s41592-018-02
16-7

Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D
active contour segmentation of anatomical structures: significantly improved efficiency and reliability.
Neuroimage 31(3):1116-1128

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/
https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.1093/bioinformatics/btp266
https://academic.oup.com/bioinformatics/article-pdf/25/15/1984/555362/btp266.pdf
https://academic.oup.com/bioinformatics/article-pdf/25/15/1984/555362/btp266.pdf
https://doi.org/10.5281/zenodo.4048613
https://doi.org/10.1101/2020.03.20.000133
https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133
https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133
https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133.full.pdf
https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133.full.pdf
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1038/s41592-018-0216-7

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

q 89

Check for
updates

GPU-Accelerating ImageJ
Macro Image Processing
Workflows Using CLIJ

Daniela Vorkel and Robert Haase

Contents

5.1 Introduction - 90

5.2 The Dataset - 91
5.2.1 Imaging Data - 91
522 The Predefined Processing Workflow - 91

5.3 Tools: CLIJ - 93

5.3.1 Basics of GPU-Accelerated Image Processing with CLIJ — 94
532 Where CLUJ Is Conceptually Different and Why - 96

533 Hardware Suitable for CLIJ - 96

5.4 The Workflow - 97

54.1 Macro Translation — 97

5.4.2 The New Workflow Routine — 100

543 Good Scientific Practice in Method Comparison Studies — 105
544 Benchmarking - 108

5.5 Summary - 109

References - 114

This Chapter has been reviewed by Dominic Waithe, University of Oxford.

© The Author(s) 2022
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows—-Advanced Components and Methods,
Learning Materials in Biosciences, https://doi.org/10.1007/978-3-030-76394-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76394-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-76394-7_5

90

D. Vorkel and R. Haase

What You Will Learn in This Chapter

This chapter introduces GPU-accelerated image processing in ImageJ/Fiji. The reader is
expected to have some pre-existing knowledge of ImageJ Macro programming. Core con-
cepts such as variables, for-loops, and functions are essential. The chapter provides basic
guidelines for improved performance in typical image processing workflows. We present in
a step-by-step tutorial how to translate a pre-existing ImageJ macro into a GPU-accelerated
macro.!

5.1 Introduction

Modern life science increasingly relies on microscopic imaging followed by quantita-
tive bioimage analysis (BIA). Nowadays, image data scientists join forces with arti-
ficial intelligence researchers, incorporating more and more machine learning algo-
rithms into BIA workflows. Even though general machine learning and convolutional
neural networks are not new approaches to image processing, their importance for
life science is increasing.

As their application is now at hand due to the rise of advanced computing hard-
ware, namely graphics processing units (GPUs), a natural question is if GPUs can also
be exploited for classic image processing in ImageJ (Schneider et al., 2012) and Fiji
(Schindelin et al., 2012). As an alternative to established acceleration techniques, such
as ImagelJ’s batch mode, we explore how GPUs can be exploited to accelerate classic
image processing. Our approach, called CLIJ (Haase et al., 2020), enables biologists
and bioimage analysts to speed up time-consuming analysis tasks by adding support
for the Open Computing Language (OpenCL) for programming GPUs (Khronos-
Group, 2020) in ImageJ. We present a guide for transforming state-of-the-art image
processing workflows into GPU-accelerated workflows using the ImageJ Macro lan-
guage. Our suggested approach neither requires a profound expertise in high perfor-
mance computing, nor to learn a new programming language such as OpenCL.

To demonstrate the procedure, we translate a formerly published BIA workflow
for examining signal intensity changes at the nuclear envelope, caused by cytoplas-
mic redistribution of a fluorescent protein (Miura, 2020). We then introduce ways
to discover CL1J commands as counterparts of classic Image] methods. These com-
mands are then assembled to refactor the pre-existing workflow. In terms of image
processing, refactoring means restructuring an existing macro without changing mea-
surement results, but rather improving processing speed. Accordingly, we show how
to measure workflow performance. We also give an insight into quality assurance
methods, which help to ensure good scientific practice when modernizing BIA work-
flows and refactoring code.

1 This chapter was communicated by Dominic Waithe, University of Oxford, UK.

woR W =

91
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

5.2 The Dataset

5.2.1 Imaging Data

Cell membranes create functional compartments and maintain diverse content and
activities. Fluorescent labeling techniques allow the study of certain structures and
cell components, in particular to trace dynamic processes over time, such as changes
in intensity and spatial distribution of fluorescent signals. The method of live-cell
imaging, taken as long-term time-lapses, is important when studying dynamic biolog-
ical processes. As a representative dataset for this domain, we process a two-channel
time-lapse showing a HeLa cell with increasing signal intensity in one channel (Boni
et al., 2015). The dataset has a pixel size of 0.165 um per pixel and a frame delay
of 400 s. The nuclei-channel (C1), excited with 561 nm wavelength light, consists of
Histone H2B-mCherry signals within the nucleus. The protein-channel (C2), excited
with 488 nm wavelength light, represents the distribution of the cytoplasmic Lamin B
protein, which accumulates at the inner nuclear membrane (Lamin B receptor signal).
Four example time points of the dataset are shown in B Fig. 5.1.

5.2.2 The Predefined Processing Workflow

To measure the changing intensities along the nuclear envelope, it is required to
define a corresponding region of interest (ROI) within the image. First, the image is
segmented into nucleus and background. Second, a region surrounding the nucleus
is derived.

A starting point for the workflow translation is the code_final.ijm macro file pub-
lished by Miura (2020).> For reader’s convenience, we have added some explanatory
comments for each section of the original code:

// determine current data set and split channels
orgName = getTitle();

run("Split Channels");

clname = "Cl-" + orgName;

c2name = "C2-" + orgName;

B Fig. 5.1 Samples of the dataset used in this chapter: Time points 1, 5, 10 and 15, showing the
signal increase in the nuclear envelope of a cell. Courtesy: Andrea Boni, EMBL Heidelberg/Viventis

2 » https:/github.com/miura/NucleusRimIntensityMeasurementsV2/blob/master/code/code_final.
jm.

https://github.com/miura/NucleusRimIntensityMeasurementsV2/blob/master/code/code_final.ijm
https://github.com/miura/NucleusRimIntensityMeasurementsV2/blob/master/code/code_final.ijm

92

35

36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56

D. Vorkel and R. Haase

// invoke segmentation of a band around the nucleus
selectWindow (clname) ;

nucorgID = getImagelID() ;

nucrimID = nucseg(nucorgID);

// go through all time points and measure intensity in the band
selectWindow (c2name) ;
c2id = getImagelD();

opt = "area mean centroid perimeter shape integrated display
< redirect=None decimal=3";
run("Set Measurements...", opt);

for (i =0; i < nSlices; i++){
selectImage (nucrimID) ;
setSlice(i + 1);
run("Create Selection");
run("Make Inverse");
selectImage(c2id);
setSlice(i + 1);
run ("Restore Selection");
run ("Measure") ;

// detailed segmentation of the band around the nucleus
function nucseg(orgID){
selectImage(orgId);
run("Gaussian Blur...", "sigma=1.50 stack");
setAutoThreshold ("Otsu dark") ;
setOption ("BlackBackground", true);

run ("Convert to Mask", "method=0Otsu background=Dark calculate
— Dblack");
run("Analyze Particles...", "size=800-Infinity pixel

— circularity=0.00-1.00 show=Masks display exclude clear
— include stack");

dilateID = getImagelID();

run("Invert LUT");

options = "title = dup.tif duplicate range=1-" + nSlices;
run("Duplicate...", options);

erodeID = getImagelD() ;

selectImage (dilatelID) ;

run("Options...", "iterations=2 count=1 black edm=Overwrite
— do=Nothing") ;

run("Dilate", "stack");

selectImage (erodelD) ;

run ("Erode", "stack");

imageCalculator ("Difference create stack", dilateID, erodelD);
resultID = getImagelD() ;

selectImage (dilatelID) ;

close();

selectImage (erodelD) ;

close();

selectImage (orglID) ;

close();

run("Clear Results");

return resultID;

93
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

5.3 Tools: CLIJ

Available as optional plugin, CLIJ brings GPU-accelerated image processing routines
to Fiji. Installation of CLI1J is done by using the Fiji updater, which can be found in the
menu Help > Update, and by activating the update sites of clij and clij2, as shown in
B Fig. 5.2. Depending on GPU vendor and operating system, further installation of
GPU drivers might be necessary. In some cases, default drivers delivered by automated
operating system updates are not sufficient.

After installing CLIJ, it is recommended to execute a CLIJ macro to test for
successful installation. We can also use this opportunity to get a first clue about
a potential speedup of a CLIJ method compared to its Image] counterpart. The
following example macro processes an image using both methods, and writes the
processing time into the log window, as shown in 8 Fig. 5.3.

// load example dataset
run("T1l Head (2.4M, 16-bits)");

// initialize GPU
run("CLIJ2 Macro Extensions",
Ext.CLIJ2_clear();

"cl_device=");

// apply a mean filter on the GPU
time = getTime();

S w——
Fae £o wmage Process
B oo 4N Al

o0 x - - o x
Neshze Pugen Weon [
O =)= mages Webste

Image fhewr siama EPSe,

Dacumentaton

n

Makeg Lt

Dre Rescurces

Mamage spdaie vy

Add my wite

pload Sarmple image A pdete 300

DO Fig.5.2 Installation of CLIJ: In Fiji’s updater, which can be found in the menu Help > Update...,
click on Manage Update Sites, and activate the checkboxes next to clij and clij2. After updating and
restarting Fiji, CLIJ is installed

File Edit Font

[iF Log - o X

[Log - O X

File Edit Font

CLI2 GPU mean filter took 1765 msec
ImageJ CPU mean filter took 3239 msec

4

sl K1

CLW2 GPU mean filter took 169 msec
ImageJ CPU mean filter took 3628 msec

4

14l

O Fig. 5.3 Output of the first example macro, which reports processing time of a CL1J operation
(first line), and of the classic ImageJ operation (second line). When executing a second time (right),
the GPU typically becomes faster due to the so-called warm-up effect

94

D. Vorkel and R. Haase

input = getTitle();

Ext .CLIJ2_push (input) ;

Ext.CLIJ2_mean3DBox (input, result, 3, 3, 3);

Ext.CLIJ2_pull (result) ;

Ext.CLIJ2_clear() ;

print ("CLIJ2 GPU mean filter took " + (getTime() - time) + " msec");

// apply the corresponding operation of classic Imaged

time = getTime () ;

run("Mean 3D...", "x=3 y=3 z=3");

print ("Imaged CPU mean filter took " + (getTime() - time) + " msec");

5.3.1 Basics of GPU-Accelerated Image Processing with CLLJ

Every ImageJ macro, which uses CLIJ functionality, needs to contain some additional
code sections. For example, this is how the GPU is initialized:

run ("CLIJ2 Macro Extensions", "cl_device=");
Ext.CLIJ2_clear();

In the first line, the parameter ¢/_device can stay blank, imposing that CLIJ will select
automatically an OpenCL device, namely the GPU. One can specify the name of
the GPU in brackets, for example nVendor Awesome Intelligent. If only a part of the
name is specified, such as nVendor or some, CLIJ will select a GPU which contains
that part in the name. One can explore available GPU devices by using the menu
Plugins > ImageJ on GPU (CLI1J2) > Macro tools > List available GPU devices. The
second line, in the example shown above, cleans up GPU memory. This command is
typically called by the end of a macro. It is not mandatory to write it at the beginning,
however, it is recommended while elaborating a new ImageJ macro. A macro under
development unintentionally stops every now and then with error messages. Hence, a
macro is not executed until the very end, where GPU memory typically gets cleaned
up. Thus, it is recommended to write this line initially, to start at a predefined empty
state.
Another typical step in CLIJ macros is to push image data to the GPU memory:
input = getTitle();
Ext .CLIJ2_push (input) ;

We first retrieve the name of the current image by using ImageJ’s built-in get Title()-
command, and save it into the variable input. Afterwards, the input image is stored
in GPU memory using CLIJ’s push method.

This image can then be processed, for example using a mean filter:

‘Ext.CLIJ2_mean3DBox(input, result, 3, 3, 3);

CL1J’s mean filter, applied to a 3D image, takes a cuboidal neighborhood into
account, as specified by the word Box. It has five parameters: the input image name,
the result image name given by variables, and three half-axis lengths describing the
size of the box. If the variable for the result is not set, it will be set to an automatically
generated image name.

Finally, the result-image gets pulled back from GPU memory and will be displayed
on the screen.

95
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

Ext.CLIJ2_pull (result) ;
Ext.CLIJ2_clear();

Hence, result images are not shown on the screen until the pu//() command is explicitly
called. Thus, the computer screen is not flooded with numerous image windows,
helping the workflow developer to stay organised. Furthermore, memory gets cleaned
up by the clear() command, as explained above.

While developing advanced CLIJ workflows, it might be necessary to take a look
into GPU memory to figure out which images are stored at a particular moment.
Therefore, we can add another command just before the final clear()-command,
which will list images in GPU memory in the log windows, as shown in 8 Fig. 5.4:

‘ Ext.CLIJ2_reportMemory () ;

As an intermediate summary, CLIJ commands in ImageJ macro typically appear
as follows:

‘ Ext.CLIJ2_operation (parameters) ;

All CLIJ methods start with the prefix Ext., a convention by classical Imagel,
indicating that we are calling a macro extension optionally installed to ImageJ. Next,
it reads CLIJ_, CL1J2_ or CLIJx_ followed by the specific method and, in brackets,
the parameters passed over to this method. Parameters are typically given in the order:
input images, output images, other parameters.

The CLI1J identifier was introduced to classify methods originally published as
CLI1J toolbox (Haase et al., 2020). It is now deprecated since the official stable release
of CLI1J2, which is the extended edition of CLIJ including more operations. Further-
more, there is CLIJx, the volatile experimental sibling, which is constantly evolving
as developers work on it. Thus, CLIJx methods should be used with care as the X
stands for e X perimental. Whenever possible, the latest stable release should be used.
As soon as a new stable release is out, the former one will be deprecated. The depre-
cated release will be kept available for at least 1 year. To allow a convenient transi-
tion between major releases, the CLIJ developers strive for backwards-compatibility
between releases.

i Log — o X
File Edit Font

GPU contains 2 images.

- t1-head-3 tif[net haesleinhuepf clij.clearcl.Clea
- CLU2_mean3DBox_result3[net.haesleinhuepf
=323 Mb

-
»

‘ [

O Fig.5.4 List of images currently stored in GPU memory: In this case, there exists an image called
t1-head-3.tif which corresponds to the dataset we loaded initially. Furthermore, there is another
image, called CLIJ2_mean3DBox_result3, containing the result of the mean filter operation

96

D. Vorkel and R. Haase

53.2 Where CLUJ Is Conceptually Different and Why

When designing the CL1J application programming interface (API), special emphasis

was put on a couple of aspects to standardize and simplify image processing.

== Results of CLIJ operations are per default not shown on screen. One needs to
pull the image data from the GPU memory to display them in an ImageJ window.
In order to achieve optimal performance, it is recommended to execute as many
processing steps as possible between push and pull commands. Furthermore, only
the final result image should be pulled. Pushing and pulling take time. This time
investment can be gained back by calling operations, which are altogether faster
than the classic ImageJ operations.

== CLIJ operations always need explicit specifications of input and output images.
The currently selected window in ImagelJ does not play a role when calling a
CL1J command. Moreover, no command in CLIJ changes the input image. The
only exception are commands starting with ‘set‘, which take no input image and
overwrite pixels of a given output image. All other commands read pixels from
input images and write new pixels into output images, as in the following example:

Ext.CLIJ2_excludeLabelsOnEdges (labels,
— labels_without_touching_ edges) ;

== CLIJ operations do not take physical units into account. For example, all radius
and sigma parameters are provided in pixel units:

sigma = 1.5;
Ext.CLIJ2_gaussianBlur2D(orgID, blurred, sigma, sigma);

== [f a CLIJ method’s name contains the terms ‘‘2D” or ‘*3D”, it processes, respec-
tively, two- or three-dimensional images. If the name of the method is without
such a term, the method processes images of both types.

== Images and image stacks in CLIJ are granular units of data, meaning that indi-
vidual pixels of an image cannot be accessed efficiently by a GPU. Instead, pixels
are processed in parallel, and therefore the whole image at once. Time-lapse data
need to be split into image stacks and processed time point by time point.

== CLIJ methods are granular operations on data. That means, they apply a single
defined procedure to a whole image. Independent from any ImagelJ configuration,
CLIJ methods produce the same output given the same input. Conceptually, this
leads to improved readability and maintenance of image processing workflows.

5.3.3 Hardware Suitable for CLIJ

When using CLI1J, for best possible performance it is recommended to use recent
GPUs. Technically, CL1J is compatible with GPU-devices supporting the OpenCL
1.2 standard (Khronos-Group, 2020), which was established in 2011. While OpenCL
works on GPUs up to 9 years old, GPU devices older than 5 years may be unable
to offer a processing performance faster than recent CPUs. Thus, when striving for
high performance, recent devices should be utilized. When considering new hardware,
image processing specific aspects should be taken into account:

97
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

== Memory size: State-of-the-art imaging techniques produce granular 2D and 3D
image data up to several gigabytes. Dependent on the desired use case, it may make
sense to utilize GPUs with increased memory. Convenient workflow development
is possible, if a processed image fits about 4—6 times into GPU memory. Hence,
if working with images of 1-2 GB in size, a GPU with at least 8§ GB of GDDR6
RAM memory should be used.

== Memory Bandwidth: Image processing is memory-bound, meaning that all opera-
tions have in common that pixels are read from memory and written to memory.
Reading and writing is the major bottleneck, and thus, GPUs with fast memory
access and with high memory bandwidth should be preferred. Typically, GDDR6-
based GPUs have memory bandwidths larger than 400 GB/s. GDDR5-based
GPUs often offer less than 100 GB/s. So, GDDR6-based GPUs may compute
image processing results about 4 times faster.

== Integrated GPUs: For processing of big images, a large amount of memory might
be needed. At time of writing, GDDR6-based GPUs with 8 GB of memory are
available in price ranges between 300 and 500 EUR. GPUs with more than 20 GB
of memory cost about ten fold. Despite drawbacks in processing speed, it also
might make sense to use integrated GPUs with access to huge amounts of DDR4-
memory.

5.4 The Workflow

5.4.1 Macro Translation

The CLIJ Fiji plugin and its individual CL1J operations were programmed in a way
which ensures that ImagelJ users will easily recognise well-known concepts when trans-
lating workflows, and can use CL1J operations as if they were Imagel operations.
There are some differences, aimed at improved user experience, that we would like to
highlight in this section.

The Macro Recorder

The ImageJ macro recorder is one of the most powerful tools in ImageJ. While the user
calls specific menus to process images, it automatically records code. The recorder is
launched from the menu Plugins -> Macros -> Record.... The user can also call any
CLIJ operation from the menu. For example, the first step in the nucleus segmentation
workflow is to apply a Gaussian blur to a 2D image. This operation can be found in
the menu Plugins > ImageJ on GPU (CLIJ2) > Filter > Gaussian blur 2D on GPU.
When executing this command, the macro recorder will record this code:

run("CLIJ2 Macro Extensions", "cl_device=[Intel (R) UHD Graphics
- 620]1");

// gaussian blur

imagel = "NPCsingleNucleus.tif";
Ext.CLIJ2_push (imagel) ;

image2 = "gaussian_blur-1901920444";
sigma_x 2.0;

sigma_y 2.0;

98

D. Vorkel and R. Haase

Ext.CLIJ2_gaussianBlur2D(imagel, image2, sigma_x, sigma_y);
Ext.CLIJ2_pull (image2) ;

All recorded CLIJ-commands follow the same scheme: The first line initializes the
GPU, and explicitly specifies the used OpenCL device while executing an opera-
tion. The workflow developer can remove this explicit specification as introduced
in » Sect. 5.3.1. Afterwards, the parameters of the command are listed and speci-
fied. Input images, such as imagel in the example above, are pushed to the GPU to
have them available in its memory. Names are assigned to output image variables,
such as image2. These names are automatically generated and supplemented with a
unique number in the name. The developer is welcome to edit these names to improve
code readability. Afterwards, the operation GaussianBlur2 D is executed on the GPU.
Finally, the resulting image is pulled back from GPU memory to be visualized on the
screen as an image window.

Fiji's Search Bar

As ImageJ and CLIJ come with many commands and huge menu structures, a user
may not know in which menu specific commands are listed. To search for commands
in Fiji, the Fiji search bar is a convenient tool; it is shown in 8 Fig. 5.5a. For example,
the next step in our workflow is to segment the blurred image using a histogram-based
(Otsu’s) thresholding algorithm, (Otsu, 1979). When entering Otsu in the search field,
related commands will be listed in the search result. Hitting the Enter key or clicking
the Run button will execute the command as if it was called from the menu. Hence,
also identical code will be recorded in the macro recorder.

a Fie Edt Wmage Process Anahze Plugins Window Help b b _'
B clc|o|~4us Al ol olmlel g s]a 1

O Fig. 5.5 (a) While recording macros, the Fiji search bar helps to find CLIJ commands in the
menu. (b) Auto-Completion in Fiji’s script editor supports a workflow developer in finding suitable
commands and offers their documentation

99
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

The Script Editor and the Auto-Complete Function

In the Macro Recorder window, there is a Create-button which opens the Script
Editor. In general, it is recommended to record a rough workflow. To extend code,
to configure parameters, and to refine execution order, one should switch to the
Script Editor. The script editor exposes a third way for exploring available commands:
The auto-complete function, shown in 8 Fig. 5.5b. Typing threshold will open two
windows: A list of commands which contain the searched word. The position of the
searched word within the command does not matter. Thus, entering threshold or otsu
will both lead to the command thresholdOtsu. Furthermore, a second window will
show the documentation of the respectively selected command. By hitting the Enter
key, the selected command is auto-completed in the code, for example like this:

‘ Ext.CLIJ2_thresholdOtsu(Image_input, Image_destination) ;

The developer can then replace the written parameters Image_input and Image_
destination with custom variables.

The CLIJ website and API Reference

Furthermore, the documentation window of the auto-complete function is connected
to the API reference section of the CLIJ website,” as shown in @ Fig. 5.6. The web-
site provides a knowledge base, holding a complete list of operations and typical
workflows connecting operations with each other. For example, this becomes crucial
when searching for the CLIJ analog of the ImageJ’s Particle Analyzer, as there is no
such operation in CLIJ. The website lists typical operations following Otsu threshold-
ing, for example connected component labelling, the core algorithm behind Imagel’s
Particle Analyzer.

thresholdOtsu

E‘a‘

oo

O Fig.5.6 The online API reference can be explored using the search function of the internet browser,
e.g. for algorithms containing Otsu (left). The documentation of specific commands contains a list
of typical predecessors and successors (right). For example, thresholding is typically followed by
connected component labelling, the core algorithm behind Imagel’s Particle Analyzer

3 » https:/clij.github.io/clij2-docs/reference.

https://clij.github.io/clij2-docs/reference

100

D. Vorkel and R. Haase

9 Exercise 1
Open the Macro Recorder and the example image NPCsingleNucleus.tif. Type Otsu
into the Fiji search bar. Select the CLIJ2 method on GPU and run the thresholding
using the button Run. Read in the online documentation which commands are typically
applied before Otsu thresholding. Which of those commands can be used to improve
the segmentation result?

5.4.2 The New Workflow Routine

While reconstructing the workflow, this tutorial follows the routines of the classic
macro, and restructures the execution order of commands to prevent minor issues
with pre-processing before thresholding. The processed dataset is a four-dimensional
dataset, consisting of two spatial dimensions, X and Y, channels and frames. When
segmenting the nuclear envelope in the original workflow, the first operation applied
to the dataset is a Gaussian blur:

‘run(“Gaussiam Blur...", "sigma=1.50 stack");

The stack parameter suggests that this operation is applied to all time points
in both channels, potentially harming later intensity measurements. However, for
segmentation of the nuclear envelope in a single time point image, this is not necessary.
As discussed in » Sect. 5.3.2, data of this type is not of granular nature and have to
be decomposed into 2D images before applying CLIJ operations. We can use the
method pushCurrentSlice to push a single 2D image to the GPU memory. Then,
a 2D segmentation can be generated, utilizing a workflow similar to the originally
proposed workflow. Finally, we pull the segmentation back as ROI and perform
statistical measurements using classic ImageJ. Thus, the content of the for-loop in the
original program needs to be reorganized:

for (1 = 0; 1 < frames; i ++) {

// navigate to a given time point in our stack
Stack.setFrame(i + 1);

// select the channel showing nuclei
Stack.setChannel (nuclei_channel) ;

// get a single-channel slice
Ext.CLIJ2_pushCurrentSlice (orgName) ;

// segment the nuclear envelope
nucrimID = nucseg(orgName) ;

// select the channel showing nuclear envelope signal
Stack.setChannel (channel_to_measure) ;

// pull segmented binary image as ROI from GPU
Ext.CLIJ2_pullAsROI (nucrimID) ;

// analyze it
run ("Measure") ;

101
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

// remove selection
run("Select None");

The function nucseg takes an image from the nucleus channel and segments its
nuclear envelope. B Table 5.1 shows translations from original ImageJ macro func-
tions to CLIJ operations.

While the translation of commands for thresholding is straightforward, other
translations need to be explained in more detail, for example the Analyze Particles
command:

run("Analyze Particles...", "size=800-Infinity pixel

<> circularity=0.00-1.00 show=Masks display exclude clear include
- stack");

The advanced ImageJ macro programmer knows that this line does post-processing
of the thresholded binary image, and executes in fact five operations: (1) It identifies
individual objects in the binary image—the operation is known as connected compo-
nent labeling; (2) It removes objects smaller than 800 pixels (size=800-Infinity pixel);
(3) It removes objects touching the image edges (exclude); (4) It fills black holes in
white areas (include); and finally (5) it again converts the image to a binary image
(show=Masks). The remaining parameters of the command, circularity=0.00—1.00,
display, and clear, are not relevant for this processing step, or in case of stack, spec-
ify that the operations should be applied to the whole stack slice-by-slice. Thus, the
parameters specify commands which should be executed, but they are not given in
execution order. As explained in » Sect. 5.3.2, CL1J operations are granular: When
working with CL1J, each of the five operations listed above must be executed, and in
the right order. This leads to longer code, but also the code which is easier to read
and to maintain:

// Fill black holes in white objects
Ext.CLIJ2_binaryFillHoles (thresholded, holes_filled);

// Identify individual objects
Ext.CLIJ2_connectedComponentsLabelingBox (holes_filled, labels);

// Remove objects which touch the image edge
Ext.CLIJ2_excludeLabelsOnEdges (labels, labels_wo_edges) ;

// Exclude objects smaller than 800 pixels

minimum_size = 800;

maximum_size = 1000000; // large number
Ext.CLIJx_excludeLabelsOutsideSizeRange (labels_wo_edges,
< large_labels, minimum_size, maximum_size) ;

// generate a new binary image
Ext.CLIJ2_greaterConstant (large_labels, binary _mask, 0);

Finally, the whole translated workflow becomes.*

// configure channels
nuclei_channel = 1;

4 » https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-
accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/code_clij_final.ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/code_clij_final.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/code_clij_final.ijm

! (,UOT109TSS 210354,) Unx

!(pTZO)obewrlosTes

! (,U0T109TSS 23821,) UnI

{(qrwraonu) TOYSYTTNd Z0ITO " IXHA {(grwrxonu)obewIlooTss

uoneIduad [OY

! (qrspoas ‘QIrs3eTIp
{(gI3Tnsax ‘gIepos ‘gIeo3lelTIpP) sebewIloeaiqns zrITD IXH /,0P3S 93e9ID S0USISIFIT(,) I0IBTNOTRDSHRWT

uonoenqns adew

{(snTpex ‘snipel ‘gIepois ‘ysew AIRUTQ) XOgQZWNWTUTW ZLITD " IXH ‘(u¥oe3s, ‘,9poig,)una
UoIsoIg
! (u3oels, ‘,93eTTdy)unI

! (snTpea ‘snIpex ‘gIS3eTIP ‘Isew AIeUT() XOg@ZWNWTIXeW gQITD " IXH ! (LDUTYJION=0P 93ITIMIDAQ=WPSD OBTq
!7 = snipex T=23Unod g=suoT3eisalT, ‘, " -suoridp,)unt
uoneng

! (,3oe3s spniout

{1 (0 ‘yseu AxeUTIq ‘STageRT ybnous 9LIBT) JURISUODIDILSIL ZLITD " IXH IeaT0 opnioxe AeTdsSTIp SySeR=MOys

£(000000T ‘008 ‘sToqeT ybnous ebief 00°T-00°0=A3TIETNOITO ToxTd A3TUTIUL
‘seobpeT oM STOORT) 2DbUBRYSZISOPTISINOS [RORTOPNTOXS XLTITD " IXH —-008=92TS, ‘."°°'so10oT3aeg 9zATeuy,)una

! (sebpa oM sTaqRT ‘POTT20RT) SOOPHUQOS TORTIPNTOXS™ ZLITD * IXH

! (sTegeT ‘PSITTI soToy)xogbuTlTageTsiusuodwodpaloauuod” grTITD " IXHA ! (L,MOBTQ ©3BTNOTERD YIeg=punoxbyoeq
{(PSTTTF SOTOY ‘popToysaayl) SOTOHTTTIAIRUTY ZLITD IXH ns30=poyisuw, ‘,YSEW 03 JISAUOCD,) uni
! (enx3 ‘/,punoibyoegyoerd,)uoridoiss
{(pPepTOUS®IY ‘POIINTJ) NSIOPTOUSSIUY ZLITD " IXH ! (u3TEP NS30,) PTOYSSIYLOINYISS

s30alqo [rews ayeurwrpd 03 sapnred azAeue pue (6/61 ‘Nsi0) SUTploysany],

f(ewbTs ‘ewbTs ‘psaantg ‘qrbro)gzainyguerssned zpITO° IXT 4 (
{G°T = euwbTs W0®3s QG- T=PwWbTS, ‘,°°°anTg uerssnes,)una

In[g uerssnex)

D. Vorkel and R. Haase

102

OB [[1D + [98ew omeA [o8ew]

Mo[yIoMm S[durexa oy} Jo JXIU09 A} Ul ‘0IoBUI [[TD) O} 01k [oSew] Jo suone[suel] 'S a|qel @

GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

protein_channel = 2;
// Initialize GPU
run("CLIJ2 Macro Extensions", "cl_device=");

Ext.CLIJ2_clear();

// determine current image
orgName = getTitle();

// configure measurements (on CPU)

opt = "area mean centroid perimeter shape integrated display
<« redirect=None decimal=3";
run("Set Measurements...", opt);

getDimensions (width, height, channels, slices, frames);
for (1 = 0; 1 < frames; i ++) {
// select channel and frame to analyze
Stack.setChannel (nuclei_channel) ;
Stack.setFrame(i + 1);

// get a single-channel slice
Ext.CLIJ2_pushCurrentSlice (orgName) ;

// segment the nuclear envelope
nucrimID = nucseg(orgName) ;

// select the channel showing nuclear envelope signal
Stack.setChannel (protein_channel) ;

// pull segmented binary image as ROI from GPU
Ext.CLIJ2_pullAsROI (nucrimID) ;

// analyse it
run ("Measure") ;

// reset selection
run("Select None");

function nucseg(orgID) {
// Gaussian blur, basically for noise removal
sigma = 1.5;
Ext.CLIJ2_gaussianBlur2D(orgID, blurred, sigma, sigma);

// thresholding / binarization
Ext.CLIJ2_thresholdOtsu(blurred, thresholded);

// £ill holes
ExXt.CLIJ2_binaryFillHoles (thresholded, holes_filled);

// identify individual objects

// remove objects which touch image border
Ext.CLIJ2_excludeLabelsOnEdges (labels, labels_wo_edges) ;

103

// This function segments the nuclear envelope in the nuclei-channel

Ext.CLIJ2_connectedComponentsLabelingBox (holes_filled, labels);

104

59
60

62

63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79

D. Vorkel and R. Haase

// remove objects out of a given size range
minimum_size = 800;

maximum_size = 1000000;
Ext.CLIJx_excludeLabelsOutsideSizeRange (labels_wo_edges,
— large_labels, minimum_size, maximum_size) ;

// make the image binary again
Ext.CLIJ2_greaterConstant (large_labels, binary mask, 0);

// dilate
radius = 2;
Ext.CLIJ2_maximum2DBox (binary_mask, dilateID, radius, radius);

// erode
EXt.CLIJ2_minimum2DBox (binary_mask, erodeID, radius, radius);

// subtract eroded from dilated image to get a band corresponding
< to nuclear envelope
ExXt.CLIJ2_subtractImages (dilateID, erodeID, resultID);

// return result
return resultID;

Further Optimization

So far, we translated a pre-existing segmentation workflow without changing pro-
cessing steps, and with the goal of replicating results. If processing speed plays an
important role, it is possible to further optimize the workflow, accepting that results
may be slightly different. Therefore, it is necessary to identify code sections which
have a high potential for further optimization. To trace down the time consumption
of code sections, we now introduce three more CL1J commands:

Ext.CLIJ2_startTimeTracing () ;

Ext .CLIJ2_stopTimeTracing() ;

// here comes the workflow we want to analyze
Ext .CLIJ2_getTimeTracing (time_traces) ;

print (time_traces) ;

By including these lines at the beginning and the end of a macro, we can trace
elapsed time during command executions in the log window, as shown in @ Fig. 5.7.
In that way, one can identify parts of the code where most of the time is spent. In
the case of the implemented workflow, connected component labelling appeared as a
bottleneck.

In order to exclude objects smaller than 800 pixels from the segmented image,
we need to apply (call) connected component labelling. By skipping this step and
accepting a lower quality of segmentation, we could have a faster processing. This
leads to a shorter workflow:

function nucseg(orgID) {
// blur the image to get a smooth outline
sigma = 1.5;
Ext.CLIJ2_gaussianBlur2D(orgID, blurred, sigma, sigma) ;

// threshold it
Ext.CLIJ2_thresholdOtsu(blurred, thresholded);

105
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

a Log - a X Leg = o x
File Edt Font File Edt Font
[-| [-
I-:.aaxlrrlumommmels | < ExtludelLabels 0.7022 ms
> MaximumProjection > GreaterConstant

< MaximumyProjection 027 ms

> MaximumiXProjection

< MaximumXProjection 0.3855 ms

< MaximumOrAIIPxels 0.8751 ms |

< GreaterConstant 0.2483 ms

» ExcludeLabelsOnEdges
> MaximumOfaliPbels

> CopySlice

> Maximum'yProjection

< MaximumyProjection 0.2656 ms < CopySlice 02632 ms

> MaximumiXProjection = < timeTracing 20731139 ms =

< MaximumiProjection 03122 ms L‘ =
1 | » 4 |»

B Fig. 5.7 An example of printed time traces reveals that (a) connected component labeling takes
about 21 ms per slice, whereas (b) binary erosion, dilation, and subtraction of images takes about
1.3 ms per slice

// £ill holes in the binary image
EXt.CLIJ2_binaryFillHoles (thresholded, binary_ mask) ;

// dilate the binary image
radius = 2;
Ext.CLIJ2_maximum2DBox (binary_mask, dilateID, radius, radius);

// erode the binary image
Ext.CLIJ2_minimum2DBox (binary_mask, erodeID, radius, radius);

// subtract the eroded from the dilated image
ExXt.CLIJ2_subtractImages (dilateID, erodeID, resultID);
return resultID;

Analogously, an optimization can also be considered for the classic workflow.
When executing the optimized version of the two workflows, we retrieve different
measurements, which will be discussed in the following section.

9 Exercise 2
Start the ImageJ Macro Recorder, open an ImageJ example image by clicking the menu
File > Open Samples > T1 Head (2.4M, 16 bit) and apply the Top Hat filter to it. In the
recorded ImageJ macro, activate time tracing before calling the Top Hat filter to study
what is actually executed when running the Top Hat operation and how long it takes.
What does the Top Hat operation do?

5.4.3 Good Scientific Practice in Method Comparison Studies

When refactoring scientific image analysis workflows, good scientific practice includes
quality assurance to check if a new version of a workflow produces identical results,
within a given tolerance. In software engineering, the procedure is known as regression

106

D. Vorkel and R. Haase

testing. Translating workflows for the use of GPUs instead of CPUs, is one such
example. In a wider context, other examples are switching major software versions,
operating systems, CPU or GPU hardware, or computational environments, such as
Imagel and Python.

Starting from a given dataset, we can execute a reference script to generate refer-
ence results. Running a refactored script, or executing a script under different con-
ditions will deliver new results. To compare these results to the reference, we use
different strategies, ordered from the simplest to the most elaborated approach: (1)
comparison of mean values and standard deviation; (2) correlation analysis; (3) equiv-
alence testing; and (4) Bland-Altman analysis. For demonstration purpose, we will
apply these strategies to our four workflows:
== W-1J: Original ImageJ] workflow;
== W-CLIJ: Translated CLIJ workflow;
= W-OPT-1J: Optimized ImageJ workflow;
= W-OPT-CLIJ: Optimized CLI1J workflow.

In addition, we will execute the CLIJ macros on four computers with different
CPU/GPU specifications:
= Intel 15-8265U CPU/ Intel UHD 620 integrated GPU;
== Intel 17-8750H CPU/ NVidia Geforce 2080 Ti RTX external GPU;
= AMD Ryzen 4700U CPU/ AMD Vega 7 integrated GPU;
== Intel i7-7920HQ CPU/ AMD Radeon Pro 560 dedicated GPU;

Comparison of Mean Values and Standard Deviation

An initial and straightforward strategy is to compare mean and standard deviation
of the measurements produced by the different workflows. If the difference between
then mean measurements exceeds a given tolerance, the new workflow cannot be
utilized to study the phenomenon as done by the original workflow. However, if
means are equal or very similar, this does not allow us to conclude that the methods
are interchangeable. Similar mean and standard deviation values are necessary, but
not sufficient to prove method similarity. Results of the method comparison, using
mean and standard deviation, are shown in @ Table 5.2.

O Table 5.2 Mean =+ standard deviation of measured signal intensities resulting from the dif-
ferent considered workflows and different CPU/GPU specifications

Workflow Intel CPU Intel CPU AMD CPU Intel CPU
Intel iGPU NVidia eGPU AMD iGPU AMD dGPU
W-1J 47.72 £ 3.85 47.72 £ 3.85 47.72 £ 3.85 47.72 £ 3.85
W-CLIJ 47.39 + 3.64 47.39 + 3.64 47.74 £ 3.89 47.74 £ 3.89
W-OPT-1J 46.19 £ 3.9 46.19 £ 3.9 46.19 £ 3.9 46.19 £ 3.9

W-OPT-CL1J 46.64 & 3.62 46.64 & 3.62 47.01 &+ 3.87 47.01 &+ 3.87

107
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

Correlation Analysis

If two methods are supposed to measure the same parameter, they should produce
quantitative measurements with high correlation on the same data set. To quantify the
level of correlation , Pearson’s correlation coefficient can be utilized. When evaluated
on our data, r values were in all cases above 0.98, indicating high correlation. These
results are typically visualised by scatter plots, as shown in @ Fig. 5.8. Again, high
correlation is necessary, but not sufficient, for proving method similarity.

52 52 524
50 50 — 50
- = 3
O 48 K48 L 48
2 Gl Q S
= 246 :
> = =
£ 46 S < 46
c 2 £
2 c a4 @
£ a4 £ g 44
42 =
42 42
40
40 * 40
38
40.0 425 450 475 50.0 525 40.0 425 450 475 50.0 525 40.0 425 450 475 50.0 525
Intensity(W-1)) Intensity(W-I)) Intensity(W-1))

O Fig.5.8 Scatter plots of measurements resulting from the original ImageJ macro workflow versus
the CLIJ workflow (left), the optimized ImageJ workflow (center), and the optimized CLIJ workflows
(right). The orange line represents identity

Equivalence Testing

For proving that two methods A and B result in equal measurements with given
tolerance, statistical hypothesis testing should be used. A paired z-test indicates if
the observed differences are significant. Thus, a failed z-test is also necessary, but
not sufficient to prove method similarity. A valid method for investigating method
similarity is a combination of two one-sided paired ¢-tests (TOST). First, we define a
lower and an upper limit of tolerable differences between method A and B, for example
£5%. Then, we apply the first one-sided paired z-test to check if measurements of
method B are less than 95% compared to method A, and then the second one-sided
t-test to check if measurements of method B are greater than 105% compared to
method A. Comparing the original workflow (W-1J) to the translated CLIJ workflow
(W-CL1J), the TOST showed that observed differences are within the tolerance (p-
value < le-11).

Bland-Altman Analysis

Another method of analysing differences between two methods is to determine a
confidence interval, as suggested by Altman and Bland (1983). Furthermore, so-called
Bland-Altman plots deliver a visual representation of differences between methods,
as shown in @ Fig. 5.9. When comparing the original workflow (W-1J) to the CLI1J
version (W-CL1J), the mean difference appears to be close to 0.4, and the differences
between the methods are within the 95% confidence interval [—0.4, 1]. The means
of the two methods range between 40 and 53. Thus, when processing our example

108

D. Vorkel and R. Haase

£y

°
>
Intensity(W-OPT-I))
o
.
Intensity(W-OPT-CLIJ)

Intensity(W-1)) - Intensity(W-CLj)

°
>
.
Intensity(W-1)) -
.
Intensity(W-1)) -

40 42 a4 46 48 50 52 40 42 a4 46 48 50 52 40 42 44 46 48 50 52
(Intensity(W-})) + Intensity(W-CLI)) / 2 (Intensity(W-l)) + Intensity(W-OPT-))) / 2 (Intensity(W-1)) + Intensity(W-OPT-CLI))) / 2

O Fig. 5.9 Bland-Altman plots of differences between measurements, resulting from the original
ImageJ macro workflow (W-1J) versus (left) the CLIJ workflow (W-CL1J), (center) the optimized
ImageJ workflow (W-OPT-1J), and (right) the optimized CLIJ workflows (W-OPT-CLI1J). The dot-
ted lines denote the mean difference (center) and the upper and lower bound of the 95% confidence
interval

dataset, the CLIJ workflow (W-CLIJ) delivered intensity measurements of about 1%
lower than the original workflow (W-1J).

5.4.4 Benchmarking

After translating the workflow and assuring that the macro executes the right opera-
tions on our data, benchmarking is a common process to analyze the performance of
algorithms.

Fair Performance Comparison

When investigating GPU-acceleration of image analysis procedures, it becomes cru-
cial to obtain a realistic picture of the workflows performance. By measuring the
processing time of individual operations on GPUs compared to ImageJ operations
using CPUs, it was shown that GPUs typically perform faster than CPUs (Haase
et al., 2020). However, pushing image data to the GPU memory and pulling results
back take time. Thus, the transfer time needs to be included when benchmarking a
workflow. The simplest way is to measure the time at the beginning of the workflow
and at its end. Furthermore, it is recommended to exclude the needed time to load
from hard drives, assuming that this operation does not influence the processing time
of CPUs or GPUs. After the open() image statement, the initial time measurement
should be inserted:

‘ start_time = getTime();

Before saving the results to disc, we measure the time again and calculate the time
difference:

end_time = getTime() ;

print ("Processing took " + (end_time-start_time) + " ms");

The getTime() method in ImagelJ delivers the number of milliseconds since mid-
night of January 1, 1970 UTC. By subtracting two subsequent time measurements,
we can calculate the passed time in milliseconds.

109
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

Warm-up Effects

To ensure reliable results, time measurements should be repeated several times. As
shown in » Sect. 5.3, the first execution of a workflow is often slower than subse-
quent runs. The reason is the so-called warm-up effect, related to just-in-time (JIT)
compilation of Java and OpenCL code. This compilation takes time. To show the
variability of measured processing times between the original workflow and the CLIJ
translation, we executed all the considered workflows in loops for 100 times each.
To eliminate resulting effects of different and subsequently executed workflows, we
restarted Fiji after each 100 executions. From the resulting time measurements, we
derived a statistical summary in a form of the median speedup factor. Visualized by
box plots, we have generated an overview of the performance of the four different
workflows, executed on four tested systems.”

Benchmarking Results and Discussion

The resulting overview of the processing times is given in 8 Fig. 5.10. Depending on
the tested system, the CL1J workflow results in median speedup factors between 1.5
and 2.7. These results must be interpreted with care. As shown in (Haase et al., 2020),
workflow performance depends on many factors, such as the number of operations
and parameters, used hardware, and image size. When working on small images,
which fit into the so-called Levels 1 and 2 cache of internal CPU memory, CPUs
typically outperform GPUs. Some operations perform faster on GPUSs, such as con-
volution, or other filters which take neighboring pixels into account. By nature, there
are operations which are hard to compute on GPUs. Such an example is the con-
nected component labelling. As already described in » Sect. 5.4.2, we identified this
operation as a bottleneck in our here considered example workflow. Without this
operation, the optimized CLIJ workflow performed up to 5.5 times faster than the
original. Hence, a careful workflow design is a key to high performance. Identifying
slow parts of the workflow and replacing them with alternative operations becomes
routine when processing time is a relevant factor.

@ Exercise 3
Use the methods introduced in this section to benchmark the script presented in
» Sect. 5.3. Compare the performance of the mean filter in ImageJ with its CLIJ coun-
terpart. Determine the median processing time of both filters, including push and pull
commands when using CLIJ.

5.5 Summary

The method of live-cell imaging, in particular recording long-term time-lapses with
high spatial resolution, is of increasing importance to study dynamic biological pro-
cesses. Due to increased processing time of such data, image processing may become
the major bottleneck. In this chapter, we introduced one potential solution for faster

5 » https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch05_GPU-
accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/
performance_comparison.ipynb.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/performance_comparison.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/performance_comparison.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/performance_comparison.ipynb

110

D. Vorkel and R. Haase

Intel CPU / Intel iGPU

20000

o

17500

15000

12500

10000

7500

Processing time / ms

5000

2500

-
0
W-I) W-CLIJ W-OPT-j W-OPT-CLIJ
AMD CPU / AMD iGPU
7000
o
6000
o
5000
w
E
o o}
£ 2000
2 ° o
3 3000 o
& e
o
o
2000 g
]
1000 8
-}
w‘ru W—‘CLIJ W—dPT—IJ W—OP‘T—CLIJ

Processing time / ms

Processing time / ms

Intel CPU / NVidia eGPU

6000 1

5000 1

N
=3
S]
=3

3000 A

2000 1

1000 -

3500 1

3000 A

2500 1

2000 A

1500

1000+

500

o -0
9 o
s
W-lj W-CLIJ W-OPT-| W-OPT-CLIJ
Intel CPU / AMD dGPU
o
o
o
i
Wi w-CLy W-OPT-l W-OPT-CLY

O Fig.5.10 Box plots showing processing times of four different macros, tested on four computers.
In the case of the of classic ImageJ macro, blue boxes range from the 25th to the 75th percentile
of processing time. Analogously, green boxes represent processing times of the CLIJ macro. The
orange line denotes the median processing time. Circles denote outliers. In case of the CLIJ workflow,
outliers typically occur during the first iteration, where compilation time causes the warm-up effect

processing, namely by GPU-accelerated image processing using CLIJ. We also demon-
strated a step-by-step translation of a classic Image] Macro workflow to GPU-
accelerated macro workflow. Clearly, GPU-acceleration is suited for particular use

cases. Typical cases are

== processing of data larger than 10 MB per time point and channel;
== application of 3D image processing filters, such as convolution, mean, minimum,

maximum, Gaussian blur;

= need for acceleration of workflows which take significant amount of time, espe-
cially if processing is 10 times longer than loading and saving images;

extensive workflows with multiple operations, consecutively executed on the GPU;
last but not least, utilizing sophisticated GPU-hardware with a high memory band-
width, typically using GDDR6 memory.

11
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

When these needs/conditions are met, speedup factors of one or two orders of mag-
nitude are feasible. Furthermore, the warm-up effect is crucial. For example, if the
first execution of a workflow takes ten times longer than subsequent executions, it
becomes obvious that at least 11 images have to be processed to overcome the effect
and to actually save time. When translating a classic workflow to CLIJ, some refac-
toring is necessary to follow the concept of processing granular units of image data
by granular operations. This also improves readability of workflows, because opera-
tions on images are stated explicitly and in the order of execution. Additionally, the
shown methods for benchmarking and quality assurance can also be used in different
scenarios, as they are general method comparison strategies. GPU-accelerated image
processing opens the door for more sophisticated image analysis in real-time. If days
of processing time can be saved, it is worth investing hours required to learn CL1J.

Solutions to the Exercises

Q Exercise 1
While applying image processing methods, the ImageJ Macro recorder records corre-
sponding commands. This offers an intuitive way to learn ImageJ Macro programming
and CLIJ. After executing this exercise, the recorder should contain code like this:
open("/path/to/images/NPCsingleNucleus.tif");
selectWindow ("NPCsingleNucleus.tif");

run ("CLIJ2 Macro Extensions", "cl_device=[Intel(R) HD Graphics
— 630]1");

// threshold otsu

imagel = "NPCsingleNucleus.tif";
Ext.CLIJ2_push (imagel) ;
image2 = "threshold_otsu-936068520";

Ext.CLIJ2_thresholdOtsu(imagel, image2) ;
Ext.CLIJ2_pull (image2) ;

It opens the dataset, initializes the GPU, pushes the image to GPU memory, thresholds
the image, and pulls the resulting image back to show it on the screen.

The Fiji search bar allows to select CLIJ methods. The corresponding dialog gives
access to the CLIJ website, where the user can read about typical predecessor and
successor operations. For example, as shown in » Sect. 5.4.1 in B8 Fig. 5.6, operations
such as Gaussian blur, Mean filter, and Difference-Of-Gaussian are listed, which allow
an improved segmentation, because they reduce noise.

O Exercise 2
The recorded macro, adapted to print time traces, looks like this:

run("T1 Head (2.4M, 16-bits)");
run("CLIJ2 Macro Extensions", "cl_device=[Intel (R) UHD Graphics
— 6201");

// top hat

imagel = "tl-head.tif";
Ext.CLIJ2_push (imagel) ;
image2 = "top_hat-427502308";
radius_x = 10.0;

112 D. Vorkel and R. Haase

i Log - o b4
File Edit Font

> timeTracing
> TopHatBox
> Minimum3DBox

< Minimum3DBox 624946 ms
> Maximum3DBox
< Maximum3DBox 60.9887 ms
> Subtractimages
< Subtractimages 4.9924 ms
< TopHatBox 128.8151 ms
< timeTracing 129.4179 ms i

O Fig. 5.11 While executing the Top Har filter, activated time tracing reveals that this operation
consists of three subsequently applied operations: a minimum filter, a maximum filter and image
subtraction

radius_y = 10.0;
radius_z = 10.0;

// study time tracing of the Top Hat filter
Ext.CLIJ2_startTimeTracing() ;

Ext.CLIJ2_topHatBox (imagel, image2, radius_x, radius_y, radius_z);
Ext.CLIJ2_stopTimeTracing() ;

Ext.CLIJ2_pull (image?2) ;
// determine and print time traces

Ext.CLIJ2_getTimeTracing (time_traces) ;
print (time_traces) ;

The traced times, while executing the Top Hat filter on the T1-Head dataset, are shown
in @ Fig. 5.11. The Top Hat filter is a minimum filter applied to the original image, which
is followed by a maximum filter. The result of these two operations is subtracted from
the original. The two filters take about 60 ms each on the 16 MB large input image,
the subtraction takes Sms. The Top Hat filter altogether takes 129 ms. Top hat is a
technique to subtract background intensity from an image.

O Exercise 3
For benchmarking the mean 3D filter in ImageJ and CLIJ two example macros are
provided online.® We executed them on our test computers and determined median
execution times between 1445 and 5485 ms for the Image] filter and from 81 to 159 ms
for the CLIJ filter, respectively.

6 » https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-
accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/exercise_3.

https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/exercise_3
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/exercise_3

113
GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ

— Take-Home Message

In this chapter you learned how a classic ImageJ macro can be translated to a GPU-
accelerated CLIJ macro. Image processing on a CPU might become time-consuming,
especially when processing large datasets, such as complex time-lapse data. Therefore, it
isimportant to rethink parts of the workflow and to speed it up by forwarding processing
tasks to a GPU. For an optimal exploitation of the computing power of GPUs, it is
recommended to process data time-point by time-point, and also not to apply filters
to the whole time-lapse at once. Furthermore, we introduced strategies for a good
scientific practice on benchmarking and quantitative comparison of results between an
original and a GPU-accelerated workflow to assure that the GPU-accelerated workflow
performs with equal measurement results and under a given tolerance.

Acknowledgements We would like to thank Kota Miura and Andrea Boni for shar-
ing their image data and code openly with the community. It was the base for our chap-
ter. We also thank Dominic Waithe (University of Oxford), Tanner Fadero (UNC
Chapel Hill), Anna Hamacher (Heinrich-Heine-Universitit Diisseldorf), Johannes
Girstmair (MPI-CBG) and Thomas Brown (CSBD/MPI-CBG) for proofreading and
providing feedback. We thank Gene Myers (CSBD/MPI-CBG) for constant support
and giving us the academic freedom to advance GPU-accelerated image processing
in Fiji. We also would like to thank our colleagues who supported us in making CLIJ
and CLIJ2 possible in first place, namely Alexandr Dibrov (CSBD/MPI-CBG), Brian
Northon (True North Intelligent Algorithms) Deborah Schmidt (CSBD/MPI-CBG),
Florian Jug (CSBD/MPI-CBG, HT Milano), Loic A. Royer (CZ Biohub), Matthias
Arzt (CSBD/MPI-CBG), Martin Weigert (EPFL Lausanne), Nicola Maghelli (MPI-
CBQG), Pavel Tomancak (MPI-CBG), Peter Steinbach (HZDR Dresden), and Uwe
Schmidt (CSBD/MPI-CBG). Furthermore, development of CLIJ is a community
effort. We would like to thank the NEUBIAS Academy (» https://neubiasacademy.
org/.) and the Image Science community (» https://image.sc/.) for constant support
and feedback. R.H. was supported by the German Federal Ministry of Research
and Education (BMBF) under the code 03110044 (Sysbio II) and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy—EXC2068—Cluster of Excellence Physics of Life of TU Dres-
den.

Further Readings On top of the given references in the main text, readers interested
in state-of-the-art benchmarking approaches in high performance computing are rec-
ommended to read the overview given by Hoefler and Belli (2015). Furthermore, a
research software engineers perspective on developing GPU-accelerated applications
is also worth taking a closer look (van Werkhoven et al., 2020).

https://neubiasacademy.org/
https://neubiasacademy.org/
https://image.sc/

114

D. Vorkel and R. Haase

References

Altman DG, Bland JM (1983) Measurement in medicine: The analysis of method comparison stud-
ies. J R Stat Soc Ser D 32(3):307-317. https://doi.org/10.2307/2987937. https://rss.onlinelibrary.wiley.
com/doi/abs/10.2307/2987937

Boni A, Politi AZ, Strnad P, Xiang W, Hossain MJ, Ellenberg J (2015) Live imaging and modeling of
inner nuclear membrane targeting reveals its molecular requirements in mammalian cells. J Cell Biol
209(5):705-720. https://doi.org/10.1083/jcb.201409133. https://rupress.org/jcb/article-pdf/209/5/705
951675/jcb_201409133.pdf

Haase R, Royer LA, Steinbach P, Schmidt D, Dibrov A, Schmidt U, Weigert M, Maghelli N, Tomancak
P, Jug F, Myers EW (2020) CL1J: GPU-accelerated image processing for everyone. Nat Methods
17(1):5-6. https://doi.org/10.1038/s41592-019-0650-1

Hoefler T, Belli R (2015) Scientific benchmarking of parallel computing systems: twelve ways to tell the
masses when reporting performance results. In: SC ’15: Proceedings of the international conference
for high performance computing, networking, storage and analysis, p 1-12

Khronos-Group (2020) The open standard for parallel programming of heterogeneous systems. https://
www.khronos.org/opencl/. Accessed 12 Aug 2020

Miura K (2020) Measurements of intensity dynamics at the periphery of the nucleus. Springer, Cham, p
9-32. https://doi.org/10.1007/978-3-030-22386-1_2

Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern
9(1):62-66

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
Saalfeld S, Schmid B (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods
9(7):676—382. https://doi.org/10.1038/nmeth.2019

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imagelJ: 25 years of image analysis. Nat
Methods 9(7):671

van Werkhoven B, Palenstijn WJ, Sclocco A (2020) Lessons learned in a decade of research software
engineering GPU applications. In: Krzhizhanovskaya VV, Zavodszky G, Lees MH, Dongarra JJ,
Sloot PMA, Brissos S, Teixeira J (eds) Computational science-ICCS 2020. Springer, Cham, pp 399—
412

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.2307/2987937
https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2987937
https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2987937
https://doi.org/10.1083/jcb.201409133
https://rupress.org/jcb/article-pdf/209/5/705/951675/jcb_201409133.pdf
https://rupress.org/jcb/article-pdf/209/5/705/951675/jcb_201409133.pdf
https://doi.org/10.1038/s41592-019-0650-1
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://doi.org/10.1007/978-3-030-22386-1_2
https://doi.org/10.1038/nmeth.2019
http://creativecommons.org/licenses/by/4.0/

q 115

Check for
updates

How to Do the
Deconstruction of
Bioimage Analysis
Workflows: A Case Study
with SurfCut

Marion Louveaux and Stéphane Verger

Contents

6.1 Introduction - 117

6.1.1 A Workflow and Its Components — 117

6.1.2 What Is Deconstruction? - 117

6.1.3 A Case of Study of Workflow Deconstruction: SurfCut — 118
6.1.4 What Is SurfCut? - 118

6.1.5 What Was SurfCut Developed for? - 119

6.1.6 Other Similar Tools — 120

6.2 Dataset - 121
6.3 Tools - 121

6.4 Workflow - 121

6.4.1 Step 1. Identification of Components in the Textual
Description — 122

6.4.2 Step 2. Drawing a Workflow Scheme - 123

6.4.3 Step 3. Assessment of Prerequisites and Limitations — 124

6.4.4 Step 4. Identification of Components in the Code - 128

6.4.5 Step 5. Code Refactoring — 131

This Chapter has been reviewed by Mafalda Sousa, I3S - Advanced Light Microscopy,
University of Porto.

© The Author(s) 2022
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows—-Advanced Components and Methods,
Learning Materials in Biosciences, https://doi.org/10.1007/978-3-030-76394-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76394-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-76394-7_6

6.4.6

6.4.7

6.4.8

6.5

6.6

Step 6. Replacing a Component: Shift Mask in the Z-Axis
Direction - 135

Step 7. Benchmarking: Comparison of Two Alternative
Components - 138

Step 8. Linking to Another Workflow: FibrilTool — 142

Analysis of the Results: Presentation and
Discussion - 142

Concluding Remarks - 143

References - 144

17
How to do the Deconstruction of Bioimage Analysis ...

What You Will Learn in This Chapter

Published bioimage analysis workflows are designed for a specific biology use case and
often hidden in the material and methods section of a biology paper. The art of the bioim-
age analyst is to find these workflows, deconstruct them and tune them to a new use case
by replacing or modifying components of the workflow and/or linking them to other work-
flows.

In this chapter, you will learn how to adapt a published workflow to your needs. More
precisely, you will learn how to: deconstruct a bioimage analysis workflow into components;
evaluate the fit of each component to your needs; replace one element by another one of
your choice; benchmark this new workflow against the original one; and link it to another
workflow. Our target for workflow deconstruction is SurfCut, an ImageJ macro for the
projection of 3D surface tissue. !

6.1 Introduction

6.1.1 A Workflow and Its Components

Bioimage analysis workflows and components are defined as follows (Miura and
Tosi, 2016): (1) A workflow is a set of components assembled in some specific order
to process biological images and estimate some numerical parameters relevant to
the biological system under study; (2) Components are implementations of certain
image processing and analysis algorithms. Each component alone does not solve a
bioimage analysis problem. Components may take forms of a single menu item in
image processing software, a plugin, a module, an add-on, or a class in an image
processing library. Workflows take image data as input, and output either processed
images or numerical values. A workflow can be a combination of components from
the same or different software packages and can, for example, come under the form of
a script that calls components in a sequence, or a detailed step-by-step instruction on
how to chain a sequence of components (Miura and Tosi, 2017; Miura et al., 2020).

6.1.2 What Is Deconstruction?

Bioimage Analysis Workflows are designed for specific purpose, so usually, they can-
not be used as a general tool for different problems. Then how can we learn how
to create bioimage analysis workflows? One way is to do everything from scratch.
Another way is to learn from other bioimage analysis workflows, modify them, and
reassemble components to create something new for a specific purpose. We call this (a
workflow) "deconstruction". The process of deconstruction was initially proposed by
Jacques Derrida, a French philosopher, as a criticism against the modern philosophy.
Instead of constructing ideas, which implicitly builds on hidden but solid principles
as the base of such construction, deconstruction is a way of shifting ideas by crit-

1 This chapter was communicated by Mafalda Sousa, I3S—Advanced Light Microscopy, University of
Porto, Portugal.

118

M. Louveaux and S. Verger

ical thinking, sometimes denial, and in other times the restructuring of preexisting
principles.

The deconstruction of bioimage analysis workflow was introduced as a pedagogic
method for the Bioimage Analyst School of NEUBIAS. Deconstructing a workflow
means identifying and isolating each of its components in order to assess their quality
and possibly replace them with more suitable components. In addition to using it as
a powerful pedagogical tool, one of the main interest in deconstructing a workflow
is to avoid spending time and effort "re-inventing the wheel", and instead to re-use,
optimize or adapt an existing method to the new users’ needs.

6.1.3 A Case of Study of Workflow Deconstruction: SurfCut

The ImageJ macro "SurfCut" was chosen as a study case for workflow deconstruction
during the NEUBIAS training school TS15 (Bordeaux, March 2020). Interestingly,
this led to numerous new ideas and ways to implement SurfCut. Some trainees added
GPU processing capability with CLIJ (Haase et al., 2020), while others completely re-
wrote the workflow in Python? and Matlab® and benchmarked the different versions
(SurfCut, GPU-SurfCut, Python-SurfCut and Matlab-SurfCut). Furthermore, this
deconstruction session, along with the writing of this book chapter, also prompted
us to develop a new version of the SurfCut macro, SurfCut2, including a complete
refactoring of the code (as described in this book chapter), bug-fixing, and addition
of new functions.* In this chapter, we explain in detail the procedure for workflow
deconstruction based on these experiences, using SurfCut as an example target work-
flow.

6.1.4 WhatIs SurfCut?

SurfCut is an ImageJ macro that allows the numerical extraction of a thin, curved,
layer of signal in a 3D confocal stack by taking as reference the surface of a 3D bio-
logical object present in the volume of the stack (Erguvan et al., 2019). The macro is
written in the ImageJ1.x(IJ1) macro language, and runs on the Fiji platform (Schin-
delin et al., 2012). Using built-in Image]J functions, the biological object in the image
is blurred, segmented, filled, shifted in the Z-axis at two different depths and used as
a mask to erase unwanted raw signals at a chosen distance from the surface of the
detected object (B Fig. 6.1, and detailed description in » Sect. 6.4). The whole work-
flow can be viewed as a sort of ‘‘object surface™guided signal filtering method. This
allows the removal of unwanted signals relative to the surface of the biological object
and the extraction of specific structures from the 3D stack, such as the cell contours
(8 Fig. 6.1) or outer epidermal cortical microtubules. As such, this workflow has
already been incorporated as a component of larger workflows, as a preprocessing
step for cell segmentation or cortical microtubule signal quantification (Baral et al.,
2021; Erguvan et al., 2019; Takatani et al., 2020).

2 » https://pypi.org/project/surfcut/.
3 » https://github.com/martinschatz-cz/surfcut-matlab.
4 » https://github.com/VergerLab/SurfCut2.

https://pypi.org/project/surfcut/
https://github.com/martinschatz-cz/surfcut-matlab
https://github.com/VergerLab/SurfCut2

119
How to do the Deconstruction of Bioimage Analysis ...

Raw signal SurfCut-cropped
ayer signal

a- 4

3D view cosnposme

O Fig. 6.1 Overview of SurfCut principle and output, applied on Arabidopsis thaliana cotyledon
epidermal cells stained with propidium iodide and imaged in 3D with a confocal microscope. Top
panel is a combination of half of the raw confocal signal (grey) and half of the "SurfCut-extracted"
signal (red), partially overlapped and tilted in 3D to show the relationship between the raw signal
and output. Bottom left panel is a max-intensity projection of the raw signal. Bottom right panel is a
max-intensity projection of the "SurfCut-extracted" signal, highlighting how the process efficiently
preserves the cell contour (anticlinal) signal in the epidermal layer while removing signal from the
periclinal cell contours

6.1.5 What Was SurfCut Developed for?

SurfCut was originally developed as a pre-processing tool to filter out unwanted sig-
nals and perform a Z-projection prior to 2D segmentation of epidermal plant cells.
The so-called ‘‘puzzle-shaped pavement cells” of the leaf epidermis harbor very partic-
ular shapes (8 Fig. 6.1). This is a very interesting system to study the morphogenesis
of single cells in a tissue context. To understand how these cell shapes emerge, a proper
shape quantification with several genetic backgrounds, or under specific treatment
conditions, is required. Many methods were developed to quantify and compare cell
shapes based on 2D cell contours (Moller et al., 2017; Sanchez-Corrales et al., 2018;
Wuetal., 2016). As the leaf epidermisis a 3D curved surface, a Z projection is required
prior to the use of any of these tools. Given the lack of available user-friendly tools

120

M. Louveaux and S. Verger

to perform a proper extraction of 2D cell contours from 3D confocal stacks, we
developed SurfCut (Erguvan et al., 2019).

Although the SurfCut macro was written in the context of a biological project
and could have ended (somewhat hidden) in the "Material and method"—section of
a larger biological publication (still being finalized at the time of writing this chapter
but available as a preprint (Malivert et al., 2021)), we decided to publish it separately
(Erguvan et al., 2019), to assign a DOI to the code and provide image data, also identi-
fied with a DOI (Erguvan and Verger, 2019), to enable testing of the macro. We think
that the publishing of this type of macro gives more visibility to the bioimage analysis
workflows and, by giving all the space needed to the description of the workflow,
ensures a greater reproducibility.

6.1.6 Other Similar Tools

Before developing SurfCut, we had identified in our bibliographical searches other
workflows performing apparently similar outputs, but none of them fitted exactly our
needs. As described in Erguvan et al. (2019), we were originally using the software
MorphoGraphX (MGX) (Barbier de Reuille et al., 2015) that provides a very accu-
rate solution to our problem (Erguvan et al., 2019; Verger et al., 2018), but requires
too many manual steps and does not easily allow batch processing. In addition, Mer-
ryproj (Barbier de Reuille et al., 2005), SurfaceProject (Band et al., 2014), LSM-W2
(Zubairova et al., 2019) and Smooth 2D manifold (Shihavuddin et al., 2017) were dis-
cussed in Erguvan et al. (2019) and were found inadequate for our purpose. After the
independent publication of the SurfCut macro, we discovered other workflows that
our first search had not revealed, such as the ImageJ macro identifyuppersurfacev2
(Galea et al., 2018),> or the ImageJ plugin MinCostZSurface (Li et al., 2006).© We
also identified more advanced workflows that would not have fitted our needs for
simplicity (Candeo et al., 2016; Heemskerk and Streichan, 2015; Schmid et al., 2013).
Furthermore, since the publication of SurfCut, additional workflows, such as the
ImageJ plugins Ellipsoid Surface Projection (Viktorinova et al., 2019), SheetMesh-
Projection’ (Wada and Hayashi, 2020) and LocalZProjector (Herbert et al., 2021)
were developed to serve a similar purpose. In total, there are at least ten different
workflows that can perform the type of signal layer extraction that SurfCut per-
forms. While all these tools allow the generation of relatively similar output, almost
all of them use a different approach. In addition, they are tailored to specific needs,
such that some of these tools outperform others on a certain type of images, thus
offering a large choice of alternative workflow components to perform this specific
pre-processing step.

In the following sections, we present how to deconstruct SurfCut (Erguvan et al.
2019), i.e. how to identify its different components in the reference publication and
in the code. We then explain how to refactor the code, replace one component and

5 » https://www.ucl.ac.uk/child-health/research/core-scientific- facilities-centres/confocal-microscopy/
publications see section "Published ImageJ/Fiji macro".

6 » https://imagej.net/Minimum_Cost_Z_surface_Projection.
7 » https://signaling.riken.jp/en/en-tools/imagej/1743/.

https://www.ucl.ac.uk/child-health/research/core-scientific-facilities-centres/confocal-microscopy/publications
https://www.ucl.ac.uk/child-health/research/core-scientific-facilities-centres/confocal-microscopy/publications
https://imagej.net/Minimum_Cost_Z_surface_Projection
https://signaling.riken.jp/en/en-tools/imagej/1743/

121
How to do the Deconstruction of Bioimage Analysis ...

benchmark the new workflow against the original one. Finally, we explore how to
integrate this workflow with other workflows.

6.2 Dataset

The SurfCut macro was released with test image data of around 535 Mb. This data
set was uploaded to Zenodo with a thorough description of the imaging conditions,
and identified with its DOI: » http://doi.org/10.5281/zenodo.2577053 (Erguvan and
Verger, 2019).

6.3 Tools

== Fiji. Download and install Fiji on your computer (» https://imagej.net/Fiji/
Downloads)

== ImageJ macro SurfCut: Download the "SurfCut.ijm" macro file to your computer
(» https://github.com/sverger/SurfCut). To run the macro in Fiji either click on
Plugins>Macro>Run and select "SurfCut.ijjm", or drag and drop "SurfCut.ijjm"
into the Fiji window and click run.

== Image] macro SurfCut2: Download the "SurfCut2.ijm" macro file to your com-
puter (» https://github.com/VergerLab/SurfCut2). Follow the same instructions
as for the ImageJ macro SurfCut.

== ImageJ macro used for exercises in this chapter can be found at: » https://github.
com/NEUBIAS/neubias-springer-book-2021

6.4 Workflow

In this section, we propose a step-by-step deconstruction and modification of the
SurfCut workflow. The concepts and exercises in each step can be generalised to any
kind of bioimage analysis workflow.

We take the following steps for the deconstruction of the workflow:

Step 1: Identify components in the description of a workflow and in the code;
Step 2: Draw a workflow scheme;

Step 3: Identify limitations on input format, processing capabilities, simplicity to
re-use;

Step 4: Identify block of codes corresponding to components;

Step 5: Refactor code;

Step 6: Replace a component of the workflow;

Step 7: Compare the performance of the original workflow with a modified one;
Step 8: Link this workflow with another workflow.

http://doi.org/10.5281/zenodo.2577053
https://imagej.net/Fiji/Downloads
https://imagej.net/Fiji/Downloads
https://github.com/sverger/SurfCut
https://github.com/VergerLab/SurfCut2
https://github.com/NEUBIAS/neubias-springer-book-2021
https://github.com/NEUBIAS/neubias-springer-book-2021

122 M. Louveaux and S. Verger

6.4.1 Step 1.Identification of Components in the Textual
Description

When working with a published workflow, the first step is to identify the components
in the text of the publication and the order in which they are used. Nowadays, pub-
lished workflows are often accompanied by a detailed user manual and/or a "readme"
if the code is released on GitHub or GitLab. This text can also contain additional
information on the components and on the links between them.

9 Exercise 1
1. Read Erguvan et al. (2019) and underline in the text all elements describing the
components of the SurfCut workflow. Then summarize the result as an ordered
list of components.
2. Which additional useful information relative to the components can you find on
the GitHub repository of the SurfCut macro3?

0 Solution to Exercise 1
1. Alltextelements describing the components of the SurfCut macro in Erguvan et al.

(2019) are on page 3 in the Methods section, in the "2D cell contour extraction

with SurfCut" paragraph:

== "The macro has two modes: (1) ‘““Calibrate,”[...], and (2) ‘‘Batch,”[...]".

= "The stack is first converted to 8 bit."

= "De-noising of the raw signal is then performed using the Gaussian Blur
function."

== "The signal is then binarized using the Threshold function."

= "an equivalent of the ‘‘edge detect” process from MGX is performed [...J;
each slice from the binarized stack, starting from the top slice, is successively
projected (Z-project) [...]. This ultimately creates a new binary stack in which
all the binary signals detected in the upper slices appear projected down on
the lower slices, effectively filling the holes in the binary object."

== "This new stack is then used as a mask shifted in the Z direction, to subtract the
signal from the original stack above and below the chosen values depending
on the desired depth of signal extraction."

= "The cropped10 stack is finally projected along the Z-axis using the maximal
fluorescence intensity in order to obtain a 2D image."

The SurfCut workflow has 6 components: (1) bit-depth conversion, (2) denois-
ing, (3) thresholding and binarization, (4) edge detection, (5) masking, and (6)
Z-projection (B Fig. 6.2). The workflow can be run one component at a time, to
allow for selection of parameters per component (calibrate mode), or automati-
cally (batch mode).

8 » https://github.com/sverger/SurfCut.
9 MorphoGraphX.
10 The exact term is "masked".

https://github.com/sverger/SurfCut

123

How to do the Deconstruction of Bioimage Analysis ...

8bit
conversion

Edge

Denoisin G
g Binarization detection

Masking Z projection

B Fig.6.2 Output of each processing step of the SurfCut workflow
2. Inthe GitHub repository of the SurfCut macro, a careful reading of the "readme"
and user guide!! identifies and confirms the components found in the text of the

publication. Note that dialog boxes to interact with the user are not considered
as components of the workflow.

6.4.2 Step 2. Drawing a Workflow Scheme

We identified above the workflow components from the text. Let us now draw a
scheme of the workflow. A workflow scheme summarizes and links all the components
of a workflow. This scheme will serve as a guide to get an overview of the workflow,
and identify those components in the code that can be refined after Step 4, if needed.
O Figure 6.3 is a graphical scheme of a general bioimage analysis workflow.

Q Exercise 2
Utilizing information found in Exercise 1, draw the scheme of the SurfCut workflow:
start drawing one box per component following the guidelines in Step 1. Then identify
each component by a short informative name and link components with each other, so
that the input of a component is an output of the previous component.

Bioimage analysis workflow

1 I
1| Component | —3 | Component | —3 | Component | —3» | Component | 1
1 I

B Fig.6.3 Workflow scheme example

11 » https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf.

https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf

124

M. Louveaux and S. Verger

SurfCut workflow
I

8bits conversion|—¥| Denoising |

[—

1
1
I
|
: [Einarization | —»- [Edge detection)
3. 4.
1
1
|
I

| Masking | — | Z projection |
6.

B Fig.6.4 SurfCut workflow scheme

@) solution to Exercise 2

The SurfCut macro has two modes: (1) "calibrate", where the components are executed
one-by-one and only once, and (2) "batch", where the complete workflow is repeated on
several images. We draw a batch component to illustrate the batch mode. We then draw
the 6 components of the workflow inside the batch component and link them in the
order in which they appear in the text: Component 1 performs the conversion to 8-bit
pixel representation, Component 2 performs the denoising, etc. In the text, we will now
refer to components using the following wording: Component 1 "8 bits conversion",
Component 2 "Denoising", etc (B Fig. 6.4). For simplicity of the scheme, we ignored
import and export components (such as User-Interface for file selection or saving of
results). These can be included as well, especially if the import or export components
correspond to non-trivial steps (e.g. specific data format).

6.4.3 Step 3. Assessment of Prerequisites and Limitations

In the two previous steps, we identified the components of the workflow described

in the publication and drew a workflow scheme. We now have an overview of the

workflow and can make more confident assessment on if the workflow is appropriate

to solve our biological question or not. To determine if we can use the workflow as it

is, if it is sufficient to only change a couple of the components to adapt the workflow

to our data, or if the workflow is not adequate at all for our data, we need to make

some additional (final) checks:

== Data format compatibility: Is the input format (.tif, .png, .czi...) and type of data
(2D, 3D, time-series) that we have compatible with the format and type required
by the workflow?

== Processing capacity: [s the amount and size of the data compatible with the work-
flow (fully manual workflow or very slow workflow versus high content screening
data; included calibration step requiring a minimum of 30 images versus 5 images
available only...)?

125

How to do the Deconstruction of Bioimage Analysis ...

Data content compatibility: Are the type of biological data and markers that we
have to work with compatible with what is considered in the workflow (membrane
marker versus nuclear marker, epithelial marker versus whole tissue marker, flat
versus curved tissue...)?

Output adequacy: Will the output data generated by the workflow (new images,
numerical values, plots...) be actually useful for what we intend to do (get biological
results, benchmark the workflow against another, embed in a larger workflow...)?

If the answer is no to one, or several of these questions, the next question to answer

is: Could one, or several of the components be replaced by a more adapted or efficient
one(s)? Here we assume that the macro language and the use of ImageJ/Fiji is not an
obstacle for any bioimage analyst. For other more advanced or less known languages,
as well as more exotic software, another sequence of preliminary checks would be:

Language: In which language is this workflow written?

Platform: On which platform can I execute it?

Inter-operability: How complex will it be to link this workflow to my other tools
written in another language or executed on another platform?

Code migration capability: In case I need to make some modifications to the
workflow, do I have other options than fully rewriting it in my favorite language?

Q Exercise 3

1. Install the SurfCut macro and execute it on the associated data.

2. Identify, based on the text of the reference publication, the "readme" in the Github
repository and the user guide, all elements restricting the datasets of certain type
to be used with SurfCut.

3. Foreach use case below, download the dataset and explain if and why the dataset
could be processed directly with SurfCut, without any workflow modification,
using the checks defined above. We assume that the output of the workflow (a
2D projection) is what we need.

(a) Usecase 1: 3D light sheet microscopy images of a Tribolium epithelium (Vorkel
et al., 2020).
Dataset: » https://zenodo.org/record/3981193#.Xzo8pTU6-60, take
"Strausberg_Tribolium_LAGFP_tailpole_runCOopticsprefused301310.tif".
This dataset was used as an example to showcase another projection tool.12

(b) Use case 2: 3D confocal and spinning disk microscopy images of Drosophila
epithelia (notum and wing disc, Valon and Staneva, 2020).
Dataset: » https://zenodo.org/record/4114074#.X5AJAe06-60. Take the
image named "notum2_GFP.tif".

(c) Use case 3: 3D light sheet microscopy images of single cells (Driscoll et al.,
2019).
Dataset: » https://cloud.biohpc.swmed.edu/index.php/s/Z9j62w2FCareyJY/do-
wnload), in the folder called "testData". Each image is associated with a text
file describing the imaging conditions (AcqInfo.txt). There are three examples of
MV3 melanoma cells ("krasMV3") and one example
of conditionally immortalized hematopoietic precursors to dendritic

12

» https://clij.github.io/assistant/sphere_projection.

https://zenodo.org/record/3981193#.Xzo8pTU6-60
https://zenodo.org/record/4114074#.X5AJAe06-60
https://cloud.biohpc.swmed.edu/index.php/s/Z9j62w2FCareyJY/download
https://cloud.biohpc.swmed.edu/index.php/s/Z9j62w2FCareyJY/download
https://clij.github.io/assistant/sphere_projection

126

M. Louveaux and S. Verger

cells ("lamDendritic"). Associated GitHub repository: » https://github.com/
DanuserLab/u-shape3D and research article: » https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC7238333/.

(d) Use case 4: light sheet image of a gastric cancer spheroid (Rocha et al., 2020).
Dataset: » https://zenodo.org/record/4244952#.X6L_Z1j7SHs.

@) solution to Exercise 3

1.

See » Sects. 6.2 and 6.3, as well as the installation instructions and the userguide

on the GitHub repository.13

Prerequisites

Pre-requisites and limitations found in the main text of the publication:

= "the acquired signal must be strong and continuous enough at the edge of
the sample in order for the signal to be detected and segmented from the
background noise by a simple conversion to a binary image." (Methods section,
in "Confocal microscopy")

== "avoid the presence of artifacts, e.g., from stained cell debris or bacteria at the
surface of the sample." (Methods section, in "Confocal microscopy")

== "The first slice of the stack should be the top surface of the sample in order for
the process to work properly." (Methods section, in "2D cell contour extraction
with SurfCut")

= "a new method (SurfCut) to extract cell contours or specific thin layers of
a signal at a distance from the surface of samples in 3D confocal stacks."
(Results and discussion section, "2D cell contour extraction from 3D samples
with MGX ! and SurfCut")

= "the associated error can become important for samples with high curvature.”
(Results and discussion section, "2D cell contour extraction from 3D samples
with MGX and SurfCut")

== "In principle, this tool may be used on any 3D stack (e.g., confocal or light-
sheet microscopy) originating from either animal, fungi, or plant systems."
(Conclusions section)

== "SurfCut is particularly well suited for tissues with a low curvature " (Conclu-
sions section)

== "SurfCut is very well suited for high-throughput pavement cell contour extrac-
tion and further quantification. [...] Besides, SurfCut can also be used to extract
other types of signals, such as cortical microtubules, allowing a suppression of
the background noise coming from the signal below." (Conclusions section)

= "SurfCut can be a very useful tool for the 2D representation (from image-
based screening protocols to publication figures) of 3D confocal data in which
overlapping signal from different depths in the stack hinders the visualization
of signal or structures of interest." (Conclusions section)

Prerequisites and limitations found in the "readme" of the GitHub repository:15

13 » https://github.com/sverger/SurfCut.
14 MorphoGraphX.
15 » https://github.com/sverger/SurfCut/blob/master/README.md.

https://github.com/DanuserLab/u-shape3D
https://github.com/DanuserLab/u-shape3D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238333/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238333/
https://zenodo.org/record/4244952#.X6L_ZIj7SHs
https://github.com/sverger/SurfCut
https://github.com/sverger/SurfCut/blob/master/README.md

127

How to do the Deconstruction of Bioimage Analysis ...

"This can, for example, be used to extract the cell contours of the epidermal
layer of cells." (Description section)

"SurfCut [...] is in principle only adequate for sample with a relatively simple
geometry." (How it works section)

"3D confocal stacks in .tif format, in which the top of the stack should also
be the top of the sample." (Prerequisites section)

Prerequisites and limitations found in the user guide:16

"Our image analysis pipeline was developed to extract cell contours or specific
layers of signal in confocal images of plant samples, but can in principle be
used on any 3D fluorescence microscopy stack (e.g. confocal or light-sheet
microscopy) originating from either animal, fungi or plant systems, stained
or expressing a fluorescent reporter highlighting the cell contours (typically,
a protein at the plasma membrane). For a better-quality output, it is recom-
mended to use a Z interval of maximum 1 um." (Procedure section, A. Image
Acquisition)

"if your signal is very heterogeneous, e.g. for cortical microtubules, a higher
[Gaussian blur radius] value can help homogenize the signal and obtain a good
surface detection." (Procedure section, C. Calibration, step 6.)

"The voxel properties of your image in micrometers, are automatically filled
based on the metadata of the image. If no data is found, these values will all
be set to 1." (Procedure section, C. Calibration, step 10.)

"Remember that the stack should be in .tif and that the top of the stack should
also be the top of the sample." (Procedure section, D. Running the script in
batch mode, step 18.)

3. Usecases

Use case 1: 3D light sheet microscopy images of a Tribolium epithelium.

We have a 3D stack, .tif format, we know the pixel size, and the life-actin GFP
marker signal delimits well a relatively thin epidermal layer. However, these
are time-lapse data (SurfCut can process only one time-point at a time), and
the tissue is very curvy. The data could be processed by first extracting each
individual time points and then analysing the images in a batch after having
defined the proper parameters in the calibrate mode. However, SurfCut is not
recommended in this case due to the high curvature of the tissue.

Use case 2: 3D confocal and spinning disk microscopy images of Drosophila
epithelia (notum and wing disc), image named "notum2_GFP.tif"

We have a 3D stack, in .tif format. We know the pixel size from the description
of the Zenodo upload, and the E-Cadherin marker delimits well a relatively
thin epidermal layer, which is only slightly curved. SurfCut is appropriate
here, since the tissue is not too curvy. Moreover, SurfCut can help remove
noise above and below the epidermis and hence render a sharper projection of
the cell contours. After adding the pixel size specified in the description of the
dataset to the metadata of the image, we can process the image with SurfCut
using the following parameters: gaussian blur of radius 3; threshold of 50; top
= 6; bottom = 11.

16 » https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf.

https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf

128

M. Louveaux and S. Verger

== Use case 3: 3D light sheet microscopy images of single cells.
Wehave 3D stacks, .tif format, and we know the pixel size from the AcqInfo.txt
file. However, these are 3D closed objects with quite some relief. Here SurfCut
is not appropriate to project the 3D stacks, it would deform the cells too much.

== Use case 4: 3D light sheet images of a gastric cancer spheroid.
We have a 3D stack in .tif format. However, the stack contains the first bright
and blurry slice that needs to be removed first, the proper voxel size needs to
be set based on the information found in the description of the dataset, and
the z resolution is rather low (5 micron) compared to the x and y (1 micron).
SurfCut can help remove noise around the spheroid, as well as the blur from
inside, and render a sharper projection of the surface. We can process the
stack with SurfCut using the following parameters: Gaussian blur of radius 3;
threshold of 20; top = 0; and bottom = 25.

6.4.4 Step 4. Identification of Components in the Code

In the previous steps, we identified the components of the workflow from the text,
drew a workflow scheme (see @ Fig. 6.4) and checked the prerequisites in terms of
data input. If the workflow could be reused as it is, we could have stopped there. Now,
we assume that we need to modify the workflow to adapt it to our needs. Hence we
need to get a more in-depth knowledge of the code.

Each programming language has a different syntax, but there should always be
comments, variables with meaningful names, functions, and other common recog-
nizable items. They can help you understand the structure of the workflow in the
code. Read first the comments around the code to identify the different components
of the workflow, as found in step 1 and 2 (see B Fig. 6.4). Each component should
ideally match with a block of code containing one or several built-in or custom func-
tions, some loops and conditional statements etc. To further understand the order of
execution of the workflow, identify also the different input and output variables.

SurfCut contains several defects often found in real codes, and especially in ImageJ
macros.!” We will see, for instance, in the exercise below that, in SurfCut, some com-
ponents are spread over several blocks of code and intermingled with other compo-
nents. We will see also that some components in SurfCut are made of several built-in
functions that are not wrapped in one bigger function. Of course, a modular code
with clearly separated blocks of code and one function per component is easier to
read and understand, but SurfCut is representative of ImageJ macros. This lack of
structure comes from two elements: (i) macro authors are seldom software develop-
ers and hence lack good code writing practices (commenting, wrapping components
into functions...) and (i) most macro authors rely on the macro recorder to find the
proper functions to use. The macro recorder prints the macro commands correspond-
ing to the steps done manually by the user through the graphical user interface of
Imagel/Fiji. Whereas some components correspond to a single ImagelJ macro built-
in function (e.g. a Gaussian blur), other require several functions (e.g. Edge detect).
The modular structure with components is lost when using the macro recorder. In
addition to these defects, SurfCut contains many repetitions of code lines. This is due

17 » https://imagej.nih.gov/ij/developer/macro/macros.html.

https://imagej.nih.gov/ij/developer/macro/macros.html

129
How to do the Deconstruction of Bioimage Analysis ...

to the presence of two types of workflows in one code, the calibrate and the batch
workflows, and the lack of optimization in the code to reuse functionalities of one
workflow in the other rather than copy functionalities.

As explained in the introduction, we took into account all these defects and carried
out a complete refactoring of the code (as described in Step 5 and 6 of this book
chapter), fixed bugs, and created new functions to reach a new version of SurfCut,
called SurfCut2.'® We also made a simpler version of the macro, called SurfCut2-Lite.
We propose two alternatives to the exercises below, corresponding to two levels of
difficulty. For the beginner level, use the SurfCut2-Lite code!” and do the exercises
4.1, 6, 7 and 8 (skip exercise 4.2 and 5, which are already implemented in the code of
SurfCut2-Lite). For the advanced level, use the code of the original SurfCut macro
and follow all the steps and exercises proposed.

9 Exercise 4

Using either SurfCut2-Lite code ("beginner level") or SurfCut code ("advanced level"):

1. Identify blocks of code corresponding to the different components identified in
Step 1 and Step 2.

2. Extractin a separate text file a minimal version of the macro corresponding to the
workflow only: remove user interfaces, "for" loops used to run the batch mode,
and "while" loops (in this case, they are not a part of the workflow). Keep only
the essential elements the workflow and group elements corresponding to a given
component together. Identify the different components of the workflow using the
comments present in the macro.

O Solution to Exercise 4
"Beginner Level": Response to Task 1, Considering SurfCut2-Lite Code
1. The workflow appears once, and can be identified at the early part of the macro,
in the form of a suite of user-defined functions (line 51-68; similar to the solu-
tion of Exercise 5.2). Further, all the components of the workflow are organized
as user-defined functions, between line 112 and 222 of the macro (Component
1: line 114-118; Component 2: 120—124; Component 3: 126—-131, Component 4:
133-156; Ccomponent 5: 158—207; Component 6: 209-215; similar to exercise 5.1
solution). Note that the Component 5 was split into two user-defined functions
(ZAxisShifting and masking), which can be useful and will be explained later in
this book chapter.

""Advanced Level'"': Response to Tasks 1 and 2, Considering the Original SurfCut Code

1. Intheoriginal SurfCut code, the workflow is present twice: Once in the "Calibrate"
mode, in which most of the steps are intertwined with user input and interaction,
and once in the "Batch" mode, in which the backbone of the macro is embedded in
a batch processing "for" loop. The most easily identifiable backbone of the work-
flow is present between lines 403 and 463 of the macro (Component 1: line 403;
Component 2: 404; Component 3: 407409, Component 4: 418—431; Component

18 » https://github.com/VergerLab/SurfCut2.
19 » https://github.com/VergerLab/SurfCut2/blob/master/SurfCut2-Lite.ijjm.

https://github.com/VergerLab/SurfCut2
https://github.com/VergerLab/SurfCut2/blob/master/SurfCut2-Lite.ijm

130 M. Louveaux and S. Verger

5: 433-453; Component 6: 462—463), within the "Batch" mode part of the code.
In the "Calibrate" part of the code, equivalent code blocks can be found at lines
6888 and 161-200.

2. The code below shows a possible solution for the extraction of the minimally
required code for the core functionalities of SurfCut. Each component is labeled
in a corresponding comment by its corresponding number (see B Fig. 6.4).

//=Componentl=// 8bit conversion

1
2 run("8-bit") ;

3

4 //=Component2=// Denoising

5 run("Gaussian Blur...", "sigma=&Rad stack");

6

7 //=Component3=// Binarization

3 setThreshold (0, Thld);

9 run("Convert to Mask", "method=Default background=Light");
10 run("Invert", "stack");

12 //=Component4=// Edge detection
13 print (slices);

14 for (img=0; img<slices; img++) {
15 print ("Edge detect projection" + img + "/" + slices);
16 slice = img+1;
17 selectWindow (list[]j]);
18 run("Z Project...", "stop=&slice projection=[Max
< Intensity]");
19 }
20 print ("Concatenate images");
21 run ("Images to Stack", "name=Stack title=[]");

2 wait (1000) ;
23 selectWindow (list[j1);
24 close();

26 //=Component5=// Masking
27 //Substraction?

28 print ("Substraction2") ;
29 selectWindow("Stack") ;

30 run("Duplicate...", "title=Stack-1 duplicate range=1-&slices");
31 open (dir+File.separator+list([j]);

32 walit (1000) ;

33 run("8-bit");

34 run("Invert", "stack");

3s imageCalculator ("Subtract create stack", "Stack-1",list[j]);

36 //Substractionl

37 print ("Substractionl") ;

38 selectWindow ("Stack") ;

39 run("Invert", "stack");

40 getDimensions (w, h, channels, slices, frames);
41 Slicel = Cut2 +1 - Cutl;

4 Slice2 = slices - Cutl;

43 run("Duplicate...", "title=Stack-2 duplicate
<> range=&Slicel-&Slice2");

44 selectWindow ("Result of Stack-1");

45 run("Invert", "stack");

131
How to do the Deconstruction of Bioimage Analysis ...

46 imageCalculator ("Subtract create stack", "Stack-2","Result of
< Stack-1");
47

48 //=Component6=//Z projection
49 print ("Project and save SurfCutProj");
50 run("Z Project...", "projection=[Max Intensity]");

SurfCutCrudeExtractedWorkflow.ijm

Code available in the GitHub repository of this book.20

6.4.5 Step 5. Code Refactoring

In Step 4, we identified the basic components of the workflow in the code and extracted
a minimal version of the code. To simplify the later replacement of a component
in the code, we propose an optional step: refactoring the code. This step aims at
reorganizing the code in order to improve its design and re-usability without changing
its input or behavior. The refactored code will be constituted of several user-defined
functions, each corresponding to one component of the workflow. The replacement
of a component is then equivalent to replacing a function.

Here, we also suggest to split one of the components into two, as a part of the
refactoring process. Indeed, while some of the workflow components described in the
publication text (and identified in Step 1 and Step 2) correspond to single ImagelJ built-
in functions, Component 4, "Edge detection", and Component 5, "Masking", with
implementation inspired by the algorithm used in the software MorphoGraphX, cor-
respond to many lines of code directly coming from the macro recorder. To improve
the organization and re-usability of the code, here we suggest splitting the code corre-
sponding to Component 5, "Masking", in two components. The purpose of Compo-
nent 5 is to extract a layer of signal in the original stack, using the mask created in the
preceding "edge-detection” step. This works by successively shifting the mask down
and subtracting the signal twice: once above and once below the signal of interest. So,
in fact, it is not only a masking step, but also a Z-axis shifting of the mask preced-
ing the masking. Here, we propose to keep roughly the same process, but reorganize
the order in which the steps are taken and separate these two steps: to first create a
layer mask by two successive Z-axis shifts of the original mask and subtraction from
one-another (Component 5a), and then to do the masking itself (Component 5b).

Overall, such a substantial refactoring costs some time and brainpower, but can
strongly improve the workflow and ultimately simplify the replacement of compo-
nents or their parts, as we will see in the next step.

9 Exercise 5 ("Advanced Level" Only, Using the Original SurfCut Code)
1. Inspect each component extracted in Step 4, identify unnecessary or disorganized
lines of code and optimize the code of each component by simplifying, cutting,
and reorganising the code lines.

20 » https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutCrudeExtractedWorkflow.
jm.

https://github.com/NEUBIAS/neubias-springer-boo