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Abstract
Given a planar domain �, we study the Dirichlet problem

{
–divA(x,∇v) = f in �,

v = 0 on ∂�,

where the higher-order term is a quasilinear elliptic operator, and f belongs to the

Zygmund space L(log L)δ (log log log L)
β
2 (�) with β ≥ 0 and δ ≥ 1

2 .
We prove that the gradient of the variational solution v ∈ W1,2

0 (�) belongs to the
space L2(log L)2δ–1(log log log L)β (�).

MSC: Primary 35J62; secondary 35B65
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1 Introduction
In this paper we consider the following Dirichlet problem on a bounded open set � ⊂R



with C boundary:

⎧⎨
⎩– div A(x,∇v) = f in �,

v =  on ∂�,
(.)

where f belongs to the Zygmund space L(log L)δ(log log log L)
β
 (�) with β ≥  and δ ≥ 

 .
We prove that the distributional gradient of the unique solution v ∈ W ,

 (�) to (.) satis-
fies |∇v| ∈ L(log L)δ–(log log log L)β (�).

Here A : � ×R
 −→ R

 is a mapping of Leray-Lions type [], that is,

A(·, ξ ) is measurable for all ξ ∈ R
, and

A(x, ·) is continuous for almost every x ∈ �.
(.)

Moreover, we assume that there exists K ≥  such that, for almost every x ∈ � and for any
ξ ,η ∈R

,
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(i)
∣∣A(x, ξ ) – A(x,η)

∣∣ ≤ K |ξ – η|,
(ii) |ξ – η| ≤ K

〈
A(x, ξ ) – A(x,η), ξ – η

〉
,

(iii) A(x, ) = .

(.)

In [], under assumptions (.) and (.), the authors proved the existence and unique-
ness of the solution to the Dirichlet problem with f ∈ L(�) in the grand Sobolev space
W ,)

 (�). Precisely, W ,)
 (�) is the space of functions v ∈ W ,

 (�) whose gradients belong
to the grand Lebesgue space L)(�) (see Section  for a definition).

Nowadays, a vast literature is available dealing with several types of a priori estimates
on the gradients of solutions to equations of this kind; see, for example, [–].

We are interested in cases where the solution is the variational W ,(�) solution. The
minimal assumption on f that guarantees this is f ∈ L(log L) 

 (�). This follows by the em-
bedding in the plane (see [, ], and [])

W ,
 (�) ↪→ exp(�)

and by the duality relation (see [])

(
(exp)(�)

)′ = L(log L)

 (�).

In [], the authors interpolate between the data spaces

L(log L)

 (�) and L(log L)(�).

To this aim, the following estimate was proved for  ≤ β ≤ :

‖∇v‖L(log L)β (�) ≤ C(K ,β)‖f ‖
L(log L)

(β+)
 (�)

. (.)

When f belongs to the Zygmund space L(log L) 
 (log log L)

β
 (�) for  ≤ β < , the unique

solution v to the Dirichlet problem (.) satisfies |∇v| ∈ L(log log L)β (�) with the estimate

‖∇v‖L(log log L)β (�) ≤ C(K ,β)‖f ‖
L(log L)


 (log log L)

β
 (�)

(.)

(see []). This generalizes a result of [] obtained for β = .
Starting from the results of [], in [], the authors of the present paper prove an ana-

logue of the previous result when the critical Zygmund class L(log L) 
 (�) is perturbed in a

weaker way, namely with perturbations of order log log log L. Precisely, in [], it is proved
that if β ≥ , then

‖∇v‖L(log log log L)β (�) ≤ C(K ,β)‖f ‖
L(log L)


 (log log log L)

β
 (�)

. (.)

The aim of this paper is to extend the results of [] to the case f ∈ L(log L)δ(log log ×
log L)

β
 (�) with β ≥  and δ ≥ 

 , that is, to prove the following:
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Theorem . Let A = A(x, ξ ) satisfy (.) and (.), and let β ≥ , δ ≥ 
 . Then, if f ∈

L(log L)δ(log log log L)
β
 (�), the gradient of the unique finite energy solution v ∈ W ,

 (�) to
the Dirichlet problem (.) belongs to the Orlicz space L(log L)δ–(log log log L)β (�,R),
and the following estimate holds:

‖∇v‖L(log L)δ–(log log log L)β (�;R) ≤ C(K ,β , δ)‖f ‖
L(log L)δ (log log log L)

β
 (�)

.

In order to prove this theorem, we will find an integral expression equivalent to the
Luxemburg norm in the Zygmund class (see Theorem .), which is based on a method
recently introduced in [, ].

We note that our method allows us to prove estimates (.) and (.) for any β ≥ 
(in particular, see Lemmas . and .).

2 Preliminaries
Let � be a bounded domain in R

n, n ≥ . A function u belongs to the Lebesgue space
Lp(�) with  ≤ p < ∞ if and only if

‖u‖Lp(�) =
( 

�

|u|p dx
) 

p
< +∞,

where
ffl

�
= 

|�|
´

�
.

Now we recall some useful function spaces slightly larger than the classical Lebesgue
spaces.

2.1 Grand Lebesgue spaces
For  < p < ∞, let us consider the class, denoted by Lp)(�), consisting of all measurable
functions u ∈ ⋂

≤q<p Lq(�) such that

sup
<ε≤p–

{
ε

 
�

∣∣u(x)
∣∣p–ε

} 
p–ε

< +∞

which was introduced in []; Lp)(�) becomes a Banach space, the grand Lebesgue space
Lp)(�), equipped with the norm

‖u‖Lp)(�) = sup
<ε≤p–

ε

p

{ 
�

∣∣u(x)
∣∣p–ε

} 
p–ε

.

Moreover, ‖u‖Lp)(�) is equivalent to

sup
<ε≤p–

{
ε

 
�

∣∣u(x)
∣∣p–ε

} 
p–ε

.

In general, if  < α < ∞, then we can define the space Lα,p)(�) as the space of all measurable
functions u ∈ ⋂

≤q<p Lq(�) such that

‖u‖Lα,p)(�) = sup
<ε≤p–

{
ε

α
p ‖u‖p–ε

}
< +∞.
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2.2 Orlicz spaces
Let � be an open set in R

n with n ≥ . A function � : [, +∞) → [, +∞) is called a Young
function if it is convex, left-continuous, and vanishes at ; thus, any Young function �

admits the representation

�(t) =
ˆ t


φ(s) ds for t ≥ ,

where φ : [, +∞) → [, +∞) is a nondecreasing left-continuous function that is neither
identically equal to  nor to ∞.

The Orlicz space associated to �, named L�(�), consists of all Lebesgue-measurable
functions f : � →R such that

ˆ
�

�
(
λ|f |) < ∞ for some λ = λ(f ) > .

L�(�) is a Banach space equipped with the Luxemburg norm

‖f ‖L�(�) = inf

{

λ

:
ˆ

�

�
(
λ|f |) ≤ 

}
.

Examples of Orlicz spaces:
() If �(t) = tp for  ≤ p < ∞, then L�(�) is the classical Lebesgue space Lp(�).
() If �(t) = tp(log(a + t))q with either p >  and q ∈R or p =  and q ≥  and where

a ≥ e, then L�(�) is the Zygmund space denoted by Lp(log L)q(�).
() If �(t) = tp(log(a + t))q (log log log(a + t))q with either p >  and q, q ∈ R or p = 

and q, q ≥  and where a ≥ eee , then L�(�) is the space
Lp(log L)q (log log log L)q (�).

() If �(s) = eta –  and a > , then L�(�) is the space of a-exponentially integrable
functions EXPa(�).

We denote by expa(�) the closure of L∞(�) in EXPa(�).
The Young complementary function is given by

�̃(t) =
ˆ t


φ–(s) ds,

where

φ–(s) = sup
{

r : φ(r) ≤ s
}

.

Moreover, the following Hölder-type inequality holds:∣∣∣∣
ˆ

�

f (x)g(x) dx
∣∣∣∣ ≤ C(�)‖f ‖L�(�)‖g‖L�̃(�)

for f ∈ L�(�) and g ∈ L�̃(�).

Definition . A Young function � satisfies the �-condition (� ∈ �) if

�(s) ≤ C�(s)

for some constant C ≥  and all s > .
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By the Riesz representation theorem, if � and �̃ belong to the class �, then the dual
space of L�(�) is L�̃(�).

Now we recall the explicit expression of the duals of some Orlicz spaces (see [–]).

Theorem . Let � ⊂R
n be an open set. If  < p < ∞ and q, q, q ∈R, then

• (Lp(log L)q(�))′ ∼= Lp′ (log L)– q
p– (�),

• (Lp(log log log L)q(�))′ ∼= Lp′ (log log log L)– q
p– (�),

• (Lp(log L)q (log log log L)q (�))′ ∼= Lp′ (log L)– q
p– (log log log L)– q

p– (�),
where p′ is the conjugate exponent of p, that is, 

p + 
p′ = .

If p =  and q > , then
• (L(log L)q(�))′ ∼= EXP 

q
(�).

Given two Young functions � and � , we say that � dominates � globally (respectively
near infinity) if there exists a constant k >  such that

�(t) ≤ �(kt) for all t ≥  (respectively for all t ≥ t for some t > );

moreover, � and � are equivalent globally (respectively near infinity, � ∼= �) if each dom-
inates the other globally (respectively near infinity). If �̃ and �̃ are the complementary
Young functions of, respectively, � and � , then � dominates � globally (or near infinity)
if and only if �̃ dominates �̃ globally (or near infinity). Similarly, � and � are equivalent
if and only if �̃ and �̃ are equivalent. We have the following result.

Theorem . The continuous embedding L� (�) ↪→ L�(�) holds if and only if either �

dominates � globally or � dominates � near infinity and � has finite measure.

Finally, we recall the definition of the Orlicz-Sobolev spaces W ,�(�) and W ,�
 (�) (see

[–]). The space W ,�(�) consists of the equivalence classes of functions u in L� (�)
whose distributional gradients ∇u belong to L� . This is a Banach space with respect to
the norm given by

‖u‖W ,� (�) = ‖u‖L� (�) + ‖∇u‖L� (�).

As in the case of the ordinary Sobolev space, W ,�
 (�) coincides with the closure of C∞

 (�)
in W ,�(�).

2.3 Orlicz-Sobolev imbeddings

Lemma . Let �(t) = exp{ t

δ

(log(e+log(e+t)))
β
δ

} –  with β ∈R and δ > . Then

�̃(t) ∼= t(log t)δ(log log log t)
β
 . (.)

Proof Since � is a Young function, by definition we have

�(t) =
ˆ t


φ(s) ds,
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where φ is equivalent near infinity to

�(s) ·
[

s

δ

–

δ(log log s)
β
δ

–
βs


δ

–

δ(log s) · (log log s)
β
δ

+

]
.

For large s, we have

φ(s) ∼= �(s)
s


δ

–

δ(log log s)
β
δ

,

and we will prove that, near infinity,

φ(s) ∼= �(s). (.)

We begin with the case δ ≤ . Then we can state that there exists c >  such that

exp

{
s


δ

(log log s)
β
δ

}
≤ exp

{
s


δ

(log log s)
β
δ

}
· s


δ

–

δ(log log s)
β
δ

≤ exp

{
(cs)


δ

(log log(cs))
β
δ

}
.

Similarly, in the case δ > , there exists c ∈ (, ) such that

exp

{
(cs)


δ

(log log(cs))
β
δ

}
≤ exp

{
s


δ

(log log s)
β
δ

}
· s


δ

–

δ(log log s)
β
δ

≤ exp

{
s


δ

(log log s)
β
δ

}
.

Hence, (.) is proved, and then it is not difficult to check that

φ–(r) ∼= (log r)δ(log log log r)
β
 .

By the definition of a complementary Young function, for large y, we obtain that

�̃(y) =
ˆ y


φ–(r) dr ∼= y(log y)δ(log log log y)

β
 . �

Given a Young function � such that

ˆ


(
r

�(r)

)
dr < ∞,

we define � : [, +∞) → [, +∞) as

�(s) = � ◦ H–
 (s) for s ≥ , (.)
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where H–
 (s) is the (generalized) left-continuous inverse of the function H : [, +∞) →

[, +∞) given by

H(r) =
(ˆ r



(
t

�(t)

)
dt

) 


for r ≥ . (.)

In [] and in [], the author showed that � is a Young function and that the following
Sobolev-Orlicz embedding theorem holds:

‖u‖L�(�) ≤ C‖∇u‖L� (�)

for every function u in the Orlicz-Sobolev space W ,�(�). As an application, we prove an
embedding theorem, which can be regarded as an extension of Lemma . in [].

Lemma . Let � ⊂ R
 be an open bounded set with C boundary. Consider the Young

function

�(t) = t(log t)–δ(log log log t)–β

with β ∈R and δ ≥ 
 . Then

W ,�(�) ↪→ L�(�),

where

�(s) ∼= es

δ (log log s)– β

δ . (.)

Proof By (.) we have that

H(r) =
(ˆ r



(log t)δ–(log log log t)β

t
dt

) 
 ∼= (log r)δ(log log log r)

β
 .

Moreover, as shown in the proof of Lemma ., the inverse function H–
 (s) is equivalent

near infinity to

es

δ (log log s)– β

δ .

By (.) we obtain that

�(s) ∼= es

δ (log log s)– β

δ
(
s


δ (log log s)– β

δ
)–δ(

log log s

δ (log log s)– β

δ
)–β

∼= es

δ (log log s)– β

δ ,

and we conclude that

W ,�(�) ↪→ L�(�). �

Remark . The previous lemma for δ = 
 and β =  was proved in [, ], and []. The

case β =  and δ > 
 is proved in [].
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3 Equivalent norm on the Zygmund spaces Lq(log L)–γ (log log log L)–β (�)
The main tool of this section is to obtain an integral expression equivalent to the Luxem-
burg norm in Lq(log L)–γ (log log log L)–β (�) with  < q < ∞, β ≥  and γ > .

If f is a measurable function on �, we set

‖|f ‖|Lq(log L)–γ (log log log L)–β (�) =
{ˆ ε


εγ –‖f ‖q

Lq–ε(log log log L)–β (�) dε

} 
q

. (.)

Here ε ∈ ], q – ] is fixed.
For β = , (.) becomes

‖|f ‖|Lq(log L)–γ (�) =
{ˆ ε


εγ –‖f ‖q

Lq–ε(�) dε

} 
q

as in [].

Theorem . We have f ∈ Lq(log L)–γ (log log log L)–β(�) if and only if

‖|f ‖|Lq(log L)–γ (log log log L)–β (�) < +∞.

Moreover, ‖| · ‖|Lq(log L)–γ (log log log L)–β (�) is a norm equivalent to the Luxemburg one, that is,
there exist constants Ci = Ci(q,β ,γ , ε), i = , , such that, for all f ∈ Lq(log L)–γ (log log ×
log L)–β(�),

C‖f ‖Lq(log L)–γ (log log log L)–β (�) ≤ ‖|f ‖|Lq(log L)–γ (log log log L)–β (�)

≤ C‖f ‖Lq(log L)–γ (log log log L)–β (�).

Proof It is easy to check that ‖|f ‖|Lq(log L)–γ (log log log L)–β (�), defined by (.), is a norm on
Lq(log L)–γ (log log log L)–β (�).

Moreover, for any measurable function f and for a.e. x ∈ �, if a ≥ eee , then we have

|f |q(a + |f |)–ε ≤ |f |q–ε ≤ q–[aq + |f |q(a + |f |)–ε],

and so we deduce

|f |q(a + |f |)–ε(
log log log

(
a + |f |))–β ≤ |f |q–ε

(
log log log

(
a + |f |))–β

≤ q–[aq + |f |q(a + |f |)–ε]
× (

log log log
(
a + |f |))–β .

Integrating over �, we get

 
�

|f |q(a + |f |)–ε(
log log log

(
a + |f |))–β dx

≤ ‖f ‖q–ε

Lq–ε(log log log L)–β (�)

≤ q–aq + q–
 

�

|f |q(a + |f |)–ε(
log log log

(
a + |f |))–β dx.
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Then we multiply for εγ – and integrate between  and ε to obtain:

ˆ ε


εγ –

[ 
�

|f |q(a + |f |)–ε(
log log log

(
a + |f |))–β dx

]
dε

≤
ˆ ε


εγ –‖f ‖q–ε

Lq–ε(log log log L)–β (�) dε

≤ q–aq ε
γ

γ

+ q–
ˆ ε


εγ –

[ 
�

|f |q(a + |f |)–ε(
log log log

(
a + |f |))–β dx

]
dε.

Thanks to Lemma . of [], used with the choice b = a + |f |, we obtain that there exist
two constant C, C, depending only on γ and ε, such that

C

 
�

|f |q(log
(
a + |f |))–γ (

log log log
(
a + |f |))–β dx

≤
ˆ ε


εγ –‖f ‖q–ε

Lq–ε(log log log L)–β (�) dε

≤ C

[
 +

 
�

|f |q(log
(
a + |f |))–γ (

log log log
(
a + |f |))–β dx

]
. (.)

If ‖|f ‖|Lq(log log log L)–β (�) is finite, then since

‖f ‖q–ε

Lq–ε(log log log L)–β (�) ≤ ‖f ‖q
Lq–ε(log log log L)–β (�) + ,

by the first inequality in (.) we get that f ∈ Lq(log L)–γ (log log log L)–β (�). Moreover, if
‖|f ‖|Lq(log L)–γ (log log log L)–β (�) = , then

 
�

|f |q(log(a + |f |))–γ (
log log log(a + |f |))–β dx ≤ C,

where C is a constant independent on f . By homogeneity, for any measurable f , we get

‖f ‖Lq(log L)–γ (log log log L)–β (�) ≤ C‖|f ‖|Lq(log L)–γ (log log log L)–β (�).

Before proving the converse, we recall that

sup
<σ≤q–

σ
γ

q–σ ‖f ‖Lq–σ (log log log L)–β (�) ≤ C‖f ‖Lq(log L)–γ (log log log L)–β (�). (.)

Indeed, if we fix a ≥ eee and proceed as in Lemma . in [], using the Hölder inequality
and the inequality

logλ(a + t) ≤ λλ(a + t),

we obtain
ˆ

�

|f |q–σ
(
log log log

(
a + |f |))–β

=
ˆ

�

|f |q–σ (log log log(a + |f |))–β+ β(q–σ )
q – β(q–σ )

q (log(a + |f |)) γ (q–σ )
q

(log(a + |f |)) γ (q–σ )
q
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≤
[ˆ

�

|f |q(log log log(a + |f |))–β

(log(a + |f |))γ
] q–σ

q

×
[ˆ

�

(
log log log

(
a + |f |))(–β+ β(q–σ )

q ) q
σ
(
log

(
a + |f |)) γ (q–σ )

σ

] σ
q

≤
[ˆ

�

|f |q(log log log(a + |f |))–β

(log(a + |f |))γ
] q–σ

q

×
[(

γ (q – σ )
σ

) γ (q–σ )
σ

ˆ
�

(
log log log

(
a + |f |))–β(

a + |f |)] σ
q

≤
[ˆ

�

|f |q(log log log(a + |f |))–β

(log(a + |f |))γ
] q–σ

q
[(

γ (q – σ )
σ

) γ (q–σ )
σ

ˆ
�

(
a + |f |)] σ

q
.

Hence, elevating both sides of this inequality to the power 
q–σ

and then multiplying both

of them by σ
γ

q–σ , we deduce

[
σγ

ˆ
�

|f |q–σ
(
log log log

(
a + |f |))–β

] 
q–σ

≤
[ˆ

�

|f |q(log log log(a + |f |))–β

(log(a + |f |))γ
] 

q (
a|�| + ‖f ‖L(�)

) σ
q(q–σ ) γ

γ
q (q – σ )

γ
q σ

γσ
q(q–σ ) ,

and passing to the supremum with respect to σ ∈ (, q – ], we get formula (.) with

C = γ
γ
q sup

<σ≤q–

{(
a|�| + ‖f ‖L(�)

) σ
q(q–σ ) (q – σ )

γ
q σ

γσ
q(q–σ )

}
.

If f ∈ Lq(log L)–γ (log log log L)–β(�), that is, if

‖f ‖Lq(log L)–γ (log log log L)–β (�) < ∞ (.)

by (.), then there exists a constant C independent on f such that

‖f ‖Lq–ε(log log log L)–β (�) ≤ Cε
– γ

q–ε ‖f ‖Lq(log L)–γ (log log log L)–β (�). (.)

By (.) we get

‖f ‖q
Lq–ε(log log log L)–β (�) = ‖f ‖q–ε

Lq–ε(log log log L)–β (�)‖f ‖ε

Lq–ε(log log log L)–β (�)

≤ C‖f ‖q–ε

Lq–ε(log log log L)–β (�)‖f ‖ε

Lq(log L)–γ (log log log L)–β (�). (.)

Hence, by (.) we obtain that ‖|f ‖|Lq(log L)–γ (log log log L)–β (�) < +∞. Indeed, if

‖f ‖Lq(log L)–γ (log log log L)–β (�) = ,

by (.) and (.) we get

‖|f ‖|Lq(log L)–γ (log log log L)–β (�) < C,
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where the constant C is independent on f . By homogeneity we conclude the proof, ob-
taining

‖|f ‖|Lq(log L)–γ (log log log L)–β (�) < C‖f ‖Lq(log L)–γ (log log log L)–β (�). �

4 Proof of Theorem 1.1
In this section, before proving Theorem ., we state a regularity result for elliptic equa-
tions with right-hand side in divergence form. For convenience of the reader, we recall
Theorem . of [].

Theorem . Let A = A(x, ξ ) be a Leray-Lions mapping that satisfies (.). Then there ex-
ists σ = σ(K) >  such that, for |σ | ≤ σ and χ , χ ∈ L–σ (�;R), each of the two prob-
lems ⎧⎨

⎩div A(x,∇ϕ) = divχ  in �,

ϕ ∈ W ,–σ
 (�),

(.)

⎧⎨
⎩div A(x,∇ϕ) = divχ in �,

ϕ ∈ W ,–σ
 (�),

(.)

has a unique solution and

‖∇ϕ – ∇ϕ‖L–σ (�) ≤ C(K)‖χ  – χ‖L–σ (�),

where C(K) >  depends only on K .

Theorem . allows us to prove the following:

Theorem . Let A = A(x, ξ ) be a Leray-Lions mapping that satisfies (.). Then, if γ > 
and β ≥ , for i = ,  and for any χ i ∈ L(log L)–γ (log log log L)–β (�;R), there exists a
unique solution ϕi to the Dirichlet problem

⎧⎨
⎩div A(x,∇ϕi) = divχ i in �,

ϕi ∈ W ,
 (�).

(.)

Moreover,

‖∇ϕ – ∇ϕ‖L(log L)–γ (log log log L)–β (�) ≤ C‖χ  – χ‖L(log L)–γ (log log log L)–β (�), (.)

where C = C(β ,γ , K) >  is a positive constant that depends on the parameters K , β , and γ .

Proof By Theorem . there exists a positive constant σ = σ (K) such that if |σ | ≤ σ,
then for i = ,  and for any χ i ∈ L–σ (�;R), problem (.) admits a unique solution ϕi ∈
W ,–σ

 , and

‖∇ϕ – ∇ϕ‖L–σ (�) ≤ C‖χ  – χ‖L–σ (�), (.)

where C = C(K) >  is a positive constant that depends only on the parameter K .
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If γ >  and β ≥  are fixed, using Theorem ., we obtain

‖∇ϕ – ∇ϕ‖
L(log L)–γ (log log log L)–β (�)

≤ C(β ,γ )‖|∇ϕ – ∇ϕ‖|L(log L)–γ (log log log L)–β (�)

= C(β ,γ )
ˆ ε


εγ –‖∇ϕ – ∇ϕ‖

L–ε(log log log L)–β (�) dε.

For β = , by Theorem . we get

‖∇ϕ – ∇ϕ‖
L(log L)–γ (�) ≤ C(γ , K)

ˆ ε


εγ –‖χ  – χ‖

L–ε(�) dε.

If β > , then with a suitable choice of λ, by Theorem  in [] and Theorem ., we get

‖∇ϕ – ∇ϕ‖
L(log L)–γ (log log log L)–β (�)

≤ C(β ,γ )
ˆ ε


εγ –

[ˆ λ



(
 + log | logλ|)–β–(

λ| logλ|)–

× ‖∇ϕ – ∇ϕ‖–ε

L–ε–λ(�) dλ

] 
–ε

dε

≤ C(β ,γ , K)
ˆ ε


εγ –

[ˆ λ



(
 + log | logλ|)–β–(

λ| logλ|)–

× ‖χ  – χ‖–ε

L–ε–λ(�) dλ

] 
–ε

dε

≤ C(β ,γ , K)
ˆ ε


εγ –‖χ  – χ‖

L–ε (log log log L)–β (�) dε.

Using again Theorem . in the last term, we have

‖∇ϕ – ∇ϕ‖
L(log L)–γ (log log log L)–β (�)

≤ C(β ,γ , K)‖|χ  – χ‖|L(log L)–γ (log log log L)–β (�)

≤ C(β ,γ , K)‖χ  – χ‖
L(log L)–γ (log log log L)–β (�). �

Now we are in position to prove the main theorem.

Proof of Theorem . Since L�̃(�) = L(log L)δ(log log log L)
β
 (�) is a subspace of

L(log L) 
 (�) if β ≥  and δ ≥ 

 , we can ensure (as already observed) that (.) has a unique
finite energy solution v ∈ W ,

 (�).
In order to prove Theorem ., we want to apply the regularity result given by The-

orem .. To do this, as already showed in the papers [, , ], and [], we need to
linearize problem (.). We will use a linearization procedure introduced in [] that pre-
serves the ellipticity bounds.

For shortness, we do not give all the details of the linearization procedure, and we refer,
for example, to proof of Theorem . in []. So we know that there exists a symmetric,
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definite positive, and measurable matrix-valued function B = B(x) such that

A(x,∇v) = B(x)∇v.

Then, the unique finite energy solution v ∈ W ,
 (�) of (.) with f ∈ L�̃(�) solves also the

following linear problem:

⎧⎨
⎩– div B(x)∇v = f in �,

v =  on ∂�,
(.)

that is,
ˆ

�

B(x)∇v∇ϕ =
ˆ

�

f ϕ, ∀ϕ ∈ W ,
 (�). (.)

The case β = 0 and 1
2 ≤ δ ≤ 1 has been proved in [].

The case β > 0 and δ = 1
2 has been proved in [].

Now, if β ≥ 0 and δ > 1
2 , then we fix χ ∈ C(�) such that

‖χ‖L(log L)–(δ–)(log log log L)–β (�;R) ≤ ,

and we consider the unique finite energy solution ϕ to the linear Dirichlet problem

⎧⎨
⎩– div B(x)∇ϕ = divχ in �,

ϕ =  on ∂�,

where B(x) is the matrix given by the linearization procedure. By Theorem . we have

‖∇ϕ‖L(log L)–(δ–)(log log log L)–β (�)

≤ C(β , δ, K)‖χ‖L(log L)–(δ–)(log log log L)–β (�) ≤ C(β , δ, K),

and so, using Lemma ., we obtain

‖ϕ‖L�(�) ≤ C(β , δ, K), (.)

where �(s) ∼= es

δ (log log s)– β

δ , and C(β , K) is another constant depending only on β , δ,
and K .

Thanks to the fact that v satisfies the linear problem (.) and that B(x) is a sym-
metric matrix, using Lemma . and the Hölder inequality between the complemen-
tary spaces L�(�) and L�̃(�), by (.) we obtain that, for any χ ∈ C(�;R) such that
‖χ‖L(log L)–(δ–)(log log log L)–β (�) ≤ , we have

∣∣∣∣
ˆ

�

∇v · χ
∣∣∣∣ =

∣∣∣∣
ˆ

�

v divχ

∣∣∣∣
=

∣∣∣∣
ˆ

�

v div
(
B(x)∇ϕ

)∣∣∣∣ =
∣∣∣∣
ˆ

�

B(x)∇v · ∇ϕ

∣∣∣∣
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=
∣∣∣∣
ˆ

�

f ϕ
∣∣∣∣ ≤ C(β , δ)‖ϕ‖L�(�)‖f ‖

L(log L)δ (log log log L)
β
 (�)

≤ C(β , δ, K)‖f ‖
L(log L)δ (log log log L)

β
 (�)

, (.)

where C(β , δ, K) is a constant that depends only on β , δ, and K .
By Theorem . the dual space of L(log L)–(δ–)(log log log L)–β (�) is L(log L)δ– ×

(log log log L)β (�).
Now, since C(�;R) is dense in L(log L)–(δ–)(log log log L)–β (�) (see [], Theo-

rem . and [], Corollary ), passing to the supremum in (.) under the conditions
χ ∈ C(�;R), ‖χ‖L(log L)–(δ–)(log log log L)–β (�;R) ≤ , we obtain

‖∇v‖L(log L)δ–(log log log L)β (�) ≤ c(β , δ, K)‖f ‖
L(log L)δ (log log log L)

β
 (�)

,

as desired. �

Remark . In [], it was proved that the linearization procedure holds in any dimension
with the following ellipticity bounds:

|ξ | +
∣∣A(x, ξ )

∣∣ ≤
(

K +

K

)〈
A(x, ξ ), ξ

〉
, ξ ∈ R

n, a.e. x ∈ �.

We would like to point out that the linear growth of A(x, ξ ) with respect to ξ is absolutely
essential for the previous results. The main difficulty with the n-harmonic-type equations
(n �= ) is due to the lack of uniqueness for very weak solutions.
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