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Abstract
Objective. Extracting reliable information from electroencephalogram (EEG) is difficult because
the low signal-to-noise ratio and significant intersubject variability seriously hinder statistical
analyses. However, recent advances in explainable machine learning open a new strategy to address
this problem. Approach. The current study evaluates this approach using results from the
classification and decoding of electrical brain activity associated with information retention. We
designed four neural network models differing in architecture, training strategies, and input
representation to classify single experimental trials of a working memory task.Main results. Our
best models achieved an accuracy (ACC) of 65.29± 0.76 and Matthews correlation coefficient of
0.288± 0.018, outperforming the reference model trained on the same data. The highest
correlation between classification score and behavioral performance was 0.36 (p= 0.0007). Using
analysis of input perturbation, we estimated the importance of EEG channels and frequency bands
in the task at hand. The set of essential features identified for each network varies. We identified a
subset of features common to all models that identified brain regions and frequency bands
consistent with current neurophysiological knowledge of the processes critical to attention and
working memory. Finally, we proposed sanity checks to examine further the robustness of each
model’s set of features. Significance. Our results indicate that explainable deep learning is a
powerful tool for decoding information from EEG signals. It is crucial to train and analyze a range
of models to identify stable and reliable features. Our results highlight the need for explainable
modeling as the model with the highest ACC appeared to use residual artifactual activity.

1. Introduction

Neurofeedback is a therapy aimed at improving cog-
nitive abilities through self-regulation of brain activ-
ity in a direction considered desirable by the therap-
ist (Hammond 2011). The current and desired levels
of electroencephalogram (EEG) activity (typically

power in a chosen frequency band on selected elec-
trodes) are presented to patients in the form of a
simple game in which the patient’s task is to reach
the target state using mental manipulations. Des-
pite many years of development, the training pro-
tocols used to treat different disorders and defi-
cits are still based on arbitrary selected frequencies

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1741-2552/ac8b38
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ac8b38&domain=pdf&date_stamp=2022-9-5
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7536-0735
mailto:j.zygierewicz@uw.edu.pl
mailto:j.rogala@nencki.edu.pl


J. Neural Eng. 19 (2022) 046053 J Żygierewicz et al

and electrodes. This lack of individual diagnosis and
arbitrary selection of signal features seriously limit the
method’s effectiveness.Moreover, the complex nature
and inter and intra-subject variability of the EEG sig-
nal hinder improvements using traditional computa-
tional techniques.

Machine learning (ML)methods are promising to
overcome these limitations because they can incor-
porate a wide range of signal features and simultan-
eously generalize the knowledge. Deep neural net-
works (DNNs) have the potential to learn effective
features end-to-end and to classify raw input data.
Given their effectiveness in other fields, DNNs are
expected to lead to better features and classifi-
ers and thus to a much more robust EEG clas-
sification (Lotte et al 2018). Schirrmeister et al
(2017) rigorously and convincingly demonstrated
that their Shallow ConvNet—a simple convolu-
tional neural network (CNN)—could outperform a
classical filter-bank-common-spatial-pattern-based9

classifier.
However, the practical application of modernML

methods such as deep and CNNs for EEG classi-
fication is hindered by two main problems. First,
small datasets carry the risk of overfitting. Second,
black-box approaches risk using artifacts as fea-
tures (Comstock et al 1992, Nathan and Contreras-
Vidal 2016). While this might not be crucial for
Brain-Computer Interfaces, in the case of neurofeed-
back or diagnostic applications, this may lead to false
diagnoses and therapeutic adverse effects. The chal-
lenges of small data size and classification interpretab-
ility are not new in ML. Mitigation techniques have
been developed and applied in different fields, includ-
ing EEG. In the case of addressing small data sizes,
a commonly used technique is transfer learning. It
was applied as early as 1998 (Thrun and Pratt 1998)
and today is commonly used in EEG classification
(for review, see Wan et al 2021). Newer solutions
include techniques such as self-supervised contrastive
learning (Hyvarinen and Morioka 2016). This solu-
tion has already yielded promising results in brain
imaging EEG investigations (Mohsenvand et al 2020,
Banville et al 2021). The techniques used to over-
come the interpretability problem include sensitivity
analysis and backpropagation approaches. Sensitiv-
ity analysis is a more popular method that is based
on the local evaluation of the output gradient with
respect to input features. Sensitivity analysis results
are presented in heat maps consisting of input fea-
tures with the most significant impact on the out-
put. These new developments improve classification
results comparable to the level of specialists (Sch-
weizer et al 2017)without the burden of tedious work.

9 Filter-bank-common-spatial-pattern in a supervised technique
that computes spatial filters (linear combinations of EEG channels)
that enhance class-discriminative band power features contained in
the EEG.

The application of these methods may have practical
assistive applications in diagnostics and therapeutics.

In this work, we study the application of differ-
ent classifiers trained to detect desired EEG states as
potential EEG-neurofeedback protocols. The classifi-
ers have been trained on the data collected from indi-
vidual participants during a cognitive task conducted
prior to the actual EEG-neurofeedback training. The
feasibility of CNN to detect differentmental states has
already been confirmed by several studies (Bird et al
2018, Chakladar et al 2020, Han et al 2020).

We chosememory as the target for the neurofeed-
back procedure, as memory is one of the basic cog-
nitive functions. Using datasets collected during three
diagnostic sessions of each participant, we trained
four neural network models to classify trials based
on the EEG signal. The application of four differ-
ent models to the same dataset allowed us to com-
pare the effects of different architectures, training
strategies, and input representations on classification
results and features’ importance. Furthermore, we
performed sanity checks to verify that the extracted
features important for classification were plausibly
related to the memory task. This study contributes to
the field by demonstrating that:

(a) perturbation analysis (section 2.5.1) allows for
identifying physiologically relevant features for
neurofeedback training

(b) the application of different training strategies
and models to the same problem may result in
classification based on different sets of features;
still, it allows the identification of a robust subset
of features common to all the models,

(c) the relationship between classification results
and behavioral performance in cognitive tests
(often significant in diagnostic applications)
is moderate and varies between investigated
models.

2. Materials andmethods

2.1. Data
In the current study we used two different sets of
data. The first one comes from the delay matched to
sample experiment which we refer to as the experi-
mental data. The experiment was designed to closely
resemble a neurofeedback session. The second set was
a big dataset of resting state clinical recordings which
we used to train the model using a transfer learning
approach.

2.1.1. Experimental procedure and data
2.1.1.1. Participants
We examined 87 healthy adults (including 42
women; age range: 23–44 years). Participants were
recruited through announcements at local univer-
sities and work agencies. A neurological screening
and questionnaires were administered to all potential
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Figure 1. The scheme of the experimental procedure. Time course of (a) the retention and (b) control trials. In each case, the type
of trial was signaled to the participant by the color of the background elements, purple for retention and green for control type.
The 5 s delay phase indicated in the upper plot was used in the analysis described below.

participants; exclusion criteria included neurological
disorders, brain injury, current use of analgesic med-
ication, substance abuse or dependence and mental
disorders. All participants were right-handed and
had a normal or corrected-to-normal vision. The
experimental procedures were approved by the Local
Bioethics Committee at Nicolaus Copernicus Uni-
versity in Torun. All participants gave their written
informed consent to participate in the experiment in
accordance with theWMADeclaration of Helsinki—
Ethical Principles for Medical Research Involving
Human Subjects. All experiments were performed
under all relevant guidelines and regulations. Neur-
ofeedback set-up included virtual reality (VR) and
standard monitor environments. Participants were
randomly assigned to two experimental groups with
different environment (2D or VR). Finally, the 2D
group included 33 participants (including 12women)
and the VR group 54 participants (including 30
women).

2.1.1.2. Procedure
The current experimental procedure was designed for
an EEG-neurofeedback experiment aimed atmemory
improvement in VR and standard monitor (2D)
environments. The first three diagnostic sessionswere
aimed at decoding participants’ EEG state during
tasks requiring the use of working memory. During
these sessions, participants used a keyboard to play
a computer game implementing a working memory
task while their EEG was recorded. The data collec-
ted from the three sessions were then used for decod-
ing EEG activity. The game was identical with the one
used in the proper neurofeedback training except for
the participants’ response which, during the proper
neurofeedback training, was decoded from the mod-
ulations of their EEG. In this paper, we concentrate
on identifying the working-memory-related EEG fea-
tures from the three diagnostic sessions.

The game was based on a delayed match-to-
sample (DMTS) task, a task which tests both atten-
tion and working memory. The original version of

the DMTS has three phases which are sample, delay,
and choice. During the sample phase, a participant
is presented with a sample stimulus, which has to
be maintained in memory during the delay period
following the sample phase. When the delay phase
is over, the choice phase follows. During this phase,
another stimulus is presented to the participant. At
this point, the participant has to decide whether or
not the stimulus matches the sample.

We modified this paradigm by adding control
trials that did not require retention of information
(See figure 1 for the trial design). In control trials,
the sample and delay phases were the same as non-
control phases. However, in the choice phase, parti-
cipants were instead asked to indicate the orientation
(left or right) of a simple shape. The type of trial was
indicated by different background colors. Therefore,
participants were always aware whether or not a given
trial required attention and retention of information.

Each trial lasted 10.5 s and began with a ‘wait’
phase lasting 1.5 s. In the ‘wait’ phase, no action from
the participants was required. Next, in the sample
phase, the silhouette of a spaceship was presented to
the participants for 2 s. This was followed by a 5 s
‘delay’ phase (retention trial) used in further analyses
for memory load detection. Finally, the ‘choice’ phase
lasted for 2 s. Participants’ responses were executed by
pressing assigned buttons on the computer keyboard.
They earned one point per each correct response and
lost a point per each incorrect response. The three ses-
sions of the DMTS game combined with EEG record-
ing were separated by 2–3 d. Each EEG session lasted
up to 25min and consisted of 50 control and 50 reten-
tion trials, shown in randomized order.

2.1.2. Clinical data
The clinical data used for transfer learning in one of
the approaches explored in the present paper came
from University of Warsaw’s database. The database
contains over 100 000 healthy and abnormal anonym-
ized clinical EEG recordings of patients of all ages col-
lected from hospitals across Poland. The subset used
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in the experiment included 12 000 randomly selected
recordings. The use of this database for research pur-
poses was approved by the Local Bioethics Committee
at Nicolaus Copernicus University in Torun.

2.2. Data pre-processing
2.2.1. Experimental data preprocessing
The EEG signal was recorded using Digitrack soft-
ware (Elmiko Ltd) with 19 electrodes arranged in a
10–20 system, referenced to electrodes located at the
earlobes. The sampling rate of EEG signals was 500Hz
and the impedance of electrodes was kept below
10 kΩ. Data were high-pass filtered with a 0.5 Hz
cutoff frequency. The experimental data were subjec-
ted to a typical EEG cleaning procedure to remove
known artifacts that could bias classification results
and consequently the EEG-neurofeedback therapy.
To assure the same sampling rate of experimental
recordings (the original sampling rate slightly differed
between recordings), the data were downsampled to
400 Hz. Next, the signal was epoched into 10.5 s
windows (covering a whole single trial). For auto-
matic bad trials (heavily contaminated) detection,
the ERPLAB function (Lopez-Calderon and Luck
2014) was used with adaptable threshold parameters,
leading to removal of nomore than 25%of threshold-
exceeding trials per participant. Eye movement, elec-
trocardiogram (ECG), and muscle artifacts compon-
ents were removed using independent component
analysis (EEGLAB (Delorme and Makeig 2004) plu-
gin ICLabel with classification threshold set to 0.65
for eyes and ECG and 0.85 for muscles). The delay
phase (cf figure 1)was extracted from correct trials for
further analysis. Since VR and 2D groups did not dif-
fer in the behavioral results (see section 3 for details),
we pooled the two groups to increase the size of the
training and testing sets. The final dataset consisted
of 6207 trials in session 1, 6509 trials in session 2, and
6587 trials in session 3. Therewere 10 937 correct con-
trol and 8366 correct retention trials in total.

2.2.2. Clinical data preprocessing
The signals were recorded using a 10–20 electrode
setup, and sampled at 256 Hz. Data were bandpass
filtered using 1 Hz highpass and 40 Hz lowpass fil-
ters. Next, after cropping the continuous recording
into non-overlapping 5 s long samples, the ones that
exceeded 500µVwere discarded. Finally, we obtained
3.5× 106 5 s long samples.

2.3. Model architectures
In the current study, the effect of different architec-
tures and training methods on classification results
and set of important features was evaluated using the
following four models:

(a) Shallow ConvNet—a reference model developed
originally by Schirrmeister et al (2017).

(b) Parallel ConvNet and Hybrid models—both
models are using channel-frequency-time input
representation and share the same shallow con-
volutional part of the architecture. Additionally,
the Hybrid model is tuned to individual parti-
cipants. Bothmodels were developed specifically
for the current neurofeedback project.

(c) Contrastive model with gated multilayer per-
ceptron (gMLP-MoCo)—also developed for the
current neurofeedback project, aimed at assess-
ment of transfer learning using contrastive train-
ing phase.

All models were trained to perform a binary clas-
sification of the input data as coming from the reten-
tion or control trials (classes) (c.f. figure 1). The
details of themodels are described below. Themodels
were implemented using Pytorch 1.8.

2.3.1. Shallow ConvNet
The rationale behind choosing Shallow Con-
vNet (Schirrmeister et al 2017) as a reference model
was twofold. First, the original Shallow ConvNet
model was developed for classification of EEG data-
set similar in size to ours (High Gamma Dataset:
14 participants consisting in total 12 320, 4 s long
trials, Our dataset: 89 participants, 3 sessions per
participant, in total 19 303, 5 s long trials). Second,
Shallow ConvNet is a widely used reference model
(over 1200 citations in Google Scholar). We imple-
mented a variant of the original model adjusted for
binary classification. In short, the first two layers of
the network perform respectively: a temporal con-
volution and a spatial filtering analogous to Filter
Bank Common Spatial Patterns (Ang et al 2008).
The convolutional layers are followed by a squaring
non-linearity, a mean pooling layer and a logarithmic
activation function. The last layer is a fully connected
layer with sigmoid non-linearity. In our implement-
ation the size of the temporal filters was set to 40 to
obtain the same length (in seconds) as in the original
work (Schirrmeister et al 2017). The network’s input
size was E×T, where E is the number of electrodes,
and T is the number of time steps. The scheme of the
model is presented in figure 2.

2.3.2. Parallel ConvNet and Hybrid models
Parallel ConvNet and Hybrid models were developed
explicitly for the current study. For these models,
we considered explicit time-frequency parametriza-
tion to study the impact of the input representation.
After prepossessing described in section 2.2.1, the sig-
nal was converted into time-frequency representation
using Morlet transform (wave number= 7) for cent-
ral wavelet frequencies 3, 5, 8, 11, 15, 20, 25, 30, and
35 Hz. Chosen frequencies overlap with canonical
EEG bands (i.e. theta 4–7 Hz, alpha 8–12 Hz, beta 1
13–20 Hz, beta 2 21–30 Hz and gamma 31–45 Hz).
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Figure 2. Outline of the Shallow ConvNet. C is the number
of kernels; conv 1: temporal filters, conv 2: spatial filter
mixing all electrodes, and all previous filters, FC: the fully
connected layer.

We used only the real part of the complex represent-
ation for further computations and decimated it by
5 in the time domain to reduce the input size. This
procedure yielded a 9× 400 frequency-time map for
each channel. Finally, these maps were stacked, form-
ing a tensor of rank 3 with dimensions 19× 9× 400
(channel × frequency × time). Consequently, the
input of our network (see figure 3) had a dimen-
sion of E × F × T, where E is the number of elec-
trodes, F the number of different frequency bands,
and T the number of time steps. The number of elec-
trodes (E) corresponds to the channel’s dimension
of the input tensor, i.e. to its ‘depth’. Within each
block, the output of convolution layer is followed by a
rectified linear activation, ReLU(x) =max(0,x), and
then by a batch normalization layer (Ioffe and Szegedy
2015). Both models contain two convolution layers
with three parallel paths of different kernel sizes (time
steps) (see figure 3). The concept of parallel paths
was inspired by the Inception architecture (Szegedy
et al 2015) implemented in the context of com-
puter vision. The Inception architecture (Szegedy et al
2015) introduced parallel computational pathways
with different convolutional filters. We implement
an analogous idea but adapted this architecture to
the context of time-series multi-channel EEG data.
The precise employed variant was fixed using cross-
validation (CV) on a relatively small subset of the data
as giving reasonable performance. We did not, how-
ever, attempt to perform a full-fledged architecture

scan, as the main point of the present work was to
use the neural network as a tool for neurofeedback
training using interpretable EEG features. The ker-
nel sizes in Parallel ConvNet and Hybrid models are
(p, q), where p corresponds to the number of adja-
cent frequencies, and q to the length of the time
window. Thus, the model parses the signal at three
different ‘speeds’ depicted in kernel sizes: (5,10)→
(5,5), (5,5)→ (5,10), and (5,1)→ (5,10 with 2 ×
dilation). The convolution-activation-normalization
blocks are followed by an average pooling layer which
aggregates features from the whole duration of the
trial. Outputs of these three paths are then concaten-
ated forming a 24-dimensional representation of the
input.

In the Parallel ConvNet this representation is
passed to two hidden fully connected layers. All fully
connected layers receive an additional scalar input
marking the type of experimental environment: 2Dor
VR. The model output value is computed in the third
fully connected layer with a sigmoid function σ(x) =
1/(1+ exp(−x)) σ(x) ∈ (0,1). This output can be
interpreted as the probability of whether the trial is
in the retention class.

In the Hybrid model we took advantage of
multisession characteristics of our dataset to con-
struct individual models to minimize adverse effect
of large inter-subject EEG variability on classifica-
tion results (Lotte et al 2018). To this end, the 24-
dimensional representation (output of the ‘concaten-
ate’ block) of the trained Parallel ConvNet was used
as a fixed feature extractor input to individual logistic
regression models trained on each participant’s data.

2.3.3. Contrastive model
The motivation for this specific choice was twofold.
First, we sought to evaluate the effectiveness of the
transfer learning method using unlabeled raw clin-
ical EEG data. The experimental EEG datasets are
usually small in size, which reduces the training effi-
ciency and carries the risk of overfitting. On the other
hand, clinical EEG data are recorded according to
standardized procedures, and the dataset sizes are
much larger (e.g. a TUH dataset of 3000 recordings).
Therefore, transfer learning from clinical EEG data
may provide a solution to the problem of small size
of experimental recordings, enabling more accurate
classification without the risk of overfitting. Second,
the application of the gMLPwith self-attentionmech-
anism to train targeted dataset using features extrac-
ted from raw clinical data could reveal importance
of other features than standard analytical meth-
ods and increase the fine-tuning capabilities of the
model.

The structure of the contrastive model (gMLP-
MoCo) used in this study is shown in figure 4. The
input is the channel-time representation of EEG sig-
nal lasting 5 s (matrix of 1280 time steps of raw
EEG data in 19 channels, at 256 Hz sampling rate).
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Figure 3. Parallel ConvNet architecture. Operations indicated in the blocks: conv: convolution with a kernel, ReLU: rectified
linear activation function, BN: batch normalization, FC: fully connected layer, C: number of channels, i.e. kernels applied at the
same location. The network returns the probability that the input trial class is retention.

Figure 4. The gMLP network architecture. Left—overview of the network, center—structure of a gMLP block, right—zoom into
the Spatial Gating Unit. See text for details. Adapted with permission from Liu et al (2021).

This input is fed to a one-dimensional convolu-
tional layer which translates the signal into a sequence
of 40 embeddings (corresponding to tokens), each
representing the subsequent fragment of signal as a

lower dimensional (here, 128) vector. The embed-
dings are then processed by the gMLP module. The
gMLP (Liu et al 2021) is built of 30 identical blocks.
In each block, embeddings are first normalized and
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Figure 5. Training of the gMLP Momentum Contrastive gMLP-MoCo network occurs in two stages. In the self-supervised
pretraining stage (left), the z is a training example from the clinical database that is distorted with T1 and T2 transformations,
transformed with network and compared using a contrastive loss function as distance. In the supervised stage (right) an example
x from the current experiment is passed through the network.

then projected by a shared linear layer into a higher
dimension. These expanded tokens enter the Spatial
Gating Unit module and are split into two equally
sized chunks.

The first chunk after the normalization layer
enters a trainable one-dimensional convolutional
network and then after combining it with Self-
Attention layer, it is pointwise multiplied by the
second unprocessed chunk assuring interaction
between tokens. The Self-Attention layer uses non-
expanded tokens that enters the gMLP block. Pro-
cessing finishes with normalization layer across
embeddings and average pooling. The original gMLP
model was adjusted to EEG signal processing: instead
of a two-dimensional convolution, we used a one-
dimensional along the time axis and electrodes acting
as channels. Kernel size was doubled in linear size
from 16 to 32, with appropriate changes to the strides.

2.4. Training and evaluation of the models
The low signal-to-noise ratio of EEG results in high
instability of predictions in successive training epochs
(i.e. iterations through the whole training dataset). To
reduce the adverse effect of high variability, we aver-
aged the predictions from the last three epochs.

2.4.1. Shallow, Parallel and Hybrid models
The Shallow ConvNet, Parallel ConvNet and pre-
trained part of the Hybrid model were trained using
the AdamW optimizer. Training was performed in

batches ofN = 64 with standard binary cross-entropy
loss. The number of training epochs was chosen
experimentally to mitigate overfitting and resulted in
20 epochs for Shallow ConvNet and 10 epochs for the
Parallel ConvNet and Hybrid models.

2.4.2. Contrastive model
The gMLP-MoCo model was trained in two steps:

(a) self-supervised pre-training using a Momentum
Contrastive Learning framework (MoCo). Our
main motivation behind this choice was to
extract EEG features which could bring a fresh
insight into the EEG correlates of information
retention. Contrastive learning methods (Wu
et al 2018, Chen et al 2020, He et al 2020, Tian
et al 2020) attempt to learn how to be invariant
to transformations introduced to the training set
whilemaintaining discrimination over other fea-
tures;

(b) tuning of the pre-trained network on the data
from the current experiment.

In both steps we used AdamW optimizer, with a
learning rate of 1× 10−4 and the batch size of 64.

In our implementation of the MoCo framework,
outlined in figure 5, the original training example z
(from the clinical dataset) were augmented using T1

and T2 transformations constructed by automated
augment policy RandAugment from the list of basic
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Table 1. The list of the basic transformations used in contrastive training.

Transformation Description

Identity Identity transformation
Noise Add noise generated by a normal distribution
Signal cutout Zero the signal across all electrodes on a randomly selected continuous section
Mean shift Change the mean of an electrode by adding a randomly sampled number
Sensor dropout Zero the signal on a randomly chosen set of electrodes
Sensor flipping Flip upside down the signal on a randomly chosen set of electrodes
Bandstop filtering Bandstop randomly selected range of frequency
Constant scaling Multiply signal by a number randomly chosen for each electrode
Irregular scaling Multiply signal by a cubic spline

transformations (table 1). Next each transformation
was fed to one of two subnetworks: momentum
or backprop. The subnetworks learned representa-
tions by maximizing contrastive loss InfoNCE on
samples organized into similar and dissimilar pairs.
The parameters of gMLP and Head modules of
both sub-networks were updated with the back-
propagation algorithm. However, in the case of the
momentum sub-network (gMLPm and Headm), we
used momentum mechanism (Chen et al 2020),
i.e. the parameter vector, θm, of the momentum net-
work was updated using past values of the θb para-
meter vector of non-momentum network according
to θm = α · θm +(1−α) · θb. The smoothly evolving
momentum networks enabled us to reuse the old
batches during the calculation of contrastive loss,
which inherently requires a large batch size to work
properly. We used 100 epochs for gMLP pre-training.

In the second step, the pre-trained gMLPb mod-
ule was coupled with a linear layer and tuned to the
data examples x from the current experiment using
cross-entropy loss. To prevent overfitting, the aug-
ment policy from the previous step was reused with
the same set of basic transformations. The experi-
mental data were downsampled to 256 Hz to match
the sampling rate of clinical recordings.We used eight
epochs for training.

2.4.3. Evaluation of models’ performance
For estimation of models’ performance we applied 3-
fold CV on the experimental data from three indi-
vidual experimental sessions. To further increase the
number of estimates of the investigated measures, we
repeated the CV for five randomneural networks’ ini-
tializations. Thus, we have finally results for 3× 5=
15 instantiations of eachmodel. All models were eval-
uated using accuracy (ACC) and Matthews correla-
tion coefficient (MCC). The latter was chosen for its
insensitivity to class imbalance.

2.5. Feature importance
2.5.1. Evaluation of feature importance
In order to determine EEG features related to inform-
ation retention from the neural network perspective,
we isolate features which are relevant for the classific-
ation of the trial as retention versus control. Indeed,

the only difference between the control and retention
trials is the retention of information in memory dur-
ing the analyzed segment of the trial.

To determine the features’ importance for the
classification results, we applied perturbation analysis
using automatic gradient evaluation in Pytorch. We
focused on the power of EEG signal in the canonical
frequency bands across electrodes in order to facilitate
comparison with classical EEG methods of analysis.

As part of the analysis, the input to the trained
model was perturbed by multiplying the amplitude
at a given electrode and a given frequency band by a
factor ce,f. Next, the derivative of the class probability
p over the perturbation parameter at ce,f = 1was aver-
aged over all versions of a given model (trained on 3
folds and for 5 random initializations) and evaluated
on the relevant test set for the given fold to obtain the
average feature importance index FIe,f defined as:

FIe,f =

⟨
∂p

∂ce,f |ce,f=1

⟩
. (1)

A positive value of FIe,f means that an increase of
power at electrode e in frequency band around f
increases the probability of classification of a given
input trial as the retention one.

In the case of Parallel ConvNet and Hybrid mod-
els, the gradients were directly evaluated for the Mor-
let coefficient. For the models using raw signal as
input (Shallow ConvNet and gMLP-MoCo), data
were bandpass filtered in frequencies corresponding
to the central wavelet frequencies of Morlet trans-
forms and then signal was reconstructed by summing
the bands with the weights c= 1, with gradient com-
putation turned on for the weights c, c.f. figure 6. In
this way we preserved information about the direc-
tion of class probability change with the change of the
given feature.

2.5.2. Testing of feature importance
2.5.2.1. Statistical tests
To test if the FIe,f was significantly different from zero,
we used a one-sample t-test on the set of perturbation
results of all versions of a given model (i.e. individual
FIe,f). To account for the multiple comparisons, we
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Figure 6.Methodology of perturbation analysis for time-channel signal representation.

applied a false discovery rate (FDR) correction
(Benjamini and Yekutieli 2001).

2.5.2.2. Sanity checks
Comparison of perturbation analyses results
obtained for different subgroups, i.e. participants
with best and worst classification scores, gives
opportunity to further validate the obtained fea-
ture importance with a sanity check. To this end
we tested the significance of differences of values of
feature importance between 30 best and 30 worst
classified participants using the Mann–Whitney
test. To account for the multiple comparisons, we
applied FDR correction. Another simple sanity
test was correlating the classification results to task
performance.

2.6. Classical EEG analyses
As a reference to perturbation analyses, we used clas-
sical spectral EEG analyses. The power in each of
the frequency bands was estimated by summing peri-
odograms in ranges corresponding to the frequency
bands ofMorlet wavelets used in ourmodels, namely:
1–5, 3–7, 7–9, 10–12, 13–17, 15–25, 20–30, 25–30,
and 30–40 Hz. We performed a series of permuta-
tion tests, shuffling the labels ‘retention’ and ‘control’
trials for each combination of (electrode, frequency
band) with FDR correction for multiple comparisons
setting a 0.05 p-value threshold (we used the standard
implementation from EEGLAB Matlab toolbox).

3. Results

3.1. Behavioral results
The average number of points scored by a participant
in all three diagnostic sessions equaled M= 35.7,
SD= 5.17. The VR and 2D group results did not
differ significantly for all three sessions together

(2 tailed Wilcoxon test, p= .61), nor for individual
sessions (2 tailedWilcoxon test p1 = .49, p2 = .97 and
p3 = .69 for sessions 1 through 3 respectively).

3.2. Model performance
ACC andMCC scores of the tested models are shown
in table 2. For the sake of reference, using just the
‘most frequent class’ as a naive classifier yielded an
ACC of 56% and 0 MCC. All the evaluated models
performed better.

The statistical comparison of ACC and MCC of
our models using the Kruskal–Wallis test showed that
there were significant differences between the scores
of different models (for ACCχ2

4 = 41.92, p< .001; for
MCC χ2

4 = 41.25, p< .001).
The post-hoc tests, done using the Mann–

Whitney two-sided test with FDR correction for
multiple comparisons, indicated that all the pairwise
differences, excluding Shallow vs Parallel ConvNets
were significant, both for ACC and MCC. The details
of significant post-hoc tests are reported in table 3.
To summarize, the best scores were obtained for the
gMLP-MoCo model, slightly lower for Hybrid, and
the lowest for Parallel and Shallow ConvNets, the last
two performing on the same level.

3.3. Feature importance indicated by the
perturbation analysis
In diagnostic and therapeutic applications, such as
EEG-neurofeedback, classification ACC and the fea-
tures which were the basis of classifications are of
equal significance. Therefore, we performed perturb-
ation analysis to identify essential features. For each
model, we evaluated the feature importance index
according to equation (1). The results are presented
in figure 7. It provides for the explainability of the
model.
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Table 2. ACC and MCC obtained in 3-fold CV and five random initializations training of the models.

Model ACC MCC # Trainable parameters

Shallow ConvNet 61.50 ± 2.33 0.216 ± 0.030 3.5 × 104

Parallel ConvNet 62.06 ± 1.39 0.223 ± 0.025 2.1 × 104

Hybrid model 64.38 ± 0.60 0.264 ± 0.011 2.1 × 104

gMLP-MoCo 65.29 ± 0.76 0.288 ± 0.018 6.1 × 106

Table 3. Significant differences in ACC and MCC assessed with a two-sided Mann–Whitney test; p values with FDR.

ACC MCC

Comparison U p U p

Shallow ConvNet vs Hybrid model 20 2× 10−04 20 2× 10−04

Shallow ConvNet vs gMLP-MoCo 4 1× 10−05 6 2× 10−05

Parallel ConvNet vs Hybrid model 2 1× 10−05 6 2× 10−05

Parallel ConvNet vs gMLP-MoCo 0 1× 10−05 1 2× 10−05

Hybrid model vs gMLP-MoCo 44 6× 10−03 37 2× 10−03

Figure 7. Results of perturbation analysis. (a)–(d) heatmaps of feature importance index for the four investigated models. The
channel-frequency pairs masked white were not statistically significant. (e) Spearman correlation between the heatmaps; all
correlations statistically significant (p< .001). (f) Elements of heatmaps common to all the models—red positive, blue negative
FIe,f for all models.

The pattern of FIe,f obtained for models
trained directly on the experimental task data
(figures 7(a)–(c)) is very similar, which was

confirmed by the strong Spearman correlation (over
0.75). Comparison with the gMLP-MoCo model
revealed a weaker correlation (0.34 with Shallow,
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and 0.25 and 0.28 with Parallel and Hybrid mod-
els, respectively). Nevertheless, there was an emer-
ging pattern common to all the models (figure 7(f)).
Increased power in the temporal-posterior electrodes
in the alpha and beta frequencies was related to the
decrease in the probability of a trial being of class
retention. On the other hand, the augmented power
at frontal and temporal-central electrodes in alpha
and beta frequency bands was indicative of the trial
having requiring more working memory. Addition-
ally, at electrodes Fz and F3, increased theta activ-
ity corresponded to class retention trials. Finally,
increased beta and decreased theta activity in the
occipital were also characteristic of the retention class.

The feature importance index heatmap obtained
for the gMLP-MoCo model showed the importance
of the delta EEG band (3 Hz) at all electrodes and
the alpha-band at occipital ones, whichwas not indic-
ated by the perturbation analysis performed on other
models. Another important feature identified only for
the gMLP-MoCo model was the increase of the delta
through alpha bands activity at the Fp1 and Fp2 elec-
trodes indicating higher probability of the retention
trials.

3.4. Sanity checks
We expect that the features which consistently indic-
ate a higher probability of classifying a trial as a
retention class should be characteristic of working
memory. Thus, comparing the feature importance
index calculated for best and worst classified par-
ticipants may inform us whether features used by
our models to detect retention trials differ between
groups. Further, analysis of the correlation of the clas-
sification scores with behavioral results may clarify to
what extent the classification, based on the developed
set of features, corresponds to the desired behavioral
aim of the neurofeedback training.

3.4.1. Differences between best and worst classified
participants
We checked the differences between groups with the
highest and lowest classification results.We compared
the feature importance index of 30 participants with
best and worst ACC and MCC for each model. Their
ACC and MCC scores were significantly different
(2-tailed t-test p< .001). The statistically significant
differences in FIe,f, as revealed by a series of Mann–
Whitney tests with FDR correction, are presented in
figure 8. The Shallow, Parallel ConvNets, and Hybrid
models, i.e. the models trained directly on the experi-
mental task data, showed several significant regions
in frequency-electrode space. These regions can be
seen as the most robust features developed during
the model training. Furthermore, the signs of the
gradients are the same for the highest and lowest
classification scores, and, as could be expected, they
have a higher absolute value for the best-classified

group, which is represented as more saturated colors
in figure 8 (right compared to left column).

3.4.2. Correlation between classification results and
task performance
EEG features differentiating retention and control
trials common to all models were highly consist-
ent with those associated with neuronal processes
engaged in memory. Furthermore, they were more
pronounced in the participants with higher classific-
ation ACC. Therefore, one could expect that classific-
ation score metrics (ACC, MCC) would correspond
to some extent to behavioral performance. We per-
formed correlation analysis between game scores and
classification metrics to verify whether classification
results of the tested models are related to behavioral
performance in the memory task. Interestingly, signi-
ficant results were found only for the MCC metrics.
Pearson correlation coefficients ranged from r= .36
for Hybrid and Shallow models to r = .25 for gMLP-
MoCo. The correlation appeared significant for all
models. Details are shown in table 4.

3.5. Classical analyses
Traditional spectral analyses (section 2.6) did not
reveal any significant differences between retention
and control trials. We also did not find significant
group differences in EEG activity between best and
worst classified participants.

4. Discussion

The application of ML methods to classify EEG sig-
nals in research and medicine is hampered by the
inherent problems of low signal-to-noise ratio, high
inter- and intra-subject variability, and stochasti-
city (Subha et al 2010). In the race to overcome the
obstacles mentioned above and obtain the best pos-
sible classification results, explainability is often sacri-
ficed. The need for explainability, understood as reas-
ons amodel gives tomake its functioning clear or easy
to understand (Barredo Arrieta et al 2020), has a two-
fold rationale. The first is to ensure that the classi-
fication is based on features related to the problems
being solved (e.g. disorders) and not the accompany-
ing artifacts (Wan et al 2021). The second rationale
is to gain a comprehensive insight into the problem
under consideration. Unfortunately, most of the pre-
vious studies dealing with the classification of cognit-
ive functions vary widely in implemented solutions,
cognitive tasks, and datasets, hindering comparison
of the results and their explainability.

The present study performs classification and fea-
ture importance analyses of working memory load
based on EEG as a potential method for EEG-
Neurofeedback applications. To directly compare dif-
ferent architectures, training methods, and input
representations, we implemented and investigated
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Figure 8. Sanity check. The average feature importance index for the groups of participants with low (left) or high (right) ACC in
individual classification achieved by the Shallow ConvNet, Parallel ConvNet, and Hybrid model. The features within each model
were compared with Mann–Whitney test. The red color indicates that the increase of the associated feature value increases the
probability of the trial being of class retention; the blue color means that the increase of that feature value decreases the likelihood
of the trial being of retention class. The nonsignificant differences are masked white. The vertical axis shows frequency in Hz, the
horizontal axis represents EEG channels.

Table 4. Pearson correlation coefficients for correlations between
MCC and game scores in the investigated models, where r is the
Pearson correlation coefficient, and p is the significance of the
coefficient.

Shallow
ConvNet Hybrid

Parallel
ConvNet

gMLP-
MoCo

r .36 .36 .31 .25
p .0007 .0007 .003 .02

the properties of four neural networks using vari-
ous architectures and training techniques concerning
their classification results, features’ importance, and
correlations between the classification metrics and
behavioral scores. Finally, to assure direct comparison
of our results with the commonly-used reference, we
implemented and trained a Shallow ConvNet model,
originally designed by Schirrmeister et al (2017) and
compared our results to those frompublished studies.
We discuss the results in detail below.

4.1. Classification results
The best classification results in terms of ACC and
MCC metrics were obtained for the gMLP-MoCo
and the Hybrid models. Both models significantly
outperformed the reference Shallow ConvNet. The
two highest-performing networks represent different
model designs and training methods, but both use
some pre-training and fine-tuning.

The gMLP-MoCo network represents a transfer
learning approach combining self-supervised con-
trastive learning on clinical EEG recordings and fine-
tuning to the experimental data using standard back-
propagation. This approach was motivated by the
sparsity of EEG data for the current experimental
task and the availability of a large dataset of the
clinical EEG recordings. Our goal was to extract
clinical data features that were invariant to nuis-
ance factors such as noise, exact location, or DC
shifts and use them to classify the targeted dataset.
While transfer learning is a well-known approach
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proposed as early as 1998 (Thrun and Pratt 1998)
and widely used in EEG (for review, see Wan et al
2021) to overcome data scarcity (Hüebner et al 2018,
Dutta and Nandy 2019), the self-supervised contrast-
ive learning approach used here is relatively new.
Contrastive learning was first proposed for stimu-
lus modality classification from resting-state mag-
netoencephalography data (Hyvarinen and Morioka
2016). This approach was later successfully applied
to other types of neuroimaging data such as MRI
and fMRI (Chaitanya et al 2020, Li et al 2021) and
EEG (Mohsenvand et al 2020, Banville et al 2021).
Our results confirm that self-supervised contrastive
learning may help extract features from unlabeled
data, which can be successfully used for downstream
tasks.

The other best-performing model, the Hybrid
network, was tuned to individual participants. In
this case, the learning relied on features formed
by the convolution layers of the Parallel ConvNet,
trained on task time-series data collected from all
participants. Subsequently, a simple logistic classi-
fier was fine-tuned using these features extracted
from a given participant’s data. This approach yiel-
ded comparable results with the much more com-
plex gMLP-MoCo. However, a disadvantage of the
Hybrid model is the need for multiple recording ses-
sions for individual participants which are not always
feasible.

Another contrasting property of the Hybrid and
gMLP-MoComodels is the input data representation.
The Hybrid model used an explicit time-frequency
transformation of signal for all channels, while gMLP-
MoCo operated on the raw channel-time data.

The results obtained suggest that neither input
data representation nor model complexity was a key
property of the best-performing models as meas-
ured by ACC and MCC. However, some fine-tuning
appears beneficial in enabling the use of massive
amounts of data or customization. Moreover, the fea-
ture importance index differed as expected between
the best and worst classified participants (figure 8)
only for the models trained on the task data.

4.2. Maps of feature importance index and their
physiological significance
Power spectra in canonical EEG bands, their spatial
distribution across electrodes, and their relationships
to cognitive functions have been extensively stud-
ied since the early days of electroencephalography.
Therefore, the spectral features used by the mod-
els for classification and their comparison with the
classical spatial-frequency analysis and current know-
ledge can indicate whether the classification results
reflect known physiological phenomena, which is of
great importance in medicine and biology. Classic
EEG analysis methods rely on statistical comparison
of predefined measures at specific regions of interest
between the experimental conditions. Instead, artifi-

cial neural networks perform their calculations using
information about all available features and locations
simultaneously, which brings additional insight into
physiological mechanisms associated with features of
importance for classification results. It is import-
ant to note that investigators predefine the features
recovered during perturbation analyses,meaning that
these features are not necessarily the ones that were
most significant for classification.

Spearman’s correlation between the patterns of
features’ importance revealed by different models
showed a strong correlation of all models except
gMLP-MoCo (figure 7(e)). All models showing high
correlation between the patterns of feature import-
ance were characterized by a shallow architecture,
fewer trainable parameters, and a purely supervised
learning strategy. The most prominent features com-
mon for these models included positive values at
frontal electrodes in the theta band (5 and 8 Hz) and
negative values in parietal electrodes centered around
the alpha (11 Hz) and beta (15 Hz) bands. These fea-
tures were also present in the gMLP-MoCo model.
These features are well documented in numerous psy-
chological and neurobiological studies on EEG and
working memory. It has been shown that the reten-
tion of information in memory is associated with
an increase in theta band power in the frontal elec-
trodes (e.g. Wilson et al 1999, Bastiaansen et al 2002,
Klimesch et al 2008, Michels et al 2010, Sauseng et al
2010). Although the interpretation of the other fea-
tures, such as negative probability gradients for the
alpha and beta bands found at parietal electrodes, are
more challenging to interpret, they are also detected
in numerous electrophysiological experiments. This
shows that the proposedmodels are, in different ways,
interpretable using the core electrophysiological lit-
erature. Our experiments show how the ML can be
used as a tool in hypothesis-driven research (Yang and
Wang 2020).

Probability gradients calculated for the gMLP-
MoCo model with contrastive learning show differ-
ent patterns of significant features. Even though the
experimental data were preprocessed to exclude arti-
facts from the training dataset (including eye blinks
and muscle activity removal), the set of important
features developed by the model points to the sig-
nificance of delta and theta bands on the Fp1 and
Fp2 electrodes and, to a lesser extent, the importance
of gamma-band in frontal and occipital sites. Not-
ably, delta and theta activity at Fp1 and Fp2 elec-
trodes are characteristic of eye blinks, while high
gamma amplitude in the frontal and occipital regions
might result from muscle activity. These findings are
of particular importance for potential applications
in EEG-neurofeedback training and diagnostic pur-
poses. Namely, high sensitivity to the features associ-
atedwith artifacts practically excludes themodel from
the application in medicine, although it may be of
practical use in BCI.
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The vital clue also comes from the sanity check
comparing the feature importance indexes between
groups of best and worst classified participants. We
expect the robust features to be the same in both
groups but more pronounced in the best-classified
players. Indeed, comparison of the probability gradi-
ents between those two groups showed identical set
of features but more pronounced in the best classified
participants.

Summarizing the importance of the extracted
features of the EEG signal for classification pur-
poses, it should be noted that they correspond to
physiological EEG properties observed during the
biological and clinical experiments. Furthermore, it
is essential to note that different training methods
lead to classifications based on different sets of fea-
tures that are not necessarily directly related to the
task at hand. However, a subset of features is com-
mon to all models. Interestingly and importantly, this
subset is highly relevant for the task solved by the
participants.

4.3. Classification ACC and game performance
Finally, we investigated the relationship between clas-
sification ACC and game performance. This step
was motivated by the notion that successful reten-
tion of information necessary for answering ques-
tions correctly should result in better performance
in the game. This was further supported by the fact
that extracted features, common for all models, over-
lapped with EEG activity associated with successful
retention of information. Not surprisingly, the cor-
relation was found only for MCC capable of handling
unbalanced classes (Boughorbel et al 2017) (the num-
ber of retention trials was 25% smaller than control
ones). The overall correlations for all participants and
both game environments were weaker than expected,
showing only a weak tomoderate association between
MCC and game performance.

Surprisingly, correlational analyses of the rela-
tionship between EEG classification ACC and beha-
vioral performance in classified tasks are rare. Pang
et al (2021), who classified mental workload on the
NASA MATBII test using a stochastic configuration
network, obtained a correlation between mean task
ACC and classification ACC of r= .852 with p< .01
for 16 participants (15 males and one female). How-
ever, a more detailed analysis of these correlations
shows two clusters, with no correlation within each
cluster. The lower correlation scores obtained for our
data may have several reasons: (i) the MATBII pro-
cedure used by Pang et al (2021) is a mixture of four
tasks, (ii) the group was 94%male, and (iii) the num-
ber of participants was relatively low.

Summarizing, in the context of results obtained
by Pang et al (2021), moderate correlations between
MCC and game performance may indicate one of
the following: (i) information stored in the memory

is not necessarily related to the task at hand, (ii)
EEG features being classified may not be entirely or
exclusively related to information retention, and (iii)
there might be other factors interfering with memory
retention/retrieval or task execution.

5. Conclusion

The input perturbation analysis showed that different
trainingmethods lead to classifications based on vari-
ous features. However, the common subset of features
used by all investigated models is highly relevant for
the task being solved by participants. This observation
suggests that if a study aims to gain some insight into
the properties of the EEG signal, one should construct
and train various models and identify the stable sub-
set of features. Furthermore, our results suggest that
individual tuning based on the features developed by
a convolutionalmodelmay be beneficial, as in the case
of the Hybrid model. The personal tuning effectively
increased the ACC and MCC average values.

Interestingly, comparable classification scores
were obtained for the contrastive model pretrained
on the clinical data from the participants not particip-
ating in the current experiment. Still, the correlations
between score metrics and behavioral performance
were low for this model. Therefore, the results of our
experiment identify several essential considerations
when employing ML for EEG signal classification:

(a) In applications related to diagnosis and ther-
apy, it is vital to explain the classification in
terms of features used to support it. The choice
of architecture and training method affects fea-
tures’ importance and should be made carefully.

(b) The contrastive learning method, which has
shown excellent results, appeared to be sens-
itive to deep-rooted features (by deep-rooted
we mean features which cannot be completely
removed from signal using methods other than
removing blocks of recording with artifacts) res-
istant to data manipulations such as artifact
removal by ICA. This may suggest that this
transfer-learning method carries the risk that
classification may be based on residual artifacts
correlated with task performance and should be
used with caution.

(c) Depending on the architecture and training
method, some of the EEG features used by the
models for classification may not be directly
related to the task at hand, leading to a mod-
erate relationship between ACC and behavioral
performance.
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