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ABSTRACT Explainable Artificial Intelligence (XAI) aims to introduce transparency and intelligibility
into the decision-making process of AI systems. Most often, its application concentrates on supervised
machine learning problems such as classification and regression. Nevertheless, in the case of unsupervised
algorithms like clustering, XAI can also bring satisfactory results. In most cases, such application is based
on the transformation of an unsupervised clustering task into a supervised one and providing generalised
global explanations or local explanations based on cluster centroids. However, in many cases, the global
explanations are too coarse, while the centroid-based local explanations lose information about cluster
shape and distribution. In this paper, we present a novel approach called ClAMP (Cluster Analysis with
Multidimensional Prototypes) that aids experts in cluster analysis with human-readable rule-based explana-
tions. The developed state-of-the-art explanation mechanism is based on cluster prototypes represented by
multidimensional bounding boxes. This allows representing of arbitrary shaped clusters and combines the
strengths of local explanations with the generality of global ones. We demonstrate and evaluate the use of
our approach in a real-life industrial case study from the domain of steel manufacturing as well as on the
benchmark datasets. The explanations generated with ClAMP were more precise than either centroid-based
or global ones.

16 INDEX TERMS Data mining, clustering, explainable AI, expert’s knowledge.

I. INTRODUCTION17

In recent years, pattern discovery has been dominated by18

effective black-box models such as deep neural networks or19

boosting trees. However, these methods are not easily under-20

standable, which could limit their application in areas where21

results of machine learning algorithms need to be combined22

or confronted with domain knowledge and experts’ experi-23

ence. To deal with this, Explainable AI (XAI) methods are24

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

being developed to bring transparency to the decision-making 25

process of AI-based systems [1]. This trend is especially 26

visible in the area of Industry 4.0, where a large amount 27

of data is gathered directly from hardware and is used to 28

discover patterns or anomalies in machinery operation as well 29

as to provide decision support based on the results. A human 30

operator is usually involved in the analysis and verification 31

of the decisions of the system because the control of the 32

critical system components cannot be left solely to the AI 33

system. On the other hand, this requires the model to be 34

understandable by a domain expert, as depicted in Figure 1. 35
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FIGURE 1. Visualization of the role of XAI in Industry 4.0 data analysis. High-stakes decisions have to be
understandable to be properly justified.

In practical applications, where large amounts of data have36

to be analysed, the AI-based (Artificial Intelligence based)37

decision support is usually implemented utilising machine38

learning algorithms. Three types of learning can be consid-39

ered: supervised, semi-supervised, and unsupervised learn-40

ing. Supervised learning is an approach that makes use of41

labelled datasets. Semi-supervised learning can be applied in42

the case of using a training dataset, with both labelled and43

unlabelled data. Unsupervised learning uses machine learn-44

ing algorithms to analyse unlabelled datasets. In most cases,45

XAI methods are considered with respect to a supervised46

machine learning task such as classification or regression.47

However, in many industrial applications, data comes with48

no labelling, making it unfeasible for supervised methods and49

XAI algorithms. In such cases, data mining techniques such50

as clustering are often used to reveal patterns hidden in the51

data. Clustering is defined as unsupervised learningwhere the52

objects are grouped on the basis of some similarity between53

them [2]. In such cases, XAI can be used to explain the54

differences between unfolded patterns as well as to explain55

a single instance assignment to a particular cluster. To apply56

state-of-the-art XAI methods, the considered problem should57

be reformulated in a manner that fits the supervised task. The58

main objective of such a reformulation is to obtain the proper59

representation of the cluster that is delivered to the expla-60

nation mechanism. An obvious choice of cluster centroids61

may not give valid results in the case of clusters that have62

complicated shapes or do not have Gaussian distribution.63

On the other hand, using global explanations lacks details64

which might be crucial for a proper understanding of the65

differences between clusters.66

In this work, we aimed to formulate an XAI methodology67

that would allow balancing a trade-off between granular-68

ity of global explanations and complexity of instance-based69

explanation for a cluster of arbitrary shape and dimension-70

ality. We adopted the developed methodology in a real-life71

industrial case of the hot-rolling process from the steel indus- 72

try. To achieve this, we attempted to represent clusters with 73

multidimensional prototypes and utilise these prototypes in 74

the explanation process. The developed methodology can be 75

divided into the following stages: 76

• Execute clustering with an arbitrarily selected method; 77

• Reformulate the problem to the classification task; 78

• Generate cluster prototypes in the form of multidimen- 79

sional bounding boxes and obtain rule-based explana- 80

tions for them. 81

• Evaluate generated rules with the use of theHeaRTDroid 82

inference engine [3] and experts’ knowledge. 83

This work is carried out in the CHIST-ERAPacmel project. 84

The project aims to develop novel methods of processmining, 85

knowledge modelling, and intelligent sensor data analysis 86

in Industry 4.0. In the area of rules and inference engines, 87

we build on our previous works including the XTT2 (for- 88

malised rule representation) rule-based knowledge represen- 89

tation and the HeaRTDroid inference engine [3], which were 90

developed by us using the Semantic Knowledge Engineering 91

methodology [4]. 92

The reminder of the paper is organised as follows: in 93

Section II, we describe the works concerning the explain- 94

able methods. This is the foundation for our motivation and 95

original contribution described in Section III. In Section IV, 96

we concentrate on describing the clustering and classification 97

methods and present a novel approach to building proto- 98

types for clusters. This section also includes the descrip- 99

tion of a method for obtaining rule-based explanations for 100

discovered prototypes. In Section V, we present a func- 101

tional evaluation of ClAMP in comparison to centroid-based 102

and global explanations used in state-of-the-art solutions. 103

In Section VI, we perform human-grounded evaluation on 104

synthetic datasets with 24 participants involved in the pro- 105

cess. Finally, in Section VII, we move on to the case study 106
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and close the evaluation of ClAMP by showing the applica-107

tion of our methodology in an industrial setting. At the end,108

in Section VIII, we summarise the results of our work.109

II. RELATED WORKS110

The process which allows explaining clustering generally111

involves a three-step explanation procedure that changes an112

unsupervised clustering task into a supervised classification113

task [5], [6], [7]. First of all, an optimal quality clustering of114

unlabelled data needs to be obtained. Secondly, a classifier115

needs to be built that uses discovered cluster labels as values116

of the target variable. Finally, the classification task should be117

explained with XAI methods [6]. This gives us information118

about the differences between clusters, which can help in the119

final cluster analysis performed by the expert. There have120

been a variety of XAI methods developed over the last decade121

which differ in the explanation mechanism used, an explana-122

tion granularity, as well as in the form in which they present123

explanations. In this section, we provide a review of existing124

approaches for the cluster analysis enhanced with XAI algo-125

rithms. Furthermore, we present the original contribution in126

more detail at the end of the section.127

In [8], the authors extend the image prototypes approach128

presented in [9] by introducing an interpretable image clas-129

sification model with a pool of prototypes shared by the130

classes (ProtoPol), which focuses on the crucial image parts.131

Based on the image, the model discovers the parts of the132

image (prototypes) which could be useful for further analysis.133

This allows for a more interpretable model and to discover134

similarities between classes.135

In [10], the authors provide a novel solution that can be136

used to cluster data. They call it the eUD3.5 algorithm,137

which relies on inducing a collection of diverse unsupervised138

decision trees. The main advantage of their solution is that139

the eUD3.5 algorithm does not require any parameters that140

control the number of objects in the leaf nodes because141

the algorithm automatically stops expanding a branch if the142

evaluation is worse than the best evaluation in that branch.143

The second important advantage mentioned in [10] is that the144

algorithm can provide patterns associated with each cluster145

that can be easily understandable by a human. The patterns146

describe the whole database with just a few patterns.147

The authors in [7] develop the Single Feature Introduction148

Test (SFIT) method which is run on the model to recognise149

the statistically significant features which characterise each150

of the clusters of data. They test their discovered method on151

a real wealth management compliance case. The method is152

divided into two steps: the clustering step, and the explaining153

step. First, data is clustered with the use of a clustering154

algorithm such as K-means. The second step is to train the155

classifier to learn how to predict the cluster and run the SFIT156

procedure on the instances belonging to a considered cluster.157

This allows obtaining a set of features that are significantly158

characterising this cluster. The procedure is tested on the 2D159

and 3D datasets of the Fundamental Clustering Problems Suit160

(FCPS). In both cases, thismethod is able to correctly uncover 161

patterns. 162

In [11], the adopted method concentrates on the centres 163

of the clusters. Discovered Cluster-based sentence utility 164

(CBSU, or utility) refers to the degree of relevance (on a scale 165

from 0 to 10) of a particular sentence to the general topic of 166

the entire cluster. However, suchmethods are very sensitive to 167

the shape of the clusters and can be executed only in specific 168

cases. 169

Many explainability approaches consider the use of 170

tree-based clustering models. According to [12], the most 171

popular method is cluster representation with the use of their 172

centroids. However, in the case of the not compact or non- 173

isotropic cluster, such a method cannot be executed success- 174

fully. Another common approach is that of visualisation with 175

the use of principal component analysis but, in this case, 176

we lose the relationship between the clusters and the original 177

variable. In [12], the authors propose an unsupervised learn- 178

ing algorithm that solves the task using an optimisation lens 179

while providing the user with more accurate and interpretable 180

results based on the feature vectors. They use Silhouette 181

Metrics and Dunn Index, as the objective function. Tests were 182

executed using datasets from FCPS and real-world examples. 183

In [5], the authors use methods of supervised machine 184

learning for cluster interpretation by changing the problem 185

into a classification case. Particularly, they analyse which fea- 186

tures are necessary to assign instances to the correct cluster. 187

This allows recognising the characteristics relevant to specific 188

cluster structures. 189

The method presented in [6] aims to explain the out- 190

come of unsupervised algorithms. Generally, the framework 191

relies on the expert’s knowledge to, i.a., extract the cor- 192

rect features (feature selection). When the data is embed- 193

ded, EXPLAIN-IT uses unsupervised learning techniques 194

to explore it. In particular, EXPLAIN-IT uses a clustering 195

technique that plays the role of a meta-learning approach, 196

which reduces the complexity of the analysis using the idea 197

of clustering methods – aggregating similar instances. 198

In [13], the authors outline that there are no effective meth- 199

ods to apply to security tasks. In their paper, they propose a 200

dedicated method that generates a small set of interpretable 201

features to explain how the input sample is classified. The 202

main idea is to approximate the local area of the deep learning 203

decision boundary with the use of a simple interpretable 204

model. The model is specially designed to: 205

• Handle feature dependency to better work with security 206

applications; 207

• Handle non-linear local boundaries to boost explanation 208

fidelity. 209

Themethod concentrates on identifying a small set of features 210

that are key contributors to the classification of data instances. 211

The method generates a local approximation of the target 212

classifier’s decision boundary near a given point. Thismethod 213

does not assume that the local detection boundary is linear 214

and the features are independent. Instead, they introduce a 215
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new approach to approximate the non-linear local boundaries216

based on amixture regressionmodel enhanced by fused lasso.217

In [14], the authors present two novel ‘‘algorithm-218

agnostic’’ explainability methods: Global permutation per-219

cent change (G2PC) and Local permutation percent change220

(L2PC). Their methods use a well-known model-agnostic221

explainability method that is widely used in the context222

of supervised machine learning called permutation feature223

importance. L2PC feature importance extends the permuta-224

tion to obtain explainability for clustering algorithms. In con-225

trast to G2PC, L2PC permutes each of the features for a226

single sample-specific time using values that are randomly227

selected from the same feature of other samples in the dataset.228

After that, it calculates the percentage of time that the sample229

changes clusters during the permutations. The permutation230

percent change values can be used to obtain the statistical231

significance of each feature. As the percent change increases,232

the importance of a specific sample increases.233

A Boolean decision rules generator [15] is a method that234

utilises Boolean rules either in their disjunctive normal form235

(DNF) or conjunctive normal form (CNF) to build predictive236

models. According to this idea, a low number of rules makes237

patterns more easily understood and interpreted by humans.238

The authors outline that in the case of large and complex239

datasets, the problem with computational time may occur.240

To avoid this issue, they propose an approximate column241

generation algorithm that uses randomisation to efficiently242

search the rule space and learn DNF or CNF classification243

rules [16].244

The authors in [17] introduce a simple and practical frame-245

work called Teaching Explanations for Decisions (TED),246

which provides explanations that match the mental model of247

the consumer. The idea is based on X (the feature vector),248

Y (a label), and E (the explanation for each decision, which249

can take any form) making a classifier where the value of250

Cartesian product Y and E (YE) is predicted. The next step251

is to make decoding to partition a YE prediction into its252

components Y and E.253

Most of the aforementioned techniques are based on state-254

of-the-art model-agnostic XAI algorithms such as LIME,255

SHAP, Anchor, and others. In the following paragraphs,256

we introduce them briefly. One of the most popular methods257

for black-box models is a local interpretable model-agnostic258

explanation (LIME). This method is able to generate inter-259

pretations for a single instance and can be applied to any260

classifier. LIME generates simulated data points around given261

instances through randomperturbation and provides an expla-262

nation by fitting a sparse linear model over the predicted263

responses from the perturbed points [18].264

The authors in [18] propose an extended version of LIME265

called DLIME (Deterministic Local Interpretable Model-266

Agnostic Explanations). In comparison to LIME, to find a set267

of samples and corresponding predictions instead of random268

perturbation, KNN (k-nearest neighbours) is first used to269

find the closest neighbours to the instance. Then, the cluster270

label for the test instance is assigned based on the majority271

TABLE 1. Summary of related works in the area of explainable clustering.

label among the k-nearest neighbours. Finally, the data point 272

belonging to the class is used to train a linear regressionmodel 273

which is used to generate an explanation. 274

In [19], the authors present a novel model-agnostic algo- 275

rithm called The Anchor. Based on the given instance, the 276

Anchor algorithm generates a rule that sufficiently decides 277

the prediction locally. It should be emphasized that changes 278

to other feature values of the instance do not essentially 279

affect the prediction value. For each instance, the Anchor 280

is executed with an empty rule, subsequently, in an iterative 281

fashion, new rules are generated and the previous is replaced 282

if the precision is lower. 283

III. MOTIVATION AND ORIGINAL CONTRIBUTION 284

Most of the methods mentioned in the previous section are 285

focused on a specific task and tuned to work with particular 286

clustering algorithms, or with a particular audience. On the 287

other hand, general frameworks such as [5], [6], [7], and 288

[10] focus mostly on global explanations, which limits the 289

details presented to the user and reduces the capabilities of 290

in-depth cluster analysis. In Table 1, we present a summary of 291

related works in the area of explainable clustering. One can 292

observe that there is no solution that will satisfy the hybrid 293

explanations mechanism that will: 1) allow for a balance 294

between the expressiveness and granularity of the generated 295

results, 2) allow the use of an arbitrary selected clustering 296

algorithm, 3) allow the use of an arbitrary selected classi- 297

fication method to discover patterns between clusters, or 4) 298

provide explanations in an executable format that allows for 299

easier, automated integration with other system components. 300

In our approach, we aim mainly to provide a method 301

that will address all of the above four issues. The starting 302

point of this work was the preliminary results introduced at 303

the IEEE DSAA 2021 Conference [20]. Here, we present a 304

fully developed approach, enclosed within a methodological 305

framework for cluster analysis with multidimensional proto- 306

types (ClAMP) and evaluated on a real-life industrial case 307

and benchmark datasets. The most important aspects of our 308

original contribution include the following: 309

• We expanded the possibility of cluster represen- 310

tation. We added another method for discovering 311
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cluster prototypes. We were interested in how ran-312

domly selected points within the cluster influence the313

HeaRTDroid results;314

• We expanded the number of metrics considered to obtain315

more reliable results. In the previous approach, only the316

accuracy metric was calculated. In this work, we added317

metrics such as precision, recall, and F1-score;318

• We added explainability optimization, taking into319

account several criteria according to which the user is320

able to choose the best result. In cooperation with the321

experts, we decided to allow deciding which metric can322

be treated as a target parameter;323

• We created a pipeline (methodology) which as its input324

takes the dataset without labels and is able to gener-325

ate explanations and evaluate them with the use of the326

HeaRTDroid rule-based inference engine;327

• We provided the final human-readable rules to the328

experts for evaluation.329

In the following section, more details on the ClAMP330

methodology will be provided.331

IV. CLUSTER ANALYSIS WITH MULTIDIMENSIONAL332

PROTOTYPES333

The main goal of our work on ClAMP was to provide a334

method for cluster analysis that will be agnostic with respect335

to the clustering and classification algorithms and will pro-336

vide explanations in the form of executable and human-337

readable rules. The ClAMP methodology can be divided into338

four stages as depicted in Figure 2.339

1) Phase 1: Clustering of unlabelled data with arbitrary340

selected clustering algorithm.341

2) Phase 2: Reformulation of the clustering problem into342

the classification task and building a classifier that is343

trained to distinguish labelling discovered in the previ-344

ous phase.345

3) Phase 3: Generation of cluster prototypes as multi-346

dimensional bounding boxes on top of the clustering347

performed in the first phase.348

4) Phase 4:Generation of explainable rules for the cluster349

prototypes generated in phase 3.350

In the following sections, these main phases will be351

described in detail.352

A. PHASE 1: CLUSTERING OF UNLABELLED DATA353

Good quality of clusters is crucial in obtaining good quality354

explanations for them. The choice of the clustering algo-355

rithms is highly dependent on the characteristics of the dataset356

and the shape of the clusters. This is why, in our methodol-357

ogy, we assume that this step should be independent of the358

explanation mechanism.359

There are various different clustering algorithms that can360

be applied to different kinds of data. One of the advan-361

tages of the ClAMP methodology is the possibility of apply-362

ing different clustering methods, leaving the opportunity to363

choose the one which gives the best results. In this work,364

we tested the following clustering methods to assign labels to 365

the analysed datasets: Gaussian Mixture, BIRCH (balanced 366

iterative reducing and clustering using hierarchies), and the 367

Deep temporal clustering algorithm. The first two methods 368

described above are implemented in scikit-learn [21]. The 369

third method is presented in [22]. The algorithm utilises 370

an autoencoder for temporal dimensionality reduction and a 371

novel temporal clustering layer for cluster assignment. Then, 372

the clustering and dimensionality reduction objectives are 373

optimised. To detect the optimal number of clusters, we used 374

silhouette score; however, the choice of the metric used for 375

selecting the number of clusters is not limited. 376

It is worth noting that this stage is independent of the whole 377

methodology. In fact, one can also apply our approach to 378

the dataset which originally contained labels, or where labels 379

were obtained using expert knowledge instead of a clustering 380

algorithm. This could be particularly useful in cases where 381

the cluster analysis is performed mainly for conformance 382

checking with existing domain knowledge [23]. 383

B. PHASE 2: REFORMULATION OF THE CLUSTERING 384

PROBLEM INTO THE CLASSIFICATION TASK 385

To reformulate the clustering problem into the classification 386

task it is necessary to find a classifier that reproduces labels 387

obtained during the clustering stage in the best possible way. 388

In our work, we chose XGBoost (Gradient Boosting 389

framework) classifier [24] as the classification algorithm, 390

an optimised distributed gradient boosting open-source pack- 391

age designed to be highly efficient, flexible, and portable. 392

It implements machine learning algorithms under the Gra- 393

dient Boosting framework. XGBoost provides parallel tree 394

boosting that solves many data science problems in a fast 395

and accurate way. Results demonstrated in [24] show that 396

the XGBoost classifier can be used for a wide range of prob- 397

lems. Classifiers have great potential and allow the obtaining 398

of good results; however, they have a lot of hyperparam- 399

eters that directly affect these results. To account for this, 400

hyperparameter tuning should be done during the algorithm 401

performance [25]. There is a possibility to do it manually, 402

but in such a case, the user can not be sure that the best 403

parameter settings have been determined. To do it auto- 404

matically, a simple GridSearch algorithm can be applied 405

that allows checking each combination of parameter values 406

defined in their domains (ranges) determined by the user. 407

In our case, we applied a RandomizedSearchCV (Random- 408

izedSearch Cross-Validation) available in scikit-learn [21], 409

because this optimiser allows obtaining satisfying results 410

by trying only a fixed number of parameter settings. Ran- 411

dom search is actually more practical than grid search [25], 412

as it does not test all parameters but executes the search 413

at random. For the automatic hyperparameter tuning, other 414

optimization methods can also be applied, e.g., the Sequen- 415

tial Model-Based Optimization (SMBO) implemented in the 416

model-based optimisation package (mlrMBO) [25], [26]. 417

101560 VOLUME 10, 2022



S. Bobek et al.: Enhancing Cluster Analysis With Explainable AI and Multidimensional Cluster Prototypes

FIGURE 2. ClAMP methodology diagram.

To validate the effectiveness of the classification methods418

built on top of cluster labels, several metrics can be used.419

In our case, we used recall, precision, F1-score, and accuracy.420

C. PHASE 3: MULTIDIMENSIONAL BOUNDING BOXES AS421

CLUSTER PROTOTYPES422

The classifier that allows the correct assignment of instances423

to the previously discovered clusters is the main requirement424

for phase 3 of the ClAMP methodology. This classifier will425

be used later to generate explanations for a particular cluster,426

based on the instances that form a (potentially multidimen-427

sional) bounding box around it. The selection of the bounding428

box points that form the cluster representation (prototype)429

is the main objective of this phase of the ClAMP method-430

ology. The idea of such an approach is presented on the431

two-dimensional dataset in Figure 3.432

In the case of a real dataset with many features, the shape433

of the cluster may be unimaginable and the selection of a434

method determining the proper description points can be dif-435

ficult. That is why, in the proposed methodology, we treat the436

method for discovering cluster prototypes as a tuning param-437

eter that can be adjusted to the specific case. Three different438

methods for discovering cluster prototypes are considered in439

this paper: Random selection, K-D tree (k-dimensional tree),440

and Isolation forest; all are described next.441

FIGURE 3. The idea behind determining a bounding box. Relatively outer
(bounding) points can give more information about the boundary of each
cluster than choosing the centroids of each cluster.

It is worth noting that for clusters of different shapes, 442

different bounding boxes may be suitable for different clus- 443

ters. Therefore, in ClAMP, we optimise the selection of the 444

method for each of the clusters separately. The selection of 445

CLAMP hyper-parameters can be done automatically with 446

any optimisation algorithm and with respect to the target 447

metric we want to optimise (for instance, the accuracy of the 448

explanations obtained). Selection of a metric and optimisa- 449

tion algorithm depends on the task we want to solve and the 450

data we use (e.g., balanced, imbalanced, etc.) and, therefore, 451
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FIGURE 4. Exemplary points determined by the random selection.

is considered outside the scope of this work, which focuses452

on the ClAMP methodology itself, not on particular domain-453

dependent applications.454

1) RANDOM SELECTION APPROACH455

The random selection method considered in this paper gen-456

erates a randomly selected set of points belonging to each457

cluster. The number of points to be selected from each cluster458

is treated as a hyperparameter which should be optimised.459

To choose points, the ‘‘sample’’ function, built in the Pandas460

library in Python, was used. To obtain randomly selected461

points, only the number of items was passed and other param-462

eters were used with their default values.463

Exemplary points determined by the random selection464

approach are presented in Figure 4, further divided into 4 sep-465

arate charts denoting different runs of the random selection466

procedure. As can be seen for each of the charts, the deter-467

mined points which are used for rule generation are different.468

Therefore, for evaluation purposes, several runs are used and469

averaged to obtain reliable results.470

2) K-D TREE APPROACH471

The K-D Tree algorithm addresses the computational ineffi-472

ciencies of the brute-force approach. This algorithm allows473

a general reduction of the required number of distance cal-474

culations with the use of encoding aggregate distance infor-475

mation for the sample. In particular, if point ‘‘A’’ is very476

far from point ‘‘B’’, and point ‘‘B’’ is much closer to point477

‘‘C’’ than to point ‘‘A’’ then the algorithm knows that points478

‘‘A’’ and ‘‘C’’ are very distant. The main advantage of such479

a conception is obtaining information about the distance480

between points ‘‘A and ‘‘C’’ without calculating the distance481

between them.’’ The K-D tree is a binary tree structure that482

recursively divides the parameters space along the data axes,483

dividing it into nested orthotropic regions into which data484

points are filled. Dividing is executed only along the data485

axes and no D-dimensional distances need to be computed,486

that is why the K-D tree is very fast. It should be outlined487

FIGURE 5. Exemplary points determined by the K-D tree.

that this method is fast in relatively low-dimensional cases 488

D < 20 and becomes inefficient when D grows above the 489

mentioned value [21], [27]. 490

Implementation of the K-D tree algorithm requires tuning 491

of some of the hyperparameters like leaf size and metric. 492

According to the documentation, the ‘‘leaf size’’ parameter 493

does not affect the results of the algorithm, so the default 494

value was used. For the ‘‘metric’’ parameter, two possible 495

values were considered in this paper: ‘‘minkowski’’ and 496

‘‘manhattan’’. Because the bounding box we are looking 497

for consists of the outremost points, we added one more 498

hyperparameter which is the percentage of the farthest points 499

from the centre of each cluster. Exemplary points determined 500

by the K-D tree approach are presented in Figure 5. As can 501

be seen, for each of the clusters, the KD-tree algorithm found 502

the outermost points (boundaries of each cluster), which was 503

one of the goals of our developed methodology. 504

3) ISOLATION FOREST APPROACH 505

The isolation forest method is one of the ways to execute 506

outlier detection in high-dimensional datasets. The princi- 507

ple of operation is to ‘‘isolate’’ observations by randomly 508

selecting a feature and then randomly selecting a split value 509

between the maximum and minimum values of the selected 510

feature [21], [28]. In the algorithm, the recursive partitioning 511

can be represented by a tree structure, while the number of 512

splittings required to isolate each sample is equivalent to the 513

path length from the root node to the terminating node. The 514

length of the path mentioned above is the measure of nor- 515

mality and our decision function, and this length is averaged 516

over a forest of random trees. Thanks to random portioning, 517

shorter paths for anomalies are produced. Hence, when the 518

random trees collectively produce shorter paths, it is more 519

probable to assign a sample as an anomaly [29], or bounding 520

box point. 521

Implementation of an Isolation Forest requires tuning of 522

some of the hyperparameters such as: 523

• the number of base estimators in the ensemble; 524

• the number of samples to draw from X to train each base 525

estimator; 526
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FIGURE 6. Exemplary points determined by Isolation forest.

• the number of contaminations of the dataset, i.e., the527

proportion of outliers in the dataset.528

and several others. That is why, in this case, hyperparameter529

optimisation is necessary.530

In the methodology developed in this paper, the Isolation531

Forest algorithm is applied to detect the outer points belong-532

ing to the specified cluster, which can be used to execute rules.533

The set of hyperparameters allows adjusting the algorithm to534

detect describing points. In our case, we decided to adjust535

only the contamination which is the proportion of outliers in536

the dataset to all points in the dataset and it directly affects537

the number of describing points obtained. Exemplary points538

determined by the Isolation Forest approach are presented in539

Figure 6.540

D. PHASE 4: GENERATION OF EXPLAINABLE RULES541

In this paper, to generate explainable rules, we use the Anchor542

explainer. The quality of the rules is evaluated not only by a543

human expert but also automatically with the HeaRTDroid544

rule-based inference engine [3]. This allows comparing our545

method to other approaches with well-known metrics such as546

F1, accuracy, precision, and recall.547

1) THE ANCHOR EXPLAINER – RULES GENERATOR548

Three methods for generating bounding box representations549

of clusters are used to provide the input to the explana-550

tion algorithm. In this work, we used Anchor, which is551

a novel model-agnostic algorithm that is able to explain552

the behaviour of complex models with high-precision rules553

representing local conditions for prediction. The Anchor554

explainer introduces explanations based on ‘‘if-then’’ rules,555

called ‘‘anchors’’. The algorithm generates human-readable556

rules which do not depend on the rest of the feature values of557

the instance. Furthermore, Anchor’s rules are executed only558

if all conditions presented in the rule are satisfied. As the559

Anchor algorithm is model-agnostic, it can be applied to any560

class model [30]. Contrary to the LIME algorithm [18], which561

creates a linear decision boundary that best approximates the562

model given a perturbation space, the Anchor explainer is563

TABLE 2. Exemplary rules generated by the Anchor explainer for the
artificial dataset.

able to construct an explanation whose coverage is adapted 564

to the model’s behaviour, and clearly determine their bound- 565

ary [30]. 566

Exemplary rules generated by the Anchor explainer are 567

presented in Table 2. The Cluster column determines the 568

number of the cluster which is determined by the rule. The 569

Coverage and Precision columns describe respectively: the 570

ratio of the number of instances for which the rule holds 571

in the whole dataset and its precision on this subset of 572

instances. 573

The rules obtained with the Anchor algorithm can be 574

directly analysed by the expert but can also be formalised and 575

executed. This allows for automatic evaluation of the rules 576

obtained within the ClAMP methodology as well as easier 577

integration with other system components. For the purpose of 578

representation and execution of the rules, we use the HMR+ 579

rule language and HeaRTDroid inference engine described in 580

the following paragraphs. 581

2) HeaRTDroid RULE-BASED INFERENCE ENGINE 582

The HeaRTDroid is a rule-based engine that uses the 583

rule-based language HMR+, which allows reasoning and 584

handling of uncertain and incomplete knowledge. The 585

HMR+ language used by the HeaRTDroid also allows for 586

modelling uncertainty with certainty factor algebra [3]. 587

In our methodology, HeaRTDroid is used for executing a 588

rule-based model consisting of rules, precision and cover- 589

age parameters, and cluster numbers determined by the rule, 590

as shown in Table 2. The key idea of using HeaRTDroid is 591

to evaluate the effectiveness of the rule-based model which is 592

provided by the Anchor algorithm. 593

More specifically, the rule-based model with the above- 594

mentioned parameters and data points without any labels is 595

treated as an input to the HeaRTDroid interference engine. 596

Then, the HeaRTDroid is executed and the main task of this 597

stage is to predict the cluster number based on the given 598

rule, precision, and coverage parameters, and the point under 599

test. This action is executed for each point in the tested 600

dataset. As a result, a cluster number is predicted for each 601

tested point. 602
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3) EVALUATION METRICS603

The HeaRTDroid allows obtaining the labels created on the604

basis of the rule, precision and coverage parameters, and a605

given instance. As a result, we are able to compare the original606

labels obtained from clustering with the labels predicted by607

the HeaRTDroid. In the developed methodology, we use the608

following evaluation metrics: Precision, F1-score, Accuracy,609

and Recall with micro average.1610

4) RULES EVALUATION BY EXPERTS611

Along with the functional evaluation of the expla-612

nations’ quality presented in previous paragraphs, the613

human-grounded or task-grounded evaluation in cooperation614

with experts is also possible in the ClAMP methodology.615

We provide rules which consist of the features names, values,616

and inequality signs − human-readable form, to the experts.617

The task is to check the rules generated by the Anchor618

algorithm and evaluate them. An important issue for our619

methodology is to obtain rules which would be understand-620

able and useful for the experts, whichmeans that after looking621

at them, the expert should be able to clearly assign which622

rules concern which cluster and determine how well these623

rules describe the cluster. Additionally, the expert should624

be able to determine whether these rules bring information625

that allows separating the clusters and how complicated this626

separation is. To do this, the expert should also take into627

consideration similarities between the rules. To fully evaluate628

our methodology, we want to gain information about the629

structure of the rules; if they are short or too long, or whether630

the number of rules is not too large. Due to the number of631

iterations in the rule generation optimisation process, and the632

number of hyperparameters of the stages described above,633

only rules with the best scores are delivered to the experts.634

By default, in the developed methodology, the optimisation635

of the F1-score metric is applied. However, the choice of the636

optimisation metric can always be modified depending on637

the needs as well as experts’ suggestions. This should allow638

obtaining the best scores and rules for a specific example.639

To evaluate the developed methodology, we tested it on640

three cases. The first case concerns multiple publicly avail-641

able benchmark detests, where functional evaluation was642

performed to check the quality of explanations in compari-643

son to state-of-the-art methods based on centroids or global644

explanation. The second case uses human grounded evalua-645

tion on synthetic, reproducible datasets. The third case uses646

real industrial data from the hot-rolling process in the steel647

manufacturing industry. All of the cases are described in the648

following sections.649

V. EVALUATION ON BENCHMARK DATASETS650

In this section, we present results obtained from the evalua-651

tion of the ClAMPmethodology on the artificial and publicly652

1This is the Recall metric for multi-class classification that aggregates
contributions of true positives, and for all classes and averages them over the
global sum of true positives and false negatives, hence, taking into account
possible class imbalance.

FIGURE 7. Critical difference for Nemenyi test with α = 0.05.

available datasets. The goal of this section was to confront 653

the novel ClAMP methods of generating explanations with 654

state-of-the-art approaches that are based on cluster centroids 655

or global explanations. This forms a reproducible set of 656

tests, focused on the functional evaluation (no human factor 657

involved) that can be used to achieve an unbiased comparison 658

of ourmethodwith other approaches.2 The factor that we took 659

into consideration in this type of evaluation was the quality 660

of the explanations in terms of accuracy. We wanted to prove 661

that ClAMP provides more accurate explanations at a similar 662

level of complexity (e.g., length of the rule, number of rules) 663

compared to centroid-based and global explanations. 664

All of the phases of ClAMP (see Figure 2) were fully 665

automated and optimised with the GridSearch algorithm. The 666

generated rules were tested against selected quality metrics 667

(i.e., accuracy, F1, precision and recall) in a 10-fold cross- 668

validation approach. As a result, we obtained 10 measure- 669

ments for each of the combinations of dataset and bounding 670

box selection methods. The summarised results for the F1 671

metric are presented in Table 3. 672

Our goal was to show that ClAMP selection methods are 673

better than centroid-based and global ones. Therefore, we per- 674

formed a Friedman test followed by a Nemenyi pairwise 675

post-hot test for multiple comparisons of mean rank sums. 676

From the Friedman test, we obtained statistics equal to 677

28.0, with a p-value equal to 0.000008. With 6 algorithms 678

and 14 datasets, we have 5 and 65 degrees of freedom respec- 679

tively, which allows us to determine that the critical value for 680

F(5, 65) for α = 0.05 is 2.35. This allows us to reject the null 681

hypothesis. 682

After this, we performed a Nemenyi test to observe how the 683

algorithms differ, and between which algorithms the differ- 684

ence is statistically significant. The results from the post-hoc 685

Nemenyi test are presented in Tabel 4 and also visualised in 686

Figure 7. 687

It can be observed that the critical distance is 2.015, and we 688

can prove that ClAMP is significantly better than other meth- 689

ods in achieving good quality explanations. It is worth noting 690

that each of the bounding box methods taken separately (i.e., 691

Isolation forest, Random selection, K-D tree query) might 692

not be significantly better than the others; it depends on the 693

cluster shapes and, thus, the dataset used for clustering. It also 694

depends on the clustering algorithms used (e.g., K-means 695

produce similarly shaped clusters, while DBSCAN might 696

produce arbitrarily shaped groups). Therefore, using ClAMP 697

in order to optimise the selection of the bounding box is a 698

reasonable approach. 699

2The datasets along with the source code of the benchmark were made
publicly available at https://github.com/sbobek/clamp
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TABLE 3. Comparison of F1 performance. Column denoted as ClAMP represents the combined approach that integrates all of the bounding box methods,
including Isolation forest, K-D tree query and Random selection optimised against selected quality measures. The values after ± denote standard
deviation in 10-fold cross-validation.

TABLE 4. Nemeny post-hoc test results.

In the following sections, we evaluate the explanations700

with human-grounded evaluations to observe if the quality701

of explanations in human perception are also at a satisfying702

level.703

VI. EVALUATION ON SYNTHETIC DATASETS704

A. THE ANALYSED DATASETS705

Weestablished four artificially generated data samples: Gaus-706

sian blobs in two-dimensional space, Gaussian blobs in707

three-dimensional space, values randomly generated in two-708

dimensional space, and an Iris dataset.We decided to use such709

simple and obvious datasets because they are well known, and710

most users should possess skills that allow them to interpret711

and evaluate the generated rules based on the knowledge of712

the data or visualised charts.713

To make this evaluation more reliable, we added noise to714

each of the datasets. For both Gaussian blobs datasets values,715

we tuned the noise by increasing the standard deviation. In the716

case of a randomly generated dataset, we changed the range717

of each cluster by the use of rules which change cluster718

assignments to another cluster. We did only one exception719

concerning the Iris dataset. In this case, we didn’t change720

any cluster assignment. The datasets used are presented in721

the following figures:722

• Gaussian blobs dataset in two-dimensional space is pre-723

sented in Figure 8724

• Gaussian blobs dataset in three-dimensional space is725

presented in Figure 9726

• Randomly generated values dataset in two-dimensional727

space is presented in Figure 10728

The last step was to provide the dataset to the participants 729

who were asked to use ClAMP methodology to generate 730

explanations for discovered clusters by tuning hyperparam- 731

eters of ClAMP and finally evaluate their quality. 732

The dataset was randomly chosen for each participant. 733

After the programming task was completed, the partici- 734

pants were obliged to fill in a survey containing evaluation 735

questions.3 736

The next section presents the obtained results from the 737

evaluation on synthetic datasets. 738

B. RULES ANALYSIS BY PARTICIPANTS 739

In the following section, we present results obtained by the 740

25 participants who took part in the study. Each participant 741

was asked to evaluate the clustering results and explana- 742

tions according to the 4 criteria listed below. Additionally, 743

we asked the participants several questions concerning each 744

of the criteria used to obtain the evaluation. 745

1) Adequacy of granularity level of explanations: 746

a) Are the rules adequate to explain a given cluster 747

or more individual instances in the cluster? 748

b) How many rules (maximum) can each cluster be 749

described with so that the rules are still under- 750

standable? 751

2) Evaluation time in comparison to cluster analysis with- 752

out explanations: 753

a) What would be more time-consuming to distin- 754

guish and describe the clusters: using rules or 755

using available cluster labels? 756

3The script and evaluation survey is available at:
https://github.com/sbobek/clamp
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FIGURE 8. Gaussian blobs in two-dimensional space.

3) Data science or domain knowledge experience required757

to properly interpret explanation results:758

a) How understandable to you are the rules, i.e.,759

do they provide information on the basis of which760

you are able to draw dependencies between them?761

4) Overall usefulness of the rules:762

a) How do the rules help distinguish clusters and763

understand how they differ?764

b) How does overlap between rules make it difficult765

to interpret them?766

c) Have you noticed dependencies in the rules?767

d) How do these dependencies help you to under-768

stand the rules?769

We prepared an online form which was provided to the par-770

ticipants to evaluate the rules. The participants’ answers were771

collected with a 5-point bipolar scaling method, analogous to772

the Likert scale. We additionally asked the participants to put773

optional comments related to each of the criteria. These com-774

ments were analysed in Section VII-E. All obtained answers775

are presented in the following bar and box plots, with a776

triangle marked green as a mean value.777

1) ADEQUACY OF GRANULARITY LEVEL OF EXPLANATIONS778

This criterion was selected to investigate if the method allows779

for a good trade-off between the generality of the explanation780

and the amount of detail required to properly analyse the781

FIGURE 9. Gaussian blobs dataset in three-dimensional space.

cluster results. To evaluate this, we asked two questions to 782

the participants. 783

Question asked to the participants: Are the rules ade- 784

quate to explain a given cluster or more individual instances 785

in the cluster? 786

Answer: The answer is presented in Figure 11, where 1 787

corresponds to the cluster and 5 to the instance. The majority 788

of the participants decided that the explanations better explain 789

the whole cluster rather than a single instance. The median 790

value of the response is equal to 2. Therefore, they assure a 791

good level of generality. 792

Question asked to the participants: How many rules 793

(maximum) can each cluster be described with so that the 794

rules are still understandable? 795

Answer: The answer is presented in Figure 12. Most par- 796

ticipants who provided rather a low number of rules are better 797

at explaining the cluster. This is the premise for the conclu- 798

sion that the rules generated by our method are expressive 799

enough to give a sufficient amount of information (details) to 800

participants. Two of the participants significantly stand out 801

from the rest of the results. 802
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FIGURE 10. Randomly generated values dataset in two-dimensional
space.

FIGURE 11. Are the rules adequate to explain a given cluster or more
individual instances in the cluster?

FIGURE 12. How many rules (maximum) can each cluster be described
with so that the rules are still understandable?

2) EVALUATION TIME IN COMPARISON TO CLUSTER803

ANALYSIS WITHOUT EXPLANATIONS804

The goal of this criterion was to determine if the method805

decreases the analysis time.806

Question asked to the participants: What would be more807

time-consuming to distinguish and describe the clusters:808

using rules or using available cluster labels?809

FIGURE 13. What would be more time-consuming to distinguish and
describe the clusters: using rules or using available cluster labels?

FIGURE 14. How are the rules understandable to you, i.e., do they
provide information on the basis of which you are able to draw
dependencies between them?

Answer: The answer is presented in Figure 13. Where 1 810

corresponds to the rules and 5 to the labels. Themedian value 811

of the results is equal to 3. This means that the participants 812

state that in both cases time could be comparable. However, 813

it could be caused by the fact that we allow considering this 814

question to relatively easy-to-understand datasets. 815

3) DATA SCIENCE OR DOMAIN KNOWLEDGE EXPERIENCE 816

REQUIRED TO PROPERLY INTERPRET EXPLANATION 817

RESULTS 818

The goal of this criterion was to determine if the method 819

can be evaluated by participants who possessed only domain 820

knowledge and not having any experience connected with 821

data science. 822

Question asked to the participants: How are the rules 823

understandable to you, i.e., do they provide information on 824

the basis of which you are able to draw dependencies between 825

them? 826

Answer: The answer is presented in Figure 14. Where 1 827

corresponds to non-understandable and 5 to understand- 828

able. Most of the participants agreed that the generated rules 829

were understandable for them. 830

4) OVERALL USEFULNESS OF THE RULES 831

The goal of this criterion was to evaluate the overall use- 832

fulness of the rules. In the case of very similar rules, the 833

challenge is to separate the rules among clusters, and thus 834

their analysis is complicated. If the rules differ significantly, 835

it is much easier to assign the rules to a specific cluster and 836

determine the differences in the clusters. 837

Question asked to the participants: How do the rules help 838

distinguish clusters and understand how they differ? 839

Answer: The answer is presented in Figure 15. Where 1 840

corresponds to not helpful at all and 5 to very helpful. All 841
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FIGURE 15. How do the rules help distinguish clusters and understand
how they differ?

FIGURE 16. How does overlap between rules make it difficult to interpret
them?

FIGURE 17. Have you noticed dependencies in the rules?

of the participants agreed that the rules are helpful in spotting842

the differences between clusters.843

Question asked to the participants: How does the844

overlap between rules makes it difficult to interpret845

them?846

Answer: The answer is presented in Figure 16. Where847

1 corresponds to does not limit and 5 to limit. Most848

of the participants decided that the overlap of rules’849

conditions limits interpretability. We discuss these results850

in Section VI-C.851

Question asked to the participants: Have you noticed852

dependencies in the rules? The goal of this question is to853

determine if there are some patterns in the rules. For example,854

are there rules that contain the same features in their condi-855

tional part?856

Answer: The answer is presented in Figure 17. Where 1857

corresponds to hard to see and 5 to can be seen. Most of858

the participants noticed such dependencies which in most859

cases were helpful to determine clusters - according to the860

following question.861

Question asked to the participants: How do these depen-862

dencies help you to understand the rules?863

Answer: The answer is presented in Figure 18. Where 1864

corresponds to not helpful and 5 to very helpful.865

FIGURE 18. How do these dependencies help you to understand the
rules?

FIGURE 19. In comparison to a benchmark (centroids based) are the
ClAMP results better?

5) OVERALL EVALUATION 866

To finally evaluate our methodology based on the artificially 867

generated datasets we decided to ask another question. In the 868

script, there was a possibility to generate rules not based on 869

the bounding box prototypes but based on the centroid point 870

in each of the clusters. As a result, the participants were 871

able to compare results obtained for each of the methods and 872

answer the following question. 873

Question asked to the participants: In comparison to a 874

benchmark (centroids based) are the ClAMP results better? 875

Answer: The answer is presented in Figure 19. Almost 876

80% of the responders answer that the ClAMP methodology 877

allows obtaining rules that better describe clusters and help 878

to understand them. 879

C. DISCUSSION ON THE RESULTS OBTAINED ON THE 880

ARTIFICIALLY GENERATED DATASETS 881

The overall evaluation results suggest that ourmethodology is 882

useful for participants in cluster analysis. Taking the obtained 883

results into consideration, we are able to state that the devel- 884

oped methodology delivers satisfactory results in the case of 885

application to artificially generated datasets. 886

Participants agreed that the ClAMP methodology allows 887

describing better clusters than each of the instances, which 888

was one of our goals (see Figure 11). Additionally, Figure 12 889

depicts the answers to the question of how many rules the 890

participants considered satisfactory to maintain clarity of 891

the rules. It shows the maximum number of rules that are 892

satisfactory to understand clusters well. Only three of the par- 893

ticipants answered that this number could be greater than 10. 894

This answer is aligned with our observation that interpretable 895

models are not always explainable due to their complexity. 896
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What is surprising is there is no clear answer to what is897

a more time-consuming cluster description, using the rules898

or using instances, see Figure 13. We assume that the use of899

rules should be much faster than the use of each instance.900

However, we provided relatively uncomplex datasets to the901

evaluation and simple analysis of the values concerning each902

of the clusters allows understanding of the relations between903

clusters. On the other hand, in the case of datasets with more904

features, this case could be not so easy to determine, and in905

such examples, the ClAMP methodology works significantly906

better.907

One of the issues observed by both authors and participants908

is overlapping rules, which occurs when the generated rules909

possess some common parts. This issue limits interpretabil-910

ity and causes that participants have to spend more time911

to understand rules, see Figure 16. However, once spotted,912

they improve the overall understanding. Based on the results913

presented in Figures 17 and 18, we assume that participants914

noticed some dependencies and in generated rules, which915

helped them better understand the whole explanation. This916

observation could be an argument for creating explanations917

that take advantage of different forms of visual analytics918

to help users spot important patterns within the explana-919

tions [31].920

To sum up, in general, almost 80% of the participants921

agreed that the ClAMP methodology is better than that based922

on the cluster centroids. This enables us to state that the appli-923

cation of our methodology is useful in the case of artificially924

generated datasets. In the following section, we consider a925

real industrial case and present the results obtained by the926

experts.927

VII. EVALUATION USING AN INDUSTRIAL CASE STUDY928

A. THE HOT-ROLLING PROCESS929

The considered real industrial case refers to the Hot Rolling930

Mill which is located in Krakow (Poland) as part of the931

company ArcelorMittal Poland. The hot-rolling process used932

in this case relies on the production of steel coils from flat933

slabs. At the beginning of the process, the slabs have a934

thickness that has to be reduced in the transverse section.935

As a result, the final thickness of the product is typically 10 to936

100 times smaller than the original. The quality of the final937

product depends on many factors and is directly connected938

with the manufactured material results frommaterial science,939

control engineering, mechanical engineering, and knowledge940

of production engineering.941

The hot rolling process is based on the metal’s ductility at942

high temperatures and consists of several steps. Initially, the943

raw slab’s thickness is reduced from about 220 mm to about944

30 mm, while the temperature of the slab reaches almost945

1200◦ C. Later, the strips are moved to the finishing mill,946

where more precise process control is applied. The finishing947

mill is composed of six stands. Each of the stands has a lower948

distance between the rollers whereby the thickness of the949

strips is reduced. At the final stage, the temperature reaches950

FIGURE 20. Simplified hot rolling mill process flow [32].

almost 900◦ C. Finally, each prepared product is coiled and 951

transferred to storage [32]. Figure 20 shows a schematic 952

diagram of the hot rolling process. 953

For the analysis, we took into consideration 10 000 dif- 954

ferent slabs with four parameters for each of them: width, 955

profile, tempexit, and tempcoil with calculated average and 956

standard deviation for each of these parameters. These param- 957

eters were chosen as key parameters in the case of final 958

product quality. The choice was made by the experts. Our 959

assumption was to treat the case as an unsupervised machine 960

learning problem because such an approach gives opportuni- 961

ties to discover data patterns that would be imperceptible to 962

the experts. The industrial problem considered in this paper 963

is directly connected with the hot-rolling process described in 964

this section. Based on the obtained parameters, we performed 965

clustering. As a result, all considered slabs were divided into 966

three groups to allow us to suppose that in the production 967

phase, occurring processes affect the final quality of the prod- 968

uct. In cooperation with the experts, we decided to use the 969

ClAMP methodology to uncover differences between these 970

three groups. Such classification and fully understanding the 971

dependencies between groups may result in better process 972

management. 973

As the analysed problem is treated as an unsupervised 974

problem, we decided to present the results separating them 975

into two stages, resolved as clustering and classification; rules 976

creation and evaluation. 977

B. EVALUATION OF CLUSTERING AND CLASSIFICATION 978

The initial step in the methodology includes data cluster- 979

ing for obtaining good quality clusters. We tested three 980

different methods as mentioned in Section IV-A. We used 981

three different types of algorithms: temporal (DTC), density- 982

based (Gaussian mixture), and one from the K-means family 983

(BIRCH). In the case of the DTC (deep temporal clustering) 984

clustering method and the BIRCH algorithm, we used the 985

silhouette score in the Gaussian mixture method and deter- 986

mined the number of clusters based on the BIC (Bayesian 987

Information Criteria) and AIC (Akaike’s Information Crite- 988

ria) metrics [21], [33]. The comparison of obtained results is 989

presented in Table 5. It is visible that the BIRCH algorithm 990

performed the best over all the others, hence it was chosen as 991

the method for further analysis. 992

After the cluster labels were obtained, we used the 993

XGBoost classifier with hyperparameter optimisation to 994

build a model that will be able to distinguish clusters as 995

accurately as possible. For BIRCH clustering, we obtained 996
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TABLE 5. Clustering metrics comparison between three different classes
of algorithms.

TABLE 6. Average scores for explanation evaluation n 5-fold
cross-validation dataset. Values after ± represent standard deviation in
the obtained results.

the following classification results: accuracy of 0.99 and an997

F1 score equal to 0.96.998

In the final step of this stage, we obtained a dataset with999

labels split into 3 classes with distribution: 0.43, 0.43, 0.141000

respectively to classes 0, 1, and 2.1001

C. CREATION OF RULES AND EVALUATION1002

After the first stage of the analysis, we moved on to build-1003

ing bounding boxes, rule generation, and the rule evalua-1004

tion stage. This stage is fully automated. We applied the1005

Weights&Biases platform4 to optimize the hyperparameters1006

and save the obtained results for each run. In this phase, all1007

hyperparameters connected with the bounding box genera-1008

tion mentioned in section IV-C have been optimised.1009

At the beginning of this stage, the whole dataset was split1010

into train and test subsets. The training subset was used for1011

generating bounding boxes. The points which were treated as1012

a bounding box for each cluster were passed to the LUX [34]1013

explainer algorithm to obtain rules in human-readable form.1014

this is an algorithm similar to Anchor, however, it includes1015

information about uncertainty of explanations, which allows1016

better selection of final rules that describe the cluster. This1017

algorithm, based on the feature values for bounding data1018

points and cluster labels assigned to these points, produced1019

rules which were able to describe each cluster. Additionally,1020

in parallel with the rules, the confidence of each rule was1021

calculated, which allows determining the initial quality of1022

the rule. In the next step, a preliminary rule analysis was1023

performed. The idea of this stage is to reduce the number of1024

rules by dropping duplicates (the same rules generated for dif-1025

ferent data points). Among the duplicated rules, only the one1026

with the highest value of precision and coverage parameters1027

was left allowing the number of rules and the computation1028

time during the HeaRTDroid application to be reduced. The1029

resulting rule set was then translated to XTT2 format which1030

is executable by HeaRTDroid. Additionally, coverage and1031

precision parameters were also taken into consideration by1032

HeaRTDroid but in the form of a product of these two.1033

4Weights & biases platform: https://wandb.ai/site.

Therefore, the generated rules, a product of precision and 1034

coverage parameters, and a testing subset were treated as 1035

the input to HeaRTDroid, based on which, HeaRTDroid pre- 1036

dicted the cluster label for each testing point. As a result, 1037

we obtained an array of predicted labels based on the rules 1038

generated for the considered bounding boxes. These labels 1039

were then compared with the labels generated by the cluster- 1040

ing algorithm for the testing subset. 1041

To check the effectiveness of the generated rules, we pro- 1042

posed four metrics particularly described in Section IV-D3. 1043

The final results of the evaluation are presented in Table 6, 1044

which contains the final results of the developedmethodology 1045

obtained for each of the considered methods used to define 1046

the bounding box. 1047

As we decided to treat the F1-score as the target metric, 1048

the best score, equal to 0.98, was obtained for the ClAMP 1049

method, which combines all of the bounding box description 1050

methods, as presented in Table 6. 1051

The quality of rules in terms of classification metrics can 1052

be adjusted by changing the number of points used to form a 1053

bounding box. In general, the more points we create, the more 1054

precise the classification we obtain. As a trade-off, we lose 1055

the interpretability due to the increased number of rules anal- 1056

ysed by the expert. Figure 21 presents charts that show how 1057

classification scores change, with the number of considered 1058

bounding points defined in percentages. Additionally, we are 1059

able to present such dependencies for two different metrics 1060

applied for the KD-tree description method. The number of 1061

points for which we obtained the best F1-score for each of the 1062

considered methods is marked by the red dashed line. 1063

In Figure 21, the highest changes in values occur for the 1064

random selection method and increase monotonically, which 1065

is understandable as it covers more and more points from 1066

the dataset. This increases accuracy but makes the explana- 1067

tion model more complex and thus less useful in practical 1068

applications. For centroid-based methods, the change is not 1069

visible as one point is always used as the ‘‘bounding box’’. 1070

In comparison with the rest of the charts, using random 1071

selection and isolation forest methods, we can see that the 1072

KD-tree method needs fewer points to obtain comparable 1073

results than the others. Such a presentation, together with the 1074

knowledge of how the presented methods work, may be very 1075

informative for the experts. 1076

D. RULES ANALYSIS BY EXPERTS 1077

With the 26 obtained rules, we performed an evaluation with 1078

three domain experts recruited from ArcelorMittal who were 1079

asked to use CLAMP to obtain explanations for clusters 1080

and later answer the same set of questions as presented in 1081

Sections VI-B2. In Table 7, we present the synthesised results 1082

we obtained both from domain experts in the industrial case, 1083

and from participants involved in the evaluation on artificial 1084

datasets. 1085

For the analysis of the results, one can see that answers are 1086

slightly different depending on the dataset. This is especially 1087

101570 VOLUME 10, 2022



S. Bobek et al.: Enhancing Cluster Analysis With Explainable AI and Multidimensional Cluster Prototypes

FIGURE 21. How classification score changes with the number of considered bounding points defined in
percentages.

TABLE 7. Average answers for survey questions with respect to the
dataset.

visible in the case of the number of rules required to under-1088

stand clusters (Q2), while the other answers are similar.1089

E. DISCUSSION OF THE RESULTS1090

The overall evaluation results suggest that our methodology1091

is useful for experts in cluster analysis. Most of the crucial1092

features of our method gained high scores from the experts.1093

In Section VI-B1, two experts agreed with the statement that1094

the rules presented in our approach were better for explaining1095

clusters, not single instances, which was our intention. One of1096

the experts outlined that such rules could explain an instance1097

as well. In the case of the number of generated rules, one of1098

the experts decided to divide the answers into two cases. The1099

number of rules to comprehend by the human user is heavily1100

dependent on the way the results are presented.1101

• After the rules are initially grouped according to com-1102

mon parts, conclusions can be drawn from > 50 rules.1103

• When all rules are presented in tabular form, conclusions 1104

can be drawn from < 10 rules. 1105

In addition, the expert pointed out that the set of rules that 1106

describe limits for a single parameter at once is more intuitive 1107

than the interpretation of one rule describing the relation 1108

between 3 or more features. Rules built on the basis of 1109

2 parameters seem to have the right balance between the 1110

amount of information and the availability of its evaluation. 1111

In comparison to the analysis without explanations 1112

(Section VI-B2), two experts agreed that our method can 1113

strongly decrease the time needed to distinguish and describe 1114

the clusters. One of the experts pointed out that the method 1115

allows adjusting the complexity of the conditions set depend- 1116

ing on the time constraints of the user for which they are 1117

prepared. For fast evaluation, the generated conditions could 1118

be visualised and put in the context of product measurements. 1119

For the purposes of advanced study, the amount of infor- 1120

mation is more important than the time of analysis. In that 1121

case, the computed rules could be an intermediate dataset for 1122

further analysis. 1123

The domain knowledge is as important as the data sci- 1124

ence background in analysing the results of the explana- 1125

tions (Section VI-B3). The data, which were treated as an 1126

input to the ClAMP methodology in the presented use case, 1127

were delivered to the data scientist and based on statistical 1128
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TABLE 8. Rules overlapping example. Rule 1 subsumes rule 2.

properties such as standard deviations, variance, etc. We also1129

consulted experts without data science experience about the1130

results. They pointed out that they prefer rules which would1131

be generated based on real production parameters, not on the1132

statistics. One of the experts additionally pointed out that the1133

complexity of the rule should be correlated with the expected1134

cognitive abilities of the end-user. The user evaluating the1135

rules should be experienced and understand the process to1136

which they relate. In their current form, they can be addressed1137

to technologists and process specialists. Interpretation of the1138

conditions by an inexperienced user such as management1139

staff requires giving context to the rules, e.g., what is the1140

probability of a defect if the condition will be exceeded.1141

In general, the rule-based form is friendly to interpretation by1142

a specialist, however, it is strongly dependent on the selec-1143

tion of features in the model input dataset. In this case, the1144

explanations are understandable as the parameters features1145

like standard deviation or mean are easy to comprehend by1146

specialists. The use of ‘quadrilles’ or ‘percentiles’ would not1147

be so clear to the human user.1148

However, this comment relates to the whole family of XAI1149

methods that do not consider the type or characteristics of1150

the user as an important factor in preparing explanations.1151

We believe that this should be a trigger for extensive research1152

in the area of XAI and HCI (Human Computer Interaction).1153

However, it is outside the scope of this work.1154

In the last Section VI-B4, the experts noted that there are1155

overlapping rules that make the task challenging because it1156

is difficult to determine the cluster’s boundaries. There are1157

several rules which consist of the same feature, with the same1158

inequality sign but different values. It is hard to define which1159

of these rules is the best, that is, which rules allow obtaining1160

the best balance in recognising points that concern a specific1161

cluster and does not allow too many points to be recognised1162

that concern a cluster which this rule do not define. An exam-1163

ple of such is presented in Table 8. In the example, Rule 1 is1164

more general than Rule 2 (Rule 1 subsumes Rule 2). This,1165

in some cases, might cause the analysis of the explanations1166

to be difficult, as the decision regarding which rule is more1167

appropriate to describe the cluster might not be entirely clear.1168

VIII. SUMMARY1169

In this paper, we presented a novel approach for cluster anal-1170

ysis with multidimensional prototypes called ClAMP that1171

aids experts in cluster analysis with human-readable rule-1172

based explanations. ClAMP methodology is divided into two1173

stages: clustering and classification and rules creation and1174

evaluation.1175

In the first stage, clustering and classification are exe-1176

cuted. The goal of these two steps is to convert unsupervised1177

learning problems into supervised one. In our case, we tested 1178

three different clustering methods. As a classification algo- 1179

rithm, we used XGBoost with hyperparameter optimisation. 1180

In the second stage, we implemented three methods that can 1181

be used to determine the prototypes (bounding boxes) that are 1182

then treated as an input to the explainer algorithm. Thanks to 1183

the application of these methods, the clusters are described 1184

only by the most representative points that allow avoiding the 1185

generation of unnecessary rules which can introduce noise 1186

into the explainability mechanism. Such an approach limits 1187

the computational time needed to generate explanations and 1188

increase explainability transparency. Hence, the proposed 1189

approach increases the effectiveness and efficiency of the 1190

rules generation. The generated bounding boxes are treated as 1191

an input to the Anchor explainers to generate rules for each 1192

cluster. The Anchor explainer is able to generate precision 1193

and coverage parameters as well. Thanks to these, there is 1194

a possibility to determine which rules describe the cluster 1195

better. These parameters are also useful for checking the 1196

effectiveness of the created rules. To do that, we used the 1197

HeaRTDroid rule-based inference engine which allows pre- 1198

dicting labels based on the generated Anchor explainer rules 1199

and parameters returned. It also allows for the integration 1200

of the knowledge discovered using the XAI method with 1201

other system components. As a result, we implemented an 1202

approach that allows delivering human-readable rules to the 1203

experts taking into consideration different clustering meth- 1204

ods, hyperparameter optimisation, and a novel approach to 1205

generating bounding boxes for evaluation. 1206

In comparison to the methods presented in Section II, 1207

we noticed two main differences. Firstly, the developed 1208

methodology allows obtaining a cluster representation in the 1209

form of human-readable rules. It is worth emphasising that 1210

we do not concentrate on explaining particular instances but 1211

rather on the whole group. This gives the opportunity to 1212

deliver to the experts information about the considered groups 1213

and understand the data division into clusters. Secondly, our 1214

methodology can verify the obtained rules with the use of 1215

HeaRTDroid, which allows predicting labels based on the 1216

instances and rules obtained based on the train set. 1217

We demonstrated our approach using two cases. The first 1218

concerns publicly available, artificially generated datasets 1219

that can be considered benchmark cases. The second case 1220

concentrates on the real-life use case scenario with confi- 1221

dential data shared for the purpose of the PACMEL project 1222

from the company ArcelorMittal. Taking into account the 1223

assessment of the rules by experts, the idea of the proposed 1224

methodology proved that it is useful. According to the com- 1225

pleted questionnaire, the experts pointed out that the rules 1226

help them describe the clusters, and such understanding is 1227

less time-consuming than in the case of the labels themselves. 1228

Although participants noticed that descriptions of clusters 1229

usually contain overlapping rules, they were able to identify 1230

the redundant parts and correctly interpret the explanations. 1231

The bottom line is that the generated rules are able to provide 1232

useful information about clustering. 1233
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Furthermore, one of the limitations of the developed1234

methodology pointed out by the experts is the fact that some1235

of the generated rules overlap. In futurework, we are planning1236

to find a solution concerning that limitation, based on our1237

prior works in this area [35].We also plan to adjust the bound-1238

ing box generation by selecting the most suitable method for1239

discovering cluster prototypes, not for the whole data but for1240

each cluster separately. Taking into account the approach for1241

KnowledgeAugmented Clustering (KnAC) presented in [23],1242

which is based on the clusters’ centroids, ClAMP will be1243

considered as an extension of KnAC.1244

ABBREVIATIONS1245

TABLE 9. Abbreviations explanation.
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