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Abstract 

A digital twin of the human neuromuscular system can substantially improve the prediction of injury 

risks and the evaluation of the readiness to return to sport. Reinforcement learning (RL) algorithms 

already learn physical quantities unmeasurable in biomechanics, and hence can contribute to the 

development of the digital twin. Our preliminary results confirm the potential of RL algorithms to 

estimate the muscle activations of an athlete’s moves. 
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Introduction 

A detailed assessment of the human neuromuscular system (NMS) can drastically improve the pre-

diction of injury risks for a healthy athlete and the evaluation of the readiness to return to sports for 

an injured one. Furthermore, such a detailed assessment will bring us one step closer to an accurate 

digital twin (Barricelli Barbara Rita et al., 2020) of the human NMS and significantly improve the 

personalization and efficiency of neuromuscular training. Neuromechanical simulators (Seth et al., 

2018) already estimate the muscle activations of an athlete and reproduce a captured movement 

on the athlete’s musculoskeletal model. Unfortunately, trajectory optimization techniques, on which 

they rely, constrain their usage for simple movements and with simplified musculoskeletal models. 

These constraints limit the neuromechanical simulators from accurately modelling the NMS of an 

athlete. However, the recently developed RL algorithms show great potential for overcoming these 

limitations (Song et al., 2021). They are already capable of reproducing complex captured move-

ments on torque actuated skeletal models within physics simulators (Peng et al., 2022). We envision 

to employ them to reproduce the muscle activations necessary for the generation of the captured 

movements of an athlete on the athlete’s personalized musculoskeletal model within a neurome-

chanical simulator. Since this is an ambitious endeavor, it is essential to validate at small scale that 

RL algorithms learn plausible muscle activations. 

Methods 

We designed our experiment that the learned muscle activations are directly comparable with the 

ones optimized by the state-of-the-art Moco optimizer (Dembia et al., 2021). 

Neuromechanical simulators enable the research of the connections between the brain and the body 

while dynamically interacting with the world. They encompass computational models of different 

fidelity for each of them. 
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Fig. 1 (a) The point mass in its initial position; (b) The point mass in its final position. 

A mass suspended by three muscles depicted in Fig. 1 is one of the first experiments performed 

with Moco to validate that the muscle activations which it optimizes are plausible. We reproduced 

the same simulation setup to validate that the RL algorithms learn muscle activations which resem-

ble the ones optimized by Moco, using optimal control theory. The simulation setup consists of a 

point mass of 1 kg which moves only in a vertical plane, is suspended by three muscles, and is 

under the influence of gravity. We want to find the activations which will command the three muscles 

to move the point mass from its initial position (Fig. 1a) to its desired one (Fig. 1b) with minimum 

energy and within the defined time interval (0.4 seconds). The simulation setup runs in OpenSim, 

which simulates the three muscles using the De Groote implementation of the Hill’s muscle model. 

The dynamic optimizer of Moco leverages the advantages of the direct collocation method used in 

trajectory optimization techniques, automatically generates a nonlinear problem which it solves us-

ing the IPOPT solver (Wächter & Biegler, 2006). For this simulation setup, Moco receives the initial 

and desired positions of the point mass, the time interval and outputs the optimized muscle activa-

tions. 

Reinforcement Learning has its roots in the theory of animal learning, and its core component is the 

learning from the interaction with the environment. During the last decade the RL algorithms ob-

tained multiple spectacular results, mostly by leveraging the breakthroughs of Deep Learning (DL) 

ones which became very successful at training highly complex Artificial Neural Networks (ANNs). In 

contrast to the dynamic optimization algorithms which optimize for muscle activations relative to the 

provided costs and constraints, the RL algorithms, by repeated trial-and-error, learn to generate 

improved muscle activations. This generative capability is particularly valuable for our experiments. 

Behavioral cloning (BC) (Ho et al., 2016) is one of the simplest RL which trains an ANN to map the 

set of context to the one of actions provided as training examples. The Cartesian trajectory of the 

point mass obtained from the forward simulation of Moco’s optimized activations represents the set 

of contexts, and the optimized activations represents the one of actions. BC runs multiple forward 

simulations of the muscle activations which the ANN generates. It selects the ones which best re-

semble the optimized muscle activations and uses them to retrain the ANN. After a few iterations, 

the ANN becomes increasingly better and generates muscle activations which mirror with precision 

the optimized ones. The ANN is a multilayer perceptron with 4 sequential layers, each composed of 

64 neurons with hyperbolic tangent as the activation function. 
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Results 

The first three plots of Fig. 2 present the activations of the three muscles over time. The dashed 

lines depict Moco’s optimized muscle activations, and the continuous ones depict the BC’s learned 

ones. The fourth plot presents the two Cartesian trajectories of the point mass obtained from forward 

simulating the optimized and learned muscle activations. 

 

Fig. 2 The activations of the three muscles and the Cartesian trajectory of the point mass. 

The first three plots share the same horizontal axis - the time axis. The horizontal axis of the fourth 

plot is aligned and has the same scale with the horizontal axis of the first three plots. It represents 

the horizontal Cartesian coordinate of the position of the point mass. These preliminary results val-

idate that RL algorithms estimate plausible muscle activations because the learned muscle activa-

tions mirror the optimized ones very well and the two Cartesian trajectories are very similar. 

Discussion 

The generative capabilities of BC are limited because the ANN which it trains is unable to predict 

the muscle activations for a new Cartesian position of the point mass, which is not provided in the 

training sets. This is mainly due to the weak generalization capability of the BC algorithm and the 

deterministic nature of the ANN. From this perspective, BC is very similar to the supervised learning 

algorithms. Nevertheless, Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a better 

alternative. It trains a stochastic ANN, and hence has significantly increased generalization and 

generative powers. Our future reports will present the performance of PPO on learning the muscle 
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activations, which the musculoskeletal model of an athlete’s lower body needs in order to reproduce 

athlete’s gait in OpenSim. 

The learning power of the RL algorithms is still only minimally used. In addition to their capability of 

estimating physical quantities unmeasurable in biomechanics, RL algorithms can test complex mod-

els of the human motor control (Merel et al., 2019). 
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