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Abstract: Full waveform inversion is a widely used technique to estimate the subsurface parameters
with the help of seismic measurements on the surface. Due to the amount of data, model size
and non-linear iterative procedures, the numerical computation of Full Waveform Inversion are
computationally intensive and time-consuming. This paper addresses the parallel computation of
seismic full waveform inversion with Graphical Processing Units. Seismic full-waveform inversion
of in-plane wave propagation in the finite difference method is presented here. The stress velocity
formulation of the wave equation in the time domain is used. A four nodded staggered grid finite-
difference method is applied to solve the equation, and the perfectly matched layers are considered
to satisfy Sommerfeld’s radiation condition at infinity. The gradient descent method with conjugate
gradient method is used for adjoined modelling in full-waveform inversion. The host code is
written in C++, and parallel computation codes are written in CUDA C. The computational time
and performance gained from CUDA C and OpenMP parallel computation in different hardware
are compared to the serial code. The performance improvement is enhanced with increased model
dimensions and remains almost constant after a certain threshold. A GPU performance gain of up to
90 times is obtained compared to the serial code.

Keywords: seismic wave propagation; full waveform inversion; CUDA; GPU parallelisation; finite
difference method

1. Introduction

The physical properties of the Earth’s subsurface have always been of interest to
humankind. Ranging from scientific development to industrial use, such as oil and gas
industries and engineering applications, determining or approximating the physical prop-
erties is essential. Exploration geophysics is the branch of geophysics that uses physical
methods such as seismic, acoustic, electromagnetic or electric measurements to extract
information about the Earth’s subsurface without physical disturbances. Full Waveform
Inversion (FWI) is a wave inversion procedure where the high-quality estimate of the
subsurface parameters is obtained by minimising the misfit between the observed and
modelled data. Seismic and acoustic waveform inversion is widely in practice. Seismic or
acoustic signals are applied at the surface, which gets propagated through the subsurface
of interest, and the output signals are obtained at receiver points (see Figure 1). The wave
phenomenon is modelled using an appropriate numerical technique, and the output is
compared to that obtained from the field test. The model is updated with a mathematically
calculated approximation function until we get a desired minimum value of the misfit to
get a high-quality approximation of the subsurface properties [1]. This paper deals mainly
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with time-domain seismic wave inversion in a two-dimensional system using the finite
difference method (FDM).

Seismic source Seismic recievers

Geological region of interest

Geological
layers

Cracks

wave path

Figure 1. A schematic representation of geophysical investigation using seismic waveform inversion
of a subsurface geological region with multiple layers.

1.1. The Seismic Full Waveform Inversion

The first introduction and numerical implementation of FWI was found to be devel-
oped in the 1980s; see [2–7]. Since its first implementation, many authors have implemented
and modified it for different purposes and methods. The time domain FWI approach is
applied in frequency domain approach in [8,9]. The performance of frequency domain
approach of FWI is optimised with parallelisation by [10,11]. FWI is widely used for in-
version of: (a) acoustic waves, e.g., [12–14] (b) seismic waves, e.g., [12,15–17]. With the
advancement in modern day computers and parallel processing capabilities, FWI is gaining
its popularity in exploration geophysics. A basic flow chart of Seismic FWI in shown in
Figure 2.

The Finite Difference Method (FDM) is one of the most widely used inversion methods
in the numerical implementation of FWI. The conventional FDM is based on the straight-
forward numerical implementation of Partial Differential Equations (PDE) for the given
Boundary Value Problem (BVP). The partial differential terms are substituted with algebraic
differences for a small argument x, such that x → 0, which makes it easy to implement and
understand (refer Equations (6) and (7)). The finite difference formulation for seismic waves
can be found in: (a) [18–20] for forward wave propagation problems and (b) [12,21–23]
for FWI problems. To satisfy Sommerfeld’s radiation condition at infinity (i.e., the wave
radiating towards infinity should not come back unless there are reflecting boundaries),
absorbing boundaries or perfectly matched layers (PML) [12] is used. PML damps the
outgoing wave field over a distance (number of grids in discrete form), making it more
efficient and accurate than a normal absorbing boundary. Details about PML can be found
in [24–26].
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Figure 2. A flowchart of Seismic Full Waveform Inversion.

1.2. Parallel Computation

The finite difference for FWI is computationally intensive since, in each iteration step
of FWI, the forward wave propagation model has to be computed several times and is both
time and resource-consuming. Therefore, reducing the computation costs of FWI has been
an important area of research for geophysical researchers. Parallel processing can efficiently
perform seismic wave propagation and full-waveform inversion computations at a large
scale. Processors can be used in parallel to achieve superior performance. To maximise the
potential of parallel machines, the research challenge is to reframe the problem, develop
parallel algorithms, and devise new computational strategies. The research objective is
to reframe the problem, develop parallel algorithms, and invent alternative computing
methodologies to maximise the benefits of parallel computing. Processing speeds on a
single thread have stagnated in the past two decades. However, computer hardware and
software advances have made parallel processing a realistic and appealing technology.

GPUs (Graphics Processing Units) are now among the most popular computing
resources for parallel computation because of their high processing rates and low cost.
Their capabilities have evolved from simple peripherals to powerful, programmable, and
sophisticated processors in their own right. The potential of using inexpensive graphics
technology for general-purpose computing has sparked great interest.

Since the early 2000s, seismic forward modelling has used parallelisation strategies
based on software enhancements utilising APIs such as OpenMP and hardware improve-
ments by porting codes to GPUs [27]. Jiang and Zhu [28] discuss the implementation of
GPU-based 2D elastic FWI in the time domain on a single GPU card. The authors utilised a
boundary-saving strategy to reconstruct forward wave fields to reduce the significant RAM
utilisation. The work demonstrates that using shared memory can reduce the modelling
time by about a third. Wang et al. [29] describes the development of a parallel scheme
to speed up FWI on GPUs with Compute Unified Device Architecture (CUDA). Using
the GTX480 GPU, the authors could speed up the FWI 80 times compared to the Central
Processing Units (CPU) implementation. The acceleration of a 3-D finite-difference in the
time domain wave propagation code on NVIDIA GPU graphics cards and the CUDA pro-
gramming language is discussed in [30]. The authors also used Message Passing Interface
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(MPI) to use multiple GPUs in parallel. The authors report the acceleration of the wave
propagation code by a factor between 20 to 60 compared to a serial implementation.

It can be concluded from the literature review that the parallel programming of FWI in
GPU has significantly improved the computational speed. However, the different physical
methods have to be tested, and the computational efficiency needs to be further enhanced
to adopt it for practical applicability. In this paper, we implemented the numerical model of
seismic forward and full-waveform inversion models for P/SV wavefield in GPU and tested
it against the serial and CPU parallel codes. As mentioned earlier, the work investigates
the parallelisation of the method using the OpenMP and CUDA Application Programming
Interface (API) on the CPU and GPU, respectively.

1.3. Importance, Scope and Limitations of the Study

FWI is a handy non-destructive method to obtain accurate information about the
subsurface parameters of the earth of critical infrastructure, and its importance is still
increasing. However, FWI primarily has two significant scopes for improvement to find
widespread applicability in exploration geophysics and engineering. They are: (a) the
improvement of the optimisation and parameter search algorithms, which is not the scope
of this study, and (b) the improvement in computational efficiency. FWI is an iterative
algorithm that demands high computational costs and high memory, which is generally
out of the scope of general computers. If possible, the computation for the given hardware
often takes days or months, which makes it practically inefficient.

The present study mainly focuses on enhancing in-plane seismic full waveform in-
version with CPU and GPU parallelisation. The existing numerical algorithms are im-
plemented in serial and parallel codes, and the computational efficiency achieved by
parallelisation is studied. Thus, the computational enhancement by parallelisation is lim-
ited to the specific algorithm used in the programming. The study was conducted about
in-plane elastic waves in the time domain, and the full waveform inversion was conducted
using the step-gradient method (See [31]). Other advanced algorithms, where faster and
more robust search methods enhance the FWI algorithms, are not within the scope of
this study. Additionally, the test and validation are conducted for the limited number of
hardware available; thus, the performance boost due to CPU and GPU parallelisation may
vary depending upon the hardware configuration.

2. Mathematical Model
2.1. Stress Velocity Formulation of 2D Elastic Wave Equation

The stress velocity formulation of the elastodynamic equation, as given by [12] and
substituted for two-dimensional in-plane wave motion (P-SV wavefield), can be written as
in Equations (1)–(5).

ρ
∂vx

∂t
=

∂σxx

∂x
+

∂σxy

∂y
+ fx, (1)

ρ
∂vy

∂t
=

∂σxy

∂x
+

∂σyy

∂y
+ fy, (2)

∂σxx

∂t
= (λ + 2µ)

∂vx

∂x
+ λ

∂vy

∂y
+

∂σxx0

∂t
, (3)

∂σyy

∂t
= λ

∂vx

∂x
+ (λ + 2µ)

∂vy

∂y
+

∂σyy0

∂t
, (4)

∂σxy

∂t
=

1
2

(
∂vx
∂y +

∂vy
∂x

)
+

∂σxy0

∂t
(5)

where x and y are two-dimensional spatial variables, t is time variable, vx and vy are
particle velocities along x and y directions, ∂σxx, ∂σyy and ∂σxy are principle and shear
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stress variables, ∂σxx0, ∂σyy0 and ∂σxy0 are body stresses and, ∂
∂t , ∂

∂x and ∂
∂y are partial

differential operators to the respective variables.

2.2. Numerical Implementation in FDM

For the numerical implementation of Elastodynamic Wave Equations (1)–(5), they
are discretized in finite time and space over a two-dimensional grid. The finite-difference
operators are based on simple differences over a small interval of space and time as given
in Equations (6) and (7).

∂P+

∂x
≈ P[i + 1]− P[i]

dh
Forward operator. (6)

∂P−

∂x
≈ P[i]− P[i− 1]

dh
Backward operator (7)

P is the given function, i is the grid index, and dh is a small increment in the space or time
variable x. A combination of forward and backward operators is also possible.

A standard staggered grid (SSG), suggested by [32,33], is widely implemented by other
researcher for the computation of two-dimensional seismic wave propagation problems.
The standard staggered grid, as implemented in [12] and shown in Figure 3 is used for
numerical implementation in the paper. An arithmetic mean is used to obtain Density ρ,
and a harmonic mean is used to obtain Lamis’ Constant parameter µ at the half grid points
in the staggered grid. A detail of Finite Difference Discretization of Seismic FWI Problem
and computational implementation can be found in [12,31].

i,j=0 i=1 NX. . . . . . . . . . . . . 2 3 4
j=

1
N

Z
.. . .. . . . . 

2
3

4
x

z

dz

(i,j)

dx

(i+1,j)

(i+1,j+1)

(i,j+1)

λ, μ, ρ, σxx, σyy vx, ρx

σxy, μxyvy, ρy, 

Figure 3. A staggered grid configuration for use in seismic finite difference modelling [12,31–33].

Perfectly Matched Layers (PML), as implemented in [31], is used as a boundary con-
dition. The perfectly matched layer frame is added to the finite difference grid, where
the wave equation is solved in the frequency domain with coordinate stretching in this
region (see Figure 4). The arrangement absorbs the outgoing waves and creates a reflec-
tionless boundary frame (see [24]) and the Sommerfeld’s radiation condition is numerically
implemented.

For FWI, a start model has to be initialised in the first step. A start model could be
informed guesswork with the information available about the ground. The mathematical
model is solved for the given seismic source, and the output signals are recorded at the
receiver locations. This part is called the forward model, and the modelled output at the
receivers is called modelled data (umod). The seismic recordings that we have from the field
recordings are referred to as observed data (uobs). The difference between them is referred
to as residual data and can be measured using vector norm. For this case, we use L2 norm,
given by Equation (8). The Gradient-based method given in [12] is implemented in parallel
FWI computation in the paper.
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| L |2=
(
∑n

i=1 | umod − uobs |2
)1/2 (8)

where n is the number of receivers. L2 norm is related to energy, which is used to calculate
the energy gradients, and with proper step length, we gradually minimise the misfit with
every iteration; see [31].
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Figure 4. Perfectly matched layers in finite difference grid (npml = Number of grids in perfectly
matched layers).

3. Parallel Computational Model

In terms of CPU clock speed, current generation computing has reached saturation,
primarily due to the enormous increase in cost and power requirement for increasing clock
frequency further from current standards [34]. Until 2004 Moore’s law was in full force, with
chip densities doubling every two years. It also increased clock speed as the chip dimension
decreased due to Dennard scaling. According to this principle, the power needed to run
transistors in a given volume remains constant regardless of the number of transistors.
Because transistors do not scale with size, power density increases as transistors get smaller.
Increasing clock speeds also implies a higher voltage, which increases power consumption.
Since the scaling was performed assuming most of the power was dynamic, with a smaller
transistor, the static power, namely leakage, began to dominate. In addition, more heat is
generated with increasing clock speeds, requiring more robust cooling solutions.

The processor shifted from a single-core to a multicore to combat the abovementioned
issue. Power and frequency are fundamentally linked in multicore processors. By in-
corporating multiple cores, the frequency of each core can be lowered, which allows the
power generally given to a single core to be distributed among multiple cores. Thus, a
multicore processor produces significantly higher performance [35] and results in parallel
processing. By focusing more on increasing the core count rather than the clock speed,
parallel computing is one of the most optimal methods of achieving high performance from
a CPU [36]. The comparison between OpenMP and CUDA is given in Table 1.
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Table 1. Major features of OpenMP and CUDA [37].

OpenMP CUDA

Parallelism -Data Parallelism -Data Parallelism
-Asynchronous task parallelism -Asynchronous task parallelism
-Host and device -Device only

Architecture abstraction -Memory hierarchy -Memory hierarchy
-Data and computation binding -Explicit data mapping and movement
-Explicit data mapping and movement

Synchronisation -Barrier -Barrier
-Reduction
-Joint

Framework Implementation -Compiler directives for C/C++ and
Fortran C/C++ extensions

3.1. OpenMP

OpenMP is a parallel programming model for shared memory and distributed shared
memory multiprocessors. The OpenMP API supports multi-platform shared-memory
parallel programming in C/C++ and Fortran. The OpenMP API defines a portable, scalable
model with a simple and flexible interface for developing parallel applications on platforms
from the desktop to the supercomputer. OpenMP supports the parallelisation of small
portions of a program at a time rather than all at once, a method also known as incremental
parallelisation. As a result, it is possible to observe the impact of parallelisation of individual
functions on the application [38]. Through OpenMP, the compiler guides the parallelisation
of code through directives, easing the burden on programmers of doing it manually [39].
The steps to parallelise the given code using OpenMP have been elaborated in Figure 5. An
important aspect is identifying which functions take the longest to execute. The second
step involves identifying the code blocks in the function that could be parallelised. This is
conducted by ensuring that operations in parallel are not accessed in the middle of their
execution and that each result is calculated independently of the others in parallel. After
declaring sections as parallel, define variables, as each thread may require a variable only
accessible to them. Finally, several test cases must be run to check that the results are
identical to sequential code and that there is no race condition.

3.2. GPU

GPUs are programmable processors among the most powerful computing devices
available in terms of performance and price. GPUs are high-density processors known
to accelerate graphics applications compared to CPUs due to their multi-core design and
high memory bandwidth. Because of the GPU’s parallel architecture, it has sustained a
steady performance boost. A current-generation high-end GPU exceeds a high-end general-
purpose CPU in terms of processing power. On a GPU, a shared memory pool available
to all threads in the block performs substantially better than a global memory pool (See
Figure 6. The programming model is based on the hierarchy of hardware parallelism. The
GPU kernel divides all threads into equal-sized static workgroups of several hundred.
Workgroups effectively exchange state and synchronise, allowing for coordinated data
processing. A workgroup’s threads are all scheduled to run on a single core simultaneously.
Serial execution of the code takes place on the CPU. On the GPU, parallelism is represented
via a kernel function that runs many threads simultaneously.



Appl. Sci. 2022, 12, 8844 8 of 21

Identifying code
blocks for par-

allelization

Declare the section
of code to be

carried in parallel

Declare variables as
private or shared

based on their
memory access

Allocation of
threads to processes

Section NSection 1Section i

Check for
convergence

END

Yes

No

The scope of parallel domain

Figure 5. A flowchart of parallel computation using OpenMP.
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Compute Unified Device Architecture (CUDA)

The introduction of NVIDIA’s CUDA allowed it to be used to accelerate non-graphical
applications. CUDA programming on GPUs has drastically increased computing perfor-
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mance, making it a popular parallelism option. CUDA is a C-based language designed
to use GPUs’ massive parallelism. Nvidia’s CUDA framework comprises an expanded
C/C++ programming language and optimised libraries (cuBLAS, cuFFT) for common
mathematical tasks. CUDA provides a basic abstract programming model that may be
used on several GPU generations in the future.

The steps to parallelise the code using CUDA on the GPU have been elaborated in
Figure 7. The prepossessing is conducted on the CPU using Python programming language
and is saved as binary files. The files are read in C++ host code, from which the necessary
variables are transferred to the GPU device for the parallel computation of forward and
FWI simulations. The GPU is used for the rest of the calculation. The forward simulations
are run over the initial input parameters. Then the output from the forward simulations
is compared with the field measurement records to calculate the data misfit. If the data
misfit is less than the minimum, the parameters (Lami’s constants: λ, µ and Density: ρ) are
estimated to the desired accuracy. Suppose the data misfit is more than the minimum; the
simulation is forwarded to an adjoint simulation where the gradients of the parameters
are calculated. The computed gradients are then smoothed and optimised, and the best
fitting step length is calculated using a parabolic line search algorithm. With the gradients
and the step length the medium parameters are updated as mi+1 = l ∂m + mi, where i
is the iteration step, mi is the medium parameters at ith iteration step, ∂m the gradient of
the parameter and l the computed step length. The forward simulation is run in the next
iteration with the updated medium parameters. The loop runs until the misfit is obtained
within the desired limits. After the desired misfits are obtained, the latest obtained medium
parameters are copied to the host CPU as binary files, where the post-processing of the
results continues in Python.

Start

Stop

Preprocessing
  • FD grid
  • Start model
  • Signal processing
  • Source time function
  • Reciever time function
  • PML parameters

Forward simulation
  • Update stresss
  • Update velocity
  • Assign dynamic loads

Calculate misfit
  • Compute L2-norm
  • Calculate adjoint loads

  Residual 
within limits

Adjoint simulation
  • Update stresss
  • Update velocity
  • Assign adjoint loads
  • Calculate gradients

Optimization
  • Scale gradients
  • Smooth gradients
  • Optimize gradients
  • Calculate optimum 
     step length 

Model update
  • Update medium 
     parameters

Postprocessing
  • Output model
  • Database and plots

  Yes   No

HOST CPU GPU DEVICE

Figure 7. A flow chart of parallel computation of seismic FWI in GPU.
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4. Numerical Simulations

The section presets the implementation of seismic Forward and FWI simulations
in parallel computation based on GPU and compare the performance to that of parallel
computation in CPU described in Section 3. The hardware used for computation is as
shown in Table 2. Two different simulations are considered to study the efficiency of parallel
computation in GPU. To study the computational efficiency of the forward-only model, a
scenario of seismic wave propagation in a water reservoir dam is presented in Section 4.1.
For the seismic FWI, a spherical inclusion in full space is shown in Section 4.2.

Table 2. CPU and GPU hardware used for computation in this study.

Hardware CPU/GPU Memory OS

CPU1 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz 8 GB Ubuntu 20.04

CPU2 AMD Ryzen Threadripper 3970X( 2.9 GHz) 64 GB Ubuntu 20.04

GPU1 Nvidia GeForce GTX 1650 4 GB Ubuntu 20.04

GPU2 (installed with CPU2) Nvidia GeForce GTX 2080 Ti 8 GB Ubuntu 20.04

4.1. Seismic Forward Model

For the numerical simulation of the forward wave propagation problem, we consider
an earthen water reservoir dam with the dimensions as shown in Figure 8. The depth of
the water on the upstream slope of the dam is 3.0 m. We consider a line crack (5.6 cm
wide and 10 m long) starting at 1.5 m below the centre of the free surface of the dam. The
crack extends towards the far-field at an angle of 45 degree to the vertical. The crack is
filled with extremely soft saturated soil. The water table inside the dam is represented by
the draw-down curve, as shown in the figure. A realistic range of wave propagation is
considered by adopting the elastic medium parameters as suggested in [40]. The medium
parameters for the model are shown in Table 3 and the effect of the air-water and the
air-solid interface is considered a free surface. A synthetic time signal (Ricker wavelet) of
unit amplitude and centre frequency of 0.8 kHz acting vertically is considered. The seismic
source fired at the top of the upstream slope of the dam. Twenty-five seismic receivers
are positioned along the dam’s upstream and downstream slope with a spacing of 0.53 m
(dx = 0.5 m, dz = 0.17 m). A source function of unit amplitude is considered; thus, the
seismograms recorded at the receivers are the unitless values normalized by the excitation
function. The dam is initially (at t = 0) considered at rest.

1.5m

dw=3.0m

h=
4.
0m

1
3

3.0m

1
3

Seismic source

Crack

WT

Seismic receivers 
25@ 0.53m c/c

x

z
A

B

D

C

E

Seismic receivers 
25@ 0.53m c/c

Figure 8. A physical model of dam including a crack and soil-water interface to perform forward
seismic wave simulation. The material parameters are as given in Table 3 and 55 seismic receivers are
located along the dam surface with spacing of 0.53 m.
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Table 3. Medium parameters for forward seismic modelling.

Medium Code P-Wave Velocity (c1) S-Wave Velocity (c2) Density (ρ)

Water A 1482 m/s 0.0 1000 kg/m3

Unsaturated soil in the dam B 800 m/s 400 m/s 1700 kg/m3

Saturated soil in the dam C 1450 m/s 400 m/s 1950 kg/m3

Subsurface layers D 1900 m/s 700 m/s 2100 kg/m3

Crack filler E 1600 m/s 100 m/s 1000 kg/m3

The model is discretized with nx = 1493, nz = 393 grid points along the respective
directions with grid spacing dx = dz = 0.02 m. Twenty perfectly matched layers are
used in all four directions. The particle velocities normalized to their peak amplitudes at
different receiver positions are shown in Figure 9. The output corresponds to the input
Ricker wavelet signals of 0.8kHz central frequency as shown in Figure 10. The particle
velocities vz and vx in the dam are shown in Figure 11 and Figure 12, respectively.
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Figure 9. Vertical components of particle velocity, normalized by the peak amplitude of the input
signal, recorded in the receivers located at the surface of the dam at different the transducer locations
x = [−1.5 m, 1.5 m, 4.5 m, 7.5 m, 10.5 m, 13.5 m]: (a) Time signal, (b) The frequency amplitudes
normalized to the peak amplitude of the same signal. (The source is located at x = −1.5 m).
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Figure 10. Ricker wavelet of unit amplitude with center frequency 0.8 kHz used as velocity source
for the excitation in forward seismic simulation model: (a) normalized amplitude in time domain,
(b) normalized amplitudes in frequency domain.
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Figure 11. Vertical component of particle velocity (vz), normalized to the velocity wavelet at the
excitation point, in the forward seismic model.
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Figure 12. Horizontal component of particle velocity (vx), normalized to the velocity wavelet at the
excitation point, in the forward seismic model.

4.2. Seismic FWI Model

For FWI simulations, a simple spherical inclusion model, as used by [12] for acoustic
FWI is considered. A rectangular homogeneous elastic region in range x = (0, 15) m
and z = (0, 30) m in a homogeneous full-plane with density ρ = 1500 kg/m3 and wave
velocities c1 = 500 m/s, c2 = 300 m/s with a circular inclusion of radius r = 3 m at
the center of the grid with density ρ = 1700 kg/ m 3 and wave velocities c1 = 800 m/s,
c2 = 400 m/s is considered (Figure 13). Three seismic sources are used at coordinates
x = 1 m and z = 7.5 m, 15 m, 22.5 m. Fifty five receivers are used at x = 14 m and between
y = 1.5 m to y = 28.5 m in interval of 0.5 m, as shown in Figure 13. The model is discretized
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with nx = 301 and nz = 601 number of grids in x- and z-directions, respectively, with grid
spacing dx = dz = 0.05 m. 10 convolutional PML layers are used in all four boundaries.

15m

30m

spherical inclusion
center @(7.5m, 15m)
Dia. 4.3m

seismic sources
3@7.5m c/c

seismic receivers
55@0.5m c/c

perfectly matched layer 
(10 grids Finite Difference grid)

Figure 13. A spherical inclusion in a rectangular finite difference grid considered for FWI simulation.

A synthetic data set is considered as observed seismic records. A Ricker wavelet with
peak frequency 2.50 kHz and amplitude 1.0 as shown in Figure 14, are fired simultaneously
as input velocities in the z-direction, and the observed data is generated by the forward
modelling of the true model. A seismic FWI simulation is performed with the developed
parallel codes. The start model is a homogeneous full plane with the same material
properties as the true model without spherical inclusion. The material updates in different
iteration steps are shown in Figures 15 and 16 for longitudinal and shear wave velocity
models, respectively. The convergence of the inversion model is represented by the change
in L2-norm over the iteration steps, shown in Figure 17. The obtained results show a fair
inversion of the given true model.

0 5 10 15 20
Time (ms)

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

(a)

Ricker wavelet

0.0 0.2 0.4 0.6 0.8 1.0
Frequency (kHz)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

(b)
Amplitude

/2

0

/2

Ph
as

e

Phase

Figure 14. Ricker wavelet of unit amplitude with center frequency 250 Hz used as velocity source for
the excitation in FWI model: (a) normalized amplitude in time domain, (b) normalized amplitudes in
frequency domain.
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Figure 15. Longitudinal wave velocity inversion at different iteration steps in seismic FWI of a
spherical inclusion in full-plane.
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Figure 16. Shear wave velocity inversion at different iteration steps in seismic FWI of a spherical
inclusion in full-plane.
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Figure 17. L2 norm in the first 40 steps, normalized to the L2 norm in the first step, in Seismic FWI a
spherical inclusion in full-plane.

5. Results and Discussion

A series of studies are performed to show the enhancement of in-plane seismic full
waveform inversion using CPU and GPU parallelization. Initially, the forward model is
studied with an example of the wave propagation in a dam in Section 4.1. The validated
forward model is further developed into the full waveform inversion model in Section 4.2
using low-frequency anamoly for a circular inclusion in full space. The developed FWI
codes are programmed for serial computation in CPU, parallel computation in CPU using
openMP parallel modules and parallel computation in GPU using CUDA C programming
languages. Same physical parameters and mathematical models, with a variation in time
and space grids, are used for comparative performance analysis of the developed codes
over the available hardware.

The seismic wave propagation in the dam shows that the presence of cracks in the
dam significantly alters the propagation of elastic waves (Figures 11 and 12). Similarly,
a minor disturbance can also be observed due to the presence of a water table. The
effective wavelength of P and SV waves in saturated soil inside the dam is measured
in Figures 11 and 12 to be approximately 2.0 m and 0.7 m, respectively. The measured
wavelengths correspond to the medium parameters and the central frequency of the
input signal, which validates the seismic simulation codes in CPU and GPU. It can also
be observed from Figure 9b that the peak frequency response shifts to slightly higher
frequencies with the distance of wave propagation. From the perspective of computational
efficiency, similar results are obtained from serial computation, parallel computation using
openMP and parallel computation in GPU. Figures 18–20 show the computational time
and performance boost in forward simulations. It can be seen that the performance in the
most capable GPU that we used is 60 to 80 times that compared of the sequential code. The
CPU parallel computation using OpenMP with 16 threads only shows an improvement
by 2 to 4 times in the performance. For the GPU1, the simulation was out of memory after
3800-time steps for the given spatial grid; see Figure 18.
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Figure 18. Comparison of computational time and performance for variation of temporal grid size
NT keeping spatial grid size constant (NX = 201, NZ = 401) in forward simulations.
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Figure 19. Comparison of computational time and performance for variation of spatial grid size along
Z direction NZ keeping spatial grid size along X direction and temporal grid constant (NX = 201,
NT = 1000) in forward simulations.
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Figure 20. Comparison of computational time and performance for variation of spatial grid NX×NZ
keeping temporal grid size constant (NT = 1000) in forward simulations.

It is observed from the FWI models that the higher wavelength band of the wave-field
gives the general outline and the layers in the model guiding the convergence towards the
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global minima. In contrast, the lower wavelength band adds more detailing and sharper
images. Thus, it can be interpreted that the low-frequency signals give less detailed or
more blurred results near to the true model, whereas high-frequency signals give more
detailed and accurate inversion results. However, computation in the high-frequency
range has higher possibilities that the model may converge to the local minima. It is also
observed for the spherical inclusion model that the higher the impedance ratio between
the main body and the inclusion, the sharper inversion results and faster convergence are
achieved. For the parallel computation of Full Waveform Inversion, the whole computation
process is conducted in GPU, except the pre-processing and post-processing. It can be seen
from Figure 7 that we have taken a strategy in that the whole iteration of full-waveform
inversion is performed in GPU. The strategy is implemented to reduce the overload due to
the memory copying from the host to the device and vice versa. The major limitation of this
approach is that multiple GPUs can not be used and that the model’s size depends upon
the memory available in a single GPU. Similarly, Figures 21 and 22 show the computational
time and performance boost in FWI simulations. The results show similar improvement
to that of forward simulations. The performance boost in the most capable GPU we used
is about 50 to 90 times that of a serial computation. In the case of FWI simulations, the
parallel computation in CPU using OpenMP with 16 threads has given a performance boost
up to 11 times compared to the serial computation.
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Figure 21. Comparison of computational time for 20 iterations and performance for variation of
temporal grid size NT keeping spatial grid size constant (NX = 201, NZ = 401) in FWI simulations.
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Figure 22. Comparison of computational for 20 iterations time and performance for variation of
spatial grid size along Z direction NZ keeping spatial grid size along X direction and temporal grid
constant (NX = 201, NT = 1000) in FWI simulations.
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Overall, an average performance boost of about 80 times is observed in all the different
modelling cases. It may not be significant for forward seismic models computed within
minutes. However, for full-waveform inversion models, which may take hours and days
for the whole iterations to compute, this may bring the computation of days to hours and
hours to some minutes. This enhancement is based mainly on faster computation using
parallelisation. A further enhancement can be made by using a more robust optimisation
algorithm and machine learning methods for regression and optimisation studies [41,42].

6. Conclusions

Parallel programming GPU using CUDA C is implemented for in-plane seismic full
waveform inversion, and the computational efficiency is compared to the serial and openMP
parallel codes. The forward seismic wave propagation is studied for an earthen water
reservoir dam with a crack and water table in the first step. It is important to study the
forward model, as the FWI is based on an iterative computation of several forward models
with a gradual improvement model and minimisation of the misfit. The influence of the
crack and water table is visible in the results. In the next step, the full waveform inversion
model is programmed in CUDA C, and a study is conducted for a spherical inclusion in
full space. A balance of impedance ratio of the medium parameters and the frequency
content of the input signal is essential for successful FWI computations. The high-frequency
content in the time signal gives more detailed inversion results; however, there are more
chances of the existence of local minima, and the model may converge elsewhere than the
global minima. On the other hand, the low-frequency content in the time signal usually
guides the model toward the global minima. However, the inverted results are blurred or
less detailed, so the necessary details can be missed.

The computational efficiency of GPU parallelisation for the forward and full-waveform
inversion models is studied compared to serial and CPU parallel codes. Comparing
the computed results on different hardware and programming environments shows a
significant reduction in computation time. The comparison is made for the change in
the model size in time and space, which in the Finite Difference Method are grid sizes
in Cartesian direction (NX, NZ) and the number of time steps (NT). For all the cases,
the improvement in performance increases with an increase in the model dimension and
remains constant after a certain threshold. The GPU parallel computation has shown up
to the speed enhancement of about 60 to 100 times, whereas that CPU parallelisation in
openMP (16 threads) is between 5 to 11 times that of the serial code. It can be concluded
that GPU computation can significantly enhance the performance of in-plane seismic full
waveform inversion. With the advancement of modern GPU, the FWI computation can
be implemented into practical application by bringing the computation of the days into
hours. It also provides further opportunities to implement robust optimisation and machine
learning algorithms to enhance FWI computations.
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