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Isc10, an inhibitor of the Smk1 MAPK, prevents activation
loop autophosphorylation and substrate phosphorylation
through separate mechanisms
Received for publication, May 25, 2022, and in revised form, August 23, 2022 Published, Papers in Press, September 3, 2022,
https://doi.org/10.1016/j.jbc.2022.102450

Abhimannyu Rimal, Thomas M. Swayne, Zeal P. Kamdar , Madison A. Tewey, and Edward Winter*
From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Edited by Henrik Dohlman

Many eukaryotic protein kinases are activated by the intra-
molecular autophosphorylation of activation loop residues.
Smk1 is a meiosis-specific mitogen-activated protein kinase
(MAPK) in yeast that autophosphorylates its activation loop
tyrosine and thereby upregulates catalytic output. This reaction
is controlled by an inhibitor, Isc10, that binds the MAPK
during meiosis I and an activator, Ssp2, that binds Smk1/Isc10
during meiosis II. Upon completion of the meiotic divisions,
Isc10 is degraded, and Smk1 undergoes autophosphorylation to
generate the high activity form of the MAPK that controls
spore formation. How Isc10 inhibits Smk1 is not clear. Here,
we use a bacterial coexpression/reconstitution system to define
a domain in the carboxy-terminal half of Isc10 that specifically
inhibits Smk1 autophosphorylation. Nevertheless, Smk1 bound
by this domain is able to phosphorylate other substrates, and it
phosphorylates the amino-terminal half of Isc10 on serine 97.
In turn, the phosphorylated motif in Isc10 inhibits the Smk1
active site. These data show that Isc10 inhibits autophos-
phorylation and the phosphorylation of substrates by separate
mechanisms. Furthermore, we demonstrate Isc10 can inhibit
the autophosphorylation of the mammalian intestinal cell ki-
nase ICK1 (also known as CILK1), suggesting a conserved
mechanism of action. These findings define a novel class of
developmentally regulated molecules that prevent the self-
activation of MAPKs and MAPK-like enzymes.

Autophosphorylation of the activation loop is a common
mechanism that upregulates eukaryotic protein kinases (1). In
some cases, activation loops are phosphorylated by upstream
kinases, while in other cases, they are autophosphorylated.
This latter mechanism of kinase activation is widespread,
influencing the activity of at least a third of the human
kinome.

Activation loop autophosphorylation plays an especially
prominent role in regulating CMGC group kinases (cyclin
dependent kinases, mitogen-activated protein kinases,
glycogen synthase kinases, and CDK-like kinases). In most
cases, these reactions occur by an intramolecular (in-cis)
mechanism. Although mature CMGC group kinases typically

phosphorylate downstream substrates on serine/threonine (S/
T) residues, the most commonly autophosphorylated activa-
tion loop residue is tyrosine (Y). It has been proposed that
these reactions involve a transitional “Prone-to-Autophos-
phorylate” (PA) conformation (1). In several cases, autophos-
phorylation of activation loop Y-residues has been shown to
take place cotranslationally or shortly after translation has
taken place when the kinase is associated with the Hsp90/
Cdc37 chaperone complex (2–5). More recently, it has been
shown that activation loop autophosphorylation of CMGC
kinases requires hydroxylation of a proline located in the
CMGC/MAPK-insert, a distinct segment located in the C-lobe
of most CMGC kinases (6). It has also been shown that mu-
tations that weaken the catalytic spine of the Erk2 MAPK can
increase the cis-autophosphorylation of its activation loop Y (7,
8). Taken together, these findings suggest that the cis-auto-
phosphorylation of activation loop Y-residues is an evolu-
tionarily ancient reaction that is repressed in some CMGC
kinases yet not in others and that this mechanism enhances
the regulatory repertoire of this critical group of signaling
enzymes.

The sporulation-specific MAPK, Smk1, is a meiosis-specific
kinase in yeast that autophosphorylates its activation loop
tyrosine (Y209) upon completion of the meiotic divisions (9).
Once activated, Smk1 triggers key steps in spore assembly (10,
11). Previous studies have revealed that Smk1 is controlled by
the CDK activating kinase (Cak1) (12, 13), an activator (Ssp2)
(14, 15), and an inhibitor (Isc10) (16). In addition, the anaphase
promoting complex/cyclosome (APC/C) E3 ubiquitin-ligase
bound to a meiosis-specific activator, Ama1, triggers Smk1
activation as cells complete meiosis II (MII) (17, 18). These
findings have led to a model in which Smk1 is first bound by
the Isc10 inhibitor protein during MI to form “inhibited” (I)
complexes. Cak1, which is produced as a constitutively active
enzyme (19–21), phosphorylates Smk1 on its activation loop T
at this stage (9). During MII, the monophosphorylated I
complexes are bound by the activator, Ssp2, to form “poised”
(P) complexes. As cells complete MII, the APC/CAma1 is
activated. This leads to the ubiquitylation and degradation of
the Isc10 protein, releasing “active” (A) complexes (Smk1/
Ssp2) that undergo autophosphorylation. The doubly phos-
phorylated Smk1 bound to Ssp2 then triggers key steps in
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spore morphogenesis. The “inhibited/poised/active (IPA)”
model for Smk1 activation thereby provides an explanation for
how key steps in spore differentiation take place only after MII
has been completed (16).

This study was designed to investigate how Isc10 inhibits
Smk1. We used a heterologous bacterial expression system,
in vitro biochemical reactions, and Saccharomyces cerevisiae
undergoing meiotic development to show that Isc10 inhibits
Smk1 through two mechanisms. First, a C-terminal segment in
Isc10 specifically inhibits autophosphorylation of Smk1’s
activation loop on Y209. This segment is referred to as the Y
Autophosphorylation Inhibitor motif, or YAI hereafter.
Although the YAI reduces the catalytic activity of Smk1 by
preventing activation loop autophosphorylation, Smk1 that has
not undergone autophosphorylation has a modest level of
catalytic activity and Smk1 bound to the YAI can phosphor-
ylate substrates. We find that Smk1 bound to Isc10 and Ssp2
phosphorylates the Isc10 protein on serine 97. The phos-
phorylated S97 motif in turn prevents Smk1 from phosphor-
ylating Isc10 on other residues. We also find that an Smk1-
Y209F mutant is not inhibited by the pS97 motif, suggesting
that the Y209 hydroxyl plays an essential role in pS97-
mediated inhibition. These findings suggest that once Smk1
undergoes autophosphorylation, it can no longer be inhibited
by Isc10, implying a switch-like role for Isc10 in triggering
activation of the MAPK. Our findings indicate that this switch
operates during yeast meiotic development since expression of
the YAI during meiosis in yeast downregulates Smk1 auto-
phosphorylation. Interestingly, we find that Isc10 also inhibits
the autophosphorylation of the activation loop Y of the
mammalian intestinal cell kinase (ICK1).

Results

A domain in the C-terminal half of Isc10 inhibits Smk1
autophosphorylation

Smk1 autophosphorylation can be studied using a heterolo-
gous bacterial system in which Smk1, Ssp2, and Cak1 are
coexpressed in various combinations (14). In this system, Ssp2 is
required for Smk1 catalytic activity and autophosphorylation of
Smk1’s activation loop tyrosine (Y209). We showed that the
kinase-activating domain (KAD) of Ssp2 is contained in the
C-terminal half (residues 137–371) of Ssp2. In the experiments
described here, we used Ssp2137-371 fused to glutathione-S-
transferase (Ssp2KAD-GST). Cak1, which phosphorylates
Smk1’s activation loop threonine (T207),modestly increases the
Ssp2-dependent autophosphorylation of Smk1 on Y209. The
expression of Isc10 eliminates almost all Y209 autophosphor-
ylation in the presence or absence of Cak1 (16). The inhibition of
Y209p autophosphorylation by Isc10 can be observed in Fig. 1A
(compare the first two lanes in the top image). These findings
reflect the roles of Ssp2, Cak1, and Isc10 in controlling the
activation of Smk1 in meiotic yeast cells (16).

To define the region of Isc10 that inhibits Smk1 auto-
phosphorylation, we assayed deletions in the MBP-Isc10
construct. Removal of residues 1 to 110 from the N termi-
nus of Isc10 (Isc10111-267) had little effect on Isc10’s ability to

inhibit Smk1 autophosphorylation (Fig. 1A, N-end deletions).
Removal of an additional 35 residues (Isc10146-267) reduced the
ability of Isc10 to inhibit Smk1 autophosphorylation (pY209
becomes detectable). Deletion of 21 residues from the C ter-
minus of Isc10 (Isc101-246) did not affect Isc10’s ability to
inhibit Smk1 autophosphorylation, while deletion of an addi-
tional 44 residues (Isc101-203) reduced Isc10’s inhibitory ac-
tivity (Fig. 1A, C-end deletions). These data show that the
Y209 Autophosphorylation Inhibitory (YAI) segment resides
between amino acids 110 and 246 of Isc10. Notably, this
segment of Isc10 contains a region with a relatively high de-
gree of evolutionary conservation across the Saccharomycetes
family while the rest of Isc10 is poorly conserved (Fig. 1B).
Moreover, the AlphaFold program predicts that the conserved
region of Isc10 contains a high confidence secondary structure
while it does not predict significant secondary structural fea-
tures in the rest of the protein (22, 23) (Fig. 1C). The major
secondary structural features within this segment are four
predicted α-helices (labeled pαhs 1–4 in Fig. 1C).

While pαh’s 1 to 3 are highly conserved across Saccha-
romycetes species, pαh4 is not as conserved. We wondered
whether pαh4 is important for YAI activity only in the full-
length Isc10 protein but not in an Isc10 protein lacking the
nonconserved amino-terminal segment. To test this, we
generated a deleted Isc10 protein lacking both pαh4 and the
first 110 nonconserved residues. This segment of Isc10
(Isc10111-203) was almost as effective as the full-length Isc10
protein in inhibiting the autophosphorylation of Smk1 on
Y209 (Fig. 1A, right, N-end + C-end deletants). Moreover,
further deletion of residues 111 to 145 to generate a fragment
of Isc10 that contains only pαh’s 1 to 3 (Isc10146-203) retained
partial YAI activity. pαh4’s importance for YAI activity when
the first 110 residues of Isc10 are present but not when they
are absent might suggest that this segment of Isc10 can modify
the activity of the YAI through pαh4. Irrespective, these
findings show that pαh’s 1 to 3 in the Isc10146-203 are sufficient
for core YAI functionality.

The YAI binds Smk1/Ssp2 through a bipartite-binding domain

To assay the collection of MBP-Isc10 truncated mutants for
binding to Ssp2 and Smk1, we purified the MBP-Isc10 proteins
using amylose beads. Smk1 and Ssp2 that copurified with
MBP-Isc10 in these samples were measured by immunoblot-
ting (bound samples in Fig. 1A). All Isc10 fragments that
inhibited Smk1 autophosphorylation formed complexes with
Smk1 and Ssp2 that were stable to purification. However, some
of the Isc10 mutants that did not fully inhibit Smk1 auto-
phosphorylation also formed complexes with Smk1/Ssp2.
Specifically, while the N-terminal truncated Isc10181-267 pro-
tein did not prevent autophosphorylation, it still formed
complexes with Smk1/Ssp2. This suggests that while the most
N-terminal helix predicted by AlphaFold (pαh1 [residues
155–168]) is required to inhibit Smk1 autophosphorylation, it
is not essential for binding to Smk1/Ssp2 since pαh1 is not
present in the binding competent but functionally defective
deletant. Similarly, while Isc10’s inhibitory activity was
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significantly reduced when 64 amino acids were removed from
the C terminus (the Isc101-203 protein in Fig. 1A), this mutant
and even a mutant lacking 97 C-terminal residues (Isc101-170)
still bound Smk1/Ssp2. These findings suggest that pαhs 2, 3,
and 4, are not required for Isc10 to bind Smk1/Ssp2 since they
are not present in the binding competent but functionally
defective Isc101-170 protein. Indeed, binding was not elimi-
nated from the C-terminally deleted proteins until an addi-
tional 30 residues, which contains the entirety of pαh1, were
deleted from the Isc101-170 protein (generating Isc101-140).
Collectively, these findings suggest that Isc10 binds Smk1/Ssp2
through two separate binding domains (BDs 1 and 2 as shown
in the bottom of Fig. 1B) and that both BDs are required to
inhibit Smk1 autophosphorylation. The data indicate that BD1
is within pαh1 and that BD2 is within the pαh2/3/4 segment
(Fig. 1, B and C). Because pαh4 is not required for YAI
functionality, we speculate that BD2 is within pαh2/3.

BDs 1 and 2 can each bind Smk1 and Ssp2 in the absence of
the other protein

To determine whether BD1 and BD2 can individually bind
Smk1 and Ssp2, MBP fused to Isc10 residues 1 to 170 that
contains BD1 or to Isc10 residues 181 to 267 that contains

BD2, were produced in bacteria that coexpressed Smk1 or
Ssp2. The MBP-Isc10 deletants were purified from bacterial
extracts, and the presence of Smk1 or Ssp2 were tested
(Fig. 1D). These assays show that BD1 and BD2 can each form
complexes with Smk1 or Ssp2 in the absence of the other
protein. Whether these interactions reflect mutually exclusive
(potentially competitive) or simultaneous interactions in the
poised Isc10/Smk1/Ssp2 complex remain to be determined.

The YAI motif inhibits Smk1 autophosphorylation in yeast

We next deleted the first 110 codons from the ISC10 gene in
yeast. Smk1 autophosphorylation was decreased by more than
80% in post-meiotic isc10-Δ110 cells compared to wild-type
(WT) cells (Fig.2A). These results indicate that the YAI is
sufficient to inhibit Smk1 autophosphorylation not only in the
reconstituted bacterial system but also in yeast cells that are
undergoing meiotic development. In addition, these results
show that YAI activity in the isc10-Δ110 mutant is persistent,
even past meiosis II when full-length Isc10 is degraded in WT
cells (16). Consistent with the persistent inhibition of Smk1
autophosphorylation, the isc10-Δ110 mutant formed 50%
fewer spores than an ISC10 control strain when two copies of
an epitope-tagged form of SMK1 (SMK1-HH) were present

A

B

C

D

Figure 1. An evolutionarily conserved segment of Isc10 inhibits Smk1 autophosphorylation. A, extracts from bacterial cells expressing Smk1, Ssp2KAD-
GST, Cak1, and different forms of MBP-tagged Isc10 deleted from the N-end, the C-end, or from both ends as indicated were resolved by electrophoresis
and analyzed by immunoblotting with antibodies directed against pY209, Smk1, GST (Ssp2), and MBP (Isc10) (Total). The residues of Isc10 remaining in each
of the MBP-Isc10 constructs are indicated (MBP-Isc10, above). The ratios of the pY209 to Smk1 immunoreactivity signals were quantified from the upper two
images for each sample and normalized to the ratio of the sample lacking Isc10 which was set at 1.0 (pY209:Smk1, below). A fraction of each sample was
also bound to amylose-agarose beads to enrich for MBP-Isc10 and analyzed with the indicated antibodies (Bound). B, conservation of Isc10 amino acid
sequences across Saccharomycetes. Bar heights and color (brown-low, yellow-high) indicate the extent of conservation. The YAI motif is shown as a gray
rectangle with the bipartite binding domains (BDs) 1 and 2 indicated based on the abilities of Isc10 deletants to bind Smk1/Ssp2. C, prediction of Isc10
structure by AlphaFold with an enlarged view (dotted lines) of the region with the highest confidence structure (in blue). The numbers indicate the first
amino acids in pαhs1-4. D, interaction of BD1 and BD2 with Smk1 and Ssp2. MBP fused to full-length Isc10 (1–267), an Isc10 construct lacking pαhs 2 to 4
(1–170) or an Isc10 construct lacking all of pαh 1 and part of pαh 2 (180–267) were coexpressed with Smk1 (left) or Ssp2 (right). The total soluble extract
(Total) and material that was retained on amylose-agarose beads (Bound) are indicated. The values to the right and left of panels (A) and (D), respectively,
show the positions of molecular weight standards in kDa.
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and 80% fewer spores when one copy of SMK1-HH was pre-
sent (Fig. 2B). These findings genetically connect the meiotic
function of isc10-Δ110 to SMK1. The APC/CAma1 E3 ubiquitin
ligase targets full-length Isc10 for destruction as cells exit MII.
One explanation for the persistent YAI activity in the isc10-
Δ110 strain is that the 1 to 110 interval of Isc10 is required for
its regulated degradation. To address this possibility, the WT
and Δ110 forms of Isc10 were compared at different times
during meiotic development (Fig. 2, C and D). Both the full-
length and deleted forms of Isc10 start to accumulate at 5 h
postinduction, when cells are entering MI. As previously re-
ported, the level of full-length Isc10 declines starting around 8
h postinduction, as cells are completing MII, and is unde-
tectable at 24 h. In contrast, the Isc10-Δ110 protein persists
after MII has been completed, and it accumulates to higher
levels. It has previously been reported that the levels of full-
length Isc10 are similarly increased in postmeiotic cells lack-
ing AMA1 or the core APC/C subunit gene, SWM1 (16).
Taken together, these results suggest that the amino-terminal
half of Isc10 is required for the APC/CAma1-dependent
destruction of Isc10 as cells complete MII.

Full-length Isc10 prevents Smk1/Ssp2 from phosphorylating
trans-substrates while the YAI motif does not

We next examined the effect of full-length Isc10 on Smk1
catalytic output in the bacterial system using phosphospecific
antibodies. These experiments revealed that full-length Isc10
prevents Smk1 from phosphorylating numerous proteins on Y
and T residues (compare lanes 1 and 2 in Fig. 3A). There is an

exception however—a protein that comigrates with MBP-Isc10
(indicated by the arrow) that is immunoreactive with the pT
antibody. We also analyzed these samples by tandem mass
spectrometry (MS). Full-length Isc10 decreased the phos-
phorylation of bacterial proteins by 75%. Isc10 was phos-
phorylated by Smk1 on numerous S and T residues with S97
being the major site of phosphorylation (Fig. 3B and
Supporting Fig. S1). These results show that although Isc10
prevents Smk1/Ssp2 from phosphorylating bacterial proteins,
it does not prevent Smk1/Ssp2 from phosphorylating itself.
The mAb used in these experiments binds pT residues with
high affinity, but it has also been reported to bind pS residues
in some peptides with low affinity. Whether the immunore-
activity of Isc10 shown in the upper panel of Fig. 3A is a
consequence of T residues throughout the protein that the
MS/MS analysis indicates are phosphorylated at a low level,
crossreactivity with pS97, or a combination of both the pT
residues and pS97 has not been determined.

We next tested the phosphorylation of bacterial proteins by
Smk1/Ssp2 in cells that coexpressed the Isc10111-203 or the
Isc10146-203 proteins. Although these “minimal YAI” proteins
are effective inhibitors of Smk1 autophosphorylation (Fig. 1A),
bacterial substrate proteins are still phosphorylated on T and Y
residues (Fig. 3A, lanes 3 and 4). The low Smk1 activity toward
trans-substrates when full-length Isc10 is expressed and high
Smk1 activity toward trans-substrates when only the YAI is
expressed, suggest that a separate motif in Isc10 plays a role in
inhibiting Smk1. The finding that the YAI inhibits autophos-
phorylation of Y209, but not the phosphorylation of Isc10 or
bacterial substrates, suggests that the YAI does not prevent

A C

B D

Figure 2. The YAI inhibits Smk1 autophosphorylation in yeast. A, Isc10-Δ110 inhibits Smk1 autophosphorylation. Cells were collected 8 h after being
transferred to sporulation medium when MII had been completed in >75% of cells as judged by DAPI staining. Smk1 tagged with an HA epitope/His8
cassette (Smk1-HH) was purified using Ni+2 beads and analyzed for autophosphorylation (pY209) or recovery of HA (Smk1) by immunoblot analysis as
shown in the inset (one sample Wilcoxon t test, n = 3, error bars = SD, ***; p ≤ 0.001). B, comparison of sporulation efficiency of strains that were WT at ISC10
(WT) with isc10-ΔN110 strains (ΔN110) in backgrounds that contained two copies of SMK1-HH (+/+) or one copy of SMK1-HH (+/Δ) (Welch’s t test, n = 3, error
bars = SD, n.s.; no significant difference, **; p ≤ 0.01, ***; p < 0.001, ****; p ≤ 0.0001). C, comparison of Isc10-Myc (WT) and Isc10-ΔN110-Myc (Δ110) levels in
cells undergoing meiosis. Extracts prepared from cells collected at the indicated times after being transferred to sporulation medium were analyzed using a
Myc antibody and an antibody that recognizes cyclin-dependent kinases (PSTAIRE antibody) as a loading control. The lower member of the doublet is
Cdc28 and the upper member of the doublet indicated by the asterisk is Pho85. D, quantitation of the data shown in panel (C). DAPI, 40 ,6-diamidino-2-
phenylindole.
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Smk1 from adopting an active kinase conformation. Instead,
the YAI specifically inhibits the autophosphorylation of Smk1
(see Discussion).

Smk1/Ssp2 phosphorylates the Isc10 inhibitor on S97 and the
Ssp2 activator on T199

To study the phosphorylation of Isc10 by Smk1 in a more
defined system, we used a mutant form of Smk1 in which the
“gatekeeper” residue (Q121), that is predicted to limit access to
the ATP-binding pocket of the enzyme, was changed to
alanine (referred to as smk1-as1 hereafter). In control experi-
ments, the smk1-as1 yeast strain formed spores that appeared
indistinguishable from those formed by the WT strain. In the
presence of bulky purine (ATP) analogs, the smk1-as1 strain
showed a smk1Δ-like phenotype (see Experimental proced-
ures). We coexpressed Smk1-as1 with Ssp2KAD-GST and Cak1
in bacteria, purified the Smk1-as1/Ssp2KAD-GST complex by
GSH affinity chromatography, and incubated the purified
Smk1-as1/Ssp2KAD-GST with and without MBP-Isc10 in a
kinase assay buffer containing the as-specific ATP analog N6-
benzyl-ATPγS (6-Bn-ATPγS) (24). Thiophosphates trans-
ferred by Smk1-as1 to substrate were next alkylated with p-
nitrobenzyl mesylate, and the reactions were analyzed by
immunoblot analyses using an antibody that recognizes alky-
lated thiophosphate. These experiments demonstrate that
Smk1-as1/Ssp2 can thiophosphorylate MBP-Isc10 in vitro

(compare lanes 3 and 4 in Fig. 3C). We previously showed that
Smk1/Ssp2 specifically phosphorylates S or T residues in an
extended phosphoconsensus motif, Y-X-P-X-S/T-P (14). S97
in Isc10 is contained in a motif that conforms to this phos-
phoconsensus sequence (Y-I-P-D-S97-P). Moreover, the MS/
MS analysis of Isc10 coexpressed with Smk1, Ssp2, and Cak1
in bacteria showed that the major site of phosphorylation is
S97 (Fig. 3B and supporting information). Mutation of S97 to
alanine eliminated Isc10 thiophosphorylation (compare lanes 4
and 5 in Fig. 3C). These data demonstrate that Smk1-as1/
Ssp2KAD-GST phosphorylates Isc10 exclusively on S97 in the
assay conditions tested. While these data indicate that Smk1/
Ssp2 can specifically phosphorylate Isc10 on S97, these ex-
periments do not address whether the thiophosphorylation
that was observed in these experiments occurred when Isc10
was part of a ternary complex or when Isc10 was unbound (see
later).

During these studies, we noticed that Ssp2-GST was also
thiophosphorylated. Ssp2 has a motif that conforms to the
Smk1 phosphoconsensus except at the -2 position (Y-R-Y-D-
T199-P). To test whether T199 in Ssp2 is phosphorylated,
Smk1-as1/Ssp2KAD-T199A-GST was purified from bacteria
that also expressed Cak1, then analyzed with thiophosphor-
ylation assays. The T199A substitution eliminated detectable
thiophosphorylation of Ssp2 without affecting the phosphor-
ylation of MBP-Isc10 (compare lanes 4 and 6 in Fig. 3C).
Ssp2KAD-GST is present at higher concentrations than Smk1

A

C

B

D

Figure 3. Smk1 phosphorylates Isc10 on S97. A, extracts from bacterial cells expressing Smk1, Ssp2KAD-GST, Cak1, and the indicated segments of Isc10
fused to MBP were analyzed by immunoblotting with pT and pY antibodies. The position of MBP-Isc10 is indicated by the arrow. The asterisk indicates a
bacterial substrate of Smk1 that migrates slightly slower than MBP-Isc10. This protein is not phosphorylated when full-length MBP-Isc10 is expressed (lane 2)
but it is phosphorylated in the absence of MBP-Isc10 (lane 1) or when the YAI is expressed (lanes 3 and 4). These are the same samples that were analyzed in
the rightward panel of Fig. 1A. B, MS/MS analysis of the tryptic peptide of Isc10 containing S97 from bacterial cells producing Smk1, Ssp2KAD-GST, Cak1, and
MBP-Isc10. Of the 565 tryptic peptides detected, 520 were phosphorylated on S97 (either alone or in combination with other phosphorylated residues). The
MS/MS analysis of the entire MBP-Isc10 protein is shown in supporting information (Fig. S1). C, Smk1-as/Ssp2 thiophosphorylation assays. Equal amounts of
MBP-Isc10 or MBP-Isc10S97A were assayed for thiophosphorylation by Smk1/Ssp2KAD-GST (lanes 1–5) or by Smk1/Ssp2KAD-T199A (lane 6) complexes
purified from bacterial cells that were also coexpressing Cak1. The MBP-Isc10 and Ssp2KAD-GST proteins are indicated with arrows. D, equal amounts of MBP-
Isc10 or MBP-Isc101-110 were assayed for thiophosphorylation by Smk1-as/Ssp2KAD-GST. MS, mass spectrometry.
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in the enzymatic preparations used in these experiments.
Therefore, similar to the situation with Isc10, we do not know
if the Ssp2 that is phosphorylated is free or stably complexed
with Smk1 in the holoenzyme. We also do not know whether
Ssp2KAD-GST that has been phosphorylated in bacteria (and is
therefore resistant to the addition of thiophosphate in the
in vitro reactions) is enriched in the Smk1/Ssp2 complex.
Nevertheless, these experiments demonstrate that phosphor-
ylated T199 is not required for Smk1 activity since Smk1/
Ssp2-T199A thiophosphorylates MBP-Isc10 similar to Smk1/
Ssp2.

We next tested whether deletion of the YAI motif influ-
enced the ability of Smk1-as1/Ssp2 to thiophosphorylate Isc10
on S97 using the phosphorylation of Ssp2 on T199 as a con-
trol. For these experiments, identical concentrations of MBP
fused to residues 1 to 110 or full-length Isc10 were incubated
with Smk1-as1/Ssp2KAD-GST and 6-Bn-ATPγS. The products
were then alkylated and measured as aforementioned.
Although the Isc10 construct lacking the YAI is thio-
phosphorylated, the reaction takes place at a substantially
reduced rate compared to the full-length Isc10 construct
(compare lanes 3 and 4 in Fig. 3D). These findings indicate that
the YAI increases the rate of S97 phosphorylation, likely by
tethering Isc10 to the Smk1/Ssp2 complex via BD1 and/or 2
and thereby increasing the local concentration of the S97
phosphoconsensus motif. In summary, the data presented in
this section demonstrate that Smk1 not only phosphorylates
itself (on Y209) but also its activator, Ssp2 (on T199), and its
inhibitor, Isc10 (on S97).

The S97 phosphoconsensus motif prevents Smk1 from
phosphorylating Isc10 on other residues

To gain insight into the role of S97 phosphorylation in
regulating Smk1, MBP-Isc10 carrying nonphosphorylatable
(A) or phosphomimetic (D) substitutions of S97 were pro-
duced with Smk1, Ssp2KAD-GST, and Cak1 in bacteria. The
S97A or D substitutions did not influence the ability of Isc10
to inhibit Smk1 autophosphorylation or the ability of Isc10 to
form stable complexes with Smk1/Ssp2 (Fig. 4A). These data
are consistent with the ability of Isc10 deletion mutants lack-
ing S97 (such as Isc10-Δ110) to bind Smk1/Ssp2 and inhibit
autophosphorylation (Fig. 1A). Since the S97A substitution
eliminated detectable phosphorylation of Isc10 by Ssp2/Smk1
in vitro (Fig. 3C), we expected the S97A substitution to ablate
the phosphorylation of Isc10 in the bacterial reconstitution
system. However, S97A increased the pT immunoreactivity of
Isc10 (compare lanes 2 and 3). This finding suggests that when
Isc10 is bound to monophosphorylated Smk1/Ssp2, that the
S97A substitution increases the phosphorylation of Isc10 on
nonconsensus residues. Consistent with this line of reasoning,
the S97A form of Isc10 was also more immunoreactive with a
pY antibody than WT Isc10. In addition, the S97A substitution
increased the pT and pY immunoreactivity of bacterial pro-
teins. The S97D phosphomimetic mutant also increased the
pT and pY immunoreactivity of MBP-Isc10 and bacterial
proteins, but these increases were modest compared to those
seen in the S97A mutant (compare lanes 3 and 4). Taken
together, these findings suggest that phosphorylation of Isc10
on S97 prevents monophosphorylated Smk1 bound to Ssp2

A B

Figure 4. The S97 phosphoconsensus motif in Isc10 inhibits Smk1 but not Smk1-Y209F. A, extracts from bacterial cells expressing Smk1/Ssp2KAD-GST,
Cak1, and the WT, S97A, and S97D forms of MBP-tagged Isc10 as indicated were analyzed by immunoblotting using pY209, pT, and pY antibodies. Fractions
that bound to amylose beads were analyzed to ascertain whether the indicated mutations influenced the ability of Isc10 to form complexes with Smk1 and
Ssp2 (Bound). Immunoblots were probed with MBP (Isc10), GST (Ssp2), and Smk1 antibodies. B, extracts from bacterial cells expressing Smk1/Ssp2KAD-GST
and Cak1 (left half - WT) or Smk1-Y209F/Ssp2KAD-GST and Cak1 (right half - Y209F) were coexpressed in the absence of MBP-Isc10 (None) or with MBP fused
to WT Isc10 (WT); Isc10-S97A (S97); Isc10-Y93A, P95A (YP); or Isc10-S97A,Y93A, P95A (YP + S97). Total extracts were analyzed by immunoblotting using the
antibodies indicated on the right side of the blot (described in panel A). The asterisk indicates the unidentified bacterial substrate of Smk1 that migrates
slightly slower than MBP-Isc10.
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and Isc10 (P-complexes) from phosphorylating other residues
in the Isc10 protein and bacterial proteins in trans.

To further investigate the role of pS97 in regulating Smk1,
the -4Y and -2P residues in the Y-X-P-X-S/T-P phospho-
consensus were changed to A (referred to as the YP mutant
later), and the YP mutations were combined with the S97A
mutation. The WT or mutant forms of MBP-Isc10 were
coexpressed with WT Smk1, Ssp2KAD-GST, and Cak1, and
phosphorylation was assayed using phosphospecific antibodies
(left half of Fig. 4B [WT]). As expected, the S97A, YP, and
YP+S97A substitutions did not substantially affect the ability
of Isc10 to inhibit Smk1 autophosphorylation (pY209 was
barely detectable—upper panel of Fig. 4B). Like the S97A
mutant, the YP substitutions increased pT and pY immuno-
reactivity of MBP-Isc10 (compare lanes 3–6). The YP + S97A
double mutant was indistinguishable from the YP and the
S97A single mutants. Furthermore, the YP and S97A muta-
tions reduced the electrophoretic migration of MBP-Isc10
(compare the Isc10 signal in lane 3 with the signals in lanes
4–6). These findings suggest that when the S97-
phosphoconsensus motif has been mutated, Smk1 in P-com-
plexes hyperphosphorylates Isc10 on nonconsensus residues.
In addition to the effects on Isc10 phosphorylation, the pS97
motif mutations also increased the phosphorylation of bacte-
rial proteins. This is most easily observed by focusing on the
pT and pY immunoreactivity of the bacterial protein that
migrates slightly slower than MBP-Isc10 in Fig. 4B (indicated
by asterisks—see also Figs. 3A and 4A). Taken together, these
observations indicate that the pS97 motif in Isc10 dampens the
catalytic output of the poised Smk1/Ssp2/Isc10 complex.

Smk1-Y209F is resistant to the inhibitory effect of the pS97
motif

We next examined the ability of Smk1-Y209F to phos-
phorylate the set of MBP-Isc10 phosphoconsensus mutants
(right side of Fig. 4B [Y209F]). Interestingly, although Smk1-
Y209F/Ssp2 is only 30% as active as WT Smk1/Ssp2 in
transferring phosphate to substrates (14), the Y209F substi-
tution increased the pT and pY immunoreactivity of WT
MBP-Isc10 (compare lanes 3 and 8). Thus, the Y209F substi-
tution in Smk1 and the phosphoconsensus substitutions in
Isc10 both increase the phosphorylation of Isc10 on non-
consensus (T and Y) residues (compare lane 8 to lanes 3–6). In
addition, the levels of pT and pY immunoreactivity in the
Smk1-Y209F samples were not increased further when S97
and/or the YP phosphoconsensus residues in Isc10 were
mutated (compare lanes 8–11). Although mono-
phosphorylated Smk1-Y209F is less active than the WT
enzyme overall, it is less discriminating against Y and therefore
has a higher activity for Y-residues (14) (also compare pT and
pY immunoreactivity of lanes 2 and 7). While this might
partially explain the increased pY immunoreactivity of Isc10 in
the Smk1-Y209F samples, it does not explain the increased pT
immunoreactivity of Isc10 or why S97 motif mutations do not
further increase Isc10 pT or pY immunoreactivity (compare
lane 8 with lanes 9–11). One explanation for these data is that

the phosphorylated S97 motif stably interacts with the active
site of Smk1 and that the Y209 hydroxyl, which is absent in the
Y209F mutant, is required for this interaction. If so, modifi-
cation of the Y209 hydroxyl by autophosphorylation might
also render Smk1 resistant to the inhibitory influence of the
phosphorylated S97 motif.

Isc10 inhibits a mammalian CMGC group kinase, ICK

Intestinal cell kinase (ICK), also referred to as ciliogenesis
associated kinase 1 (CILK1), is a member of the ICK/MAK/
MOK family of MAPK-related kinases that are phosphorylated
by the Cak1 homolog from humans (CCRK) and autophos-
phorylate their activation loop Y-residues, similar to Smk1 (25,
26). We expressed the kinase domain of ICK in combination
with MBP or MBP-Isc10 and assayed the autophosphorylation
of its activation loop using a phosphospecific antibody
(Fig. 5A). These experiments showed that the kinase domain of
ICK autophosphorylates its activation loop Y when expressed
in bacteria and that MBP-Isc10 inhibits this reaction. We also
found that ICK and MBP-Isc10 form a stable complex when
coexpressed in bacterial cells (Fig. 5A). In addition, purified
MBP-Isc10111-267 that contains the YAI motif can be used to
affinity purify ICK from complex extracts (Fig. 5B). Together,
these results demonstrate that the YAI motif of Isc10 binds to
ICK1 and inhibits the intrinsic ability of ICK1 to autophos-
phorylate its activation loop.

Discussion

We previously proposed the IPA model to explain how the
activity of Smk1 is coordinated with meiosis (16). In this
model, the SMK1, ISC10, and SSP2 genes are activated by the
middle meiosis-specific transcription factor, Ndt80, as cells
enter MI. Smk1 is phosphorylated on its activation loop T by
Cak1 during MI and the monophosphorylated MAPK interacts
with Isc10 to form heterodimeric I-complexes that disperse
throughout the cell (12, 13). Smk1 in I-complexes is catalyti-
cally inactive during MI not only because it is bound by the
Isc10 inhibitor but because the essential activator, Ssp2, whose
mRNA is translationally repressed, is not present (9, 15, 27,
28). Ssp2 mRNA is derepressed during MII, and the Ssp2
protein then binds Smk1/Isc10 to form heterotrimeric P-
complexes. As MII is being completed, the APC/C E3 ubiq-
uitin ligase is activated by the meiosis-specific coactivator,
Ama1 (29). This leads to the ubiquitylation and subsequent
destruction of Isc10, thus generating Ssp2/Smk1 A-complexes
that autophosphorylate Smk1’s activation-loop Y. The doubly
phosphorylated Smk1 MAPK in A-complexes then triggers key
steps in spore formation (10, 11). The IPA pathway thereby
couples key steps in differentiation (gametogenesis) to the G0
phase of the cell cycle (Fig. 6). The goal of this study was to
elucidate how Isc10 inhibits Smk1.

To understand how Isc10 inhibits Smk1, it is important to
consider the role of Ssp2. Ssp2 activates Smk1 via two motifs
that resemble RNA recognition motifs (RRMs) (30). Both
motifs, termed Kinase Activating RRM-Like motifs (KARLs;
gray ellipsoids in Fig. 6), are required to activate the
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autophosphorylation of Smk1 on Y209. The KARLs can acti-
vate the Smk1-Y209F kinase as well as the WT kinase for
substrate phosphorylation, but Smk1-Y209F/Ssp2 is 30% as
active as WT Smk1/Ssp2 since autophosphorylation increases
catalytic output (14). In the original IPA model, we proposed
that Isc10 prevents one of the KARLs in Ssp2 from binding
Smk1 (16). According to this model, the APC/C-dependent
destruction of Isc10 would allow both KARLs to bind Smk1,
thus promoting an active kinase conformation that undergoes
autophosphorylation. The discoveries that Isc10 contains a
dedicated domain that specifically inhibits autophosphor-
ylation (the YAI) and that Smk1 in P-complexes phosphory-
lates Isc10, were therefore surprising. These new findings have
led to the revised IPA model shown in Fig. 6.

Relevance to activation loop autophosphorylation of CMGC
group kinases

Multiple CMGC kinases have been shown to undergo
autophosphorylation of activation loop Ys (2–6, 31–35). In
many cases, these reactions are thought to be essential for
conversion of the kinase from an inactive to an active confor-
mation. How kinases in the inactive conformation phosphor-
ylate themselves presents a paradox. To explain this paradox, it
has been proposed that kinases can exist in a unique transi-
tional conformation (the prone to autophosphorylate confor-
mation) (1). We previously showed that Ssp2 partially activates
Smk1 even when the activation loop residues are mutated (14).
These findings show that a binding protein can induce an active
conformation in the absence of activation loop autophos-
phorylation. The unphosphorylated Fus3MAPK from yeast can
also be triggered to undergo autophosphorylation of its acti-
vation loop Y—in this case by a fragment of the Ste5 scaffold
protein (36). In addition, DYRK and GSK3ß from humans

autophosphorylate their activation loop Y residues as ribosome
associated intermediates (4–6). These reactions require the
Hsp90/Cdc37 chaperone complex. The p38α MAPK auto-
phosphorylates its activation loop, and this reaction can be
activated by a peptide fragment of TGFß-activated kinase 1
binding protein 1 (TAB1) in response to myocardial ischemia
and other conditions (33, 34, 37, 38). The ability of RRM-like
motifs, peptide fragments of scaffolds and kinases, as well as
chaperones, which do not share obvious sequence/structural
similarities to trigger autophosphorylation of inactive kinases,
suggest that multiple solutions to the autophosphorylation
paradox arose during evolution. These activating mechanisms
could involve increasing the affinity of the MAPK for ATP, the
orientation of bound ATP, or even the flexibility/structure of
the activation loop.

How might Isc10 inhibit the Ssp2-dependent autophos-
phorylation of Smk1? Two models present themselves. In one
model, the YAI prevents autophosphorylation by directly
binding to Smk1’s activation loop. In a second model, the YAI
acts allosterically. Lee et al. have shown that hydroxylation of a
proline near the CMGC/MAPK insert in the DYRK1 and
GSK3ß kinases can allosterically activate the autophosphor-
ylation of activation loop Ys (6). It is possible that the YAI
antagonizes the autophosphorylation of Smk1 by interacting
with the CMGC/MAPK insert. Further studies to identify the
motifs in Smk1 and Ssp2 that interact with the YAI should
shed light on how Isc10 inhibits the autophosphorylation of
activation loops in CMGC group kinases.

Relevance to monophosphorylation and dual-
phosphorylation of MAPKs

The well-studied Erk1 and 2 MAPKs from mammals are so
much more active in vitro when doubly phosphorylated than

A B

Figure 5. Isc10 inhibits the autophosphorylation of mammalian ICK (CILK1). A, extracts from bacterial cells coexpressing the kinase domain of ICK
(residues 1–300) with MBP or MBP-Isc10 were analyzed by immunoblotting using an MBP antibody (Isc10), an ICK antiserum, or a pY antibody as indicated.
Fractions that bound to amylose beads (Bound) and total extracts (Total) are indicated. B, amylose beads bound to MBP or to MBP-Isc10111-267 were
incubated with extracts from bacteria expressing ICK (+) or not expressing ICK (-). Beads were washed, and the bound fractions were analyzed using an ICK
antiserum. MBP and MBP-Isc10111-267 levels were visualized by staining with Coomassie blue as indicated.
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when singly phosphorylated that they can be considered
switches that are in the “on” state only when the enzyme is
doubly phosphorylated (39, 40). While there is little doubt that
dual phosphorylation triggers high level Erk1/2 activity, there
are multiple examples of MAPKs and MAPK-like enzymes
that do not conform to this switch-like paradigm. A prominent
example is Fus3 from yeast, which exists as singly phosphor-
ylated (on either the T or the Y), as well as doubly phos-
phorylated isoforms, following stimulation of cells with mating
pheromone (41). An interesting feature of this pathway is that
although Fus3 is activated by a MAPKK (Ste7) that phos-
phorylates the activation loop T and Y residues in a canonical
MAPK signaling pathway, the Fus3 MAPK can also be trig-
gered to autophosphorylate its activation loop Y by the Ste5
scaffold protein (36). Although the monophosphorylated Fus3
is catalytically active in vitro (25%–30% as active as doubly
phosphorylated Fus3), it downregulates signaling in a

dominant manner in vivo. The data presented here suggest
that a monophosphorylated MAPK can phosphorylate inhibi-
tory motifs that in turn extinguish catalytic activity. Related
interactions may play a role in downregulating other MAPKs
and thereby connect monophosphorylated MAPKs to specific
signaling outcomes in the cell.

Relevance to active site inhibition mechanisms

Isc10 is one of 42 proteins in the yeast proteome that contains
a perfect Smk1 phosphoconsensus motif Y-X-P-X-S/T-P. Our
mutational data show that S97, as well as the -2P and -4Y
phosphoconsensus residues, are important for active site inhi-
bition. We propose that Smk1 bound to Isc10 via the YAI in-
creases the local concentration of the motif and that binding of
Ssp2 then triggers the phosphorylation of Isc10 on S97 (Fig. 6).
We further propose that the pS97motif inhibits the Smk1 active
site by a competitive mechanism for substrates that is likely
enhanced by the slow disassociation of the motif, due to the
interaction of pS97 with Y209 as well as interactions of the -2P
and -4Y phosphoconsensus residues with the substrate-binding
motif of the kinase. We note that a related substrate-trapping
mechanism has been described for the RII regulatory subunit
of protein kinase A, which unlike RI regulatory subunits is
phosphorylated in a single turnover event that traps pyro-
phosphate, magnesium, and the phosphoacceptor in the active
site of the kinase (42). This allows other signals (Ca+2) to trigger
activation of the kinase. Our data do not address the stability of
the S97p motif/Smk1 active site complex, yet in the context of
the Smk1/Ssp2/Isc10 holoenzyme, where the local concentra-
tion of the S97 motif is high, it can inhibit the enzyme.

A caveat of the bacterial coexpression experiments is that
Smk1 is produced at supraphysiological concentrations. The
readout for trans-phosphorylation involves high concentrations
of nonphysiological substrates whose availability and local
concentrations are difficult to assess. It is therefore unclear
whether the pS97-dependent suppression of substrate phos-
phorylation observed in bacteria is relevant tomeiotic yeast cells
where the concentration of the enzyme is lower. Nevertheless,
the concentration of Isc10 relative to Smk1 in the P-complexes
produced in bacteria and meiotic yeast cells are identical, and
these caveats do not influence the interpretation of the Isc10
phosphorylation data. Thus, while our findings demonstrate
that S97p can suppress the phosphorylation of other, presum-
ably nonspecific residues in Isc10, further studies are required to
determine whether pS97 plays a physiological role in sup-
pressing the phosphorylation of other downstream targets in
meiotic yeast cells. The N-terminal 110 residues of Isc10 appear
to play a regulatory role that controls the stability of the protein
(Fig. 2, C andD). One possibility is that the pS97 motif prevents
Smk1 from phosphorylating other residues in the N-terminal
segment of Isc10 that would otherwise interfere with its ability
to be recognized by the APC/CAma1.

On a switch-like model for Smk1/Ssp2/Isc10

Our data indicate that while Smk1 in P-complexes is
inhibited by the S97p motif, the Smk1-Y209F mutant is

Figure 6. The role of Isc10 in the inhibited/poised/active (IPA) model
for Smk1 activation. In this model, Isc10 is bound via the YAI to an inactive
conformation of Smk1 (light gray sphere) during MI. The N-terminal half of
Isc10 is indicated by the curved red line. During MII, Ssp2 binds Smk1/Isc10
through the KARLs (gray ellipsoids) and induces an Smk1 conformation that
is partially active (light green). This change allows Smk1 to phosphorylate
the N-terminal half of Isc10 on S97, which prevents Smk1 from phosphor-
ylating other residues in Isc10 and possibly prevents Smk1 from phos-
phorylating other proteins. At the same time, the YAI specifically prevents
Smk1 from autophosphorylating Y209 (inhibitory arm). The YAI also pro-
motes the pS97/active site mechanism by increasing the local concentration
of the S97 inhibitory motif. As cells exit MII, Isc10 is ubiquitylated by the
APC/CAma1, which leads to the degradation of Isc10, allowing Smk1 to
autophosphorylate Y209, thus generating the doubly phosphorylated, fully
active conformation of Smk1 (dark green).
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resistant to the S97p inhibitory mechanism. This indicates that
the same -OH that is autophosphorylated by Smk1 is essential
for the S97p motif inhibitory mechanism. We speculate that
once Y209 has undergone autophosphorylation, the doubly
phosphorylated enzyme becomes resistant to inhibition by the
S97p motif. If so, the S97p motif mechanism may reinforce the
feed-forward switch-like properties that activate the kinase
upon completion of the meiotic divisions.

Experimental procedures

Bacterial plasmids and coexpression of proteins

Bacterial experiments were carried out with BL-21 DE3
Escherichia coli cells using the plasmids listed in Table 1. The
methods for coexpression of Smk1, Smk1-Y209F, Cak1,
Ssp2KAD-GST, and MBP-Isc10 have previously been described
(14, 16). To generate the N- or C-terminal deletions in Isc10,
fragments containing the Isc10 segments of interest were
generated by PCR and inserted into plasmids pZKB12 and
pZKB6 (Table 1) using the NheI site that is in frame with the
initiator ATG of Isc10 and the NotI site immediately down-
stream of the Isc10 stop codon. Inserts of all plasmid constructs
used in this study were verified by sequencing. Mutations of the
S97, Y93, and P95 residues of Isc10 were generated by site-
directed mutagenesis (NEB quick change). To create ICK
(CILK1) constructs, a fragment encoding the kinase domain
(codons 1–300) was generated by PCR and cloned into the
pACYC-Duet vector using Nde1/KpnI cloning sites to produce
pAR130. MBP alone (from pZK11) or MBP-Isc10 (from pZK6)
were cloned into pAR130 using the NcoI/NotI cloning sites to
generate pAR142 and pAR134.

Yeast strains

All yeast strains used in this study were in the SK1 back-
ground (Table 2). Cells were grown in YEPD (1% yeast extract,
2% peptone, 2% glucose) supplemented with adenine to 40 μg/
ml or SD (0.67% yeast nitrogen base without amino acids, 2%
glucose, and nutrients essential for auxotrophic strains) at 30
�C. Sporulation assays were performed by inoculating vegeta-
tive cells from YEPD into YEPA (1% yeast extract, 2% peptone,
2% potassium acetate) supplemented with adenine to 40 μg/ml
and growing them to a density of 107 cells/ml. Cells were
pelleted by centrifugation, washed, and resuspended in spor-
ulation medium (2% potassium acetate, 10 μg/ml adenine,
5 μg/ml histidine, 30 μg/ml leucine, 7.5 μg/ml lysine, 10 μg/ml
tryptophan, 5 μg/ml uracil) at 1.5 × 107 cells/ml and incubated
in a roller drum at 30 �C.

To construct the isc10-Δ110-13myc strain, the protein
coding segment of isc10-Δ110 was fused to a protein coding
segment of ISC10 tagged at its carboxy terminus with the MYC
epitope followed by the hygromycin B marker and the 30 UTR
region of ISC10 (16).The isc10-Δ110-13myc-HygB-30UTR
fragment was transformed into TPY1011 and TPY1013, which
were backcrossed and crossmated to generate ARY190.

Denaturing Smk1-HH purification

Smk1-HH proteins were purified under denaturing condi-
tions as previously described (43). In brief, 2 × 108 cells were
collected by centrifugation and lysed by the addition of NaOH.
The proteins were precipitated with trichloroacetic acid (TCA)
and resuspended in denaturing buffer (6M guanidine hydro-
chloride, 100 mM NaHPO4, 10 mM Tris-Cl pH 8.0).

Table 1
Plasmids Used in this study

Plasmid Description Source

pJT72 pET-30b + SMK1 (14)
pJT111 pET-Duet-1 + SSP2ΔN137-GST (14)
pJT115 pET-Duet-1 + SSP2ΔN137-GST + SMK1 (14)
pJT122 pACYC-Duet-1 + CAK1 (14)
pJT126 pET-Duet-1 + SSP2ΔN137-GST + smk1-as1 (14)
pJT128 pET-Duet-1 + SSP2ΔN137-GST + smk1-Y209F (14)
pZK6 pACYC-Duet-1 + MBP-Pre-ISC10 (16)
pZK11 pACYC-Duet-1 + MBP-Pre (16)
pZK12 pACYC-Duet-1 + MBP-Pre-ISC10 + CAK1 (16)
pAR29 pACYC-Duet-1 + MBP-Pre-ISC10-S97A This study
pAR30 pACYC-Duet-1 + MBP-Pre-ISC10-S97A + CAK1 This study
pTS2 pACYC-Duet-1 + MBP-Pre-ISC10Y93A,P95A + CAK1 This study
pTS3 pACYC-Duet-1 + MBP-Pre-ISC10S97A,Y93A,P95A + CAK1 This study
pAR36 pACYC-Duet-1 + MBP-Pre-ISC1021-267 + CAK1 This study
pAR37 pACYC-Duet-1 + MBP-Pre-ISC1056-267 + CAK1 This study
pAR38 pACYC-Duet-1 + MBP-Pre-ISC10111-267 + CAK1 This study
pAR39 pACYC-Duet-1 + MBP-Pre-ISC101-246 + CAK1 This study
pAR40 pACYC-Duet-1 + MBP-Pre-ISC101-203 + CAK1 This study
pAR51 pACYC-Duet-1 + MBP-Pre-ISC10146-267 + CAK1 This study
pAR52 pACYC-Duet-1 + MBP-Pre-ISC10181-267+ CAK1 This study
pAR53 pACYC-Duet-1 + MBP-Pre-ISC10214-267 + CAK1 This study
pAR54 pACYC-Duet-1 + MBP-Pre-ISC101-170 + CAK1 This study
pAR55 pACYC-Duet-1 + MBP-Pre-ISC101-140 + CAK1 This study
pAR56 pACYC-Duet-1 + MBP-Pre-ISC101-110 + CAK1 This study
pAR93 pACYC-Duet-1 + MBP-Pre-ISC10181-267 This study
pAR95 pACYC-Duet-1 + MBP-Pre-ISC101-170 This study
pAR71 pACYC-Duet-1 + MBP-Pre-ISC10111-203 + CAK1 This study
pAR72 pACYC-Duet-1 + MBP-Pre-ISC10146-203 + CAK1 This study
pAR97 pACYC-Duet-1 + MBP-Pre-ISC101-110 This study
pAR130 pACYC-Duet-1 + ICK1 This study
pAR142 pACYC-Duet-1 + MBP-Pre + ICK1 This study
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Subsequently, Smk1-HH was bound to nickel beads, eluted in
sample buffer containing 200 mM imidazole, and analyzed by
gel electrophoresis.

Immunoblot analyses

For immunoblot analyses of meiotic yeast, equivalent
numbers of sporulating cells at different time points were lysed
with NaOH, and proteins were precipitated with TCA and
solubilized with 8M urea, as described (44). This protocol
maximizes the extraction of membrane-associated proteins
from TCA precipitates and has been shown to efficiently
extract PSM proteins from sporulation cells. Whole cell ex-
tracts were electrophoresed on 8% polyacrylamide gels and
analyzed by immunoblot analyses with the antibodies
described later. In these experiments, Cdc28, whose levels
remain relatively stable throughout meiosis was monitored as a
loading control.

For immunoblot analyses of bacterial samples, cells were
collected by centrifugation and resuspended to 0.005 A600

units/μl in loading buffer containing SDS and subjected to four
cycles of 30 s boiling/10 s vortexing. Extracts were analyzed by
polyacrylamide gel electrophoresis and Coomassie blue stain-
ing to assure that equivalent levels of total protein were pre-
sent in each case. Subsequently, the extracts were analyzed by
immunoblot analyses with the antibodies described later.

After electrophoresis, proteins were transferred to
Immobilon-P membranes and probed with antibodies. For
detection of proteins expressed in the heterologous bacterial
expression system, rabbit Smk1 (diluted 1:2000) and pY209
(1:2000) antisera, mouse GST (1:500, Santa Cruz Biotech-
nology), MBP (1:10,000, NEB), pT (1:1000, CST), and pY
(1:1000, CST) mAbs were used. All of these antibodies have
been validated for this application in previous studies (14, 16).
For detection of proteins from yeast meiotic samples, mouse
HA.11 (1:2,000, BioLegend) was used to detect Smk1-HH as
previously described (15). Y209p analyses were performed
using Smk1-HH that had been purified using denaturing
conditions as described previously (9). Isc10-13myc was
analyzed with anti-MYC (1:2,000, BioLegend) as described
(16). Mouse PSTAIRE (1:10,000, Millipore Sigma) mAb was
used to detect Cdc28 (faster migrating) and Pho85 (slower
migrating) proteins as loading controls. Horseradish
peroxidase–conjugated antibodies raised against mouse

(1:7500, BioLegend) or rabbit (1:4000, BioLegend) IgG were
used as secondary antibodies and visualized with chem-
iluminescence substrates using a 1:4 dilution of 1:1 mixture of
luminol and H202 (Thermo Fisher Scientific). Western blot
images were captured at various exposures, and images within
the linear range were quantified using ImageJ version 1.53i
(https://imagej.nih.gov/ij/).

Amylose purification of MBP-tagged Isc10 proteins

For purification of MBP-Isc10 proteins, equivalent numbers
of BL-21 DE3 cells were harvested and sonicated four times for
15 s each time in lysis buffer (25 mM Tris-Cl, pH 7.4, 5 mM
MgCl2, 300 mM NaCl, 1 mM DTT, 0.5% NP-40, and 1 mM
PMSF]. Extracts were clarified by centrifugation at 15,000×g
for 10 min at 4 �C. Soluble fractions were incubated at 4 �C
with 80 μl of pre-equilibrated amylose beads (NEB). For
immunoblot analyses, the beads were washed with 10 volumes
of lysis buffer and eluted in 1× SDS buffer containing 10 mM
maltose. For preparing the MBP-Isc10 proteins that were used
in kinase assays, beads were washed with 10 volumes of lysis
buffer, 10 volumes of kinase buffer (20 mM Hepes, pH 7.4,
100 mM KCl, 10 mM MgCl2), eluted in kinase buffer sup-
plemented with 10 mM maltose, and stored in kinase buffer
containing 15% (v/v) glycerol at -80 �C.

Active kinase purification

Ssp2KAD-GST/Smk1-as1 was prepared as previously
described (14). In brief, 1 l cultures of BL-21 DE3 cells
expressing Ssp2KAD-GST and Smk1-as1 from the dual IPTG-
inducible promoters in pJT126 were harvested and sonicated
in lysis buffer (25 mM Tris-Cl, pH 7.4, 5 mM MgCl2, 300 mM
NaCl, 1 mM DTT, 0.5% NP-40 and 1 mM PMSF) with six
rounds of 15 s pulses. The extracts were clarified by centri-
fugation at 30,000×g for 30 min at 4 �C. Soluble fractions were
incubated overnight at 4 �C with 500 μl glutathione agarose
beads (GenScript) that had been preequilibrated in lysis buffer.
The beads were washed with 20 volumes of lysis buffer and 10
volumes of kinase buffer (20 mM HEPES, pH 7.4, 100 mM
KCl, 10 mM MgCl2) and eluted in kinase buffer supplemented
with 20 mM reduced glutathione (Acros Organics), pH 8.0.
Protein concentration was quantitated by electrophoresis and
Coomassie blue staining using bovine serum albumin (BSA) as

Table 2
Yeast Strains Used in this study

Strain Genotype Source

ARY117 MATa/MATα SMK1-HH::LEU2/SMK1-HH::LEU2 (16)
EWY245 MATa/MATα SMK1-HH::LEU2/SMK1-HH::LEU2

ISC10ΔN110::hphMX4/ISC10ΔN110::hphMX4
This study

ARY121 MATa/MATα SMK1-HH::LEU2/SMK1-HH::LEU2
ISC10-13myc::hphMX4/ISC10-13myc:: hphMX4

This study

ARY190 MATa/MATα SMK1-HH::LEU2/SMK1-HH::LEU2
ΔN110-ISC10-13myc::HygB/ΔN110-ISC10-13myc::hphMX4

This study

ARY203 MATa/MATα SMK1-HH::LEU2/smk1Δ::URA3 This study
ARY199 MATa/MATα SMK1-HH::LEU2/smk1Δ::URA3

ISC10ΔN110::hphMX4/ISC10ΔN110::hphMX4
This study

All strains are MATa/MATα diploids in the SK1 genetic background that are homozygous for the following markers: ura3 leu2::hisG trp1::hisG lys2 ho::LYS2. The strains are
histidine auxotrophs that are his4 and/or his3.
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a standard. The kinase complexes were frozen in kinase buffer
containing 15% v/v glycerol at -80oC.

In vitro kinase assays

To generate the analog-sensitive form of Smk1, glutamine
(Q) 121 was changed to alanine (A) (smk1-as1). smk1-as1
yeast formed zymolyase-resistant spores that appeared
indistinguishable from WT spores in sporulation medium
lacked purine analogs. In contrast, the sporulation phenotype
of the smk1-as1 strain was indistinguishable from the smk1-
Δ sporulation phenotype based on microscopic appearance
and zymolyase sensitivity when sporulation media contained
20 μM 1NM-PP1 or 10 μM PPI. The ability of WT cells to
form spores was unaffected by both analogs at all concen-
trations tested. The detailed phenotypic analyses of the
smk1-as1 mutant will be presented elsewhere. To produce
the analog-sensitive form of active Smk1 for enzymatic as-
says, the Q121A mutation was introduced into Smk1 in
the ampicillin-selectable Smk1/Ssp2KAD-GST coexpression
plasmid pJT115 to generate pJT126. pJT126 was cotrans-
formed into BL21-DE3 cells with the chloramphenicol-
selectable Cak1 expression plasmid pJT122. Cultures at 18
�C were induced by the addition of 100 μM IPTG, and the
Cak1, Smk1-as1, and Ssp2KAD-GST coexpressing cells were
harvested 12 to 18 h later and Smk1-as1/Ssp2KAD-GST was
purified using GSH-affinity beads as described previously
(14). Thiophosphorylation of substrates was carried out as
described (45). In brief, the dually phosphorylated Smk1-as1/
Ssp2KAD-GST complex was mixed on ice with substrates
(MBP-Isc10, MBP-Isc10S97A, or MBP-Isc101-110 as indi-
cated). The mixtures were brought to room temperature
(RT) for 5 min and reactions were initiated by the addition
of 6-Bn-ATPγS and ATP (to a final concentration of 10 mM
and 0.1 mM respectively). Reactions were incubated for
30 min at RT and terminated by the addition of EDTA to a
final concentration of 20 mM. Thiophosphates were next
alkylated with 2.5 mM p-nitrobenzyl mesylate for 2 h at RT.
Samples were resolved by electrophoresis, transferred to
membranes, and probed with a rabbit antithiophosphate
ester mAb SD2020 (Novus #NBP2-67738 at a 1:20,000
dilution).

MS

Approximately 100 A600 units of BL-21 DE3 cells
expressing Smk1, Ssp2KAD-GST, and Cak1 with or without
Isc10 were lysed in 700 μl lysis buffer (9M urea, 1 mM
EDTA, 100 mM Tris-Cl, pH8.0, supplemented with PhosStop
phosphatase inhibitors according to manufacturer’s specifi-
cations [Roche]). Cells were sonicated for 20 s for two cycles
with incubation on ice between the sonication steps. The
concentration of the samples was measured by Bradford
assay, and proteins were analyzed by MS at the Wistar
Proteomics Facility. Five micrograms of each sample was
reduced with DTT, alkylated with iodoacetamide, and
digested in-solution with trypsin (1:50 enzyme:protein in 2M
urea). Starting materials and digests were run on SDS gels

and stained with Coomassie blue to confirm trypsin diges-
tion. Digested peptides were purified using Waters SepPak
C18 columns. Digested peptides (1.25 mg) were subjected to
two sequential TiO2 (GL Sciences) purifications to enrich for
phosphorylated peptides. Enriched peptides were analyzed by
LC-MS/MS on a Q Exactive HF mass spectrometer using an
extended 2 h LC gradient. MS data were searched with full
tryptic specificity against the UniProt E. coli (BL21-DE3)
database (7/3/2021) plus the sequences of Smk1, Ssp2, Cak1,
and Isc10, and a common contaminants database using
MaxQuant 1.6.17.0. The false discovery rates for protein,
peptide, and sites identifications were set at 1%. Phosphory-
lation (+79.96633 Da) on S, T, and Y were searched on the
datasets. For quantitation of total bacterial protein phos-
phorylation, the iBAQ intensities of yeast proteins were
excluded from the analysis.

Microscopy

End stage meiotic phenotypes in Fig. 2B were quantitated
by staining cells at 72 h postinduction with 40,6-diamidino-
2-phenylindole. Cells were photographed under wet mount
using a Nikon Optiphot equipped for epifluorescence as
previously described (10). Sporulation efficiency was
analyzed by scoring spore formation in cells that had
completed MII.

Evolutionary conservation analysis

Isc10 protein sequence was compared to sequences in the
NCBI protein database using the blast feature. S. cerevisiae
proteins were excluded from these analyses to remove bias
from the S. cerevisiae–rich Isc10 sequence database. The
NCBI identifier in the retrieved sequences were replaced by
species names and re-sorted with S. cerevisiae Isc10 sequence
as the query (top) sequence for evolutionary relationship
within the Saccharomycetes family guided by the phylogeny
maps (46). The conservation maps were then generated by
using ClustalO (47) and visualized in Jalview2 (48).

Statistical analysis

The statistical analyses were performed in GraphPad
Version 9.4.0 (453) (GraphPad Software Inc). For analysis of
pY209 levels relative to Smk1 in Figs. 2A and 3 indepen-
dently derived values from ImageJ were analyzed. The values
for the WT were set to 100 for comparison between samples.
The one sample Wilcoxon t test was performed to measure
statistical difference between samples. For analysis of spore
formation in Fig. 2B, approximately 50 cells were counted for
each sample in three biological replicates, and the data were
plotted and analyzed for statistical difference by Welch’s t
test (www.graphpad.com). For the immunoblot analyses in
Figs. 1, 2C, 3A, and 4, at least two independently derived
transformants were assayed with all the antibodies indicated.
All of the experiments in Figs. 2, A and B, and 5 were
repeated at least three times.
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