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A R T I C L E I N F O  A B S T R A C T

I n this letter, w e  present the results o f  the study o f  the hydrogen  bond network o f  Po ly (4 -v iny lpheno l) (P V Ph ) by 

using Born-Oppenheimer m olecular dynamics. The polym eric structure and IR  spectra o f  PVPh result from  the 

presence o f  hydrogen  bonds betw een  the hydroxyl group. The presented study focuses on the analysis o f  changes 

in the network  o f  conjugated hydrogen  bonds observed in Po ly(4-v iny lphenol). The hydroxyl groups form  

conjugated hydrogen  bonds in separate domains. The ab initio m olecular dynamics gave us a possibility to  un­

derstand the stabilization ro le o f  the hydrogen  bond in the po lym er material. Additionally, the quantization o f  

nuclear m otion  has been performed.

1. Introduction

N ow adays, a va rie ty  o f  polym ers surround us: the m ain part o f  the 

used goods is m ade from  a po lym er m aterial. M illion  tons o f  synthetic 

po lym er are produced each year. H ow ever, responsible m anagem ent o f  

our planet’ s resources requires paying attention to b iodegradable 

polym ers as environm ent-friendly m aterials [1 ,2 ]. A  good  exam ple o f  

b iodegradable polym ers: polyhydroxybu tyrate is com m on ly  used in the 

industry [ 3 ] . On the other hand, m any synthetic polym ers, fo r exam ple, 

styrene are hard to degrade and reuse.

Po lym ers p lay  a p ivo ta l ro le as one o f  the essential resources in 

m ultip le fields, such as materials, energy, in form ation  technology as 

w e ll as m ed icine [4 - 6 ] . Therefore, it is h igh ly  desirable to understand 

and control com p lex  po lym er structures, their interm olecu lar in­

teractions, and their d ispersib ility  [7 - 9 ] . H ow ever rational design o f  the 

new  m ateria lrequires an understanding o f  the interm olecu lar (in ter­

chain) interactions. It should be stressed that the design o f  the po lym er 

m ateria l w ith  desired properties involves the m odeling o f  the po lym er 

structure and further the strength, orientation, and/or netw ork o f  the 

interchain interactions, hydrogen  bonds in particular. The crystal 

structures and physical properties o f  polym ers have been investigated by 

using various spectroscopic and X-ray d iffraction  m ethods, such as 

in frared (IR ) [1 0 ], near-IR (N IR ) [1 1 ], Raman [1 2 ,1 3 ], terahertz

[1 3 ,1 4 ], far-u ltrav io let (FU V ) [1 5 ] and w ide-angle  X-ray d iffraction  

(W A X D ) [1 6 ]. It should be po in ted out that m any other m ethods a llow  

us to analyze hydrogen  bonds, e.g. the Bader theory, the Energy 

D ecom position Analysis (E D A ), and other m ethods that require frag­

m entation [1 7 -1 8 ]. H ow ever, the v ib rationa l analysis gave us crucial 

in form ation  about observed hydrogen  bonds [15 ,16 ,19 ,20 ]. N everth e­

less, w h ile  the size and com p lex ity  o f  systems increase, IR  and Raman 

spectra o f  such systems becom e m ore d ifficu lt to analyze. Therefore, the 

theoretical m ethods have been used as an e ffec tive  too l fo r under­

standing IR  and Raman spectra o f  po lym ers and analysis o f  interm o- 

lecular interactions in polym ers. The com bination o f  the theoretical and 

experim enta l investigation  gives us the possib ility  to  perform  a deta iled  

study about the strength o f  in teraction and the dynam ic character o f  the 

interaction network.

M olecu lar dynam ics, in  particular Born-Oppenheim er m olecular 

dynam ics (B O M D ), is a pow erfu l too l fo r the analysis o f  in term olecular 

interactions, especia lly  hydrogen  bonds. A  broad and de ta iled  descrip­

tion  o f  m olecular dynam ics has been presented in several m onographs 

[2 1 -2 2 ] and rev iew  papers [2 3 -2 5 ]. The m ain assumption o f  adiabatic 

m olecu lar dynam ics is describe the m otion  o f  nuclei a long the potentia l 

energy surface. The Born-Oppenheim er approxim ation  makes it possible 

to  treat the m otion  o f  nuclei and electrons independently. The m olecular 

dynam ics m ethod is based on  the integration  o f  the classical equation o f
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m otion  [2 6 ,2 7 ]. This approach provides in form ation  about the electron 

structure using quantum chem istry m ethods in the same w a y  as in static 

calculations. The potentia l energy surface (PES) calcu lated by  ab in itio  

methods is essential, for systems w here there is a possib ility  o f  breaking 

and form ing chem ica l bonds e.g.: systems w ith  strong hydrogen  bonds 

[2 8 -2 9 ]. Th is m ethodology  provides an accurate description o f  the 

system ’ s dynam ics and a llow s taking into account structural changes as 

w e ll as the anharm onicity o f  nuclei motions. V ibrational spectra calcu­

lated as an average along the tra jectory is m ore accurate than the one 

obtained from  static calculations. Another im portant feature that dis­

tinguishes BOMD from  some other theoretical methods is the possib ility 

to precisely describe proton motions. It should be em phasized that the 

dynam ics o f  proton m otion  in hydrogen  bonds are determ ined by  the 

com p lex nature o f  the interactions occurring in the studied system. 

These interactions are responsible fo r the com p lex structure o f  in frared 

and Raman spectra o f  po lym eric  systems[3 0 ,3 1 ].

It is also im portant to  po in t out the tim e cost o f  the M D calculation: it 

is approx im ately equal to the cost o f  the “ static”  ab in itio  calcu lation 

m ultip lied  b y  the number o f  tra jectory steps. Long trajectories are ad­

vantageous fo r spectroscopic studies, especia lly  in the low -frequency 

range, w h ich  is characteristic o f  s low  motions. N ote that the tim e step 

is an im portant param eter for m olecu lar dynam ics calculations. A  

decreasing tim e step in the num erically calcu lated tra jectory leads to 

m ore accurate results. Nevertheless, the com putational cost increases 

w ith  the num ber o f  steps. In practice, the m aximum  num ber o f  tim e 

steps is determ ined b y  the period  o f  the v ib ration  w ith  the highest 

energy.

P o ly (4 -v in y lp h en o l) (PV P h ) is often  com pared to polystyrene due to 

structural sim ilarities: po ly (4 -v in y lp h en o l) contains a hydroxyl group in 

the para  position  o f  the phenyl ring add itiona lly  ( Fig. 1a). Recent 

research proved  the presence o f  m edium -strong interchain hydrogen 

bonds in PVPh structure [1 9 ,2 0 ,3 2 ]. These interactions can serve as 

donors form ing hydrogen  bonds w ith  other polym ers. PVPh is frequently 

investigated as a com ponent capable o f  prom oting m isc ib ility  in various 

po lym er blends: in particular, w ith  p o ly (v in y l m ethyl ketone) by  Bour- 

ara et al. [3 2 ], p o ly (m eth y l m ethacrylate) b y  Ozaki et al. [19 ,20 ] or po ly  

(v in y lp yrro lid on e ) by  Kuo et al. [3 3 ] . The especia lly  interesting is 

b lended po lyv iny lphenol w ith  b iodegradab le polym ers that m ay change 

the properties and stability o f  po lym ers [4 1 ]. Th is m ay be expla ined by 

com putational en zym ology  [4 2 ] .

The aim  o f  this w ork  is to  take an insight into the nature o f  interchain 

interactions in PVPh structure b y  means o f  theoretical methods. W e 

present the results o f  ab in itio  BOMD calculations perform ed fo r the 4- 

chains m odel o f  PVPh. Fig. 1 depicts the considered m odel o f  PVPh. 

This presented m odel and applied  m ethod a llow  us to consider hydrogen 

bond in teraction w h ile  describ ing details o f  electron  structures. The 

emphasishas been put on the reconstruction o f  the v ib rationa l bands o f  

the hydrogen-bonded functional group. W e  have also discussed the dy­

namics effects and conjugation betw een  hydrogen  bonds as w e ll as chain 

position fluctuation along w ith  M D simulations.

2. Com putational details

The Born-Oppenheim er m olecu lar dynam ics (B O M D ) simulations 

w ere  carried out fo r the m odel system o f  po lyv iny lphenol po lym er

(PV P h ). The studied system contains four chains. The structure o f  each 

chain has been extracted from  the crystal structure. The one chain 

contains 32 m onom ers contracted syndiotactic polym er. A fter  M D 

sim ulation some o f  the m onom ers reorients and the fin ished structure 

has been atactic. It should be po in ted out that atactic con form ation  is a 

standard polystyrene structure. The com putational ce ll is illustrated by 

parameters: a =  b =  c =  80  A , a  =  y =  ß  =  90°. Fig. 1 and 2 illustrate the 

considered m odel system.

The M D simulations w ere  carried out using the Born-Oppenheim er 

approach in the Quickstep schem e [3 4 -3 5 ]. The tem perature w as set 

to  300 K and the M D tim e step was set to  1 fs. The total sim ulation tim e 

was c.a. 110 ps each (110  000 steps). The Pade functional w as used as 

the exchange-correlation functional w ith  the G rim m e’s dispersion 

correction  (D 3 ) [3 6 -3 7 ]. A  m ix o f  DZVP basis sets and plane w aves 

(cu to ff =  250 R y ) w as used. The tra jectory was v isua lized  and analyzed 

b y  the V M D  so ftw are [38 ] and m any tools w ere  created fo r perform ed 

analyses.

The interactions betw een  po lym er chains in the m odel system w ere 

analyzed betw een  one selected chain and the rest o f  the systems (three 

chains). Snapshot structures o f  the tra jectory w ere  extracted every  1000 

steps (equ iva len t to 1 ps), y ie ld in g  100 distinct structures to represent a 

va r ie ty  o f  possible conform ers. For each o f  the extracted snapshot 

structures, a one-dim ensional (1D ) proton potentia l function was ob ­

tained by  stepwise displacem ent o f  one hydrogen-bonded proton along 

the hydrogen  vector paralle l to the pertinent O— H line. The corre­

sponding internal coord inate (x ) w as defined  as the distance betw een  

hydrogen  and oxygen  atoms. The scan typ ica lly  covered  the x  range 

from  0.6 A  to 2.45 A . The hydrogen  w as displaced along the distance 

steps o f  0.05 A. Having acquired the potentials, the v ib rationa l energy 

levels and proton w a ve  functions w ere  obta ined b y  so lving the v ib ra ­

tiona l Schrödinger equation fo r each ind ividual potentia l [4 3 ,4 4 ].

3. Results and  discussion

The experim enta l spectra have been published and analyzed by 

Ozaki e t al. [1 9 ,2 0 ]. H ow ever, the orig in  o f  the lim ited  number o f  

hydrogen  bonds observed in PVPh po lym er was an open question. 

Theoretica l spectra o f  the m odel structure o f  PVPh have been presented 

in  Fig. 3 . The h igh-frequency reg ion  in the pow er spectra has a rich 

structure. This region , betw een  2000 cm ~1 and 3000 cm ~1, reflects 

hydrogen  bonds. The highest region  reflects the stretching m odes o f  non­

interacted groups. Let us discuss the stretching m ode reg ion  carefully: 

firstly  the experim enta l data then the com putational results. The 

experim enta l spectrum o f  PVPh shows an intense first band betw een  

2800 cm ~1 and 3050 cm -1the m aximum  is at 2920 cm ~1. The half-w idth  

o f  this band has been assigned as ca. 150 cm ~1. It should be po in ted out 

that this band has tw o  additional m axim a w ith  lo w  intensity be fore and 

a fter the intense central maximum. Further, the next band occurs b e ­

tw een  3150 cm ~1 and 3260 cm ~1, w ith  a m axim um  o f  3350 cm ~1.

The theoretical results are m ain ly in line w ith  experim enta l data. The 

first band in the h igh-frequency reg ion  occurs betw een  2800 cm ~1 and 

3000 cm ~1 and has tw o  m axim a 2920 cm ~1 and 2985 cm ~1. The next 

band ranges betw een  3000 cm ~1 and 3200 cm ~1 w ith  the m axim um  at 

3090 cm ~1. The th ird band starts around 3300 cm ~1 and fin ishes around 

3600 cm ~1, w ith  the m axim um  at 3450 cm ~1. In the last band w ith  an



Fig . 3 . Calculated pow er spectra o f  the PVPh po lym er m odel. The top right 

panel shows the experim ental spectra o f  the high frequency region, adopted 

from  19.

average intensity range betw een  3630 cm ~1 and 3790 cm ~1, the pick is 

situated at 3670 cm ~1. The com parison o f  experim ental features o f  both 

studied crystals shows the largest d ifferences in intensities, but the po­

sition o f  the band looks reasonably w e ll described a fter com paring w ith  

experim ental data.

The analysis o f  the band com ponent has been based on the calcula­

tion o f  Fourier transform ation from  the atom  position  autocorrelation 

function. The analysis o f  pow er spectra a llow ed  us to  understand the 

genesis and discuss separately each band. The selection o f  hydrogen- 

bonded groups in PVPh (h ydroxyls ) a llow ed  us to understand the 

interchain in teraction in fluence on the spectra.

During the m olecu lar dynam ics simulations, the hydroxyl group 

from  tw o  d ifferen t chains creates the hydrogen  bond domains contain­

ing from  3 to 7 or 8 hydrogen  bonds. The longer domains are not p re f­

erable because o f  the steric hindrance. During the 100 ps, each hydrogen 

bond domains are stable. The one typ ica l hydrogen  bond domains has 

been depicted in Fig. 4 . The hydrogen  bonded hydroxyl group has been 

m arked b y  grey  sphere. The m otion  o f  hydrogen  bonds in the investi­

gated domains has been studied by  v ib rationa l analyses. The pow er

spectra have been calcu lated fo r the m arked grey  spheres o f  hydrogen 

and oxygen  atoms.

Fig. 5 shows the pow er spectra o f  the selected HB domain. The most 

interesting h igh-frequency region  contains tw o  bands. The first broad­

band range betw een  2200 cm -1and 3400 cm ~1 w ith  m axim um  at 3050 

cm ~1. The half-w idth  o f  this band has been assigned as ca. 700 cm ~1. 

The en largem ent o f  this band and intensity indicates the strong 

hydrogen  bonds betw een  hydroxyl groups. The second and the last band 

range betw een  3550 cm ~1 and 3750 cm ~1 w ith  the pick situated at 3650 

cm ~1. This band is located in the highest frequency region  w e  m ay easily 

associate w ith  the tw o  O-H m odes that are not in vo lved  in the hydrogen 

bond interactions. It should be noted, that each hydrogen  bond dogm an 

alw ays has at least one O-H group (first or last group in the hydrogen- 

bonded chains) that does not create any hydrogen  bonds.

In the end, w e  perform ed an analysis o f  the in teraction energies 

betw een  the one po lym er chain and the three surrounding chains. The 

analysis o f  the interaction betw een  m olecules can be done in terms o f  the 

energy components. The d ifference betw een  the energy o f  the w h o le  

m odel system and the sum o f  energies o f  fragm ents gave a good  esti­

m ation o f  the in teraction energy. Fig. 6 presents values o f  the interaction 

energies a long the trajectory. Each point corresponds to one structure 

extracted from  the ab in itio  trajectory. The structures have been taken 

every  1 ps.

The va lu e o f  in teraction energy spans from  —480 kcal/m ol to — 400 

kcal/m ol. The fluctuation o f  these points is around 50 kcal/m ol w h ich  

corresponds to the room  tem perature o f  the simulation. It should be 

stressed that each chain contains 32 m onom ers w ith  an O H  group. In this 

case, 32 hydrogen  bonds can be m axim ally  created. T o  recalculate the 

interaction energy fo r one m onom er, the values range betw een  15 kcal/ 

m ol and 12.5 kcal/mol. Th is results elucidate re la tive ly  strong hydrogen 

bonds betw een  hydroxyl groups in the hydrogen  bond domain. H ow ­

ever, some o f  the groups do not create any specific in teraction as a 

proton donors due to the steric effects. A  sim ilar e ffec t has been observed 

previously  in  the v itam in  C crystalas w e ll as nylon 6 polym orphs 

[3 9 ,4 0 ].

The above statement has been con firm ed b y  the a posteriori quanti­

zation  o f  nuclear m otion. Firstly, the calcu lation o f  the one-dim ensional 

(1 D ) proton potentia ls corresponding to  the instantaneous snapshot 

structures extracted from  the tra jectory has been done. W e  generated 

one-dim ensional proton potentials using one linear pathway (O -H ). 

Fig. 7 . shows the solution o f  the v ib rationa l Schrödinger equation. The 

band that represented the sum o f  contours (b lack lin e ) has three m axim a 

located at 2397 cm ~1 (h ighest in tensity), 2660 cm ~1, and 3371 cm ~1 

(low est intensity). The m axim um  at 3371 cm ~1 origins from  the 

nonbonded hydroxyl group (green  line ). The theoretical band is red- 

sh ifted from  the experim enta l one. H ow ever, It should be stressed that 

m olecu lar dynam ics calculations show  that on ly  som e parts o f  hydroxyl



Fig . 4. H ydrogen  bond chain betw een  PVPh chains. The grey sphere marked the considered hydrogen  bond domain.

F ig . 5. Pow er spectra o f  the sevenOH groups o f  the PVPh po lym er form ed HB 

chains.The top right panel shows the experim ental spectra o f  the h igh fre­

quency region, adopted from  19.

groups form  conjugated hydrogen  bonds and w e  m ain ly consider the 

hydroxyl groups from  PVPh that form  strong hydrogen  bond interaction.

4. Conclusions

In this article, w e  investigate hydrogen  bond netw orks in po ly (4 - 

v in y lphen ol) (PV Ph ). The used m ethodo logy  was evaluated by 

com paring calcu lated pow er spectra w ith  the experim ental ones. The 

calculations have been perform ed fo r m odel systems containing four 

PVPh chains. Positions o f  calculated bands are in good  agreem ent w ith  

the experim enta l data, w h ich  gave us the possib ility  to discuss and 

com pare studied systems.

Further, w e  analyzed the hydrogen  bond interactions betw een  

po lym er chains by  calcu lating the pow er spectra in terms o f  the chem ­

ical group. The analysis o f  positions and intensities o f  peaks shows the 

d ifference in the strengths o f  hydrogen  bonds. Redshift in  the spectrum 

o f  the O H  stretching m ode has been elucidated w h ile  a b ig  part o f  this 

band w as in the h igh-frequency region. The results show  the orig in  o f  

presence in the IR  spectra o f  non-interacted hydroxyl groups.

In the paper, w e  analyzed the interaction energy betw een  one

F ig . 6. Values o f  interaction energies betw een  one selected PVPh chain and 

three surrounding PVPh chains along the trajectory.

po lym er chain and the neighborhood  o f  three po lym er chains. The tim e 

courses o f  the interaction energies show  that the interm olecu lar inter­

action is genera lly  stable in the PVPh m odel system. The PVPh po lym er 

chains create a separate dom ain that is not conjugated together. On the 

one hand, analysis shows the lim ited  number o f  hydrogen  bonds, but on 

the other hand the created interactions are strong.

The perspective o f  further analysis should be analysis o f  the 

hydrogen  bond domains statistics in the b igger m odel systems. A  matter 

o f  choice is the selection o f  the m ethodology. In this w ork, w e  perform  

quantum (D FT) calculations fo r 2176 atoms. The statistical analysis o f  

hydrogen  bond domains requires huge extensions o f  the used m odel and 

goes tow ard  the force field.

CRediT authorship contribution statement

M ateusz Z. B rela: Investigation, Conceptualization, M ethodology, 

W ritin g  -  rev iew  &  editing. Y u liia  D idovets: Investigation. M arek  

Boczar: M ethodology. H arum i Sato: Conceptualization. Takahito  

N akajim a: W riting  -  rev iew  &  ed iting. M arek  J. W ójc ik : Conceptual­

ization , W riting  -  rev iew  &  editing.



Fig . 7. O— H stretching band contours o f  the hydrogen-bonded hydroxyl group 

in PVPh polym er. Each line contours w ere  calculated from  individual funda­

mental vibrational transitions as a superposition o f  Gaussian functions w ith  a 

half-w idth o f  50 cm -1 . The co lor line represents the hydroxyl group in the 

hydrogen  bond chains depicted in Fig. 4 (HB1 is the first hydroxyl group in the 

right part o f  the selected hydrogen-bonded chain, each hydrogen  bond has been 

numbered respectively from  right to le ft). The black contour represents the sum 

o f  seven contours. (For interpretation o f  the references to colour in this figure 

legend, the reader is referred to the w eb  version  o f  this article.)
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