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Abstract

Manufacturing or production systems, respectively, might become enormously complex involv-

ing a large number of objects, hundreds of processing stages, and many types of machinery

showing stochastic behaviour. The application of existing mathematical modelling methodolo-

gies to control production processes is complicated due to this complexity. There are many ways

for production optimization, but production control is one of the most important components

that allows decision-makers to get closer to the efficiency threshold.

Partial differential equations models are computationally feasible and express the whole be-

haviour of the dynamic system. Therefore, a continuum model based on first-order hyperbolic

partial differential equations coupled with ordinary differential equations is addressed to rep-

resent a network of production systems. Different interconnection topologies that correspond

to dispersing and merging networks are used to model the system network. Boundary optimal

control strategies for PDE constrained optimization are employed to solve demand tracking

and backlog control problems. The control strategies are based on discretize-then-optimize and

optimize-then-discretize mechanisms.

Furthermore, an extensive investigation of a novel approach from late lumping using an adjoint

method combined with model predictive control is derived to find the adjoint equations in

the case of a complex network. These equations are used to obtain the gradient information

of the cost functional as a powerful tool to handle the constraint optimization problems

by evaluating the necessary optimality conditions. Besides, the model predictive control can

tackle the control problems by suppressing disturbances with an appropriate prediction horizon.

In summary, the numerical results show that the control strategies are capable to solve the

control problems with satisfactory results. The results analysis reveals distinct characteristics

for each strategy. High precision and low computational load characterize the indirect method

of the optimal control. The direct approach of the optimal control stands out for its simplicity

and flexibility to any problem. Finally, the traditional MPC is characterised by its robustness

in terms of perturbation effects as well as the adjoint-based MPC. In addition the latter can

significantly reduce the computational load compared to the traditional MPC.
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Deutsche Kurzfassung

Fertigungs- bzw. Produktionssysteme können enorm komplex sein und eine große Anzahl von

Objekten, Hunderte von Verarbeitungsstufen und viele Arten von Maschinen mit stochasti-

schem Verhalten umfassen. Die Anwendung bestehender mathematischer Modellierungsme-

thoden zur Steuerung von Produktionsprozessen wird durch diese Komplexität erschwert. Es

gibt viele Möglichkeiten der Produktionsoptimierung, aber die Produktionssteuerung ist eine

der wichtigsten Komponenten, die es den Entscheidungsträgern ermöglicht, sich der Effizienz-

schwelle zu nähern.

Modelle mit partiellen Differentialgleichungen (pDGLn) sind rechnerisch machbar und drücken

das gesamte Verhalten des dynamischen Systems aus. Daher wird ein Kontinuumsmodell

auf der Grundlage hyperbolischer partieller Differentialgleichungen erster Ordnung, die mit

gewöhnlichen Differentialgleichungen gekoppelt sind, zur Darstellung eines Netzwerks von

Produktionsprozessen herangezogen. Zur Modellierung des Systemnetzwerks werden ver-

schiedene Verbindungstopologien verwendet, die sich ausbreitenden und zusammenführenden

Netzwerken entsprechen. Optimale Kontrollstrategien für die pDGL-beschränkte Optimierung

werden eingesetzt, um Probleme der Nachfragesteuerung und der Rückstandskontrolle zu lösen.

Die Kontrollstrategien basieren auf den Mechanismen
”
Diskretisieren-dann-Optimieren“und

”
Optimieren-dann-Diskretisieren“.

Darüber hinaus wird eine adjungierte Methode in Kombination mit modellprädiktiver Re-

gelung (MPC) abgeleitet und untersucht. Die adjungierten Gleichungen werden verwendet,

um die Gradienteninformation des Kostenfunktionals als ein leistungsfähiges Werkzeug für

die Behandlung von Optimierungsproblemen mit Einschränkungen zu erhalten, indem die er-

forderlichen Optimalitätsbedingungen bewertet werden. Außerdem kann die modellprädiktive

Regelung die Produktionskontrolle durch Unterdrückung von Störungen mit einem geeigneten

Vorhersagehorizont angehen.

Zusammenfassend zeigen die numerischen Ergebnisse, dass die Kontrollstrategien in der La-

ge sind, die Kontrollprobleme mit zufriedenstellenden Ergebnissen zu lösen. Die Analyse der

Ergebnisse zeigt deutliche Merkmale für jede Strategie. Hohe Genauigkeit und geringer Re-

chenaufwand kennzeichnen die indirekte Methode der optimalen Steuerung. Der direkte An-

satz der optimalen Steuerung zeichnet sich durch seine Einfachheit und Flexibilität für jedes
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Problem aus. Die traditionelle MPC schließlich zeichnet sich durch ihre Robustheit gegenüber

Störeffekten aus, ebenso wie die adjungiertenbasierte MPC. Darüber hinaus kann letztere den

Rechenaufwand im Vergleich zur traditionellen MPC erheblich reduzieren.
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Chapter 1

Introduction

Manufacturing is vital for the economic sector. For the time being, manufacturing brings wealth

to many countries. For this purpose, the development of the manufacturing industry has be-

come one of the remarkable governmental plans. Developing and developed countries recognize

these opportunities.

In recent years, providing superiority in the industrial field has demanded an efficient produc-

tion flow. There are numerous strategies for production optimization, but one of the essential

components that allow decision-makers to get closer to the efficiency threshold is production

control. Production control is a procedure in manufacturing that involves monitoring a produc-

tion operation and taking steps to control processes [9]. Demand planning, capacity planning,

scheduling, work centre assignment, inventory control, costing, and shop floor monitoring,

among other things, are all examples of this. The objective of developing an adequate produc-

tion control system is to improve workflow consistency, which can save money and time [10].

Here are a few aspects and advantages of establishing production control:

• Reducing Waste: Project managers are typically faced with the task of reducing waste.

The system may identify waste locations and create a strategy to reduce the amount

of waste produced through production control. Production control can also account for

downtime or maintenance, ensuring a consistent flow of output and removing any regions

of lost productivity, see, e.g., [21, 28].

• Capabilities for Making Decisions: Accurate data and information enable the process to

support optimal production scheduling and control decisions using an integrated system.

Project managers benefit from these decision-making capabilities because of the better

information in their supply chain and manufacturing process, see, e.g., [15, 71]

• Cost Minmization: One of, if not the most important, cost related to manufacturing

operations is operating cost. Running the facility, hiring staff, and other elements are

expensive, especially when production is not reaching its full potential. Production control

can effectively lower costs by enhancing inefficient sections of the operation. The analysis

of the main elements inside the process improves productivity, see, e.g., [67, 83, 79]



2 Introduction

In the increasingly competitive global marketplace, effective production management is becom-

ing crucial. As a result, enterprises are now focusing on improving production management

and treating its evaluation as a strategic decision. There have been several reports that many

enterprises have suffered significant losses as a result of production or supply chain issues.

Problematic stories include the following:

• In early 1997, twenty Toyota factories were forced to shut down due to a shortage of brake

fluid valves [47].

• Recently, many automotive industries worldwide have had to halt operations at their

assembly plants due to a shortage of semiconductors. The main cause of these shortages

was an unexpected spike in demand at automotive manufacturers that had recovered from

the Covid-19 pandemic shock, at the time when they had shortened semiconductor orders

due to lower demand for cars and trucks [51].

On the other hand, companies such as Dell Computers, Wal-Mart, and 7-Eleven Japan have

regularly surpassed the competition because of their superior production control abilities. All

these examples and many more show the importance of the effective production management.

Decision-makers face a challenging problem in managing production systems. Therefore, incor-

porating appropriate control mechanisms to manage resources may lead to profit maximization.

For the modelling of manufacturing systems in general three main approaches are available

for manufacturing systems: discrete event models, see, e.g., [61], fluid models, see, e.g., [82],

and queuing models, see, e.g., [84]. Typically, discrete event models are stochastic models to

describe the dynamics of manufacturing systems. However, the main drawback, as declared in

[33], is that it is difficult to design a controller in case of a large or complex system that con-

tains a large amount of information (states). Fluid models are flux oriented and are typically

represented by ordinary differential equations (ODEs). The main shortcoming of fluid models

is that these models do not express flow times which means that the flux can be produced using

zero inventory [106]. Besides, these models are not suitable for modeling the complete dynamic

behaviour (transient and steady state) of a manufacturing system. Queuing models show the

connection between throughput and flow time only in steady-state which is not applicable for

control theory.

At present, partial differential equations (PDEs) are considered one of the principal mathe-

matical modeling elements of many technical processes. In general, the success story of PDE

models entering domains of practical research is reinforced by vast progress, particularly in com-

putational mathematics. Meurer [73] summarizes some of the most common PDE applications

below:

• Chemical or biochemical reactors [52].
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• Thermal systems [7] or the reheating and cooling of metal slabs during the steel processing

to achieve desired metallurgical changes [101].

• Electrochemical systems such as fuel cells [97] and Li–ion or Li–polymer battery devices

for energy production and storage [40].

• Smart materials and vibratory systems [86].

• Flexible structures arising in aerospace and mechanical applications including novel adap-

tive or flapping wing structures [95].

• Fluid dynamical systems [1, 13], mixing processes and coupled fluid-structure interactions;

• Wave propagation in optical fibers [93] and traffic congestion [43].

• Energy production in fusion reactors [3, 98].

Recently, partial differential equations (PDEs) have been utilized for modeling of manufac-

turing systems. The main idea comes from the continuum theory of highway traffic [64, 88].

Distributed parameter system (DPS) models based on PDEs have been employed for, e.g.,

fabrication of semiconductors [42], supply chain management [26] or additive manufacturing

[56]. Unver et al. [102] applied diffusive PDE model using observer which achieved the data

from discrete event system to improve the behaviour of the model. The PDE models for

numerous recycled products in manufacturing systems are utilized [6], and these models are

modified in [30]. Hence, adopting PDE models with a proper controller design to address

new industrial applications remains a challenging research topic. The motivation for using

PDE is to design a high-performance controller to handle infinite-dimensional systems where

the lots are produced continuously on large-scale manufacturing systems. Also, PDE models

are computationally feasible and express the complete behaviour of the dynamic system by

incorporating the system characteristics of both throughputs and flow times. Therefore, PDE

models are adopted in the present work.

In the field of manufacturing, control is an important issue, which appears at various operation

levels. At the tool level, for example, control is necessary in order to assure a properly work-

ing tool that processes a product in the desired way, see, e.g. [38]. At an intermediate level,

sequencing and scheduling rules are used to decide which of the products that are waiting in

front of a machine, should be processed first, see, e.g. [34, 110]. At the top level of a man-

ufacturing system, the input of the system and the flow of the products through the system

are controlled in order to satisfy the customer demands, see, e.g. [41]. Modern control designs

have started with push and pull strategies like enterprise resource planning, just-in-time, and

material requirements planning, see, e.g. [107]. Also, advanced control techniques such as

supervisory control theory are used [20]. The main issue with this sort of control is that sev-

eral state transitions occur on the same event, resulting in rapid passing through intermediate
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stages, preventing actions from those states from being implemented, a phenomenon known as

the avalanche effect [87]. A single hyperbolic PDE with non-local velocity is modelled for a re-

entrant manufacturing system as well as the adjoint state approach was utilized to control the

system by La Marca et al. [60]. Coron et al. [23] analyzed the impact of optimal time control

in highly re-entrant manufacturing system as well as in semiconductor production. Armbruster

et al. [4] used conservation laws to determine the relationship between density and flow in

supply chain networks with a large number of lots. This model is improved by using ODEs

coupled to PDEs to reduce network bottlenecks by placing queues in front of each supplier [36].

Furthermore, [55] has applied mixed-integer programming to achieve optimal control for this

model in a microscopic view. In [44], kinetic equations based on PDEs are used to simulate a

production flow on an assembly line. Also, Boltzmann equations based feedback control laws

are used to allow supply chain models to deal with priorities [45]. The feedback stabilization

for a PDE-ODE production model using a Lyapunov argument was investigated by [12].

Model predictive control (MPC) is a key control concept for nonlinear finite-dimensional sys-

tems that relies on the solution of an optimal control problem on a receding horizon [74].

In systems governed by PDEs, the MPC techniques may be attractive. An approach based

on controllability properties is used to compute stability and performance bounds for uncon-

strained nonlinear MPC methods [39]. Shang et al. [92] used the method of characteristics to

design MPC for a class of hyperbolic PDEs. Recently, MPC has become a popular optimization

method in process control industries, e.g., cold sheet metal forming process [16], cutting process

[85], and wire arc additive manufacturing [108]. In [106], several PDE-models are validated in

order to choose the most appropriate one for designing MPC for a manufacturing flow line. The

core principle behind MPC is to compute an optimal control input by predicting the future

behaviour of the controlled system over a finite time horizon. MPC provides many advantages

including, the ability to handle nonlinear systems, control process according to a set of con-

straints, and management of multi-input-multi-output systems. The fundamental disadvantage

of the traditional MPC is its high computational cost [31]. Therefore, a novel developed MPC

design called adjoint-based MPC (AMPC) has been used to resolve this issue. Although the

design of AMPC provides insight into the system structure, it is proven a viable and effective

tool in many applications, see, e.g., [96] and [103]. The contribution of this work addresses the

challenges of how to handle the concept of the adjoint method to design a proper optimal con-

trol in the context of a network of manufacturing systems in terms of ODEs coupled to PDEs

to solve optimization problems for demand tracking and backlog. Furthermore, the concept is

extended for feedback control in a complex netwok of ODE-PDE using AMPC to obtain the

gradient information that has a vital role in significantly improving the computational load and

the performance. The core of this thesis and the main scientific effort developed therein are

the two published manuscripts, see, e.g., [80] has explored a demand tracking problem coupled

with PDE-ODE limitations and it is extended in [81] to examine a backlog problem employing

optimal control and traditional MPC.
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1.1 Goals of the thesis

In this work, the main objectives can be classified as follows:

• Investigate the well-known candidate PDE model to describe and analyse the flow line

for M/M/1 process in manufacturing system and validate it with discrete event system

by Arena [89] software.

• Design a proper boundary optimal control to address the optimization problems, so-

called demand tracking and backlog in terms of conservation laws coupled with ordinary

differential equations in different interconnection topologies that correspond to dispersing

and merging networks.

• To solve the aforementioned challenges in the complex network of the production sys-

tem, develop and enhance the adjoint-based model predictive control. Furthermore, the

performance is examined while the influence of disturbance is present.

1.2 Structure of the thesis

The framework of the thesis has been organized as follows, Chapter 2 shows preliminaries

and fundamentals of Little’s law and conservation laws. In the microscopic view, a transfor-

mation from a derived discrete event simulation to a continuum limit of conservation law is

also produced. In Chapter 3, an aggregated PDE model to describe M/M/1 process is de-

rived. The dynamic behaviour is examined and validated in different scenarios (ramp-up and

ramp-up-down). In addition, the PDEs are coupled to ODEs to create dispersing and merging

networks, which are two types of network topology. Chapter 4 states the optimal control

problems (OCPs) addressing demand tracking and backlog to minimize the instantaneous or

cumulative error between the desired demand and the system output, respectively. The backlog

problem, in particular, has a considerable impact during the operational time interval, result-

ing in either under- or over-production. The problems are optimized with open-loop optimal

control using direct and indirect methods, which are based on discretize-then-optimize and

optimize-then-discretize procedures. In Chapter 5, an advanced MPC mechanism is devel-

oped by incorporating the adjoint method in a complex network of manufacturing flow lines

which is represented by using PDEs and ODEs for solving OCPs. The optimality conditions

are formulated and efficient gradient information are derived. The PDEs are discretized using a

finite difference (FD) scheme in the spatial domain and the Euler method in the time domain.

Furthermore, the OCPs are successively solved by the forward shifting property of the AMPC.

In addition, the computational time and disturbance using AMPC are examined. Chapter 6

concludes the work and points out potential research activities for future work.
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Chapter 2

Theoretical Background of

Manufacturing Systems

Production processes are typically stochastic, with non-stationary stochastic input and output

processes that vary over time. This stochasticity reflects various random influences such as

random machine breakdown and the natural variation in task production links and material

flows within the system. A manufacturing system as production line where workstations are

connected serially is considered in this work. In this chapter, the essential principles for manu-

facturing system analysis are described before moving on to analytical models of manufacturing

systems. There are two primary principles, Little’s law and conservation laws. In general, some

of the models for manufacturing systems are based on hyperbolic conservation laws. The goal

of this chapter is not to provide a detailed theory of hyperbolic systems of conservation laws.

The extensive detail of this theory is found in [18, 19, 24, 48]. The other principle for describing

manufacturing systems is Little’s law [65], which is considered a core concept in queuing theory

[22]. The fundamental concepts will be introduced hereafter. Furthermore, a motivation exam-

ple demonstrates how the connection between discrete event systems (DESs) and PDEs can be

derived since these two models are popular in describing manufacturing systems as described

in the literature of the previous chapter.

2.1 Conservation of Mass

The motion of a mass flux is totally governed by conservation laws: mass conservation, mo-

mentum conservation, and energy conservation. These conservation laws can be expressed as

PDEs or integral equations. The mass conservation law is only taken into account in this work.

According to Eulerian approach, consider a control volume V in the space where the mass flux

occurs. The normal unit vector (outward-pointing) at each point on the surface is indicated as

~n, and the differential surface element is written as dS as shown in Fig. 2.1. As stated by the

law of conservation of mass, the change of mass in the volume must be entirely due to mass

inflow or outflow through V:
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dS ~n

V

Figure 2.1: Mass flux across a surface S with control volume V .

∂

∂t

∫
V

ρdV = −
∫
S

ρ~v ·~ndS, (2.1)

where ρ is the density and ~v is the velocity of the particle. Using the divergence theorem,

equation (2.1) can be written as

∂

∂t

∫
V

ρdV = −
∫
V

∇ · (ρ~v)dV. (2.2)

Hence, the equation (2.2) can be reformulated as∫
V

(
∂

∂t
ρ+∇ · (ρ~v)

)
dV = 0. (2.3)

Since it is true for any arbitrary volume, the conservation of mass is stated in term of PDE as

∂

∂t
ρ+∇ · (ρ~v) = 0 (2.4)

with ρ~v denoting the mass flux if V reduces to a line segment, then (2.4) reduces to

∂

∂t
ρ+

∂

∂x
(ρv) = 0, (2.5)

The mass conservation law (2.5) is defined in [5], to consider the PDE model for manufacturing

systems. The dependent variables are ρ and f = ρv, which describe density and flow, respec-

tively. These variables are influenced by the independent variables t and x, which describe time

and place, respectively.

2.2 Little’s law in Production Processes

Little’s law is the other production system principle. Significant parameters as shown in Fig.

2.2 describing the properties of a manufacturing system are flow time ϕ and throughput σ. Flow
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WIP

ϕ

σ

Figure 2.2: Little’s law for a pipeline manufacturing system.

time is the amount of time that a lot spends in a system from beginning to end. Throughput

is defined as the number of lots per unit time that depart the machine or the system. The sum

of lots that is present in the system at a definite moment is expressed by the work in process

WIP level. These parameters are mathematically represented by Little’s law for steady-state

WIP = ϕ̄ σ̄, (2.6)

which states that the mean work in process WIP of a system equals the product of the mean

flow time ϕ̄ and mean throughput σ̄ of that system. For example, a production system is

depicted as a pipeline in Fig. 2.2. The flow rate in [m3/s] multiplied the time it takes a fluid

element to travel through the pipe in [s] equals the total amount of fluid in the pipeline in

[m3]. Little’s law is generally valuable because it may be applied to a single station, a line, or

a complete system. The underlying relationship will maintain throughout time as long as the

three quantities are measured in consistent units [49].

To clarify the incorporation of the principles of the conservation of mass and Little’s law in

DES, a motivation example on a serial production line containing buffers and machines explores

the system parameters and the mathematical basis to describe the relation between PDE and

DES in a simple manufacting system.

2.3 Example on DES-PDE correlation

To analyse the manufacturing systems from the Lagrangian approach perspective, the ap-

proaches of Armbruster et al. [4] and d’Apice et al. [25] are summarized. The starting point

is to introduce some preliminary fundamentals of how DES work by taking into account the

time evolution of each lot from the system entrance to the exit. As shown in Fig. 2.3, a single

workstation consists of a single machine m with queue q. The arrival time amn for lot number

n is computed at the beginning of the workstation from the machine m. The total number
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of lots is denoted by N while the total number of workstations (machines) is identified by M

since each workstation contains a single machine. The release time bmn is the time when lot n

is delivered to the machine m. The leaving time emn is the time that a lot n departs from the

machine m and arrives at the machine m+1 at the same moment (transportation time between

two successive workstations assumed to be zero) as declared in Figure 2.4. Some hypotheses

are adopted as follows

mq

amn bmn emn

Figure 2.3: Construction of simple workstation.

1- The lots are always conserved i.e., their number is preserved inside the system.

2- Queues have an infinite buffer.

3- Initially no lots are in the system.

4- For the sake of simplicity, the lot is traveling downstream and passes each machine once,

i.e., no re-entrant system.

mq(m)

amn bmn emn

m+ 1q(m+ 1)

am+1
n bm+1

n em+1
n=

Figure 2.4: Production line with lot n moving through the system.

Each machine has its own configuration parameters, which are deterministic and fixed in this

context. These parameters are process rate µ(m) and process time T (m). Process rate (pro-

duction rate) is the maximum number of lots per unit of time that can be released by one

machine and is also known as maximum capacity. Process time is the required time to finish

one production step. The total number of lots that the machine m can handle is the product
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of process rate µ(m) and process time T (m). When the machine can handle only one lot per

unit of time one has µ(m) = 1
T (m)

. Herein, lot n enters the machine m due to the status of

the queue q(m) if it is empty or not. When it is empty, lot n goes directly to the front of the

queue, and then bmn = amn . On the other hand, the lot n to be in the front of queue needs to

wait until the previous lot n− 1 to finish by means of µ(m) to become bmn = bmn−1 + 1
µ(m)

. The

release time is governed by

bmn = max

{
amn , b

m
n−1 +

1

µ(m)

}
, (2.7)

lot n takes the processing time T (m) after it is fed into a machine m till to leave it, where the

leaving time is computed from

emn = bmn + T (m), (2.8)

after plugging equation (2.8) into (2.7) we obtain

emn = max

{
amn + T (m), emn−1 +

1

µ(m)

}
. (2.9)

Note that, the process time µ(m) is independent of time, which means that all lots have the

same process rate at machine m. In case of a stochastic system µ has to be time dependent

to express that each lot has its own processing rate. This microscopic approach expresses the

behaviour of each individual lot. Therefore, arrival times amn and departure or ending times emn
are the events of the interest.

For the serial production line, workstations are denoted W0,W1, ...,WM−1 for M workstations.

To elaborate a time recursion analysis, the notation for arrival time a and ending time e for lot

n in workstation or machine m are formulated to become τ(m,n) and τ(m+ 1, n), respectively.

The equation (2.9) can be expressed as

τ(m+ 1, n) = max

{
τ(m,n) + T (m), τ(m+ 1, n− 1) +

1

µ(m)

}
,

n ≥ 1, m = 0, 1, ...,M − 1. (2.10)

The above equation (2.10) is the recursion formula, and it needs both boundary τA(n) and

initial τ I(m) conditions for a well-defined recursion as follows

τA(n) = τ(0, n), n ≥ 0, τ I(m) = τ(m, 0), m = 0, 1, ...,M.

Obviously, the initial condition is the time that the lot n = 0 passing through the entire

system. The initial condition τ I(m+1) can be computed from the formula (2.10). Hence, these

conditions can be used to calculate

fA(τA(n)) =
1

τA(n+ 1)− τA(n)
, n ≥ 0. (2.11)
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τ I(m+ 1) = τ I(m) + T (m), m = 0, 1, ...,M. (2.12)

The influx fA can be calculated from the boundary condition at the beginning of the system.

It is the inverse of the inter arrival times at the machine m = 0.

By introducing Newell-Curves U(m, t), see, e.g., [78], also named N-Curves, which can be used

in equation (2.10) to determine the number of lots coming out from workstation Wm−1 to

workstation Wm at time t by

U(m, t) =
∞∑
n=0

H(t− τ(m,n)), t > 0, m = 0, 1, ...,M. (2.13)

Herein, H(t) is the Heaviside step function at time τ(m,n). The difference between two suc-

cessive N-Curves allows to compute the work in process WIP i.e.,

WIP (m, t) = U(m, t)− U(m+ 1, t), m = 0, 1, ...,M − 1. (2.14)

Equation (2.14) computes the number of lots within workstation Wm and the total work in

process TW in the entire system can be expressed by

TW (t) = U(0, t)− U(M, t). (2.15)

The flux or flow F (m, t) from workstation Wm−1 to workstation Wm is defined by considering

the rate of change of U(m, t), i.e.

F (m, t) =
d

dt
U(m, t) =

∞∑
n=0

δ(t− τ(m,n)), (2.16)

Herein δ( · ) denotes the Dirac delta function and the derivative of WIP with respect to t yields

d

dt
WIP (m, t) = F (m, t)− F (m+ 1, t), m = 0, 1, ...,M − 1. (2.17)

Hence the flux is expressed by a superposition of Dirac distributions. The discontinuous distri-

bution can be eliminated by using a continuous function instead of the dependence on individual

lots.

The following steps are taken towards a continuous formulation under the hypothesis of mass

conservation. The constitutive relation of the conservation law in (2.17) can be described in

terms of partial differential equations. The fluxes F (m, t) and work in processes WIP (m, t)

can be reconstructed in the term of a continuous constitutive relation f(ρ). The WIP (m, t)

can be replaced by ρ(x, t), which denotes the lot density in terms of the continuous variable

x which also known as the degree of completion (DOC). This independent variable has one

spatial dimension x0 = 0 < x1 < ... < xM = 1. Each machine is represented in one grid-point

xm, where lots enter the system at x0 = 0 while they leave at xM = 1. By applying F (xm, t)

instead of F (m, t) and multiplying it by arbitrary smooth test function Ψ(t) in integral or weak

form and using the shifting property of the Dirac function, the formula becomes∫ ∞
τI(m)

Ψ(t)F (xm, t)dt =
∞∑
n=0

∫ ∞
τI(m)

Ψ(t)δ(t− τ(m,n)) =
∞∑
n=0

Ψ(τ(m,n)), (2.18)
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where τ is monotonically increasing function due to τ I(m) < τ(m,n). This equation can be

rewritten in a form of Riemann sum∫ ∞
τI(m)

Ψ(t)F (xm, t)dt =
∞∑
n=0

Ψ(τ(m,n))f(xm, τ(m,n))∆nτ(m,n), (2.19)

where ∆nτ(m,n) describes the inter-arrival time between two successive lots in machine m and

it is the inverse of the flux as declared from (2.11), which is reformed by

f(xm, τ(m,n)) =
1

∆nτ(m,n)
, (2.20a)

∆nτ(m,n) = τ(m,n+ 1)− τ(m,n). (2.20b)

When ∆nτ(m,n) tends to zero equation (2.19) and the inter arrival times between lots

∆nτ(m,n) can be approximated as [4]∫ ∞
τI(m)

Ψ(t)F (xm, t)dt ≈
∫ ∞
τI(m)

Ψ(t)f(xm, t)dt, (2.21)

and the approximate flux f(xm, t) is given at x = xm and t = τ(m,n). Now assuming that the

arrival times can be expressed as a continuous distribution τ(x, y) as in [4] and the approximate

flux f from equation (2.20) can be re-written as follows

f(x, τ(x, y)) =
1

∂
∂y
τ(x, y)

. (2.22)

By referring to equation (2.14), which can be revised to become ρ(x, t) = − ∂
∂x
U(x, t). Herein

WIP is changed into the approximate density ρ(x, t). The assumption of mass conservation is

only satisfied for a specific choice of the density ρ, according to an analytical solution [25],

d

dx
f(x, τ(x, y)) =

∂

∂t
f(x, τ(x, y))

∂

∂x
τ(x, y) +

∂

∂x
f(x, τ(x, y)). (2.23)

By imposing that d
dx
f(x, τ(x, y))

!
= 0, equation (2.23) satisfies mass conservation law

∂

∂t
ρ(x, t) +

∂

∂x
f(x, t) = 0, (2.24)

after the comparison between (2.23) and (2.24), a specific density ρ becomes

ρ(x, τ(x, y)) = f(x, τ(x, y))
∂

∂x
τ(x, y), (2.25)

this equation (2.25) represents Little’s law, where ∂
∂x
τ is the flow time ϕ and it is the inverse

of the velocity v = 1
∂
∂x
τ
. By substituting (2.22) into (2.25), the density becomes

ρ(x, y) =
∂
∂x
τ(x, y)

∂
∂y
τ(x, y)

. (2.26)
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The approximate density ρ in (2.26) can also be written in discrete event form by

ρ(xm, τ(m+ 1, n)) =
∆mτ(m,n+ 1)

hm∆nτ(m+ 1, n)
, n ≥ 0, m = 0, 1, ...,M − 1 (2.27a)

∆mτ(m,n) = τ(m+ 1, n)− τ(m,n), hm = xm+1 − xm. (2.27b)

To properly work with integrals and derivatives, switching between continuous and discrete

variables and functions is required at this level. It is demonstrated that there is a constitutive

relationship between flux and density in terms of f = f(ρ) using formulas (2.20) and (2.27).

Theorem 1. Let the arrival times τ(n,m) satisfy the recursion (2.10) and let the approximate

density ρ and flux f be defined by (2.20), (2.27). Then the approximate flux can be written in

terms of the approximate density via a constitutive relation of the form

f(xm, τ(m,n)) = min

{
µ(m− 1),

hm−1ρ(xm−1, τ(m,n))

T (m− 1)

}
, n ≥ 0, m = 1, ...,M. (2.28)

For a proof consult [4]). The flux is produced as a minimum function in case of restricted flow

capacity µ(m) for each machine in production line as stated originally in recursion (2.10) from

a microscopic point of view. The constitutive relation f(ρ) is the most proper way to describe

the flux in terms of density to plug into the conservation law (2.24) as shown above. Simulation

of DES can be performed by ARENA software and used for the validation.

2.4 Summary

In this chapter, the principles of describing the production flow of the manufacturing systems

are reviewed. The relation between both DES and PDE are mathematically declared since

they are preferred for expressing manufacturing systems. The main focus is put on deriving

a conservation law from the time recursion formula to establish the constitutive relation f(ρ)

and to show how the transformation between continuous and discrete variables and functions

takes place. However, this example is appropriate for simple network with no consideration of

dispersing or merging topologies. In the upcoming chapter, a proposed PDE model to satisfy

the constitutive relation f(ρ) from the aggregation or macroscopic level is addressed. It is

convenient to investigate a sufficiently large number of lots as a continuum flow on either a

single flow line or manufacturing network.
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Chapter 3

Modelling of Manufacturing Systems

The connection to the mathematical models are used to track and measure existing processes

and to monitor the cost-effective distribution of parts or lots. According to the literature, the

manufacturing system can be analyzed from macroscopic perspective by considering factory

level description or microscopic perspective with more detailed analysis such as machine level.

Manufacturing models can generally be classified as discrete event or continuous differential

equations. The primary distinction between them lies under the description of lots as indi-

viduals (i.e., discrete time instances) or as a continuum flow. A manufacturing system can be

represented as a PDE model in which a flow line is composed of a large number of machines or

workstations. PDE models depict the entire dynamic behaviour of a system through the com-

bination of both throughput and flow time parameters. Therefore, PDE models are adopted in

this thesis.

In this chapter, the investigations are concentrated on a PDE model of a single flow line

manufacturing system that covers both ramp-up and ramp-down scenarios. After that, a val-

idation for the PDE model is carried out by Arena software. Finally, in the context of the

manufacturing network, the construction of conservation laws coupled with ODEs in different

interconnection topologies is illustrated.

3.1 Single Flow Line Model

In the previous chapter, the PDE model describes only one machine with a buffer. In this

chapter, the proposed PDE is utilized as an aggregated model, i.e., the PDE can represent

many machines connected serially to represent a production flow line.

The idea of approximating the behaviour of highway traffic to characterize its dynamics with

a PDE model arose from the inspired traffic theory. Because the cars and 1-dimensional con-

tinuum highway are regarded as products and manufacturing systems, these traffic models

demonstrate great consistency with manufacturing systems. Before the proposed PDE model
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is introduced, a general overview of the transport equation presented first. The simplest form

of conservation of mass (2.24) is given by the linear transport (advection) equation

∂

∂t
ζ(x, t) + a

∂

∂x
ζ(x, t) = 0, (3.1)

where ζ(x, t) is any arbitrary function and the speed is denoted by a, which is a constant value.

If a > 0, the function moves from left to right direction, whereas if a < 0, they moves from

right to left direction. This PDE is linear hyperbolic [46].

The proposed PDE of a flow line containing identical workstations works according to an

M/M/1 process, where the first M refers to the exponential distribution of the inter-arrival

time, the second M indicates the exponential distribution of the process time, and 1 refers to

a single lot being processed per machine. Each workstation consists of an infinite buffer length

and a machine. The system is connected serially, i.e. the line is used in assembly processes such

as in the automotive industry. Therefore, the system applies the first come, first out (FCFO)

policy. For the sake of simplicity, the other configurations are not considered, such as the trans-

portation time between two successive processes being omitted. Furthermore, the processes or

the machines are not prone to failure. Moreover, the flow is only in one direction where the

direction goes downstream from the lots that enter the system to leave it. Referrring to (2.24),

these variables depend on the independent coordinates t and x, which describe respectively

time and space. The space is defined as the position of a lot in the manufacturing system.

At the start of the system, x = 0, and at the end, x = 1. The equation (2.24) is considered

a first-order hyperbolic partial differential equation. The constitutive relation f(ρ(x, t)) can

be determined by the adiabatic equation, where the flow is the product of velocity v(x, t) and

density ρ(x, t)

f(x, t) = v(x, t)ρ(x, t). (3.2)

The flow time in steady-state ϕ = M
µ−u , where M is the number of machines, u is the inflow

and µ is the process rate. The velocity in steady-state is the inverse of the flow time. Hence,

the velocity v can be expressed as

v(x, t) =
µ− f(x, t)

M
=
µ− ρ(x, t)v(x, t)

M

µ = v(x, t)(M + ρ(x, t)).

The velocity is equivalent to

v(x, t) =
µ

M + ρ(x, t)
. (3.3)

Substitution of (3.3) and (3.2) in (2.24) yields

∂

∂t
ρ(x, t) = − ∂

∂x

(
µρ(x, t)

M + ρ(x, t)

)
= −

(
µM

(M + ρ(x, t))2

)
∂

∂x
ρ(x, t). (3.4)
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The initial condition (IC) and the boundary condition (BC) are given by

ρ(x, 0) = g(x),

ρ(0, t) =
Mu(t)

µ− u(t)
.

(3.5)

Also, an extra parameter is required in the description of the production system to measure

the degree of machine occupation. This parameter is called system utilization. The utilization

factor Γ = u
µ

is crucial to be between zero and one. So, the arrival rate must be less than the

process rate to avoid the buffer being too large and hence steady state is never reached. The

total work in process of the entire system TW can be written from the following expression

TW (t) =

∫ 1

0

ρ(x, t)dx. (3.6)

The analytical solution of the PDE model is found in Appendix C by using the method of

characteristics (MOC). The MOC, which is based on the implicit function theorem and the

existence-uniqueness theorem of ordinary differential equations, is typically used to demonstrate

the existence and uniqueness of solutions to first-order hyperbolic PDEs [17]. To analyze the

system behaviour, three variables are investigated. These variables are the mean flow time, the

mean throughput or flux and the mean total WIP. Two scenarios, i.e. the ramp-up and the

ramp-down, are considered for the PDE model. Ramp-up refers to an increase in production

rate from one steady-state to another, whereas ramp-down refers to a decrease in production

rate. These two realizations describe the complete dynamic behaviour of the system in both

transient and steady-state. The model is numerically solved with the full spatial-temporal

discretization. The simulations are carried out on the following setup: The total number of

identical machines is M = 10, and the mean process rate is µ = 2. The number of discretization

points in x direction is represented by nx = 1
∆x

+ 1, where ∆x is the spatial step size.

Ramp-up Scenario

In this simulation, the ramp-up of the system is examined when there are no lots in the system

initially, i.e., the initial density is zero ρ(x, 0) = 0. The spatial domain or place x is discretized

to be the step size ∆x equal to 0.1. The arrival rate (influx or inflow) u is chosen for two

realizations to be 1 lots/h and 1.5 lots/h or Γ = 50% and Γ = 75% respectively. The left

boundary condition ρ(0, t) from equation (3.5) is assigned as 10 and 30 for u = 1 lots/h and

1.5 lots/h, respectively. In the case of u = 1 lots/h, the time interval begins at 0 h and ends at

60 h, while in the case of u = 1.5 lots/h, it begins at 0 h and ends at 250 h.

In the case of u = 1 lots/h as shown from Fig. 3.1, the flow time ϕ, the throughput f(1, t), the

total work in process TW , and the density ρ are presented. The flow time can be computed
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Figure 3.1: Ramp-up simulation, u = 1 lots/h with nx = 11.

analytically from the inverse of the velocity ϕ = m+ρ
µ

. Therefore, when ρ is initially zero (no

lots in the system at t = 0), the first flow time ϕ1 is 5 h. In other words, the first lot is not

waiting in any queue in the system because there are no lots when the system starts working.

Therefore, the first lot is processed directly without the need to wait. For ten machines, the

total processing time is 5 h, indicating that the first lot spends 5 h in the system. That is

explained why the throughput f(1, t) starts producing lots from time around 5 h. When the

outflow f(1, t) reaches the steay-state, the corresponding ρ equals 10 and the flow time at

steady-state ϕs also reaches 10. Furthermore, the density ρ at the right boundary (x = 1), the

first lot leaves the system almost at t = 5 h (exactly at t = 4.6 h), as shown analytically above.

0

1

60

5

0.5 40

10

20
0 0

Figure 3.2: Density over space and time for ramp-up, u = 1 lots/h with nx = 11.

For the density, a typical outcome of the ramp-up scenario is provided in Fig. 3.2, which depicts

how the system behaves in the spatial and time domain. Also, the density can be viewed in

the (x, t)-plane, giving the impression that the system reaches a steady-state.

The system attributes throughput f(1, t), flow time ϕ, and total work in process TW are
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Figure 3.3: Ramp-up simulation for total WIP, flow time, throughput, and density where u = 1.5

lots/h with nx = 11.

displayed on the left in Fig. 3.3, while the density is shown on the right. In the case of u = 1.5,

after a 5-hour delay, the throughput begins to rise and reaches a steady-state of nearly 130

hours before being constant at 1.5 lot/h. When there are no lots in the system, the flow time

ϕ takes 5 h and needs 20 h when the density ρ reaches the new steady-state. Since there are

no lots in the system at t = 0, the total work in process TW starts from 0 to reach 30 lots per

unit of place at the new steady-state. The snapshots of the density along the system have been

taken at different time instances t ∈ {1.5, 3, 4.5, 6}. The density growth during the ramp-up

scenario is depicted in the diagram.
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Figure 3.4: Density over space and time for ramp-up, u = 1.5 lots/h with nx = 11.

Fig. 3.4 demonstrates how the density behaves in the (x, t)-domain and shows a typical outcome

of the ramp-up scenario. In addition, providing the impression that the system reaches all x

steady states in a large amount of time. In general, the higher arrival rate or utilization of

the system applied, the longer time it takes for all variables to reach to the steady state as
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obviously seen in the figures.

Ramp-down Scenario

In the ramp-down simulation, the flow starts from a high steady-state after that, the flow

decreases until it reaches the low steady-state. The simulation shows that the arrival rate u

starts from 1 lots/h and ends to 0.5 lots/h with nx equal to 11 where the step size ∆x is 0.1.

The initial density is 10 lots per unit of place for all x. The time starts from 0 h and ends at

40 h.
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Figure 3.5: Ramp-down simulation, u from 1 lots/h to 0.5 lots/h, nx = 11.

In Fig. 3.5 for the ramp-down scenario, the system variables throughput f(1, t), flow time ϕ,

and total work in process TW are shown on the left, whereas the density is shown on the right.

In the beginning, the system has already lots, i.e., the density ρ(x, 0) = 10, so the inflow needs

more time to show up at the outlet other than the ramp-up. In another way of describing,

incoming lots must wait for the existing lots to finish and exit the system before proceeding.

The required flow time ϕ is 10 h for the starting steady-state while the needed is 6.6667 h for

the ending steady-state, as seen in the figure, and the transient became steep, indicating a short

transition time. Similarly, the outflow f(1, t) starts at 1 lots/h and quickly decreases to 0.5

lots/h after the delay time. The total work in process TW decreases gradually until reaching

the steady-state at a value of 3.333. The density profile decreases from the inlet (left boundary)

to the outlet (right boundary) of the system during the time evolution, as shown in the (right)

figure. It starts as defined from the initial condition of the density ρ(x, 0) = 10 lots/unit

of space and ends at 3, 333 lots/unit of space. Figure 3.6 shows how the density behaves in

spatial-temporal domain as a result of the ramp-down scenario. Furthermore, providing the

sense that the system takes a short time to reach steady state in all x in contrast to the case

of the ramp-up.
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Figure 3.6: Density over space and time for ramp-down, from u = 1 lots/h to u = 0.5 lots/h with nx

= 11.

3.2 Validation of the PDE Model

Nonlinearity may cause a discrepancy in output measurements between models and real-world

systems unless they are well modelled [62]. For discrete-event modeling, there are a variety

of programs and simulation languages available, such as the χ simulation language, see, e.g.,

[105, 104], SimEvents in MATLAB, see, e.g., [37], Petri net, see, e.g., [27], or Arena, a

simulation program based on the computer simulation language SIMAN, see, e.g, [91]. The main

benefit of Arena is that it combines the simplicity of flowchart modules with the flexibility of

simulation languages, stochastic distributions, and even Microsoft’s event-driven programming

language Visual Basic for specific tasks such as retrieving data from external tools or documents

[2].

The validation is performed using (3.4) and (3.5) for the model. The goal of this section is to

validate the PDE model using the DES simulation via Arena. Specifically, the system bahviour

in each of the parameters: flow time ϕ, outflow and total work in process are compared to their

counterparts of the DES simulation. The system consists of 10 identical workstations in line.

In both ramp-up and ramp-up-down scenarios, the system is initially empty which implies that

the initial density equals zero in the PDE model and the queues contain no lots in the DES

case.

3.2.1 Validation for Ramp-up Scenario

The mean processing rate µ is 2 lots/h and the mean arrival rate u is changing due to the system

utilization Γ of 25%, 50% or 75%, which correspond to the mean arrival rates 0.5 lots/h, 1 lots/h
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or 1.5 lots/h, respectively. The number of replications R is 10,000 in DES given that the inter-

arrival times and processing times are exponentially distributed random variables. The PDE

models are solved numerically using fully discrete methods. The step size in space ∆x is 0.1.

The mean flow time ϕ in the PDE follows a trajectory similar to the one of the DES in the
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Figure 3.7: Outflow, flow time and total work in process with M = 10, u = 0.5 lots/h, µ = 2 lots/h

and Γ = 25%.

case of Γ = 25%, as shown in Fig. 3.7 although there is a variation. From the flow time figure,

DES and PDE curves do not fully match in the transition period. In addition, when compared

to the DES, the PDE model starts earlier. Both PDE and DES attain the target value in

steady-state. The figure of the mean throughput also demonstrates that the PDE model and

the DES generally follow a similar path with some differences. Compared to the DES model,

the PDE model starts quicker and reaches steady-state faster. The TW graph indicates that

the PDE and DES models are in satisfactory correlation at the start of the transition period.

Afterwards, they start to deviate and display the most deviance around t = 15 h then both

sides eventually converge to the proper steady-state value. In the case of Γ = 50%, the mean

throughput shows that the PDE model and the DES follow a comparable trajectory, with

obvious exceptions. The PDE model significantly starts faster and reaches steady-state earlier

than the DES model, as shown in Fig. 3.8. Although there is some variation, the PDE’s mean

flow time ϕ follows a similar behaviour as the DES. The PDE model and DES do not start at

the same time. Moreover, the DES takes longer time to match the PDE model. However, both

PDE and DES achieve the same value in the steady-state. At the beginning of the transition
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Figure 3.8: Outflow, flow time and total work in process with M = 10, u = 1 lots/h, µ = 2 lots/h and

Γ = 50%.

period, the TW graph shows that the PDE and DES models are in good agreement. After

that, they begin to deviate, with the most elevated deviation occurring around t = 22 h, until

gradually converging to the proper steady-state value on both sides.

When Γ = 75%, the mean outflow shows that the PDE model and the DES take a consistent

trajectory with a few exceptions, such as the PDE model starts faster and reaches steady-state

sooner than the DES model, as seen in Fig. 3.9. Despite notable deviations, the PDE’s mean

flow time ϕ follows a similar pattern to the DES. The range of both DES and PDE curves

begins from the value 5, but they are generally not matched in the transition time where the

PDE model converges to the steady-state faster than the DES. Again, both the PDE and DES

curves reach the same value in steady-state. Regarding the TW , the figure shows that the PDE

and DES models are in good accordance at the beginning of the transition period. Thereafter,

they start to vary, with the highest deviation about t = 80 h, before slowly converging to each

other.

From the above figures, it is noted that the transition time of the outflow increases as the

system utilization Γ increases. Moreover, the outflow of the PDE model is the most convergent

to the DES in the ramp-up scenario.
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Figure 3.9: Outflow, flow time and total work in process with M = 10, u = 1.5 lots/h, µ = 2 lots/h

and Γ = 75%.

3.2.2 Validation of Ramp-up-down Scenario

The combination of ramp-up and ramp-down results in a situation in which the inflow profile

has two phases: The first phase is a causal function that reaches an upper steady-state. In the

second phase, the arrival rate decreases in order to attain a lower steady-state. The system is

initially empty. The ramp-up part is done by λ = 1.5 lots/h, and regarding the ramp-down

part, two realizations are considered. These realizations are Γ = 25% and Γ = 50% which are

corresponding to u = 0.5 lots/h and u = 1 lots/h. The release time for ramp-down is t = 300 h.

The PDE model is also solved numerically with step size ∆x = 0.1. The inflow or the arrival

rate u(t) in the first realization is defined as

u(t) =

{
1.5, for 0 ≤ t < 300,

0.5, for t ≥ 300,
(3.7)

and for the second realization, the inflow u(t) reads

u(t) =

{
1.5, for 0 ≤ t < 300,

1.0, for t ≥ 300,
(3.8)

The maximum difference is detected at parameters of the mean flow time, the mean throughput,

and the total work in process inside the transient phase of reducing the arrival rate in the case
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Figure 3.10: Outflow, flow time and total work in process with M = 10, from u = 1.5 lots/h to u = 0.5

lots/h, µ = 2 lots/h and Γ = 25%.

of the first realization, as shown in Fig. 3.10. When the inflow is tuned to u(t) = 0.5 lots/h,

all plots in the DES show the beginning of a decrease before t = 300, and it takes them almost

145 h to reach the new steady state. The PDE model, on the other hand, diminishes at t = 300

h and achieves steady-state within 10 h. As a result, it is concluded that the behaviour of this

transient portion varies immensely while the DES model shows a low gradient until the system

is stable at the steady state. On the other hand, the PDE model reacts very quickly to the

changes of the arrival rate.

Inside the transient phase of reducing the arrival rate in the case of the second realization,

the highest difference is identified at parameters of the mean flow time, mean throughput, and

total work in process, as shown in Fig. 3.11. Both figures of flow time and outflow in the DES

show the beginning of a gradually fall at t = 300 h while the TW starts earlier when the inflow

is adjusted to u(t) = 1 lots/h, and it takes them almost 40 h to reach the new steady state.

The intersected lines of the ϕ and the outflow occurred at 15 h and 1.25 lots/h, respectively.

These values are located in the middle of the minimum and maximum values. Similarly to the

previous case, it is determined that the maximum difference exists within the transient of the

ramp-down part.

To sum up this section, the M/M/1 PDE behaves similarly to the DES. However, it has been

discovered that the applied PDE model inaccuracy is marginal if compared to the rapid response

in the transient period according to [106]. For the upcoming section, the M/M/1 PDE model
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Figure 3.11: Outflow, flow time and total work in process with M = 10, from u = 1.5 lots/h to u = 1

lots/h, µ = 2 lots/h and Γ = 50%.

(2.24), (3.2), (3.3) are utilized to define a network of production systems.

3.3 Manufacturing System Networks

In this part, the mathematical model of the system is presented in the context of the production

network. Conditions for each vertex of the network are provided to design either dispersing or

merging networks. The network is represented by a directed graph G(V , E), where V and E are

sets of vertices and arcs, respectively. Subsequently, buffer zones are represented by vertices

v ∈ V and flow lines are given by arcs e ∈ E . PDEs are used to model the arcs, while ODEs

are used to model the vertices. The two are coupled together in various network topologies.

3.3.1 Dispersing Network Design:

The system for the dispersing network consists of three arcs. Herein, arc e1 is the main flow line

while the others are sub sequencing flow lines. These arcs are connected at vertex v (see Fig.

3.12). Suppose that each of these flow lines are represented arcs e1, e2 and e3 with different

processing rates µe1 , µe2 and µe3 , respectively. The number of workstations is M e in each flow

line. The PDE model is assumed to have infinite buffer capacity which mean that the lots or



26 Modelling of Manufacturing systems

µe1

e1

v
µe2

µe3

e2

e3

f e1(1, t)

f e2(0, t)

f e3(0, t)

u(t)

y(t)

Figure 3.12: Configuration of dispersing network.

parts are preserved inside each flow line. They are stored in the buffer until their turn to come.

The system dynamics for each flow line e can be described as

∂

∂t
ρe(x, t) = − ∂

∂x
f e(ρe(x, t)) (3.9a)

f e(ρe(x, t)) = ρeve =
µeρe(x, t)

M e + ρe(x, t)
. (3.9b)

Herein, ρe, f e and ve are the density, the flux and the velocity of each arc e, respectively. The

buffer zone or the vertex v is the storage area between the end of one arc and the beginning

of the next. The storage area at vertex v is necessary to compensating for the discrepancy

in incoming flows from the predecessor arcs’ outlets and outgoing flows to the successor arcs.

Hence, e− ∈ δv− , where δv− is the set of arcs before the vertex v while e+ ∈ δv+ , where δv+ is

the set of arcs after the vertex v. The buffer starts storing lots if the incoming flow is greater

than the outgoing flow.

Remark 3.1. From the PDE (3.4), the density of lots ρ(x, t) is non-negative. The density

becomes negative when the inflow rate u(t) is greater than the processing rate µ or undefined

in case they are equal to each other in the boundary condition BC at (3.5). Therefore, it is

necessary to keep the inflow lower than the processing rate. The buffer zone is used to match

this property well in this case.

The rate of the change of the buffer load is the difference between the total incoming and

outgoing flows and it can be mathematically represented in general form by the ODE

dqv(t)

dt
=

∑
e−∈δv−

f e
−

(1, t)−
∑

e+∈δv+

f e
+

(0, t). (3.10)

Where qv(t) is the storage area or the buffer load. In the case of the dispersing netwrok as

shown in Fig. 3.12, only one arc and two sub arcs such as e− = {e1} and e+ = {e2, e3} hence,

(3.10) becomes

dqv(t)

dt
= f e1(1, t)−

∑
e+∈δv+

f e
+

(0, t). (3.11)
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Besides, the buffer load in (3.11) can be split into sub-buffers and written as

dqe2v (t)

dt
= Ae2v (t)f e1(1, t)− f e2(0, t), (3.12a)

dqe3v (t)

dt
= Ae3v (t)f e1(1, t)− f e3(0, t), (3.12b)

Here, Ae
+

v (t) ∈ [0, 1] are the fractions. The conservation property holds when the summation

of these flows must be equal to the outflow coming from e1. This can be achieved by giving

the fractions Ae
+

v (t) a certain value for each sub arc, so that
∑
Aev(t) = 1 are complementary

to each other. For example, if the fraction Ae2v (t) is 0.1 at arc e2, the fraction Ae3v at arc e3 is

the complement fraction, which is 0.9 from Ae3v (t) = 1−Ae2v (t). The outgoing flows f e
+

(0, t) is

computed from

f e
+

(0, t) = min

{
µe

+

,
qe

+

v

κ

}
, 0 < κ� 1. (3.13)

Remark 3.2. The proposed equation (3.13) is the modified method from [55], qe
+

v (t) is written

in this form due to (3.12). If the buffer is imposed as in (3.11) it can be denoted as qv(t). The

scaling factor κ is used to enhance the smoothness of the outgoing flow from the (vertex) buffer

zone. The outgoing flow from the vertex is the inflow of the successive flow line as well as the

incoming flow to the vertex is the outflow of the preceding flow line.

Example 3.1. Consider for the dispersing network, the system parameters with three arcs:

the number of machines in each arc is chosen as M e = 10 with the processing rates µe being

2, 3 and 4 in e1, e2 and e3 respectively. The smoothing factor is chosen to be κ = 0.2 and

Ae2v (t) = 0.7, Ae3v (t) = 0.3. The initial conditions for the density ρe(x, 0) and the buffer load

qe
+

v are zero which means there are no lots in the system at the initial time t0. The evolution

of the flux inside the network is depicted in Fig. 3.13. As illustrated in Fig 3.14, the inlet (the

blue line of the inflow profile) is applied at x = 0, and the flux grows in an arc e1 (top-left).

Both outflows of arcs e2 and e3 are the system outlets (the red lines). The lots are conserved

throughout the system, according to the results. This is verified by integrating both the input

and outflow of each arc in the time period with respect to time. The total number of lots at the

arc’s inlet, e1, is 50. These are divided into 35 and 15 lots, respectively, passing arcs e2 and e3.

3.3.2 Merging Network Design:

In the merging network, all incoming flows come from e1 and e2 are combined to enter the main

arc e3 as indicated in Fig. 3.15. The processing rates are µe1 , µe2 and µe3 for the corresponding

e1,e2 and e3, respectively. In the case of the merging condition, the variable Av(t) is not the

same as dispersing condition. The parameter Av(t) is defined as a fraction of the superimposed
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Figure 3.13: In the top, the flow goes through from area e1 to area e2. In the bottom, the flow

direction from area e1 to area e3.
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Figure 3.14: The flow state in each flow line e1, e2 and e3.

inflows from e1 and e2 of the merged arc e3. The buffer load qe3v (t) obtained from the ODE as

declared in [55], for this example becomes

dqe3v (t)

dt
= Ae3v (t)

∑
e−∈δv−

f e
−

(1, t)− f e3(0, t), (3.14a)

f e3(0, t) = min

{
µe3 ,

qe3v
κ

}
, 0 < κ� 1, (3.14b)
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Figure 3.15: Configuration of merging network.

where f e1(1, t) and f e2(1, t) are the outflows from the areas e1 and e2, respectively, and f e3(0, t)

is the inflow of the arc e3. When the buffer load is empty, the outgoing flow f e3(0, t) is either a

proportion of the sum of all incoming flows, as determined by Ae3v (t), or the maximum processing

capacity.

Example 3.2. Consider the system parameters for the merging network with three arcs: M e =

10 for the number of machines in each arc, with µe processing rates of 4, 3, and 2 in e1, e2, and

e3, respectively. The smoothing factor is chosen to be κ = 0.2 and Ae3v (t) = 0.8. There are no

lots in the system at the initial time t0 = 0 since the initial conditions for the density ρe(x, 0)

and the buffer load qe
+

v are zero.

The imposed boundary inflows (inlets) in e1 and e2 for the merging network are presented in

Fig. 3.16. Because of the processing rate, µe2, the outflow in arc e2 cannot reach the maximum

of the inflow level. The processing rate has a significant impact on system utilization Γe = ue

µe
.

The lower the utilization, the higher the processing rate. In the arc, the lots are still being

processed. The difference between the inflow and outflow in this case is not zero. The identical

situation occurs in arc e3. The total number of lots entering e3, for example, is 71, with 67

departing the arc at the outlet and 4 remaining processed. Except for inside the storage area

(vertex), conservation of mass law holds everywhere in the system. When the utilization Γe

becomes higher, the time to reach the steady-state is also longer. Therefore, when the inflow is

less than and nearly the processing rate, the flow does not reach to the steady state (as shown

in arc e3 of Fig. 3.17) otherwise, it is compensate through the profile by becoming more wider.
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Figure 3.16: In the top,the flow evolution path from area e1 to area e3. In the bottom, the flow

evolution path from area e2 to area e3.
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Figure 3.17: The flow state in each flow line e1, e2 and e3.

Remark 3.3. In the dispersing example, if these outgoing lots are combined, they would equal

the incoming lots at the vertex v. For example, the total number of lots at the inlet of the arc

e1 equals 50 lots. Due to Ae2v (t) = 0.7 and Ae3v (t) = 0.3, these are split into 35 and 15 lots for
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arcs e2 and e3, respectively. Therefore, the conservation of mass holds. The case is different

in the merging network example due to the fraction Av(t), which is a percentage of all sum of

incoming flows. Here, the total lots exiting from the arc e1 are 50 lots and the total lots leaving

the arc e2 are 59 lots. If these lots combined together, the total lots are 109 lots but only 80% of

them enter the the main flow in arc e3 because of Av(t) = 0.8. In other words, the parameter

Av(t) prevents part of the system’s lots from being utilized at the outgoing flow from the vertex

v (the inflow to the arc e3). As a result, the conservation of mass is restricted. Therefore, the

equations (3.14) can be reformulated or modified to be

dqe3v (t)

dt
=
∑

e−∈δv−

f e
−

(1, t)− f e3(0, t), (3.15)

f e3(0, t) = min

{
µe3Ae3v (t),

qe3v
κ

}
, 0 < κ� 1. (3.16)

Now, the inflow f e(0, t) is directly influenced by Av(t), which controls the utilization process of

the flow line. Hence, the all lots are conserved inside the whole network.

3.4 Summary

The proposed PDE model flow line for M/M/1 processes is investigated. The model is math-

ematically specified and the dynamic behaviour is analyzed through ramp-up and ramp-down

scenarios. It is also worth comparing the setup utilized for this study in the manufacturing

flow line, which is made up of the PDE model, with setting up a DES in Arena. The goal

is to appropriately describe transient and steady-state behaviours of a simple manufacturing

system which are considered acceptable results for PDE model validation. The extension of the

general models for other distributed processes can be found in Appendix C. In the context of

the network of the manufacturing systems, two different topologies are addressed. To construct

either dispersing or merging networks, conditions for each vertex of the network are defined. A

set of PDEs coupled to a set of ODEs is used to represent it mathematically. Arbitrary inflows

are used to show the influence of the flow evolution among the entire network.
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Chapter 4

Direct and Indirect Approaches for

Optimal Control

4.1 General Overview

The modelling of manufacturing systems was investigated in the previous chapter. Such mod-

elling is prerequisite for the control design. It is worth pointing out that DPS modelled by

PDEs have complex dynamic behaviour, which makes the control design more challenging.

Therefore, high performance for product quality and manufacturing efficiency, and advanced

control systems are required [77, 73]. Control of PDE systems can generally be classified in

terms of early and late lumping [75]. In the early lumping the governing PDEs are reduced

to a finite-dimensional description using appropriate approximation and model reduction tech-

niques. This contains techniques like finite difference or finite element [72], balanced truncation

and correct orthogonal decomposition [94], and variants like inertial manifold approaches [50].

Well–developed control design methods arising from linear and nonlinear finite-dimensional

control theory can be employed in this way. On the other hand, the early lumping technique

may lead to high and complex control structures without fully exploiting the physical mech-

anism of the system. Furthermore, the disregarded dynamics may lead to a deterioration of

the control performance [8]. Moreover, the validity of the finite-dimensional approximation,

and hence the determined controller, is frequently limited to a subset of the state space for

nonlinear distributed–parameter systems. As a result, the control action violates the model

validity domain and leads to a loss of robustness and unstable behavior of the system [53].

The late lumping strategy incorporates the distributed nature into the control design and sys-

tem analysis. It thus allows for a strict extension of finite-dimensional systems and control

theory to systems defined by PDEs, as shown in [100]. The semigroup approach enables a

theoretically powerful generalization of well–known control procedures for finite-dimensional

systems in the context of linear systems. Frequency domain techniques is introduced in [76].

Linear and nonlinear semigroup theories are utilized in addition to spectral analysis [70]. Struc-

tural assignment of eigenvalues utilizing certain spectral properties of the system operator are
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described in [109]. Also, many different methods are employed for numerous applications, see,

e.g., [66, 11, 58, 75].

In the context of the optimal control, it is used widely in various applications modelled by

PDEs, see, e.g., [68, 32, 90, 69, 63]. In this chapter, the goal is to design open-loop optimal

boundary control for manufacturing systems to handle demand tracking and backlog problems.

The optimal control approaches are examined based on conservation laws coupled with ODEs

in different interconnection topologies that correspond to dispersing and merging networks to

handle this challenge.

4.2 Background

In this section, some definitions of linear function spaces are covered, such as the properties of

Banach and Hilbert spaces that help to analyse and design the optimal control.

Definition 4.1 (Normed space, Banach space [57]). A normed space X is a vector space

with a norm defined on it, a Banach space is a complete normed space. Here a norm on a (real

or complex) vector space X is a real-valued function on X, whose value at an x ∈ X is denoted

by ‖ x ‖ and which has the properties

‖ x ‖ ≥ 0

‖ x ‖ = 0 ⇐⇒ x = 0

‖ αx ‖ = |α| ‖ x ‖
‖ x+ y ‖ ≤‖ x ‖ + ‖ y ‖

here x and y are arbitrary vectors in X and α is a (real or complex) scalar. A norm on X

defines a metric d on X which is given by

d(x, y) =‖ x− y ‖ ∀ x, y ∈ X

and is called the metric induced by the norm. The normed space just defined is denoted by

(X, ‖ · ‖) or simply by X.

Definition 4.2 (Inner product space, Hilbert space [57]). An inner product space (or

pre-Hilbert space) is a vector space X with an inner product defined on X. A Hilbert space is

a complete inner product space (complete in the metric defined by the inner product). Here, an

inner product on X is a mapping of X×X into the scalar field K of X; that is, with every pair

of vectors x and y there is associated a scalar which is written 〈 · , · 〉 and is called the inner

product of x and y, such that for all vectors x, y, z and scalars α ∈ K we have

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
〈x, x〉 ≥ 0

〈x, x〉 = 0 ⇐⇒ x = 0

〈αx, y〉 = α〈x, y〉, α ∈ R
〈x, y〉 = 〈y, x〉,
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where the bar in 〈y, x〉 refers to the complex conjugation. An inner product on X defines a

norm on X given by

‖ x ‖=
√
〈x, x〉

and a metric on X given by

d(x, y) =‖ x− y ‖=
√
〈x− y, x− y〉.

Hence inner product spaces are normed spaces, and Hilbert spaces are Banach spaces.

Definition 4.3 (Gateaux Derivative [35]). Let f be a function on an open subset U of a

Banach space X into the Banach space Y . We say f is Gateaux differentiable at x ∈ U if there

exists a bounded and linear operator δ : X → Y such that

lim
t→0

f(x+ th)− f(x)

t
= δf

for every h ∈ X. The operator δ is called the Gateaux derivative of f at x.

4.3 Demand Tracking Problem

The demand tracking problem represents the mismatch between the rate of the desired demand

and the outflow at the outlet of the system over a fixed time interval. The elimination of such

effect is required by control the flow on the network along a prescribed desired outflow trajectory.

The optimal control for the demand tracking is applied by considering the objective functional

min
ϑ
J1(ϑ) =

1

2

∫ tf

0

(f ∗(t)− y(t))2dt, (4.1)

where the decision variables supplied by u,Ae
+
v
v are then summarized by ϑ, f ∗(t) is the desired

trajectory. The outflow y(t) = f e3(1, t) is considered in the arc e3 for the dispersing network

as shown in Fig 3.12 or for the merging network as depicted in Fig 3.15. The optimization is

handled for the control interval between t = 0 and tf , where tf refers to the final time.

Remark 4.4. For the sake of simplicity, the control variable u(t) is picked at the inlet of the arc

e1 and the outflow y(t) that has to be controlled is chosen at the arc e3 regardless of the network

type dispersing or merging. For example, in the dispersing case, if the controlled outputs exist

at the arc e2 and e3, respectively, that leads to suboptimal solution.

The network models from the previous chapter are recalled that are required to be managed,
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and the system dynamics of the dispersing network are described as

∂

∂t
ρe(x, t) = − ∂

∂x
f e(x, t), (x, t) ∈ (0, 1]× (0,R+

0 ],

f e(x, t) = ρeve =
µeρe(x, t)

M e + ρe(x, t)
,

dqe
+

v (t)

dt
= Ae

+

v (t)f e
−

(1, t)− f e+(0, t),

ρe(x, 0) = 0, ∀x ∈ [0, 1],

R+
0 = {t ∈ R : t > 0},

f e
+

(0, t) = min

{
µe

+

,
qe

+

v (t)

κ

}
,

f e1(0, t) = u(t), ∀t ∈ [0,R+
0 ],

qev(0) = 0,
∑

e+∈{e2,e3}

Ae
+

v (t) = 1,

0 ≤ Ae
+

v (t) ≤ 1, 0 ≤ u(t) < µe1 ,

e− ∈ {e1} , ∀e+ ∈ {e2, e3} , ∀e ∈ E .

(4.2)

The main inflow u(t) at the inlet of arc e1 is the boundary condition and E is the set of the all

arcs. For the merging topology, the system dynamics are given as

∂

∂t
ρe(x, t) = − ∂

∂x
f e(x, t), (x, t) ∈ (0, 1]× (0,R+

0 ],

f e(x, t) = ρeve =
µeρe(x, t)

M e + ρe(x, t)
,

dqe
+

v (t)

dt
= Av(t)

∑
e−∈{e1,e2}

f e
−

(1, t)− f e+(0, t),

ρe(x, 0) = 0, ∀x ∈ [0, 1],

f e1(0, t) = u(t), f e2(0, t) = ũ(t),

f e
+

(0, t) = min

{
µe

+

,
qe

+

v (t)

κ

}
, ∀t ∈ [0,R+

0 ],

qe
+

v (0) = 0, R+
0 = {t ∈ R : t > 0},

0 ≤ u(t) < µe1 , 0 ≤ ũ(t) < µe2 , 0 ≤ Av(t) ≤ 1,

∀e− ∈ {e1, e2} , e+ ∈ {e3} , ∀e ∈ E .

(4.3)

Herein ũ is an arbitrary uncontrolled inflow at arc e2 and E denotes the set of the all arcs.

The OCP for the demand tracking is considered according to the dispersing or the merging

networks. Therefore, the dispersing optimization problem is structured as

min
ϑ
J1(ϑ), subject to (4.2). (4.4)
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The merging optimization problem is structured as

min
ϑ
J1(ϑ), subject to (4.3). (4.5)

different mechanisms are investigated to solve the above-mentioned problems by indirect and

direct methods.

4.3.1 Indirect Method

The approach is classified under late lumping. It is focused on the optimize-then-discretize

technique. Hence, the optimization is performed for the infinite-dimensional system. The

Lagrangian L is constructed according to the system network.

Dispersing Network

The general Lagrangian L considering the inequality constraints of problem (4.4) is defined as

follows

L =
1

2

∫ tf

0

(f ∗(t)− y(t))2dt

+
∑
e∈E

∫ tf

0

∫ 1

0

λe
(
∂

∂t
ρe +

∂

∂x
f e(x, t)

)
dxdt

+
∑

e+∈{e2,e3}

∫ tf

0

φe
+

v

(
q̇e

+

v − Ae3v f e
−

(1, t) + f e
+

(0, t)

)
dt

+ η1(u(t)− µe1) + η2(u(t)− 0)

+ η3(Ae3v (t)− 1) + η4(Ae3v (t)− 0).

}
(?)

(4.6)

The additional term (?) refers to the Lagrange multipliers with the inequality constraints.

In the rest of the thesis, for the sake of simplicity, this part is not considered analytically to

construct the adjoint equations to get the gradient information. After that, the numerical

optimizer is used to fulfil the inequality constraints.

The Lagrangian L of problem (4.4) is defined according to [99] gets

L1 =
1

2

∫ tf

0

(f ∗(t)− y(t))2dt

+
∑
e∈E

∫ tf

0

∫ 1

0

λe
(
∂

∂t
ρe +

∂

∂x
f e(x, t)

)
dxdt

+
∑

e+∈{e2,e3}

∫ tf

0

φe
+

v

(
q̇e

+

v − Ae3v f e
−

(1, t) + f e
+

(0, t)

)
dt.

(4.7)
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The functions λe(x, t) and φe
+

v (t) are the adjoint states for the equality constraints induced by

the PDEs on the arcs and the ODEs at the vertices, respectively. After using the integration

by parts the Lagrangian form of the network is obtained as follow

L1 =
1

2

∫ tf

0

(f ∗(t)− y(t))2dt

+
∑
e∈E

∫ 1

0

λe(x, tf )ρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe

∂t
ρedxdt+

∑
e∈E

∫ tf

0

λe(1, t)f e(1, t)dt

−
∑
e∈E

∫ tf

0

λe(0, t)f e(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe

∂x
f e(x, t)dxdt

+

 ∑
e+∈{e2,e3}

φe
+

v q
e+

v

t=tf
t=0

−
∑

e+∈{e2,e3}

∫ tf

0

φ̇e
+

v q
e+

v dt

+
∑

e+∈{e2,e3}

∫ tf

0

φe
+

v

(
f e

+

(0, t)− Ae+v f e
−

(1, t)

)
dt.

Using the relationships given by the system

u(t) = f e1(0, t),

y(t) = f e3(1, t),

the first-order optimality condition for the dispersing network is established by evaluating the

Gateaux derivative of L

δL1 = −
∫ tf

0

(f ∗(t)− y(t))δy(t)dt+
∑
e∈E

∫ 1

0

λe(x, tf )δρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe(x, t)

∂t
δρe(x, t)dxdt+

∫ tf

0

λe3(1, t)δy(t)dt

+

∫ tf

0

λe2(1, t)δf e2(1, t)dt−
∫ tf

0

λe2(0, t)δf e2(0, t)dt

+

∫ tf

0

λe1(1, t)δf e1(1, t)dt−
∫ tf

0

λe1(0, t)δudt

−
∫ tf

0

λe3(0, t)δf e3(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

(
µeM e

(M e + ρe(x, t))2

)
∂λe(x, t)

∂x
δρe(x, t)dxdt

−
∫ tf

0

φe3(t)f e
−

(1, t)δAe3v dt−
∫ tf

0

φe3(t)Ae3v (t)δf e1(1, t)dt

−
∫ tf

0

φe2(t)f e
−

(1, t)δAe2v dt−
∫ tf

0

φe2(t)Ae2v (t)δf e1(1, t)dt
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+

∫ tf

0

φe2(t)δf e2(0, t)dt+

∫ tf

0

φe3(t)δf e3(0, t)dt

+

 ∑
e+∈{e2,e3}

φe
+

v q
e+

v

t=tf
t=0

−
∑

e+∈{e2,e3}

∫ tf

0

φ̇e
+

v q
e+

v dt

= 0.

By substituting δ(1−Ae3v ) = δAe2v from the complementary equation, after that, the final step

is regrouping to obtain the adjoint equations in the form

∂

∂t
λe(x, t) = −

(
µeM e

(M e + ρe(x, t))2

)
∂

∂x
λe(x, t),

λe(x, tf ) = 0,

λe3(1, t) = f ∗(t)− y(t),

φe2v (t) = λe2(0, t),

φe3v (t) = λe3(0, t),

δuJ(t) = −λe1(0, t),
λe1(1, t) = λe2(0, t)Ae2v (t) + λe3(0, t)Ae3v (t),

δAe3
v
J(t) = (λe2(0, t)− λe3(0, t))f e1(1, t).

(4.8)

Herein, δAe3
v
J(t) referes to the variational derevative with respect to the fraction Ae3v . The

variational derivative with respect to the inflow u is denoted by δuJ(t), whereas the terminal

and boundary conditions are denoted by λe(x, tf ) and λe3(1, t), respectively.

Remark 4.5. The outflow at the arc e2 is arbitrary because the only interesting outflow from the

optimization problem that has to be tracked is the outflow of the arc e3. Therefore, the adjoint

state λe2(x, t) is considered to be zero to reduce the computational burden and the compact form

of the adjoint equation (4.8) is expressed as

∂

∂t
λe(x, t) = −

(
µeM e

(M e + ρe(x, t))2

)
∂

∂x
λe(x, t),

λe(x, tf ) = 0,

λe3(1, t) = f ∗(t)− y(t),

φe3v (t) = λe3(0, t),

δuJ(t) = −λe1(0, t),
λe1(1, t) = λe3(0, t)Ae3v (t),

δAe3
v
J(t) = −λe3(0, t)f e1(1, t).

(4.9)
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Merging Network

The Lagrangian L of problem (4.5) is obtained as

L2 =
1

2

∫ tf

0

(f ∗(t)− y(t))2dt

+
∑
e∈E

∫ tf

0

∫ 1

0

λe
(
∂

∂t
ρe +

∂

∂x
f e(x, t)

)
dxdt

+

∫ tf

0

φe
+

v

(
q̇e

+

v − Av
∑

e−∈{e1,e2}

f e
−

(1, t) + f e
+

(0, t)

)
dt.

(4.10)

After applying integration by parts one obtains

L2 =
1

2

∫ tf

0

(f ∗(t)− y(t))2dt

+
∑
e∈E

∫ 1

0

λe(x, tf )ρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe

∂t
ρedxdt+

∑
e∈E

∫ tf

0

λe(1, t)f e(1, t)dt

−
∑
e∈E

∫ tf

0

λe(0, t)f e(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe

∂x
f e(x, t)dxdt

+
[
φe

+

v q
e+

v

]t=tf
t=0
−
∫ tf

0

φ̇e
+

v q
e+

v dt

+

∫ tf

0

φe
+

v

(
f e

+

(0, t)− Av(t)
∑

e−∈{e1,e2}

f e
−

(1, t)

)
dt.

By using the relationships provided by the system

u(t) = f e1(0, t),

y(t) = f e3(1, t),

the Gateaux derivative of L reads

δL2 = −
∫ tf

0

(f ∗(t)− y(t))δy(t)dt+
∑
e∈E

∫ 1

0

λe(x, tf )δρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe(x, t)

∂t
δρe(x, t)dxdt+

∫ tf

0

λe3(1, t)δy(t)dt

+

∫ tf

0

λe1(1, t)δf e1(1, t)dt−
∫ tf

0

λe1(0, t)δudt

+

∫ tf

0

λe2(1, t)δf e2(1, t)dt−
∫ tf

0

λe2(0, t)δf e2(0, t)dt

−
∫ tf

0

λe3(0, t)δf e3(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

(
µeM e

(M e + ρe(x, t))2

)
∂λe(x, t)

∂x
δρe(x, t)dxdt
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−
∫ tf

0

φe3(t)

(
f e1(1, t) + f e2(1, t)

)
δAv(t)dt−

∫ tf

0

φe3(t)Av(t)δf
e1(1, t)dt

+

∫ tf

0

φe3(t)δf e3(0, t)dt−
∫ tf

0

φe3(t)Av(t)δf
e2(1, t)dt

= 0.

The final step is regrouping to obtain the adjoint equations in the form

∂

∂t
λe(x, t) = −

(
µeM e

(M e + ρe(x, t))2

)
∂

∂x
λe(x, t),

λe(x, tf ) = 0,

λe3(1, t) = f ∗(t)− y(t),

φe3v (t) = λe3(0, t),

δuJ(t) = −λe1(0, t),
λe1(1, t) = Av(t)λ

e3(0, t),

δAvJ(t) = −λe3(0, t)(f e1(1, t) + f e2(1, t)).

(4.11)

Herein, δAvJ(t) referes to the variational derivative with respect to the fraction Av.

4.3.1.1 Discretization Approach for the Numerical Solution

For the discretization, an upwind scheme is used for spatial discretization, and the explicit

Euler method is applied for time discretization. Let ∆x = 1/M e and ∆t denote the spatial and

time step where ∆t and ∆x are connected by the Courant-Friedrichs-Lewy condition CFL =
V e
m∆t
∆x
≤ 1 for numerical stability purposes, where V e

m = µe

Me+ρmin
is the maximum speed of the arc

e. In addition introduce ρei,j = ρe(i∆x, j∆t), f ei,j = f e(i∆x, j∆t), qe
+

v,j = qe
+

v (j∆t), yj = y(j∆t),

uj = u(j∆t), Av,j = Av(j∆t) for i = 1, 2, . . . ,M e, j = 0, 1, . . . , N . The system dynamics (4.2)

for the dispersing network are discretized as

ρei,j+1 = ρei,j −
∆t

∆x
(f ei,j − f ei−1,j),

qe2v,j+1 = qe2v,j + ∆t

(
Ae2v,jf

e1
Me,j − f

e2
0,j

)
,

qe3v,j+1 = qe3v,j + ∆t

(
(1− Ae2v,j)f

e1
Me,j − f

e3
0,j

)
,

f e
+

0,j = min

{
µe

+

,
qe

+

v,j

κ

}
,

ρei,0 = 0, qe
+

v,0 = 0, f e10,j = uj

e+ ∈ {e2, e3} , 0 ≤ uj < µe1 , 0 ≤ Ae
+

v,j ≤ 1,

(4.12)
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In the case of the merging network, the PDEs/ODE in (4.3) are discretized in the form

ρei,j+1 = ρei,j −
∆t

∆x
(f ei,j − f ei−1,j),

qe
+

v,j+1 = qe
+

v,j + ∆t

(
Av,j

∑
e−∈{e1,e2}

f e
−

Me,j − f e
+

0,j

)
,

f e
+

0,j = min

{
µe

+

,
qe

+

v,j

κ

}
,

ρei,0 = 0, qe
+

v,0 = 0, f e10,j = uj

e+ ∈ {e3} , 0 ≤ uj < µe1 , 0 ≤ Av,j ≤ 1.

(4.13)

The adjoint equations are discretized for i = M e− 1, . . . , 2, 1, j = N + 1, . . . , 2, 1, according to

the discretized form of (4.9) in the dispersing network becomes

λei,j−1 = λei,j −
∆t

∆x

(
µeM e

(M e + ρei,j)
2

)
(λei+1,j − λei,j),

λei,N = 0,

λe3Me,j = f ∗j − yj,
φe3v,j = λe30,j,

δuJj = −λe10,j,

λe1Me,j = λe30,jA
e3
v,j,

δAe3
v
Jj = −λe30,jf

e1
Me,j.

(4.14)

While for the merging network (4.11) implies

λei,j−1 = λei,j −
∆t

∆x

(
µeM e

(M e + ρei,j)
2

)
(λei+1,j − λei,j),

λei,N = 0,

λe3Me,j = f ∗j − yj,
φe3v,j = λe30,j,

δuJj = −λe10,j,

λe1Me,j = Av,jλ
e3
0,j,

δAvJj = −λe30,j(f
e1
Me,j + f e2Me,j).

(4.15)

The discretized state equations are solved forward in time while the discretized adjoint equa-

tions are solved backward in time. The gradients are then computed from (4.14) or (4.15),

respectively, and are combined with the SQP solver in the MATLAB function fmincon to find

local minimizers ϑ. For the inequality constrainsts 0 ≤ uj < µe1 and 0 ≤ Ae3v,j ≤ 1 for the

dispersing network or 0 ≤ uj < µe1 and 0 ≤ Av,j ≤ 1 for the merging network, the corre-

sponding optimal values can be obtained by Pontryagin’s maximum principle [29]. However, in

addition to the substantial analytical effort required to obtain the gradient information by im-

posing these constraints is tedious work. Accordingly, these inequality constraints are handled

numerically by the function fmincon.
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4.3.2 Direct Method

Alternatively, the method is based on discretize-then-optimize mechanism and is classified under

the early lumping approach for PDE control design. In the direct approach, the optimization

problem (4.4) for the dispersing network or (4.5) for the merging network are fully discretized

to obtain

min
ϑ
J1d(ϑ) =

1

2

N∑
j=0

(f ∗j − yj)2∆t, (4.16)

subject to (4.12) or (4.13) in the case of the dispersing network or the case of the merging

network, repectively. After the discretization is performed by the upwind finite difference

scheme for the PDEs and explicit Euler for the ODEs, the problem is generally formulated as

a static optimization problem by

min
ϑ
J1d(ϑ)

subject to

gj(ϑ) = 0, j = 1, 2, · · · , r,
hl(ϑ) ≤ 0, l = 1, 2, · · · , p,

(4.17)

where gj(ϑ) are the equality constraints and hl(ϑ) denote for the inequality constraints. The

Karush-Kuhn-Tucker (KKT) conditions must be satisfied in order to solve the optimal con-

trol problem in (4.17). The optimizers are obtained by satisfying KKT first-order necessary

optimality conditions [14], which is defined as follows

∇J1d(ϑ
∗) +

r∑
j=1

λj∇gj(ϑ∗) +

p∑
l=1

Λl∇hl(ϑ∗) = 0

gj(ϑ
∗) = 0, j = 1, 2, · · · , r,

hl(ϑ
∗) ≤ 0, l = 1, 2, · · · , p,
Λl ≥ 0, l = 1, 2, · · · , p,

Λlhl(ϑ
∗) = 0, l = 1, 2, · · · , p.

(4.18)

Herein, the optimizers are defined by ϑ∗ besides λj, and Λl are the Lagrange multipliers for

equality and inequality constraints, respectively. The optimization problem is solved using

sequential quadratic programming (SQP) in fmincon provided by MATLAB. The control vari-

ables ϑ are needed as an initial guess to solve the problem. In each iteration, the gradient is

updated by finding a new step length and search direction.
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4.4 Backlog Problem

The backlog problem represents the mismatch between the total number of lots at the outlet

and the desired accumulation of lots over a fixed time interval. The backlog is categorized into

two types: (i) positive backlog (under-production), (ii) negative backlog (over-production). The

backlog B(t) is mathematically expressed as

B(t) =

∫ t

0

(f ∗(τ)− y(τ))dτ, ∀t ∈ [0, tf ], (4.19)

where f ∗ is the desired reference and y is the outflow at a certain time τ of the outlet. Note

that the optimal control applies both stage cost and terminal cost by considering the objective

functional

min
ϑ
J2(ϑ) =

1

2

∫ tf

0

(B(t))2dt+
1

2
(B(tf ))

2, (4.20)

where the decision variables supplied by u,Av are then aggregated by ϑ. To this end, the OCP

for the backlog is considered according to the dispersing or the merging networks. Therefore,

the dispersing optimization problem is structured as

min
ϑ
J2(ϑ), subject to (4.2). (4.21)

The merging optimization problem is structured as

min
ϑ
J2(ϑ), subject to (4.3). (4.22)

4.4.1 Indirect Method

In this approach, the optimization is performed for the infinite-dimensional system. The La-

grangian L is determined based on the type of the network, either dispersing or merging.

Dispersing Network

The Lagrangian L of problem (4.21) is obtained as

L3 =
1

2

∫ tf

0

(B(t))2dt+
1

2
(B(tf ))

2

+
∑
e∈E

∫ tf

0

∫ 1

0

λe
(
∂

∂t
ρe +

∂

∂x
f e(x, t)

)
dxdt

+
∑

e+∈{e2,e3}

∫ tf

0

φe
+

v

(
q̇e

+

v − Ae
+

v f
e−(1, t) + f e

+

(0, t)

)
dt.

(4.23)
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The functions λe(x, t) and φe
+

v (t) are the adjoint states for the equality constraints induced by

the PDEs on the arcs and the ODEs at the vertices, respectively. By using the integration by

parts one can get

L3 =
1

2

∫ tf

0

(B(t))2dt+
1

2
(B(tf ))

2

+
∑
e∈E

∫ 1

0

λe(x, tf )ρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe

∂t
ρedxdt+

∑
e∈E

∫ tf

0

λe(1, t)f e(1, t)dt

−
∑
e∈E

∫ tf

0

λe(0, t)f e(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe

∂x
f e(x, t)dxdt

+

 ∑
e+∈{e2,e3}

φe
+

v q
e+

v

t=tf
t=0

−
∑

e+∈{e2,e3}

∫ tf

0

φ̇e
+

v q
e+

v dt

+
∑

e+∈{e2,e3}

∫ tf

0

φe
+

v

(
f e

+

(0, t)− Ae+v f e
−

(1, t)

)
dt.

Employing the relations provided by the system

u(t) = f e1(0, t),

y(t) = f e3(1, t).

The Gateaux derivative of L is used to determine the first-order optimality condition

δL3 = −
∫ tf

0

B(t)

∫ t

0

δy(τ)dτdt+B(tf )δB(tf ) +
∑
e∈E

∫ 1

0

λe(x, tf )δρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe(x, t)

∂t
δρe(x, t)dxdt+

∫ tf

0

λe3(1, t)δy(t)dt

+

∫ tf

0

λe2(1, t)δf e2(1, t)dt−
∫ tf

0

λe2(0, t)δf e2(0, t)dt

+

∫ tf

0

λe1(1, t)δf e1(1, t)dt−
∫ tf

0

λe1(0, t)δudt

−
∫ tf

0

λe3(0, t)δf e3(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

(
µeM e

(M e + ρe(x, t))2

)
∂λe(x, t)

∂x
δρe(x, t)dxdt

−
∫ tf

0

φe3(t)f e
−

(1, t)δAe3v dt−
∫ tf

0

φe3(t)Ae3v (t)δf e
−

(1, t)dt

−
∫ tf

0

φe2(t)f e
−

(1, t)δAe2v dt−
∫ tf

0

φe2(t)Ae2v (t)δf e
−

(1, t)dt
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+

∫ tf

0

φe2(t)δf e2(0, t)dt+

∫ tf

0

φe3(t)δf e3(0, t)dt

+

 ∑
e+∈{e2,e3}

φe
+

v q
e+

v

t=tf
t=0

−
∑

e+∈{e2,e3}

∫ tf

0

φ̇e
+

v q
e+

v dt

= 0.

By substituting

δy(t) = δd(t− γ), γ ∈ (0, tf ),

δy(τ) = δd(τ − γ),

δ(1− Ae3v ) = δAe2v ,

into the variational derivative, where δd is similar to a delta function. The variational derivative

becomes

δL3 = −
∫ tf

0

B(r)

∫ r

0

δd(τ − γ)dτdr −B(tf )

∫ tf

0

δd(t− γ)dt+
∑
e∈E

∫ 1

0

λe(x, tf )δρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe(x, t)

∂t
δρe(x, t)dxdt+

∫ tf

0

λe3(1, t)δd(t− γ)dt

+

∫ tf

0

λe2(1, t)δf e2(1, t)dt−
∫ tf

0

λe2(0, t)δf e2(0, t)dt

+

∫ tf

0

λe1(1, t)δf e
−

(1, t)dt−
∫ tf

0

λe1(0, t)δudt

−
∫ tf

0

λe3(0, t)δf e3(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

(
µeM e

(M e + ρe(x, t))2

)
∂λe(x, t)

∂x
δρe(x, t)dxdt

−
∫ tf

0

φe3(t)f e
−

(1, t)δAe3v dt−
∫ tf

0

φe3(t)Ae3v (t)δf e
−

(1, t)dt

+

∫ tf

0

φe2(t)f e
−

(1, t)δAe3v dt−
∫ tf

0

φe2(t)Ae2v (t)δf e
−

(1, t)dt

+

∫ tf

0

φe2(t)δf e2(0, t)dt+

∫ tf

0

φe3(t)δf e3(0, t)dt

+

 ∑
e+∈{e2,e3}

φe
+

v q
e+

v

t=tf
t=0

−
∑

e+∈{e2,e3}

∫ tf

0

φ̇e
+

v q
e+

v dt

= 0.

From the shifting property of the delta function, one reads

λe3(1, γ) =

∫ tf

0

λe3(1, t)δd(t− γ)dt,∫ tf

γ

B(r)dr =

∫ tf

0

B(r)

∫ r

0

δd(τ − γ)dτdr.
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Where γ ∈ (0, tf ) is any value in the domain t and it can be replaced by t and the final step is

regrouping and gets the adjoint equations as follows

∂

∂t
λe(x, t) = −

(
µeM e

(M e + ρe(x, t))2

)
∂

∂x
λe(x, t),

λe(x, tf ) = 0, ∀e ∈ E ,

λe3(1, t) =

∫ tf

t

B(r)dr +B(tf ),

φe3v (t) = λe3(0, t),

δuJ(t) = −λe1(0, t),
λe1(1, t) = λe3(0, t)Ae3v (t),

δAe3
v
J(t) = −λe3(0, t)f e1(1, t).

(4.24)

Herein δuJ(t) and δAe3
v
J(t) refer to the variational derivative with respect to inflow u and

Ae3v , respectively. Besides, λe(x, tf ) and λe3(1, t) are the terminal conditions and the boundary

condition, respectively.

Merging Network

The form of L of problem (4.22) is obtained as

L4 =
1

2

∫ tf

0

(B(t))2dt+
1

2
(B(tf ))

2

+
∑
e∈E

∫ tf

0

∫ 1

0

λe
(
∂

∂t
ρe +

∂

∂x
f e(x, t)

)
dxdt

+

∫ tf

0

φe
+

v

(
q̇e

+

v − Av(t)
∑

e−∈{e1,e2}

f e
−

(1, t) + f e
+

(0, t)

)
dt.

(4.25)

By using the integration by parts one obtains

L4 =
1

2

∫ tf

0

(B(t))2dt+
1

2
(B(tf ))

2

+
∑
e∈E

∫ 1

0

λe(x, tf )ρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe

∂t
ρedxdt+

∑
e∈E

∫ tf

0

λe(1, t)f e(1, t)dt

−
∑
e∈E

∫ tf

0

λe(0, t)f e(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe

∂x
f e(x, t)dxdt

+
[
φe

+

v q
e+

v

]t=tf
t=0
−
∫ tf

0

φ̇e
+

v q
e+

v dt
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+

∫ tf

0

φe
+

v

(
f e

+

(0, t)− Av(t)
∑

e−∈{e1,e2}

f e
−

(1, t)

)
dt.

By using the relationships provided by the system

u(t) = f e1(0, t),

y(t) = f e3(1, t).

The Gateaux derivative of L reads

δL4 = −
∫ tf

0

B(t)

∫ t

0

δy(τ)dτdt+B(tf )δB(tf ) +
∑
e∈E

∫ 1

0

λe(x, tf )δρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe(x, t)

∂t
δρe(x, t)dxdt+

∫ tf

0

λe3(1, t)δy(t)dt

+

∫ tf

0

λe1(1, t)δf e1(1, t)dt−
∫ tf

0

λe1(0, t)δudt

+

∫ tf

0

λe2(1, t)δf e2(1, t)dt−
∫ tf

0

λe2(0, t)δf e2(0, t)dt

−
∫ tf

0

λe3(0, t)δf e3(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

(
µeM e

(M e + ρe(x, t))2

)
∂λe(x, t)

∂x
δρe(x, t)dxdt

−
∫ tf

0

φe3(t)

(
f e1(1, t) + f e2(1, t)

)
δAv(t)dt−

∫ tf

0

φe3(t)Av(t)δf
e1(1, t)dt

+

∫ tf

0

φe3(t)δf e3(0, t)dt−
∫ tf

0

φe3(t)Av(t)δf
e2(1, t)dt

= 0.

By substituting

δy(t) = δd(t− γ), γ ∈ (0, tf ),

δy(τ) = δd(τ − γ),

into the variational derivative. The variational derivative reads

δL4 = −
∫ tf

0

B(r)

∫ r

0

δd(τ − γ)dτdr −B(tf )

∫ tf

0

δd(t− γ)dt+
∑
e∈E

∫ 1

0

λe(x, tf )δρ
e(x, tf )dx

−
∑
e∈E

∫ tf

0

∫ 1

0

∂λe(x, t)

∂t
δρe(x, t)dxdt+

∫ tf

0

λe3(1, t)δd(t− γ)dt

+

∫ tf

0

λe1(1, t)δf e
−

(1, t)dt−
∫ tf

0

λe1(0, t)δudt
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−
∫ tf

0

λe3(0, t)δf e3(0, t)dt−
∑
e∈E

∫ tf

0

∫ 1

0

(
µeM e

(M e + ρe(x, t))2

)
∂λe(x, t)

∂x
δρe(x, t)dxdt

−
∫ tf

0

φe3(t)

(
f e1(1, t) + f e2(1, t)

)
δAv(t)dt−

∫ tf

0

φe3(t)Av(t)δf
e1(1, t)dt

+

∫ tf

0

φe3(t)δf e3(0, t)dt

= 0.

By using the shifting property of the delta function, one can get

λe3(1, γ) =

∫ tf

0

λe3(1, t)δd(t− γ)dt,∫ tf

γ

B(r)dr =

∫ tf

0

B(r)

∫ r

0

δd(τ − γ)dτdr.

The adoint equations is obtained after regrouping to become

∂

∂t
λe(x, t) = −

(
µeM e

(M e + ρe(x, t))2

)
∂

∂x
λe(x, t),

λe(x, tf ) = 0, ∀e ∈ E ,

λe3(1, t) =

∫ tf

t

B(r)dr +B(tf ),

φe3v (t) = λe3(0, t),

δuJ(t) = −λe1(0, t),
λe1(1, t) = Av(t)λ

e3(0, t),

δAvJ(t) = −λe3(0, t)(f e1(1, t) + f e2(1, t)),

(4.26)

where, δAvJ(t) refers to the variational derivative with respect to the fraction Av. The system

dynamics (4.2) or (4.3) are discretized and solved forward in time as in (4.12) or (4.13), re-

spectively. The adjoint equations are discretized and solved backward in time. The discretized

form of (4.24) in the dispersing network becomes

λei,j−1 = λei,j −
∆t

∆x

(
µeM e

(M e + ρei,j)
2

)
(λei+1,j − λei,j),

λei,N = 0,

λe3Me,j =
N∑
r=j

Br∆r +BN ,

φe3v,j = λe30,j,

δuJj = −λe10,j,

λe1Me,j = λe30,jA
e3
v,j,

δAe3
v
Jj = −λe30,jf

e1
Me,j.

(4.27)
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While for the merging network (4.26) implies

λei,j−1 = λei,j −
∆t

∆x

(
µeM e

(M e + ρei,j)
2

)
(λei+1,j − λei,j),

λei,N = 0,

λe3Me,j =
N∑
r=j

Br∆r +BN ,

φe3v,j = λe30,j,

δuJj = −λe10,j,

λe1Me,j = Av,jλ
e3
0,j,

δAvJj = −λe30,j(f
e1
Me,j + f e2Me,j).

(4.28)

The fmincon generates the corresponding optimal values numerically based on the obtained

gradient information and the inequality constraints.

4.4.2 Direct Method

The finite-dimensional static optimization problem is considered after the discretization of

(4.20) is chosen as

min
ϑ
J2d(ϑ) =

1

2

N∑
j=0

( j∑
k=0

(f ∗k − yk)∆τ
)2

∆t+
1

2

( N∑
k=0

(f ∗k − yk)∆τ
)2

, (4.29)

where J2d(ϑ) is the approximated cost functional. The discretization is performed by the

upwind finite difference scheme for the PDEs and explicit Euler for the ODEs. The terms ∆t

and ∆τ denote the time steps herein ∆t = n∆τ in which n is the number of the equidistant

subintervals while yk = y(k∆τ); j = 0, 1, 2, ..., N and k = 0, 1, 2, ..., j. Therefore, the dispersing

optimization problem is structured as

min
ϑ
J2d(ϑ) subject to (4.12). (4.30)

The merging optimization problem is structured as

min
ϑ
J2d(ϑ) subject to (4.13). (4.31)

The constrained static optimization problems (4.30) and (4.31) are addressed using SQP imple-

mented in the MATLAB Optimization Toolbox function fmincon. The gradients are updated

iteratively by the solver finding the propor step length and search direction using the Newton-

type method.
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4.5 Simulation Results

This part shows the system configuration and discusses the simulation results for the two

represented problems: (i) demand tracking and (ii) backlog.

4.5.1 Demand Tracking Problem

The control strategies for the demand tracking problem are assessed, which are associated with

dispersing and merging networks. The system parameters for the dispersing network contains

three arcs where the number of machines in each arc is chosen as M e = 10 with the processing

rates µe being 2 lots/h, 3 lots/h and 4 lots/h in e1, e2 and e3 respectively. In case of the merging

network µe1 = 4 lots/h, µe2 = 3 lots/h and µe3 = 2 lots/h are used. The numerical parameters

are defined as ∆x = 0.1 which is referred to the spatial step size in each are e and CFL is 0.5.

The temporal step size ∆t = 0.2 h and the smoothing factor is chosen as κ = 0.2.

4.5.1.1 Dispersing Network
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Figure 4.1: Input u∗(t) (left) and comparison of the desired demand trajectory f∗(t) and y(t) =

fe3(1, t) (right) in case of direct and indirect method.

The optimal boundary control is utilized by the direct and the indirect approaches. In the case

of the dispersing network, the final value of the objective functional (4.1) is 1.03× 10−3 by the

direct method. The approach is achieved reasonably to track the demand. When compared to

the direct method, the indirect method takes a significantly shorter time to compute. Herein,

the relative computational load is reduced by 84.6%. As is shown in Fig. 4.1 the input from

the indirect method is smoother than the input from the direct method. Changing the fmincon

option, such as optimality tolerance or finite difference step size, can solve the problem of

the high-frequency oscillation in the input utilizing the direct approach. However, the goal

is to compare different control strategies with the same configuration. The output in arc e3

perfectly matches the desired flow trajectory. The final value of the objective functional (4.1)

is 7.29× 10−4.
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4.5.1.2 Merging Network
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Figure 4.2: Direct and indirect approaches used for demand tracking in the merging network.

By applying the direct approach in the merging network, the outflux is reasonably tracking the

desired demand, see Fig. 4.2. However, it slightly oscillates in steady state region from the

time ranging from 30 to 60 h. The final value of the objective functional equals 4.19× 10−3 for

the direct method and 3.19 × 10−3 for the indirect method. When comparing the direct and

indirect methods, the indirect method saves 93.2% of the computational load. The outflux y(t)

matches the desired demand, especially in the the ramp-up and the ramp-down.

4.5.2 Backlog Problem

Subsequently, the control designs are evaluated for the dispersing and the merging networks

of production system topologies. For the dispersing and merging scenarios, the problems are

solved by the indirect and the direct methods. In the case of dispersing network, the system

parameters for both methods are assigned as µe1 = 8 lots/h, µe2 = 4 lots/h, µe3 = 6 lots/h, the

number of machines in each arc M e1 = M e2 = M e3 = 10, κ = 0.1, and the final time tf = 20
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h. The numerical parameters are defined as ∆t = 0.1 h, CFL = 0.5, and ∆x = 0.1. In case of

the merging network, the processing rates are set µe1 = 8 lots/h, µe2 = 3 lots/h and µe3 = 5

lots/h and the other parameters are kept the same as the previous case.

4.5.2.1 Dispersing Network

0 5 10 15 20

0

2

4

6

8

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

-0.5

0

0.5

1

1.5

2

Figure 4.3: Inflows in the dispersing network for the backlog problem (top-left), outflows (top-right),

Ae3∗v (t) (bottom-left) and B(t) (bottom-right).

The final value of the objective functional (4.20) of the both methods are approximately the

same. It has been noticed that the computational time of the direct method is large compared

to the indirect one. Herein, the relative computational load is reduced by 93% compared to

the direct one. Fig. 4.3 illustrates the control variables u∗(t) and Ae3∗v (t), the outflow y(t)

and the backlog B(t). As shown from the figure, the outflow from the indirect method almost

matches the reference after compensating the intractable lots. However, in the direct case, y(t)

is not accurate enough to fully track the peaks of the reference trajectory. The reference in the

backlog figure indicates that the system has no backlog, and the outflow completely follows the

desired demand. Therefore, the indirect approach shows that the backlog remains at zero after

the compensation of the required lots, while it fluctuates around the zero value in the case of

the direct approach.
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4.5.2.2 Merging Network
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Figure 4.4: Inflows at arc e1 in merging network for the backlog problem (top-left), the inflow at arc

e2 (top-right), the fraction A∗v(t) (bottom-left) and the outflows (bottom-right).
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Figure 4.5: Backlog B(t) of the merging network.

In the merging network, the computational time is reduced by 95.5% when applying the indi-

rect method compared to the direct one. The final values of the objective functional of both

approaches are almost similar. Fig. 4.4 shows the control variables u∗(t) at arc e1 and A∗v(t), the
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arbitrary uncontrolled input ũ at arc e2 the outflow y(t), and the backlog B(t) is shown in Fig.

4.5. The outflow of the indirect method converges to the reference after the compensation, as

observed in the figure. In the direct case y(t) is not as accurate as in the indirect method does

not follow the reference trajectory, specifically the peaks. The backlog after the compensation

of the demanded lots converges to zero in the case of the indirect method, while it oscillates

around the zero value in the direct approach.

4.6 Summary

In this chapter, two different control challenges, demand tracking and backlog are considered

in the context of the production system network. The backlog problem is an accumulated error

that describes the mismatch between the desired lot accumulation and the total number of lots

at the system outlet over a finite time interval that leads to either under- or over-production.

Two different yet challenging networks consisting of arcs and storage areas are modelled by

coupling their corresponding PDEs and ODEs. The networks cover dispersing and merging

structures. The problems are optimized utilizing open-loop optimal control according to the

direct (discretize-then-optimize) and the indirect (optimize-then-discretize) approaches. The

proposed approaches enable the solution of the OCPs. Generally, all the approaches reach

a local minima with common behaviour converging to the steady-state. The analysis of the

results demonstrates unique features for each method. The indirect technique is characterized

by high accuracy and low computational load; nevertheless, it is a sensitive method due to the

information required to compute the gradient. The direct approach is featured by the ease of

use and adaptability to any problem. This method applied an approximate finite difference to

obtain the Lagrangian gradient. However, this approach takes substantially longer to achieve

a solution when compared to the indirect method. On the other hand, the comparison in view

of analytical effort is somewhat unfair. As for the indirect method, gradient information is

needed to be provided. On the contrary, no gradient and Hessian information are provided for

the direct approach.
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Chapter 5

Model Predictive Control of a

Manufacturing Network

Automation and control are key elements in production engineering and manufacturing to

solve problems such as cost reduction, energy savings, optimizing machines utilization, and

time savings, which leads to maximizing profitability.

Constrained optimization problems are formulated to reduce the output rate of the system

to track a desired demand rate trajectory as closely as possible or to minimize the difference

between total desired lots and total lots of the system output. These problems are known

as demand tracking or backlog problems, respectively. These problems are subject to system

constraints, such as the capacity of the production systems, which limits the ability of the

system to achieve the desired targets. In this chapter, an adjoint-based model predictive control

(AMPC) is developed in a production system complex network to address these problems in

terms of conservation laws connected with ordinary differential equations. The network is

composed of a hybrid of dispersing and merging networks. The adjoint method is used to

obtain the gradient of the cost functional as a powerful tool for the constrained optimization

problems by evaluating the necessary optimality conditions, which is combined with the model

predictive control. The traditional or the standard approach of MPC depends mainly on the

direct method. The numerical results demonstrate the solvability and the value of using the

adjoint-based model predictive control for reducing the computational load compared to the

standard approach. In addition, it shows robustness concerning the effect of disturbance.

5.1 Problem Statement

In the previous chapter, rather simple networks are considered focussing on dispersion and

merging. In this chapter, a complex model is addressed. This one includes the combination

of two dispersing and two merging networks. The network in Fig. 5.1 contains seven arcs and

four vertices with the same charachteristics of the previous networks.
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System Model
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Figure 5.1: The structure of the complex network.

The system is represented by the directed graph G(V , E), where V = {v1, v2, v3, v4} is the

set of vertices and E = {e1, e2, . . . , e7} is the set of arcs. The components are connected as

shown if Fig. 5.1. Each arc e is made up of a single flow line with a homogeneous number of

workstations. A machine and a buffer are included in every workstation. The production flow

is based on the M/M/1 model, in which both process time and inter-arrival time are distributed

exponentially. Each arc e ∈ E is modeled by a single PDE. The vertex v ∈ V is placed between

two consecutive arcs and modeled as a single ODE, which refers to a storage area. The system

network consists a group of dispersing vertices, here v1, v2, and merging vertices, here v3, v4.

The normalized coordinate x ∈ [0, 1] denotes the position of the workstation inside each arc.

The inlet of the arc e is located at x = 0 while x = 1 is the location of the outlet. The system

dynamics for each flow line e can be described as

∂

∂t
ρe(x, t) = − ∂

∂x
f e(x, t), (x, t) ∈ (0, 1]× (0, tf ],

f e(x, t) = ρeve =
µeρe(x, t)

M e + ρe(x, t)
,

ρe(x, 0) = 0, ∀x ∈ [0, 1],

f e1(0, t) = u(t) + d(t), ∀t ∈ [0, tf ],

0 ≤ u(t) < µe1 , ∀t ∈ [0, tf ].

(5.1)

Herein, f(x, t) is the flux and ρ(x, t) ∈ R+
0 is the density of the lots. The individual features

of each arc e are determined by the mean processing rate µe and the number of machines M e.

The main inflow u(t) exists at the inlet of the arc e1 and d(t) is the additive disturbance to the

inflow of the system.

The structure of the storage area at v differs depending on the network topology. For the

dispersing structures of the network at v1 and v2 as shown in Fig. 5.1, the PDE model (5.1) is



5.1 Problem Statement 57

associated with

dq
e+v1
v1 (t)

dt
= A

e+v1
v1 (t)f e

−
v1 (1, t)− f e

+
v1 (0, t),

dq
e+v2
v2 (t)

dt
= A

e+v2
v2 (t)f e

−
v2 (1, t)− f e

+
v2 (0, t),

f e
+
v1 (0, t) = min

{
µe

+
v1 ,

q
e+v1
v1 (t)

κ

}
,

f e
+
v2 (0, t) = min

{
µe

+
v2 ,

q
e+v2
v2 (t)

κ

}
,

q
e+v1
v1 (0) = 0, 0 ≤ A

e+v1
v1 (t) ≤ 1,

∑
A
e+v1
v1 (t) = 1,

q
e+v2
v2 (0) = 0, 0 ≤ A

e+v2
v2 (t) ≤ 1,

∑
A
e+v2
v2 (t) = 1,

e−v1 ∈ {e1} , e+
v1
∈ {e2, e3} ,

e−v2 ∈ {e2} , e+
v2
∈ {e4, e5} .

(5.2)

The storage load of v• is represented by q
e+v•
v• (t). The arcs e−v• and e+

v• , respectively, correspond

to the arcs before and after the vertex v•. The parameter κ is a smoothing parameter. The

outflow from arc e−v• splits into two flows. The sum of these flows at e+
v• , which is covered by the

distribution rate A
e+v•
v• (t) ∈ [0, 1] must be equal to the outflow coming from e−v• . It is assumed

that there are no lots in the system at time t = 0. In addition, the incoming flow is limited to

a value between zero and the arc’s processing rate. For the merging topologies at v3 and v4 the

PDE model (5.1) is also associated with

dq
e+v3
v3 (t)

dt
= Av3(t)

∑
e−v3

f e
−
v3 (1, t)− f e

+
v3 (0, t),

dq
e+v4
v4 (t)

dt
= Av4(t)

∑
e−v4

f e
−
v4 (1, t)− f e

+
v4 (0, t),

f e
+
v3 (0, t) = min

{
µe

+
v3 ,

q
e+v3
v3 (t)

κ

}
,

f e
+
v4 (0, t) = min

{
µe

+
v4 ,

q
e+v4
v4 (t)

κ

}
,

q
e+v3
v3 (0) = 0, 0 ≤ Av3(t) ≤ 1,

q
e+v4
v4 (0) = 0, 0 ≤ Av4(t) ≤ 1,

e−v3 ∈ {e3, e4} , e+
v3
∈ {e6} ,

e−v4 ∈ {e5, e6} , e+
v4
∈ {e7} .

(5.3)

All incoming flows e−v• are merged before entering the main arc e+
v• . A fraction of the total

incoming flows at vertex v• is represented by the value Av•(t) ∈ [0, 1].
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5.2 Model Predictive Control
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Figure 5.2: MPC and the receding horizon mechanism.

In real-world systems, there is a deviation between the actual and predicted model behaviours.

The ability to predict the future response of the system is MPC’s key characteristic that sets

it apart from other controllers. The MPC can address such issues providing stabilization and

robustness. Without loss of generality, it can be developed by different algorithms according

to the industrial application of interest, e.g. slow, fast or real-time processes. The MPC

emerged as an efficient technique for dealing with multivariable constrained control problems.

The main goal of MPC in this work is to investigate the effect of disturbances in the demand

tracking and the backlog problems. MPC is considered a particular type of optimal feedback

control. It relies on a receding horizon implementation to mimick an infinite horizon. An MPC

algorithm attempts to optimize future system behavior for each control interval by computing

a sequence of future manipulated variable adjustments, as shown in Fig. 5.2. The performance

depends on two tunable parameters which are defined as prediction horizon P and control

horizon C. The prediction horizon is the number of the expected time steps over a finite time

window. The window can be shifted by the control horizon parameter whose value refers to the

number of moves of the manipulated variables to be optimized during the prediction horizon.

The value of the control horizon parameter has to be lower than or equal to the prediction

horizon parameter. The implementation mechanism of the MPC algorithm is summarized in

the following scheme
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Algorithm 1: Model Predictive Control

Set prediction horizon P and control horizon C;

Initalize ϑ;

Start t0 = 0;

Count = 0;

for j = 1, 2, ... do

ICs = ICs(tj);

if Count == 0 then
Solve the OCP along P horizon

min
ϑ
J(ϑ) =

1

2

∫ tj+P

tj

ξ(f ∗(t), y(t))dt+
1

2
χ(f ∗(tj + P ), y(tj + P )); (5.4)

subject to the complex network (5.1), (5.2) and (5.3);

Output:(ϑ1,ϑ2,ϑ3, . . . ,ϑP );

Count = C;

end

Set ϑj = ϑk; k = C− Count+1;

Count = Count − 1;

end

The general scheme (5.4) is solved by feedback control to avoid the effect of the additive

disturbance. The cost functional consists of the stage cost ξ( · ) and the terminal cost χ( · ).
The terminal cost of the problem helps for the system stability, especially in the occurrence

of the perturbations. The objective functional in (5.4) and the system dynamics (5.1), (5.2),

and (5.3) are discretized first in the traditional MPC, as well as the direct method. Then the

optimization in Algorithm 1 is solved by the SQP method from the function fmincon provided

in the MATLAB to obtain the manipulated variables ϑ∗.

5.3 Problems Formulation

The OCPs are the demand tracking and the backlog problems. The difference to the OCPs

considered before that arise due to MPC are the integration limits. In the case of the open-

loop optimal control, the integration limits are in the entire time domain. In the case of the

MPC, the lower and upper limits are set by the control and prediction horizons, respectively.

The decision variables supplied by u,Av• and A
e+v•
v• are then summarized by ϑ and the optimal

control for the demand tracking problem is used by considering the objective functional.

min
ϑ
J1(ϑ) =

1

2

∫ tj+P

tj

(f ∗(t)− y(t))2dt, (5.5)
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subject to (5.1), (5.2) and (5.3). Here, f ∗(t) is the desired trajectory and y(t) = f e7(1, t) is

the outflow from the arc e7. The optimization is handled for every control interval between ti
and ti + P where P refers to the prediction horizon. In the backlog case, the optimal control

applies both stage cost and terminal cost by considering the objective functional

min
ϑ
J2(ϑ) =

1

2

∫ tj+P

tj

(B(t))2dt+
1

2
(B(ti + P ))2, (5.6)

subject to the system constraints (5.1), (5.2) and (5.3). To this end, the optimization problems

(5.5) and (5.6) can be solved by the proposed MPC based on adjoint approach as will be

described in the following section.

5.4 Adjoint-based MPC
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Figure 5.3: Scheme of the AMPC framework.

Adjoint-based Model Predictive Control has shown to be a feasible and successful approach

for offline and online optimization of control sequences for dynamic systems governed by dif-

ferentiable nonlinear equations over the years [96]. The traditional MPC relies on the direct

approach, which can provide for the systems’ stability and robustness. However, it is char-

acterized by high computational complexity. The proposed technique contains a generalized

adjoint-based dynamic optimization where it is reduced the computational burden, as proven

in the previous chapter. The way to supress the computational load based on the gradient
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information provided from adjoint-state equations, which is combined to the model predic-

tive control as illustraded in Fig. 5.3. The procedures to solve successive OCPs in AMPC

are required for both two demand tracking and backlog problems. The AMPC starts with

optimization and then moves on to discretization.

5.4.1 Optimization Phase

The PDE-ODE constrained optimization problem is reformulated as unconstrained opti-

mization by using the Lagrange multipliers. The optimization is performed for the infinite-

dimensional system. The following result summarizes the necessary optimality condition in

terms of the adjoint PDE-ODE system.

Demand Tracking Problem

Proposition 1. The adjoint equations from the complex network in Fig. 5.1 of the demand

tracking problem (5.5) subject to (5.1), (5.2), and (5.3) after neglecting the inequality constraints

are
∂λe

∂t
= − µeM e

(M e + ρe(x, t))2

∂λe

∂x
, (x, t) ∈ (0, 1]× (tj, tj + P ],

λe(x, tj + P ) = 0,

λe7(1, t) = f ∗(t)− y(t),

φe2v1(t) = λe2(0, t), φe3v1(t) = λe3(0, t)

φe4v2(t) = λe4(0, t), φe5v2(t) = λe5(0, t)

φe6v3(t) = λe6(0, t), φe7v4(t) = λe7(0, t)

λe1(1, t) = λe2(0, t)Ae2v1(t) + λe3(0, t)Ae3v1(t),

λe2(1, t) = λe4(0, t)Ae4v2(t) + λe5(0, t)Ae5v2(t),

λe3(1, t) = λe4(1, t) = Av3(t)λ
e6(0, t),

λe5(1, t) = λe6(1, t) = Av4(t)λ
e7(0, t),

δuJ1(t) = −λe1(0, t),
δAe3

v1
J1(t) = (λe2(0, t)− λe3(0, t))f e1(1, t),

δAe5
v2
J1(t) = (λe4(0, t)− λe5(0, t))f e2(1, t),

δAv3
J1(t) = −λe6(0, t)(f e3(1, t) + f e4(1, t)),

δAv4
J1(t) = −λe7(0, t)(f e5(1, t) + f e6(1, t)).

(5.7)

Herein the functions λ(x, t) and φ(t) are the adjoint states for the equality constraints induced

by the PDEs on the arcs and the ODEs at the vertices, respectively.

Remark 5.6. Since the specified fractions are defined by the system as
∑
A
e+v1
v1 (t) = 1, and∑

A
e+v2
v2 (t) = 1 in the dispersing vertices v1 and v2, respectively. the variables Ae

e3

v1
and Ae

e5

v2
are

the controllable ones, where the others can be obtained from these complementary equations.
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Proof. The Lagrangian L is constructed to evaluate the necessary first order optimality condi-

tions to obtain

L1 =
1

2

∫ tj+P

tj

(f ∗(t)− f e7(1, t))2dt

+
∑

e∈{e1,e2,...,e7}

∫ tj+P

tj

∫ 1

0

λe
(
∂

∂t
ρe +

∂

∂x
f e(x, t)

)
dxdt

+
∑

e+v1∈{e2,e3}

∫ tj+P

tj

φ
e+v1
v1

(
q̇
e+v1
v1 − A

e+v1
v1 f

e−v1 (1, t) + f e
+
v1 (0, t)

)
dt

+
∑

e+v2∈{e4,e5}

∫ tj+P

tj

φ
e+v2
v2

(
q̇
e+v2
v2 − A

e+v2
v2 f

e−v2 (1, t) + f e
+
v2 (0, t)

)
dt

+

∫ tj+P

tj

φ
e+v3
v3

(
q̇
e+v3
v3 − Av3(t)

∑
e−v3∈{e3,e4}

f e
−
v3 (1, t) + f e

+
v3 (0, t)

)
dt

+

∫ tj+P

tj

φ
e+v4
v4

(
q̇
e+v4
v4 − Av4(t)

∑
e−v4∈{e5,e6}

f e
−
v4 (1, t) + f e

+
v4 (0, t)

)
dt.

(5.8)

By using the integration by parts in (5.8) becomes

L1 =
1

2

∫ tj+P

tj

(f ∗(t)− f e7(1, t))2dt

+
∑
e

∫ 1

0

λe(x, tj + P )ρe(x, tj + P )dx−
∑
e

∫ 1

0

λe(x, tj)ρ
e(x, tj)dx

−
∑
e

∫ tj+P

tj

∫ 1

0

∂λe

∂t
ρedxdt+

∑
e

∫ tj+P

tj

λe(1, t)f e(1, t)dt

−
∑
e

∫ tj+P

tj

λe(0, t)f e(0, t)dt−
∑
e

∫ tj+P

tj

∫ 1

0

∂λe

∂x
f e(x, t)dxdt

+

 ∑
e+v1∈{e2,e3}

φ
e+v1
v1 q

e+v1
v1

t=tj+P

t=tj

−
∑

e+v1∈{e2,e3}

∫ tj+P

tj

φ̇
e+v1
v1 q

e+v1
v1 dt

+
∑

e+v1∈{e2,e3}

∫ tj+P

tj

φ
e+v1
v1

(
f e

+
v1 (0, t)− Ae

+
v1
v1 f

e−v1 (1, t)

)
dt

+

 ∑
e+v2∈{e4,e5}

φ
e+v2
v2 q

e+v2
v2

t=tj+P

t=tj

−
∑

e+v2∈{e4,e5}

∫ tj+P

tj

φ̇
e+v2
v2 q

e+v2
v2 dt

+
∑

e+v2∈{e4,e5}

∫ tj+P

tj

φ
e+v2
v2

(
f e

+
v2 (0, t)− Ae

+
v2
v2 f

e−v2 (1, t)

)
dt
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+
[
φ
e+v3
v3 q

e+v3
v3

]t=tj+P

t=tj
−
∫ tj+P

tj

φ̇
e+v3
v3 q

e+v3
v3 dt

+

∫ tj+P

tj

φ
e+v3
v3

(
f e

+
v3 (0, t)− Av3(t)

∑
e−v3∈{e3,e4}

f e
−
v3 (1, t)

)
dt

+
[
φ
e+v4
v4 q

e+v4
v4

]t=tj+P

t=tj
−
∫ tj+P

tj

φ̇
e+v4
v4 q

e+v4
v4 dt

+

∫ tj+P

tj

φ
e+v4
v4

(
f e

+
v4 (0, t)− Av4(t)

∑
e−v4∈{e5,e6}

f e
−
v4 (1, t)

)
dt.

Utilizing the relations are given by the system such as the main inflow, main outflow, outflow

before the vertex v, and inflow after the vertex v

u(t) =
µe1ρe1(0, t)

M e1 + ρe1(0, t)
,

y(t) =
µe7ρe7(1, t)

M e7 + ρe7(1, t)
,

f e
−
v (1, t) =

µe
−
v ρe

−
v (1, t)

M e−v + ρe
−
v (1, t)

,

f e
+
v (0, t) =

µe
+
v ρe

+
v (0, t)

M e+v + ρe
+
v (0, t)

.

After substituting δ(1 − Ae3v1) = δAe2v1 and δ(1 − Ae5v2) = δAe4v2 , and taking the variance due to

u(t), y(t), A
e+v•
v• (t), Av•(t), ρe, f e

−
v (1, t), and f e

+
v (0, t) at any vertex v, the Gateaux derivative of

L1 is obtained from the first order optimality condition by
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δL1 =

∫ tj+P

tj

(f ∗(t)− y(t))δy(t)dt+
∑
e

∫ 1

0

λe(x, tj + P )δρe(x, tj + P )dx

−
∑
e

∫ tj+P

tj

∫ 1

0

∂λe(x, t)

∂t
δρe(x, t)dxdt+

∫ tj+P

tj

λe7(1, t)δy(t)dt

+
∑

i∈{2,3,...,6}

∫ tj+P

tj

λei(1, t)δf ei(1, t)dt−
∑

i∈{2,3,...,6}

∫ tj+P

tj

λei(0, t)δf ei(0, t)dt

+

∫ tj+P

tj

λe1(1, t)δf e1(1, t)dt−
∫ tj+P

tj

λe1(0, t)δu(t)dt

−
∫ tj+P

tj

λe7(0, t)δf e7(0, t)dt−
∑
e

∫ tj+P

tj

∫ 1

0

(
µeM e

(M e + ρe(x, t))2

)
∂λe(x, t)

∂x
δρe(x, t)dxdt

+

∫ tj+P

tj

(
φe

e2
v1 (t)− φe

e3
v1 (t)

)
f e

−
v1 (1, t)δAe3v1dt−

∑
e+v1

∫ tj+P

tj

φ
e+v1
v1 (t)A

e+v1
v1 (t)δf e

−
v1 (1, t)dt

+
∑
e+v1

∫ tj+P

tj

φ
e+v1
v1 (t)δf e

+
v1 (0, t)dt+

∑
e+v2

∫ tj+P

tj

φ
e+v2
v2 (t)δf e

+
v2 (0, t)dt

+

∫ tj+P

tj

(
φe

e4
v2 (t)− φe

e5
v2 (t)

)
f e

−
v2 (1, t)δAe5v2dt−

∑
e+v2

∫ tj+P

tj

φ
e+v2
v2 (t)A

e+v2
v2 (t)δf e

−
v2 (1, t)dt

−
∫ tj+P

tj

φ
e+v3
v3 (t)

(
f e3(1, t) + f e4(1, t)

)
δAv3(t)dt−

∫ tj+P

tj

φ
e+v3
v3 (t)Av3(t)δf

e3(1, t)dt

−
∫ tj+P

tj

φ
e+v3
v3 (t)Av3(t)δf

e4(1, t)dt+

∫ tj+P

tj

φ
e+v3
v3 (t)δf e6(0, t)dt

−
∫ tj+P

tj

φ
e+v4
v4 (t)

(
f e5(1, t) + f e6(1, t)

)
δAv4(t)dt−

∫ tj+P

tj

φ
e+v4
v4 (t)Av4(t)δf

e5(1, t)dt

−
∫ tj+P

tj

φ
e+v4
v4 (t)Av4(t)δf

e6(1, t)dt+

∫ tj+P

tj

φ
e+v4
v4 (t)δf e7(0, t)dt

= 0.

(5.9)

After reforming and regrouping (5.9), the adjoint equation set (5.7) is derived.

Backlog Problem

The optimization is performed for the infinite-dimensional system.

Proposition 2. The adjoint equations from the complex network in Fig. 5.1 of the Backlog

problem (5.6) subject to (5.1), (5.2), and (5.3) after neglecting the inequality constraints are
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defined as

∂λe

∂t
= − µeM e

(M e + ρe(x, t))2

∂λe

∂x
, (x, t) ∈ (0, 1]× (tj, tj + P ],

λe(x, tj + P ) = 0,

λe7(1, t) =

∫ tj+P

t

B(r)dr +B(tj + P ), ∀t ∈ [tj, tj + P ]

φe2v1(t) = λe2(0, t), φe3v1(t) = λe3(0, t)

φe4v2(t) = λe4(0, t), φe5v2(t) = λe5(0, t)

φe6v3(t) = λe6(0, t), φe7v4(t) = λe7(0, t)

λe1(1, t) = λe2(0, t)Ae2v1(t) + λe3(0, t)Ae3v1(t),

λe2(1, t) = λe4(0, t)Ae4v2(t) + λe5(0, t)Ae5v2(t),

λe3(1, t) = λe4(1, t) = Av3(t)λ
e6(0, t),

λe5(1, t) = λe6(1, t) = Av4(t)λ
e7(0, t),

δuJ2(t) = −λe1(0, t),
δAe3

v1
J2(t) = (λe2(0, t)− λe3(0, t))f e1(1, t),

δAe5
v2
J2(t) = (λe4(0, t)− λe5(0, t))f e2(1, t),

δAv3
J2(t) = −λe6(0, t)(f e3(1, t) + f e4(1, t)),

δAv4
J2(t) = −λe7(0, t)(f e5(1, t) + f e6(1, t)).

(5.10)

where the functions {λe(x, t)} and {φe+v (t)} are the adjoint states for the equality constraints

induced by the PDEs on the arcs and the ODEs at the vertices, respectively.

Proof. : The formulation of the Lagrangian L2 is constructed by

L2 =
1

2

∫ tj+P

tj

(B(t))2dt+
1

2
(B(tj + P ))2

+
∑

e∈{e1,e2,...,e7}

∫ tj+P

tj

∫ 1

0

λe
(
∂

∂t
ρe +

∂

∂x
f e(x, t)

)
dxdt

+
∑

e+v1∈{e2,e3}

∫ tj+P

tj

φ
e+v1
v1

(
q̇
e+v1
v1 − A

e+v1
v1 f

e−v1 (1, t) + f e
+
v1 (0, t)

)
dt

+
∑

e+v2∈{e4,e5}

∫ tj+P

tj

φ
e+v2
v2

(
q̇
e+v2
v2 − A

e+v2
v2 f

e−v2 (1, t) + f e
+
v2 (0, t)

)
dt

+

∫ tj+P

tj

φ
e+v3
v3

(
q̇
e+v3
v3 − Av3(t)

∑
e−v3∈{e3,e4}

f e
−
v3 (1, t) + f e

+
v3 (0, t)

)
dt

+

∫ tj+P

tj

φ
e+v4
v4

(
q̇
e+v4
v4 − Av4(t)

∑
e−v4∈{e5,e6}

f e
−
v4 (1, t) + f e

+
v4 (0, t)

)
dt.

(5.11)
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After taking the integration by parts, one gets

L2 =
1

2

∫ tj+P

tj

(B(t))2dt+
1

2
(B(tj + P ))2

+
∑
e

∫ 1

0

λe(x, tj + P )ρe(x, tj + P )dx−
∑
e

∫ 1

0

λe(x, tj)ρ
e(x, tj)dx

−
∑
e

∫ tj+P

tj

∫ 1

0

∂λe

∂t
ρedxdt+

∑
e

∫ tj+P

tj

λe(1, t)f e(1, t)dt

−
∑
e

∫ tj+P

tj

λe(0, t)f e(0, t)dt−
∑
e

∫ tj+P

tj

∫ 1

0

∂λe

∂x
f e(x, t)dxdt

+

 ∑
e+v1∈{e2,e3}

φ
e+v1
v1 q

e+v1
v1

t=tj+P

t=tj

−
∑

e+v1∈{e2,e3}

∫ tj+P

tj

φ̇
e+v1
v1 q

e+v1
v1 dt

+
∑

e+v1∈{e2,e3}

∫ tj+P

tj

φ
e+v1
v1

(
f e

+
v1 (0, t)− Ae

+
v1
v1 f

e−v1 (1, t)

)
dt

+

 ∑
e+v2∈{e4,e5}

φ
e+v2
v2 q

e+v2
v2

t=tj+P

t=tj

−
∑

e+v2∈{e4,e5}

∫ tj+P

tj

φ̇
e+v2
v2 q

e+v2
v2 dt

+
∑

e+v2∈{e4,e5}

∫ tj+P

tj

φ
e+v2
v2

(
f e

+
v2 (0, t)− Ae

+
v2
v2 f

e−v2 (1, t)

)
dt

+
[
φ
e+v3
v3 q

e+v3
v3

]t=tj+P

t=tj
−
∫ tj+P

tj

φ̇
e+v3
v3 q

e+v3
v3 dt

+

∫ tj+P

tj

φ
e+v3
v3

(
f e

+
v3 (0, t)− Av3(t)

∑
e−v3∈{e3,e4}

f e
−
v3 (1, t)

)
dt

+
[
φ
e+v4
v4 q

e+v4
v4

]t=tj+P

t=tj
−
∫ tj+P

tj

φ̇
e+v4
v4 q

e+v4
v4 dt

+

∫ tj+P

tj

φ
e+v4
v4

(
f e

+
v4 (0, t)− Av4(t)

∑
e−v4∈{e5,e6}

f e
−
v4 (1, t)

)
dt.

(5.12)

Likewise the demand tracking case, u(t), y(t), f e
−
v• (1, t), and f e

+
v• (0, t) are given from the system
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and taking the variational of L2 and equalizing with zero as follows

δL2 = −
∫ tj+P

tj

B(r)

∫ r

tj

δy(τ)dτdt+B(tj + P )δB(tj + P )

+
∑
e

∫ 1

0

λe(x, tf )δρ
e(x, tj + P )dx

−
∑
e

∫ tj+P

tj

∫ 1

0

∂λe(x, t)

∂t
δρe(x, t)dxdt+

∫ tj+P

tj

λe7(1, t)δy(t)dt

+
∑

i∈{2,3,...,6}

∫ tj+P

tj

λei(1, t)δf ei(1, t)dt−
∑

i∈{2,3,...,6}

∫ tj+P

tj

λei(0, t)δf ei(0, t)dt

+

∫ tj+P

tj

λe1(1, t)δf e1(1, t)dt−
∫ tj+P

tj

λe1(0, t)δu(t)dt

−
∫ tj+P

tj

λe7(0, t)δf e7(0, t)dt−
∑
e

∫ tj+P

tj

∫ 1

0

(
µeM e

(M e + ρe(x, t))2

)
∂λe(x, t)

∂x
δρe(x, t)dxdt

+
∑
e+v1

∫ tj+P

tj

φ
e+v1
v1 q̇

e+v1
v1 dt+

∑
e+v2

∫ tj+P

tj

φ
e+v2
v2 q̇

e+v2
v2 dt

−
∑
e+v1

∫ tj+P

tj

φe
+
v1 (t)f e

−
v1 (1, t)δA

e+v1
v1 dt−

∑
e+v1

∫ tj+P

tj

φ
e+v1
v1 (t)A

e+v1
v1 (t)δf e

−
v1 (1, t)dt

+
∑
e+v1

∫ tj+P

tj

φ
e+v1
v1 (t)δf e

+
v1 (0, t)dt+

∑
e+v2

∫ tj+P

tj

φ
e+v2
v2 (t)δf e

+
v2 (0, t)dt

−
∑
e+v2

∫ tj+P

tj

φe
+
v2 (t)f e

−
v2 (1, t)δA

e+v2
v2 dt−

∑
e+v2

∫ tj+P

tj

φ
e+v2
v2 (t)A

e+v2
v2 (t)δf e

−
v2 (1, t)dt

+

∫ tj+P

tj

φ
e+v3
v3 q̇

e+v3
v3 dt+

∫ tj+P

tj

φ
e+v4
v4 q̇

e+v4
v4 dt

−
∫ tj+P

tj

φ
e+v3
v3 (t)

(
f e3(1, t) + f e4(1, t)

)
δAv3(t)dt−

∫ tj+P

tj

φ
e+v3
v3 (t)Av3(t)δf

e3(1, t)dt

−
∫ tj+P

tj

φ
e+v3
v3 (t)Av3(t)δf

e4(1, t)dt+

∫ tj+P

tj

φ
e+v3
v3 (t)δf e6(0, t)dt

−
∫ tj+P

tj

φ
e+v4
v4 (t)

(
f e5(1, t) + f e6(1, t)

)
δAv4(t)dt−

∫ tj+P

tj

φ
e+v4
v4 (t)Av4(t)δf

e5(1, t)dt

−
∫ tj+P

tj

φ
e+v4
v4 (t)Av4(t)δf

e6(1, t)dt+

∫ tj+P

tj

φ
e+v4
v4 (t)δf e7(0, t)dt

= 0.

(5.13)

By substituting

δy(t) = δd(t− γ), γ ∈ (tj, tj + P ),
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δy(τ) = δd(τ − γ),

δ(1− Ae3v1) = δAe2v1 ,

δ(1− Ae5v2) = δAe4v2 ,

into (5.13), and the first order optimality condition is expressed by

δL2 =−
∫ tj+P

tj

B(r)

∫ r

tj

δd(τ − γ)dτdr −B(tf )

∫ tj+P

tj

δd(t− γ)dt

+
∑
e

∫ 1

0

λe(x, tj + P )δρe(x, tj + P )dx

−
∑
e

∫ tj+P

tj

∫ 1

0

∂λe(x, t)

∂t
δρe(x, t)dxdt+

∫ tj+P

tj

λe7(1, t)δDirac(t− γ)dt

+
∑

i∈{2,3,...,6}

∫ tj+P

tj

λei(1, t)δf ei(1, t)dt−
∑

i∈{2,3,...,6}

∫ tj+P

tj

λei(0, t)δf ei(0, t)dt

+

∫ tj+P

tj

λe1(1, t)δf e1(1, t)dt−
∫ tj+P

tj

λe1(0, t)δu(t)dt

−
∫ tj+P

tj

λe7(0, t)δf e7(0, t)dt−
∑
e

∫ tj+P

tj

∫ 1

0

(
µeM e

(M e + ρe(x, t))2

)
∂λe(x, t)

∂x
δρe(x, t)dxdt

+

∫ tj+P

tj

(
φe

e2
v1 (t)− φe

e3
v1 (t)

)
f e

−
v1 (1, t)δAe3v1dt−

∑
e+v1

∫ tj+P

tj

φ
e+v1
v1 (t)A

e+v1
v1 (t)δf e

−
v1 (1, t)dt

+
∑
e+v1

∫ tj+P

tj

φ
e+v1
v1 (t)δf e

+
v1 (0, t)dt+

∑
e+v2

∫ tj+P

tj

φ
e+v2
v2 (t)δf e

+
v2 (0, t)dt

+

∫ tj+P

tj

(
φe

e4
v2 (t)− φe

e5
v2 (t)

)
f e

−
v2 (1, t)δAe5v2dt−

∑
e+v2

∫ tj+P

tj

φ
e+v2
v2 (t)A

e+v2
v2 (t)δf e

−
v2 (1, t)dt

−
∫ tj+P

tj

φ
e+v3
v3 (t)

(
f e3(1, t) + f e4(1, t)

)
δAv3(t)dt−

∫ tj+P

tj

φ
e+v3
v3 (t)Av3(t)δf

e3(1, t)dt

−
∫ tj+P

tj

φ
e+v3
v3 (t)Av3(t)δf

e4(1, t)dt+

∫ tj+P

tj

φ
e+v3
v3 (t)δf e6(0, t)dt

−
∫ tj+P

tj

φ
e+v4
v4 (t)

(
f e5(1, t) + f e6(1, t)

)
δAv4(t)dt−

∫ tj+P

tj

φ
e+v4
v4 (t)Av4(t)δf

e5(1, t)dt

−
∫ tj+P

tj

φ
e+v4
v4 (t)Av4(t)δf

e6(1, t)dt+

∫ tj+P

tj

φ
e+v4
v4 (t)δf e7(0, t)dt

= 0.

(5.14)
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By applying the shifting property of the delta function, one obtains

λe7(1, γ) =

∫ tj+P

tj

λe7(1, t)δd(t− γ)dt,∫ tf

γ

B(r)dr =

∫ tj+P

tj

B(r)

∫ r

tj

δd(τ − γ)dτdr.

(5.15)

Where γ ∈ (tj, tj + P ) is any value in the domain t and it can be replaced by t. By reforming

and regrouping (5.14), the adjoint equations (5.10) are derived.

5.4.2 Discretization Phase

Generally speaking, the discretization is performed after getting the closed-form of the adjoint

state equations and the gradients from (5.7) and (5.10) of each OCP (demand tracking or

backlog). The demand tracking problem (5.5) is discretized in a form

min
ϑ
J1(ϑ) =

1

2

α+P∑
j=α

(
f ∗j − yj

)2

∆t, (5.16)

and the discretization of backlog problem (5.6) is chosen as

min
ϑ
J2(ϑ) =

1

2

α+P∑
j=α

( j∑
r=α

(f ∗r − yr)∆τ
)2

∆t+
1

2

( α+P∑
r=α

(f ∗r − yr)∆τ
)2

, (5.17)

where ∆t and ∆τ denote the time steps where ∆t = n∆τ and yr = y(r∆τ); j = α, α + 1, α +

2, ..., α+P and r = α, α+ 1, α+ 2, ..., j, and ∀ α, r, j ∈ Z. The PDE of the arc e is discretized

using the FD upwind scheme [60, 106] according to


ρe1,j+1

ρe2,j+1
...

ρeM,j+1

 =


(1− S(ρe1,j)) 0 · · · 0

S(ρe1,j) (1− S(ρe2,j)) · · · 0
...

...
. . .

...

0 · · · S(ρeM−1,j) (1− S(ρeM,j))



ρe1,j
ρe2,j

...

ρeM,j

+


∆t
∆x

0
...

0

 (uj + dj),

(5.18)

where S(ρei,j) = ∆t
∆x

µe

(Me+ρei,j)
, ρei,j = ρe(i∆x, j∆t), f ei,j = f e(ρi,j), ∆x = 1/M e, and uj = u(j∆t)

for i = 1, 2, ...,M e. For numerical stability, ∆t is adapted to fulfill the Courant-Friedrichs-Lewy

condition CFL = V e
m∆t
∆x
≤ 1, where V e

m = µe

Me+ρemin
is the maximum speed of the arc e.

Subsequently, the time discretization of the ODEs (5.2) in the dispersing case has the following

structure
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q
e+v1
v1,j+1 = q

e+v1
v1,j

+ ∆t

(
A
e+v1
v1,j
f
ee

−
v1
Me,j − f

e+v1
0,j

)
,

q
e+v2
v2,j+1 = q

e+v2
v2,j

+ ∆t

(
A
e+v2
v2,j
f
ee

−
v2
Me,j − f

e+v2
0,j

)
,

f
e+v1
0,j = min

{
µe

+
v1 ,

q
e+v1
v1,j

κ

}
,

f
e+v2
0,j = min

{
µe

+
v2 ,

q
e+v2
v2,j

κ

}
,

q
e+v1
v1,0

= 0, q
e+v2
v2,0

= 0,

(5.19)

where q
e+v•
v•,j = q

e+v•
v• (j∆t), and A

e+v•
v•,j = Ae

+
v•
v• (j∆t). Furthermore, time discretization of the ODEs

in (5.3) for the merging case reads

q
e+v3
v3,j+1 = q

e+v3
v3,j

+ ∆t

(
Av3,j

∑
e−v3

f
e−v3
Me,j − f

e+v3
0,j

)
,

q
e+v4
v4,j+1 = q

e+v4
v4,j

+ ∆t

(
Av4,j

∑
e−v4

f
e−v4
Me,j − f

e+v4
0,j

)
,

f
e+v3
0,j = min

{
µe

+
v3 ,

q
e+v3
v3,j

κ

}
,

f
e+v4
0,j = min

{
µe

+
v4 ,

q
e+v4
v4,j

κ

}
,

q
e+v3
v3,0

= 0, q
e+v4
v4,0

= 0,

(5.20)

The resulting finite dimensional approximation of (5.1), (5.2) and (5.3) is given by (5.18), (5.19)

and (5.20), respectively. The temporal-spatial discretization of the adjoint equations is the same

as the discretization of the system dynamic, for i = M e − 1, . . . , 2, 1, j = α+ P + 1, . . . , α+ 1
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yield

λei,j−1 = λei,j −
∆t

∆x

(
µeM e

(M e + ρei,j)
2

)
(λei+1,j − λei,j),

λei,N = 0, for terminal conditions,

λe7Me,j = −(yj − f ∗j ), for BC of the demand tracking,

λe7Me,j =
α∑

j=α+P

Bj∆t+Bα+P , for BC of the backlog,

φe2v1,j = λe20,j, φe3v1,j = λe30,j

φe4v2,j = λe40,j, φe5v2,j = λe50,j

φe6v3,j = λe60,j, φe7v4,j = λe70,j

λe1Me,j = λe20,jA
e2
v1,j

+ λe30,jA
e3
v1,j
,

λe2Me,j = λe40,jA
e4
v2,j

+ λe50,jA
e5
v2,j
,

λe3Me,j = λe4Me,j = Av3,jλ
e6
0,j,

λe5Me,j = λe6Me,j = Av4,jλ
e7
0,j,

δuJj = −λe10,j,

δAe3
v1
Jj = (λe20,j − λ

e3
0,j)f

e1
Me,j,

δAe5
v2
Jj = (λe40,j − λ

e5
0,j)f

e2
Me,j,

δAv3
Jj = −λe60,j(f

e3
Me,j + f e4Me,j),

δAv4
Jj = −λe70,j(f

e5
Me,j + f e6Me,j).

(5.21)

For obtaining the gradient information, the prediction horizon is utilized two times to solve the

system states (5.18), (5.19), (5.20) and the adjoint equations (5.21) numerically forward and

backward in time. Based on the gradient information and taking into account the constraints

0 ≤ uj < µe1 and 0 ≤ A
ev•
v•,j ≤ 1, the corresponding optimal values ϑ∗ can be obtained.

Remark 5.7. The OCPs concerning the inequality constraints can be solved after getting the

adjoint equations by Pontryagin’s maximum principle. This leads to extra analytical effort and

exhausted work specially for this kind of the complex optimization problem. Therefore, these

inequality constraints are handled numerically by the function fmincon provided by MATLAB.

5.5 Simulation Results

In this section, several experiments have been conducted: (i) the proper selection of prediction

horizon, (ii) the OCPs for the complex networks shown in Fig. 5.1.
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5.5.1 Selection of Prediction Horizon

The investigation is performed only on the demand tracking problem. The system parameters

are chosen as κ = 0.1, M e = 10, µe1 = 8 lots/h, µe2 = 4 lots/h, µe3 = 5 lots/h, µe4 = 3.5

lots/h, µe5 = 4 lots/h, µe6 = 5 lots/h, and µe7 = 8 lots/h. The final time tf = 40 h. For the

numerical settings are picked as, ∆x = 0.1 and CFL = 0.5 in each arc e, ∆t = 0.25, and C = 1.

The prediction samples P are picked to be 20, 25, 27, 30, 70 and 150 for the corresponding

the prediction horizons 5 h, 6.25 h, 6.75 h, 7.5 h, 17.5 h and 37.5 h, respectively. Herein the

prediction horizon is the product of the number of the prediction samples P and the time step

∆t.
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0.6

0.8
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Figure 5.4: AMPC performance for different prediction horizons.

The control parameter C is chosen to become a fixed value to evaluate the AMPC performance

by changing only the value of the prediction P . In general, the control horizon is picked due to

the appearance of the perturbations, thus reducing the computational time. As shown from Fig.

5.4, the lower value of P obtains the worst performance of AMPC. The reason for this is due

to that the prediction horizon does not capture the whole system dynamics. Furthermore, the

value of P is still in the transient region because of the system delay. The higher the prediction

P the performance gets better. Starting from the prediction horizon equals 17.5 h, and the

performance to follow the desired demand trajectory is not changing anymore compared to the

larger prediction horizons. To summarize, the best selection of the prediction horizon is when

the performance does not vary, which reduces the computational time compared to choosing a

larger prediction horizon.
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5.5.2 Performance Analysis of AMPC

The performance of the AMPC is investigated for both the demand tracking and the backlog

problems. The outcomes are compared to the traditional (slandered) MPC. When there is a

disturbance, the AMPC’s performance is compared to that of open-loop optimum control.

Demand Tracking Simulation Results

The inflow to the system at the inlet of arc e1 is u(t) = f e1(0, t) and the outflow y(t) = f e7(1, t)

is the outlet of the arc e7. The manipulated variables are the inflow and the fractions of the

vertices u(t), Ae3v1(t), A
e5
v2

(t), Av3(t) and Av4(t) respectively. The system parameters are chosen

as κ = 0.25, M e = 10, µe1 = 6 lots/h, µe2 = 4 lots/h, µe3 = 3 lots/h, µe4 = 5 lots/h, µe5 = 3.5

lots/h, µe6 = 4.5 lots/h, and µe7 = 6 lots/h. The final time tf = 20 h. For the numerical

settings are picked as, ∆x = 0.1 and CFL = 0.5 in each arc e, ∆t = 0.25, P = 81, and C = 1.
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Figure 5.5: The complex network for the demand tracking problem using both AMPC and traditional

MPC.
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Figure 5.6: The complex network for the demand tracking problem with disturbance.

The Fig. 5.5 shows the control variable u∗(t) at the inlet of the arc e1 and the decision variables

A∗v1(t), A
∗
v2

(t), A∗v3(t), and A∗v4(t) and the outflow y(t) at the outlet of the arc e7. The relative

computational time is reduced by 72.35% when applying the AMPC compared to the traditional

MPC. The outflows y(t) of both approaches are completely converged to the reference trajectory

starting from t = 9 h. However, the AMPC converges faster than the traditional one where it

starts converging to the demand trajectory at t = 8 h. When compared to open-loop control,

the AMPC results show solvability with impressive convergence to local minima in the context

of the disturbance d(t) effect which starts from 10 h and disappeared at 12 h as shown in Fig.

5.6.

Backlog Simulation Results

The system parameters of the complex network are chosen as κ = 0.25, M e = 10, µe1 = 8

lots/h, µe2 = 4 lots/h, µe3 = 5 lots/h, µe4 = 3.5 lots/h, µe5 = 4 lots/h, µe6 = 5 lots/h, and



5.5 Simulation Results 75

µe7 = 6 lots/h. The final time tf = 80 h, P = 321, and C = 80 where the control horizon is

the quarter value of the prediction horizon. For the numerical settings are picked as, ∆x = 0.1

and CFL = 0.5 in each arc e, ∆t = 0.25 h.

The final values of the objective functional of both approaches are almost similar. As shown

from the Fig. 5.7, the outflows y(t) match the reference after compensating the intractable

lots for both approaches. Although y(t) of the traditional MPC converges faster than AMPC,

the relative computational time is significantly reduced by 96.26% when applying the AMPC

compared to the traditional one. The backlog B(t) in both approaches remains at zero after

the compensation of the required lots. In the case of the influence of the disturbance d(t), the

AMPC shows satisfactory results to suppress its effect. Subsequently, the open-loop control

starts gradually deviating from zero value after the disturbance starts from t = 35 h as depicted

in Fig. 5.8.
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Figure 5.7: The complex network for the backlog problem using MPC.
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Figure 5.8: The complex network for the backlog problem with disturbance.

5.6 Summary

In this chapter, AMPC was introduced to investigate demand tracking and backlog problems

in the context of production systems. By coupling their related PDEs and ODEs, the complex

network comprising of arcs and storage spaces has been modelled. The addressed network
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includes structures that are dispersing and merging. When choosing the proper control and

prediction horizon, the control horizon is picked first to be tuned where it varies between 1 and

P . When C = 1 is totally feedback control, and C = P is termed open-loop control, it depends

on the presence of perturbations. An appropriate selection of the prediction horizon must

exceed the system delay. In addition, the performance does not change when selecting a bigger

prediction from the required one. This recommended value of the prediction horizon reduces

the computational time compared to choosing a larger prediction horizon and is considered the

best choice.

The proposed AMPC provides for the solutions of demand tracking and backlog problems. In

general, AMPC and traditional MPC attain local minima with close behaviour that leads to

steady-state convergence. The performance of the AMPC demonstrates significant reduction

in the computational time compared to the traditional MPC. Additionally, the AMPC enables

obtaining high accuracy of optimal solutions because it provides a mathematical insight into

the structure of the method. Finally, the AMPC is characterized by its robustness in terms of

perturbation effects.
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Chapter 6

Conclusions and Outlook

This work aims to design boundary control strategies to solve demand tracking and backlog

problems for manufacturing systems in terms of conservation laws coupled with ODEs in

different network topologies.

In the chapter one, the relevant literature is reviewed to motivate the methods addressed in

this thesis. The basis and principles of Little’s law and conservation laws are presented in the

chapter two. A transformation from a derived discrete event simulation to a continuum limit

of conservation law is produced in the microscopic view.

In the chapter three, the proposed PDE model for the single flow line in the manufacturing

systems is explored. The dynamic behaviour of the model is studied using ramp-up and ramp-

down scenarios. It is also interesting to contrast the manufacturing flow line architecture,

which is built up of the M/M/1 PDE model, with setting up a DES in Arena. The goal is

to appropriately describe the transient and steady-state behaviours of a simple manufacturing

system which is considered acceptable results for PDE model validation compared to DES.

Two alternative topologies are addressed in the context of the manufacturing system network.

Conditions for each vertex of the network are defined to design either dispersing or merging

networks. It is modelled using a set of both PDEs and ODEs. The influence of the uncontrolled

flow evolution across the entire network is demonstrated using arbitrary inflows.

In the chapter four, two different control challenges, demand tracking and backlog are consid-

ered in the context of the production system network. The backlog problem is an accumulated

error that describes the mismatch between the desired lot accumulation and the total number

of lots at the system outlet over a finite time interval that leads to either under- or over-

production. The OCPs are investigated in the dispersing and the merging networks. The

problems are optimized utilizing open-loop optimal control based on the direct and the indirect

approaches. The proposed approaches enable the solution of the OCPs. All of the approaches,

in general, reach a local minima with similar behaviour that leads to the steady-state. The
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results analysis reveals that each method has its own distinct characteristics. The indirect

methodology is characterized by excellent accuracy and minimal processing burden; yet, due

to the information necessary to compute the gradient, it is a sensitive method. The ease of use

and flexibility to any problem distinguishes the direct method. However, this approach takes

substantially longer to achieve a solution when compared to the indirect method.

Finally in the chapter five, AMPC was introduced to investigate demand tracking and backlog

problems in the context of the complex network of production systems. The addressed net-

work includes structures that are dispersing and merging. Furthermore, the appropriate way

to handle the parameters of the AMPC for both control and prediction horizons is addressed.

Moreover, the proposed AMPC provides for the solutions of demand tracking and backlog prob-

lems. In general, AMPC and traditional MPC attain local minima with similar behaviour that

leads to steady-state convergence. When compared to a typical MPC, the AMPC’s perfor-

mance shows a considerable reduction in computational time. Additionally, because it provides

a mathematical insight into the method’s structure, the AMPC allows for great accuracy of op-

timal solutions. Finally, the AMPC is characterized by its robustness according to perturbation

effects.

Outlook and Future Work

The study performed for this thesis revealed some concerns and limits that should be applied

in future studies. In this section, various proposals for further work are addressed as follows:

• Further investigation and validation are required for generalized PDE models according

to G/G/1 processes, where G stands for general distribution or new higher-order PDE

models that can completely follow the realistic behaviour of the production systems.

• Explore more complex situations for the production system such as considering that the

process rate is controllable and the machines are able to break down.

• Develop suitable control strategies based on the considered PDE models, which comprise

a mixture of flatness-based trajectory planning and backstepping-based feedback control

for stabilization and tracking control.

• Modifying the optimization algorithms by applying the second-order optimality conditions

to get the Hessian, which leads to more accurate results.
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Appendix A

Solving the Single Flow PDE Model

The analytical solution of the PDE model is found to be implicit which requires to be solved

iteratively. The model can be solved analytically by using the method of characteristics (MOC).

The PDE in (3.4) and (3.5) is recalled to get

∂

∂t
ρe(x, t) = −

(
µeM e

(M e + ρe(x, t))2

)
∂

∂x
ρe(x, t), (A.1a)

ρe(x, 0) = g(x), (A.1b)

ρe(0, t) = σ(t), (A.1c)

0 ≤ σ(t) ≤ µe. (A.1d)

The characteristic lines use the parametrization of x = x(η), t = t(η). Then, the chain rule

defines
dρe

dη
=
∂ρe

∂t

dt

dη
+
∂ρe

∂x

dx

dη
, (A.2)

by comparing (A.1) to (A.2), dt
dη

= 1, i.e. dt = dη and dx
dη

= µeMe

(Me+ρe)2
. Also, dρ

dη
= 0 which means

that the solution of ρ is constant along the characteristic lines. If x > µeMet
(Me+ρe)2

, the ODE turns

into dx
dt

= µeMe

(Me+ρe)2
. By integration, it becomes xo = x − µeMet

(Me+ρe)2
. While, if x < µeMet

(Me+ρe)2
, the

ODE defines dt
dx

= (Me+ρe)2

µeMe which gives after integration to = t− (Me+ρe)2x
µeMe . Substituting xo and

to in (A.1b) and (A.1c), respectively, results in

ρe(x, t) =

g
(
x− Meµet

(Me+ρe)2

)
, x > Meµet

(Me+ρe)2

σ
(
t− x(Me+ρe)2

Meµe

)
, x < Meµet

(Me+ρe)2

(A.3)

The equation (A.3) is implicit solution which has to be solved numerically for this type of the

initial-boundary-value problems (IBVPs).
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Appendix B

Derivation of OCPs of a Single Flow

Line in the Case of the Indirect

Method

B.1 Demand Tracking Problem:

The objective functional of the demand tracking problem is defined as

min J(u) =
1

2

∫ tf

0

((f ∗(t)− y(t))2dt,

subject to

∂

∂t
ρ(x, t) = − ∂

∂x
f(ρ(x, t)),

f(ρ(x, t)) = vρ =
µρ(x, t)

M + ρ(x, t)
,

ρ(x, 0) = 0, f(0, t) = u(t),

0 ≤ u(t) < µ.

(B.1)

The form of L is obtained as

L =
1

2

∫ tf

0

((f ∗(t)− y(t))2dt

+

∫ tf

0

∫ 1

0

λ(x, t)

(
∂ρ

∂t
+

∂

∂x

(
µρ(x, t)

M + ρ(x, t)

))
dxdt.

By using the integration by parts one obtains

L =
1

2

∫ tf

0

((f ∗(t)− y(t))2dt+

∫ 1

0

λ(x, tf )ρ(x, tf )dx



82 Derivation of OCPs of a Single Flow Line in the Case of the Indirect Method

−
∫ tf

0

∫ 1

0

∂λ(x, t)

∂t
ρ(x, t)dxdt+

∫ tf

0

λ(1, t)

(
µρ(1, t)

M + ρ(1, t)

)
dt

−
∫ tf

0

λ(0, t)

(
µρ(0, t)

M + ρ(0, t)

)
dt−

∫ tf

0

∫ 1

0

∂λ(x, t)

∂x

(
µρ(x, t)

M + ρ(x, t)

)
dxdt.

By evaluating the Gateaux derivative of L

δL = −
∫ tf

0

(f ∗(t)− y(t))δy(t)dt+

∫ 1

0

λ(x, tf )δρ(x, tf )dx

−
∫ tf

0

∫ 1

0

∂λ(x, t)

∂t
δρ(x, t)dxdt+

∫ tf

0

λ(1, t)δy(t)dt

−
∫ tf

0

λ(0, t)δudt

−
∫ tf

0

∫ 1

0

∂λ(x, t)

∂x

(
µM

(M + ρ(x, t))2

)
δρdxdt

= 0.

After regrouping, the PDE adjoint equations can be written as

∂λ

∂t
= −

(
µM

(M + ρ(x, t))2

)
∂λ

∂x
, (B.2a)

λ(x, tf ) = 0, (B.2b)

λ(1, t) = f ∗(t)− y(t), (B.2c)

δuJ(t) = −λ(0, t). (B.2d)

B.2 Backlog Problem:

The objective functional of the backlog problem is defined as

min J(u) =
1

2

∫ tf

0

(B(t))2dt,

subject to

∂

∂t
ρ(x, t) = − ∂

∂x
f(ρ(x, t)),

f(ρ(x, t)) = vρ =
µρ(x, t)

M + ρ(x, t)
,

ρ(x, 0) = 0, f(0, t) = u(t),

0 ≤ u(t) < µ.

(B.3)

The form of L is obtained as

L =
1

2

∫ tf

0

(B(t))2dt
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+

∫ tf

0

∫ 1

0

λ(x, t)

(
∂ρ

∂t
+

∂

∂x

(
µρ(x, t)

M + ρ(x, t)

))
dxdt.

By using the integration by parts one obtains

L =
1

2

∫ tf

0

(B(t))2dt+

∫ 1

0

λ(x, tf )ρ(x, tf )dx

−
∫ tf

0

∫ 1

0

∂λ(x, t)

∂t
ρ(x, t)dxdt+

∫ tf

0

λ(1, t)

(
µρ(1, t)

M + ρ(1, t)

)
dt

−
∫ tf

0

λ(0, t)

(
µρ(0, t)

M + ρ(0, t)

)
dt−

∫ tf

0

∫ 1

0

∂λ(x, t)

∂x

(
µρ(x, t)

M + ρ(x, t)

)
dxdt.

By evaluating the Gateaux derivative of L

δL = −
∫ tf

0

B(t)

∫ t

0

δy(c)dcdt+

∫ 1

0

λ(x, tf )δρ(x, tf )dx

−
∫ tf

0

∫ 1

0

∂λ(x, t)

∂t
δρ(x, t)dxdt+

∫ tf

0

λ(1, t)δy(t)dt

−
∫ tf

0

λ(0, t)δudt

−
∫ tf

0

∫ 1

0

∂λ(x, t)

∂x

(
µM

(M + ρ(x, t))2

)
δρdxdt

= 0.

By substituting

δy(t) = δd(t− γ), γ ∈ (0, tf ),

δy(c) = δd(c− γ).

δL = −
∫ tf

0

B(r)

∫ r

0

δd(c− γ)dcdr +

∫ 1

0

λ(x, tf )δρ(x, tf )dx

−
∫ tf

0

∫ 1

0

∂λ(x, t)

∂t
δρ(x, t)dxdt+

∫ tf

0

λ(1, t)δd(t− γ)dt

−
∫ tf

0

λ(0, t)δudt

−
∫ tf

0

∫ 1

0

∂λ(x, t)

∂x

(
µM

(M + ρ(x, t))2

)
δρdxdt

= 0.

From the shifting property of the delta function δd

λ(1, γ) =

∫ tf

0

λ(1, t)δd(t− γ)dt,
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∫ tf

γ

B(r)dr =

∫ tf

0

B(r)

∫ r

0

δd(c− γ)dcdr.

Since γ ∈ (0, tf ) is any value in the domain t therefore after regrouping, the PDE adjoint

equations can be written as

∂λ

∂t
= −

(
µM

(M + ρ(x, t))2

)
∂λ

∂x
, (B.4a)

λ(x, tf ) = 0, (B.4b)

λ(1, t) =

∫ tf

t

B(r)dr, (B.4c)

δuJ(t) = −λ(0, t). (B.4d)
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Appendix C

Derivation of Distribution Models

This appendix aims to generate a PDE model for a G/G/1 process in a manufacturing flow line.

Herein, G/G/1 refers to a general distribution for inter-arrival and processing times. Based on

queuing theory, the mean waiting time WTq for a single workstation is computed according to

the coefficient of variation in G/G/1, which is known as Kingman’s formula [54]

WTq =

(
C2
a + C2

p

2

)(
Γ

1− Γ

)
Tp. (C.1)

Herein, the parameters Cp = σ
Tp

and Ca = σ
Ta

are the coefficient of variation for process time

and inter-arrival time, respectively. Besides, σ is the standard deviation of the distribution, Ta
is the mean inter-arrival time, Tp is the mean process time and the utilization is denoted by

Γ = u
µ
. In the case of the M/M/1 PDE model for the manufacturing flow line, the coefficient

of variations Cp and Ca are equal to one. The mean flow time in steady-state ϕ is the mean

waiting time of the queue and the mean process time in a single workstation

ϕ =

(
C2
a + C2

p

2

)(
Γ

1− Γ

)
Tp + Tp, (C.2a)

C2
d = (1− Γ2)C2

a + Γ2C2
p , (C.2b)

where Cd is the approximate coefficient of variation of inter-departure by Kuehn’s coupling

equation [59]. When the load is heavy (Γ ≈ 1), C2
d is approximately equal to C2

p . When the

load is light (Γ ≈ 0), C2
d is approximately equal to C2

a .

In case of a serial production flow line, workstations are more than one, this parameter is

equal to the squared coefficient of variation of inter-arrival time for the next workstation i.e.,

C2
a,k+1 = C2

d,k. For the sake of simplicity, these workstations are assumed to be identical and

there is no change in the coefficient of variation of processing time C2
p . Thus, the overall

coefficient of variations can be stated as follows
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TCa =
M∑
k=1

C2
a,k, (C.3a)

TCp =
M∑
k=1

C2
p,k, (C.3b)

herein, TCa and TCp are the total squared coefficient of variations of both inter-arrival times

and processing times respectively.

C.1 M/D/1 Model

In the case of the M/D/1, TCp = 0 and Ca is computed recursively by

Ca,k+1 =

{
1, if k = 0.∏M

k=1(1− Γ2)2k−1
, otherwise.

The total coefficient of variation of the inter-arrival times TCa is obtained from (C.3) and the

flow time becomes

ϕ =

(
TCa
2M

)(
Mf

µ− f

)
Tp +MTp

=
TCa ρ

2µM
+
M

µ

=
TCa ρ+ 2M2

2µM
,

where, the inverse of the process time Tp is the process rate µ. Since the inverse of the flow

time is the velocity, then the velocity reads

v =
2µM

TCa ρ+ 2M2
,

from the adiabatic equation f = ρv, the flow gets

f = ρ

(
2µM

TCa ρ+ 2M2

)
,

after separating ρ from the equation, we obtain

ρ =
2M2f

2µM − TCaf
,

and the partial derivative of ρ with respect to time be

∂ρ

∂t
=

(
4µM3

(2µM − TCaf)2

)
∂f

∂t
,
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form the conservation of mass

∂

∂t
ρ(x, t) +

∂

∂x
f(x, t) = 0,

the general form of M/D/1 is obtained by

∂

∂t
f(x, t) = −

(
(2µM − TC2

af(x, t))2

4µM3

)
∂

∂x
f(x, t), (C.5a)

fIC(x, 0) = g(x), (C.5b)

fBC(0, t) = u(t). (C.5c)

C.2 G/G/1 Model

By considering the parameter C = TCa+TCp

2
herein, TCp and TCa are obtained from (C.3) and

the flow time becomes

ϕ =

(
C

Mµ

)(
Mf

µ− f

)
+
M

µ

=
Cρ

µM
+
M

µ

=
Cρ+M2

µM
,

and the velocity reads

v =
µM

Cρ+M2
,

from the adiabatic equation f = ρv, the flow gets

f =
µMρ

Cρ+M2
,

after separating ρ from the equation, we obtain

ρ =
M2f

µM − Cf
,

and the partial derivative of ρ with respect to time be

∂ρ

∂t
=

(
µM3

(µM − Cf)2

)
∂f

∂t
,

form the conservation of mass

∂

∂t
ρ(x, t) +

∂

∂x
f(x, t) = 0,

and the general form becomes
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∂

∂t
f(x, t) = −

(
(µM − Cf(x, t))2

µM3

)
∂

∂x
f(x, t), (C.7a)

fIC(x, 0) = g(x), (C.7b)

fBC(0, t) = u(t). (C.7c)

Remark C.1. For the cross-check, if C in G/G/1 equals M/D/1 then C = TCa

2
and the model

in (C.7) is converted to M/D/1 model in (C.5).
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12. Baumgärtner, V., Göttlich, S., and Knapp, S. (2020). Feedback stabilization for a coupled PDE-

ODE production system. Mathematical Control & Related Fields, 10(2):405.

13. Bewley, T. R. (2001). Flow control: new challenges for a new renaissance. Progress in Aerospace

sciences, 37(1):21–58.

14. Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge university

press.



90 BIBLIOGRAPHY
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Design and management of manufacturing systems for production quality. Cirp Annals, 63(2):773–

796.

22. Cooper, R. B. (1981). Queueing theory. In Proceedings of the ACM’81 conference, pages 119–122.

23. Coron, J. M., Kawski, M., and Wang, Z. (2010). Analysis of a conservation law modeling a

highly re-entrant manufacturing system. Discrete and Continuous Dynamical Systems-Series B,

14(4):1337–1359.

24. Dafermos, C. M. (2005). Hyperbolic conservation laws in continuum physics, volume 3. Springer.

25. d’Apice, C., Gottlich, S., Herty, M., and Piccoli, B. (2010). Modeling, simulation, and optimization

of supply chains: a continuous approach, volume 121. SIAM.

26. D’Apice, C., Kogut, P. I., and Manzo, R. (2014). On relaxation of state constrained optimal control

problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 9(3):501.

27. Davidrajuh, R. (2018). Modeling discrete-event systems with gpensim: An introduction. Springer.

28. Deif, A. M. (2011). A system model for green manufacturing. Journal of Cleaner Production,

19(14):1553–1559.

29. Dmitruk, A. V. and Kaganovich, A. (2011). Maximum principle for optimal control problems with

intermediate constraints. Computational Mathematics and Modeling, 22(2):180–215.

30. Dong, M. and He, F. (2012). A new continuous model for multiple re-entrant manufacturing

systems. European journal of operational research, 223(3):659–668.



BIBLIOGRAPHY 91

31. Ekaputri, C. and Syaichu-Rohman, A. (2013). Model predictive control (mpc) design and imple-

mentation using algorithm-3 on board spartan 6 fpga sp605 evaluation kit. In 2013 3rd International

Conference on Instrumentation Control and Automation (ICA), pages 115–120. IEEE.

32. Ferrari, S., Foderaro, G., Zhu, P., and Wettergren, T. A. (2016). Distributed optimal control of

multiscale dynamical systems: a tutorial. IEEE Control Systems Magazine, 36(2):102–116.

33. Fishwick, P. A. (2007). Handbook of dynamic system modeling. CRC Press.

34. Freitag, M. and Hildebrandt, T. (2016). Automatic design of scheduling rules for complex manu-

facturing systems by multi-objective simulation-based optimization. CIRP annals, 65(1):433–436.
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