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Abstract

The unprecedented fiscal and monetary policy responses during the COVID-19 crisis have
increased uncertainty about inflation. During crises periods, the strength of the transmission
of inflation uncertainty shocks from one country to another tends to intensify. This paper ex-
amines empirical methodologies to measure the strength of the interdependence of inflation
uncertainty between the UK and the euro area. We first estimate inflation uncertainty by ex
post forecast errors from a bivariate VAR GARCH model. The interdependence of uncertainty
is estimated using a probability model. The results imply that the spillover of uncertainty
is stronger for uncertainty about distant future than near future. The evidence from quantile
regressions shows that such empirical method could suffer from bias if endogeneity is not
properly addressed. To identify structural parameters in an endogeneity representation of in-
terdependence, we exploit heteroskedasticity in the data across different regimes determined
by the ratio of variances. The results no longer exhibit stronger interdependence at longer
horizons. Estimated by different sample periods, the strength of the propagation of inflation
uncertainty intensifies during the Global Financial Crisis while the interdependence signifi-
cantly weakens during the post-crisis period.
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I Introduction

The unprecedented fiscal and monetary policy responses to address the COVID-19 pandemic has
prompted recent debates about the inflation prospects after the decades of low and stable inflation
(e.g. Ball et al., |2021; Blanchard, 2021). The studies based on survey conducted in the early stages
of the pandemic also suggest that uncertainty about inflation has rapidly risen since the pandemic
(Armantier et al.,[2021, Coibion et al.,|2020). The heightened inflation uncertainty, along with the
actual increases in inflation, has been seen globally and it is argued that multiple driving factors
are relevant—including the uncertain path of the pandemic and economic recovery as well as the
surge in commodity prices and its volatility followed by the pandemic-induced supply disruptions.

While it is well studied that inflation co-moves closely across countries (e.g. |Monacelli and
Sala, [2009; |Ciccarelli and Mojon, 2010; Mumtaz and Surico, 2012} Baurle et al., 2021), the re-
search on the interdependence of inflation uncertainty are not well established. A large number of
studies have analyzed the potential channels of the co-movement in inflation: common macroe-
conomic shocks (e.g. global commodity prices), trade, labor market channel through migration,
exchange rate regimes, and financial integrationE] Through similar mechanisms, uncertainty about
inflation of a country can be transmitted to other countries and the transmission of inflation un-
certainty shocks may exhibit different patterns over the various stages of global macro-financial
cycles. The objective of this paper is to explore the various empirical methodologies to measure
the strength of the interdependence of inflation uncertainty. In particular, this paper showcase the
empirical framework by examining the case of the euro area and the United Kingdom (UK) with
close economic, trade and financial integration.

This study extends a probabilistic model to characterize the entire distribution of inflation un-

certainty in a two-country settingE] We first estimate inflation uncertainty by ex post forecast errors

ISee, for example, [Henriksen et al.[(2013) (common macroeconomic shocks), Melitz and Ottaviano| (2008) (trade
openness), Bentolila et al.| (2008)) (migration channel), Calvo and Reinhart|(2002) (foreign exchange regimes) and |Rey
(2016) (financial integration).

“Broadly speaking, the probabilistic model can also be referred as the ‘at risk’ approach following |Adrian et al.
(2019). While the empirical framework and estimation procedures of this paper differ substantially from the recent ’at
risk’ literature, the idea of estimating entire conditional distributions assuming a specific parametric distribution is in
line with the one in|Adrian et al.[(2019) and the following literature.



from a two-country bivariate VAR GARCH model. By defining the uncertainty measure as fore-
casts errors rescaled by their unconditional and conditional variance-covariance matrix, we allow
the measure of inflation uncertainty to distinguish upside and downside surprises in inflation.

Next a two-step procedure for a probabilistic model is applied to evaluate the interdependence
of inflation uncertainty between the UK and the euro area. The first step is to estimate the best-fit
marginal density against two non-Gaussian distributions that could potentially account for heavy
tail and skewness behavior of inflation uncertainty. As for the candidates, two piece normal dis-
tribution (TPN) and weighted skewed normal distribution (WSN) are considered. The use of TPN
(Wallis, 2004) follows from the convention of central banks’ fan chart to evaluate the balance of
uncertainty. The alternative density, WSN (Makaroval, 2018), is a synthetic distribution which is
designed to reveal monetary policy responses to upside or downside inflation uncertainty. The re-
sults from fitting uncertainty to two different marginal distribution TPN suggest the possibility of
long right tails in the distributions of the euro area inflation uncertainty. The results from WSN
suggest monetary policy reactions by the ECB tend to be stronger to upside inflation surprises than
downside surprises regardless of forecasting horizons. As oppose to the ECB’s case, the BOE’s
monetary policy stance tends to be dovish to long term inflation surprises. But, for short term
inflation surprises, the BOE’s monetary policy responses are likely to be hawkish, as seen in the
ECB’s case.

The second step of the procedure is to estimate the conditional probability distribution of in-
flation uncertainty of two economies using copulas. Copulas is a flexible tool to construct a mul-
tivariate distribution by combining marginal densities estimated separately from the conditional
probability distribution (see, e.g., Rodriguez, 2007; |Smith and Vahey, |2016). Among various bi-
variate copulas, Frank copula is chosen to allow for asymmetric dependence structures without
favoring either upper or lower tail dependence. The interdependence of inflation uncertainty of
two economies can be summarized in the estimated copula parameters and the results unanimously
point to higher dependence for the uncertainty about distant future than near future.

While the probabilistic model provides succinct estimates to measure interdependence, it could



suffer from endogeneity problems (Rigobon, |2019). If there exists heteroskedasticity in the error
terms of the structural model, the conditional density estimated by a probabilistic model can be
biased. One typical example applicable to our empirical framework would be the case where the
variance of inflation uncertainty shocks increases during the crisis period. To detect whether the
estimates from the probabilistic model suffer from potential endogeneity bias, we run quantile re-
gressions (Koenker and Bassett, [1978). The evidence from quantile regressions suggests potential
biases in the copula estimates and the conditional distribution derived from the copula.

To identify structural parameters in an endogeneity representation of interdependence, we ex-
ploit heteroskedasticity in the data across different regimes determined by the ratio of variances as
proposed in |Rigobon| (2019). The estimation is based on minimum distance criteria and statisti-
cal significance is bootstrapped. The results no longer exhibit stronger interdependence at longer
horizons across all regimes. Instead, estimated by different sample periods, the strength of the
propagation of inflation uncertainty intensifies during the Global Financial Crisis (GFS) while the
interdependence is significantly muted during the post-crisis period.

Our paper contributes to a large literature on the measures of inflation uncertainty. Following
Ball| (1992), a long-standing practice in the literature is to examine the relationship between the
level of inflation and inflation uncertainty measured by its volatility (see, for example, |Grier and
Perryl [2000; Kontonikas, 2004). Among many recent empirical studies, Caporale et al.| (2012)
examine the relationship between inflation uncertainty and inflation level in European countries
by employing GARCH-type models. Survey-based disagreement measures of inflation have also
been widely studied (see, e.g., Holland, |1995}; |Giordani and Soderlind, 2003; Clements and Har-
vey, 2011} |Wright, 2011). Binder (2017) constructs micro-level inflation uncertainty measures
by quantifying the uncertainty associated with round number responses in the survey data. Our
approach departs from the existing literature by constructing an ex post unpredictability measure
of inflation uncertainty that is close to the definition in Friedman (1977)). Uncertainty, defined as
the component that had not been predictable at the time of forecasting, is computed by pseudo

out-of-sample forecasting errors as in Stock and Watson (2007)). This framework provides a parsi-



monious way to construct a measure for inflation uncertainty from a multivariate GARCH model
of two economies.

This paper is also related to the burgeoning literature on the ‘at risk’ approach which aims
at estimating and evaluating conditional distributions of economic variables (see |Adrian et al.,
2019; ILopez-Salido and Loria, [2020; Sokol, 2021, among many). Our approach differs from the
existing ones in that it considers a two-country model rather than a variable conditional on other
macroeconomic or financial variables to assess entire conditional distributions.

From an econometrics point of view in estimating the strength of interdependence, this paper
is closely related to|Pesaran and Pick (2007). They define contagion as a situation whereby a crisis
in one country increases the probability of a crisis in another country over and above what would
be implied by the interdependence in non-crisis periods. By illustrating a two-country framework,
they show that the correlation-based tests of contagion could be biased due to endogeneity. Our
empirical framework to identify structural parameters of a two-country setup in the presence of
heteroskedasticity shares the similar idea of possible endogeneity issues. But we differ from their
approach in that we exploit a broader definition of interdependence, that encompasses crises and
non-crises periods alike, for identification through heteroskedasticity.

The rest of the paper is organized as follows. Section II explains inflation uncertainty computed
by forecast errors from a bivariate VAR GARCH model. Section III estimates the interdependence
of inflation uncertainty by a probability model. In Section IV, an endogenous model of interde-
pendence is introduced to discuss potential biases of a probability model and the interdependence
of inflation uncertainty is estimated by identification through heteroskedasticity. Section V con-

cludes.

II Estimating inflation uncertainty

Inflation uncertainty is measured by ex post forecast errors from a bivariate VAR BEKK GARCH
(1,1) model using inflation rates of the UK and the euro area. The main advantage of the fore-

casting model is that it is parsimonious while taking account for potential interdependence of two



economies and time-varying volatility in inflation. Inflation uncertainty, denoted by U 3, is defined
as below.

U = S5 S reqi—n = S0 Sue n (e — myen) (1)

where e, is the forecast error conditional on the information available at the period of the
prediction, i.e. the h-period ahead forecasts is made at time ¢ — h. X, ;, denotes the unconditional
variance-covariance matrix of e; and Y, ;_j the conditional variance-covariance matrix of e;;_p,.
The forecast errors are computed by the differences between the realized inflation at ¢ (7;) and the
h-step ahead forecast of inflation at ¢ (7;;—5,). To standardize the measure, the forecast errors are
multiplied by the square root of the unconditional variance-covariance matrix and divided by the
square root of the conditional variance-covariance matrix.

The monthly data for inflation is retrieved from the Eurostat database and the sample period
is from January 1997 to March 2016. For both countries, inflation series are found to be I(1) and
the first differences of the raw inflation series are used for the maximum likelihood estimation.
Autoregressive order of VAR model is determined by Ljung-Box autocorrelation test for residuals.
The minimal number of lags is chosen to ensure the residuals exhibit no autocorrelation at 5 percent
significance level.

Based on the estimated VAR BEKK GARCH (1,1) model, the h-step ahead forecasts for
h = 1,2,...,24 months are estimated recursively with the initial recursion using the first 80
observations The resulting conditional and unconditional variance-covariance matrices are also
obtained recursively. The h-step forecasts by maximum likelihood estimation can suffer from
spurious dependence when A > 1. In order to tackle this issue, Vector Moving Average (VMA)
decomposition is used for the estimation of the Mean Squared Error (MSE) matrix of the forecasts
(see Liitkepohl, 2005).

Figure 1 plots inflation uncertainty of the UK and the euro area for the selected forecast hori-

zons (h = 3,6,12,18,24). Inflation uncertainty rose rapidly after the Great Financial Crisis in

3The forecast yields 151 (= 231 — 80) one-step-ahead forecast errors, 150 two-step-ahead forecast errors, ... up
to 128 24-step-ahead forecast errors.



2008 for both countries, followed by a significant decline below the average level. Positive values
of inflation uncertainty imply that the realization of inflation had not been predicted at the time of
forecasting and the unanticipated elements caused inflation to move upwardly. Similarly, negative
values of inflation uncertainty measure indicate that the realized inflation rates were lower than the
prediction by the two-country VAR-GARCH model. The descriptive statistics of inflation uncer-
tainty (Table 1) suggest that inflation uncertainty may be better characterized with non-Gaussian
density functions with non-zero skewness and/or heavy tails.

Correlation coefficients can be considered as a simple measure for interdependence of inflation
uncertainty between the two economies. The Pearson’s correlation coefficient captures only linear
correlation and thereby is considered to be insufficient for a measure of dependence in the case of
heavy tail or asymmetric dependence (Cont,[2001; Boyer et al.,|1997). Therefore, rank correlation
coefficients are computed in Figure 2. The average Spearman’s correlation coefficient is 0.29 while
Kendall’s correlation coefficient is 0.21. The uncertainty measures with longer forecast horizons

tend to exhibit higher correlations.

III Measuring interdependence by a probability model

This section illustrates a probability model to measure interdependence of inflation uncertainty of
two economies. Probability models assume that a change in the probability of the two events oc-
curring together reflects the strength of the dependence of those two events. In this paper, copulas,
a tool widely used in finance for modeling extreme events, are applied to measure interdependence
for non-Gaussian marginal densities. The main advantage of copulas is its flexibility in combining
different parametric family univariate distributions. Also, the choice of a dependence model, a
copula function, can be independent from the choice of the marginals. Following the Inference
Function for Margins (IFM) method, as in Joe and Xu|(1996)), two steps of estimation procedures
are sketched in this section. First, univariate marginal distributions are estimated by the simu-
lated minimum distance criteria. Given the best-fit univariate distributions, a copula parameter is

estimated by the maximum likelihood estimation.



A Marginal density function

Inflation uncertainty is estimated against two non-Gaussian univariate distributions from the same
distribution family of skew normal distribution: Two Piece Normal (TPN; Wallis, 2004) and
Weighted Skewed Normal (WSN; |Makarova, |2018)).

The choice of TPN density follows from the convention of central banks’ fan chart. Starting
from the Bank of England, fan chart is well-known and most widely used presentation of the
probabilistic forecasts of inﬂationE] Fan chart considers both the degree of uncertainty and the
balance of uncertainty around the forecast is assessed using TPN distribution (Britton et al., 1998).

The pdf of TPN distribution is defined as follows (Wallis, [2004)).

Acap{—(z — p/20%) itz <p
fren(z; 01,02,/0 = ()
Aexp{—(z — p)?/203}  ifz>p

where A = (V27 (o) + 03) /2)71 If 01 = 09, it collapses to a Normal distribution. If oy < o9,
the distribution is positively skewed (long right tail).

The other candidate for univariate density is WSN. Derived from a combination of two nor-
mal distributions, WSN 1is a customised skew normal distribution which aims at decomposing
uncertainty into epistemic and ontological components. Ontological uncertainty is assumed to be
complete randomness formed by public knowledge whereas epistemic uncertainty indicates the
uncertainty based on expert knowledge (Walker et al., 2003). To illustrate the distribution, we de-
note the inflation uncertainty measured by forecast errors as U, omitting the subscripts, ¢, h, for
simplicity. It is assumed that U is decomposed by two components — the baseline forecast error
(X)) and the signal part based on the revised forecast error from expert knowledge (Y").

U= X +oa Y Iysp+0-Y - Iyqy 3)

<~

baseline forecast error

~
Signal part based on revised forecast error

“A recent study using the TPN in examining price is Sokol (2021).



where Iy, 1s an indication function that gives 1 if revised forecast errors are larger than a
certain threshold, m > 0. Similarly, [y -, is an indication function that gives 1 if revised forecast
errors are smaller than a certain threshold, £ < 0. Hence, the signal part will be switched on when
either(i)) Y >m > 0or (i) Y < k£ < 0holds. X and Y are bivariate Normal distributions with
mean zero, constant and identical variances (%), and correlation coefficient, p. This implies that
if « = 8 = 0, WSN reduces to a Normal distribution.

The key assumption of the WSN distribution is that the ex post inflation uncertainty can be
decomposed into the baseline forecast errors from public knowledge and the revised forecast errors
based on expert knowledge given expected central bank’s monetary policy decisions. Assume
that the baseline forecast error (X) is initially established. Further assume that the forecast error
based on expert knowledge is positive and larger than a certain threshold (Y > m > 0) and
experts would know that a central bank with expert knowledge is expected to respond to this
upside inflation surprise with hawkish policy actions, for example, by increasing the policy rate.
Then the realized forecast error would be revised downwards (oY < 0 with a < 0) from the initial
baseline forecast errors. The magnitude of the effect of monetary policy tightening on inflation can
be summarized in the parameter, «. Similarly, in the opposite case where the forecast error based
on expert knowledge is negative and smaller than a certain threshold (Y < k& < 0), 3 is assumed to
be negative and depicts the magnitude of the effect of monetary policy easing to downside surprises
(BY > 0 with 8 < 0). The comparison between « and /3 in absolute value provides interesting
intuition. If |« is greater than |3, it implies that the central bank tends to react more aggressively
towards upside uncertainty than downside uncertainty.

The pdf of WSN distribution is as follows (Charemza et al., 2015).

fwsn(z;a, B,m, k, p) = \/LA_QQZ)(\/LA_Q)@(%)
el i)
+o(a)- {cp(%) _é(jl—__%ﬂ “



where ¢ and @ is the pdf and cdf of a standard normal distribution, respectively. A, = 1+27p+712
and B, =7+ pforT = «, S.

To find the best-fit marginal density for inflation uncertainty, the simulated minimum distance
estimators method (SMDE) is appliedE] The empirical histograms of inflation uncertainty esti-

mated in Section I are fitted to the simulated density functions using a minimum distance criterion.

R
éSMDE = arg m@in [f (HD<dn> fr,e)) ] )
1

r=
where d,, is the empirical histogram from the original data, f,, is the simulated Monte Carlo
approximation of theoretical densities with total R replications. HD is Hellinger distance measureﬁ
and £ denotes the aggregating operator.

Since the number of parameters to be estimated in WSN («, 5, m, k, p) is larger than that of
TPN (o1, 09, ), it is necessary to impose restrictions on WSN parameters. Only «, 3, o in WSN
are estimated by imposing restrictions on m, k, and p. It is assumed that m = —k = . In terms
of the restriction on p, we consider two cases: constant p (= 0.75) and p decaying exponentially
from 0.75 to 0.25 as forecast horizon increases[] The second case is to reflect the tendency that the
covariance between public and expert knowledge decreases along with the forecast horizons.

Table 2 shows the results of the estimation of two marginal distributions with the selected
horizons (h = 6,12, 18,24) and under the assumption of exponentially decreasing pﬂ First, the
estimated WSN parameters, o and 3, can be considered as the experts’ adjusters based on their
expectation on monetary policy reactions to inflation surprises. In the UK case, the absolute value
of « is greater than the absolute value of (3 for shorter horizons (h = 6, 12), implying the prevalence
of stronger policy reactions to upside inflation surprises than downside surprises. For longer term

horizons (h = 18,24), the results indicate relatively stronger dovish monetary policy responses

>The estimation of skewed normal distributions by the maximum likelihood is known to be inefficient and nu-
merically very complex (see, for example, |Azzalini and Capitaniol |1999; Sartoril |2006; [Franceschini and Loperfido}
2014).

5See Basu et al.| (2002) for the definition of Hellinger distance measure.

"In particular, the computation is based on pj, = 0.25 + exp [In (0.75 — 0.25) - h] where h = 1,2, ...,24.

8The results of other forecast horizons and different restrictions on p are available upon request.
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to downside surprises. For the euro area, the estimation results show |«| > |3| for all forecast
horizons. This suggests that the monetary reactions of the ECB tend to be stronger in response to
upside inflation uncertainty than downside, namely a hawkish stance across all forecast horizons.

For the estimated parameters of TPN, the UK results show either 0; < 05 or o > 05 depending
on the forecast horizons without any systematic trend. It is noticeable that o, is much larger than
oq for h = 18, implying the long left tail. For the euro area, o, is smaller than o5, for all horizons,
indicating positively skewed (or long right tail) TPN distribution.

In order to select the best-fit marginal distributions, we first examine minimum distance statis-
tics. For the UK case, WSN has smaller MD than TPN in the shorter horizons (h = 6, 12) while
TPN is preferable for the longer horizons. For the euro area, WSN is selected for most horizons
with an exception of the case of h = 24.

Next, the probability integral transforms (pit’s) are computed to examine the goodness-of-fit
with the estimated parameters of each marginal density. The pit’s are the probability of observing
the values of a random variable being not greater than its realization values. If the observed density
is close to the true but unknown density, pit’s would be uniform on the interval [0,1]. Figure 3 is
the box plot of pit’s for both WSN and TPN. Both the UK and the euro area inflation uncertainty
are fitted better by WSN density across most horizons than by TPN.

To check the compatibility of the data with the uniform distribution, we conduct a simple
goodness-of-fit test (the Cramér-von Mises test) using empirical cdf. Table 3 presents the test
statistics for the selected forecast horizons (h = 6,12, 18, 24)ﬂ The results support the robustness
of parametric estimation. For both WSN and TPN at all horizons, the null hypothesis of uniformity
cannot be rejected. By comparing the test statistics, it is also confirmed that WSN is a better fit
over TPN for both economies at most of the forecast horizons.

To sum up, the empirical results, including minimum distance statistics, graphical diagnostics
of pit’s, and goodness-of-fit tests, support the choice of WSN against TPN for both the UK and the

€uro area.

9The complete results are available upon request.
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B Conditional density function

Given the estimated parameters in the univariate densities, the copula parameter can be estimated
by the maximum likelihood estimation. First, denote inflation uncertainty for the UK and the
euro area as U; and Us, respectively. The subscript ¢ and h are omitted for simplicity. Consider
continuous bivariate joint cumulative density function (cdf) of inflation uncertainties, F'(U;, Us).
The univariate marginals for each inflation uncertainty are denoted as F(U;) and Fy(U,) with
inverse quantile functions, ;! and F,~'. Applying the proposition of probability integral and

quantile transformation, the joint cdf can be written as follows

F(Uy,Us) = F(Fy (1), (1)

=Pr[Y1 <1, Ys <y

= C(?/l, y2) (6)

where y; = Fy(Uy), y» = F»(Us) with a uniform distribution, 2/(0, 1)['] C(-) is a copula function
that maps the two-dimension support [0, 1]? into the unit interval [0,1] Rewriting the joint cdf of

inflation uncertainty to obtain the resulting joint pdf,

F(Uy, Us) = C(Fy(Uh), Fo(Uy)) (7

10Let X be a random variable with density Fy. Let F' b% ! be the inverse quantile function of Fi:
Fi'(a) = inf{z|Fx(z) > o}

a € (0,1). Then,

(1) If Fx is continuous, the random variable Y, defined as F'x (X), has a uniform distribution.
(Fx (X) ~U(0,1)).

(2) For any uniform distribution Y ~ (0, 1), we have Fi ' (Y) ~ Fy.

UThis implies Uy = Fy ' (y1)~ Fy, Uy = Fy ™ (y2)~ F.

12 An m-dimensional copula is a function C(-): [0,1]™ — [0,1] which satisfies the following conditions:
(H CcQq,...,1,an,1,...,1) = a, forevery n < m;

2) C(a1,...,am)=0if a, = 0 forany n < m;

(3) Cis m-increasing.

12



then the joint density (pdf) of F'is given by the following equation.

(U1, Uz) = c(F1(Un), F2(Ua)) - f1(Uh) - fo(Uz) (®)

where ¢ is the density of the copula, partial derivative of C'(-) with respect to yi,y.. Denote
6 = (6,04, ) be all the parameters of Fy, F, and C, respectively. Let U = {(Uy,, Us;) }1_; denote

a sample. The log likelihood function can be written as follows.

T
Zln (Fy(Uy; 61), Fa(Us; 62); +Z{In Fi(U:01)) + In (fo(Uzs 02)) | 9)

t=1

Then the maximum likelihood estimator is
éMLE = arg m;lx l(Ulta Ust; 9) (10)

In theory, the copula parameters can be estimated simultaneously with the parameters in marginal
distribution by the maximum likelihood estimation. However, in multi-dimension cases, this might
lead to high complexity in computation. Hence, the two-step estimation method or the Inference
Function for Margins (IFM) method by Joe and Xu (1996) is applied With the estimated uni-

variate marginal distributions, the copula parameter, v, is estimated.

T

b1 = arg max Y In(fi(Un;61)) (11)
R
A T

0y = arg meaXZln (f2(Ugy; 02)) (12)
=1

= arg malen (Fy( U1,91) Fg(Ug;ég);v)) (13)

Among various bivariate parametric families of copulas, Frank copula is chosen. Frank copula

13The IFM estimator obtained by the two-step estimation, 0y pp;:= (91, ég, %), is known to have a Normal distribu-
tion asymptotically (Joe and Xu, 1996).

13



is a symmetric Archimedean copulz{]j] and its cdf is given by

Cly1,y2;7) = —% In (1 + (0 — D™ - 1>> (14)

e’ —1
where v € (—o00, +00). If v = 0, the copula is independent.

v 1s estimated positive if heightened uncertainty of one country is associated with higher un-
certainty of the other. The copula parameters are estimated by either (i) plugging the marginals of
the same forecast horizons or (i1) plugging the marginals that gives highest rank correlation. The
dependence structure of the estimated copula can also be summarized by the rank correlations:
Kendall’s tau (7) and Spearman’s rho (p)E]

Table 4 and Figure 4 shows the estimated y parameter and the rank correlation coefficients
using the marginals of the same forecasting horizons. The copula parameters for all horizons are
estimated to be positive and mostly statistically significant. The estimated -y decreases at first and
bounces back at around i = 6 before decreasing afterwards. However, for the horizons larger than
h = 12, the estimated ~ monotonically increases. The uniformity of the estimated joint distribution
is confirmed by the Crémer-von Mises test. The rank correlation coefficients, 7 and p, exhibit the
same trend as the copula parameter. The results imply that the inflation uncertainty of the UK
and the euro area contemporaneously affect one another and such spillover effect is stronger for
uncertainty about the distant future than the near future.

Table 5 shows the estimation results of the forecast horizons of the euro area inflation uncer-
tainty that have the highest rank correlation coefficients with given horizons of the UK inflation

uncertainty. In terms of the Kendall’s 7, the short term UK inflation uncertainty series (with fore-

14 copula C is Archimedean if there exists a convex, decreasing function ¢(-) : (0, 1] — [0, co) such that

Cly,y2) = ¢ o) + ¢(y2))

where ¢(-) is copula generator and ¢(1) = 0. The examples of Archimedean copulas are Gumbel, Frank, and
Clayton. Frank copula is a symmetric Archimedean copula while other two are asymmetric Archimedean copulas.
Gumbel copula exhibits greater dependence in the positive tail than in the negative tail while Clayton exhibits greater
dependence in the negative tail than in the positive tail. Frank copula is chosen because it can identify the asymmetric
dependence structure without favouring either upper or lower tail dependence.

15See Appendix A for the details of Frank copula.
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cast horizons less than one year) have high correlation with the euro inflation uncertainty series of
the forecast horizons from 12 to 14. One-year ahead inflation uncertainty in the UK has the highest
correlation with approximately 1% year ahead uncertainty in the euro area. 16-months to 2-years
ahead UK inflation uncertainty series have the highest correlation if paired with 23- to 24-months
ahead uncertainty series of the euro area. Spearman’s p criterion yields fairly similar results to the
Kendall’s 7 criterion with a few exceptions in the short term horizons (h = 1, 3).

In Figure 5, the copula parameters are estimated with the pairs that give the highest correlation
based on Kendall’s 7. The estimated + is larger for all forecasting horizons compared with the
results where the copula function is fitted by the same horizons. 4 increases as the horizon increases
until & = 10. The strength of dependence of inflation uncertainty weakens until it reaches the local
minimum at 2 = 13. The maximum value of the estimated « occurs at & = 20. The rank correlation
coefficients show similar patterns to the estimated copula parameter.

To showcase how the probability model by copulas can be interpreted in a similar fashion as
in the ‘at risk’ approach in the literature, the conditional probability of the UK inflation being in a

certain range conditional on the euro inflation uncertainty is illustrated in Appendix B.

IV Endogenous model of interdependence and measuring interdependence through

heteroskedasticity

A Endogenous model of interdependence

The probability model to measure interdependence of inflation uncertainty could suffer from bias if
endogeneity is not properly addressed. To illustrate the potential endogeneity bias in conventional
empirical methods of measuring interdependence, an endogenous model of interdependence is

assumed as in |Rigobon| (2019).

Ui = aUsy + 1y (15)

Uy = BUwn + &4 (16)
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where Uy, is inflation uncertainty of the UK, Uy; is inflation uncertainty of euro area. The error
terms, 7; and ¢, are assumed to be structural shocks, independent and have a Normal distribution.
« and [ are the coefficients capturing interdependence of uncertainty between two region. The
variances of error terms are defined as af] and o2.

The reduced form equations of each country’s uncertainty are as follows.

Un = (e + aer) A7)

bt
(1—ap)

: )(ﬁm + &) (18)

T ap)

The joint residuals in each of the above equations can be graphically represented by a rotated
ellipse and the rotation can be summarized by the variance-covariance matrices.

2 2 2 2 2
g |V Cel 1 |aocto, acfo (19)

Cia Vo (1-ap) 040? + ﬁaﬁ 03 + 5203
where Vi = var(Uy), Vo = var(Usy), Cia = cov(Uy, Usy). The parameters representing the
underlying information of the system are the slopes of structural equations («, 3) and the relative
volatility of the structural shocks, (6 = a% /c?). Therefore, if estimated by conventional methods,
such as correlation or principal components of two series, the coefficients of interdependence may
be biased. For instance, as illustrated in the endogenous model, linear regression of Uy; and Us,
results in simultaneity bias. The interdependence measured by probabilistic models using copula
also suffers from endogeneity, even though the estimation procedure does not assume any econo-
metric models. The conditional probability of a tail-event can be driven by the changes either in o2
or 0727 or any combination of the two, and thereby, cannot distinguish changes in interdependence

from those in heteroskedasticity[™

16See Appendix C for quantile regressions to provide some empirical evidence of endogeneity bias.
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B Measuring Interdependence by Identification through Heteroskedasticity

To identify the system of equations, we exploit the heteroskedasticity in the data across different
regimes, proposed by Rigobon (2003)), Rigobon and Sack| (2004), and Rigobon (2019)
Rewriting the endogenous model of equations (19)-(20) in a matrix representation with struc-

tural shocks as follows.

U
Al =" (20)
U2 £
where
1 —«
A= (21)
-3 1

Define (2 to be variance-covariance matrix of [U;Us]'".

Vv, C
q— 1 12 (22)

Cia Vo

Then, the variance-covariance matrix of the structural model can be expressed as follows:

1 —«o i C 1 -
AQAT — boe P (23)

—ﬁ 1 C12 ‘/2 —Q 1

~ . —BVi —aVy + Cia(1 + af) 24)

—BVy —aVa + Cha(1 + af)

By the assumption that 17 and € are independent, the variance-covariance matrix of the structural

model satisfies the following.

o2 0
AQAT =%, = | 7 (25)
0 o2

The off-diagonal terms in Equation (30) need to be equal to zero, which defines the objective

7Recent applications includes [Ehrmann et al.[(2011) and Nakamura and Steinsson| (2018)).

17



function of the optimization problem.

min f (o, B; Vi, Va, Cr2) = —Vi — aVo + Cia(1 + af) (26)

@,

The estimation strategy using the identification through heteroskedasticity is to solve the sys-
tem for two unknowns, «, 5. In order to solve the problem, we impose additional assumptions that
the parameter values in matrix A are stable over time and that the data have heteroskedasticity. We
define two regimes that are determined by the ratio of variances, 6: RH if > median(6) and
RL otherwise. The ratio (¢) of the variance of U; to the variance of U, is computed using different

sample periods (p), forecast horizons (h), and rolling windows (rw).

= T = mlp;hrw) e

[ -
Vs

where p € {1,2,3} while defining 1 is pre-crisis period, 2 Global Financial Crisis period,
3 post-crisis period. h = 1,2,...,24 and rw = 12 Then Vi, V5, and C5 for each regime
are computed to obtain minimum distance estimates of « and BE The estimation model is just
identified as we have two equations with two unknowns.

The significance of the estimates is computed by bootstrap. We bootstrap every regime, but not
across the regimes, so that only the observations within each regime with replacement. Bootstrap
is drawn from uniform distribution for 500 times.

Figure 6 presents the point estimates of the parameters, o and 3, in Equation (19)-(20) against
the forecast horizons (h = 1, - - - ;24). The results from the pre-crisis period (top panel) show that
both o and [ are estimated to be closer to zero for h < 12, suggesting the interdependence of
near term inflation uncertainty is statistically insignificant. For the longer horizons, the signs of
coefficients alternate within the range of [-1, 1]. The pattern of opposite signs between « and [ is

also shown for h > 12.

18Pre-crisis periods: September 2003 - December 2007, Crisis period: January 2008 - December 2012, Post-crisis
period: January 2013 - March 2016. We check robustness by changing p and rw.
9We allow positive and negative values for « and /3 by imposing sign restrictions —1 < o < 5,—1 < 3 < 5.
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The results for the crisis period (middle panel) show that the estimates of 3 from the crisis
period exceed 1, in particular for longer term horizons. This could indicate potential amplifying
effects of the surprises in the UK inflation on the euro area inflation during the GFC period. How-
ever, the crisis period estimates of o remain near zero for longer term forecast horizons, implying
that the spillover of inflation uncertainty from the euro area to the UK is almost insignificant. For
the near-term uncertainty (3-9 months ahead), the estimates of interdependence range between -1
and 1 and the signs of dependence measures are in the opposite direction: o > 0 and 5 < 0.

For the post-crisis period (bottom panel), the range of the estimates lies between -1 and 1,
mostly close to zero. For i > 15, 3 is estimated to be negative, implying that the upside (downside)
inflation surprises in the UK are translated into the downside (upside) inflation uncertainty in the
euro area. A negative sign of the estimated structural parameters may suggest that the underlying
drivers of inflation uncertainty shocks do not stem from common factors such as high volatility in
commodity prices affecting both economies in a same way.

Tables 6-8 show the point estimates of « or 3 as well as bootstrap results. At the 1 percent
significance level, only the crisis-period estimates of 5 for h = 11,12, 20, 21, 22, 24 are statistically
significant and positive. At the 5 percent significance level, the crisis-period estimates of « for
h =9, 10 are significantly positive but less than 1, suggesting that the upside (downside) inflation
uncertainty of the euro area is translated into the upside (downside) uncertainty of the UK but with

a lesser extent.

V Conclusions

This paper explores various empirical methodologies to measure the strength of the interdepen-
dence of inflation uncertainty between the euro area and the UK. We first estimate inflation uncer-
tainty by ex post forecast errors from a bivariate VAR GARCH model. It is shown that the estimated
uncertainty is well characterised by non-Gaussian density with skewed, heavy tail properties—Two
Piece Normal (TPN) and Weighted Skewed Normal (WSN) and the goodness-of-fit tests support

the choice of WSN against TPN for both the UK and the euro area inflation uncertainty.
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The estimated parameters in WSN suggests that the UK monetary policy reactions in the short
run have been relatively hawkish while in the longer term the responses are rather dovish, focusing
more on economic growth. For the euro area, the estimation results suggest that the ECB tends to
be hawkish in response of upside risk of inflation uncertainty regardless of the forecast horizons.

The interdependence of uncertainty is estimated using a probability model. The results imply
that the simultaneous spillover of inflation uncertainty is stronger for uncertainty about distant
future than near future.

However, the evidence from quantile regressions indicates that such empirical method could
suffer from endogeneity biases. To identify structural parameters in an endogeneity representation
of interdependence, we exploit heteroskedasticity in the data across different regimes: pre-crisis,
GFS crisis, and post-crisis periods. The results no longer exhibit stronger interdependence at longer
horizons. The strength of the propagation of inflation uncertainty intensifies during the GFS period
while the interdependence significantly dampens during the post-crisis period.

The main policy implications of this research is the importance of the monetary policy credibil-
ity in the presence of increased interdependence of inflation uncertainty during the crises periods.
Heightened inflation uncertainty of a country may amplify uncertainty of the other country with
strong economic and financial linkages, resulting in de-anchoring of inflation expectation. Mon-
etary policy credibility becomes more crucial in times of great uncertainty with high degrees of
contagion.

There are a number of gaps in the research that would benefit from further study. It includes
the extension of the sample through Brexit, a crucial moments for the UK and EU relationships, as
well as through the COVID-19 pandemic, a time where inflation uncertainty is among the highest
over history. In addition, it would be helpful to understand the potential multiple relationships

including the US.
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Tables and Figures

FIGURE 1 Inflation uncertainty
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Notes: The figures are the estimated coefficients in Equation (1) by VAR BEKK GARCH (1,1) model.The top panel shows estimated
inflation uncertainty of the UK for the selected forecast horizons, h = 3,6, 12, 18, 24. The bottom panel shows estimated inflation
uncertianty of the euro area for the same selected forecast horizons.
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TABLE 1 Summary statistics of inflation uncertainty

UK Euro

Horizon Mean SD Skewness  Kurtosis Mean SD Skewness  Kurtosis
1 -0.05 043 -0.19 0.35 -0.02 041 -0.25 0.42
2 -0.09 0.69 -0.06 0.61 -0.10 0.52 -0.01 0.41
3 -0.06 1.00 -0.13 1.12 -0.15 0.69 -0.24 1.82
4 -0.02 1.20 -0.08 1.24 -0.16 0.90 -0.81 2.95
5 -0.06 1.43 -0.06 1.21 -0.28 1.23 -1.10 4.06
6 -0.13  1.58 -0.02 1.63 -0.26 1.51 -1.13 4.66
7 -0.13  1.75 -0.01 2.22 -0.33  1.81 -1.23 4.99
8 -0.09 1.89 0.09 2.58 045 2.14 -1.17 4.75
9 -0.10 1.97 0.25 3.53 -0.51 245 -1.15 5.13
10 -0.13  1.99 0.10 2.84 -0.59 2.68 -1.22 5.14
11 -0.16 2.03 0.09 2.86 -0.63 2.82 -1.32 5.33
12 -0.09 2.00 0.29 3.48 -0.51 2.95 -1.10 4.98
13 -0.14 193 0.23 2.81 -0.59 297 -1.07 4.66
14 -0.13  1.81 0.45 2.88 -0.73 298 -0.96 3.72
15 -0.09 1.70 0.48 3.23 -0.80 2.88 -0.78 3.50
16 -0.06 1.57 0.39 1.77 -0.81 2.76 -0.72 2.79
17 -0.08 1.45 0.40 1.12 -090 2.67 -0.59 1.94
18 -0.10 1.28 0.36 0.00 -0.83 2.54 -0.35 1.44
19 -0.08 1.21 0.43 -0.20 -0.85 2.45 -0.12 1.29
20 -0.03 1.24 0.65 0.84 -0.89 2.46 0.24 1.59
21 -0.03 1.24 0.65 1.15 -0.90 245 0.30 1.83
22 -0.02 1.33 0.94 2.19 -0.92 252 0.51 2.21
23 -0.03  1.37 0.95 1.75 -091 2.51 0.57 1.67
24 0.03 1.44 1.19 2.97 -0.76 247 0.60 1.63

Notes: Inflation uncertainty is measured by ex post forecast errors from a bivariate VAR BEKK GARCH using monthly
inflation (January 1997-March 2016). To standardize, the forecast errors are multiplied by the square root of the unconditional
variance-covariance matrix and divided by the square root of the conditional variance-covariance matrix of error terms.

FIGURE 2 Interdependece of inflation uncertainty: rank correlation coefficients
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Notes: Spearman’s rank correlation can be defined as ps(X,Y) = p(F1(X), F2(Y")). Kendall’s rank correlation is defined
as pq—(X, Y) =Pr (X1 — X2)(Y1 — YQ) > 0] — Pr[(X1 — XQ)(Yl — Y2) < 0].
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TABLE 2 The estimated parameters of marginal densities

h=6 h=12 h=18 h=24

UK Euro UK Euro UK Euro UK Euro

WSN o -1.81 -3.61 -147 -3.19 -084 -3.19 -1.00 -0.96

(0.36) (1.29) (0.42) (0.54) (0.90) (0.49) (0.37) (0.0

g -098 272 -138 -021 -0.95 0.00 -1.10 -0.01

0.46) (1.01) (0.69) (0.17) (1.54) (0.00) (1.09) (0.02)

o 0.99 0.56 1.22 1.47 1.13 1.74 1.07 2.28

(0.08) (0.29) (0.29) (0.08) (0.51) (0.10) (0.31) (0.12)

MD 1.99 1356 14.13 22.70 12.64 46.18 6.65 24.86

TPN o1 1.70 0.56 1.58 1.61 3.91 1.07 0.54 1.84

0.71) (©0.27) (0.42) (@1.51) (0.27) (0.31) (0.67) (0.75)

o9 1.03 2.76 1.78 1.83 0.23 3.99 1.78 2.60

0.21) (@@.12) (©.47) (0.71) (0.20) (0.03) (0.03) (0.89)

I 035 -1.12 -026 -032 -259 -1.18 -096 -1.38

(0.40) (2.02) (0.70) (1.51) (0.62) (0.83) (0.51) (1.20)

MD 4.64 39.19 1537 39.97 6.56 55.71 3.05 18.38
Sample size 146 140 134 128

Notes: MD denotes the minimum distance statistics for the equiprobable null hypothesis against the alternative hypoth-
esis of bumps or dips in the probability. Under the null hypothesis, the MD statistic has an asymptotic x 2 distribution
(Cressie and Read, 1984).

FIGURE 3 Box plot of probability integral transformation
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Notes: h is horizon of uncertainty index, ranging from 1 to 24. The boxes of each plot indicate IQR
(interquantile range) with median. The whiskers are stretched in both sides to 1.5 IQR and the outliers
are presented in dots.
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TABLE 3 Cramér-von Mises statistics for testing uniformity of pit’s

h=6 h=12 h=18 h=24
UK Euro UK Euro UK Euro UK Euro
WSN 0.173 0.134 0.194 0.139 0.212 0.140 0.224 0.147
TPN  0.198 0.127 0.223  0.158 0.331 0.177 0.278 0.166

Notes: Asymptotic critical values for the Cramér-von Mises statistics are 0.347 at 10% significance
level, 0.461 at 5% significance level.

TABLE 4 The estimated parameters of Frank copula: same horizon

h 0 se(7y) CvM T p

1 1.886 0.783 0.091 0.203 0.300
2 1.022 0.784 0.094 0.112 0.168
3 0.823 0.751 0.083 0.091 0.136
4 1.783 0.800 0.120 0.192 0.285
5 1.984 0.837 0.219 0.212 0.315
6 1.878 0.830 0.193 0.202 0.299
7 1.341 0.820 0.151 0.146 0.218
8 1.539 0.848 0.201 0.167 0.249
9 1.273 0.830 0.332 0.139 0.208
10 1.684 0.858 0.425 0.182 0.271
11 2.167 0.874 0.311 0.230 0.340
12 2.307 0.876 0.202 0.244 0.360
13 2.297 0.838 0.194 0.243 0.358
14 2.552 0.849 0.210 0.267 0.392
15 2.401 0.833 0.253 0.253 0.372
16 2.713 0.841 0.286 0.282 0.413
17 2,771 0.819 0.333 0.287 0.421
18 3.017 0.856 0.395 0.309 0.451
19 3.252 0.860 0.374 0.329 0.478
20 3.354 0.868 0.460 0.337 0.490
21 3.326 0.873 0.354 0.335 0.487
22 3.665 0.893 0.419 0.362 0.523
23 3.654 0.872 0.463 0.362 0.522
24 3.784 0913 0.256 0.372 0.536

Notes: The parameters are estimated under the assumption that p in WSN distribution decays exponen-

tially as forecast horizon increases.
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FIGURE 4 The estimated copula parameters and rank correlations: same horizon

~ - ©
LO_ .
(Y) |
ﬂ: .
N |
OO_ .
g = c\! i
o - =9
T T I I I T I I I T T I
0 5 10 15 20 25 0 5 10 15 20 25
h h
r r_const tau rho

Notes: r denotes y parameter of Frank copula estimated under the assumption of decaying p in WSN marginal densities. r_const denotes ~y
parameter of Frank copula assuming constant p (=0.75) for WSN marginal densities. tau and rho are the estimated rank correlation coefficients
computed by the analytical form (Equations 32 and 33) in Appendix A.

TABLE 5 The estimated rank correlations: matching horizons

huk heu,l T heu,2 1Y huk heu,l T heu,2 1Y
1 12 0.223 6 0.316 13 19 (0.307) 20 (0.436)
2 12 0.261 12 0.358 14 20 (0.324) 20 (0.457)
3 12 0.259 8 0.369 15 20 (0.331) 20 0.474)
4 13 0.268 13 0.378 16 23 (0.330) 23 0.472)
5 14 0.273 14 0.384 17 23 (0.349) 23 (0.492)
6 14 0303 14 0418 18 23 (0364) 23  (0.520)
7 14 0322 14 0450 19 23 (0.370) 24 (0.515)
8 14 0.326 14 0.448 20 24 (0.356) 24 (0.492)
9 14 0.321 14 0.435 21 24 (0.328) 24 (0.457)
10 14 0.306 16 0.430 22 24 (0.311) 24 (0.432)
11 14 0307 17 0435 23 23 (0315 23 (0.440)
12 17 0.299 17 0.424 24 24 (0.298) 24 (0.418)

Note: h, ) denotes the horizons for the UK inflation uncertainty. he,,1 denotes the horizons of the euro inflation uncertainty that
give the highest Kendall’s 7 correlation given each horizon of the UK inflation uncertainty (h,x). hew,2 refers to the horizons of the
euro inflation uncertainty that give the highest Spearman’s p correlation given each horizon of the UK inflation uncertainty (h,, ).
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FIGURE 5 The estimated copula parameters and rank correlations: matching horizons
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Notes: Given each forecast horizon of the UK inflation uncertainty, the forecast horizons of the euro area inflation uncertainty are selected to
have the highest correlation. r denotes « parameter of Frank copula estimated under the assumption of decaying p in WSN marginal densities
and combining the same horizon. r_cross denotes y parameter of Frank copula assuming decaying p in WSN marginal densities and combining
different horizons that give the highest correlation. tau_cross and rho_cross are the estimated rank correlation coefficients that correspond to r_cross
computed by the analytical form (Equations 32 and 33) in Appendix A.

30



FIGURE 6 Interdependece of inflation uncertainty: identification through heteroskedasticity
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Notes: The figure shows the point estimates of « and 8 computed from Equation (27) using pre-crisis,
crisis, and post-crisis periods, respectively. UK denotes the estimates of « in Equation (15) and EU
denotes the estimated of 3 in Equation (16).
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TABLE 6 The parameter estimates and bootstrap results: pre-crisis period

a B
Point estimate Bootstrap Point estimate Bootstrap
Mean SD  Prob (a < 0) Mean SD  Prob (5 < 0)
h=1 0.278 0.253 0.253 0.124 0.077 0.075 0.350 0.309
h=2 0.171 0.106  0.510 0.401 0.075 0.092 0.356 0.363
h=3 0.301 0.141 0.543 0.381 -0.105 -0.003 0.338 0.537
h=4 -0.058 0.022 0.571 0.495 0.051 -0.004 0.326 0.471
h=5 0.290 0.235 0.489 0.240 -0.187 -0.160 0.287 0.766
h=6 0.271 0.230 0.541 0.337 -0.297 -0.261 0.252 0.914*
h=7 0.010 0.012 0.414 0.527 -0.300 -0.288 0.201 0.950%**
h=8 -0.143 -0.098 0.357 0.645 -0.292 -0.303 0.198 0.954%*
h=9 -0.338 -0.235 0473 0.739 -0.224 -0.239 0.375 0.743
h=10 -0.131 -0.236 0.614 0.671 -0.295 -0.142 0435 0.593
h=11 -0.497 -0.162 0.614 0.629 0.035 -0.118 0.372 0.625
h=12 0.123 -0.077 0.603 0.555 -0.238 -0.059 0.441 0.563
h=13 0.555 0.023  0.556 0.401 -0.617 -0.131 0.517 0.637
h=14 0.732 -0.162  0.430 0.661 -0.984 0.103  0.566 0.425
h=15 0.165 0.161 0.300 0.234 -0.333 -0.296 0.372 0.788
h=16 0.242 0.209  0.200 0.106 -0.336 -0.310 0.281 0.844
h=17 0.076 0.049 0.491 0.439 -0.142 -0.101 0.344 0.605
h=18 -0.749 -0.568 0.462 0.908* 0.742 0.630 0.321 0.042++
h=19 -0.588 -0.529 0.321 0.958%** 0.689 0.655 0.234 0.014++
h=20 -0.133 -0.016 0.315 0.719 0.170 0.153 0.133 0.136
h=21 0.107 0.312 0.471 0.305 -0.159 -0.206 0.241 0.844
h=22 0.450 0.444  0.398 0.034++ -0.417 -0.394 0.257 0.952%%*
h=23 0.117 0.102 0.255 0.307 -0.351 -0.350 0.324 0.932*
h=24 -0.215 -0.202 0.173 0.880 -0.310 -0.324 0.291 0.926*

Notes: The within-regime bootstrapped estimates are drawn from uniform distribution for 500 times. Then the probability of the estimated
a, (3 to be below zero is computed for each regime and horizon.
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TABLE 7 The parameter estimates and bootstrap results: crisis period

D‘:Y‘:T‘D‘D".I:;‘:Y‘:T‘D‘D"D‘
—_ = 0 0 O LNk~ WD —

=gl =
i mn
—
A W= O

h=15
h=16
h=17
h=18
h=19
h=20
h=21
h=22
h=23
h=24

a B
Point estimate Bootstrap Point estimate Bootstrap
Mean SD  Prob (a < 0) Mean SD  Prob (5 < 0)
-0.539 -0.103 0.673 0.605 0.502 0.211 0.459 0.275
0.002 -0.005 0.536 0.501 0.196 0.160  0.207 0.178
0.825 0.350 0.737 0.277 -0.093 0.080 0.370 0.441
0.898 0.560 0.749 0.186 -0.269 0.015 0.510 0.607
0.783 0.613  0.653 0.136 -0.425 -0.136  0.703 0.750
0.705 0.564 0.543 0.134 -0.674 -0.301 0.735 0.808
0.657 0.532 0.482 0.132 -0.657 -0.240 0.853 0.770
0.616 0.541 0.536 0.118 -0.755 -0.360 0.791 0.818
0.315 0.599 0.538 0.044++ 0.635 1.401  1.468 0.036++
0.268 0.468 0.417 0.034++ 0.732 1.415 1.492 0.016++
0.238 0.385 0.380 0.082+ 0.844 1.420 1.375 0.008+++
0.190 0.284 0.319 0.114 0.958 1.346 1.183 0.006+++
0.210 0.255 0.256 0.104 0.953 1.043  0.948 0.036++
0.172 0.170  0.151 0.110 1.044 1.019 0.428 0.012++
0.185 0.173  0.129 0.090+ 0.989 0.928 0.428 0.032++
-0.020 0.030 0.178 0.507 1.473 1.208 0.715 0.082+
-0.012 0.039 0.168 0.457 1.552 1.243  0.773 0.096+
-0.140 0.056  0.237 0.585 1.921 0.963 1.282 0.293
-0.019 0.002 0.129 0.557 1.749 1.546 0.715 0.066+
0.042 0.040 0.057 0.214 1.608 1.600 0.175 0.000+++
0.065 0.062 0.049 0.100+ 1.638 1.630  0.137 0.000+++
0.053 0.053 0.056 0.176 1.622 1.614 0.110 0.000+++
0.350 0.262 0.171 0.096+ -0.022 0.274 1.028 0.447
0.078 0.083 0.095 0.174 1.438 1.422  0.266 0.000+++

Notes: The within-regime bootstrapped estimates are drawn from uniform distribution for 500 times. Then the probability of the estimated
a, [3 to be below zero is computed for each regime and horizon.
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TABLE 8 The parameter estimates and bootstrap results: post-crisis period

a B
Point estimate Bootstrap Point estimate Bootstrap
Mean SD  Prob (a < 0) Mean SD  Prob (5 < 0)
h=1 0.079 0.060 0.353 0.477 0.307 0.251 0.652 0.309
h=2 -0.406 -0.273  0.340 0.838 0.737 0.493 0.643 0.196
h=3 -0.170 -0.135 0.376 0.661 0.144 0.082 0.519 0.363
h=4 -0.396 -0.240 0.398 0.838 0.707 0.489 0.576 0.146
h=5 -0.278 -0.218 0.405 0.826 -0.046 -0.050 0.216 0.607
h=6 0.597 0.165 0.654 0.349 -0.563 -0.221 0.516 0.747
h=7 -0.179 -0.150 0.323 0.705 -0.050 -0.055 0.316 0.563
h=8 -0.410 -0.367 0.326 0.916* 0.269 0.237 0.338 0.192
h=9 0.530 0.455 0.508 0.096+ -0.175 -0.143  0.367 0.733
h=10 0.516 0.458 0.374 0.064+ -0.287 -0.230 0.384 0.800
h=11 0.615 0.477 0.519 0.104 -0.306 -0.209 0.372 0.818
h=12 0.566 0.409 0.487 0.138 -0.240 -0.112  0.447 0.747
h=13 0.287 0.279 0.275 0.136 -0.012 -0.005 0.292 0.525
h=14 -0.089 -0.119 0.211 0.741 0.252 0.303 0.273 0.132
h=15 0.319 0.291  0.200 0.062+ -0.613 -0.569 0.317 0.974%**
h=16 0.275 0.231 0.262 0.136 -0.525 -0.443  0.450 0.886
h=17 0.297 0.099 0.348 0.265 -0.728 -0.318 0.683 0.768
h=18 0.267 0.147 0.281 0.166 -0.850 -0.560 0.636 0.874
h=19 0.139 0.118 0.165 0.152 -0.637 -0.582 0.396 0.952%*
h=20 0.138 0.151  0.157 0.102 -0.715 -0.694 0.295 0.986%**
h=21 0.050 0.060 0.122 0.363 -0.515 -0.516 0.233 0.984%*%*
h=22 -0.028 -0.022 0.119 0.603 -0.352 -0.333  0.274 0.918*
h=23 0.053 0.055 0.114 0.309 -0.467 -0.462 0.241 0.984**
h=24 -0.027 -0.055 0.215 0.593 -0.266 -0.104 0.688 0.685

Notes: The within-regime bootstrapped estimates are drawn from uniform distribution for 500 times. Then the probability of the estimated
a, (3 to be below zero is computed for each regime and horizon.
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Appendix

A Frank copula

The cdf of Frank copula is given by

1 =W 1) (e — 1
Cly1,y2;7) = ——1In (1 + ( _)( >> (28)
0 e7—1
where v € (—o00, +00). If v = 0, the copula is independent.

The copula generator for Frank copula, (), is

o)(t) = —In ( i 1> 29)

e 7 —1

The pdf of Frank copula is

—y(e™ — 1)e vty
e~V — 1)(677342 — 1) + (e'y — 1))2

The analytical closed forms of these rank correlations, which depend on the parameter value,

7, are as follows.

4(1 = Di(v))
v

g (7) =1~ 31

12(D1(7) — Da(7))
ol

go(v) =1— (32)

where Dy, = ka ™" [ t*(e' — 1)~ 'dt is the Debye function.

B Conditional probability

Based on the estimated marginal and joint densities of inflation uncertainty, the conditional prob-
ability of certain scenarios of inflation outcomes can be computed. The subscript for the density
functions (f and F') and uncertainty index (U) indicates each region: 1 for the UK and 2 for
the euro area. Then, the unconditional probability for the UK inflation being inside [a,b] can be

represented as follows.

b
/ f1(U1) dUy (33)

The probability of the UK inflation inside the interval [a,b] conditional on the euro inflation
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being inside the same interval is given below.

b b
//C(F17F2;@)f1'f2dU1dU2

- (34)
/ Jo(Us) dUs

Table B1 and Figure B1 show two different scenarios, (i) the inflation below 1% and (ii) the
inflation within [1%, 3%] for both economies based on the post-crisis sample period.

The downward sloping lines in the left panel of Figure B1 suggest that both unconditional and
conditional probability of the UK inflation below 1% decreases as forecasting horizon increases.
The unconditional probability is lower than the conditional probability for all horizons in the first
scenario. For example, the probability of the UK inflation below 1% in two years without con-
sidering the dependence structure is approximately 0.24 while this increases to 0.31 if it is known
that the euro area inflation will also become below 1% in two years. This implies that the left tail
events of inflation are positively correlated between the two regions.

The second scenario of the UK inflation within the target band tells a different story (Figure
B1 right panel). The probabilities do not decrease in a monotonic sense when forecast horizon
increases. The unconditional probability appears to be flat across all forecast horizons, roughly
between 0.4 and 0.5. The conditional probabilities are either flat (copula estimated with marginals
of the same horizons) or increasing (copula estimated with marginals of the different horizons) for
the short forecast horizons. For the longer horizons, the conditional probabilities tend to decline
as the forecast horizon increases. Comparing the unconditional and conditional probabilities, un-
conditional probability of the UK inflation inside the target band is significantly lower than the
conditional probability in the short and medium term. However, the long term unconditional prob-

ability is larger than the conditional probability.
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TABLE B1 The unconditional and conditional probability of the UK inflation

I. The probability of the UK inflation below 1%

Unconditional Conditional Conditional
(same h) (different h) [hew]
hyr = 6 0.4867 0.5095 0.5238 14
hyp = 12 0.3863 0.4163 0.4281 17
hyr = 18 0.2663 0.3184 0.3289 23
hyp = 24 0.2387 0.3036 0.3036 24
II. The probability of the UK inflation within [1%, 3%]
Unconditional Conditional Conditional
(same h) (different h) [hew]
hyr =6 0.4224 0.4942 0.5337 14
hyr = 12 0.4150 0.4523 0.4488 17
hyr = 18 0.4457 0.4127 0.3884 23
hyr = 24 0.4179 0.3483 0.3483 24

Notes: The conditional probability is computed from the copula estimation results in Section III. B. Conditional (same h) indicates
the conditional probability calculated using the estimated joint distribution combined by the same horizon univariate densities of the
UK and the euro inflation uncertainty. Conditional (different h) indicates the conditional probability calculated using the estimated
joint distribution combined by the matching univariate densities of the UK and the euro inflation uncertainty which give the highest
Kendall’s 7 rank correlation given the horizon of the UK inflation uncertainty (A, ). hew denotes the selected horizons for the euro
inflation uncertainty that gives the highest Kendall’s 7 correlation.

FIGURE B1 The unconditional and conditional probabilities of the UK inflation
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Notes: The left panel shows the results when the UK inflation is below 1%, and the right panel shows the results when the UK inflation
is within target [1%, 3%]. The blue lines are unconditional probability and the red lines are conditional probability computed for the
same horizons. The green lines are conditional probability computed for the different horizons when when pairing the two marginal

densities.
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C Empirical evidence of endogeneity bias: Quantile regressions

Quantile regressions (28)) can provide empirical evidence of endogeneity. The model for the 7-th

conditional quantile of Y, (), can be written as follows.

Qr = XB(7) (35)

where X is a vector of explanatory variables. The estimation of 5(7) is based on a sample of n
observations in Y. If the estimates of 3(7) differ across 7’s, it suggests that the marginal effect
of X is heterogeneous across different quantiles of the conditional distribution of Y. Therefore,
non-flat quantile treatment effects indicate whether there is any potential non-linearity in the data
conditional on the quantile.

To detect potential bias due to endogeneity, we estimate the coefficients of quantile regres-
sions of Uy, on Uy, and vice versa. Figure C1 plots the estimated slope coefficients, 3(7), of the
quantile regressions of Uy; on Uy, for each forecast horizon (h = 1,--- ,24). Different patterns
among different groups of forecasting horizons were found in the results. The estimates from the
regressions of uncertainty at short horizons exhibit large variations, while the estimates are likely
to be flatter for the regressions of uncertainty at longer horizons. For the inflation uncertainty at
short horizons (h = 1,--- ,4), the quantile slope estimates are U-shaped, suggesting the changes
in skewness. For longer horizons (h = 5,--- ,10), the quantile slopes are flat up to 40-60 per-
centile and then U-shaped in the right tail. The estimates from uncertainty about one-year-ahead
to 19-month-ahead inflation exhibit modest increases, with some irregularities as reaching the far
right tail. The quantile regression coefficients tend to be flat for » = 20, - - - | 24.

Figure C2 plot the quantile estimates of Us,; on Uy; for each forecast horizon. The plots are quite
different from the previous results in many aspects. First, the quantile slope coefficients are much
larger than those from the regressions of the UK uncertainty on the euro uncertainty@] Second,
heterogeneity in the strength of interdependence is more pronounced in the case of uncertainty
at longer horizons compared to the previous results. The variability of the estimated coefficients
across quantiles tends to be greater as h gets larger. Third, we observe pick-ups in the estimated
coefficients in the left tails except for very short (h = 1, 2) or very long horizons (h = 23, 24).

Next, we conduct simulations of quantile regressions with iid errors to confirm whether the
quantile slope coefficients are flat across 7’s when there is no endogeneity. First, we assume a
model of random variables X and Y: Y = 0.5X + ¢, where the relationship between X and Y
is uniquely defined by an ¢id error term, exogenous to X. Second, we assume a random variable
X and an error term € have following distributions. For each combination, we allow for different

symmetric and asymmetric distributions while maintaining 7¢d assumptions for €’s.

20Please note that y-axis is modified, ranging from 0 to 2. For h = 19, y-axis ranges from 0 to 2.2.
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Third, we draw a sample of size n = 1001 for X, which is fixed over replications. Fourth, we draw
error terms for » = 100 times and compute Y for each replication. Lastly, for every replication, we
compute B/(;) and average /8/(\7') over replications.

Figure C3 present the estimated 5(7) from a sample draw (left panel) and from the average of
all estimates across 100 repetitions (right panel). As expected, the slope coefficients are flat across
quantiles when there is no endogeneity.

Overall, the results confirm that the conventional strategies for estimating interdependence

could be biased in the presence of endogeneity problem.

39



Figure C1 The estimated slope coefficients of linear quantile regressions (I)
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Notes: The estimation results from the quantile regressions of the UK inflation uncertainty on the euro inflation
uncertainty for each horizon are presented. The estimated coefficients are plotted as a function of 7. The x-axis is
7 =0.05,0.06, - --,0.94,0.95. Y-axis is fixed across the figures for comparison.
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Figure C2 The estimated slope coefficients of linear quantile regressions (II)
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Notes: The estimation results from the quantile regressions of the euro inflation uncertainty on the UK inflation
uncertainty for each horizon are presented. The estimated coefficients are plotted as a function of 7. The x-axis is
7 =0.05,0.06, - --,0.94,0.95. Y-axis is fixed across the figures for comparison.
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Figure C3 The estimated slope coefficients of linear quantile regression (simulated)
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Notes: The estimated coefficients, 3(7), using simulated data are plotted as a function of 7. A model of random variables X and Y: Y = 0.5X +e¢.
Case I ¢ ~ #4dN(0,1), X ~ N(2,1). Case Il: € ~ i2dN(0,1), X ~ t(5). Case IIl: € ~ #id t(5), X ~ t(5). Case IV: ¢ ~ #dN(0, 1),
X ~ N(2,1) + x2(4). Case V: € ~ iid t(5), X ~ N(2,1). Case VI: € ~ iidN(2,1) + x2(4), X ~ N(2,1). The sample size is n = 1001
for drawing X . The error terms are drawn for » = 100 times to compute Y.
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