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Tuza famously conjectured in 1981 that in a graph without k + 1 edge-disjoint triangles, it suffices to delete at most
2k edges to obtain a triangle-free graph. The conjecture holds for graphs with small treewidth or small maximum
average degree, including planar graphs. However, for dense graphs that are neither cliques nor 4-colourable, only
asymptotic results are known. Here, we confirm the conjecture for threshold graphs, i.e. graphs that are both split
graphs and cographs, and for co-chain graphs with both sides of the same size divisible by 4.
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1 Introduction
If we can “pack” at most k disjoint objects of some type in a given graph, how many elements do we
need to “cover” all appearances of such an object in the graph? Erdős and Pósa famously proved that
if a graph contains at most k pairwise vertex-disjoint cycles, then there is a set of at most f(k) vertices
that intersects every cycle [8]. While the exact best value of function f is yet unknown, the asymptotic
behaviour was recently determined to be f(k) = Θ(k log k) [5].

In this paper, we focus on edge-disjoint triangles; we refer the interested reader to [16] for a dynamic
survey on other objects. For a graph G, we call every family of pairwise edge-disjoint triangles a triangle
packing, and every subset of edges intersecting all triangles in G a triangle hitting. We denote by µ(G)
the maximum size of a triangle packing in G, and by τ(G) the minimum size of a triangle hitting in
G. Trivially, there is a set of at most 3µ(G) edges that intersect every triangle. We are concerned with
improving that bound, following Tuza’s conjecture from 1981.
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Conjecture 1 (Tuza [17]). For any graph G it holds τ(G) ≤ 2µ(G).

Conjecture 1, if true, is tight for K4 and K5. Gluing together copies of K4 and K5 along vertices, it is
easy to build an infinite family of connected graphs for which Conjecture 1 is tight. However, for larger
cliques, it is known that the ratio τ(Kp)/µ(Kp) tends to 3/2 as p increases [9]. In addition, Haxell and
Rödl [11] proved that τ(G) ≤ 2µ(G) + o(|V (G)|2) for any graph G, meaning Conjecture 1 is asymp-
totically true when τ(G) is quadratic with respect to |V (G)|. Those seem to indicate that Conjecture 1
should be easier for dense graphs than for sparse graphs. Conversely, it is asymptotically tight in some
classes of dense graphs [2]. If we focus on hereditary graph classes (i.e. classes that contain every induced
subgraph of a graph in the class), the conjecture has only been confirmed for a few graph classes. Those
classes include most notably graphs of treewidth at most 6 [4], 4-colourable graphs [1], and graphs with
maximum average degree less than 7 [15].

A good candidate for an interesting dense hereditary graph class is the class of split graphs, i.e. graphs
whose vertex set can be partitioned into two sets: one that induces a clique, the other inducing an indepen-
dent set. However, Conjecture 1 remains a real challenge even when restricted to split graphs. Another
good candidate for an interesting dense hereditary graph class is the class of cographs, i.e. graphs with
no induced path on four vertices. As an initial step, we focus on graphs that are both split graphs and
cographs, i.e. threshold graphs. While this may seem like a small step, it is arguably the first dense
hereditary superclass of cliques where the conjecture is confirmed.

Theorem 1. If G is a threshold graph, then τ(G) ≤ 2µ(G).

In the latter part of the paper, we show that similar tools with more involved analysis can be used
to verify Conjecture 1 also for specific co-chain graphs. A graph G is a co-chain graph (or sometimes
alternatively called co-difference graph) if its vertex set can be partitioned into two sets K1 and K2 such
thatG[K1] andG[K2] are cliques and there is an ordering c1, . . . , cn on the vertices ofK1 and an ordering
d1, . . . , dm on the vertices of K2 with N [ci+1] ⊆ N [ci] for all 1 ≤ i < n and N [di] ⊆ N [di+1] for all
1 ≤ i < m. We call (K1,K2) a co-chain representation ofG. We say thatG is an even balanced co-chain
graph if additionally K1 and K2 are of the same size that is divisible by four.

Theorem 2. If G is an even balanced co-chain graph, then τ(G) ≤ 2µ(G).

Theorem 2 can be seen as a very first step towards attacking Conjecture 1 on (mixed) unit interval graphs
as those graphs can be modelled as a concatenation of co-chain graphs. That is, vertices of graph G are
partitioned into r cliques C1, . . . , Cr where each (Ci, Ci+1) induce a co-chain graph and G contains no
other edges; see [12, 13] for more details. The simplest object for further study might be a k-path, which
can be viewed as a concatenation of well-structured same-sized co-chain graphs.

Finally, it is worth mentioning that Conjecture 1 is known to hold as soon as we consider multi-
packing [6], and in particular it holds in its fractional relaxation [14]. Another angle of attack consists of
lowering the bound of 3 step by step for all graphs. The best, and in fact only, such bound is slightly under
2.87 [10].

1.1 Preliminaries
All graphs in this paper are undirected and simple. Let G = (V,E) be a graph. By the size of a graph G
(alt. |G|), we always mean the number of its vertices. For all v ∈ V the set N(v) := {u | {u, v} ∈ E} is
called the neighbourhood of v and N [v] := N(v) ∪ {v} is its closed neighbourhood. A matching in G is
a set of edges M ⊆ E such that every vertex of G is incident to at most one edge of M . A vertex v ∈ V
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is complete to A ⊆ V, v /∈ A if v is adjacent to all vertices in A. Disjoint sets A,B ⊆ V are complete to
each other if E contains all edges between A and B. Any omitted definitions can be found in the book by
Diestel [7].

Let us first recall the following well-known property (chromatic index of a clique).

Lemma 3. The edge set of a clique K on k vertices can be decomposed into k edge disjoint maximal
matchings for k odd and k − 1 edge disjoint maximal matchings for k even.

Proof: If k is even, we may identify the vertices ofK with the set {0, 1, . . . , k−1} and consider matchings

Mi = {{0, i}} ∪ {{a, b} | a 6= b, ab 6= 0, a+ b ≡ 2i (mod k − 1)}

for 1 ≤ i ≤ k − 1. These matchings are edge disjoint and cover the entire edge set of K (cf. Fig. 1).
Removing any vertex (along with all incident edges) yields a desired matching decomposition into k − 1
matchings of the edge set of the clique of k − 1 vertices.

1

2

3

4

50

1

2

3

4

5

Fig. 1: The decomposition of edges of a 6-vertex clique into 5 matchings and the corresponding decom-
position of a 5-vertex clique.

A graph G = (V,E) is a star if V = {c, s1, . . . , sk} and E = {{c, si}|1 ≤ i ≤ k}; the vertex c is
called the center vertex of the star. A graph G is a complete split graph if its vertex set can be partitioned
into sets K and S, such that S is independent, K induces a clique, and K and S are complete to each
other.

The following lemma describes how to pack triangles in complete split graphs. As it is very central to
our proofs later, we include a proof here.

Lemma 4 ([9]). Let K be a clique, S an independent set such that they are complete to each other and
|K| = |S| = k. Then we can find an (optimal) triangle packing TP of size

(
k
2

)
such that:

1. It uses all edges from K and each triangle in TP contains exactly one edge from K.

2. If k is odd, the remaining edges (not used in TP) create a matching between K and S, otherwise
they create a star with its center vertex in S. Moreover, we can choose the unused matching and the
center vertex of the unused star arbitrarily.
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Proof: Consider a graph G composed of a clique K ′ complete to an independent set S′ with |K ′| = k
and |S′| = k− 1, where k is even. By Lemma 3, K can be decomposed into k− 1 edge disjoint (perfect)
matchings of size k/2. Each such matching fully joined to a different vertex in S′ yields a family of k/2
edge disjoint triangles (see Fig. 2). The collection of all k − 1 such joins is a decomposition of the entire
edge set of G into triangles.

Removing any vertex u fromK ′ yields a balanced graph with both sides of odd size, in which edges not
packed into triangles (participating in triangles whose vertex u got removed) create a matching between
K ′ − u and S′. On the other hand, by adding a single vertex v to S′, we get a balanced graph with both
sides of even size, in which unpacked edges form a star (with v being its center vertex).

K S...
...

K S...
...

Fig. 2: Full joins of matchings in K with vertices in S as families of triangles.

Corollary 5. Let K be a clique and S an independent set such that they are complete to each other.

(a) If |S| < |K|, then we can find a triangle packing of size |S| · b|K|/2c.

(b) If |S| ≥ |K|, then we can find a triangle packing of size
(|K|

2

)
.

Proof: If |S| < |K|, we take arbitrary |S| edge-disjoint maximal matchings inK whose existence follows
from Lemma 3 and assign them to different vertices in S. The full join of each such pair consists of b|K|/2c
edge-disjoint triangles.

If |S| ≥ |K|, we can derive the statement from Lemma 4: it is enough to take any |K|-element subset
S′ of S.

We say that we pack edges of K with vertices of S when we use triangle packings from Corollary 5.
The following lemma describes tightly how many edge-disjoint triangles can be packed in a clique.

Lemma 6 ([9]). The optimal triangle packing for Kn with n = 6x+ i, 0 ≤ i ≤ 5 is ((n
2)−k)/3 where k is

the number of not covered edges and

• k = 0 for i = 1, 3,

• k = 4 for i = 5,

• k = n
2 for i = 0, 2,
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• k = n
2 + 1 for i = 4.

Observe, that we can always hit all the triangles in a clique by leaving a bipartite graph with partitions
of as equal size as possible and removing the rest. Therefore, the optimal triangle hitting in a clique
consists of at most half the edges.

2 Threshold graphs
A graphG = (V,E) is a threshold graph if its vertex set can be partitioned into two setsK = {c1, . . . , ck}
and S = {u1, . . . , us} such that G[K] is a clique and G[S] is an independent set in G, and N [ci+1] ⊆
N [ci] for all 1 ≤ i < k and N(ui) ⊆ N(ui+1) for all 1 ≤ i < s. We identify K with the clique G[K]
and say G = (K ∪ S,E) is a threshold graph with given threshold representation (K,S).

The threshold representation of a threshold graph may not be unique. We prove that it can be chosen
such that the clique contains a vertex which is not adjacent to any vertex of the independent set.

Lemma 7. For every threshold graph G = (V,E) there exists a threshold representation (K,S) such
that there is a vertex v ∈ K with N(v) ∩ S = ∅.

Proof: We fix a threshold representation (K,S) of G. Suppose for all v ∈ K holds N(v)∩S 6= ∅. Then,
since G is a threshold graph, there is a vertex w ∈ S such that N(w) = K. We obtain a new threshold
representation (K ′, S′) of G with K ′ := K ∪ {w} and S′ := S \ {w}. Since S is an independent set, w
has no neighbours in S′.

We can now prove that Conjecture 1 holds for all threshold graphs.

Proof of Theorem 1: Let G = (K ∪ S,E) be a threshold graph with K = {c1, . . . , ck} and S =
{u1, . . . , us} such that N(ck) ∩ S = ∅. By Lemma 7, such a representation exists. Let r ∈ {1, . . . , s}
be chosen minimal such that {c1, . . . , cdk/2e} ⊆ N(ur) and let X be the subset {ur, . . . , us} of S (see
Fig. 3). Note that X is complete to the set {c1, . . . , cdk/2e}. We distinguish two cases, based on the parity

K
S

X

c1
c2

c⌈k/2⌉
c⌈k/2⌉+1

ck−1

ck

...

...

u1

ur−1

ur

us

...

...

Fig. 3: The structure of threshold graph G.

of k. First, we focus on the case that k is even. In this case we consider two cliques Ktop and Kbot of
equal size, induced by vertices {c1, . . . , ck/2} and {ck/2+1, . . . , ck}, respectively.

We construct a triangle packing TP of G using Corollary 5 as follows: we pack the edges of Kbot with
vertices in Ktop, and the edges of Ktop with vertices in X (see Fig. 4(a)).
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Kbot

Ktop

X

µ(G)

(a) triangle packing

K
X

τ(G)ck

(b) triangle hitting

Fig. 4: The (a) triangle packing and (b) triangle hitting providing the bounds for |X| ≥ k/2.

If |X| ≥ k
2 , then TP is a triangle packing of size 2

(k/2
2

)
. On the other hand, a triangle hitting of size(

k−1
2

)
can be obtained by taking all edges from K except those incident to ck (see Fig. 4(b)). Thus, we

obtain a lower bound on the triangle packing and an upper bound on the triangle hitting yielding:

τ(G) ≤
(
k − 1

2

)
=
k − 2

2
· (k − 1) ≤ k − 2

2
· k = 4

(
k/2

2

)
≤ 2µ(G).

If |X| < k
2 , then TP is of size at least(

k/2

2

)
+ |X| ·

⌊
k

4

⌋
≥

(
k/2

2

)
+ |X|

(
k

4
− 1

2

)
.

On the other hand, the edges inside Ktop and inside Kbot together with all edges between S and Kbot

build a triangle hitting of G (cf. Fig. 5(b)) of size at most

2

(
k/2

2

)
+ |X|

(
k

2
− 1

)
.

Indeed, recall that ck does not have any neighbours in S, therefore we have at most |X|
(
k
2 − 1

)
edges

between X and Kbot, and by definition of X , there are no vertices in Kbot having neighbours in S \X .
Thus, we again obtain a lower bound on the triangle packing and an upper bound on the triangle hitting
yielding:

τ(G) ≤ 2

(
k/2

2

)
+ |X|

(
k

2
− 1

)
= 2

(
k/2

2

)
+ 2 |X|

(
k

4
− 1

2

)
≤ 2µ(G).

We are left with the case that k is odd. We consider the cliques Ktop and Kbot induced by sets
{c1, . . . , c(k+1)/2} and {c(k+1)/2+1, . . . , ck}, respectively.

Again, we look at the size of X and in case it is large, we can derive a similar argument as in the
previous case, using Corollary 5. More precisely, assume that |X| ≥ k+1

2 . Then we pack the edges of
Kbot into

((k−1)/2
2

)
triangles with vertices in Ktop, and the edges of Ktop into

((k+1)/2
2

)
triangles with
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Kbot

Ktop

X

µ(G)

(a) triangle packing

Kbot

Ktop

X

τ(G)ck

(b) triangle hitting

Fig. 5: The (a) triangle packing and (b) triangle hitting providing the bounds when |X| < k/2.

vertices in X . Together, this gives a triangle packing of size(k+1
2

2

)
+

(k−1
2

2

)
=

(k − 1)2

4
.

The triangle hitting again consists of all edges from K except those adjacent to ck, therefore has size(
k−1
2

)
(recall Fig. 4). These two bounds together yield:

τ(G) ≤
(
k − 1

2

)
=
k − 1

2
· (k − 2) ≤ (k − 1)

2

2
≤ 2µ(G).

It remains to consider the case |X| < k+1
2 . In order to find a triangle packing, we define K ′top and K ′bot

to be induced by {c1, . . . , c(k−1)/2} and {c(k+1)/2, . . . , ck}, respectively (so K ′top = Ktop \ {c(k+1)/2} is
of size k−1

2 and K ′bot = Kbot ∪ {c(k+1)/2} is of size k+1
2 ). We build a triangle packing analogously to

before, using Corollary 5. The edges of K ′bot can be packed into b (k+1)/2
2 c · k−12 ≥ k−1

4 ·
k−1
2 triangles

with vertices in K ′top. Moreover, min{|X| ·
⌊
k−1
4

⌋
,
((k−1)/2

2

)
} ≥ |X|k−34 edges of K ′top can be packed

into triangles with vertices in X (see Fig. 6(a)). This gives a triangle packing of size at least

k − 1

2
· k − 1

4
+ |X| k − 3

4
.

To find a triangle hitting, we again consider the partition of K into Ktop and Kbot. We take all edges
inside Ktop and inside Kbot together with all edges between S and Kbot (see Fig. 6(b)). Again, recall
that ck ∈ Kbot does not have any neighbours in S, and there are no vertices in Kbot having neighbours
in S \X . Thus, this yields a triangle hitting of size at most.(k+1

2

2

)
+

(k−1
2

2

)
+ |X| k − 3

2
.
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Therefore, we obtain the following which concludes the proof:

τ(G) ≤
(k+1

2

2

)
+

(k−1
2

2

)
+ |X| k − 3

2

=
(k − 1)

2

4
+ |X| k − 3

2
= 2 · k − 1

2
· k − 1

4
+ 2 |X| k − 3

4
≤ 2µ(G).

K ′
bot

K ′
top

X

µ(G)

(a) triangle packing

Kbot

Ktop

X

τ(G)ck

(b) triangle hitting

Fig. 6: In (a) the triangle packing and in (b) the triangle hitting providing the bounds for |K| odd and
|X| < (k+1)/2.

3 Even balanced co-chain graphs
In this section we prove Theorem 2. To this end let G be an even balanced co-chain graph and (K1,K2)
its co-chain representation. Recall that K1 and K2 are of same size which is divisible by 4, for the rest of
the section let |K1| = |K2| = 2` for ` even. We identify K1 and K2 with the cliques G[K1] and G[K2].
See Fig. 7 for an illustration.

We prove that Tuza’s conjecture holds for this graph class.

Proof of Theorem 2: Note that in the case ` = 2 we get an 8-vertex graph which is either a clique, or
has average degree less than 7, so this case is covered by [15]. Therefore in the following we assume that
` ≥ 4.

Similarly to threshold graphs, we use Ktop
1 ,Kbot

1 for the top and the bottom half of K1, respectively,
and similarly Ktop

2 ,Kbot
2 for the top and the bottom half of K2. Let X1 ⊆ K1, X2 ⊆ K2 be the sets

defined as follows: c ∈ X1 if Kbot
2 ⊆ N [c], and d ∈ X2 if Ktop

1 ⊆ N [d]. See Fig. 7 for an illustration.
We denote x1 = |X1| and x2 = |X2|. By definition, x1 ≥ ` implies that the setX1 ⊇ Ktop

1 is complete to
Kbot

2 . Consequently, x2 ≥ `. Similarly, x2 ≥ ` implies x1 ≥ `. Therefore, x1 ≥ ` if and only if x2 ≥ `.
We assume without loss of generality throughout the entire proof that x1 ≥ x2. We split the analysis into
two main cases.
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X1
X2

K1 K2

c1 d1
c2 d2
c3 d3
c4 d4
c5 d5
c6 d6
c7 d7
c8 d8

Ktop
1

Kbot
1

Ktop
2

Kbot
2

Fig. 7: An example of an even balanced co-chain graph with ` = 4 (omitting the edges inside the cliques
K1 and K2).

3.1 The case x1, x2 ≤ `

In this case X1 ⊆ Ktop
1 and X2 ⊆ Kbot

2 . Suppose there is an edge cd with c ∈ K1 \X1 and d ∈ Ktop
2 ,

then c is adjacent to all the vertices in Kbot
2 and so c ∈ X1, which yields a contradiction. Similarly, there

are no edges between Kbot
1 and K2 \X2. In particular, there are no edges between Ktop

2 and Kbot
1 .

We choose a triangle hitting TH obtained by taking all edges within Ktop
1 , Ktop

2 , Kbot
1 , and Kbot

2 , as
well as edges between X1 and Kbot

2 , and between X2 and Ktop
1 as illustrated in Fig. 8. Observe now that

in the graph G−TH vertices in X1 only have neighbours in the independent set Kbot
1 ∪Ktop

2 , vertices in
Ktop

1 \X1 only have neighbours in the independent set Kbot
1 ∪Kbot

2 \X2, while vertices in Kbot
1 only

have neighbours in the independent set Ktop
1 ∪X2. Therefore the set TH is indeed a triangle hitting of G.

Kbot
1

Ktop
1

Kbot
2

Ktop
2

Fig. 8: The triangle hitting used in the case x1, x2 ≤ `.

Therefore,

τ(G) ≤ |TH| = 4

(
`

2

)
+ `x1 + `x2 − x1x2 = 4

(
`

2

)
+ `x1 + (`− x1)x2.

Indeed, we note that we counted edges between X1 and X2 once in term `x1 and once in term `x2 which
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we compensate by subtracting the last term x1x2.
Let us now create a sufficiently large triangle packing. First, we pack all edges of Kbot

1 with vertices
in Ktop

1 and also all edges of Ktop
2 with vertices in Kbot

2 ; we denote the set of these triangles by A (see
Fig. 9(a)). By Lemma 4, A contains 2

(
`
2

)
triangles. Observe that 2|A| − |TH| = −`x1 − (` − x1)x2.

First, we sort out the single case where x1 = `, and, in consequence, x2 = ` by definition of X1 and X2

together with the assumption that x2 ≤ `.

3.1.1 The subcase x1 = x2 = `

In this case, |TH| = 4
(
`
2

)
+ `2. As Ktop

1 ∪ Kbot
2 is a clique, by Lemma 6 we can pack at least

1
3

((
2`
2

)
− `− 1

)
triangles in it. Together with A, we obtain a triangle packing TP. If ` ≥ 5, then

2TP − TH ≥ 2
3

((
2`
2

)
− `− 1

)
− `2 = 1

3

(
`2 − 4`− 2

)
≥ 0. If ` = 4, Lemma 6 gives us a stronger

bound without the term −2, leading to 2TP− TH ≥ 1
3

(
`2 − 4`

)
= 0. Both cases imply 2µ(G) ≥ τ(G).

Kbot
1

Ktop
1

Kbot
2

Ktop
2

(a) set A of triangles

Kbot
2

X1

(b) set B of triangles

K
top
1 \X1

X1

(c) set C of triangles

K
top
1 \X1

X2

(d) set D of triangles

Fig. 9: Triangles in (a) A, (b) B, (c) C, and (d) D in the case x1, x2 ≤ `.

3.1.2 The subcase x1, x2 < `

Now, we consider the remaining case where x1 < `, and, in consequence, x2 < `.
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We choose a triangle packing TP as follows (see Fig. 9). We take the set A of triangles as defined
before. Recall that 2|A| − |TH| = −`x1− (`−x1)x2. We create a set B of triangles by packing edges of
Kbot

2 with vertices in X1. By Corollary 5(a) and as x1 < `, B is of size `/2 · x1. We create another set of
triangles C by packing edges of X1 with vertices of Ktop

1 \X1. Next, let D be the set of triangles created
by packing edges of Ktop

1 \X1 with vertices in X2. It is clear that all triangles in TP = A ∪B ∪ C ∪D
are mutually edge-disjoint, therefore TP is indeed a triangle packing.

Let us first settle the case that x1 is even. As 2(|A|+ |B|)− |TH| = −(`− x1)x2 if x1 < `, it remains
to show that 2 |TP \ (A ∪B)| = 2(|C|+ |D|) ≥ (`− x1)x2.

If `−x1 > x2, then 2|D| = (`−x1)x2 by Corollary 5(a). So, assume that `−x1 ≤ x2. Consequently,
`− x1 ≤ x1 and thus `/2 ≤ x1. If x1 = `/2, then, by x1 ≥ x2 ≥ `/2, we have x2 = `/2 as well. Thus,
as ` ≥ 4, 2(|C| + |D|) − (` − x1)x2 = 4

(
`/2
2

)
− `2/4 = `(` − 4)/4 ≥ 0. For ` − x1 < x1 we get

2|C| = x1(` − x1) ≥ x2(` − x1). Therefore, we always have 2 |C ∪D| ≥ (`− x1)x2 for even x1, and
so 2µ(G) ≥ 2TP ≥ TH ≥ τ(G).

In case x1 is odd, we add one additional triangle to our triangle packing as follows. Note that if there is
no edge between Kbot

1 and Kbot
2 , then all edges between Ktop

1 and Ktop
2 hit all triangles between K1 and

K2, therefore taking these edges instead of edges between Ktop
1 and Kbot

2 creates a triangle hitting TH′

of size at most 4
(
`
2

)
+ x1` as all the edges between Ktop

1 and Ktop
2 have one endpoint in X1. As x1 < `,

we obtain 2µ(G) ≥ 2(|A|+ |B|) ≥ |TH′| ≥ τ(G). Thus we can assume that there is at least one edge uv
with u ∈ Kbot

1 and v ∈ Kbot
2 .

Note in particular that v ∈ X2 as every edge between Kbot
1 and Kbot

2 has one endpoint in X2. Observe
that |Ktop

1 \X1| = `− x1 is odd, so there exists an unpacked matching between Ktop
1 \X1 and X2 (not

containing edges used in triangles from set D). Indeed, each maximal matching in Ktop
1 \X1 constructed

according to Lemma 3 omits a different vertex u1 ∈ Ktop
1 \X1, so after the matching is fully joined with

a vertex u2 ∈ X2, as in Corollary 5, the edge u1u2 remains unpacked. A collection of all such edges
gives the desired matching. Let w ∈ Ktop

1 \ X1 be a vertex such that wv is an edge of the mentioned
unpacked matching. Finally, as ` is even, a star with center in Ktop

1 is not used in any triangle in A, by
Lemma 4. Note that the center of this star can be chosen arbitrarily among vertices of Ktop

1 by Lemma 4;
let us choose w to be the center. Therefore, uvw is a triangle which is edge-disjoint with every triangle in
A ∪B ∪ C ∪D and we may set TPodd = TP ∪ {uvw} for odd x1.

Recall that 2(|A|+ |B|)− |TH| = −(`− x1)x2. Similarly as before, we need to prove that

2
∣∣∣TPodd \ (A ∪B)

∣∣∣ = 2(|C|+ |D|+ 1) ≥ (`− x1)x2.

If ` − x1 ≤ x2, then again ` − x1 ≤ x1 and thus `/2 ≤ x1. The case `/2 = x1 can be handled
exactly as in the even case. So assume further ` − x1 < x1, then using Corollary 5 we obtain
2(|C|+|D|) = (x1−1)(`−x1)+2

(
`−x1

2

)
= (x1−1)(`−x1)+(`−x1)(`−x1−1) = (`−x1)(`−2).

Consequently, 2(|C|+|D|+1)−(`−x1)x2 = 2+(`−x1)(`−2−x2). Observe that, for x2 ≤ `−2,
we already get (`− x1)(`− 2− x2) ≥ 0. We have x1 = `− 1 because x1 is odd and ` is even. For
x2 = `−1, we have x1 = `−1 because x2 ≤ x1 < `. Thus 2+(`−x1)(`−2−x2) = 2+1·(−1) ≥ 0.
Therefore, we obtain 2 (|C|+ |D|+ 1) ≥ (`− x1)x2.
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If ` − x1 > x2, then 2|D| = (` − x1 − 1)x2 = (` − x1)x2 − x2. Hence in this case, D alone does
not suffice as it is missing x2 triangles. We therefore need 2 |C| + 2 ≥ x2. We use Corollary 5 to
analyse the size of C.

If x1 ≤ `− x1, then 2|C|+ 2− x2 ≥ x1(x1 − 1)− x2 + 2 ≥ (x2 − 1)2 + 1 ≥ 1 as x1(x1 − 1) ≥
x2(x2 − 1). If x1 > `− x1, then, 2|C|+ 2− x2 = (x1 − 1)(`− x1)− x2 + 2 ≥ x1 − x2 + 1 ≥ 1,
as `− x1 ≥ 1 and x1 ≥ x2. So in both cases we obtain 2 |C|+ 2 ≥ x2 + 1 ≥ x2.

We conclude that 2µ(G) ≥ 2TPodd ≥ TH ≥ τ(G).

3.2 The case x1 > ` and x2 ≥ `

Kbot
1

Ktop
1

Kbot
2

Ktop
2

Fig. 10: The triangle hitting used in the case x1 > ` and x2 ≥ `.

We choose a triangle hitting TH obtained by taking all edges within Ktop
1 , Kbot

1 , Ktop
2 and Kbot

2 as
well as edges between Ktop

1 and Kbot
2 and between Kbot

1 and Ktop
2 (cf. Fig. 10). The graph G − TH is

bipartite, thus TH is indeed a triangle hitting in G. We have

|TH| = 4

(
`

2

)
+ `2 +

∣∣E(
Ktop

2 ,Kbot
1

)∣∣ ≤ 3`2 − 2`+ (x1 − `)(x2 − `).

We choose a triangle packing TP as follows. Pack all edges of Ktop
2 with vertices of Kbot

2 , all edges
of Ktop

1 with vertices in Kbot
2 and all edges of Kbot

1 with vertices in Ktop
1 . This gives a set A′ of 3

(
`
2

)
triangles (see Fig. 11(a)). By the second part of Lemma 4 there exists v ∈ Kbot

2 such that edges between
v and Ktop

2 ∪ Ktop
1 are not used in A′. Additionally, define a set B′ of triangles obtained by packing

edges from Kbot
2 with vertices of X1 ∩ Kbot

1 (see Fig. 11(b)). Then |B′| = `
2 (x1 − `) if x1 6= 2` and

|B′| =
(
`
2

)
(by Corollary 5(b)) if x1 = 2`. Finally, let C ′ be the set of triangles using v and any maximal

matching between Ktop
1 andX2∩Ktop

2 (see Fig. 11(c)). Since Ktop
1 is complete toX2∩Ktop

2 , we obtain
|C ′| = x2 − `. It is clear that TP = A′ ∪B′ ∪ C ′ is a triangle packing.

If x1 < 2`, then

2 |TP| − |TH| ≥ 3`(`− 1) + `(x1 − `) + 2(x2 − `)− 3`2 + 2`− (x1 − `) (x2 − `)
= (x1 − `− 1) (2`− x2) + x2 − ` ≥ 0.

The last inequality follows as x1 ≥ `+ 1.
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Kbot
1

Ktop
1

Kbot
2

Ktop
2

v

(a) set A′ of triangles

Kbot
2

X1 ∩ Kbot
1

(b) set B′ of triangles

v

Ktop
1

X2 ∩ K
top
2

(c) set C′ of triangles

Fig. 11: Triangles in (a) A′, (b) B′, and (c) C ′ in the case x1 > ` and x2 ≥ `.

If x1 = 2`, then we similarly get

2 |TP| − |TH| ≥ 3`(`− 1) + `(`− 1) + 2(x2 − `)− 3`2 + 2`− ` (x2 − `)
= (`− 2) (2`− x2) ≥ 0.

We conclude that indeed 2µ(G) ≥ τ(G).
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planar minors. Adv. Comb., 2019:33, 2019. Id/No 2. doi:10.19086/aic.10807.

[6] P. Chalermsook, S. Khuller, P. Sukprasert, and S. Uniyal. Multi-transversals for triangles and the
Tuza’s conjecture. In Proceedings of SODA 2020, pages 1955–1974. SIAM, 2020. doi:10.5555/
3381089.3381210.

[7] R. Diestel. Graph theory, volume 173. Berlin: Springer, 5th edition, 2017.
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