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A B S T R A C T   

The intestinal microbiota is a complex and diverse ecological community that fulfills multiple functions and 
substantially impacts human health. Despite its plasticity, unfavorable conditions can cause perturbations 
leading to so-called dysbiosis, which have been connected to multiple diseases. Unfortunately, understanding the 
mechanisms underlying the crosstalk between those microorganisms and their host is proving to be difficult. 
Traditionally used bioinformatic tools have difficulties to fully exploit big data generated for this purpose by 
modern high throughput screens. Machine Learning (ML) may be a potential means of solving such problems, but 
it requires diligent application to allow for drawing valid conclusions. This is especially crucial as gaining insight 
into the mechanistic basis of microbial impact on human health is highly anticipated in numerous fields of study. 
This includes oncology, where growing amounts of studies implicate the gut ecosystems in both cancerogenesis 
and antineoplastic treatment outcomes. Based on these reports and first signs of clinical benefits related to 
microbiota modulation in human trials, hopes are rising for the development of microbiome-derived diagnostics 
and therapeutics. In this mini-review, we’re inspecting analytical approaches used to uncover the role of gut 
microbiome in immune checkpoint therapy (ICT) with the use of shotgun metagenomic sequencing (SMS) data.   

1. The impact of host-microbiota crosstalk on human health 

Microorganisms inhabiting the human body fulfill numerous func-
tions crucial for the host (Dominguez-Bello et al., 2019; Hill and Round, 
2021; Valdes et al., 2018). Among them are a vast number of ways in 
which microbiota is involved in maintaining human health, such as 
controlling pathogen growth or modulating immune system develop-
ment and functioning (Bäumler and Sperandio, 2016; Gensollen et al., 
2016; Levy et al., 2017a; Zheng et al., 2020). However the exact ele-
ments that make up the microbiome and determine its specific capa-
bilities are dependent on numerous factors (Berry et al., 2020; Mohajeri 
et al., 2018; Zeevi et al., 2015). As those are both host-intrinsic and 
extrinsic (Aleman and Valenzano, 2019; Dong and Gupta, 2019; Kee-
baugh and Ja, 2017; Kurilshikov et al., 2021, 2017; Reimer, 2019; 
Scepanovic et al., 2019; Weersma et al., 2020), the microbiota 

composition and its functional potential differs not only between pop-
ulations (Deschasaux et al., 2018; Gupta et al., 2017; He et al., 2018), 
and individuals (Arumugam et al., 2011; Consortium, 2012; Falony 
et al., 2016; Zhernakova et al., 2016) but for each person it is also subject 
to change over time (David et al., 2014; Mehta et al., 2018). Consistency 
can be observed in respect to the presence of the main components of 
microbial communities at higher taxonomic levels, however, their 
relative proportions and the exact species present vary markedly be-
tween individuals (Consortium, 2012). This results in a great degree of 
variation in composition, existing between seemingly healthy adults, 
making it difficult to define a “normal/healthy microbiota”. However, a 
so-called “dysbiosis”, can be generally described as a state resulting from 
an occurrence of conditions beyond an ecosystem’s resistance and 
resilience, causing the disruption of balance within this ecosystem. 
Dysbiosis may result in the elimination or underrepresentation of some 
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commensal species and the outgrowth of potentially pathogenic mi-
croorganisms that are otherwise kept contained (Dogra et al., 2020; Levy 
et al., 2017b; Lozupone et al., 2012). This adverse state has been asso-
ciated with multiple clinical conditions (Malard et al., 2020; Ruff et al., 
2020) and, based on Pubmed entries for the term “dysbiosis”, the 
number of new studies related to this topic has been growing expo-
nentially in the last decade. However, the road from merely observing 
correlations to really understanding the mode of action and being able to 
take advantage of this knowledge is not easy. 

Just the sheer numbers of microorganisms that inhabit the human 
gut already make the analysis challenging. The gut microbiota of an 
average healthy adult is composed of tens of trillions of bacteria, 
including more than a thousand known bacterial species which trans-
lates to few million genes (Claesson et al., 2009; Gilbert et al., 2018; 
Lozupone et al., 2012). On top of that, not all microbial species have 
been discovered and characterized due to their challenging culturing 
requirements (Almeida et al., 2019). However, even the identification of 
all microbial species composing one’s microbiota at a given point in time 
could still not be enough to understand its functional potential. That is 
because these microorganisms constantly interact with the host and with 
each other, responding to changing conditions by swiftly evolving (Rook 
et al., 2017; Rosenberg and Zilber-Rosenberg, 2018). Thus literature 
reports pertaining to characteristics of a given bacteria can get outdated 
quite quickly especially in aspects such as antimicrobial resistance 
(Chevereau et al., 2015; Woods et al., 2020; Yong et al., 2009). This 
plasticity also results in multiple microbes that are deemed beneficial or 
neutral to the host under certain circumstances but still can cause harm 
under others (Ruff et al., 2020). 

2. Complex ecosystems require robust analyses 

Microbiota research has its roots in laboratory analysis informed by 
the use of bioinformatic and statistical tools. However, this traditional 
approach is time-consuming, labor-intensive and often not enough to 
grasp the essence of such microbial communities. These kinds of com-
plex and extremely dynamic ecosystems require detailed information to 
allow for drawing valid conclusions on their functioning (Gerber, 2014). 

Currently, collecting such data is becoming possible with the help of 
technological advancements in the field of high-throughput screens, 
resulting in an increase of affordability and accessibility of these ground- 
breaking tools. For example, Shotgun Metagenome Sequencing (SMS) 
generates data allowing not only for quantification of both high and low- 
abundant microorganisms (not restricted to bacteria), but also enables 
functional profiling. Through this the actual potential of these commu-
nities can be investigated (Claesson et al., 2017). Although around half 
of the inferred microbial protein sequences are similar to nothing stored 
in databases, deep learning tools can be fed with SMS data to gain even 
more insight into intestinal ecosystem functioning (Odrzywołek et al., 
2022). Combining this kind of detailed information on microbiota with 
multiple, complex laboratory and clinical parameters may hold the keys 
to solving numerous clinical challenges, such as assessing disease risk, 
making a diagnosis, prognosing the course of a disease, and personal-
izing a treatment. However, fully exploiting such data is not trivial as it 
needs to be diligently analyzed with use of proper data science tools 
allowing for management and integration of multidimensional big data 
(Cammarota et al., 2020). As a result, there is a noticeable turn towards 
using Machine Learning (ML) approaches (Cammarota et al., 2020; 
Namkung, 2020; Sundh et al., 2021; Wirbel et al., 2021). ML is a class of 
statistical learning methods, loosely classified as algorithms that 
improve themselves in concurrent runs based on the evaluation of pre-
vious runs. In other words, the algorithm learns by itself, hence the 
name. For analysis of microbiome data the main advantage is the ability 
to analyze multidimensional data as a whole (multivariate analysis) and 
indicate the most important dimensions. Furthermore, the ML has 
readily available techniques to assess the transferability of the results. 
Nevertheless, due to the specificity of the SMS data – usually a scarce 

number of samples and richness of information per sample - carefree use 
of ML can easily lead to drawing false conclusions. 

3. Gut microbiota and cancer 

A field with especially high, and so far unmet, needs of harvesting 
microbiota’s potential is oncology (Elkrief et al., 2019; Zipkin, 2021). 
The impact of some bacteria on cancerogenesis has been investigated for 
quite some time (Garrett, 2015). However, the true interest in the 
microbiome got sparked by research published in the mid-2010s 
showing correlation between its composition and therapy outcomes 
(Gopalakrishnan et al., 2018; Iida et al., 2013; Matson et al., 2018; Routy 
et al., 2018; Vetizou et al., 2015; Viaud et al., 2013). Since then, a range 
of studies has been conducted to explore the role of intestinal commu-
nities in multiple aspects, including safety, tolerability and the efficacy 
of antineoplastic treatments – especially in context of immune check-
point therapy (ICT) (Helmink et al., 2019; Sepich-Poore et al., 2021; 
Vivarelli et al., 2019). Recent reports have shown that modulation of the 
gut microbiome - by fecal microbial transplant - can in fact be a valid 
mean for increasing response to this therapy (Baruch et al., 2021; Davar 
et al., 2021). However, fecal microbial transplant itself comes with 
plenty of technical challenges, safety concerns and biological un-
certainties (Cammarota et al., 2019; Ma et al., 2017; Park and Seo, 
2021). That is why scientists are looking to determine the microbiome’s 
mode of action - particular actionable features within the microbial 
haystack. Identification of such features would allow for the precise 
design of microbiota-based diagnostic tools and therapeutic strategies 
(Zitvogel et al., 2018). The research on microbiome-derived solutions 
for improving ICT outcomes is currently gaining momentum, as 
numerous research projects and commercial ventures are being under-
taken (Zipkin, 2021). 

Taking into consideration the fact that the success of these endeavors 
hinges on drawing valid conclusions, it is of the utmost importance that 
the collected data is properly analyzed. Thus, it is crucial to understand 
if the tools used for uncovering the role of microbiome in cancer 
immunotherapy, especially the ones from the ML toolbox, are being 
applied correctly and therefore to what extent the obtained results are 
reliable. To our knowledge, until now, no critical analysis of the ap-
proaches used for this purpose has been conducted. Thus, we decided to 
dedicate the following mini-review to inspecting the statistical methods 
used in analyzing microbiome in cancer immunotherapy. 

4. The state of literature 

To analyze all published results coming from the application of ML 
methodology to SMS data, we performed a manual literature search in 
PubMed with use of terms: (“immune checkpoint" OR immunotherapy) 
AND (metagenome OR "gut microbiome"), which provided us with 304 
results (on 01.04.2021). We included only the studies pertaining to the 
analysis of patient SMS data, because they reflect the full diversity of the 
microbiome, enabling full utilization of computational analysis. This 
resulted in the identification of 10 original papers and 1 meta-analysis of 
publicly available SMS datasets that were published in the course of the 
last 4 years, which analyzed the influence of gut bacteria on cancers such 
as metastatic melanoma (Frankel et al., 2017; Gopalakrishnan et al., 
2018; Limeta et al., 2020; Matson et al., 2018; Peters et al., 2019; Wind 
et al., 2020), renal cell carcinoma (RCC) (Derosa et al., 2020; Routy 
et al., 2018; Salgia et al., 2020), non-small cell lung cancer (NSCLC) 
(Cvetkovic et al., 2021; Routy et al., 2018) and gastrointestinal cancers 
(Peng et al., 2020). Publications discussed in this review are summarized 
in Table 1 and Table 2. 

Authors used either (or both) of the two standard assessment criteria 
of therapy success: RECIST 1.1 (Response Evaluation Criteria in Solid 
Tumors 1.1) (Eisenhauer et al., 2009) and survival time. RECIST 1.1 is a 
set of rules for comparing tumor burden at baseline and in follow-ups in 
order to classify a patient as having a complete response (CR), partial 
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Table 1 
Summary of the SMS data sets analyzed in the review.  

Publication & 
dataset 

Cancer type Data type & analysis SMS parameters Response 
classification 
(based on BOR) 

Survival 
data used 

Cohort characteristics 

Frankel et al., 2017 
(63) 
(PRJNA397906) 

Melanoma Metagenomic (taxonomic & 
functional analysis) and 
metabolomic profiles 

Illumina HiSeq 2000 
(100 bp paired-end 
reads) 

R: CR, PR, SD; 
NR: PD  

39 subjects (23 R / 16NR): 
anti-PD-1 mono: 
pembrolizumab (14), 
nivolumab (1), 
anti-PD-1 & anti-CTLA-4 
combo: nivolumab & 
ipilimumab (24) 

Gopalakrishnan 
et al., 2018 (51) 
(PRJEB22893) 

Melanoma Metagenomic (taxonomic & 
functional) profiles 

Illumina HiSeq (2 
×100 bp paired-end 
reads) 

R: CR, PR, SD > 6 
mos; 
NR: SD < 6 mos, PD 

PFS 25 subjects (14 R / 11NR): 
anti-PD-1 mono (25) 

Matson et al., 2018 
(52) 
(PRJNA399742) 

Melanoma Metagenomic (taxonomic) 
profiles 

Illumina NextSeq (2 
×150 bp paired-end 
reads) 

R: CR, PR; 
NR: SD, PD  

39 subjects (15 R / 24NR): 
anti-PD-1 mono: 
pembrolizumab (30), 
nivolumab (5), 
anti-CTLA-4 mono: 
ipilimumab (4) 

Peters et al., 2019 
(64) 
(PRJNA541981) 

Melanoma Metagenomic (taxonomic & 
functional) and 
metatranscriptomic profiles 

Illumina HiSeq 2500 (2 
×101 bp paired-end 
reads) 

– PFS 27 subjects: 
anti-PD-1 mono (14), 
anti-CTLA-4 (1), 
anti-PD-1 & anti-CTLA-4 
combo (12) 

Wind et al., 2020 
(65) 
(SMS data not 
freely available) 

Melanoma Metagenomic (taxonomic & 
functional) profiles 

Illumina HiSeq (paired- 
end reads) 

R: CR, PR (if 
confirmed at the next 
scan), SD > 12 wks; 
NR: SD < 12 wks SD, 
PD (except if not 
confirmed at the 
second scan) 

PFS, OS 25 subjects (12 R / 13 NR): 
anti-PD-1 mono (23), 
anti-PD-1 & anti-CTLA-4 
combo (2) 

Routy et al., 2018 
(53) 
(PRJEB22863) 

NSCLC, 
RCC 

Metagenomic (taxonomic) 
profiles 

Ion-proton technology 
(ThermoFisher; 150 bp 
single-end reads) 

R: CR, PR, SD; 
NR: PD, dead 

PFS NSCLC (time point 0): 65 
subjects (33 R / 32NR): 
anti-PD-1 mono: 
nivolumab (65) 
RCC (time point 0): 62 
subjects (42 R / 20 NR): 
anti-PD-1 mono: 
nivolumab (62) 

Cvetkovic et al., 
2021 (67) 
(SMS data not 
freely available) 

NSCLC Metagenomic (taxonomic) 
profiles 

Ion-proton technology 
(ThermoFisher; 150 bp 
single-end reads) 

R: CR, PR, SD > 6 
mos; 
NR: SD < 6 mos, PD 

PFS, OS 71 subjects (no info on R / 
NR no.): 
anti-PD-1 mono: 
nivolumab (38), 
pembrolizumab (24), 
anti-PD-L1 mono: 
durwalumab (1), 
anti-PD-1 & chemotherapy 
combo: pembrolizumab +
chemotherapy (7), 
anti-PD-L1 & anti-CTLA-4 
combo: durwalumab & 
tremelimumab (1) 

Derosa et al., 2020 
(68) 
(SMS data not 
freely available) 

RCC Metagenomic (taxonomic) 
profiles 

Ion-proton technology 
(ThermoFisher; 150 bp 
single-end reads) 

R: CR, PR, SD > 6 
mos; 
NR: SD < 6 mos, PD 

PFS 69 * subjects (32 R / 37 
NR): 
anti-PD-1 mono: 
nivolumab 
* 29 new and 40 subjects 
already included inRouty 
et al., 2018 (53) 

Salgia et al., 2020 
(69) 
(SMS data not 
freely available) 

RCC Metagenomic (taxonomic) 
profiles 

Illumina NextSeq High 
Output (2 ×150 bp 
paired-end reads) 

R: CR, PR, SD > 4 
mos; 
NR: SD < 4 mos, PD  

31 subjects (18 R / 13 NR); 
anti-PD-1 mono: 
nivolumab (24), 
anti-PD-1 & anti-CTLA-4 
combo: nivolumab & 
ipilimumab (7) 

Peng et al., 2020 
(70) 
(PRJNA615114) 

Gastrointestinal cancers 
(colorectal, esophageal, 
gastric & other) 

Metagenomic (taxonomic & 
functional) profiles 

Illumina NovoSeq 6000 
(2 ×150 bp paired-end 
reads) 

R: (CR, PR, SD) > 3 
mos; 
NR: PD < 3 mos 

PFS 40 subjects (25 R / 15NR): 
anti-PD-1 mono, anti-PD- 
L1 mono, 
anti-PD-1 & anti-CTLA-4 
combo 

Abbreviations: BOR, best overall response; combo, combination therapy; CR, complete response; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; mono, 
monotherapy; NR, non-responder; NSCLC, Non-Small Cell Lung Cancer; OS, overall survival; PD, progressive disease; PD-1, programmed cell death 1; PD-L1, pro-
grammed cell death ligand 1; PFS, progression-free survival; PR, partial response; R, responder; RCC, Renal Cell Carcinoma; SD, stable disease; SMS, Shotgun met-
agenomic sequencing; 
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response (PR), stable disease (SD) or progressive disease (PD). Based on 
all patient evaluation(s) during a particular treatment, best overall re-
sponses (BOR) - defined as the best response across all time points up to 
the end of the treatment - can be assigned. All of the studies that 
recorded BOR used these values for dichotomizing patients into re-
sponders (R) and non-responders (NR). This allows for the use of sta-
tistical tests to compare the microbial compositions between R/NR 
groups. It also opens the door to using supervised ML for predicting R or 

NR status from microbiome composition. 
Alternatively, instead of using rigid R/NR groups, some authors 

based their analyses on one of the two survival time measures, widely 
used in the context of anti-cancer therapies: progression-free survival 
(PFS) and overall survival (OS). PFS measures the time between the start 
of the therapy and the tumor’s progression (or death from any cause), 
whereas OS measures the life length after the initiation of a therapy. 
While OS analysis is the gold standard for determining therapeutic 

Table 2 
Summary of analytical methods used in the publications.  

Publication Survival 
analysis 

Statistical 
Test 

Frameworks Diversity & 
unsupervised 

Supervised machine 
learning 

Details on methods used 

Frankel et al., 2017 (63)  ● ● ●   – Statistical tests: Welch’s t, Wilcoxon signed- 
rank, Mann-Whitney U  

– Frameworks: LEfSe  
– Diversity & unsupervised: Hierarchical 

clustering 
Gopalakrishnan et al., 

2018 (51) 
● ● ● ● ●  – Survival analysis: KM estimates, Cox 

regression  
– Statistical tests: Mann-Whitney U, Fischer’s 

exact test  
– Frameworks: LEfSe  
– Diversity & unsupervised: PCoA, Hierarchical 

clustering  
– Supervised ML: Feature selection, univariate 

linear regression 
Matson et al., 2018 (52)  ●  ●   – Statistical tests: Permutation, Mann-Whitney 

U, ANOVA  
– Diversity & unsupervised: Hierarchical 

clustering, PCA 
Peters et al., 2019 (64) ● ● ● ● ●  – Survival analysis: KM estimates, Cox 

regression  
– Statistical tests: Fisher’s  
– Frameworks: MiRKAT-S, OMiSA  
– Diversity & unsupervised: Hierarchical 

clustering  
– Supervised ML: Cox regression 

Wind et al., 2020 (65) ● ●   ●  – Survival analysis: Cox regression  
– Statistical tests: Kruskal-Wallis, Fisher’s exact  
– Supervised ML: Logistic regression, least- 

squares regression 
Routy et al., 2018 (53) ● ●   ●  – Survival analysis: KM estimates, Cox 

regression, Mantel-Cox test  
– Statistical tests: ANOVA, Wilcoxon, Student t, 

Cochran-Armitage 
Cvetkovic et al., 2021 (67) ● ● ● ●   – Survival analysis: KM estimates  

– Statistical tests: Student t, Fisher’s exact, 
Mann-Whitney U  

– Frameworks: DESeq2  
– Diversity & unsupervised: nMDS 

Derosa et al., 2020 (68) ● ● ● ● ●  – Survival analysis: KM estimates  
– Statistical tests: Chi-square, Mann-Whitney U, 

Student t, ANOVA  
– Frameworks: LEfSe  
– Diversity & unsupervised: PCoA  
– Supervised ML: PLS, random forest 

Salgia et al., 2020 (69)  ● ● ●   – Statistical tests: Kruskal-Wallis  
– Frameworks: LEfSe  
– Diversity & unsupervised: Hierarchical 

clustering 
Peng et al., 2020 (70) ● ● ● ● ●  – Survival analysis: KM estimates  

– Statistical tests: Wilcoxon, Mann-Whitney U  
– Frameworks: Omnibus  
– Diversity & unsupervised:  
– Supervised ML: SVM, ElasticNet, multiple 

others 
Limeta et al., 2020 (66) ● ●  ● ●  – Survival analysis: KM estimates  

– Statistical tests: Wilcoxon’s rank-sum, Fisher’s 
exact 

– Diversity & unsupervised: Beta-diversity, hi-
erarchical clustering  

– Supervised ML: Random forest 

Abbreviations: ANOVA, Analysis of Variance; KM, Kaplan-Meier; LEfSe, Linear Discriminant Analysis, coupled with Effect Size; MiRKAT-S, Microbiome Regression- 
based Kernel Association Test for censored Survival outcomes; ML, machine learning; nMDS, non-Metric Multidimensional Scaling; OMiSA, Optimal Microbiome- 
based Survival Analysis; PCA, Principal Component Analysis; PCoA, Principal Coordinate Analysis; PLS, Partial Least Squares; SVM, Support Vector Machine; 
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efficacy, obtaining this kind of data can be cumbersome. For example, in 
case of melanoma patients treated with ICIs as a first line therapy, 
observation spanning over several years must be planned for, if median 
OS is to be reached (Hamid et al., 2019; Wolchok et al., 2022). There-
fore, although they are significantly less accurate than OS, surrogate 
"early" endpoints - especially PFS and overall response rate (ORR) – are 
very often used to estimate drug activity (Cooper et al., 2020). More-
over, in phase II ICI clinical trials, ORR - defined as the proportion of 
patients who experienced CR or PR - was the most frequently used 
endpoint (Hamada et al., 2018). Thus, it is not surprising that only two 
of the studies discussed in this review made any use of OS data, but most 
used PFS to some extent (see Table 1). Of the latter group, only two used 
PFS to draw conclusions about the microbiome response to treatment: 
Peters et al., utilized specific values and Derosa et al., dichotomized 
patients using a cut-off value of 12 months. In other studies, the survival 
data were used only to verify the results obtained based on BOR. Just 
like in the case of R/NR, PFS and OS come with their own set of standard 
analytical methods designed to link changes in microbiome with later 
death or progression times. The collective name for these methods is 
survival analysis (Clark et al., 2003) and are also based on either 
specialized statistical tests or supervised ML methods. Therefore, we 
decided to create a dedicated section for survival analysis in the detailed 
method description below. 

5. Analytical tools 

5.1. Survival analysis 

An approachable method to visualize time-to-event, such as death or 
disease progression, are curves estimated with the Kaplan-Meier esti-
mator (Kaplan and Meier, 1958). They have been used in almost all 
considered publications (Cvetkovic et al., 2021; Gopalakrishnan et al., 
2018; Limeta et al., 2020; Peng et al., 2020; Peters et al., 2019; Routy 
et al., 2018; Wind et al., 2020), due to its widespread understanding and 
excellent clarity with regard to visualization of treatment outcomes. 
Such visualization can be illuminative, but it is still subject to the bias of 
human perception. To overcome this, Kaplan-Meier estimators can be 
compared using the log-rank test, also known as Mantel-Cox test 
(Mantel, 1966), which almost universally accompanied Kaplan-Meier 
curves in the aforementioned studies (Cvetkovic et al., 2021; Gopa-
lakrishnan et al., 2018; Limeta et al., 2020; Peng et al., 2020; Peters 
et al., 2019; Routy et al., 2018). Yet another approach to survival 
modeling is Cox regression (also known as Cox Proportional Hazards 
model) (Cox, 1972), where confounding variables can be taken into 
account to form a multivariate model. This approach can not only 
answer questions like “What is the chance that a patient will survive to 
time X?”, or “What is patients median survival time?”, but also “What is 
the impact of other variables, like age, or BMI, on the survival time”. 
Some authors (Gopalakrishnan et al., 2018; Peters et al., 2019; Wind 
et al., 2020) resorted to this type of analysis and, for instance, Wind 
et al., found that carriers of Bacteroides massiliensis tend to have longer 
PFS, whereas carriers of an unclassified Peptostreptococcaceae species 
have, on average, shorter time to progression (Wind et al., 2020). In this 
case, the findings were confirmed with a statistical test - Wald test 
(Wald, 1943) that assesses the overall significance of the Cox regression 
(Wind et al., 2020). 

5.2. Statistical tests 

In the previous paragraph, we have already introduced some of the 
most popular tools utilized in the discussed papers - the statistical tests. 
They are, by far, the most frequently used quantitative methods and 
every publication contains at least one application. On top of being used 
in survival analysis, they are also applied whenever there is a binary 
problem, such as a comparison of two groups of patients. This is natural 
in the context of ICT, where patients can be split into R and NR. 

Statistical tests to compare values between such groups include: para-
metric t-test and its generalized version - Welch’s t-test, the non- 
parametric Mann-Whitney U test (also known as Wilcoxon rank-sum 
test) (Mann and Whitney, 1947) and the permutation test (see  
Table 3). Mann-Whitney U test was applied in more than half of the 
studies (Cvetkovic et al., 2021; Derosa et al., 2020; Frankel et al., 2017; 
Gopalakrishnan et al., 2018; Limeta et al., 2020; Matson et al., 2018), 
whereas the permutation test - just in one of them (Matson et al., 2018). 
As an example of the Wilcoxon test, one can cite the analysis performed 
by Limeta et al. (Limeta et al., 2020), where 17 operational taxonomic 
units (OTUs) were determined as differentially abundant between re-
sponders and non-responders. Parametric versions - t-test and Welch’s 
t-test are also frequently employed (Cvetkovic et al., 2021; Derosa et al., 
2020; Frankel et al., 2017; Routy et al., 2018). Frankel et al. (2017), for 
example, used the latter to determine differentially abundant metabo-
lites. A similar analysis was carried out by Routy et al. (2018), where 
two groups of patients split by PFS at 6 months, were compared with 
respect to gene and metagenomic species count, but the name of the test 
used is not disclosed. This group of tests can be applied, when the feature 
that is being compared is continuous (for example – the abundance of 
OTUs). But two groups can also be contrasted with a categorical vari-
able, as was the case in the publication by Derosa et al. (2020), where 
the impact of antibiotic treatment administered prior to ICT, on the 
response to the antineoplastic therapy was assessed using chi-square test 
with the Yates correction. Alternatively, Fisher’s exact test (Fisher, 
1922) is preferred when the sample size is low. Its application can be 
found in half of the publications (Cvetkovic et al., 2021; Gopalakrishnan 
et al., 2018; Limeta et al., 2020; Peters et al., 2019; Wind et al., 2020). 

So far we have been looking at the comparisons between two groups, 
though, comparison of more than two groups can also be required on 
some occasions. The authors resort then to tests that can handle such 
cases: the Cochran–Armitage (Armitage, 1955), Kruskal-Wallis tests 
(Kruskal and Wallis, 1952) or ANOVA (Analysis Of Variance) (Welch, 
1951). The first of these was applied by Routy et al. (2018) to assess 
patients by the presence of Akkermansia muciniphila in their feces with 
respect to the clinical response (PR, SD, PD). ANOVA is used as a 
parametric extension of the Mann-Whitney U test, where differences 
between multiple groups can be assessed jointly. It was employed by 
Peng et al. (2020), at the univariate feature selection step, by Routy et al. 
(Routy et al., 2018) to determine whether inclusion of A. muciniphila 
into the PD-1 therapy hinders tumor growth and by both Matson et al. 
(2018) and Cvetkovic et al. (2021) in a similar context. There are mul-
tiple versions of the ANOVA analysis which take into account various 
factors. One such version, the PERMANOVA (Permutational Multivar-
iate Analysis Of Variance) (Anderson, 2001), has been used to compare 
clusters of patients (Cvetkovic et al., 2021; Derosa et al., 2020). Finally, 
the Kruskal-Wallis test is a non-parametric equivalent of ANOVA and an 
extension of the Mann-Whitney test for multiple groups (Derosa et al., 
2020; Frankel et al., 2017; Salgia et al., 2020). 

On top of all the tests that were previously noted, we also found the 
application of the Kolmogorov-Smirnov test (Conover, 1972) for ex-
amination of distribution of Prevotella/Bacteroides ratio among the pa-
tients (Peng et al., 2020). 

In multiple scenarios, statistical tests are repeated multiple times, 
since there are multiple entities that require the same statistical pro-
cedure. If this is the case, one runs the risk of accepting a false positive 
outcome as truth, whereas such an outcome stems only from the 
repeated nature of the experiment. In the considered publications, a 
typical scheme where this could happen is comparison of abundances of 
any taxonomic or functional unit between responders and non- 
responders. We should then take measures to counteract this risk. In 
statistics, there exists a group of methods dedicated to alleviate this 
phenomenon – correction (also called adjustment) for multiple testing 
(Benjamini and Hochberg, 1995). It has become a good habit and be-
longs to good practices in the domain. Therefore, many publications 
apply one of these methods. This is the case in most of the studies 
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(Cvetkovic et al., 2021; Derosa et al., 2020; Frankel et al., 2017; 
Gopalakrishnan et al., 2018; Peters et al., 2019; Wind et al., 2020), 
however, in some (Limeta et al., 2020; Matson et al., 2018), the values 
are left unadjusted. 

5.3. Analytical frameworks 

Although immensely popular, statistical tests are not the only 
quantitative methods that are at the disposal of microbiome researchers. 
At times, the authors resort to special packages or tools that were 
developed to simplify and automate their pipelines. Peters et al. (2019) 
use two such frameworks: MiRKAT-S (Microbiome Regression-based 
Kernel Association Test for censored Survival outcomes) (Plantinga 
et al., 2017) and OMiSA (Optimal Microbiome-based Survival Analysis) 
(Koh et al., 2018) to link microbial composition with PFS. MiRKAT-S is a 
tool that implements a statistical test for verification of the association 

between the human microbiota at community level and survival out-
comes. It accomplishes this through kernel functions, based on the dis-
tances between the microbial profiles. An advantage here is that any 
sensible distance used in the domain can be handled, including the most 
popular ones: Bray-Curtis and UniFrac. Peters et al. (2019) claim that 
application of this method to their data yields “marginal” significance of 
the microbiome’s association and PFS. Consequently, authors of the 
OMiSA framework develop on the existing MiRKAT-S, add their own 
method (MiSALN, Microbiome-based Survival Analysis using Linear and 
Non-linear bases of OTUs) and by varying between these two, make the 
whole pipeline more adaptable to the composition of the microbiome. 
Both of these frameworks are based on the Cox regression. Significant 
association of 16 S profiles with PFS was, however, not determined using 
the OMiSA pipeline. Both of these pipelines have their implementation 
as packages in the R language. 

Yet another tool, unrelated to survival analysis, is LEfSE (Linear 

Table 3 
Summary of statistical tests used in the publications.  

Statistical test Type How many 
groups 

Target 
variable 

Measured 
variable 

Comments 

(Student’s) t-test Parametric Two Categorical Quantitative  
Welch’s (unequal variances) t- 

test 
More reliable then Studen’s t-test when the groups have unequal 
variances 

Mann-Whitney U test 
(Wilcoxon rank-sum test) 

Non- 
parametric 

Non-parametric replacements for t-test 

(Monte Carlo) Permutation test 
Kolmogorov-Smirnov test One or two 
(Pearson’s) Chi-square test Non- 

parametric 
Two or more Categorical Categorical  

Fisher’s exact test Exact test that can be used in place of (Pearson’s) chi-square test 
Cochran–Armitage test Two Used when outcome variable is ordinal 
ANOVA Parametric Two or more Categorical Quantitative Extends the Studen’s t-test to multiple groups. 
PERMANOVA Non- 

parametric 
Non-parametric version of ANOVA 

Kruskal-Wallis test Three or more Extends the Mann–Whitney U test to multiple groups.  

Fig. 1. Visualization of LEfSe results in the cladogram form - interlaying results of the statistical analysis on top of a phylogenetic tree.  
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Discriminant Analysis, coupled with Effect Size) (Segata et al., 2011). It 
is a wrapper around a typical pipeline in the biomarker discovery 
domain that chains three steps (Kruskal-Wallis and Wilcoxon tests and 
LDA - Linear Discriminant Analysis) and outputs statistically relevant 
features – either taxonomic or functional. LEfSE enables incorporation of 
the hierarchical structure of the input data to relate the findings within 
this structure (Fig. 1). Popularity of this method is underlined with its 
frequent application (Derosa et al., 2020; Frankel et al., 2017; Gopa-
lakrishnan et al., 2018; Peng et al., 2020). Remarkable feature of the 
LefSE framework is flexibility to choose multiple groups, classes or 
subclasses of input to be processed. Although the method uses a multi-
variate method in the form of LDA, it is primarily based on univariate 
statistical tests (Kruskal-Wallis and Wilcoxon). 

A similar framework – the omnibus method (Chen et al., 2018) - 
takes its name from the omnibus test, which is employed at one stage of 
this pipeline. The framework takes jointly into consideration prevalence, 
abundance and dispersion of the microbiome data and addresses two 
frequent problems that come up when such data is handled – an 
excessive number of zeros and outliers. Limeta et al. (2020) took 
advantage of this method to determine the taxa that significantly 
differentiate responders and non-responders. 

Employing analytical tools can be highly beneficial in microbiome 
studies as it not only simplifies the whole process but also standardizes 
the outcomes, which then can be easily compared. However, with a 
plethora of tools out there, the emphasis shifts to picking the right one. 
In our opinion, one of the tools that are worth adopting at the crossroad 
of Microbiome and Immunotherapies is SIAMCAT (Wirbel et al., 2021). 
The package stands out by providing tools for rigorous multivariate 
statistical modeling (e.g., LASSO regression, cross validation) with 
methods to interpret the results. However, one should bear in mind a 
crucial limitation factor on the utility of SIAMCAT which is the size of 
the analyzed dataset, as some models chosen by the user could not be 
well-adjusted for certain sizes. 

5.4. Diversity 

Clinically actionable results that have the potential to help patients 
are the most straightforward to obtain at the taxonomic or functional 
level, since determination of a specific taxon or biological process allows 
for research on a remedy targeted at that finding. But the authors also 
investigate bacterial communities jointly via diversity metrics (Whit-
taker, 1960). Alpha diversity is a function of the number of taxons (at 
some taxonomic level) present in a given habitat, where in the context of 
ICT, a habitat is equivalent to the patient’s intestines. Comparably low 
diversity can be related to dysbiosis, which, as mentioned before, has 
been associated with multiple clinical conditions (Malard et al., 2020; 
Ruff et al., 2020). The authors, therefore, tend to verify this theory and 
resort to calculations of some kind of alpha diversity. There is no 
concordance, however, on what alpha diversity index to choose. Popular 
choices include richness (Cvetkovic et al., 2021; Peters et al., 2019; 
Routy et al., 2018), Shannon diversity (Salgia et al., 2020; Wind et al., 
2020) or its inverse (Gopalakrishnan et al., 2018; Peng et al., 2020). Two 
publications took into consideration multiple indices: richness, Shan-
non, Simpson (Derosa et al., 2020) and Shannon, inverted Shannon, ACE 
(Abundance-based Coverage Estimator), as well as Chao1 (Limeta et al., 
2020). Irrespective of the choice of the index, the values are routinely 
subjected to statistical analysis using the tests described earlier, espe-
cially the tests targeted at comparing two or more cohorts - typically R 
and NR. 

The other prominent set of analyses is oriented at beta-diversity, 
which compares diversities in two habitats. The notion is largely pop-
ular (Cvetkovic et al., 2021; Derosa et al., 2020; Gopalakrishnan et al., 
2018; Limeta et al., 2020; Peng et al., 2020; Peters et al., 2019), but its 
detailed implementation differs in two aspects - the dissimilarity (dis-
tance) metric used for visualization and the visualization method itself. 

There are a multitude of dissimilarity metrics (popular microbial 

ecology tool Phyloseq (McMurdie and Holmes, 2013) tool provides 46 
different metrics). However, only a handful are routinely used (Cvet-
kovic et al., 2021; Derosa et al., 2020; Peng et al., 2020, Gopalakrishnan 
et al., 2018; Limeta et al., 2020; Peters et al., 2019) - Bray-Curtis 
dissimilarity (BC) (Bray and Curtis, 1957), Jaccard index (Jaccard, 
1901) and UniFrac (Lozupone et al., 2007). The main difference be-
tween them is that Bray-Curtis dissimilarity (BC) and Jaccard index are 
purely abundance-based, while UniFrac incorporates relative related-
ness of community members (by using the phylogenetic tree). Unifrac 
can be applied in an unweighted (presence/absence of a branch in the 
phylogenetic tree) or weighted (taking into account the length of the 
branch) manner. For equations and details about the metrics please see  
Table 4. There are no clear guidelines on usage of different metrics and, 
when construction of the phylogenetic tree is possible, assessing both BC 
and UniFrac seems to be the best option. 

The dissimilarity metrics are used to represent the patients in two 
dimensions on a scatter plot, which allows for quick inspection of the 
dataset. In order to do so, the distance matrices need to be reduced to 
two dimensions, so that graphic libraries can be employed. The authors 
make heavy use of PCoA (Principal Coordinate Analysis) (Kruskal, 1964) 
to achieve this (Derosa et al., 2020; Gopalakrishnan et al., 2018; Limeta 
et al., 2020; Peng et al., 2020; Peters et al., 2019), but in a publication by 
Cvetkovic et al. (Cvetkovic et al., 2021), non-metric Multidimensional 
Scaling (CLARKE, 1993) had been applied, whereas in another (Limeta 
et al., 2020) - t-SNE (t-distributed Stochastic Neighbor Embedding) 
(Blanche et al., 2013). The choice of methods for dimensionality 
reduction does not end there. PCA (Principal Component Analysis) was 
also applied to visualize patients using abundances of 63 OTUs that were 
previously determined to differentiate responders from non-responders 
(Matson et al., 2018). 

5.5. Unsupervised methods 

Dimensionality reduction methods, as exemplified by PCoA, are a 
part of ML and, more specifically, unsupervised learning. Another 
prominent class of unsupervised algorithms is used to perform clustering 
(merging observations into meaningful clusters). This is yet another 
group of techniques that is favored among researchers. One of the more 
popular being hierarchical clustering (Derosa et al., 2020; Frankel et al., 
2017; Gopalakrishnan et al., 2018; Limeta et al., 2020; Matson et al., 
2018; Peng et al., 2020; Peters et al., 2019; Salgia et al., 2020), mostly 
with complete or Ward linkage. Since this class of models enables 
drawing a dendrogram plot that visualizes the clusters in an appealing 
way, such graphs can be found in publications whenever hierarchical 
clustering has been used. One case when a pattern emerged in hierar-
chical analysis can be observed in the paper by Peters et al. (2019), 
where patients were clustered into groups determined by the concor-
dance of Jensen-Shannon dissimilarities, calculated separately on 16S 
and SMS data. 

Table 4 
Summary of popular dissimilarity measures.  

Dissimilarity 
measure 

Equation Remarks 

Bray-Curtis 
dkl =

Σn
i=1 |pik − pil|

Σn
i=1 |pik + pil|

pik is the abundance of taxon i in 
sample k 
pil is the abundance of taxon i in 
sample l 

Jaccard dkl =
bkl

(1 + bkl)

bkl is the Bray-Curtis dissimilarity 
between sample k and sample l. 

unweighted 
Unifrac 

Σn
i=1bi|qik − qil|

Σn
i=1bimax(qik, qil)

qik is 1 if taxon i is present in sample k 
and 0 otherwise. 

weighted 
Unifrac 

∑n
i=1bi|

pik

Σn
i=1pik

−

pil

Σn
i=1pil

|

bi refers to branch i  
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5.6. Supervised learning 

Supervised learning constitutes the second part of ML and is char-
acterized by the notion of a dependent variable, which is absent in un-
supervised learning. It is a variable that the researcher wants to predict 
for observations outside of their data set. Experiments targeted at the 
dependent variable open new possibilities that have not yet been 
absorbed by the microbiome community as evidenced by the relatively 
low number of experiments where they have been utilized. One tech-
nique that has its roots in supervised learning is forward feature selec-
tion, which was used by Gopalakrishnan et al. (2018) to select variables 
to the Cox regression for PFS. The procedure determined two significant 
variables included into the multivariate model – the abundance of Fae-
calibacterium and prior immunotherapy. In the same publication, the 
authors also calculated univariate receiver operating characteristic 
(ROC) area under curve (AUC) values for a number of variables, using 
the time-dependent ROCs (Van Der Maaten and Hinton, 2008). From 
this experiment, it turned out that the abundance of Faecalibacterium and 
Bacteroidales reached the highest AUC values. 

In Peters et al., authors make use of yet another tool that stems from 
supervised learning - cross-validation (Peters et al., 2019). Elastic net 
regularized Cox regression was run within an extensive, 500x-repeated 
10-fold cross-validation schema. Elastic net regularization linearly 
combines the L1 and L2 penalties (Zou and Hastie, 2005). The model 
included non-penalized covariates, like BMI (body mass index) or anti-
biotics. With that pipeline, the authors were able to determine a number 
of significant genera, species and functional pathways that are related to 
PFS. 

Two supervised approaches were implemented in the publication by 
Wind et al. (2020). The first one assumed implementation of univariate 
logistic regression models to assess the difference in prevalence of taxa 
between responders and non-responders. The authors defined preva-
lence as a binary variable that assigned the value of one, if abundance of 
a given taxon was greater than zero for a given patient and zero if 
abundance equaled zero. The results were corrected for multiple tests 
and no taxon showed significant differentiation. However, this was not 
the case with the second approach - linear regression trained on relative 
abundances. The model was run to differentiate responders from 
non-responders in a univariate fashion, but one of the scenarios was also 
trained with multiple additional covariates (multivariate model). All of 
the models were zero-inflated (allowing for frequent observations of 
zeros) due to an excessive number of zeroes in the data set. Only the 
second, multivariate model yielded statistically significant outcomes, 
detecting 68 unique taxa related with response to the ICT. 

A well-known ML algorithm – random forest – was implemented by 
Derosa et al. (2020). With its help, the authors attempted to find out 
what factors impact the composition of the microbiota the most. This 
question stems from the observation that in their cohort, a majority of 
the patients received one previous line of tyrosine kinase inhibitors prior 
to ICT. Thanks to the random forest analysis, they were able to deter-
mine the microbiota-modulating impact of tyrosine kinase inhibitor – 
axitinib – and antibiotics. 

There are, however, publications where a more thorough ML analysis 
was carried out (Peng et al., 2020). The authors of this publication 
gathered information and sequenced stool samples from patients 
suffering from gastrointestinal cancers. 16S data was used twofold. In 
the first scenario, a number of various ML models was trained with 
hyperparameter optimization in a stratified, nested cross validation, in 
order to verify whether the response status can be faithfully predicted 
within that cohort. Multiple various algorithms were implemented: 
random forest, extra trees, Support Vector Machine, elastic-net and 
k-nearest neighbors. All of them achieved accuracy of more than 0.8 
with the best surpassing 0.9. The second scenario assumed training of 
the same models (with hyperparameter optimization) and making pre-
dictions for 16S profiles, obtained from patients in two melanoma co-
horts (Gopalakrishnan et al., 2018; Matson et al., 2018). The models in 

this scenario were trained on 90 genera common in all the three data 
sets. Both of these cohorts were composed of melanoma patients, so the 
authors were undertaking not only a cross-cohort, but also a 
cross-indication validation. The results of almost all of these experi-
ments yielded poor results with accuracy of around 0.5 on the combined 
cohorts. One of the data sets (Gopalakrishnan et al., 2018) performed 
consistently better, but not to the level of yielding trustworthy results. 
This data set is unbalanced (29 R/11NR), so the authors decided on 
measuring the performance of their models using other metrics, as ac-
curacy is not adequate in such cases. Instead, they used the ROC AUC 
metric to see that one of the models – elastic net – reached AUC of 0.78. 

A similar, cross-cohort approach was also assumed by Limeta et al. 
(2020). Contrarily to Peng et al. (2020), the authors here were using 
SMS data in their ML experiments and used both taxonomic and func-
tional features jointly. The features that the model was fed with were 
previously filtered, hence only the differentially abundant ones were 
retained. Unlike in Peng et al. (2020), this time, only melanoma cohorts 
were taken into consideration. The training set consisted of patients 
from three cohorts (Frankel et al., 2017; Gopalakrishnan et al., 2018; 
Matson et al., 2018) and the fourth cohort served as the validation one 
(Peters et al., 2019). Prior to the training, the R/NR status definition has 
been unified across the publications. A random forest of 100’000 trees 
was trained on the differentially abundant features and used to obtain 
predictions. The ROC AUC metric on the validation set that was not 
shown to the model during the training procedure, achieved the value of 
0.60, which the authors describe as “modest yet nonrandom”. 

Every time more than one publication is looked at and the results are 
in any way transferred from one cohort to another, there exists an 
indispensable factor that needs to be dealt with - standardization of the 
dependent variable. Most likely, the dependent variable will assume the 
R/NR split, but the authors tend to differ in their definition of these 
groups (see Table 1), even within melanoma research. Some ascribe only 
CR and PR patients to responders (Matson et al., 2018). Others also 
included into this category patients which experienced disease stabili-
zation for a given period of time, such as 3 (Wind et al., 2020) or 6 
months (Gopalakrishnan et al., 2018). On the other end of the spectrum, 
in some studies, patients with SD as their BOR have also been considered 
as responders without any other requirements (Frankel et al., 2017). 
Finally, some authors resort only to survival analysis and do not provide 
any fixed labels (Peters et al., 2019) and a rule of assignment has to be 
devised (Limeta et al., 2020). Training the models on unaligned data 
may result in lower performance and a lack of generalizability. 

6. Concluding remarks 

Statistical tests are deeply rooted and universally applied in micro-
biota studies, including the analyses of its impact on ICT outcomes. 
Statistical tests are highly-regarded tools in science and their popularity 
in this domain cannot be treated as a surprise. Unfortunately, their 
application does not always yield consistent results across studies. For 
instance, in one publication, Bacteroides eggerthii was found to be posi-
tively correlated with the response (Wind et al., 2020), whereas in 
another the correlation was inverted (Matson et al., 2018). The authors 
of the papers also rarely identify an overlap between their findings and 
what has already been determined in other studies, which suggests that 
statistics may not be enough. The cohorts in the publications under re-
view are relatively small, with the maximum of 100 samples (Routy 
et al., 2018) (not including the pooled cohorts (Limeta et al., 2020)). The 
statistical significance may therefore be difficult to establish. 

ML provides a different approach to microbiota studies and, if 
applied properly, can lead to more accurate results, which include not 
only predictive models useful in diagnostics, but also more precise 
identification of biomarkers or modes of action. Careful use of cross 
validation offers the potential to validate the findings in-silico (e.g., on a 
different cohort), leading to early detection of weak models and find-
ings, in turn, saving a lot of costly and tedious laboratory work. 
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Nonetheless, as data after acquisition might be updated, previously 
chosen ML models might lead to results inconsistency. Another caveat is 
connected to the need to manually choose a proper model based on its 
accuracy, which requires multiple training and testing on data. At the 
same time, when models are validated to have strong predictive power, 
one can claim the discovery with much more confidence. 

So far, we know that the microbiome is not indifferent in its modu-
lating role of the response to the ICT. Equipped with ML, we may one 
day be able to determine its exact mode of action. 
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