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The present paper is concerned with the solution of a series of practical problems relevant to great 

circle navigation, including the determination of the true course at any point on the great circle 

route and the determination of the lateral deviation from a desired great circle route. Intersection 

between two great circles or between a great circle and a parallel is also analyzed. These problems 

are approached by means of vector analysis, which yields solutions in a very compact form that 

can be computed numerically in a very straightforward manner. This approach is thus particularly 

appealing for performing computer-aided great circle navigation. 
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1. INTRODUCTION. In air navigation it is well known that the Earth can be regarded as 

a sphere and, as a consequence, the shortest distance between any two points on its 

surface is an arc of a great circle. Great circles are obtained by the intersection with the 

surface of the Earth of any plane passing through the Earth’s centre. For short distances, 

the difference between the great circle and the rhumb line is negligible. However, flying 

on a great circle allows saving considerable distance particularly on a long-range flight in 

high latitudes. For instance, the distance between London and Tokyo is about 6100 n.m. 

by rhumb line and 5170 n.m. by great circle, which allows saving about 930 n.m. 
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 Nevertheless, unlike the rhumb line that crosses all meridians at the same angle, the 

angle between a great circle route and the meridians constantly changes as progress is 

made along the route and is different at every point along the great circle. This implies 

that a vehicle shall be continuously steered to follow a great circle route. This necessity 

gives rise to a series of problems to be solved, such as: the determination of the True 

Course (TC), that is, the angle between the great circle route and the meridians, at any 

point on the great circle route; the determination of the lateral deviation, or Cross Track 

Distance (XTK), from a desired great circle route; and the intersection between two great 

circles or between a great circle and a parallel. 

 The position of a point P on the Earth’s surface of latitude φ and longitude λ can be 

represented on a unit sphere by the unit vector P joining the Earth’s centre to the point 

itself. The P vector has components given by: 

                                    )sin   ,sincos   ,cos(cos ϕλϕλϕ≡P                                             (1) 

with reference to an ECEF (Earth Centred Earth Fixed) frame: a right-handed, 

orthonormal coordinate system whose origin is located at the Earth’s centre and has axes 

fixed to the Earth. Its z-axis points towards the north pole along the spin axis of the Earth 

and its x-axis is the intersection of the reference meridian with the equator.  

 Therefore, great circle navigation can be developed taking advantage of vector 

analysis, allowing a continuous control of the trajectory and the solution of more complex 

problems such as the previously mentioned ones. Solutions obtained applying vector 

analysis to great circle navigation problems have a very compact form, and can be 

computed numerically in a very straightforward manner. This approach is thus 

particularly appealing for performing computer-aided great circle navigation. 
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 This problem has been already examined in a previous paper of the first author (Nastro, 

2000), and recently discussed in this Journal (Earle, 2005; Tseng and Lee, 2007); the 

present manuscript reports some of this previous paper’s results in a more compact form. 

 

2.  EQUATION OF THE GREAT CIRCLE. Figure 1 shows the great circle between the 

departure point P1 (φ1, λ1) and the arrival point P2 (φ2, λ2), where θ stands for the shortest 

distance between these two points. For the sake of simplicity, the meridian passing 

through P1 is taken as the reference meridian, implying that the components of the vectors 

P1 and P2 are: 
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where Δλ = λ2 – λ1 is the difference of longitude between such points. 

 

 

  

Figure 1. Representation of the great circle 

 



 4

The distance θ between the two given points P1 and P2 is given from the dot product 

between the two corresponding vectors: 

 )(cos 1
21 PP ⋅= −θ  (3) 

The vector K, representing the great circle pole, can be obtained normalizing to one the 

vector cross product between P1 and P2, as: 

 
θsin

21 PP
K

×
=  

The coordinates of the vertex V of the hemisphere of interest (e.g. the northern one in 

Figure 1), that is, the point on the great circle path that is nearest to the geographic pole, 

can be obtained using the latitude and the longitude of the great circle pole (λK, φK), as 

follows: 

 90 ; 180V K V Kϕ ϕ λ λ= ° − = ± °  

From Figure 2, P2 can be seen as the result of a rotation of the vector P1 around the 

direction K of an angle θ: 

 ( )cos  sin  θ θ= + ×2 1 1P P K P  (4) 

Analogously, for a generic point P on the great circle at a distance θ1 = kθ from P1 (where 

k∈[0,1]) the following holds: 

 )( sin cos 11 11 PKPP ×+= θθ  
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Figure 2. Rotation of the vector P1 of an angle θ 

 

The vector K × P1 can be expressed in terms of the two vectors P1 and P2 , making use of 

equation (4), yielding : 

 111  sin cos TPP 1 θθ +=  (5) 

where the vector T1 ≡ (T1x , T1y , T1z ) = (P2 – cos θ P1)/sin θ is orthogonal to 1P  and 

tangent to the great circle at the departure point P1. 

 The relation (5) can be regarded as the equation of the great circle; for instance, if  

θθθ 5.01 == k  the vector P is relative to the mid-point of the great circle. 

The components of the vector T1 can be expressed in terms of latitude and True 

Course at the departure point P1, TC1, by applying the sine and the “four part” formulas to 

spherical triangle 21PPPn  of Figure 1, yielding: 

 ( )1 1 1 1 1 1sin cos sin cos cosTC TC TCϕ ϕ≡ −T  (6) 

In case the determination of the TC at the departure point P1 is of interest, equation (6) 

can be exploited to obtain:  
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                                             1
1 1 1tan ( cos / )y zTC T Tϕ−=                                                      (7) 

 The above results are easily extended for determining the TC at any point P of the 

great circle route, by considering the corresponding vector P in place of P1 in obtaining 

equation (7). 

 

3. DETERMINATION OF THE CROSS TRACK DISTANCE. In air navigation it is 

necessary to perform a continuous comparison between the present position derived from 

the airborne navigation system and the desired position on the great circle. 

The deviation of the current navigation fix P from the great circle is represented in 

Figure 3 by the length of the arc PP0, where P0 is the closest point of the great circle to P: 

the distance PP0 is known as XTK (Cross Track Distance). 

 

 

 

Figure 3. Determination of the Cross Track Distance (XTK) 

 

The coordinates of the point P0 are derived from the vector 0P  that coincides with the 

vector T relative to the great circle between K and P: 
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where: 

)(cos 1
2 PK ⋅= −θ  

At last, noting that the Cross Track Distance is complementary to θ2, it can be computed 

as .90 2θ−°=XTK   

 The availability of the above explicit expression for computing the cross track distance 

is beneficial for tracking the desired great circle route. In air navigation, for instance, the 

cross track distance can be coupled to a flight guidance computer that keeps the aircraft 

on the great circle course by issuing commands based on the current XTK value, 

computed as previously shown. 

 

4. INTERSECTION OF TWO GREAT CIRCLES. Figure 4 represents two great circles: 

the first one connecting the points P1 and P2, whose pole is K1, and the second one 

between P3 and P4 with pole K2. The intersection point I can be derived from the vector I 

that is orthogonal to the vectors 1K  and 2K ; consequently: 

0)( =−⋅ 21 KKI  
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Figure 4. Intersection of two great circles 

 

The vector I can be related by equation (5) to the known vectors P1, T1, and to the 

unknown distance θ1 between P1 and I. Substituting in the above equation, remembering 

that the dot product of orthogonal vectors is zero, and rearranging, yields the following 

expression for determining θ1 , and, consequently, the intersection point I. 

                                                    ⎟⎟
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1 tanθ                                                   (9) 

The above equation can be made specific in particular cases of interest, such as the 

intersection between a great circle and a meridian of longitude λm, or between a great 

circle and the equator, by setting: 

2

2

(sin ,    cos ,    0) for the meridian
(0,    0,    1) for the equator

m mK
K

λ λ≡ Δ − Δ

≡
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5.  INTERSECTION OF THE GREAT CIRCLE WITH A PARALLEL.  The coordinates 

of the intersection point I1 between a great circle and a parallel can be determined by the 

knowledge of the distance 1θ  between the departure point P1 and I1 (Figure 5). 

 The vector 1I  can be obtained by the rotation of the vector 1P  around 1K  until: 

sin pϕ⋅ =1 2I K  

where 2K  is coincident with the unit vector k ≡ (0, 0, 1) and φp stands for the latitude of 

the parallel. From relation (5) we have: 

 

 

Figure 5. Intersection of the great circle with a parallel 

 

 

 1 1 1(cos sin ) sin pθ θ ϕ+ ⋅ =1 2I T K  

or, equivalently: 

1 1 1cos sin sin sinp z pTθ ϕ θ ϕ+ =  
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This relation can be written as: 

cba =+ 11 sincos θθ  

Expressing sin θ1 and cos θ1 in terms of the tangent of θ1, the above equation becomes 

quadratic in tan θ1, whose solution is: 

⎥
⎥
⎦

⎤

⎢
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−
−+−

= −
22

222
1

1 tan
cb

cbacab ∓θ  

In case the discriminant is positive, we have two distinct and real roots ( )p vϕ ϕ< , if it is 

zero we have a double real root ( )p vϕ ϕ= , whereas when the discriminant is negative 

there are no real roots ( ).p vϕ ϕ>  

 

6. CONCLUSION. This paper has presented results for several practical problems 

relevant to navigation along a great circle route making use of vector analysis. These 

results are given in a compact form that is suitable for numerical implementation, thus 

being particularly appealing for computer-aided great circle navigation. 
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