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Chronic joint pain (CJP) is among the significant musculoskeletal

comorbidities in sickle cell disease (SCD) individuals. However, many

healthcare professionals have di�culties in understanding and evaluating it. In

addition, most musculoskeletal evaluation procedures do not consider central

nervous system (CNS) plasticity associated with CJP, which is frequently

maladaptive. This review study highlights the potential mechanisms of CNS

maladaptive plasticity related to CJP in SCD and proposes reliable instruments

and methods for musculoskeletal assessment adapted to those patients.

A review was carried out in the PubMed and SciELO databases, searching

for information that could help in the understanding of the mechanisms

of CNS maladaptive plasticity related to pain in SCD and that presented

assessment instruments/methods that could be used in the clinical setting by

healthcare professionals who manage chronic pain in SCD individuals. Some

maladaptive CNS plasticity mechanisms seem important in CJP, including the

impairment of pain endogenous control systems, central sensitization, motor

cortex reorganization, motor control modification, and arthrogenic muscle

inhibition. Understanding the link betweenmaladaptive CNS plasticity and CJP

mechanisms and its assessment through accurate instruments and methods

may help healthcare professionals to increase the quality of treatment o�ered

to SCD patients.

KEYWORDS

musculoskeletal pain, symptoms assessment, red cell disorders, practical reasoning,

evidence-based medicine
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Introduction

Sickle cell disease (SCD) is a set of hereditary diseases

caused by substituting glutamine acid for valine at the

sixth position of the hemoglobin β chains, which leads

to the presence of hemoglobin S (HbS). Conditions such

as low oxygen concentration, hypovolemia, and others can

precipitate the structure twisting of HbS molecules fibers

forming the sickle-shaped red blood cell membrane causing

vaso-occlusive crises, which are the main reason for pain

complaints in this population throughout life (1). The pain

in SCD individuals can be acute or chronic and can emerge

from nociceptive, inflammatory, and neuropathic mechanisms

(2). SCD pain syndromes are classified as intermittent,

persistent pain between vaso-occlusive crises and chronic pain

complications (3).

Among the chronic pain complications, chronic joint pain

(CJP) is a common condition in SCD that may also be associated

with several musculoskeletal problems such as osteomyelitis,

dactylitis, arthritis, and osteonecrosis both in adult and pediatric

individuals (4–6). These chronic pain complications have a

higher incidence in SCD and play an additional role in chronic

pain generation (4, 5). The CJP may be focal when involving a

single joint or multifocal when involving more than one joint

(7). However, to date, few studies demonstrate the influence

of maladaptive plasticity in the central nervous system (CNS)

in the maintenance of CJP in SCD individuals, although these

individuals have chronic pain with nociceptive, neuropathic, and

possible nociplastic pain characteristics (8, 9). The presence of

central sensitization, for example, is related to more episodes

of pain crisis and frequent hospitalizations (10). Of utmost

importance, few studies were developed explicitly for CJP

in SCD.

The poor correlation between structural lesions, the

intensity of self-reported pain (11), and the diffuse nature of the

symptoms make CJP assessment a challenge for clinicians and

healthcare professionals. In general, healthcare professionals

have poor knowledge about pain neuroscience mechanisms

(12) and reliable ways of assessing it (13, 14). This poor

knowledge goes against the International Association Study of

Pain (IASP) recommendation in the declaration of the Montreal

meeting, which highlights that all people with pain have the

right to have access to appropriate assessment and treatment

of the pain by adequately trained healthcare professionals

(15). Thus, considering the potential relation between CJP

and central maladaptive plasticity in SCD individuals and

the deficit in healthcare professionals’ knowledge about pain

neuroscience mechanisms and pain assessment, this review

aims to highlight the mechanisms of CNS maladaptive

plasticity that might be related to CJP in SCD and propose

a battery for reliable musculoskeletal assessment adapted to

those patients.

Method

This review was carried out in the PubMed and SciELO

databases, searching for information that could help in

the understanding of the mechanisms of CNS maladaptive

plasticity related to pain in SCD and that presented assessment

instruments/methods that could be used in the clinical setting

by healthcare professionals who manage chronic pain in SCD

individuals. There was no limit placed on the publication year,

and the searching was carried out through a combination of

keywords such as Sickle Cell Disease and Joint Pain or Chronic

Pain or Pain Assessment or Central Sensitization Evaluation or

Painful Movement Assessment, Chronic Joint Pain and Cortical

Reorganization or Arthrogenic Muscle Inhibition or Chronic

Inventory Central Sensitization or Quantitative Sensory Test or

Clinical Evaluation. In addition, the reference list of papers also

was searched.

Chronic joint pain in SCD: An
overview of the problem

International Association Study of Pain defines pain as “An

unpleasant sensory and emotional experience, associated with,

or resembling that associated with, actual or tissue damage” (16).

Pain plays a vital role in the organism’s defense reaction to a

hostile environment, and evidence of this is that in individuals

with pain insensitivity, injuries are not perceived as such,

decreasing life expectancy (17). On the other hand, chronic

pain is persistent beyond 3–6 months, has no functional role,

and is responsible for rendering dysfunctional several biological

systems (18). In SCD, the constant joint tissue injuries secondary

to the vaso-occlusive crisis are critical in developing chronic

joint pain.

Primary afferent nociceptors richly innervate the joint in

their capsule and synovium (19). These fibers are mostly

from types Aδ and C and can be classified into two types:

(a) True nociceptors; (b) Silent nociceptors. True nociceptors

respond to mechanical nociceptive stimuli even in non-

pathological conditions. As for the silent nociceptors, to respond

to this type of stimuli, they must be primarily sensitized

by inflammation-inducing aggressors (19, 20). The primary

afferent nociceptors have on their membranes a wide variety

of transient receptor potential ion channels that are responsible

for the transduction of a wide variety of noxious stimuli arising

from high magnitude mechanical, thermic, or chemical origins

(21, 22). The nervous system sensitization occurs basically by

neurogenic inflammation, mast cell activation, N-methyl-D-

aspartate (NMDA) receptors activation, and glial activation

(1, 2), which play an important role in the maintenance and

subsequent pain chronicity in SCD individuals.
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After joint tissue injury, the pro-inflammatory mediators

such as bradykinins and prostaglandins interact with receptors

or transient receptor potential vanilloid type 1 (TRPV1)

of nociceptive fibers and sensibilize them to augment their

response to a noxious stimulus (2, 22). Once activated,

the nociceptors release peptides and neurotransmitters such

as calcitonin gene-related peptide and substance P, which

further contribute to the inflammatory response, causing

vasodilation, swelling, and mast cell activation. Mast cells

act by degranulation of histamine, which further sensibilize

nociceptors (23). Interestingly, serum levels of substance P

are increased in SCD individuals during the vaso-occlusive

crisis and baseline state (24) and have been associated with

to use of hydroxyurea (25). This cascade of biochemical

events lowers the activation threshold of true nociceptors

and recruits previously unresponsive silent nociceptors, which

induce hyperalgesia and allodynia in joint pathologies in SCD

individuals (26).

N-methyl-D-aspartate receptors are involved in the long-

term potentiation process and are a crucial player in the

chronicity of pain (27). At the spinal cord level, the constant

nociceptive information arrives in the dorsal horn and provoke

the release of glutamate neurotransmitter in presynaptic

terminals that interacts with NMDA receptors post-synaptic

(3). When NMDA receptors are activated, the nitric oxide

is synthesized in the presynaptic terminals, increasing the

expression of voltage-gated Ca2+ channels mainly responsive

to P substance and glutamate (3). Concurrently, glial activation

releases pro-inflammatory cytokines and more glutamate in this

synaptic environment (1, 3). Thus, these series of intracellular

signaling cascades augment and facilitate the transmission of

nociceptive information.

These nociceptive information reaches higher encephalic

areas, such as Rostral Ventromedial Medulla (RVM),

Periaqueductal Gray Matter (PAG), thalamus, amygdala,

anterior cingulate cortex, somatosensory, prefrontal, and

motor cortices (28, 29) that process and modulates the

nociceptive information. However, nociceptive modulation

can occur before reaching the thalamus and other brain

structures (30). Once that nociceptive information reaches

the thalamus, it processes it and redirects it to cortical areas

of the primary and secondary somatosensory cortex through

thalamocortical and thalamus-amygdala connections (29).

The PAG, in turn, receives inputs from these superior centers

and sends them to the RVM medulla, which through axonal

fibers of “on” and “off” cells, modulate neuronal activity,

facilitating or inhibiting the transit of nociceptive information

in the dorsal horn of the spinal cord both presynaptic

and post-synaptic (30, 31). This complex endogenous

mechanism forms a pain processing and control system,

often presenting a maladaptive function in chronic joint pain

(Figure 1).

Maladaptive CNS plasticity
mechanisms and ways to evaluate it

Dysfunction of descending inhibitory
control in CJP

Central nervous system has various ways of inhibiting

the input of pain information to higher processing centers.

Descending inhibitory control is a mechanism of diffuse

pain inhibition. Studies with conditions of CJP similar to

SCD, such as hip and knee osteoarthritis, showed that

the descending inhibitory control dysfunction might be an

important triggering factor for central sensitization and chronic

pain (32). Although some studies have found no consistent

results about dysfunctions of descending inhibitory control in

adult SCD individuals (10, 33), neuroimage data from another

study with adult SCD individuals showed that there is an

increased resting-state functional connectivity between the PAG

and cerebellum in SCD individuals (34) which can affect RVM’s

“on” and “off” cells activity. In pediatric SCD individuals,

the dysfunctions of the descending inhibitory control are few

explored, but data from non-SCD individuals has shown that

deficient endogenous pain inhibition can stem from painful

experiences during infancy (35, 36). Therefore, these data make

us think that the function of the descending inhibitory control

system in SCD still needs to be better understood and evaluated

in the clinical context.

One of the traditional ways of assessing descending pain

inhibitory system is through the paradigm of Conditioned Pain

Modulation (CPM), previously known as “counter-irritation,”

“pain inhibits pain,” and “heterotopic noxious conditioning

modulation,” and “diffuse noxious inhibitory control”(37).

This phenomenon is activated after a set of intense and/or

noxious stimuli, making it a protective endogenous response to

aggression. The evaluation of descending inhibitory control by

the CPM method should be recommended for SCD individuals

due to the malfunctioning of this mechanism is closely related

to the persistence of joint pain in musculoskeletal conditions

such as osteoarthritis and temporomandibular dysfunction (32,

38, 39) (Figure 2). However, clinicians should be aware that the

long-term pain, and the use of opioid agents can result in a

reduced response of CPM scores (40).

In CPM assessment, a pressure threshold meter for applying

painful mechanical stimulus in the thenar region of the non-

dominant hand has a good coefficient of intra-session reliability

(ICC >0.75). It seems to be a reliable method for performing a

Painful Stimulus Test (PST). The pain caused by the mechanical

stimulus must be of moderate intensity (41, 42). In turn, the

Painful Conditioning Stimulus Test (PCST) can be done with

cold or hot water. However, the immersion of the dominant

hand in a water vessel with a temperature of 46.5◦C has a

good Intraclass Correlation Coefficient (ICC = 0.79) (42) and
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FIGURE 1

Schematic drawing of the peripheral sensitization, processing, and nociceptive modulation in joint pain: After a noxious stimulus in the joint, the

TRP channels in true nociceptors transduce the nociceptive information and lead it to second-order neurons in the spinal cord. In addition,

when there is a joint injury, a massive release of the pronociceptive chemical substances in/by free nerve endings promotes a depolarization

threshold decrease and an increase in firing frequency rate in both true and silent nociceptors and mechanical receptors. The nociceptive

information reaches the CNS, which processes and modulates it through brain networks and the PAG-RVM system. Specifically, in SCD patients,

there is increased functional connectivity in areas such as PFC, ACC, M1, SI, and SII cortices. Abbreviations: ACC, anterior cingulate cortex; Amy,

amygdala; CGRP, calcitonin gene-related peptide; Ins, insula; M1, primary motor cortex; PAG, periaqueductal gray matter; PFC, prefrontal

cortex; RVM, rostral ventromedial medulla; SI, primary somatosensory cortex; SII, secondary somatosensory cortex; Tha, thalamus; TRP,

transient receptor potential.

Frontiers inMedicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.679053
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lopes et al. 10.3389/fmed.2022.679053

FIGURE 2

Schematic drawing of the conditioned pain modulation assessment: CPM can be assessed in three steps in the clinical setting. (1) A PST is made

in the non-dominant side of the body (usually the thenar eminence). (2) After a su�cient period so that the pain caused by the PST has ceased, a

PCST is made in a heterotopic region distant from the initially stimulated region and preferably on the contralateral side of the body, lasting 1

minute. (3) The PST is again applied immediately after or concomitantly to a PCST. Abbreviations: CPM, conditioned pain modulation; PST,

painful stimulus test; PCST, painful conditioning stimulus test.

is more recommended in the SCD context because it can

avoid a vaso-occlusive crisis during the evaluation. Using a

thermometer to verify the heat dissipation and ensure the ideal

temperature during immersion and using the same kilograms-

force generated by the pressure threshold meter during the PST

before and after the PCST may decrease potential measurement

biases (41, 42).

The quantification of the CPM can be made according to the

following equation:

CPM = piPST1− piPST2

Where piPST1 corresponds to the pain intensity caused by the

first painful stimulus test and piPST2 pain intensity caused by

a second painful stimulus test. A positive result indicates the

presence of a preserved descending inhibitory control, while a

negative result indicates the opposite (42).

Central sensitization in CJP

Previously, the term “centralized pain” was often used

to classify the pain experienced by patients with central

sensitization. However, this term was not part of recognized

by the IASP. Following the proposition of a research group

(43), an IASP force task recently added a new pain term called

“nociplastic pain” into the list of taxonomic definitions for pain

(44), even though it caused a comprehensive discussion related

to its real need and the best way for it to be defined (45–47). This

new term proposes to differentiate the “pain that arises from

altered nociception, despite there is no clear evidence of actual

or threatened tissue damage that causes peripheral nociceptor

activation or evidence of disease or injury to the somatosensory

system that causes pain” from those kinds of pains typically

classified only as nociceptive or neuropathic.

The central sensitization mechanisms involve the

perpetuation of joint pain that can be favored by poor

descending inhibitory control, which over time causes

phenotypic alteration of Aβ fibers specialized in conducting

non-painful stimuli (30). In addition, nociceptive information

is not properly inhibited in the dorsal horn of the spinal cord

and advances freely until it reaches higher areas of the nervous

system, causing a central sensitization of multiple structures

(48). Central sensitization of multiple structures involves a

maladaptive change of important anatomic/functional networks

that process information in all pain dimensions, i.e., sensory,
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emotional, and cognitive (49). Due to the important role in pain

processing, these anatomic/functional networks are called the

pain connectome (49).

In conditions of chronic non-SCD pain, the default mode

network (DMN), the salience network (SLN), the sensorimotor

network (SMN), and the antinociceptive system are connectome

strongly affected by central sensitization (49, 50). The DMN

includes the medial prefrontal cortex, posterior cingulate cortex,

precuneus, and lateral parietal cortices and is activated in a

resting state of the mind when the individual is instructed not

to think about anything specific (49). Next, SLN comprises

the bilateral insula cortices, anterior cingulate cortex, and

middle cingulate cortex and is activated by salient stimuli that

stand out from the environment (e.g., nociceptive stimulation

caused by the movement of an inflamed joint) (51). The

SMN includes bilateral primary and secondary somatosensory

cortices, primary motor (M1) cortex, and the supplementary

motor area (SMA) and is involved in the descriptive sensory

processing of pain (51). Finally, the antinociceptive system

comprises the PAG and RVM, which, as previously discussed,

are core structures involved in pain modulation (49). This

pain connectome is dynamic due to the capacity to generate

connections within and between themselves (49).

In SCD individuals with chronic pain, some studies

using functional Magnetic Resonance Image (fMRI) alone

or coupled with Electroencephalography (EEG) have found

a maladaptive change in the pain connectome (34, 51–

53). Their results showed that SCD individuals with high

levels of pain and hospitalizations had an increased resting-

state functional connectivity between SLN, DMN, and SMN

structures (e.g., dorsal anterior cingulate cortex and the

right precuneus, secondary somatosensory cortex, and the left

precuneus, inferior parietal lobule and the middle cingulate

cortex, right posterior cingulate cortex and the right primary

somatosensory cortex) when compared with individuals with

low levels of pain and hospitalizations (52). SCD individuals

also presented hypoconnectivity of SMN structures (i.e., motor

cortex) compared to healthy controls and between other regions

outside of the SMN, such as the dorsolateral prefrontal and

parietal cortices (51). In addition, this same study found that

SCD increased functional connectivity between DMN and

SLN structures (e.g., precuneus/ posterior cingulate cortex

and temporal regions) (51). Finally, studies comparing SCD

individuals and healthy controls found changes in functional

connectivity of the PAG (a core structure of the antinociceptive

system) (34, 53). Functional connectivity between the PAG

and the anterior cingulate cortex (a structured core of SLN)

is decreased in SCD patients when compared to healthy

individuals but increased between the PAG and several cortical

regions that play functions of sensory processing, motor

processing/executive function, emotion and memory/learning

when SCD patients were compared with those without

pain (53).

The sensitization of the pain connectome may be associated

with multiple musculoskeletal and non-musculoskeletal

symptoms found in individuals with severe chronic pain. These

include decreased pain threshold, expansion of pain receptive

field to further regions unrelated to pain, interpretation of

non-painful stimuli as painful, photophobia, bowel diseases,

and sleep, attention, and mood-altering (54, 55). The emergence

of these phenomena may trigger the change of the clinical status

from a musculoskeletal disease to a multi-systems disease.

Typically, those symptoms are under-evaluated by clinicians

and are not related to the presence of persistent pain. However,

these aspects are essential as they help in decision-making and

prediction of patient outcomes, as evidenced by a study that

showed that individuals with central sensitization due to chronic

pain secondary to osteoarthritis of the knee are five times more

likely to have pain refractory to surgical treatment of total knee

arthroplasty (56). In SCD individuals, central sensitization

has been associated with increased vaso-occlusive crises, poor

sleep quality, and psychosocial disorders (10). For this reason,

this should be considered during the evaluation since this is

probably one of the main causes of refractory joint pain (57).

Sensitivity hyperphenomena, such as allodynia or

hyperalgesia to thermic and vibratory stimuli, and mechanical

and thermal temporal summation, have been associated with

central sensitization in non-SCD individuals with chronic pain

(57). These sensitivity deficits are also found in pediatric SCD

individuals, among lower mechanic pain, cold pain, heat pain,

thermal detection thresholds, and heat pain tolerance (58). In

addition, studies with adult SCD individuals showed that they

also present sensory alterations expressed by a higher intensity

of cold pain, heat pain, thermal temporal summation, and

mechanic pain is found in compared with healthy controls

(33, 59).

Some methods are essential in evaluating central

sensitization/nociplastic pain characteristics in clinical and

research settings because they can help evaluate whether CJP

in SCD is influenced and/or supported by central sensitization.

The central sensitization inventory (CSI) is an evaluation

instrument that, although non-specific to SCD, is highly

recommended to be used in clinical practice in the SCD context

(54). The CSI is divided into two parts, A and B. In part A,

25 descriptive alternatives of multidimensional symptoms are

associated with central sensitization. Each alternative has a score

varying from zero (never) to four (always), with a maximum

total score of 100 points. In part B, 10 alternative clinical

conditions are recognized as central sensitivity syndromes (CSS)

(60). The cut-off at 40 points has excellent levels of sensitivity

(81%), specificity (75%), positive predictive (2.93), and negative

predictive value (0.52) to recognize central sensitization (60).

However, despite these good diagnostic accuracy values, the

CSI still needs to be validated in SCD individuals, and its

results should be interpreted with caution. Due to the need for

severity ratings of central sensitization, a 10-point classification
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with severity intervals was created, consisting of the following

categories: subclinical (≤29), mild (30–39), moderate (40–49),

severe (50–59) and extreme (≥60) (61). This severity rating

allows better utilization of CSI in clinical practice and may help

as a parameter of the therapeutic response. This instrument has

been culturally translated and validated in several languages

(62, 63).

Quantitative sensory tests (QST) are another way to

assess central sensitization (10, 57, 64). All systematic sensory

evaluations that allow quantified responses can be viewed as

a QST. However, a set of QST (mechanical, thermal, and

vibratory) was standardized to evaluate the integrity of the

somatosensory system and to guarantee the accuracy and

reproducibility of the findings (65). QST protocols consider

several sensory parameters, as well as biological aspects ranging

from body temperature to trophic changes in the musculature

(64, 65). However, although QST protocols can be performed in

both bedridden and non-bedridden individuals, their complete

execution is time-consuming and can be impracticable in some

clinical contexts. In this context, there are some attempts

to validate a bedside QST as a low-cost and time-efficient

alternative (66, 67).

The bedside QST can be easily applied in clinical routine,

and its execution does not require a large training time.

Studies showed that bedside QST protocol using low-cost

equipment could be used in each step of the sensory assessment

procedure, such as (a) 3 cm² metal coin/piece with 22◦C or

37◦C (cold/warm detection thresholds); (b) cotton wool/Q-tip

(mechanical detection threshold); (c) tuning fork (vibration

detection threshold); (d) 10-ml syringe sealed or toothpick

(mechanical and pressure pain threshold); (e) glass vial filled

with hot water 40◦C or metal pieces with 45◦C (heat pain

threshold); (f) ice cubes in a plastic bag or metal piece with

8◦C (cold pain threshold); (g) toothpick (temporal summation)

(66, 67). However, the correlation between bedside QST and

standard QST protocol is variable and impacted by the expertise

of a healthcare professional.

A study proposed three steps of a decision tree that

helps clinicians to interpret the findings of QST evaluation of

mechanical detection threshold (Aβ fibers), cold pain (Aδ fibers),

and heat pain (C fibers), specifically in SCD individuals (8). In

the clinical setting, QST stimuli should be evaluated in both

painful and non-painful sites. In the first step, if all QST findings

are negative, the clinical interpretation must be that there is

no central or peripheral sensitization. In the second step, if

mechanical stimuli findings in the non-painful site are positive,

then the clinical interpretation must be that there is central

sensitization. In the third step, if cold or heat pain is present in

the painful site and these same painful stimuli result negative

in the non-painful site, then the clinical interpretation must be

that there is peripheral sensitization. Finally, the decision tree

proposes that if all three steps result in negative findings, then

the interpretation must be that there is mixed pain (8).

The safety of the QST protocol in the clinical setting

has been previously tested in subjects with SCD, and

there was no perpetuation or worsening of pain after its

application (8). However, attention is necessary because data

show that after QST testing in SCD patients, there are

changes in pro-inflammatory biomarkers such as increased

levels of Interleukin 6 (IL-6), substance P, and tumor

necrosis Factor-alpha (TNFα) (33). In SCD, the thermal

pain threshold (TPT) to cold <17.01◦C and heat <43.91◦C

are indicative of impaired nerve sensitivity, and pressure

pain threshold (PPT) <4.42 g is indicative of the existence

of altered sensory function (68). Thermal pain threshold

(TPT) assessment with temperature in 32◦C baselines and

an increasing/decreasing temperature at a rate of 1.5◦C/s is

used in clinical settings (ICC >0.55) (69). In cases of non-

SCD pain, specifically osteoarthritis of the knee, the PPT

increasing pressure at a rate of 0.5 kgf/s has a good diagnostic

reliability value varying according to the evaluated joint site

(ICC: 0.64–0.73) (70).

Finally, another way of assessing central sensitization in

individuals with SCD uses its typical clinical criteria checklist

(71) developed by a consensus of experts. Although this

checklist is non-specific to SCD individuals, it is also useful for

clinicians and healthcare professionals because it helps identify

signs and symptoms characteristic of central sensitization,

such as pain disproportionate to injury, disproportionate

aggravating/easing factors, and psychosocial symptoms, and

diffuse palpation. These discriminative items indicate the

presence of central pain sensitization with excellent accuracy

values (sensitivity 91.8%, specificity 97.7%, positive predictive

value 91.8, and negative predictive value 97.7) (72). Thus, using

these instruments during the evaluation of SCD individuals

with CJP may help in the more precise knowledge of

the mechanism underlying the patient’s pain. This clinical

criteria checklist provides a basis for better clinical decision-

making and possibly less chance of non-adherence to the

proposed treatment.

Motor control modifications and cortical
reorganization in CJP

In the face of pain, the neuromusculoskeletal system

undergoes adaptive motor modifications that affect motor

control and joint mechanics. These modifications have been

studied over time due to the importance of their understanding

for both clinicians and researchers. Therefore, one theoretical

model (73) was established to clarify the interaction between

pain and motor control changes making the following

propositions: Firstly, the adaptation of the motor control to pain

is a consequence of the redistribution of the activity within and

between muscles. Secondly, the change in mechanical behavior
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initially has a protective function of preventing further pain or

injury. However, in the long term, it involves changes in various

levels of the nervous system, which lead to increased joint load,

decreased mobility, and variability of movement and muscle

weakness (73).

In the presence of CJP, motor and sensory primary cortical

reorganization are associated with motor control impairment.

This cortical reorganization has been demonstrated in

non-SCD adult individuals with low back pain (74, 75),

chronic lateral epicondylalgia (76), osteoarthritis of

the knee (77), and chronic patellofemoral pain (78),

but there is no study with pediatric individuals. This

cortical reorganization is expressed through the overlap

(i.e., blurring) or retraction in the areas of somatotopic

representation of the motor homunculus. The greater the

cortical reorganization, the greater the perpetuation of the

pain (77).

The intracortical inhibitory system, modulated by tonic

GABAergic activity, plays an important role in the development

of cortical somatotopic representations. This specific function

is due to mechanisms that differentiate cortical efferent motor

actions, either by facilitating muscle activation during a

motor task or by inhibiting undesirable muscular activations

(79). Although changes in intracortical inhibition are not a

consensus (80), intracortical inhibitory dysfunction mediated by

GABAergic connections has been demonstrated in individuals

with chronic pain (81) through Transcranial Magnetic

Stimulation (TMS), a technique that has been often used to

assess cortical connectivity.

Transcranial magnetic stimulation also allows the evaluation

of muscles’ cortical representations through cortical mapping.

Briefly, cortical mapping through TMS is made using a set

of pulses with intensity fixed in accord with a percentage

of the maximal stimulator output (82). This set of pulses

FIGURE 3

Schematic drawing of the measures of motor cortical excitability with tms and mapping of motor cortical representation in joint pain condition:

Using TMS, Motor Cortical Excitability can be expressed by corticospinal (MEP) and intracortical measures (ICF, IIC, and }CSP). In the CJP, the

CSP, SICI, and MEP are decreased, and the SICF is increased compared to the healthy condition. The Standard Motor Cortical Representation in

the presence of pain can classically be changed into two possible basic forms. (1) An Overlapping of the Motor Cortical Representation adjacent

to that a�ected by pain; (2) A Retraction of the Motor Cortical Representation a�ected by pain and an increase in the adjacent representation.

}CSP is obtained only when the assessment is made during a muscle contraction. Abbreviations: CSP, cortical silent period; SICF, short-interval

intracortical facilitation; SICI, short-interval intracortical inhibition; MEP, motor evoked potential; TMS, transcranial magnetic stimulation.
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should be applied at various scalp sites using a figure-of-

eight coil and a spatial coordinate system referenced to the

vertex (83), and the amplitude of MEPs evoked in contralateral

muscles is measured (82). However, although the assessment

of cortical mapping through TMS can be useful in clinical

settings, there are no studies evaluating its diagnostic reliability

(Figure 3).

In SCD individuals, CJP is possibly associated with

maladaptive motor behavior and cortical representation changes

due to their chronic and disabling pain (7). The changes

in functional connectivity of the structures are involved in

the descending inhibitory control of nociceptive information

in individuals with SCD (34) and can be associated with

intracortical inhibition (84). Thus, although TMS evaluation

is not specific to SCD individuals, clinicians and healthcare

professionals should be used to investigate these possible

cortical alterations both in adult and pediatric SCD individuals

with CJP.

Arthrogenic muscle inhibition and CJP

It is common that after joint injuries, there is the presence

of weakness in the adjacent involved musculature. The possible

cause for this muscle weakness is the presence of a central

reflex inhibition that can provoke a failure to fully recruit the

motor units and/or a suboptimal firing of the motor units that

are recruited (85), preventing the complete activation of the

surrounding musculature to the injured joint during a maximal

voluntary muscular contraction. This phenomenon has been

called Arthrogenic Muscle Inhibition (AMI) (86).

Arthrogenic muscle inhibition can be interpreted as

a mechanism of physiological protection to prevent new

lesions and potentiation of tissue repair (87). However,

AMI may persist for several months or even years

after injury (88). This persistence may compromise the

rehabilitation process by negatively impacting strengthening

protocols, thus, contributing to injury progression and

FIGURE 4

Schematic drawing of the arthrogenic muscle inhibition evaluation by central activation rate and interpolated twitch technique: Although the

knee joint is the most evaluated with the CAR and the ITT methods, their methodological simplicity allows the assessment of AMI to be also

used in other joints (e.g., the hip joint in the figure above). The quantification of the evaluation can be done using specific mathematical

formulas for each method. a. stimulus-evoked torque at rest; b. voluntary torque at the time of stimulus delivery; c, peak torque evoked due to

the electrical pulse. Abbreviations: AMI, arthrogenic muscle inhibition; CAR, central activation rate; ITT, interpolated twitch technique.
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TABLE 1 Summary of the main central nervous system maladaptive changes, assessment methods, clinical interpretation, and diagnostic reliability

that can be used in CJP related to sickle cell disease.

CNS maladaptive changes

in chronic joint pain

Assessment methods

or instruments

Clinical interpretation Diagnostic reliability

Insufficiency of descending

inhibitory control

• Conditioned pain

modulation (42)

• piPST1 > piPST2= Descending inhibitory

control is functioning

• piPST1 < piPST2= Descending inhibitory

control system is faulty

• PST: Pressure threshold meter

(ICC >0.75)

• PCST: Hot water in 46.5◦C

(ICC= 0.79)

Central sensitization • Central sensitization

inventory (60,61)

• Severity ratings:

Subclinical (≤29)

Mild (30-39)

Moderate (40-49)

Severe (50-59)

Extreme (≥60)

• Cut-off at 40 points:

Sensitivity (81%)

Specificity (75%)

Positive predictive value (2.93)

Negative predictive value (0.52)

• Quantitative sensory test

(68-70)

• TPT to cold <17.01◦C and heat <43.91◦C

are indicative of impaired nerve sensitivity

• PPT <4.42 g is indicative of the existence

of an altered sensory function

• TPT: 32◦C baselines with

decreased/increased temperature

at a rate of 1.5◦C/s (ICC >0.55)

• PPT: Increasing pressure at a rate of

0.5 kgf/s (ICC: 0.64–0.73)

• Clinical criteria checklist

(71,72)

• Pain disproportionate to injury

disproportionate aggravating/easing

factors; psychosocial symptoms; diffuse

palpation

Sensitivity (91.8%)

Specificity (97.7%)

Positive predictive value (91.9) Negative

predictive value (97.7)

Modifications of motor control and

cortical reorganization

• Cortical mapping by

transcranial magnetic

stimulation (77)

• There is an overlap (blurring) or retraction

in the areas of somatotopic representation

of the motor cortex

Arthrogenic muscle inhibition • Central activation rate

(91,96)

• When the central activation rate is below

95%, it is an indication that there are

muscle fibers that are not being activated

by central neural pathways

• CAR: Within- measurement

(ICC= 0.94) Between-measurement

(ICC= 0.86)

• Interpolated Twitch

Technique (85,87)

• The higher the proportion, the greater the

number of muscle fibers that are not

centrally activated

• ITT: Within measurement

(ICC= 0.89)

Abbreviations: CAR, Central Activation Rate; ITT, Interpolated Twitch Technique; ICC, Intraclass Correlation Coefficient; PCST, Painful Conditioning Stimulus Test; piPST1, pain

intensity of first Painful Stimulus Test; piPST2, pain intensity of second Painful Stimulus Test; PST, Painful Stimulus Test; TPT, Thermal Pain Threshold; PPT, Pressure Pain Threshold.

associated dysfunction (87). Common conditions such

as joint pain, ligamentous laxity, and joint effusion are

potential factors that facilitate the establishment of AMI

(86).

In the AMI, there is an alteration of the firing of the

joint receptors that send signals for the medullary inhibitory

interneurons, causing inhibition of the activity of the alpha

motoneurons and, consequently, the musculature involved in

the affected joint (87). Joint pain may contribute to the AMI due

to the alteration of the excitability of the flexor reflex pathway

(86), which has the characteristic of facilitating the flexor and

inhibiting the extensor muscles in the region surrounding the

painful joint (89). In addition, joint pain in the knee has been

associated with decreased muscle activation of the quadriceps

(90, 91).

Although a systematic review has shown that the

mechanisms of AMI are mostly studied in knee joint injuries

(91), it may also be observed in individuals with pathologies

in the hip. In this condition, AMI may be represented by

a decrease in Gluteus maximus activation during extension

activity in pronation (92). In this sense, as the most affected

joint in SCD is the hip due to avascular osteonecrosis (7), the

healthcare professional must be aware of the possibility of

AMI playing an important role in this condition. However,

many SCD individuals are likely quite physically deconditioned

due to limited physical activity because of fatigue (93) or

concerns about triggering vaso-occlusive crises after physical

activity (94). This clinical characteristic in SCD individuals

can make AMI assessment challenging because of the potential

confounding biases related to physical deconditioning or
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structural musculoskeletal alterations, especially in bilateral

affections. On the other hand, in unilateral affections, these

confounding biases can be minimized by comparison with

the unaffected side. To date, no studies have evaluated AMI

mechanisms in both adults and pediatric SCD individuals, and

in future studies, the impact of physical deconditioning on AMI

assessment should be better clarified.

In the clinical setting, AMI can be assessed using two

quantitative methods: the Central Activation Rate (CAR) and

the Interpolated Twitch Technique (ITT) (85, 91, 95). In both

methods, the individual is asked to make a maximal voluntary

isometric contraction (MVIC), and the force/torque generated

by the muscle is registered. Then, when the force/torque plateau

is reached, a maximal or supramaximal electrical stimulus

is introduced. However, in the ITT method, this electrical

stimulus can also be made initially with the muscle at rest

(85, 91, 95). For electrical stimulus, 10 pulses, 100Hz,200 µs

pulse duration, and 400V appear to be a reliable stimulation

parameters for muscle contraction (85). Individuals with CAR

>95% have a muscle fully activated by voluntary central

stimulation, and those with less than that have some central

muscle inactivation (91). In the ITT method, the higher the

index score, the greater the number of fibers that are not

centrally activated (85). Both methods seem simple, easily

performed, and therefore feasible in clinical practice and

research (Figure 4).

When comparing CAR and ITT in the capacity to estimate

the quadriceps muscle activation, there was a significant

variation between methods, with an estimated difference of up

to 5.5% (85). In addition, it is suggested that ITT is a more

accurate measure since the CAR might overestimate voluntary

muscle activation (85). Some articles have assessed and reported

good reliability of these methods in knee joints (96, 97), and

the CAR method was found reliable within- (ICC = 0.94)

and between-measurement sessions (ICC = 0.86) (96) while in

the ITT method the reliability within measures was (ICC =

0.89) (97). Unfortunately, no studies evaluated the diagnostic

value of these methods in joints frequently affected by SCD

individuals, such as the hip, shoulder, and elbow. Although

both CAR and ITT are not specific to SCD individuals, these

methods should be used in clinical practice to evaluate CJP in

SCD individuals.

Final remarks and conclusion

Chronic joint pain in patients with SCD might be related

to maladaptive plasticity in the CNS, as it shares mechanisms

with many known joint pathologies. Some of these maladaptive

changes in the CNS are already known and include mainly

poor descending inhibitory control, central sensitization, motor

control impairments, reorganization of the motor cortex motor,

and inhibition of induced maximal voluntary contraction. These

changes may be assessed by a set of tests and/or questionnaires

that are already available and could be useful in the clinical

assessment and research in SCD. In the clinical setting,

every healthcare professional can measure these maladaptive

changes through instruments andmethods with good diagnostic

reliability (Table 1). These maladaptive plasticity changes may

contribute to persistent pain in SCD, but there is a substantial

lack of evidence regarding this aspect. However, future studies

should be performed to elucidate and confirm these possible

maladaptive changes in the nervous system in SCD individuals

related to CJP to understand and treat the pain in those patients

with better results.
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