
Journal of Computational Science 64 (2022) 101856

A
1
n

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Graph-grammar based algorithm for asteroid tsunami simulations
Paweł Maczuga a, Albert Oliver-Serra b, Anna Paszyńska c, Eirik Valseth d,e, Maciej Paszyński a,∗

a AGH University of Science and Technology, Poland
b The University of Las Palmas de Gran Canaria, Spain
c Jagiellonian University, Kraków, Poland
d The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA
e University of Oslo, Norway

A R T I C L E I N F O

Keywords:
Graph grammar
Longest-edge refinement algorithm
Finite element method
Non-linear wave equation
Scientific computing in Julia

A B S T R A C T

On January 18, 2022, around 1 million kilometers from Earth, five times the distance from Earth to the
Moon, a large asteroid passed without harm to the Earth. Theoretically, however, the event of the asteroid
falling into Earth, causing the tsunami, is possible since there are over 27,000 near-Earth asteroids [1], and
the Earth’s surface is covered in 71 percent by water. We introduce a novel graph-grammar-based framework
for asteroid tsunami simulations. Our framework adaptively generates the computational mesh of the Earth
model. It is built from triangular elements representing the seashore and the seabed. The computational mesh
is represented as a graph, with graph vertices representing the computational mesh element’s interiors and
edges. Mesh refinements are often performed by the longest-edge refinement algorithm. We have expressed this
algorithm by only two graph-grammar productions. The resulting graph represents the terrain approximating
the topography with a prescribed accuracy. We generalize the graph-grammar mesh refinement algorithm
to work on the entire Earth model, allowing the generation of the terrain topography, including the seabed.
Having the seashore and the seabed represented by a graph, we introduce the finite element method simulations
of the tsunami wave propagation. We illustrate the framework with simulations of the disastrous asteroid falling
into the Baltic sea.
1. Introduction

In this paper, we introduce a graph-grammar-based platform for
performing tsunami simulations. There are the following novelties of
our approach

– Using a novel graph-grammar-based approach, we adaptively
generate the computational mesh covering the coastal area and
the seabed. For the first time, we employ the ‘‘adjoint’’ graph,
where graph vertices represent the interiors and edges of the
triangular elements. Our previous model [2] used the ‘‘direct’’
representation, where graph vertices represent element vertices,
and graph edges represent the element edges and interiors. It re-
quired costly identification of the common edges of triangles. The
element interiors were connected with element vertices, and thus
it required identification of common edges by checking neighbors
of the vertices, possibly considering hundreds of adjacent edges.
In this paper, we consider the ‘‘adjoint’’ graph, and we connect the
edges with interiors; and since each edge always has two vertices,
the identification is straightforward.

∗ Corresponding author.
E-mail addresses: eiriva@math.uio.no (E. Valseth), maciej.paszynski@agh.edu.pl (M. Paszyński).

– We propose two graph transformations to express the longest-
edge mesh refinement algorithm [3,4]. Thus, our model is a gen-
eralization and simplification of the graph-grammar-based model
of the Rivara algorithm [2], which employed six graph-grammar
productions for modeling of longest-edge refinements.

– We formulate our graph-grammar-based model in spherical coor-
dinates, and we execute the generation of the seabed and seashore
for the entire Earth model.

– We employ a finite element method as well as an explicit time
integrator and the graph-grammar-based meshes in simulations
of tsunami propagation. For this purpose, we use a hyperbolic
wave equation from [5]. Furthermore, we present verification of
our numerical procedure on a hyperbolic model problem.

– To showcase the developed framework, we present a simulation
of an asteroid tsunami hitting the Baltic sea.

In this paper, we use the concept of graph grammar. In our previous
work, we used hypergraph grammar, initially introduced by Habel
and Kreowski in [6,7] for applications in computer graphics. Special
vailable online 17 September 2022
877-7503/© 2022 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.jocs.2022.101856
Received 28 May 2022; Received in revised form 19 August 2022; Accepted 4 Sept
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ember 2022

http://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
mailto:eiriva@math.uio.no
mailto:maciej.paszynski@agh.edu.pl
https://doi.org/10.1016/j.jocs.2022.101856
https://doi.org/10.1016/j.jocs.2022.101856
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2022.101856&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 1. Longest edge refinement of the triangular element.

algorithms are also developed and optimized for the hypergraphs [8–
10]. This work is based on our experience with exploring the graph-
grammar-based simulations developed for the air pollution simulations
in the Lesser Poland district area [2]. Here, we propose a longest-
edge refinement algorithm with a smaller number of productions; with
cheaper identification of the left-hand sides of the productions, we
formulate the model in the spherical system of coordinates. We also
implement a non-linear wave equation, and employ our method in
asteroid tsunami simulations.

There exist several alternative codes for tsunami simulations, see,
e.g., [11,12]. The software presented in [11] performs local tsunami
simulations in nearshore areas. Experimental results from [11] demon-
strated there show 2 h long computations using four cores of the
simulations (based on the OpenMP loop parallelization), equivalent to
8 h of single-core computations. In this paper, we present an alternative
graph-grammar-based model. The model decomposes the computa-
tional problem into basic tasks called graph-grammar productions.
They can be employed as the model of concurrency, with particular
graph-grammar productions executed in parallel (after implementation
in, e.g., GALOIS [13] or Katana-graph [14] graph transformation sys-
tems). In [12] the formulation of the shallow water equations in the
spherical coordinates system is presented along with a family of high-
order computational methods. However, they do not present large-scale
simulations; they focus on local Mediterranean tsunami simulations.

The expression of a tsunami simulator using the graph-grammar
model, as proposed herein will allow us to build a concurrency model.
In turn, this allows us to identify graph grammar productions as basic
undividable tasks that can be executed concurrently to perform large
parallel simulations of tsunami propagation in global Earth models.
In this paper, we focus on Cartesian coordinate system formulation,
suitable for local Baltic sea simulations, and we develop the optimized
graph-grammar model and test it using sequential implementation and
explicit model.

The structure of the paper is as follows: Section 2 summarizes the
longest-edge refinement algorithm; Section 3 describes how to express
the algorithm by two graph productions working on the ‘‘adjoint’’
graph; Section 4 describes the algorithm’s execution to generate the
computational mesh covering Earth; in Section 5, generate a com-
putational mesh covering the Baltic seashore and seabed; Section 6
describes the numerical formulation of the non-linear wave equation
solver in Cartesian coordinates, suitable for the local phenomena sim-
ulations; we verify the solver on a model problem in Section 7; in
Section 8, we present a numerical experiment of asteroid tsunami
simulations in the Baltic sea; Section 9 presents the comparison of
the computational costs of identification of the left-hand sides of the
graph-grammar productions in our new model versus the previous six
productions model; finally, in Section 10 we conclude the paper.

2. Longest-edge refinement algorithm

Mesh refinement is task in which elements of a mesh are subdivided
to obtain a finer mesh. During such mesh refinement processes, the
original nodes are not removed, and the topology of the original
mesh is preserved. Usually, we refine the elements where the error
2

Fig. 2. First row: single graph-grammar production. Second row: application of the
graph-grammar production.

is large in order to compute a better numerical solution. Here, we
will consider the longest-edge refinement algorithm. This algorithm
always breaks the element along its longest edge, see Fig. 1 for a
visualization. The longest-edge refinement can be expressed mathe-
matically as the bisection of a simplex 𝑞 = (𝑝1, 𝑝2,… , 𝑝𝑛, 𝑝𝑛+1) ∈ 𝑅𝑛.
If the distance between 𝑝𝑘 and 𝑝𝑚 is the maximum distance of the
simplex, then a new point is created such that 𝑝 = 𝑝𝑘+𝑝𝑚

2 and two new
simplices are created as: 𝑞1 = (𝑝1, 𝑝2,… , 𝑝𝑘−1, 𝑝, 𝑝𝑘+1,…, 𝑝𝑚,… , 𝑝𝑛+1)
and 𝑞2 = (𝑝1, 𝑝2,… , 𝑝𝑘,… , 𝑝𝑚−1, 𝑝, 𝑝𝑚+1,… , 𝑝𝑛+1). Hence, mathemati-
cally the longest-edge can be applied in any dimension. Geometrically,
the longest edge refinement generates a new point in the middle (a
hanging node) of the longest edge and generates the new two elements.

The main idea is to break an edge in half only if it is the longest edge
of all adjacent elements (we call this edge a terminal edge). For this
purpose, when a triangle 𝑡 is marked for refinement, we must consider
all neighboring elements until we find a terminal edge. All transition
elements are known as the Longest Edge Propagation Path 𝐿𝐸𝑃𝑃 (𝑡).
The algorithm divides the last two elements of the 𝐿𝐸𝑃𝑃 (𝑡) (or the last
single element located on the boundary) and reconstructs it again until
𝐿𝐸𝑃𝑃 (𝑡) is empty. This method ensures conformity of the mesh (i.e.,
no hanging nodes). We do not know beforehand how many additional
elements need to be broken to ensure the conformity of the mesh and
it may require several refinements of a single element. The traditional
algorithm is presented below in Algorithm 1.
Algorithm 1 Longest-Edge-Refinement
Require: 𝑡 triangle to refine, 𝑇 mesh of triangular elements
1: while 𝑡 remains without being bisected do
2: Find 𝐿𝐸𝑃𝑃 (𝑡)
3: 𝑡∗ = the last triangle of 𝐿𝐸𝑃𝑃 (𝑡)
4: if 𝑡∗ is a terminal boundary triangle then
5: bisect 𝑡∗
6: else
7: bisect the last pair of terminal triangle of 𝐿𝐸𝑃𝑃 (𝑡)
8: end while

3. Expressing the longest-edge refinement algorithm by graph-
grammar productions

We propose to represent the mesh by a graph and the mesh gener-
ation and refinements by so-called graph grammar productions. Graph
grammar productions consist of two graphs: the left-hand-side graph
and the right-hand-side graph. It allows us to generate new, more
complex graphs from simple graphs by replacing the subgraph of the
simple graph isomorphic to the left-hand-side graph with the right-
hand-side graph, see Fig. 2. The main disadvantage of graph grammar
is the computational cost of finding the graph isomorphic with the
left-hand-side graph in generated graph.

In our approach, a triangular element is represented as a graph,
as shown in Fig. 3, where the interior of the triangle is denoted by
the label T, and the edges are denoted by the label E. Additionally,
each triangle edge remembers the pointer to its beginning and endpoint
(nodes). This representation aims to reduce the computational cost of
finding the left-hand side. In our implementation, we keep pointers

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.

t
t
i
a
r

T
a
c

1
2
3
4
5

L s
v

Fig. 3. Graph representation of a triangle.

o the interiors of elements, and from the interior node, we identify
he edges of the element. This method is better than connecting the
nteriors and vertices of an element as this negates the need to check
ll edges attached to the vertices while looking for the subgraph
epresenting one particular triangular element. Each triangle node T

is augmented with a single attribute:

– R: The triangle is marked to be refined

Whereas the edge nodes E are augmented with the following attributes:

– LE: The edge is one of the longest-edges.
– BR: The edge is broken.
– AE: Number of adjacent elements (1 if is a boundary, 2 if is

interior).
– x, y, z: Coordinates of the edge (middle point).
– IP: Pointer to the initial point.
– FP: Pointer to the final point.

o simplify the applicability predicate, use a deterministic comparison,
nd make the transition to 3D smoother, we introduce the following
omparison operator:

bool LESS (e1 , e2)
{ i f (! (e1 .AE == e2 .AE) { re turn e1 .AE < e2 .AE; }
i f (! equal (e1 . x , e2 . x) { re turn e1 . x < e2 . x ; }
i f (! equal (e1 . y , e2 . y) { re turn e1 . y < e2 . y ; }
i f (! equal (e1 . z , e2 . z) { re turn e1 . z < e2 . z ; } }

isting 1.1: Comparison operator LESS.

where e1 and e2 are edges, 𝐿𝐸𝑆𝑆(𝑣1, 𝑣2) denotes the two argument
Boolean operator comparing two edges, and 𝐿𝐸(𝑣1) denotes the single
argument Boolean function checking if 𝑣1 is the longest edge.

𝐿𝐸𝑆𝑆(𝑒1, 𝑒2) will return true if:

– e1 is the boundary, and e2 is not on the boundary of the mesh,
or

– (both edges are boundary edges, or both are interior edges), and
𝑥 coordinate of e1 is smaller than 𝑥 coordinate of e2, or

– (both edges are boundary edges, or both are interior edges) and
𝑥 coordinates of e1 and e2 are the same and 𝑦 coordinate of e1 is
smaller than 𝑦 coordinate of e2, or

– (both edges are boundary edges or both are interior edges) and 𝑥
and 𝑦 coordinates of e1 and e2 are the same, and 𝑧 coordinate of
e1 is smaller than 𝑧 coordinate of e2. In all other cases, it returns
false.

This operator is used for defining the productions in such a way that
the boundary edges will get broken first, and if there are two broken
or two unbroken edges in a triangle, an edge with smaller values of
coefficients will be broken first.

We describe the process of mesh refinements by two graph trans-
formations, called graph-grammar productions. These expand the sub-
graph provided on the left-hand side of the production by the sub-graph
described on the right-hand side. The number of left-hand sides is 2 and
it depends on whether the ‘‘longest-edge’’ is broken or not, see Fig. 4.
This also ensures that the number of productions is as small as possible.
3

Production 0 is executed before the longest-edge refinement algorithm
Fig. 4. Two possible left-hand sides: unbroken edge and broken edge.

Fig. 5. Graph-grammar production (P1) with predicates of applicability.

tarts and sets the refinement flag for an element. This only changes the
alue of the attribute 𝑅 of the node labeled by 𝑇 to 𝑡𝑟𝑢𝑒. Production 1

bisects the triangle by an edge that is not broken (see Fig. 5) and is
executed if:

– Edge 𝑣3 is not broken, and is one of the longest edges, described
by 𝑁𝑂𝑇𝐵𝑅(𝑣3) 𝐴𝑁𝐷 𝐿𝐸(𝑣3).

– The element has to be refined, it is marked to be refined, or it has
one edge broken, denoted by 𝑅(𝑣1) 𝑂𝑅 𝐵𝑅(𝑣2) 𝑂𝑅 𝐵𝑅(𝑣4).

– If edge 𝑣2 is broken, it cannot be one of the longest-edges. If
edge 𝑣3 is broken, it cannot be one of the longest-edges. This
is described by 𝑁𝑂𝑇 (𝐵𝑅(𝑣2) 𝐴𝑁𝐷 𝐿𝐸(𝑣2) and 𝑁𝑂𝑇 (𝐵𝑅(𝑣4)
𝐴𝑁𝐷 𝐿𝐸(𝑣4)),

– If edge 𝑣2 is not broken but it is one of the longest edges, check
the comparison operator. Same for edge 𝑣4. This is described by
𝑁𝑂𝑇 (𝑁𝑂𝑇 𝐵𝑅(𝑣2) 𝐴𝑁𝐷 𝐿𝐸(𝑣2) 𝐴𝑁𝐷 𝐿𝐸𝑆𝑆(𝑉3, 𝑉2)) and 𝑁𝑂𝑇
(𝑁𝑂𝑇 𝐵𝑅(𝑣4) 𝐴𝑁𝐷 𝐿𝐸(𝑣4) 𝐴𝑁𝐷 𝐿𝐸𝑆𝑆(𝑉3, 𝑉4)).

New graph nodes represent the newly created edges. They are sons of
the father node, representing the broken edge. Production 2 bisects the
triangle by a broken edge, as shown in Fig. 6. The production can be
executed if:

– Edge 𝑣3 has to be one of the longest, described by 𝐿𝐸(𝑣3).
– If edge 𝑣2 is also broken and is one of the longest edges, check the

comparison operator. Same for edge 𝑣4. This is described by 𝑁𝑂𝑇
(𝐵𝑅(𝑣2) 𝐴𝑁𝐷 𝐿𝐸(𝑣2) 𝐴𝑁𝐷 𝐿𝐸𝑆𝑆(𝑉3, 𝑉2)) and 𝑁𝑂𝑇 (𝐵𝑅(𝑣4)
𝐴𝑁𝐷 𝐿𝐸(𝑣4) 𝐴𝑁𝐷 𝐿𝐸𝑆𝑆(𝑉3, 𝑉4)).

Fig. 7 presents the control diagram guiding the application of graph
grammar productions. First, production 𝑃 0 is to be performed. If 𝑃 0

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 6. Graph-grammar production (P2) with predicates of applicability.

Fig. 7. Diagram controlling the execution of graph-grammar productions.

was not performed, all elements have the required approximation
quality, and we go to the final state of the diagram. If production 𝑃0
was performed, 𝑃 2 and 𝑃 1 are to be performed (in a loop). If performed
one or more times, 𝑃 1 and 𝑃 2 cannot be performed, again, we move
to 𝑃 0.

4. Adaptive generation of the earth topography model, including
the terrain and the seabed

We present the graph-grammar-based derivation of the global model
of the topography of Earth. Our goal is to generate a mesh of a sphere
representing the Earth. We first create an initial, low-resolution mesh of
a sphere and then adapt it using the longest-edge refinement algorithm
expressed by two graph-grammar productions. The initial mesh is
already a complete sphere, including poles. It is represented as a graph
as described before, but each vertex has two types of coordinates

– 𝑥, 𝑦, 𝑧 - Cartesian coordinates of a vertex on a sphere.
– 𝑢, 𝑣 - projection of a vertex to flat surface in form of spherical

coordinates, where 𝑢 ∈ [−180◦, 180◦) and 𝑣 ∈ [−90◦, 90◦]. In other
words 𝑢 is longitude and 𝑣 is latitude of the vertex.

All vertices are added using 𝑢, 𝑣 coordinates and then translated to
𝑥, 𝑦, 𝑧, using the following equations:

𝑥 = 𝑟 cos(𝑢) cos(𝑣),

𝑦 = 𝑟 sin(𝑢) cos(𝑣),

𝑧 = 𝑟 sin(𝑣),

where 𝑟 denotes the distance in the direction of the radius of Earth.
4

4.1. Initial mesh

We start from rectangular mesh (in 𝑢, 𝑣 coordinates) partitioned
into triangular elements, without poles, and one horizontal segment
that contains 𝑢 = 180◦, with vertices uniformly spaced. Assuming that
we want the sphere to contain 𝑛 horizontal segments and 𝑚 vertical
ones, this pre-initial mesh will have 𝑛 − 1 and 𝑚 − 2 segments, where
coordinates range from (−180◦,−90◦ + 180

𝑚
◦
) in the bottom-left corner

to (180◦ − 360
𝑛

◦
, 90◦ − 180

𝑚
◦
) in the upper-right corner, see Fig. 8. In the

resulting mesh, the leftmost vertices with 𝑢 = −180◦ are, in fact, the
same as the missing 180◦ vertices on the right. We fill in the missing
segment by connecting corresponding vertices in order to have a proper
poles-less sphere in 3D, as shown in Fig. 9. Lastly, we add two new
vertices for poles in coordinates (0◦, 90◦) and (0◦,−90◦) along with
appropriate triangles as shown in Fig. 10.

4.2. Longest-edge refinement of a sphere mesh

Ultimately we use the longest-edge refinement algorithm on the
generated initial mesh to create a high-resolution mesh that may be
used in simulations. The algorithm operates on single triangles and
there are two issues to address:

– How is the distance between two vertices calculated? The graph-
grammar-based longest-edge algorithm will employ this distance
to determine elements to be broken.

– How and where to add new vertices after breaking an edge in
spherical coordinates?

The distance can be calculated using either 𝑥, 𝑦, 𝑧 or 𝑢, 𝑣 coordinates.
However, using 𝑢, 𝑣 introduces two problems: (1) connecting the left-
most and rightmost triangles, and (2) single vertices at the poles (see
Fig. 10). In the end, the distance should be calculated as in the stan-
dard latitude–longitude projection: Assume we have two vertices with
coordinates (𝑢1, 𝑣1) and (𝑢2, 𝑣2). We calculate distance as a Cartesian
distance but introduce two additional conditions:

– If 𝑢1 = −180◦ and 𝑢2 > 0◦ we assume that 𝑢1 = 180◦.
– If |𝑣1| = 90◦ (north or south pole) we assume that 𝑢1 = 𝑢2.

A new vertex with coordinates (𝑢3, 𝑣3) is added in the middle of the
broken edge. Again there are two exceptions - poles and 𝑢 = −180◦:

– If 𝑢1 = −180◦ and 𝑢2 > 0◦ then 𝑢3 =
180◦+𝑢2

2 .
– If |𝑣1| = 90◦ then 𝑢3 =

𝑢2+𝑢2
2 = 𝑢2.

Selection either 𝑢, 𝑣 or 𝑥, 𝑦, 𝑧 for calculating distance will produce
different results, especially near the poles. The finer the initial grid
is, the more similar meshes will be near the equator. The result for
8 iterations of adaptation is shown in Fig. 11 for 𝑥, 𝑦, 𝑧 and Fig. 12 for
𝑢, 𝑣. Every triangle is marked for refinement at each iteration, and the
longest-edge refinement algorithm is used on the mesh.

Finally, we execute the longest-edge refinement algorithm expressed
by graph-grammar productions to create the mesh of the entire Earth
using elevation data from the GMRT database [15]. As the initial mesh,
we use the coarse sphere with the elevation of the vertices adjusted
using data from [15], with 143 vertices, 264 triangles, and 407 edges.
Since the database does not contain data for the poles, we cut the
sphere’s top and bottom at 65◦ and −65◦ degrees. The resulting mesh is
shown in Fig. 13, where we have executed 13 iterations of the longest-
edge refinement algorithm expressed by the control diagram. The final
mesh consists of 404,912 vertices, 808,692 triangles, and 1,213,604
edges.

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 8. Initial mesh of the entire sphere without poles and single vertical segment. Full mesh with all segments will have 12 vertical ones and 8 horizontal.
5. Adaptive generation of the baltic sea topography

In this section, we focus on a detailed local model, where we will
perform the tsunami simulations. Namely, we present an exemplary
derivation of the topography of the Baltic seashore and seabed. We start
from a graph representing four initial triangular elements; see Fig. 14.
We adjust the height of the mesh’s triangles to the terrain height
using topographic data from the same database as previously [15]
including seashore and seabed. We iteratively break elements where the
approximation is poor. To speed up the generation process, we employ
the following method for identification of the poor-quality triangles: we
identify all points from the map located within the triangle where we
have the height data available. For each point, we compute the absolute
value of the distance between the height from the map and the height
as approximated by the triangle. We mark this triangle for refinement
if an absolute value for any point is larger than a prescribed tolerance.
Additional mesh refinements may be needed as required by the longest-
edge refinement method to ensure there are no hanging nodes in the
mesh. The resulting iterations are presented in Figs. 15–22, where the
final mesh (see Fig. 23) has 217,058 nodes, 433,101 triangles, and
650,158 edges.
5

6. Tsunami simulations with nonlinear wave equations in shallow
water

In this section, we introduce our modeling approach for simulations
of tsunami waves. Tsunami wave propagation is a result of seawater
flow induced by rapid shifts in the sea bottom [5] or by sea surface
impacts of large objects from, e.g., rock slides [16] or asteroids [17].
Such seawater flow is governed by shallow water equations [18].
These highly nonlinear partial differential equations are intractable
and typically require significant computational resources for physically
relevant and accurate solutions. However, the nature of tsunami wave
flows allows us to consider greatly simplified models with sufficient
fidelity for the sea water flows. Here, we follow the approach taken
in [5,19] and model the tsunami propagation using a nonlinear wave
equation:

𝜕2𝑢
𝜕𝑡2

− ∇ (𝑔(𝑢 − 𝑧)∇𝑢) = 0, (1)

where 𝑢 denotes water surface elevation, 𝑧 the terrain topography and
bathymetry, and 𝑔 = 9.81 𝑚 the constant of gravitational acceleration.
𝑠2

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 9. Initial mesh with all horizontal segments.
We note that there more simplified shallow water models in exis-
tence, including fully linear models, e.g., those based on Boussinesq
approximations [20].

To compute approximations of the wave equation (1), we apply a
Bubnov–Galerkin [21] finite element method for the spatial discretiza-
tion and an explicit finite difference time stepping scheme for temporal
discretization. First, we introduce a finite difference approximation of
the second time derivative 𝜕2𝑢

𝜕𝑡2
≈ 𝑢𝑡−2𝑢𝑡−1+𝑢𝑡−2

𝑑𝑡2
. We subsequently employ

it in an explicit time integration scheme:
𝑢𝑡 − 2𝑢𝑡−1 + 𝑢𝑡−2

𝑑𝑡2
= ∇

(

𝑔(𝑢𝑡−1 − 𝑧)∇(𝑢𝑡−1)
)

= 0. (2)

Next, we collect the unknowns on the left-hand side:

𝑢𝑡
⏟⏟⏟

Next state

= 𝑢𝑡−1
⏟⏟⏟

Previous state

+ 𝑢𝑡−1 − 𝑢𝑡−2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

States difference

+ 𝛥𝑡2
⏟⏟⏟

Time step squared

∇
(

𝑔(𝑢𝑡−1 − 𝑧)∇𝑢𝑡−1
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Physics

. (3)

To apply the Bubnov–Galerkin method, we multiply by test functions
𝑣, integrate the spatial derivative term by parts and apply the following
boundary conditions on the whole domain boundary

∇(𝑔(𝑢𝑡 − 𝑧)) ⋅ 𝑛 = 0 (4)

which are equivalent to ∇(𝑢𝑡 − 𝑧) ⋅ 𝑛 = 0 and in case of 𝑧 = 𝑐𝑜𝑛𝑠𝑡 they
reduce to zero Neumann boundary conditions ∇𝑢𝑡 ⋅ 𝑛 = 0. We get:

Find 𝑢 ∈ 𝑉 ∶
(

𝑢𝑡, 𝑣
)

=
(

𝑢𝑡−1, 𝑣
)

+ 𝐶
(

𝑢𝑡−1 − 𝑢𝑡−2, 𝑣
)

− 𝛥𝑡2
(

𝑔(𝑢𝑡−1 − 𝑧)∇𝑢𝑡−1,∇𝑣
)

∀𝑣 ∈ 𝑉 . (5)
6

In (5), we have introduced a damping constant 𝐶 in front of the
wave propagation term. In the full nonlinear shallow water equations,
see [18], there are complex sources, including sea bed and sea surface
friction. In the simplified wave model, we consider these terms are
absent, but we represent them by the damping constant. In the Bubnov–
Galerkin finite element method, we use triangular finite elements and
linear basis functions related to the vertices of the computational
mesh. We have developed our original finite element method solver
in Julia [22].

7. Experimental verification on the model problem

As we mentioned in the previous section, our wave equation is
an approximation to the shallow water equations. In the resulting
approximation, we introduce the damping constant as a mechanism to
account for the simplifications. In real-life phenomena simulations, the
damping constant can be obtained experimentally in order to match the
measurements of the real tsunami phenomena. In this section, we show
that our non-linear wave equation with 𝐶 = 1.0 (without the damping
constant) matches the exact solution in the idealized ‘‘swimming pool’’
case without friction. We also illustrate how changing this dumping
constant influence the wave shape. Thus, we consider a simplified case
in which we have an exact closed-form analytical solution to our model
problem as described in [5]. Thus, our numerical experiment uses:

– The analytical solution from [5] (denoted as the ‘‘exact’’ in the
plots)

– A uniform mesh of 32,764 triangular elements, which covers the
square region (0, 10) × (0, 10).

– Initial condition : 𝑢0(𝑟) = 2𝑒−𝑟2 + 2 where 𝑟 denotes the distance
from the center point (5, 5)

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 10. Full initial mesh counting all the segments and poles.
– zero-Neumann kind b.c. in the model ‘‘pool case’’ ∇(𝑔(𝑢𝑡−𝑧))⋅𝑛 = 0
which reduces to the zero Neumann b.c. ∇𝑢𝑡 ⋅ 𝑛 = 0, meaning
there is no flow being pushed in and out (we are in the closed
swimming pool).

We ran the simulation with time step 𝑑𝑡 = 0.001 s, and a final time 2 s.
In Fig. 24, we present surface plots of the waves for selected times.

As the initial wave travels towards the boundary it is reflected and
self interacts as expected. The analytical solutions form [5] does not
include the damping constant we have included in our model. This
exact solution is visually not different from the simulation results with
𝐶 = 1. The results in Fig. 24 have been computed using 𝐶 = 0.999. To
further highlight the impact of this damping, we compare the exact
solution and the simulation results performed with damping constant
𝐶 = 0.999 in Fig. 25. We also present how changing the damping
constant influence the simulation results. In particular, we compare the
7

results for 𝐶 = 0.999 and 𝐶 = 0.997 in Fig. 26. Additionally, we compare
the results for 𝐶 = 0.999 and 𝐶 = 0.995 (the damping constant used
in the simulation in the Baltic sea in the following section). Results
are shown in Fig. 27, Where we see that using a smaller the damping
constant leads to a wave which is damped out faster, as expected.

8. Baltic sea asteroid tsunami simulation

We conclude the paper with the hypothetical asteroid tsunami
simulations in the Baltic sea. The initial state, modeling the asteroid
hitting the water, is given by

−𝐴𝑐𝑜𝑠(𝜋𝑟
𝑛
) + 𝐴, 𝑟 =

(

(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2
)1∕2 for 𝑟 ∈ (−2𝑛, 2𝑛), (6)

where 𝐴 = 0.6, 𝑛 = 47.62, and (𝑥𝑐 , 𝑦𝑐) = (467, 1274) [km] is the relative
(to the corner of the mesh) location of the asteroid impact. We use

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 11. Final mesh after 8 iterations of the longest-edge refinement algorithm where distance is calculated using 𝑥, 𝑦, 𝑧 coordinates.
Fig. 12. Final mesh after 8 iterations of the longest-edge refinement algorithm where distance is calculated using 𝑢, 𝑣 coordinates.
the non-linear wave equation (1), with damping constant 𝐶 = 0.995,
as well as the Bubnov–Galerkin finite element method and explicit
time integration scheme introduced in Section 6. The damping constant
represents the friction with the air and the friction with the sea bed.
In our non-linear wave equations, we do not have these terms, but
we represent them by the damping constant. This model parameter
could be further tuned by comparing the numerical simulations of the
tsunami with some available measurements of some real-life tsunami
phenomena, which may be a topic of our future work. The simulation
has been implemented in Julia [22] using our prototype finite element
method code.

In this simulation, the part of the domain where the tsunami hap-
pens is far from the global boundary. Thus we use the same ho-
mogeneous Neumann boundary conditions, which we consider to be
the acceptable assumption for the simplicity of the simulation. As is
8

common practice, no further boundary conditions are applied on the
seashore to allow the wave to flow over the terrain (land).

The simulation was performed with time step 𝑑𝑡 = 0.01 for 1000
steps. We have implemented our graph-grammar-based tsunami simu-
lator in Julia [22]. We use the computational mesh generated for the
Baltic sea area, as described in Section 5. First, the mass matrix for
the fixed mesh is LU factorized using Julia solver [22], and then in
each time step of the explicit simulation, we forward and backward
substitute with the updated right-hand side.

Using a laptop with an Intel Core i5-1135G7 processor, we are able
to perform approximately 1000 time steps within 1 h. Snapshots from
the simulation are presented in Figs. 28–32. For better visibility, the
mesh (the terrain height) and the results (the sea level) in the vertical
𝑧 direction are magnified 100 times. The assumed initial shape of the
wave created by the asteroid hit is 1096 m above sea level; see Fig. 28.

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 13. Mesh of the Earth with real elevation on a sphere with radius 60,000 m (compared to Earth’s radius 6, 371, 000 m). Distance is calculated using 𝑢, 𝑣 coordinates.
Fig. 14. Graph representing initial computational mesh.
Then, a peak in the center, up to 1616 m, is created around time step
100, as presented in Fig. 29. The tsunami wave travels in all directions,
but due to the irregular structure of the seabed, the wave height is
9

different, varying from 764 to 870 m in different directions, see Figs. 30
and 31. The wave propagates further and floods the seashore terrains,
as presented in time step 1000 in Fig. 32. The tsunami waves travel

Journal of Computational Science 64 (2022) 101856

10

P. Maczuga et al.

Fig. 15. Second iteration.

Fig. 16. Fourth iteration.

Fig. 17. Sixth iteration.

Fig. 18. Eighth iteration.

Fig. 19. Tenth iteration.

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 20. Twelfth iteration.
Fig. 21. Fourteenth iteration.
Fig. 22. Fifteenth iteration.
Fig. 23. The final mesh representing the Baltic sea area.
around 500 [km], and the total time of the simulation is 10,000 [s] =
2.7 [h]. This results in an average speed of propagation of 185 [km/h].
Using our graph-grammar-based platform, we can simulate and predict
the impact of the local asteroid tsunami in any part of the world.

9. Computational cost of identification of the left-hand sides of
graph grammar productions

In this section, we compare the computational cost of identification
of the triangular element, that is, the left-hand side of a graph-grammar
production, with the graph representation of the mesh obtained from
11
1. The six graph-grammar productions model described in [2].
2. The two graph-grammar productions model introduced in this

paper.

The model employed in [2] results in a graph representation of
the mesh, where element interiors are connected with vertices, and
the element vertices are connected by edges. Our new model results
in a graph representation of the mesh, where the element interiors
are connected with edges, and edges are connected to vertices. This
is illustrated in Fig. 33. We focus on the triangular element denoted by

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 24. Simulation of a wave in a pool filled with water.
blue. We distinguish its external boundary edge and the two internal
edges, the first edge and the second edge, in the ‘‘clockwise’’ direction.

The number of graph node comparison operations necessary for
identification of the triangle is listed in Table 1. We assume that we
have a list of pointers to element interiors. During the identification of
12
the left-hand side of the projection in the previous model, we pass from
the interior node to the three vertex nodes. Now, these vertex nodes
have 5, 5, or 16 adjacent graph edges. We must check the connections
through the graph edges, and in the pessimistic case, to identify the
common edge, we need to perform 16 × 5 = 80 comparisons (and

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 25. The comparison between the exact solution and the numerical simulations performed with damping constant 𝐶 = 0.999. The simulation results for 𝐶 = 1.0 are visually
identical with the exact solution. View at the cross-section along 𝑥-axis. View along 𝑦-axis is identical.
Table 1
The number of graph node comparison operations necessary to identify
the triangular elements in both representations.
Operation Interior-vertex

Model
Interior-edge
Model

Identification of the first
‘‘clockwise’’ edge

16 × 5 = 80 4 × 4 = 16

Identification of the second
‘‘clockwise’’ edge

16 × 5 = 80 4 × 4 = 16

Identification of the third
boundary edge

5 × 5 = 25 4 × 4 = 16
13
4 × 4 = 16 for the boundary edges in this example). The upper bound
on the number of operations is 80+80+25 = 185 operations.

In the new model, the interior nodes are connected with edge nodes.
Now, each edge node has a maximum of 5 adjacent graph edges. In
order to identify the common vertex, we must check up to 4 × 4 = 16
cases. The upper bound on the number of operations is 16+16+16=48
operations. In other words, the new model requires more than three
times less operations in this example.

In general, an element with 𝑛1 neighbors through the first vertex,
𝑛2 neighbors through the second vertex, and 𝑛3 neighbors through the
third vertex, requires up to 2𝑛1×2𝑛2+2𝑛1×2𝑛3+2𝑛2×2𝑛3 operations to
identify the triangle using the interior-vertex representation from [2],
and up to 16 + 16 + 16 = 48 operations using the interior-edge
representation proposed in this paper.

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 26. Comparison of the simulations with damping constants 𝐶 = 0.999 and 𝐶 = 0.997. View at the cross-section along 𝑥-axis. View along 𝑦-axis is identical.
10. Conclusion

We have presented a novel graph-grammar-based platform per-
forming simulations of asteroid tsunamis. First, we introduced the
graph representation of the computational mesh where the interior
of each triangle is connected with edges (not with nodes, like in our
previous research). This representation reduced the computational cost
of finding the subgraph isomorphic to the left-hand side graph of
the production. We employed the longest-edge refinement algorithm
implemented by two graph-grammar productions. The framework was
implemented in Julia to perform graph-grammar-based generation of
the computational mesh covering Earth, as well as detailed generation
of the Baltic seabed and seashore area. Next, we implemented the
non-linear hyperbolic wave propagation solver modeling the tsunami
14
propagation phenomena. It employs LU factorization of the mass matrix
and forward/backward substitutions for the consecutive time steps. We
performed simulations of the tsunami caused by the asteroid falling
into the Baltic sea to verify our platform. This simulation takes around
1 h on a laptop. In the simulations presented in Sections 7 and 8,
we have introduced a damping parameter 𝐶. This model parameter
could be further tuned by comparing the numerical simulations of the
tsunami with some available measurements of some real-life tsunami
phenomena, which may be a topic of our future work.

In our future work, we plan to switch to large-scale simulations of
tsunami propagation on the global Earth model. We will implement
our graph grammar-based solver within parallel graph transformation
systems (including GALOIS [13] or Katana graph [14]. We will re-
formulate the non-linear wave equations (as an approximation of the

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 27. Comparison of the simulations with damping constants 𝐶 = 0.999 and 𝐶 = 0.995. View at the cross-section along 𝑥-axis. View along 𝑦-axis is identical.
shallow water equations) in a spherical coordinate system using an
implicit higher-order time integration scheme. In particular, future
work will involve the development of the stabilized shallow water
equation (or its non-linear wave approximation) in the spherical coor-
dinate system, using an implicit higher-order time integration scheme,
e.g., [23], allowing for large-scale simulations on the model of the
global Earth. Future work will also involve parallelization into shared
memory and hybrid memory Linux clusters [24,25], using the GALOIS
or Katana graph environments for parallel graph transformations [13,
14]. Additionally, we plan to employ inverse algorithms [26–29] to
solve several related inverse problems.
15
CRediT authorship contribution statement

Paweł Maczuga: Conceptualization, Formal analysis, Methodol-
ogy, Investigation, Software, Validation, Visualization, Writing – orig-
inal draft, Funding acquisition. Albert Oliver-Serra: Conceptualiza-
tion, Formal analysis, Methodology. Anna Paszyńska: Conceptualiza-
tion, Formal analysis, Methodology. Eirik Valseth: Conceptualization,
Formal analysis, Methodology, Writing – review & editing. Maciej
Paszyński: Conceptualization, Formal analysis, Methodology, Super-
vision, Writing – original draft, Writing – review & editing, Funding
acquisition.

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
Fig. 28. Asteroid tsunami simulation time step 10.

Fig. 29. Asteroid tsunami simulation time step 100.

Fig. 30. Asteroid tsunami simulation time step 200.

Fig. 31. Asteroid tsunami simulation time step 300.
16
Fig. 32. Asteroid tsunami simulation time step 1000.

Fig. 33. Computational cost of identification of the triangular element denoted by blue
color. Left-panel: graph representation of the mesh generated by six graph-grammar
productions model. Right panel: graph representation of the mesh generated by two
graph-grammar productions model.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

The research project was supported by the program ‘‘ Excellence
initiative – research university’’ for the University of Science and
Technology. The work of Eirik Valseth was supported by the Marie
Skłodowska-Curie Actions grant HYDROCOUPLE - 101061623.

References

[1] https://www.nasa.gov/mission_pages/asteroids/overview/fastfacts.html.
[2] K. Podsiadło, A. Oliver Serra, A. Paszyńska, R. Montenegro-Armas, I. Henriksen,

M. Paszyński, K. Pingali, Parallel graph-grammar-based algorithm for the longest-
edge refinement of triangular meshes and the pollution simulations in lesser
Poland area, Eng. Comput. 37 (4) (2021) 3857–3880.

[3] M.C. Rivara, Algorithms for refining triangular grids suitable for adaptive and
multigrid techniques, Internat. J. Numer. Methods Engrg. 20 (4) (1984) 745–756.

[4] M.C. Rivara, Mesh refinement processes based on the generalized bisection of
simplices, SIAM J. Numer. Anal. 21 (3) (1984) 604–613.

[5] G.F. Carrier, Y. Harry, Tsunami propagation from a finite source, CMES Comput.
Model. Eng. Sci. 10 (2) (2005) 113–121.

[6] A. Habel, H.J. Kreowski, May we introduce to you: Hyperedge replacement,
Lecture Notes in Comput. Sci. 291 (1987) 5–26.

https://www.nasa.gov/mission_pages/asteroids/overview/fastfacts.html
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb2
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb2
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb2
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb2
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb2
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb2
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb2
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb3
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb3
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb3
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb4
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb4
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb4
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb5
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb5
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb5
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb6
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb6
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb6

Journal of Computational Science 64 (2022) 101856P. Maczuga et al.
[7] A. Habel, H.J. Kreowski, Some structural aspects of hypergraph languages
generated by hyperedge replacement, Lecture Notes in Comput. Sci. 247 (1987)
207–219.

[8] T. Heuer, P.G. Sanders, S. Schlag, Network flow-based refinement for multilevel
hypergraph partitioning, J. Exp. Algorithmics 24 (1) (2019) 1–36.

[9] D.A. Papa, I.L. Markov, Hypergraph partitioning and clustering, in: T.F. Gonzalez
(Ed.), Handbook of Approximation Algorithms and Metaheuristics, Chapter 61,
CRC Press, Boca Raton, 2007, pp. 61–1–61–19, 2007.

[10] G. Karypis, V. Kumar, HMETIS 1.5: A Hypergraph Partitioning Package, Technical
Report, Department of Computer Science, University of Minnesota, 1998.

[11] Kyle T. Mandli, Aron J. Ahmadia, Marsha Berger, Donna Calhoun, David L.
George, Yiannis Hadjimichael, David I. Ketcheson, Grady I. Lemoine, Randall J.
LeVeque, Clawpack: Building an open source ecosystem for solving hyperbolic
PDEs, PeerJ Comput. Sci. 2, e68.

[12] Manuel J. Castro, Sergio Ortega, Carlos Parés, Well-balanced methods for the
shallow water equations in spherical coordinates, Comput. & Fluids 157 (2017)
196–207.

[13] https://iss.oden.utexas.edu/?p=projects/galois.
[14] https://katanagraph.com/.
[15] Global Multi-Resolution Topography Data Synthesis, https://www.gmrt.org/.
[16] B. Romstad, C.B. Harbitz, U. Domaas, A GIS method for assessment of rock slide

tsunami hazard in all Norwegian lakes and reservoirs natural hazards and earth
system sciences, 2009, pp. 353–364, 9 (2).

[17] S.N. Ward, E. Asphaug, Asteroid impact tsunami: A probabilistic hazard
assessment, Icarus 145 (1) (2000) 64–78.

[18] W.Y. Tan, Shallow Water Hydrodynamics: Mathematical Theory and Numerical
Solution for a Two-Dimensional System of Shallow-Water Equations, Elsevier,
1992.

[19] U. Kanoglu, C.E. Synolakis, Long wave runup on piecewise linear topographies,
J. Fluid Mech. 374 (1998) 1–28.

[20] Y.S. Cho, S.B. S.B. Yoon, A modified leap-frog scheme for linear shallow-water
equations, Coast. Eng. J. 40 (02) (1998) 191–205.

[21] E.B. Becker, G.F. Carey, J.T. Oden, Finite Elements: An Introduction, Vol. 1,
Prentice Hall, 1981.

[22] J. Bezanson, A. Edelman, S. Karpinski, V. Shah, B. Viral, Julia: A fresh approach
to numerical computing, SIAM Rev. 59 (1) (2017) 65–98.

[23] Pouria Behnoudfar, Victor Calo, Marcin Łoś, Paweł Maczuga, Maciej Paszyński,
A variational splitting of high-order linear multistep methods for heat transfer
and advection-diffusion parabolic problems, J. Comput. Sci. (2022) in press.

[24] D. Goik, K. Jopek, M. Paszyński, A. Lenharth, D. Nguyen, K. Pingali, Graph
grammar based multi-thread multi-frontal direct solver with GALOIS scheduler,
Procedia Comput. Sci. 29 (29) (2014) 960–969.

[25] V. Calo, N. Collier, D. Pardo, M. Paszyński, Computational complexity and
memory usage for multi-frontal direct solvers used in p finite element analysis,
Procedia Comput. Sci. 4 (2011) 1854–1861.

[26] M. Paszyński, B. Barabasz, R. Schaefer, Efficient adaptive strategy for solving
inverse problems, Lecture Notes in Comput. Sci. 4487 (2007) 342–354.

[27] B. Barabasz, E. Gajda-Zagórska, S. Migórski, M. Paszyński, R. Schaefer, M.
Smołka, A hybrid algorithm for solving inverse problems in elasticity, Appl.
Math. Comput. Sci. 24 (4) (2014) 865–886.

[28] B. Barabasz, S. Migórski, R. Schaefer, M. Paszyński, Multi-deme, twin adaptive
strategy hp-HGS, Inverse Probl. Sci. Eng. 19 (1) (2011) 3–16.

[29] E. Gajda-Zagórska, R. Schaefer, M. Smołka, M. Paszyński, D. Pardo, A hybrid
method for inversion of 3D DC resistivity logging measurements, Nat. Comput.
14 (3) (2015) 355–374.
17
Paweł Maczuga is a Ph.D. student at Institute of Com-
puter Science, AGH University of Science and Technology,
Kraków, Poland. He has got his Master Degree in 2021 un-
der supervision of Maciej Paszyński (Title of Thesis ‘‘Parallel
algorithms for the generation, adaptation and simulation
of triangular meshes based on graph transformation’’). His
research interests include finite element method and high
performance computing.

Albert Oliver Serra received his Ph.D. from the Universi-
tat Politècnica de Catalunya and currently is an assistant
professor at the University of Las Palmas de Gran Canaria.
His research interest is the application of the finite element
method in environmental problems. He is also working
on the generation of tetrahedral adapted meshes for these
problems.

Anna Paszyńska received her Ph.D. (2007) in computer
science from the Institute of Fundamental Technological
Research of Polish Academy of Sciences in Warsaw, Poland,
and her Habilitation in Computer Science in 2019 from AGH
University. She currently works as an assistant professor at
the Faculty of Physics, Astronomy and Applied Computer
Science, Jagiellonian University in Kraków, Poland. Her
research interests include graph grammars with application
to finite element method simulations and direct solvers.

Eirik Valseth is a research associate in the Computational
Hydraulics Group in the Oden Institute for Computational
Engineering and Sciences at UT Austin. He has exten-
sive experience in the application and development and
implementation of finite element methods for challenging
problems in engineering science. Since joining the Compu-
tational Hydraulics Group in 2020, Eirik has focused on
the development of novel shallow water equation solvers,
modeling tools and techniques for compound flooding, and
the development of new ADCIRC meshes for forecasting
storm surge and compound floods on the Texas Coast.

Maciej Paszyński is a full professor of Computer Science
at Institute of Computer Science, AGH University, Kraków,
Poland. He obtained his Ph.D. in Mathematics with Appli-
cations to Computer Science from Jagiellonian University
in 2003, and his Habilitation in Computer Science in 2010
from AGH University. He co-authored over 70 papers in
impact factor journals. He presented over 100 presentation
at conferences and workshops. He collaborates with research
groups from The University of Texas at Austin, Basque
Center for Applied Mathematics in Bilbao, Spain, Catholic
University of Valparaiso, Chile, Curtin University at Perth,
Western Australia. His research interests include artificial
intelligence and HPC for advanced simulations.

http://refhub.elsevier.com/S1877-7503(22)00215-0/sb7
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb7
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb7
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb7
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb7
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb8
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb8
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb8
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb9
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb9
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb9
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb9
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb9
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb10
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb10
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb10
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb11
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb11
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb11
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb11
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb11
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb11
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb11
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb12
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb12
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb12
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb12
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb12
https://iss.oden.utexas.edu/?p=projects/galois
https://katanagraph.com/
https://www.gmrt.org/
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb16
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb16
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb16
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb16
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb16
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb17
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb17
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb17
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb18
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb18
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb18
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb18
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb18
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb19
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb19
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb19
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb20
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb20
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb20
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb21
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb21
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb21
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb22
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb22
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb22
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb23
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb23
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb23
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb23
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb23
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb24
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb24
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb24
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb24
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb24
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb25
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb25
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb25
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb25
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb25
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb26
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb26
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb26
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb27
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb27
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb27
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb27
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb27
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb28
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb28
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb28
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb29
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb29
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb29
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb29
http://refhub.elsevier.com/S1877-7503(22)00215-0/sb29

	Graph-grammar based algorithm for asteroid tsunami simulations
	Introduction
	Longest-edge refinement algorithm
	Expressing the longest-edge refinement algorithm by graph-grammar productions
	Adaptive generation of the earth topography model, including the terrain and the seabed
	Initial mesh
	Longest-edge refinement of a sphere mesh

	Adaptive generation of the baltic sea topography
	Tsunami simulations with nonlinear wave equations in shallow water
	Experimental verification on the model problem
	Baltic sea asteroid tsunami simulation
	Computational cost of identification of the left-hand sides of graph grammar productions
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

