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Abstract: Dietary risk factors play a fundamental role in the prevention and progression of atheroscle-
rosis and PAD (Peripheral Arterial Disease). The impact of nutrition, however, defined as the process
of taking in food and using it for growth, metabolism and repair, remains undefined with regard to
PAD. This article describes the interplay between nutrition and the development/progression of PAD.
We reviewed 688 articles, including key articles, narrative and systematic reviews, meta-analyses and
clinical studies. We analyzed the interaction between nutrition and PAD predictors, and subsequently
created four descriptive tables to summarize the relationship between PAD, dietary risk factors and
outcomes. We comprehensively reviewed the role of well-studied diets (Mediterranean, vegetar-
ian/vegan, low-carbohydrate ketogenic and intermittent fasting diet) and prevalent eating behaviors
(emotional and binge eating, night eating and sleeping disorders, anorexia, bulimia, skipping meals,
home cooking and fast/ultra-processed food consumption) on the traditional risk factors of PAD.
Moreover, we analyzed the interplay between PAD and nutritional status, nutrients, dietary patterns
and eating habits. Dietary patterns and eating disorders affect the development and progression of
PAD, as well as its disabling complications including major adverse cardiovascular events (MACE)
and major adverse limb events (MALE). Nutrition and dietary risk factor modification are important
targets to reduce the risk of PAD as well as the subsequent development of MACE and MALE.

Keywords: peripheral artery disease of lower limbs; lower extremity arterial disease; food; eating
behaviors; eating disorders; nutrition; predictors; dietary risk factors; diet

1. Introduction

Our planet is currently inhabited by approximately 7850 billion people. With a growth
rate of 1.05% per year, the average population increase is estimated at 81 million people
yearly (World Population Clock—2021). Meanwhile, cardiovascular disease (CVD) is the
leading cause of death globally resulting in approximately 17.9 million deaths annually
(World Health Organization—WHO). Despite the enormity of cardiovascular disease and
the efforts to promote the importance of its prevention, nutrition remains a dramatically
underestimated aspect in addressing this “atherosclerosis pandemic” [1].

Healthy diets can play an essential role in preventing and/or delaying major atheroscle-
rotic complications. For example, diets high in sodium yet low in whole grains, nuts, seeds,
vegetables, omega-3 fatty acids and fruits have recently been identified as the main dietary
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risk factors responsible for 10 million deaths from CVD and 207 million cardiovascular
diseases worldwide [2,3]. Furthermore, eating behaviors have recently been shown to be
relevant predictors of poor CVD outcomes [4].

Peripheral Artery Disease (PAD) of the lower limbs is a disabling complication of
atherosclerosis and shares a common etiology with coronary artery and cerebrovascular
disease [5]. Patients with PAD exhibit more aggressive multivessel atherosclerotic bur-
den [6] and often have multiple risk factors and comorbidities that promote the progression
of this disease [7].

Given that nutrition and dietary patterns are poorly studied aspects of the management
of these patients with PAD, [1] we studied how adherence to anti-atherogenic diets and
common eating habits/disorders may affect several important risk factors for PAD. We
present an extensive review of the literature on the relationship between PAD and nutrition,
and subsequently suggest nutritional recommendations specific to individual needs and
characteristics [8].

1.1. Materials, Methods and Study Design

This narrative review analyzes the risk factors for PAD as they relate to nutrition,
food, diet and eating behaviors. We entered selected keywords into both PubMed and
Google Scholar to identify the appropriate literature; a list of the selected keywords is
in the “keywords section”. Ultimately, we selected 688 articles published between 1980
and 2022, including key articles, narrative and systematic reviews, meta-analyses and
clinical studies, for analysis. The review was divided into three main sections including:
(1) an introduction, (2) a description of the impact of nutrition on predictors of PAD and
(3) the interplay between nutrition and PAD (Figure 1). The main results are summarized
in four descriptive tables (Tables 1–4).

Figure 1. Methods and study design.



Int. J. Mol. Sci. 2022, 23, 10814 3 of 58

Table 1. Interplay between non-dietary risk factors and predictors of PAD with diets.

Low Carbohydrate/Ketogenic Diet

PAD Risk Factors/Predictors Evidence Reference

Obesity Efficient weight loss [9–20]

Diabetes mellitus Reduction in total insulin requirements due to reduced insulin
resistance. Need for further safety studies [21–27]

Hypertension Controversial results with risk of worsening of blood pressure
control in particular in CKD [11,28–35]

Dyslipidemia Reduction in the size of LDL-c molecules [11,25,35–42]

Chronic kidney disease
Risk of calcium–phosphate homeostasis disruption, risk of
progression of CKD due to acidosis and protein intake.
Promotion of cyst regression in polycystic kidney disease

[43–46]

Inflammation Modulation of the inflammasome with a net reduction in
oxidative stress [42,47–50]

Intermittent fasting diet

PAD Risk Factors/Predictors Evidence Reference

Obesity Promotion of weight loss and change in body composition by
consuming fat stores. May cause fatigue and dizziness [51–57]

Diabetes mellitus Reduction in serum glucose values regardless of weight loss but
increased risk of hypoglycemia [53,58–60]

Hypertension
Promising results by modulating cortisol levels and circadian
rhythm. However, further confirmation for safe use in clinical
practice is needed

[58,61–68]

Dyslipidemia
Evidence from observational studies on Ramadan. The
amelioration of lipid profile results in an overall reduction in
cardiovascular risk

[53,69–79]

Chronic kidney disease Apparently safe in mild/moderate CKD when
closely monitored [80–85]

Inflammation Regression of the systemic inflammatory state by promoting
anti-inflammatory molecules [56,58,77,86–98]

Vegetarian and Vegan diet

PAD Risk Factors/Predictors Evidence Reference

Obesity
Prevention and management of overweight but
supplementation of vitamin B12 in the vegan
diet is recommended

[99–110]

Diabetes mellitus
Improvement of pancreatic beta cell function, and increase in
the production of gastrointestinal incretins resulting in a lower
total insulin requirement

[99,111–123]

Hypertension Additional improvement of the pressure profile if
adequate adherence [124–126]

Dyslipidemia Efficacy comparable to statin therapy [110,127–132]

Chronic kidney disease Delayed need for dialysis but need to monitor serum potassium
and risk of possible malnutrition [133–137]

Inflammation
Restoration of intestinal microbiota homeostasis
(Firmicutes/Bacteroidetes ratio) and reduction in local and
systemic inflammation

[138–147]
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Table 1. Cont.

Mediterranean diet

PAD Risk Factors/Predictors Evidence Reference

Obesity Multifactorial properties that lead to significant weight loss [148–156]

Diabetes mellitus Lower intake of high glycemic index foods with a positive
impact on glucose management [148–154,157–161]

Hypertension
Regression of arterial degenerative processes exerting benefits
on endothelial function and stiffness that result in a more
effective blood pressure control

[162–173]

Dyslipidemia Reduction in intestinal absorption and endogenous production
of cholesterol along with epigenetic control on lipid metabolism [174–188]

Chronic kidney disease
Not effective in preventing the accumulation of GDUTS but
promising results in kidney transplantation and in the
prevention of kidney stones

[189–205]

Inflammation “Hormetic therapy” with multilevel regulation of the
inflammatory process and homeostasis of the immune system [158,166,186,197,206–226]

Table 2. Interplay between non-dietary Risk factors and Predictors of PAD with diets.

Emotional Eating, Binge Eating, Bulimia Nervosa, Anorexia Nervosa

PAD Risk Factors/Predictors Evidence Reference

Obesity Maladaptive response to distress and discomfort lead to recurrent
episodes of overeating resulting in a net weight gain [227–235]

Diabetes mellitus
Harmful compensatory behaviors due to emotional involvement in
relation to food that lead to low compliance with therapy, high risk of
hypoglycemia and worsening of glucose plasma level control

[236–246]

Hypertension The emotional substrate directly regulates blood pressure values
hindering the achievement of blood pressure targets [247–252]

Dyslipidemia Stress decompression through overeating increases cholesterol levels [249,250,252,253]

Chronic kidney disease - -

Inflammation Each eating disorder exhibits a typical inflammatory pattern that
requires further evaluation [248,254–261]

Night eating and sleep disorders

PAD Risk Factors/Predictors Evidence Reference

Obesity Impairment of food regulation patterns leading to hyperphagia due to
hedonic eating [262–271]

Diabetes mellitus Hypoxia activates neuro-hormonal triggers resulting in
insulin resistance [272–287]

Hypertension Frequent awakenings during sleep alter the night-time blood
pressure profile [288,289]

Dyslipidemia
U-shaped association between sleep habits and serum lipid
concentrations. Hypoxic episodes trigger neuro-adrenocortical
hyper-activation that increases cortisol plasma levels

[290–302]

Chronic kidney disease - -

Inflammation - -
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Table 2. Cont.

Skipping meals

PAD Risk Factors/Predictors Evidence Reference

Obesity The uneven distribution of calories throughout the day leads to obesity [303–305]

Diabetes mellitus Skipping meals randomly, alters glucose sensitivity and worsens
HbA1c values [305–316]

Hypertension Progression of the neuro-hormonal mechanisms underlying
hypertension [305]

Dyslipidemia Unsafe and ineffective long-term strategy for serum lipid control.
Skipping meals worsens post-prandial lipid profile [304,305,308,317]

Chronic kidney disease - -

Inflammation Dysregulation of intestinal microbiota homeostasis with worrying
consequences on systemic atherosclerosis [308]

Home cooking, fast food access, ultra-processed and packaged food consumption

PAD Risk Factors/Predictors Evidence Reference

Obesity Weight control is supported by a wide selection of foods [318–333]

Diabetes mellitus
Promotion of a greater perspective on the impact of food on health,
especially in low-income countries, that helps prevent chronic diseases
such as DM

[334–347]

Hypertension
Patients with hypertension should be trained with educational cooking
programs and avoid foods that worsen blood pressure control
(e.g., salt consumption)

[348–356]

Dyslipidemia
The spread of low-quality foods has anticipated the incidence of
atherosclerosis and related complications with a parallel increase in
plasma lipid levels

[321,357–362]

Chronic kidney disease
Proper cooking methods could reduce the excessive intake of minerals
(e.g., potassium, phosphorus) and proteins frequently contained in fast
food, ultra-processed and packaged food

[363–370]

Inflammation The low-quality of ultra-processed and packaged food was observed to
increase oxidative stress and decrease in the reducing power of cells [371–376]

Smoking and eating behaviors

Evidence Reference

High prevalence of eating disorders, particularly after quitting smoking due to withdrawal symptoms [268,377–383]

Table 3. PAD, diets and eating disorders.

LEAD and Diets

Diet Evidence Reference

Low carbohydrate/
ketogenic diet

Improvement of the metabolic syndrome and beneficial effect on all
common comorbidities/risk factors in the PAD population. This dietary
model can be adopted for short periods alternating with the MD

[44,384,385]

Intermittent fasting

Correction of dysbiosis with a reduction in inflammation;
prevention of atherosclerotic plaque vulnerability by modulating local
inflammation and change in the lipid core of the plaque of peripheral arteries;
improvement of liver function and glucose/lipid metabolism with
consequent secondary prevention of CV risk; concerns about osteoporosis
and hypoglycemia in diabetic patients with PAD

[77,386–390]
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Table 3. Cont.

Vegetarian and Vegan diet

Primary prevention by counteracting the progression of risk factors and
comorbidities underlying LEAD development;
effect similar to a reversal of the atherosclerotic process underlying the
deterioration of the peripheral arteries;
antioxidant protection on the inflammatory load of PAD;
reduction in the incidence of MACE

[391–401]

Mediterranean diet

Probably the most effective and safe dietary model to adopt in order to prevent
the incidence of PAD through the improvement of all coexisting risk factors;
additional benefit on secondary prevention along with
pharmacological therapies

[398,402–405]

PAD and Eating disorders

LEAD Risk Factors/Predictors Evidence Reference

Emotional eating, binge eating,
bulimia nervosa, anorexia
nervosa

Patients with PAD and psychiatric disorders involving the emotional
sphere have the highest mortality rate due to the progression of the
atherosclerotic process underlying PAD;
eating disorders including over-eating and malnutrition are prevalent in
advanced stages of PAD

[247,406–414]

Night eating and sleep disorders Progression of the clinical stages of PAD; however, eating disorders
involving sleep quality are rarely investigated [415–425]

Skipping meals Increased morbidity and mortality of patients with PAD by deteriorating
the metabolic homeostasis [308,315,426–433]

Home cooking, fast food access,
ultra-processed and packaged
food consumption

Dedicated educational cooking programs should be encouraged to prevent
and even correct the deleterious dietary patterns often adopted by LEAD
patients. The physical and functional impairment experienced by patients
in the advanced stages of the disease hinders the proper
provision/cooking of healthy foods

[434,435]

Table 4. CTLI progression, nutrition, dietary models and eating behaviors/disorders.

CTLI Progression, Nutrition, Dietary Models and Eating Behaviors/Disorders

Nutritional status and PAD Evidence Reference

Obesity
Obese patients with LEAD experience an overall approximately
1.5-fold increase in the development of CTLI regardless of other
confounding factors

[436]

Malnutrition and sarcopenia

Malnutrition and sarcopenia have a devastating effect on patient
outcomes with a low success rate in foot wound healing, a higher
incidence of MACE and major amputations even with
appropriate drug treatment.
Malnutrition and sarcopenia have a strong prognostic role in
limb salvage

[394,437–442]

Nutrients and PAD Evidence Reference

Vitamins

Vitamin deficiency (especially vitamin B12, C and D) appears to
accelerate progression to CTLI, increase the rate of infections
(particularly in PAD patients on dialysis), worsen
post-amputation outcomes and increase the incidence of MACE
and MALE

[443–448]

Micronutrients (zinc, magnesium)
Supplements to reduce the risk of progression to CTLI, incidence
of revascularization failure or amputation are not supported
by evidence

[448]
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Table 4. Cont.

PUFAs Eicosapentaenoic acid deficiency might be correlated with
a higher incidence of MALE and MACE [449,450]

Synthetic Fibrate
Fenofibrate in patients with diabetes mellitus further reduces the
residual risk of microvascular complications including lower
extremity amputation (LEA)

[451–455]

Diet and PAD Evidence Reference

Low carbohydrate/ketogenic diet -

Intermittent fasting -

Vegetarian and Vegan diet
This dietary model is rich in nutrients (especially PUFAs) that
reduce the morbidity and mortality of patients with PAD and
slow the progression to the advanced stages of the disease

[392,401]

Mediterranean diet

The MD may offer significant benefits in terms of lower mortality
and morbidity with protective effects on MACE and MALE.
However, the population with PAD often has socioeconomic
limitations that reduce adherence to MD resulting in a higher
amputation rate in these subcategories of low-income patients.

[398,456,457]

Eating behaviors/disorders and PAD Evidence Reference

Emotional eating, binge eating, bulimia
nervosa, anorexia nervosa

The emotional burden resulting from progressive physical and
functional limitation is often associated with eating disorders
(emotional and binge eating), which further worsen survival and
limb outcomes.
Serum adipokines could interact with this complex interaction
between emotional substrate, eating disorders and
MALE incidence

[408–413,458]

Night eating and sleep disorders Treatment of sleep and eating disorders is a preventative strategy
for MACE and MALE [424,425,459]

Skipping meals -

Home cooking, fast food access,
ultra-processed and packaged
food consumption

Physical and functional barriers to healthy food supplying and
preparation resulting from the disabling complications of PAD
further increase the risk of progression into CTLI

[434,435,460]

1.2. Non-Dietary Risk Factors and Predictors of Peripheral Artery Disease

Atherosclerosis is a chronic, progressive disease that affects the main arterial beds
including the coronary, carotid and peripheral arterial trees [461]. The involvement of
the lower limb vessels defines PAD and patients with this condition are often complex
and fragile given their significant cardiovascular risk [462]. PAD shares the pathological
substrate with the other manifestations of atherosclerosis and is responsible for disabling
complications that affect their quality of life and survival [463,464].

An important aspect of PAD is the study of the risk factors underlying the disease
and influencing patient outcomes [465]. Among the non-dietary risk factors of PAD,
obesity [466–471], smoking [472–476], diabetes mellitus [10,477–480], chronic kidney dis-
ease [481–488], hypertension a [478,480,489–492], dyslipidemia [10,478,480,493–497] and
systemic inflammation [498–500] play a significant role in the disease. Each of these are
prevalent in patients with PAD and play a fundamental role in the disease progression. The
treatment of concomitant comorbidities and the management of the risk factors affecting
patients have proven to be an effective prevention strategy and therapeutic approach to
improve individual morbidity and mortality [501].

Smoking cessation and the control of serum glucose levels are the primary goals for
these patients, who are often long-time smokers and/or diabetics, to reduce oxidative
vascular damage due to tobacco use or glucose toxicity [502]. Arterial calcification can
be ameliorated by slowing the deterioration of renal function, which is responsible for
the disturbance of calcium–phosphorus metabolism [503,504]. Adequate blood pressure
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management and the achievement of recommended cholesterol levels lead to minimizing
the atherosclerotic burden [482,505–508].

Finally, “residual risk” involving systemic inflammation should be considered with
regard to cardiovascular risk [509]. Many therapeutic strategies have been studied to
directly treat inflammation; however, it appears that prevention against oxidative stress
and the control of immune dysregulation are most effective in counteracting any subclinical
inflammatory process [510].

2. Interplay between Risk Factors and Predictors of PAD with Dietary Patterns/
Eating Behaviors

Recently, an epidemic of chronic diseases related to suboptimal eating behaviors
and inadequate nutrition dramatically affected the mortality and morbidity of the global
population [2]. One in five patients die due to the consequences of inappropriate diets on
health, regardless of traditional cardiovascular risk factors [1,2]. Cardiovascular disease
is the leading cause of death and morbidity attributable to poor nutrition, accounting for
approximately 10 million deaths and 207 million disability-adjusted life years (DALYs)
each year [2]. Among those comorbidities related to dietary habits, we recognize several of
the main risk factors for PAD, suggesting an interaction between nutrition, predictors of
atherosclerosis and the development of PAD [465]. Furthermore, there is a high prevalence
of the dietary risk factors in those suffering from chronic disease and exposed to multiple
atherosclerotic risk factors. Among the most recognized dietary risk factors for overall
mortality and morbidity—and those highly associated with atherosclerotic complications—
are high sodium consumption, low intake of whole grains and fruit, as well as high intake
of sugar (especially sugary drinks), red and processed meats and trans fats. Other easily
recognizable nutritional aspects that parallel with cardiovascular risk include processes
related to food manufacturing (processing, production, distribution, cooking), poor access
to healthy food, insufficient supply of seeds, vegetables, omega-3 fatty acids and the
adoption of unhealthy eating behaviors [511–518]. Healthcare systems should recognize the
importance of including targeted diets and proper eating habits as a part of evidence-based
therapy to improve the management of cardiovascular risk and patient outcomes [519–526].

2.1. Diets and Risk Factors/Predictors of Peripheral Artery Disease of Lower Limbs

A dietary scheme is a balanced composition of macro- and micronutrients that provides
adequate caloric intake and benefits metabolism. Each diet has characteristics that can be
tailored to the patient’s personal needs and comorbidities. We evaluated the relationship
between various common and well-studied diets (Mediterranean diet, vegetarian and
vegan diet, low-carbohydrates ketogenic diet, intermittent fasting) and the main risk factors
of PAD (diabetes mellitus, obesity, hypertension, dyslipidemia, chronic kidney disease,
inflammatory status). Current knowledge on each dietary model in relation to the selected
risk factors and predictors of PAD are described, listing several pros and cons of each on
patient comorbidity [527,528]. The main results are summarized in Table 1.

2.1.1. The Mediterranean Diet

The Mediterranean diet (MD) has received particular scientific interest in recent years
as it induces a significant reduction in CV risk via a balanced composition of macronutrients
(carbohydrates, proteins and fats) [529,530]. The most important characteristics of the MD
are: (1) the moderate consumption of lean meat and fish with a minimum intake of red
or processed meat, (2) the voidance of sugary drinks, (3) a moderate intake of salt and
dairy products (especially cheese and yogurt) and (4) an abundance of vegetables, seeds,
legumes (e.g., lentils and beans), fruit, cereals and whole grains (e.g., unprocessed maize,
millet, oats, wheat and brown rice) [531]. Unlike a Western diet, the MD reduces the
consumption of saturated fats (almost avoiding products such as butter) by including foods
rich in unsaturated fats (mono- and polyunsaturated) such as olive oil, nuts and seeds,
used as main courses or cooking ingredients [532]. Extra virgin olive oil and red wine, rich
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in polyphenols, tocopherols and phytosterols, provide anti-inflammatory characteristics
and valuable cardiovascular protection properties, such that they are considered pillars
of the MD [533–535]. The diet’s benefits are recommended as part of the preventive and
therapeutic strategy in patients at a higher cardiovascular risk given their documented
reduction in overall mortality [128].

The MD also includes appropriate eating and non-eating behaviors [536,537] that may
ameliorate the ongoing obesity and diabetes pandemic [148]. The Mediterranean lifestyle
and eating habits are effective solutions to the harmful consequences of a “Westernization”
of life, including incorrect eating behaviors and physical inactivity, that are responsible
for the higher prevalence of chronic diseases, especially diabetes and obesity [149–154].
The MD counteracts weight gain [155] by changing intestinal microbiota (e.g., the Firmi-
cutes/Bacteroidetes ratio), increasing energy expenditure via the thermogenesis of brown
adipose tissue and inducing lipolysis [156]. In particular, the healthy composition of nu-
trients in the MD is key to decreasing the incidence of diabetes and obesity. In fact, the
MD includes a large variety of plant-based foods, polyunsaturated fats, fruits, whole grain
products, fish and fiber together with a reduced intake of processed and red meats, refined
sugars and saturated fats [162,530]. Weight loss is also facilitated through the regulation
of satiety promoted by the consumption of products rich in short-chain fatty acids that
induce the production of incretin and the associated control of blood sugar and insulin
sensitivity [157]. Furthermore, the improvement of insulin resistance can be explained by
a lower intake of carbohydrates with a high glycemic index and an increase in the intake
of monounsaturated acids, essential and branched-chain amino acids that favor glucose
control [158], preventing the development and progression of diabetes [159–161]. Addi-
tionally, those who adopt the MD have greater adherence to health-promoting behaviors
(such as getting enough sleep, better education, higher incomes, more physical activity and
less smoking) that affect food quality, susceptibility to weight gain and the prevention of
several comorbidities [530,538–541].

The MD has documented beneficial effects on hypertension. The reduction in satu-
rated fats replaced by olive oil or mixed nuts in the MD results in a significant reduction in
blood pressure [162–164]. A stricter adherence to the MD has been shown to have addi-
tional benefit in the prevention and treatment of hypertension along with the traditional
pharmacological treatment [164]. The MD plays a key role in reducing cardiovascular risk
by preventing the development and controlling the main chronic diseases that increase the
incidence of adverse vascular events [165,166].

In addition to a reduction in blood pressure and the overall risk of mortality/morbidity,
the MD may reduce arterial stiffness [167] and endothelial dysfunction [168], known
conditions related to atherosclerosis. Nutrients included in the diet may alter various
molecular processes that slow down the vessel degeneration observed in atherosclerosis.
These include: (1) increased arterial dilation mediated by a higher production of nitric
oxide, (2) a reduced expression of Caveolin-2 [169,170] and endothelin-1 [171], (3) the
down regulation of the JUN gene pathway [172], (4) the inhibition of the NF-kB/AP-1
signal and ADMA responsible for a reduction in the bioavailability of nitric oxide and
(5) the modulation of the adrenergic nervous system [173] mainly mediated by oleic acid,
monounsaturated fatty acids and polyphenols.

The MD is included in the therapeutic recommendations of the non-pharmacological
management of atherosclerotic disease since the heterogeneous composition of nutrients
and the quality of foods found in the MD [158] play an important role in the regulation of
lipid metabolism with a documented reduction in the overall CV risk [174]. It is an effective
dietary strategy in the prevention of dyslipidemia and could prove to be a successful ap-
proach to achieve the recommended therapeutic goals for cholesterol. The diet has a direct
effect on the serum lipid profile with a reduction in levels of cholesterol, triglycerides and
atherogenic apolipoproteins along with an increase in serum HDL-c [175]. The abundance
of plant-derived foods, olive oil and nuts, along with a low intake of processed foods, dairy
products and red meats are examples of MD recommendations that have lipid-lowering
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effects with a consequent reduction in atherosclerosis [176,177], especially in patients with
comorbidities [178]. Additionally, the low consumption of foods rich in saturated fats
espoused by the MD results in a decreased endogenous production of cholesterol [179].
The MD also offers a wide choice of foods that directly lower cholesterol levels such as
the polyunsaturated fats of vegetable origin, olive oil, seeds, nuts, vegetables and fruit.
The water-soluble fibers in fruit and legumes have a lipid-lowering effect by reducing the
intestinal absorption of cholesterol and bile acids, promoting the hepatic uptake of LDL-c.

Complex carbohydrates and fibers (such as cereals and whole meal pasta) are low
glycemic index foods that contribute to intestinal fermentation, modulate insulin produc-
tion and lead to a greater synthesis of short-chain fatty acids with a consequent reduction in
serum cholesterol levels [180,181]. Phytosterols are plant-based fats, similar to cholesterol.
These molecules compete with the intestinal absorption of cholesterol which favors its
elimination, directly improving the cardiovascular risk by favorably influencing the lipid
profile [182,183]. Currently, the heterogeneous inter-individual response to dietary patterns
is a new topic of interest and the promising results on dyslipidemia observed in people with
a strong family history of hypercholesterolemia suggests a possible epigenetic regulation of
lipid metabolism by the MD [184]. Long-term adherence and the early adoption of the diet,
especially from preschool life [185], exert the most significant effects on health, cardiovas-
cular protection and the lipid profile [186–188], confirming the importance of precocious
nutritional strategies for primary prevention. However, a well-structured nutritional model
that includes all pillars of the MD in primary and secondary cardiovascular prevention
should be tested in clinical practice and new studies are needed to further expand the
mechanism underlying the benefits of adopting a lifestyle and a Mediterranean dietary
model in atherosclerotic diseases [542–544].

Chronic kidney disease is characterized by an irreversible and progressive decline in
kidney function, which determines a profound modification of cardiometabolic homeosta-
sis. Renal failure is responsible for the accumulation of various uremic toxins derived from
the intestinal metabolism of foods rich in GDUTs (uremic toxins of intestinal origin). The
MD was expected to reduce the serum levels of trimethylamine N-oxide (TMAO), p-cresyl
sulfate, hippuric acid, noxyl sulfate, p-cresyl glucuronide, phenyl acetyl glutamine and
phenyl sulfate by a moderate-to-low intake of typical products that include the precursors
of GDUTs such as milk, eggs, meat and dairy foods. However, even strict adherence to the
MD does not seem to prevent these pro-inflammatory and atherogenic toxins from accu-
mulating in the serum of patients with severe renal insufficiency [189]. Overall, there is still
no clear evidence of the protective role of the MD on the progression of renal disease [190].

The MD, however, includes many components that may delay the progression of renal
failure defined as eGFR <60 mL/min [191–195]. Although the effect of diet on renal function
is unclear, a lower incidence of mortality was observed among chronic kidney disease
(CKD) patients who adopted dietary recommendations similar to that of the MD [196].
Patients affected by chronic renal failure who adhere to the MD demonstrate a survival
advantage over the controls due to a better nutritional profile, as demonstrated by higher
levels of hemoglobin and albumin and lower levels of pro-inflammatory molecules [198].
Further, it has been observed that kidney transplant recipients have a lower incidence
of transplant failure, decline in kidney function and urinary protein excretion when on
the MD [199]. The consumption of fruits and vegetables, ensuring good hydration and
minimizing the intake of animal proteins, salt and dairy products prevents the formation
of kidney stones [200]. Finally, the safety of the MD in CKD is unresolved due to the high
content of foods rich in minerals such as legumes, nuts, fruits and vegetables (sources of
potassium and phosphorus). The cooking method seems to reduce mineral accumulation in
the blood in the case of kidney disease; however, several concerns limit the safe application
of the MD in CKD patients [201,202]. While the MD may benefit patients with CKD, there
remains safety and efficacy in this patient population [191,203–205].

Atherosclerosis is a systemic inflammatory process marked by the increased production
of cytokine and immune dysregulation, and renders the patient susceptible to cardiovas-
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cular events [545]. The MD is a “hormetic therapy” because it includes several nutrients
which restore the physiological homeostasis of the compromised immune system in patients
with advanced atherosclerosis [206]. The diet is rich in anti-inflammatory products such
as polyphenols (mainly contained in olive oil) and foods of plant origin (such as legumes,
fruit, vegetables, dried fruit); conversely, it espouses a low consumption of saturated fatty
acids and meat (with preference of lean meat) which promote inflammation [207–209]. As
such, the nutritional recommendations in the MD are effective in addressing this new risk
factor, especially if treatment adherence is maintained from an early age [210]. Exploring this
interaction further, the MD modulates the inflammatory state by acting on several levels. At
the molecular level, it reduces adipose tissue deposits and consequently lowers the release of
pro-inflammatory cytokines [211,212]. Moreover, lower levels of IL-6, TNFα, CRP, adhesion
molecules (such as ICAM-1) and other oxidative stress markers [166,213–217,546,547], as well
as high levels of adiponectin and other anti-inflammatory cytokines (such as IL-10), have
been documented [197]. The MD can also regulate fundamental biochemical and molecu-
lar pathways involved in systemic inflammation through pre-transcriptional genomic and
epigenomic modifications (e.g., histone deacetylation, DNA methylation, the regulation of
miRNAs) [158,218]. Extra virgin olive oil is a key element in the MD and plays an important
role in dysbiosis by restoring the composition of the intestinal microbiota and directly influ-
encing host immunity [214,217,219–221,548]. Furthermore, the abundance of polyphenols in
the MD can exert health benefits directly in the atherosclerotic plaque by modulating the local
immune system, restoring the integrity of the vessels and partially slowing down endothelial
dysfunction, which are preliminary steps in the atherosclerotic process [222].

Thus, evidence suggests that the MD minimizes the harmful consequences of maladap-
tive and dysregulated inflammation in atherosclerosis by restoring the balance between
proinflammatory mediators [186] and anti-inflammatory responses [223–225].

The mortality and morbidity benefits documented after the introduction of the MD in
patients at high cardiovascular risk are in part be due to better control of the inflammatory
profile responsible for the progression of several chronic diseases [226], yet inflammation
remains an untreated residual risk factor [197]. Given the great success in managing the
inflammatory profile of patients, the MD is recommended by both the ACC/AHA and
ESC/EAS guidelines as an integral part of non-drug therapy to counteract the risk and
incidence of major adverse vascular events.

2.1.2. The Vegetarian, Vegan and Plant-Based Diet

The minimal consumption of animal products has shown sound health benefits. Adopt-
ing a vegetarian diet, or completely avoiding proteins of animal origin as in a whole plant-
based diet, have documented protection against the development of major cardiovascular
risk factors with a modest increase in longevity [99,107,110].

The adoption of vegetarian and vegan diets demonstrated a much lower prevalence of
obesity compared to the consumption of a diet based on animal proteins, as demonstrated in
the epidemiological analysis [99,100]. Plant-based diets are rich in water, complex carbohy-
drates and fibers that promote an earlier and long-term satiety with an absolute increase in
resting energy expenditure. In the diet, high calorie foods are replaced by those that benefit
the gut microbiota composition, which in turn leads to lower levels of trimethylamine-N-
oxide (TMAO), increases insulin sensitivity, activates peroxisome proliferator-activated
receptors (PPARs) [549] and ameliorates mitochondrial pathways [101]. Vegetarians and
vegans tend to be have a lower BMI and have additional protection against the develop-
ment of obesity [100,102], confirming that the reduction in animal protein consumption is
a preventive strategy against obesity [102,103]. The low consumption of animal proteins
appears to improve adipocyte function. An interesting and relatively new aspect is the
effect of a vegan diet on adipokines, which have been observed as a promising target
for counteracting the metabolic syndrome [550]. In particular, replacing animal proteins
with mixed gluten–soy proteins and soy proteins may increase serum adiponectin levels,
influence AdipoR1 mRNA expression in skeletal muscles and promote adiponectin produc-
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tion in adipose tissues [551]. Furthermore, lacto-ovo vegetarian and vegan diets showed
a significant reduction in serum levels of leptin, perhaps secondary to the high availability
of PUFA and the low consumption of animal proteins, which directly affect the production
of this hormone in adipose tissue. The effect of vegetarian and vegan diets on adipokines
is not entirely clear but appears to contribute to the reduction in adiposity and excessive
weight gain [552].

A whole plant-based diet with vitamin B12 supplementation has an impact on weight
loss and body mass composition without documented serious harm [104,105]. A properly
compiled plant-based diet may be a viable option to change nutritional habits to ameliorate
the global obesity pandemic [106–110].

Plant-based diets decrease the risk of developing diabetes mellitus [99,111] by reducing
insulin resistance and the impairment of serum glucose metabolism [112]. In addition to the
preventive role, a veg nutrition has shown convincing results in the treatment of diabetes,
with including a reduction in the use of hypoglycemic drugs [113–115]. Furthermore,
the protective and therapeutic effect of a vegetarian/vegan diet appears independent of
physical exercise [116]. Reducing the consumption of foods of animal origin decreases
visceral fat and the production of adipokines, which contribute to oxidative stress. The
transition to green nutrition improves the functionality of the pancreatic beta cells, the
production of gastrointestinal incretins and the excretion and sensitivity to insulin, all of
which results in greater control of diabetes [117–120]. Thus, a vegetarian or totally plant-
based diet is a compelling strategy to prevent poor glucose control, achieving consistent
results in the treatment of diabetes [121–123].

Patients with hypertension who adhere to a vegan/vegetarian diet achieve better
blood pressure control [124]. This clinical benefit was independent of the extent of weight
loss, reduction in potassium or salt intake and physical activity [125]. The protective role
of a plant-based diet against the development/progression of hypertension was made in
comparison to the blood pressure values of those on omnivorous diets. In fact, an ade-
quate blood pressure profile and effective management of hypertension has an inverse
relationship with the intake of animal origin products, while being directly proportional
to compliance with adherence to an exclusively vegan diet [126]. Plant-based diets have
a safe profile and can be recommended in both the prevention and non-drug therapy of
hypertension, particularly for those patients who demonstrate good compliance and need
additional support to achieve blood pressure goals [126].

Vegan and vegetarian diets benefit the lipid profile and can be considered an anti-
atherogenic therapy given their impact on dyslipidemia and overall cardiovascular risk. On
these diets, patients realize a significant reduction in serum cholesterol and apolipoproteins
that are associated with the progression of atherosclerotic plaque [127,128]. Additionally
observed is an improvement in LDL-C serum levels due to the lower consumption of
saturated fats [128]. Foods of animal origin (such as meat, dairy products and eggs)
increase LDL-C concentrations and subsequently cardiovascular risk and major adverse
events [129]. Surprisingly, a reduction in animal proteins and fats from one’s diet has
an impact on lipid metabolism comparable to the effect of statins [128,130], with further
benefit noted with regular physical activity and smoking cessation [131]. Adherence to a
veg diet is responsible for a significant loss of visceral fat (including hepatocellular and
intramyocellular fat), increased calorie expenditure and improved serum lipid profile
with a significant reduction in triglycerides and LDL-c along with an increase in HDL-C
levels [132]. The remarkable improvements in both fasting and post-prandial blood lipids
should encourage the introduction of balanced vegetarian and vegan diets in patients with
a high cardiovascular risk and dyslipidemia [110].

The adoption of a vegetarian/vegan diet may help prevent kidney disease and protect
patients from a deteriorating glomerular filtration rate [133]. The elimination of animal
proteins by adopting an entire plant-based diet reverses the deleterious effects of the nitro-
gen content of meat on renal function. A significant reduction in products of animal origin
regulates the systemic inflammatory process by modulating gut microbiota composition,
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decreasing renal hyperfiltration secondary to excessive protein intake and improving the
ability to buffer an acidic environment that may facilitate inflammation and accelerate kid-
ney disease [133]. The renal protective effect is more effective as the patient minimizes the
intake of products of animal origin, which increase the nitrogen end-products that worsen
uremia. A diet consisting of at least half meals based on plant-based foods significantly
slows the progression of CKD by protecting nephrons from hyperfiltration damage due to
intra-glomerular pressure [134]. An increase in fruits, vegetables and legumes could lead
to an excessive potassium intake, exposing patients with chronic renal failure to develop
hyperkalemia; however, the greater intake of fiber compensates by reducing constipation
and the risk of a dangerous increase in serum potassium [134]. Predominantly plant-based
diets improve uremic symptoms and ameliorate complications including metabolic aci-
dosis, hypertension, systemic inflammation, proteinuria, mineral disturbances and the
need for dialysis [134–137,553]. The diet may stabilize kidney disease and improve out-
comes in CKD patients due to pleiotropic effects; however, simultaneous medical and
nutritional evaluations are recommended to avoid malnutrition and hyperkaliemia in CKD
patients [133,136].

The high intake of fruits, vegetables, legumes and fiber provides antioxidants, which
counteract systemic oxidative stress, reduce the chronic low-grade inflammation observed
in atherosclerosis and prevent the development of its complications [138–141]. A substantial
decrease in inflammatory cytokine production and immune cell activity is documented in
plant-based diets compared to omnivorous diets [139]. The progressive reduction in the
intake of animal proteins and fats is associated with lower inflammatory biomarkers such
as C-reactive protein, [142,143], lipoproteins responsible for the increase in serum levels
of low-density LDL-c particles, leukocytes, interleukin-6 (IL-6) and TGF- β [141,144]. The
interaction between vegetarian/vegan nutrition and the immune system [139] starts in the
gut. In fact, the transition from a diet rich in saturated fat, cholesterol and iron content
to a diet that provides a greater intake of fiber, antioxidants, polyunsaturated fats and
micronutrients results in a net reduction in the inflammatory profile linked to obesity and
restores the intestinal homeostasis of the microbiota [141,145]. The adoption of a plant-
based food model significantly influences the intestinal environment and the composition
of the microbiome, favoring the selection of anti-inflammatory bacteria and reducing the
production of pro-inflammatory cytokines triggered by gut dysbiosis (including the altered
Firmicutes/Bacteroidetes ratio) [146,147]. The anti-inflammatory properties of lacto-ovo
vegetarian or whole plant-based diets should be considered a therapeutic strategy to reduce
the inflammatory triggers underlying the progression of atherosclerosis.

2.1.3. The Low-Carbohydrate Ketogenic Diet

A low-carbohydrate ketogenic diet drastically reduces carbohydrate intake while
increasing protein and fat consumption. The purpose is to steer metabolism towards
a greater consumption of fat as a source of energy. The accumulation of acetyl-CoA
due to increased fat oxidation, together with low oxaloacetate production, leads to the
formation of ketone bodies in the mitochondrial matrix of liver cells (acetoacetate (AcAc),
β-hydroxybutyric acid (BHB) and acetone) [554].

The diet results in a rapid reduction in body weight due to a marked caloric waste
and higher energy expenditure [11]. Ketogenesis leads to a significant consumption of
calories that leads to gluconeogenesis [12], induces thermal expenditure secondary to
protein metabolism [12,13] and promotes fat oxidation through the lipolysis process [14–16].
Furthermore, it suppresses hunger due to the sense of satiety provided by proteins and
ketone bodies [17–20].

Loss of weight and fat mass directly benefits diabetic management [42], resulting
in improved glycemic control with an expected reduction in glycated hemoglobin [41].
This progressive glucometabolic compensation can also result in a reduction in insulin
therapy requirements, and in some cases, leads to the suspension of pharmacological
treatment [21,22] due to a reduction in insulin resistance regardless of the extent of weight
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loss [23–25]. The restriction of carbohydrates and the consequent benefits to some funda-
mental metabolic pathways involved in the development of diabetes (such as insulin-like
growth factor-1, phosphoinositide 3-kinase, protein kinase B and mammalian rapamycin)
make KD an effective strategy for glycemic control and diabetes prevention [26,27]. The
long-term safety of a low-carbohydrate/ketogenic diet is an unresolved issue that requires
further investigation [555,556] for safe application in obese and diabetic patients [557].

The impact of a ketogenic diet on the lipid profile is a topic of great interest and
controversy, as the weight loss achieved by a drastic reduction in carbohydrates is associated
with a compensatory increase in fat intake, including saturated fat [558]. Furthermore,
rapid weight loss promotes an increase (or no reduction) in LDL-c levels [559]. An increase
in the size of the LDL-c molecule has been observed, but this does not seem to influence the
risk of atherogenesis due to a lower trend of ectopic deposition in arterial walls [560,561].

The ketogenic diet has a direct effect on the lipid profile by increasing HDL-c levels
and reducing serum triglycerides [25,35–41]. Therefore, through the regulation of the lipid
profile and a reduction in the insulin-related activation of HMGCoA reductase (with the
endogenous synthesis of cholesterol), the ketogenic diet seems to have a protective effect
in atherogenic dyslipidemia with a documented structural and functional change in the
LDL-c molecule [11,42].

In patients with hypertension, the ketogenic diet has demonstrated ambiguous results
and requires further studies to understand its safety and efficacy. There is no evidence for
blood pressure control [28] or hypertension’s harmful effects, including cardiac remodeling,
endothelial dysfunction and the deterioration of arterial relaxation due to reduced nitric
oxide synthase (NOS) production [29,30]. Patients with renal insufficiency appear particu-
larly susceptible to increased blood pressure during the ketogenic diet, owing to acidosis
caused by the metabolism of the amino acids involved in gluconeogenesis and increased
urea production [11,31]. However, the protective role of the ketogenic diet in hypertensive
patients is still possible [32] as groups of patients following KD have shown improved
blood pressure profiles with decreased systolic and diastolic blood pressure values [33–35].

The use of the ketogenic diet in patients with chronic kidney disease is a recurring
topic in the scientific community [562]. A low-carbohydrate diet often requires an increase
in protein and fat to ensure a sufficient intake of calories and healthy nutrition. How-
ever, the increased ingestion of proteins, especially of animal origin, causes higher renal
glomerular pressure, renal hyperfiltration, nephron damage and proteinuria, leading to
CKD progression [563]. Furthermore, patients with chronic renal disease are more prone to
altered mineral metabolism, and a ketogenic diet might expose patients to a greater risk of
reduced bone mass, worsening the calcium–phosphorus homeostasis [43,564]. Although
no direct renal benefits of a low carbohydrate ketogenic diet have been observed in pa-
tients with CKD, in cases of polycystic kidney disease, the metabolic shift from aerobic
glycolysis to mitochondrial oxidative phosphorylation appears to reduce cyst growth [45]
and promote renal cyst regression [46]. Notably, a ketogenic diet does not necessarily
increase protein intake. In fact, an isocaloric ketogenic diet includes the greater ingestion of
calories from other macronutrients such as fats [11,565,566]. Therefore, when KD is chosen
as a therapeutic option for weight or blood glucose management in patients with CKD,
supervision by health care professionals is appropriate [44].

The inflammation underlying multiple pathologies (including atherosclerosis) is a pro-
cess induced by the chronic dysfunction of innate and adaptive immunity. Ketone bodies
(especially β-hydroxybutyrate) can modulate the inflammasome [47] by reducing the
macrophage production of interleukins such as IL-1β, IL-18 and TNF-α [48]. Ketone bodies
also can decrease the activation of caspase-1 due to the regulation of the NLR family pyrin
domain-containing 3, a sensor that detects damage-associated molecular products and is
also activated by an excess of serum glucose and by atherosclerosis itself [567–569]. Further-
more, the effect of ketone bodies and caloric restrictions on the gut microbiota improves
mitochondrial respiration, decreases oxidative stress and the production of reactive oxygen
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species (ROS), activates endogenous antioxidant pathways and inhibits the expression of
NF-kB, leading to a significant reduction in inflammation [42,47,49,50].

Finally, the ketogenic diet plays an important role in improving several main risk
factors for PAD; however, its clinical safety long-term remains unclear.

2.1.4. Intermittent Fasting Diet

Generally, daily food intake is divided into three main meals and two snacks. Intermit-
tent fasting (IF) is a dietary pattern that alternates fasting periods of varying durations with
short intervals in which feeding is allowed. Fasting periods often result from an extension
of overnight fasting. There are numerous variants of IF or similar modified fasting regimens;
however, in general, all these dietary patterns are adequate to provide a correct intake of
calories while preserving lean mass, providing the necessary micro- and macronutrients,
and ensuring the beneficial effects of fasting with a low dropout rate.

In obese patients, IF is an effective strategy that provides substantial weight loss [51] and
leads to a significant change in body composition by consuming fat stores [52,53]. Fasting
can influence the composition of the intestinal microbiota by increasing the fermentation of
acetate and lactate and activating the thermogenesis of beige cells (due to the upregulation of
monocarboxylate transporter 1 in brown adipose tissue), resulting in net fat consumption [54].
One concern is the rapid weight loss due to water loss and glycogen consumption, which may
cause fatigue and dizziness [52]. However, growing evidence confirms the remarkable safety
profile [55] of IF for the management of overweight and obesity [56,57].

Diabetic patients, particularly those with obesity, showed a noticeable improvement
in blood glucose levels during intermittent fasting diets. In fact, a reduction in glycated
hemoglobin and an improvement in glycemic control has been documented in these patients
regardless of weight loss and body mass transformation [53,55,65,89,570–575]. Fasting
promotes an optimization of the circadian rhythms and regulation of several molecular
and hormonal pathways (such as ghrelin, insulin-like growth factor 1, adiponectin, leptin,
8-isoprostane), which lead to a significant improvement in the function, regeneration
and survival of pancreatic β-cells [576,577], with an additional reduction in the risk of
developing diabetes [56,578]. IF also modulates the inflammatory state, with a direct
effect on insulin sensitivity [58]. Hypoglycemia is a common adverse event in diabetes,
but the risk can be significantly reduced with adequate training in the management of
hypoglycemic drug therapy during fasting periods [59]. There are few guidelines to support
the safe use of an intermittent fasting scheme in diabetes [53]; however, to date, it has
proven to be a fairly safe dietary pattern for diabetic patients [60].

In addition to the effects of IF on blood glucose levels and weight management,
interesting results were observed in the control of hypertension. In fact, patients with
greater adherence to this diet had a better blood pressure profile in parallel with a reduction
in abdominal circumference [61,62].

Intermittent fasting can reduce serum cortisol levels [63] and sympathetic tone, as
evidenced by a decrease in diastolic blood pressure and heart rate [58]. Furthermore, the
decrease in systolic and diastolic pressure during periods of fasting leads to the easier
management of hypertension, thus improving cardiovascular risk and quality of life [64]. IF
provides significant benefits to cardiometabolic health and positively influences circadian
rhythms [65], playing a vital role in the prevention of hypertension and metabolic syn-
drome [66]. Therefore, a short fasting cycle has shown an effective impact on hypertension
and, more generally, on cardiovascular risk [67], with sufficient safety and feasibility [68].

Intermittent fasting can be a therapeutic strategy to achieve better serum lipid profiles
and cardiovascular protection [69–71] in obese patients at higher CV risk. There is still no
solid evidence for the use of IF in clinical practice, however, as most knowledge comes
from anecdotal and observational studies or from the experience of patients observing
the fasting customs of Ramadan [72,73,579–582]. Based on the current evidence, IF could
ensure a reduction in the serum levels of triglycerides and LDL-c with an increase in HDL-c,
with a consequent decrease in cardiovascular risk [72,73]. Part of the benefit derives from
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the amount of body weight loss and the qualitative change in body mass, with a ripple effect
on the respiratory exchange ratio, lipid profile and metabolism, regardless of concomitant
physical activity and eating habits [53,74–79].

Most studies concerning the impact of fasting on kidney function and its related
benefits and safety come from reports of the effects of Ramadan (a pillar of Islamic belief)
on patients with CKD [85]. Thus, it is a topic of considerable interest but is equally
controversial. Some studies conducted on fasting and CKD document a good safety profile,
with a reduction in serum creatinine levels and an increase in the glomerular filtration
rate [80,81]. However, several aspects of fasting in CKD concern experts, such as the risk of
renal hypoperfusion, which could lead to acute renal injury from dehydration [583], causing
hyperkalemia, the worsening of hypertension, metabolic acidosis and proteinuria [584,585].
Attention has now been placed on the safety of fasting in patients with renal insufficiency,
suggesting that individuals with mild or moderate chronic renal insufficiency can afford
fasting if closely monitored for adequate hydration [82,83] and if the glomerular filtration
rate does not appear to deteriorate significantly [84,85]. However, studies are still needed
to evaluate the benefits on renal function and assess the safe reproducibility of intermittent
fasting in the different phases of CKD to avoid harmful consequences [586].

Atherosclerosis is a chronic low-grade inflammatory disease that involves all arterial
beds. The progression of atherosclerotic plaques leading to the narrowing of the arteries
relies on endothelial dysfunction and the long-term exposure to oxidative stress. The
proinflammatory processes occurring in atherosclerotic plaques appear to be influenced
by the metabolic effects of intermittent fasting [77]. The cytokine load promoted by foam
cells exposed to oxidized LDL is markedly reduced in patients during intermittent fasting,
resulting in the regression of the inflammasome [58,86,87]. The intermittent fasting diet
modulates the secretion of various molecules produced by adipocytes. These include
adiponectin [88,89], which decreases the expression of adhesion molecules [90,91], prevent-
ing the intimal thickening of the vessels and slowing the proliferation and migration of
smooth muscle cells [92]; leptin [89], which reduces platelet aggregation and the prolifera-
tion of endothelial cells [93]; and resistin [94], which modulates the activity of neutrophils
and the endothelial adhesion of monocytes [95]. Fasting reduces liver inflammation and
improves glucose and fat metabolism [96]. Fasting also alters the intestinal microbiota,
favoring a microbial composition with anti-inflammatory properties, including the modula-
tion of neuroinflammation, local and systemic oxidative stress [56,97,98,587–590]. Despite
an initial increase in macrophage infiltration in adipose tissue and skeletal muscles due to
increased lipolysis activity [591], IF promotes weight loss, a reduction in fat mass and the
improvement of body composition, with a positive impact on the inflammatory state and
related metabolic disorders [58].

The promising results of intermittent fasting in the prevention and treatment of
PAD-related risk factors should encourage further studies to evaluate its safe clinical use,
long-term effects, indications based on patient characteristics and strategies for minimizing
side effects and poor compliance [66,592,593].

2.2. Impact of Eating Behaviors on PAD Risk Factors and Predictors

Eating behaviors are a set of habits that an individual possesses or adopts during
feeding; they concern the modalities of feeding, the frequency and quantity of meals, the
emotional substrate and the influence that food can have on the individual. The main
factors that determine our eating habits can include culture, social history, family, individ-
ual characteristics and economic and psychological states. The pathological relationship
between food consumption and eating behaviors contributes to the development of eating
disorders. Some of these disorders contribute to the pathogenesis of atherosclerosis and
promote the development of common chronic diseases.

Among the most relevant eating disorders, we selected binge eating, emotional eating,
bulimia nervosa, anorexia, sleep disturbances, night eating disorders, home cooking, fast
food and the consumption of processed foods and skipping meals for further study. We
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explored the interesting interaction between eating habits and major predictors of PAD and
analyzed how these disorders may be related to the progression of these chronic diseases.
The main results are summarized in Table 2.

2.2.1. Emotional Eating, Binge Eating, Bulimia Nervosa, Anorexia Nervosa

Obesity is often the result of several eating disorders, partially due to the impairment
of dopaminergic inhibitory/reward neurological pathways [227], emotional dysregulation,
the impairment of the hypothalamic pituitary adrenal stress axis [228,229], or the reduced
secretion of serotonin secondary to the low intake of tryptophan [230]. Careful assessments
of dietary habits should always be conducted, as deleterious eating behaviors often remain
underdiagnosed [244]. Binge eating and emotional eating lead to the consumption of large
amounts of high-calorie foods in a short period due to a maladaptive response to emotional
and psychological distress [231]. The frequency of emotional eating correlates with a higher
incidence of weight gain, and in general, the higher the BMI, the more severe the eating
disorder. Thus, at the same time, obesity seems to be both the cause and effect of binge and
emotional eating [232]. Currently, cognitive, behavioral, psychological and interpersonal
therapies along with pharmacological treatments have a beneficial impact on binge control
and emotional distress to manage overeating [232].

In recent years, an increasing prevalence of bulimia nervosa in obesity has been
observed, describing how obesity is often associated with frequent episodes of loss of
control and overeating, which lead to a large consumption of calories [233]. The recurrence
of these episodes affects weight gain [234] and is probably related to maladaptive responses
to social distress, a tendency toward depression, low self-esteem, performance and body
satisfaction [235].

Diabetes mellitus is often characterized by psychological discomfort with regard to
nutrition, and an integrated approach for the control of glycemia and the management
of eating behaviors is fundamental [594,595]. Dysfunctional eating in diabetes mellitus is
associated with a higher risk of acute and chronic complications owing to hyperglycemia
and hypoglycemia [596]. Low mood or the recurrence of diabetes-related adverse events
could be signs of eating disorders in patients [597].

Patients with DM, especially type 1 DM [236], are often concerned with food, body
weight and body shape, with severe psychosocial repercussions, emotive dysfunctions and
harmful consequences to health [237,238]. For example, diabulimia is a common condition
that leads to binge eating, insulin therapy restriction and self-induced vomiting to control
weight or avoid weight gain, leading to dangerous glycemic variability with recurrent
episodes of hyper- or hypoglycemia [239]. Binge eating appears to be a risk factor for
diabetes [240] and increases the prevalence of depressive symptoms, which complicate
glycemic control and lead to worse outcomes [236,241,242].

Impaired hormonal pathways that regulate satiety (e.g., brain sensitivity to incretins)
have been observed in diabetes, and this condition is often responsible for several eating
disorders such as binge eating, overeating driven by emotional eating and night feed-
ing [241–245]. Among the eating disorders associated with diabetes, anorexia is a rare
condition that hampers patient management and increases the incidence of life-threatening
complications due to insulin treatment restriction, prolonged fasting and compensatory
behaviors (such as the induction of vomiting). This is especially dangerous in patients with
type 1 diabetes mellitus, who are more prone to develop ketoacidosis [236]. Controversially,
some studies consider anorexia as a protective factor because it leads to lower caloric in-
take [246]. However, there is no consistent evidence regarding the role of anorexia nervosa
in diabetes. In patients with diabetes (especially type 1), the search for maladaptive eating
disorders and nutritional compensatory behaviors should be included in the management
and prevention of acute and chronic complications of diabetes [598–600].

Dyslipidemia is commonly observed in individuals with eating disorders. The lipid
profile, characterized by higher serum levels of triglycerides and LDL-c and lower serum
HDL-c concentrations, is often the result of deleterious dietary patterns associated with
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unhealthy eating behaviors. All types of episodes in which a loss of control occurs fre-
quently lead to overeating, with a preference for products with high fat and sugar content
that help the patient decompress after the stressful trigger, inevitably worsening the lipid
profile even at a young age. Eating disorders associated with an impaired lipid profile and
characterized by the loss of control are mainly binge eating and bulimia, which are respon-
sible for an increased risk of developing metabolic syndrome and dyslipidemia [249,250].
The severity of eating disorders appears to directly affect the serum LDL and non-HDL
cholesterol levels, leading to an increased risk of cardiovascular events [253]. Furthermore,
emotions are strongly linked to metabolic balance, and there is a particular interaction
between emotional eating, driven mainly by anxiety, and an increase in LDL-c, confirming
that mood plays a significant role in metabolism [252].

Nutrition and eating behaviors contribute to the pathogenesis, progression and manage-
ment of hypertension because they promote the development of metabolic syndrome or affect
complex neuro-metabolic activity. Hypertension is particularly common among individuals
with typical uncontrolled overeating episodes, such as binge eating and bulimia nervosa.
The emotional and psychological substrate seems to be deeply interconnected with hyperten-
sion since individuals who stopped binging showed a consistent reduction in diastolic [247]
and systolic [248] blood pressure values. The frequency and extent of binge episodes are
predictors of more severe phenotypes of hypertension [249], and individuals with classic
binge eating and bulimia nervosa [250] show the highest risk profile [251]. Emotional feeding,
particularly in anxiety, has a detrimental effect on the metabolism of hypertensive patients,
hampering the success of hypertension management; however, clear evidence on the incidence
of hypertension in cases of emotional eating habits is still lacking [252].

The chronic low-grade systemic inflammatory process affecting patients with a loss
of control while feeding is further favored by the severity and frequency of binging
episodes [248]. Each episode contributes to an increase in serum CRP levels and white
blood cell counts, suggesting that eating disorders progressively worsen an individual’s
inflammatory profile [254] and increase cardiometabolic risk [248]. Interestingly, elevated
levels of inflammatory molecules may be protective against eating disorders, as overac-
tivation of the immune system leads mainly to a lack of appetite. However, emotional,
psychological and metabolic involvement during overeating episodes can alter appetite,
resulting in dysregulated food intake and the absence of satiety feedback [255].

Several eating disorders exhibit a specific inflammatory profile with a typical composi-
tion of cytokines and growth factor production, as observed in binge eating, night feeding
and anorexia nervosa, with inter-individual differences in the expression of inflammatory
molecules [256]. There is growing evidence showing the fundamental interactions between
the gut microbiota, immune system and eating disorders. Binge eating, bulimia nervosa
and prolonged fasting in anorexia nervosa have a substantial impact on intestinal dysbiosis
by modulating local inflammation [257] and promoting neuroinflammation. The latter
alters the brain control of vegetative functions such as satiety, weight and mood [258],
contributing to the development and progression of eating disturbances [259]. Several
molecular biomarkers have been investigated as possible factors involved in the patho-
genesis of inappropriate nutritional habits, including intestinal peptides [257]; endocrine
system hormones such as cholecystokinin, ghrelin, glucagon-like peptide 1, YY peptide
and pancreatic polypeptide; adipokines such as adiponectin and leptin [260]; neuroin-
flammatory pathways including phosphorylated NF-kB protein, NF-kBIA and IL-6 gene
expression [261]; and cytokines such as IL-1b, TNFalpha, CRP and TGFbeta [258].

2.2.2. Night Eating and Sleep Disorders

Night eating disorder is often associated with obesity [262,263] and weight gain leads
to severe sleep disorders [264]. Night eating syndrome (NES) is likely caused by the
desynchronization of circadian rhythms with frequent nocturnal awakenings, which are
associated with recurrent, large caloric intakes after dinner [265,266]. The complex interplay
among nocturnal hyperphagia, lack of sleep and obesity requires further investigation to
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fully understand this disorder [267,268], and obese patients should always be evaluated for
NES to promptly recognize and treat this condition which hampers weight control [269,270].
Additionally, inadequate sleep time and quality can increase uninhibited eating, discomfort
and susceptibility to food reward, and impair the endocrine system with the dysregulation
of appetite-regulating hormones. This results in hedonic eating rather than a nutritional
pattern driven by homeostatic impulses, leading to the development of obesity [271].

Nocturnal food consumption in diabetes affects sleep with a deleterious impact on
hormonal and metabolic homeostasis, resulting in a failure to control weight [245] and
maintain therapeutic glycemic goals. However, no studies have been designed to cor-
rectly evaluate the impact of nocturnal eating on diabetes mellitus. Sleep disturbances
are prevalent in diabetic patients, who often suffer from insomnia and obstructive sleep
apnea syndrome (OSAS), both associated with the primary development or progression
of diabetes [272,273]. In particular, episodes of hypoxia linked to OSAS and the neuro-
hormonal imbalance due to the short duration of sleep seem to be one of the complex
causes of impaired metabolic homeostasis and lack of glycemic control [274–277]. Diabetic
patients with OSAS treated with continuous positive airway pressure (CPAP) demonstrated
a significant improvement in glycemic control and insulin sensitivity, parallel to the re-
duction in snoring and daytime drowsiness [278]. Sleep duration modulates satiety by
influencing metabolic and neurological pathways. Insufficient sleep time promotes appetite
by increasing serum leptin levels and lowering ghrelin production [279] with a reduction
in satiety. It also alters the perception of total food consumption, resulting in excessive
caloric intake, obesity and diabetes mellitus [280]. In addition, sleep disturbances include
late-night caloric intake, a condition characterized by an excessive delay in dinner time or
by the frequent consumption of night-time snacks with a significant increase in the risk
of diabetes and related complications [281]. Therefore, sleep quality and duration should
be included in clinical assessments to identify patients at the highest risk of diabetes and
those failing to achieve glycemic goals [282,283], in the young population [284,285] and
in type 1 DM [280,286,287].

Sleep habits change the lipid profile by affecting metabolism with a U-shaped associa-
tion [290–292]. Seven hours is the ideal mean sleep duration, which has been observed to
be linked to the greatest benefit in preventing metabolic syndrome, lipid dysmetabolism
and mortality [293–295]. Sleep disturbances induce a decrease in serum concentrations
of leptin, resistin and HDL-c, favoring an increase in the levels of hepatic cholestatic in-
dices and an accumulation of hepatic cholesterol due to the under-expression of CYP7A1,
which is responsible for the conversion of cholesterol into bile acids [296]. Among sleep
disorders, obstructive sleep apnea has the most significant impact on dyslipidemia [297].
Hypoxia caused by proximal airway obstruction triggers the release of fatty acids from fat
stores and the liver as part of the effects of adrenergic pathway activation, resulting in the
higher synthesis of triglycerides and cholesterol esters. Furthermore, neuro-adrenocortical
hyperactivation [298], triggered by hypoxic episodes, favors the synthesis, accumulation
and oxidation of LDL cholesterol due to lipoprotein lipase dysfunction. The treatment of
OSAS, with the loss of weight and continuous positive airway pressure (CPAP), reverses
alterations in the lipid profile [299]. Patients with sleep disorders often tend to eat late
at night or eat after-dinner snacks. This deleterious habit accelerates the progression of
atherosclerosis, with the premature degeneration of the arterial wall and increase in arterial
stiffness [601]. The irregular consumption of food at night reduces the time to sleep and
disrupts the physiological overnight fast with excessive serum lipid loads after dinner,
leading to severe impairments in post-prandial lipid metabolism [300,301]. At night, there
is a physiological reduction in metabolic activity and consequently poor tolerance to caloric
intake [602], as demonstrated by the harmful blood peaks of triglycerides, fatty acids and
cholesterol esters during night feeding [302].

Short sleep duration runs in parallel with poor quality diets, characterized by a large
intake of high-calorie foods rather than an adequate intake of vegetables and fruit. Hyper-
tension might be the consequence of this complex interplay between sleep disturbances and
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metabolism, with variability in the blood pressure profile according to the impairment of
the food reward pathway, imbalance of leptin and ghrelin production and circadian rhythm
integrity. Frequent conscious and unconscious interruptions in night rest are responsible
for abnormal nocturnal blood pressure profiles [288]. Furthermore, emotional involvement
resulting from sleep disturbance frequently leads to relieving discomfort by eating [603].
Night eating has a strong impact on blood pressure and arterial stiffness by compromis-
ing the physiological metabolic cycles [289], which causes unwanted weight gain due to
increased total daily caloric intake and is typically associated with a low consumption of
plant-based foods [601,604].

2.2.3. Skipping Meals

Social and environmental factors often lead to poor adherence to the typical distri-
bution of meals (breakfast, lunch, dinner and two snacks). Irregular eating patterns with
frequent skipping of meals and/or snacks are widespread in the population, especially
among young people [605–607]. In particular, skipping breakfast leads to an increase in
calorie intake during the rest of the day, resulting in an unbalanced distribution of food
that favors the development of obesity [303–305].

Eating within certain time intervals plays a fundamental role in glycemic control as the
regular intake of food improves glycated hemoglobin levels and reduces the incidence of di-
abetes in younger age groups. In addition, not eating one or more meals throughout the day
is a practice often pursued by people to lose weight, but the main result is an increased risk
of developing diabetes [306]. The frequent and random skipping of meals worsens diabetes
control by altering glucose tolerance. On the other hand, a well-established distribution of
daily calories results in an effective dietary strategy that counteracts the harmful effects
of skipping meals, although it is essential to avoid the excessive glycemic fluctuations
caused by multiple meals [307]. Breakfast appears to be the most relevant meal because
it is responsible for energy balance, insulin secretion and sensitivity, glucose metabolism,
fat oxidation and post-prandial inflammatory responses [308]. Skipping meals, especially
breakfast [305,309–311], exposes diabetic patients to severe glycemic variations [312], long-
term vascular damage and a higher incidence of MACE and MALE [313]. The effects of
skipping breakfast on glycemic control can also be observed in young people who increas-
ingly have incorrect eating behaviors related to a higher incidence of metabolic syndrome
and susceptibility to diabetes, as well as in pregnant women with an increased risk of
developing gestational diabetes [314]. Curiously, these effects can also be observed in
the very short term even after skipping a single breakfast, with higher glycemic values
after lunch [315]. As expected, skipping meals is often associated with other deleterious
eating habits, such as frequent fast food consumption, late night eating, stress [316] and
overeating, conditions that lead to the development of diabetes [608].

Eating at home is associated with a reduced habit of skipping meals, which has also
been shown to contribute to dyslipidemia. Breakfast is usually the most skipped meal
with the most relevant effects on the lipid profile [305], and this trend is often combined
with other unhealthy eating habits, such as the frequent consumption of pre-cooked and
packaged foods and poor home cooking skills. In some situations, the intentional avoidance
of certain meals is driven by the desire to lose weight. However, skipping meals with an ir-
regular pattern is an unsafe and ineffective long-term strategy for weight control and leads
to early metabolic alterations such as an increase in serum LDL-c levels [304,317]. Skipping
meals makes metabolism less efficient, especially in the case of breakfast which prepares
the body to digest and metabolize food with a better post-prandial lipid profile [308].

Irregular fasting also plays a role in the progression of metabolic factors and biological
patterns underlying hypertension. Frequent meal skipping leads to a higher rate of failure
in blood pressure control. Indeed, evidence confirms the negative effect of skipping meals,
especially breakfast, on hypertension and metabolism [305].

The irregular distribution of calories during the day has become common in both
younger and older generations and may promote immune system dysregulation [609],
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leading to low-grade intestinal inflammation and dysbiosis with harmful health conse-
quences [308]. Eating disorders and detrimental eating habits are risk factors that should
be considered when identifying patients at higher risk for cardiovascular complications
and who deserve targeted therapy to control their food disturbances [610].

2.2.4. Home Cooking, Fast Food Access, Ultra-Processed and Packaged Food Consumption

Another cost-effective preventive strategy for obesity is to increase individual home
cooking skills [318,319] from a young age [320], favoring healthy cooking methods such as
roasting, sprouting and boiling over fried foods, maximizing the anti-obesity properties of
some ingredients rich in phytochemicals (e.g., soy and fiber) [321]. Home cooking impacts
obesity by improving individual skills in the selection of ingredients [322] and reducing
the uninhibited and unconscious consumption of calories [323]. Furthermore, home cook-
ing minimizes access to fast food, allowing more effective weight control [324,325] and
a healthier dietary intake, including a lower consumption of fried meals, salt, sugary drinks,
processed foods and saturated fats contained in low-quality oils, in parallel with a greater
intake of fruit and vegetables [324,326–328]. Home cooking reduces the consumption of
low-quality packaged meals, characterized by high caloric density and additives [329],
which often lead to the development of obesity and endocrine disorders [330] such as higher
serum estrogen levels due to polycarbonates and epoxy resins in plastic materials [331].

People who eat homemade meals and improve their home cooking skills show
a greater ability to select quality foods and a greater understanding of the impact of
nutrition on health, with a lower risk of developing diabetes [334]. The consumption of
home-cooked meals is a reliable predictor of increased adherence to healthy eating habits,
and home-cooking education programs are an effective diabetes prevention strategy [335].

Food quality is defined by the type of cooking used to prepare a meal, and this can be
associated with the incidence of diabetes. In particular, stewing or boiling meat reduces
the risk of developing diabetes [336] compared to cooking meat at a high temperature
(e.g., barbecuing, roasting, grilling). These high-temperature methods release harmful
compounds, including advanced glycation end products (AGE) and heterocyclic aromatic
amines which lead to inflammation and glycemic toxicity [337]. Oil is a key ingredient in
food preparation and the use of extra virgin olive or soybean oil (compared to animal fat,
peanut oil, refined vegetable oil, rapeseed oil and sesame oil) provides consistent protection
against diabetes [338].

The impact of cooking plays a major role in all rural and low-income countries, where
cooking patterns are driven by sociocultural traditions and where the perception of the im-
pact of food and diet on health is often low. Globalization has invaded the markets of these
countries, providing a cheaper but harmful alternative to healthy food [611,612]. Fast food
addiction has resulted in a pandemic distribution affecting people of different ages, cultures
and origins [613]. Fast food is an inexpensive, highly palatable and addictive alternative to
home cooking. However, the low quality of the ingredients, the large portions of the meals
and the excessive intake of sugars, salt and calories are all characteristic traits of this harm-
ful dietary pattern strongly associated with insulin resistance and diabetes [339–342]. The
main ingredients of fast-food meals are processed red meat (e.g., sausages, hamburgers),
fried products (e.g., French fries or fried chicken) and other foods rich in added and refined
sugars (e.g., packaged ice cream and sweetened beverages), high glycemic index products,
saturated fats and salt, all of which contribute to the development of diabetes [343,344].
The long-term consumption of fast food is associated with hepatic steatosis. Excessive
liver triglyceride alters lipid metabolism, increasing post-prandial serum lipid levels and
reducing insulin sensitivity [345,346]. Furthermore, steatosis reduces the liver’s ability to
process cholesterol and saturated fatty acids contained in large quantities in many fast-food
products and the consequent lipid overload impairs pancreatic beta-cell function [347].

Home cooking increases the consumption of vegetables and fruits rich in phytochemi-
cals that lower LDL-c [321]. The consumption of ultra-processed and packaged foods is
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one of the most important risk factors for metabolic syndrome, contributing to the aggra-
vation of dyslipidemia [357]. Ultra-processed foods are characterized by low-quality and
high-calorie density products; this diet comprises a substantial part of global nutrition due
to the addictive taste, low cost and wide availability of these foods. In parallel with the
increase in the incidence of metabolic syndrome, dyslipidemia and other cardiovascular
risk factors, fast food and ultra-processed foods have become more prevalent in diets
globally and are frequently associated with other unhealthy eating behaviors [358,359]. In
recent years, younger generations [360,361] have been increasingly exposed to junk food
such as processed red meats, fried foods and high-calorie meals rich in refined sugars and
salt. This may explain the current worsening of individual nutritional conditions (such
as obesity, diabetes and dyslipidemia [362]), the early incidence of chronic diseases and
higher morbidity.

Hypertensive patients should consider improving their cooking skills, as a reduction
in blood pressure has been documented in individuals who have greater awareness of the
ingredients used when cooking. In particular, olive, soy and peanut oils used in cooking
have beneficial effects on endothelial function and play an important role in the manage-
ment of blood pressure [348,349]. Patient education in the selection of ingredients, in the
correct quantity and in the preparation of food has resulted in a significant reduction in the
incidence of adverse cardiovascular complications through the better control of hyperten-
sion [350]. Cooking educational programs and home food preparation guidelines should
be included in an active therapeutic approach for blood pressure management. Moreover,
minimizing access to restaurants or the intake of processed foods [351,352] are key strate-
gies to counteract the incidence of chronic comorbidities that affect hypertension [353] and
related outcomes [354] in both young and adult patients [355,356]. Although home cooking
training reduces junk food consumption [356,614], patients are rarely educated in proper
meal preparation [348,349].

To the best of our knowledge, no recent studies have assessed the impact of eating
disorders on the incidence and progression of kidney disease. There are data on cooking
techniques as a possible protective factor against a common complication of renal failure,
namely hyperkalemia. For patients with renal insufficiency at risk for hyperkalemia due
to the consumption of potassium-rich foods, boiling should be the preferred method
of cooking meals, as it correlates with a greater reduction in potassium content [363].
Consuming frozen vegetables [364], soaking and double-cooking foods are additional
dietary skills that can help minimize potassium content [367]. Low-quality processed foods
and packaged meals are excessively high in potassium, phosphorus and protein, as well as
calories [368–370].

Patients with chronic kidney disease and poor nutrition education often show a higher
frequency of fast food and junk food intake [365], along with restricted access to fresh
produce and high-quality food. These harmful eating behaviors and a suboptimal diet
could worsen renal function in this group of patients, increasing the risk of cardiovascular
complications [366].

There is little awareness of the role of cooking habits in the promotion of inflammation;
however, the wise selection of foods and ingredients could be an effective strategy for
reducing the inflammatory burden. Moderate amounts of red meat and processed foods
or even a full transition to other protein sources (poultry, soy, legumes) can reduce the
oxidative stress derived from food metabolism [371–373] regardless of weight loss and
calorie intake [374].

Ultra-processing is the extraction of substances such as fats, starches and sugars from
foods and adding as artificial colors, emulsifiers, flavorings and stabilizers that mimic
the sensory qualities of natural foods while affecting the homeostasis of the intestinal
microbiota. Such ultra-processed foods worsen serum lipid levels, induce the release
of proinflammatory molecules from adipose tissue [375] and reduce the antioxidant de-
fenses [376], resulting in cardiometabolic risk [615–617]. Unfortunately, these products are
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affordable, highly palatable and easy to find, facilitating their prevalence in patient diets
and accelerating the incidence of atherosclerotic disease in recent years [618].

2.3. Smoking and Eating Behaviors

Smoking is a well-established cardiovascular risk factor deserving a separate discus-
sion as very little is known about its relationship with diet, eating behaviors and food
disorders. A peculiar coexistence of unhealthy lifestyle habits, smoking and traditional risk
factors for atherosclerosis, such as obesity, physical inactivity and diabetes, is frequently
observed in patients with a high CV risk.

Many concerns arise from the prevalence of smoking in younger generations, who
are also those most exposed to improper diets and lifestyles [619]. The concomitant
presence of several dietary risk factors is common in smokers, including lack of sleep, night
eating [268], skipping meals [377], emotional eating [378], low-quality diet [379,380] and the
low consumption of foods of plant origin, often replaced by fast food and ultra-processed
foods [381]. Nutritional programs should run in parallel with the smoking cessation
process; notably, these programs can prevent the excessive caloric intake [382] that often
accompanies withdrawal symptoms [383]. Women who quit smoking are particularly prone
to relapse in proportion to their degree of concern about physical appearance, depressive
mood and weight gain [620]. An adequate educational program with healthy, non-addictive
and anti-inflammatory diets [621] could counteract the oxidative stress caused by tobacco
and could correct eating disorders related to smoking cessation. The nutrition needs of
smokers should be considered to ensure the effective prevention of the cardiometabolic
risk to which they are exposed. Further studies are needed to explore the possible etiology
and molecular pathways underlying the interaction between smoking, food and habits.

3. PAD of Lower Limbs and Nutrition
3.1. PAD and Nutritional Status: Obesity and Malnutrition

Addressing the growing incidence and prevalence of CV disease has become a priority
to save millions of people worldwide [622] and to reduce its economic burden [623]. Pri-
mary prevention plays a pivotal role in reducing the disastrous consequences of atheroscle-
rotic disease. In particular, prevention based on an adequate nutritional program could lead
to extraordinary results for coronary heart disease, cerebrovascular disease and PAD [402].

Patients with PAD of the lower limbs are burdened by a severe atherosclerotic pheno-
type characterized by polyvascular involvement that makes these individuals particularly
fragile and at a high risk for disabling complications [624]. It is necessary to develop
a well-structured nutritional program and investigate the presence of eating disorders to
stratify risk and act promptly to prevent detrimental complications.

Obesity in PAD patients is a common clinical feature that has a significant impact
on comorbidities and outcomes [467,625]. Indeed, weight gain in patients with LEAD
is associated with more severe clinical scenarios [626] such as a reduction in walking
autonomy, fast progression towards critical ischemia and an increased probability of failed
revascularization treatments [386,471,627,628]. Furthermore, an obese patient with PAD has
a more aggressive phenotype of concomitant comorbidities, which hinders the achievement
of recommended therapeutic goals and results in lower survival [629,630]. Finally, obesity
in PAD is a reliable predictor of negative outcomes, leading to a higher incidence of
MACE and MALE. Indeed, obese patients with LEAD have an approximately 1.5-fold
increase in the development of critical limb-threatening ischemia (CLTI) regardless of other
confounding factors [436]. Therefore, weight loss is an effective and safe approach for the
simultaneous management of CV risk factors, comorbidities and PAD, with a significant
gain in terms of survival and quality of life [628,631]. A high-calorie diet that does not
guarantee an adequate supply of proteins, vitamins and minerals could lead to nutritional
deficiencies despite obesity, and many obese patients with PAD of the lower limbs suffer
from sarcopenic obesity and/or selective malnutrition, which further worsens nutritional
status [402,632,633]. Patients often have calorie–protein malnutrition, which is responsible
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for the harmful condition of cachectic sarcopenia. This increases the risk of adverse events
and accelerates atherosclerosis by favoring a more aggressive inflammatory state [634–636].
In patients with advanced stages of PAD, the diet should provide sufficient calories and
protein to match the increased resting energy expenditure and intense metabolic stress
secondary to ulcer healing and chronic infections [394]. Interestingly, malnutrition is
a dire condition in which obesity in PAD paradoxically appears to be a protective factor
compared to cachectic sarcopenia, as obese patients exhibit fewer complications and longer
survival than lean individuals. This obesity paradox was confirmed regardless of age,
sex and comorbidity [437]. In fact, sarcopenia carries an independent additional risk of
MACE and MALE. In particular, patients with advanced stages of lower extremity arterial
disease (LEAD) who undergo a revascularization have dramatic short-term outcomes with
increased rates of MACE [438,439] and major amputations [440], slightly improved by
the adherence to the best medical treatment such as aspirin and statin [441]. Therefore,
sarcopenia may be an aspect to consider for the risk stratification of patients with CLTI in
terms of the success rate of limb salvage [442].

The nutritional status of patients with PAD plays an important role in their out-
comes [637]. An integrated assessment of individual nutritional status would improve the
residual CV risk through the integrated management of diet and eating habits [638].

3.2. PAD of Lower Limbs and Nutrients

The inflammatory process underlying atherosclerosis in PAD is responsible for en-
dothelial dysfunction and triggers vascular inflammation and thrombosis, leading to the
progressive narrowing of the vessels in the lower limbs. Diet modulates the vascular in-
flammatory process and slows atherosclerosis [402]. The minimal consumption of red meat,
processed meat and saturated fats should be the first nutritional aspect to be corrected to
prevent or even significantly alter the progression of PAD. In addition, typical products
of the Western diet, which are linked with a greater risk of LEAD, should be avoided,
and a greater intake of plant-based foods should be recommended for this population.
Phytosterols (derived from nuts and vegetable oils) and flavanols (mainly present in fruits
and vegetables) play a fundamental role in the lipid profile and inflammatory process by
reducing LDL-c, the formation of foam cells, the oxidation of ectopic cholesterol deposits
on arterial walls and the endothelial production of cytokines and chemokines [639–643].

A dietary or supplemental intake of vitamins has been documented to have additional
beneficial effects on atherosclerosis in PAD [637,644]. Vitamins with an anti-inflammatory
function (especially vitamins A, C and E) are excellent stabilizers of atherosclerotic plaque
by modulating local oxidative stress, resulting in decreased plaque vulnerability and risk of
rupture [394,645–651]. Furthermore, B vitamins (B2, B6, B9 and B12) reduce serum levels of
homocysteine, which promotes arterial stiffness by increasing collagen production [652,653],
induces the proliferation of vascular smooth muscle cells and facilitates local inflammation
and thrombosis [654–657]. Vitamin deficiency should be investigated in patients with
advanced stages of LEAD as this may accelerate progression to CLTI. Indeed, lower plasma
levels of vitamin B12 were found in patients with DM and LEAD who underwent a major
amputation, leading to worse outcomes during post-surgical rehabilitation [443]. The
supplementation of activated vitamin D to lower extremity PAD patients on dialysis may
be a cost-effective strategy to reduce the risks of foot infection and MACE [444] and the rate
of major amputations [445]. Although the role of vitamin C in non-healing foot wounds
is unclear, given its relative safety, dietary supplementation could be another strategy to
reduce lower extremity complications [446,447].

Molecules with antioxidative properties such as zinc and coenzyme Q exert a beneficial
effect on the management of hypertension, dyslipidemia and diabetes in patients affected
by PAD of the lower limbs [402]. However, the impact of micronutrients (such as zinc and
magnesium) on foot ulcer healing is uncertain and there is no evidence on their impact
on the prevention of CLTI progression, amputation rate or failure of revascularization.
Therefore, supplementation is not routinely recommended in clinical practice [448].
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Dietary fats are vital as they are a rich source of energy, contribute to the synthesis
of hormones and take a structural part in the composition of cell membranes. However,
the excessive intake of saturated fat, cholesterol and triglycerides promotes inflammation
and accelerates the formation of atherosclerotic plaques. Therefore, therapeutic diets
should include polyunsaturated fatty acids (PUFAs), which have anti-inflammatory and
anti-thrombotic effects, regulate blood pressure and improve claudication symptoms by
increasing nitric oxide production [637]. Humans do not have the ability to synthesize
PUFAs, which are mainly present in fish and vegetable oils, nuts and seeds and foods
with known anti-atherogenic effects [658,659]. Individuals with advanced stages of PAD
undergoing revascularization may require supplementation of their diet with PUFA-rich
foods given that low plasma levels of eicosapentaenoic acid correlate with the incidence of
MALE and MACE [449,450].

Soluble fiber has remarkable health benefits in patients with PAD [660]. Each meal
should include an adequate intake of fiber as it significantly impacts post-prandial hyper-
glycemia and hyperlipidemia by slowing stomach emptying and the intestinal absorption
of dietary fat and glucose, resulting in lower glycemic/lipemic variability [661]. Soluble
fiber exerts a beneficial effect on weight, blood pressure and lipid profiles through several
mechanisms. The sense of satiety following fiber intake leads to weight loss and a reduction
in the release of inflammatory and vasoactive molecules from fat deposits. Vegetable
fibers also modulate the excretion of bile acids and, consequently, decrease serum choles-
terol levels. Finally, soluble fibers modulate the intestinal microbiota, causing an increase
in the production of short-chain fatty acids with beneficial effects on inflammation and
metabolism [662]. Fenofibrate is a synthetic derivative that converts to fibric acid, which
directly modulates PPAR-α activity, and a similar effect is observed for soluble dietary
fibers [663]. The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) [664]
and ACCORD [665,666] trials demonstrated that fenofibrate in diabetic patients reduces the
risk of microvascular complications, including lower extremity amputation (LEA) [451–455]
even after the aggressive management of blood pressure, glycemia and cholesterol [667].

Beneficial effects on lower extremity outcomes seem to correlate with the modulation
of the adiponectin-dependent pathway [668] and the activation of PPAR-α, a transcription
factor involved in lipid metabolism, ketogenesis and peroxisomal/mitochondrial fatty acid
β-oxidation [669]. Interestingly, patients with a consistent intake of fiber often manifest
other beneficial habits and healthy behaviors [670].

3.3. PAD of Lower Limbs and Diets
3.3.1. Mediterranean Diet

The MD embodies many of the suggested nutritional recommendations for patients
with PAD. It is rich in polyunsaturated fats due to the use of olive oil, nuts and seeds, which
represent the main source of dietary fats rather than dairy products. Moreover, the intake
of fibers and other vegetables is included in almost all meals, while red and processed
meats are mainly replaced by fish, lean meat and vegetable proteins [402].

This diet plays an important role in both the primary and secondary prevention of
PAD [671], as a lower incidence of obliterating the arteriopathies of the lower limbs in
populations at risk has been documented [403,404]. The progression to symptomatic clau-
dication is reduced with strict adherence to the MD [405]. Finally, in patients with LEAD,
the adoption of the MD may offer significant advantages in terms of lower mortality and
morbidity, with protective effects on MACE and MALE [398]. Therefore, the Mediter-
ranean diet appears to be an extremely effective preventive and therapeutic strategy to be
recommended in PAD.

This dietary model exerts its beneficial effects by counteracting the inflammatory
process connected to atherosclerosis and improving the management of other risk factors
and comorbidities affecting patients, such as glucose levels in diabetes, blood pressure
values in hypertension and weight loss in obesity [403]. However, the main limitation that
hampers compliance with this diet is its high cost. Indeed, a higher level of education
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and wealth is correlated with a higher level of adherence to the MD [672] and a reduction
in common risk factors associated with a suboptimal diet [673]. The consequences of
globalization and expected income growth may reduce socioeconomic disparities and
facilitate access to healthy food [674] even in low-income countries [538]. Unfortunately,
the population affected by PAD is frequently characterized by more severe social limitations
and economic difficulties, which are closely associated with a higher incidence of vascular
complications including MALE [457]. Indeed, in some countries, socioeconomic disparities
that vary among ZIP codes associated with lower-income areas have a higher incidence of
amputations [456].

3.3.2. The Vegetarian, Vegan and Plant-Based Diets

Plant-based eating patterns limit the intake of animal proteins, replacing them with
fruits, vegetables, grains, nuts, seeds and legumes [394]. Due to the restriction of meat,
dairy and all other animal products, the vegan diet has been widely espoused as an effec-
tive anti-atherogenic, non-drug treatment. In fact, the incidence of cardiovascular diseases
in the vegan/vegetarian population is significantly reduced compared to those who fol-
low a Western-style diet, and the lower consumption of saturated fats, salt, sweeteners,
cholesterol and animal proteins decreases the risk of diabetes mellitus, hypertension and
dyslipidemia. Patients with PAD have a high atherosclerotic burden and are affected
by various comorbidities that facilitate disease progression and the incidence of adverse
events. Adherence to a plant-based diet has shown promising results in the PAD popu-
lation, with direct benefits on patient mortality and morbidity, especially in individuals
at greater risk such as smokers [391]. The vegetarian diets play a cardioprotective role in
PAD of the lower limbs by limiting vascular damage and partially reversing atherosclerotic
plaque formation. Foods of plant origin also improve endothelial function, prevent the
ectopic accumulation of LDL and oxidation on the arterial walls and mitigate vascular
inflammation by counteracting the formation of foam cells with an overall reduction in
atherosclerotic complications [392]. The large intake of phenolic compounds and PUFA in
this diet counteracts the incidence of PAD and reduces the occurrence of MACE by improv-
ing lipid metabolism [392] and facilitating the achievement of the LDL-c recommended
targets [393], which are a primary goal to prevent disabling complications and death in
high-risk populations [394,395]. When meat and other animal products are mainly replaced
by foods of plant origin, the production of trimethylamine-N-oxide (TMAO), a metabolite
of the intestinal microbiota that contributes to atherosclerosis in PAD, is reduced [396].
Higher levels of TMAO have been observed in CLTI and sustain the atherosclerotic process
underlying vessel narrowing and systemic inflammation [397–400]. The modulation of
the intestinal microbiome and its metabolites through the adoption of vegetarian dietary
schemes is a convincing strategy to slow down atherosclerosis, and the beneficial effects
of plant-based foods provide a further contribution to the control of all risk factors and
comorbidities for PAD [401].

3.3.3. Low Carbohydrate Ketogenic Diet

A ketogenic diet provides a very low daily intake of carbohydrates (less than
50–30 g/day), inducing ketone production to meet the energy needs of the nervous system
with a fairly safe profile in short and controlled periods [675]. No dedicated studies have
been published on the ketogenic diet in a population with PAD; however, the nutritional
benefits in CV disease have been extensively evaluated. LEAD results from comorbidities
and uncontrolled risk factors that can be partially reversed or at least improved with short
cycles of the ketogenic diet.

Diets with a very low carbohydrate content and adequate caloric intake from proteins
and polyunsaturated fats allow significant weight loss by counteracting the effects of obesity
on blood pressure, the lipid profile and insulin resistance. Thus, improvements in the
management of dyslipidemia, diabetes mellitus and hypertension in atherosclerotic diseases
can be achieved by adopting this dietary model with a reduction in the overall CV risk [384].
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Furthermore, ketones appear to exert a direct effect on inflammation and endothelial
function, with a consequent reduction in cardiovascular adverse events, modulation of the
inflammatory state and maintenance of vascular homeostasis [385].

The ketogenic diet in LEAD could be alternated with a Mediterranean dietary model
for short periods to facilitate weight loss and improve the control of CV risk factors in
selected patients with preserved renal function and high compliance with carbohydrate
restriction [44].

3.3.4. Intermittent Fasting Diet

Overeating and excessive caloric intake are important causes of obesity in PAD, a con-
dition that inevitably worsens the expression of concomitant risk factors, resulting in
a more aggressive disease phenotype. IF promotes significant weight loss by limiting
feeding time and prolonging overnight fasting, with a significant beneficial effect on PAD
and the comorbidities associated with this condition [386].

The beneficial effect of IF on CVD was first believed to be exclusively “weight-focused”,
and doubts arose about the safety and efficacy of IF in the comorbid patient regardless
of the weight loss achieved [387,388]. Recently, a central role of IF on the modulation of
the inflammatory process was confirmed. IF significantly reduces oxidative metabolic
stress, modulates the intestinal microbiota and regulates the activity of the immune system,
contributing to the slowdown of the atherosclerotic process [77].

IF demonstrated consistent results in stabilizing atherosclerotic plaques in peripheral
arterial beds by influencing the composition of the lipid core. Furthermore, IF appears to
modulate the endothelial expression of proinflammatory molecules that trigger the local
activation of macrophages and lymphocytes, reducing the vulnerability of plaques.

Fasting regulates liver function by decreasing the hepatic accumulation of triglycerides,
which results in an improvement in lipid metabolism and a decrease in circulating LDL-c
levels, thereby preventing the progressive ectopic deposition of oxidized LDL molecules
on the arterial wall [389]. IF could be a strategic approach for all patients with PAD not
at risk of hypoglycemia and osteoporosis [390], obesity and severe inflammatory burden;
however, further studies are needed to evaluate the possible implications of IF in PAD [77].

3.4. PAD and Eating Behaviors

An assessment of the possible interaction between eating behaviors and PAD is lacking
due to the need for the comprehensive management and risk stratification of patients. The
role of food disorders in the incidence and progression of risk factors underlying PAD of
the lower limbs has been extensively explored; however, no large, dedicated evidence has
been published on the nutritional habits of patients with PAD.

Emotional eating, binge eating and bulimia are characterized by impulsive eating,
which is associated with a higher risk of cardiovascular complications by accelerating the
atherosclerotic process [406]. Eating disorders, which include overeating due to a loss of
control, are psychiatric disorders with the highest mortality rate due to MACE and other
disabling adverse events related to atherosclerosis [407]. Moreover, patients with CLTI with
extensive tissue loss due to diabetic/ischemic foot injury or those who have undergone
amputation often experience an emotional burden due to progressive functional disability
and physical transformation. Eating patterns are influenced by the individual emotional
sphere, often resulting in a broad spectrum of eating disorders, such as emotional eating
and binge eating, with a further worsening of the clinical conditions and outcomes of
patients with LEAD [458]. An evaluation of the eating behaviors of patients could help
identify those habits to correct, contributing to a more effective management of all the risk
factors associated with PAD.

Indeed, the correction of nutritional habits and the treatment of eating disorders have
shown significant reductions in blood pressure, obesity and metabolic deterioration [247].
It is interesting to note that adipokines [410], peptides produced by adipocytes with reg-
ulatory functions in metabolism, are markedly influenced by binges and psychological
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overeating [408]. Various adipokines (such as adiponectin, omentin-1 and sortilin) play
important roles in the vascular complications of diabetes [409] and in the incidence and
progression of PAD. Furthermore, serum adipokine levels can help predict outcomes after
a revascularization procedure [410,411]. Thus, the evaluation of eating behaviors might be
a promising predictor of MACE and MALE in the population with PAD [412,413]. Sarcope-
nia is a common finding in arterial disease of the lower extremities, and the prevalence of
anorexia and cachexia is high, especially in the advanced stages of PAD.

Malnutrition driven by eating disorders leads to disastrous consequences such as
arterial oxidative stress, systemic inflammation and muscle trophism, often resulting in the
failure of available therapeutic strategies such as revascularization [414].

Night sleep has been evaluated as a novel predictor of cardiovascular disease. Sleep
duration and quality can influence the severity of PAD risk factors, affecting patient mor-
tality and morbidity. However, it is interesting to note that abnormal sleep can directly
provoke peripheral artery endothelial dysfunction and stiffness, which are known subclini-
cal markers of atherosclerosis and early PAD [415].

Smoking and obesity are the main causes of obstructive sleep apnea (OSA) and are
the principal risk factors for patients with PAD of the lower limbs. However, OSA is still
underdiagnosed and underestimated in patients with PAD of the lower limbs [416–420].
OSA accelerates the progression of comorbidities in patients with PAD [421] and worsens
atherosclerotic burden. The severity of OSA is linearly associated with the growth and
vulnerability of atherosclerotic plaques [422] and, consequently, with more advanced stages
of PAD, including CLTI [423]. Therefore, sleep disturbances in patients with LEAD should
be promptly identified and treated to reduce the incidence of MACE and MALE that lead
to poor outcomes [424,425], including amputation [459].

Glycemic variability, defined by glycemic excursions, has recently been studied as
a new parameter of glucose metabolism and as a therapeutic target to control HbA1c. It ac-
celerates atherosclerosis, alters endothelial homeostasis, and contributes to the progression
of PAD and CAD in patients [676].

Skipping meals is a common harmful eating behavior mostly prevalent in younger
generations. Although fasting leads to increased fat oxidation with initial weight loss, the
long-term adoption of this habit is associated with metabolic inflexibility that impairs serum
glucose control and increases oxidative stress [308,315]. Skipping meals, especially break-
fast, worsens post-prandial lipid [426–428] and glucose levels, which increases the severity
of glycemic excursions, resulting in greater exposure to glycemic variability toxicity [429].

Notably, glucose variability plays an important role in endothelial dysfunction and
arterial stiffness, which are early steps in atherosclerotic, leading to Peripheral Arterial Dis-
ease of the lower limbs [430]. Hyperglycemia correlates with worse outcomes in PAD [431],
and post-prandial glycemic variability due to skipping meals contributes to metabolic
deterioration and increases their morbidity and MACE rates [432,433].

Fast food products and ultra-processed foods have become commonplace in many diets,
and the increase in the consumption of industrially manufactured foods parallels the current
pandemic of obesity, hypertension, dyslipidemia, atherosclerosis, diabetes mellitus [677,678]
and major cardiovascular complications such as Peripheral Artery Disease [434].

Home cooking could minimize access to processed foods and improve individual skills
in the selection of ingredients with beneficial properties that counteract the deleterious
effects of incorrect eating behaviors commonly found in the population with LEAD [435].
Special awareness should be reserved for the eating behaviors of patients with advanced
stages of PAD who experience limitations due to amputation or tissue loss and lack of
social support. Physical barriers to food supply and cooking are often a major factor in
suboptimal cooking habits resulting in the increased consumption of more affordable yet
low-quality food with the further deterioration of patient outcomes [460].
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4. Discussion

Millions suffer from the disabling consequences of atherosclerosis yearly, making it the
leading cause of morbidity and mortality worldwide. PAD represents the atherosclerotic
involvement of the arterial beds excluding the heart and brain. The progressive narrowing
responsible for reduced blood flow to peripheral tissues ultimately results in severe ischemic
damage [679,680].

Atherosclerotic vascular complications have a global pandemic distribution along
with a dramatic increase in the prevalence of traditional risk factors associated with the
development and progression of PAD. Regardless of the revascularization strategy and the
stage of the disease, the management and correction of traditional risk factors related to
PAD of the lower limbs represents a fundamental approach that should be pursued in all
patients to reduce the deleterious consequences of this disease [508].

However, the definition of “traditional” may not include many other underestimated
risk factors that have shown a relevant impact on the progression of PAD and the incidence
of major complications such as MACE and MALE. Dietary risk factors belong to this group
of lesser-regarded predictors of PAD. However, while current guidelines recognize the
value of nutrition as the primary and secondary prevention of arterial disease from a young
age or even in the peripartum phase [681], the awareness of its impact on health by both
patients and physicians remains below expectations [1].

Dietary risk factors, including unbalanced diets, low-quality foods and suboptimal
eating behaviors, are responsible for the onset and progression of classical risk factors,
ultimately leading to the development of PAD [405]. Indeed, scientific evidence on the role
of nutrition in atherosclerosis and typical vascular complications does not reflect the urgent
need to expand our knowledge of this extremely important aspect of medical management.
The assessment of common eating habits and possible disorders prevalent in PAD should
be the focus of future research.

Current guidelines provide general dietary recommendations for the management
of atherosclerotic disease but do not allow for the personalization of an effective dietary
approach based on a wide variety of patients and their characteristics. Each diet exerts
a specific beneficial effect by modulating the quantity, quality and methods of food intake.
Through a consistent understanding of the benefits derived from the diet and through
mastery of the therapeutic potential of nutrition, we could customize a dietary intervention
according to the needs of the individual [682].

Individuals with PAD exhibit different stages and clinical presentations of the disease
based on the individual expression of genetic and acquired factors, including the severity of
each comorbidity and known risk factors [683]. Therefore, a future goal might be to select
dietary models that can be adapted to the frailties, characteristics and goals of each person to
apply the therapeutic properties of each diet to meet the needs of each clinical scenario.

Furthermore, treatments based on nutritional interventions should not be limited to
simple recommendations as to which foods are to be included in the diet. Comprehensive
diet management includes the correction of suboptimal dietary factors, patient education in
the self-selection of foods that increase compliance with healthy eating and an assessment
of how patients relate to food. Patients, especially those with multiple and severe metabolic
alterations, as observed in PAD, often have a conflicting relationship with nutrition, which
hinders compliance with dietary guidelines and aggravates the severity of individual
pathologies and dietary risk factors [684].

Suboptimal eating habits often result from poorly understood eating disorders, which
drastically limit the achievement of recommended therapeutic goals and worsen patient
outcomes. To the best of our knowledge, there is a gap in the literature on nutrition
personalization and the management of eating behaviors which are prevalent in people
with PAD. Further studies are needed to evaluate the beneficial effects of specific dietary
interventions on patient outcomes, investigating the advantages of each diet on different
categories of patients based on individual characteristics, comorbidities and personal needs.
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Herein, we reviewed the current knowledge regarding common eating habits and
diets, focusing on their impact on the risk factors of PAD. We analyzed the role of nutri-
tional status, the available general recommendations on nutrient supplementation and
the complex relationship between PAD and the most frequent prevalent dietary patterns
and eating disorders. We studied four diets typical of Western nutritional patterns and
composition. Finally, we reviewed and selected the eating behaviors commonly seen in
this culture. Our purpose was to provide a comprehensive update on the effect of nutrition
on PAD.

Although it was possible to include a wide variety of diets and habits, our goal was to
gather the most relevant evidence on nutritional factors with an observed impact on PAD
of the lower limbs and associated risk factors. Unfortunately, this fundamental relationship
remains undervalued and poorly understood. Therefore, this article provides a unified view
of the current knowledge on the topic with an original analysis of an even more unexplored
but fundamental aspect of nutrition, namely eating behaviors and related disorders.

We evaluated the impact of each diet and eating disorder on comorbidities and risk fac-
tors that frequently affect patients with PAD. Consistent with current evidence, we have con-
firmed the fundamental role nutrition plays in the primary and secondary prevention of PAD
via improving metabolic function, ameliorating the pathologies linked to atherosclerosis
and exerting adjuvant properties that increase the success rate of traditional therapies [685].

Particular interest should be devoted to CKD patients with PAD, as they represent
a fragile population with limited therapeutic options and have the poorest outcomes com-
pared to groups without CKD [484]. Nutrition in this population also remains a topic to be
explored to understand how to prevent the progression of renal disease, with improvement
in the quality of life and patient outcomes [488].

The Mediterranean diet is the most studied and suitable dietary model for patients with
PAD among the four diets selected in this study. Furthermore, the guidelines recommend
adherence to the Mediterranean diet as an additional non-pharmacological strategy to
reduce the incidence of atherosclerosis and progression of the most common vascular
complications. However, compliance with this nutritional model is hindered by its high
cost and difficulty in providing its typical components [672]. Hopefully, globalization and
the progressive equalization of socioeconomic discrepancies will facilitate adherence to
such a healthy diet [674].

Smoking is one of the most important risk factors for PAD and there exists a strong
prevalence of smoking among patients with various eating disorders or non-optimal
diets [619]. Unfortunately, there is little published evidence as to the explanation for the
co-existence of these harmful conditions.

In the third section of the review, we emphasized the possible relationship between
nutrition and progression to more advanced stages of PAD, such as CLTI, amputation
and the failure of revascularization. The nutritional status of these unfortunate patients
deserves more attention to correct any deficiencies (especially micronutrients) or excessive
weight gain. In particular, sarcopenia is a disabling condition that increases the rate of
MALE and should be considered a negative prognostic factor for post-revascularization
success. Diet and eating behaviors/disorders should be included in the routine clinical
evaluation of patients with PAD, as appropriate management may further reduce residual
risk, even after pursuing the best pharmacological treatment. The management of patients
with PAD should include a thorough evaluation of nutrition and possible eating behaviors
to provide targeted nutritional interventions, support individual needs based on their
medical history and also potentially prevent the underlying causes of the incidence and
progression of PAD. Unfortunately, the importance of diet as a therapeutic and preventive
strategy in PAD is still underestimated, resulting in little guideline support in diet-based
treatment. Furthermore, the professional figure who takes care of the nutritional aspects
of patients by correcting deleterious eating behaviors and providing appropriate dietary
interventions has never been established. Probably this professional figure should be iden-
tified in a multidisciplinary group of experts (such as trained doctors and nurses, medical
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assistants, nutritionists, psychologists and health coaches) who can take full responsibility
for the patient’s nutritional status. Additionally, proper assessment of patients’ nutritional
status should include regular outpatient counseling supported by validated screening
questionnaires that help detect incorrect eating behaviors and monitor patient compliance,
and regularly scheduled medical evaluations for targeted nutritional interventions and
tailored diets that maximize results and increase compliance with dietary recommendations
and prescriptions [686].

In conclusion, by highlighting the limitations of the available scientific evidence that
cannot effectively identify a correct approach to the eating disorders prevalent in PAD, we
show that current knowledge cannot be used to support a personalization of diet based on
the needs and characteristics of the patients. We tried to demonstrate the counterproductive
effect of underestimating such a fundamental aspect that, if further studied, could counter
the global health burden represented by PAD and its related comorbidities.

5. Conclusions

Dietary risk factors are a growing cause of global morbidity and mortality, with
a significant impact on the incidence, progression and complications of PAD, particularly
MACE and MALE. A comprehensive assessment of the nutritional patterns and eating
behaviors adopted by patients with PAD is one of the most underestimated aspects of
managing this disease and should always be included to achieve an effective improvement
in patient outcomes.

Nutrition and dietary risk factors are key elements that deserve much more attention; in
particular, eating disorders should be explored to reduce the residual risk for both the primary
and secondary prevention of PAD, slow down its progression and reduce the rate of CV and
lower extremity complications. The population affected by PAD of the lower limbs deserves
dedicated nutritional assessments and personalized dietary models based on individual needs
and correct eating behaviors for effective management and improved results.
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Caumon, E.; Malpuech-Brugère, C.; et al. Mediterranean-Style Diet Improves Systolic Blood Pressure and Arterial Stiffness in
Older Adults. Hypertension 2019, 73, 578–586. [CrossRef]

168. Storniolo, C.E.; Casillas, R.; Bulló, M.; Castañer, O.; Ros, E.; Sáez, G.; Toledo, E.; Estruch, R.; Ruiz-Gutiérrez, V.; Fitó, M.; et al.
A Mediterranean diet supplemented with extra virgin olive oil or nuts improves endothelial markers involved in blood pressure
control in hypertensive women. Eur. J. Nutr. 2017, 56, 89–97. [CrossRef]

169. Konstantinidou, V.; Covas, M.; Muñoz-Aguayo, D.; Khymenets, O.; de la Torre, R.; Saez, G.; Tormos, M.D.C.; Toledo, E.; Marti, A.;
Ruiz-Gutiérrez, V.; et al. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet:
A randomized controlled trial. FASEB J. 2010, 24, 2546–2557. [CrossRef]

170. Fleming, I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch. 2010, 459, 793–806. [CrossRef]
171. Davis, C.R.; Hodgson, J.M.; Woodman, R.; Bryan, J.; Wilson, C.; Murphy, K.J. A Mediterranean diet lowers blood pressure and

improves endothelial function: Results from the MedLey randomized intervention trial. Am. J. Clin. Nutr. 2017, 105, 1305–1313.
[CrossRef]

172. Camargo, A.; Ruano, J.; Fernandez, J.M.; Parnell, L.D.; Jimenez, A.; Santos-Gonzalez, M.; Marin, C.; Perez-Martinez, P.; Uceda, M.;
Lopez-Miranda, J.; et al. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of
phenol-rich virgin olive oil. BMC Genom. 2010, 11, 253. [CrossRef]

173. Yang, Q.; Alemany, R.; Casas, J.; Kitajka, K.; Lanier, S.M.; Escribá, P.V. Influence of the membrane lipid structure on signal
processing via G protein-coupled receptors. Mol. Pharmacol. 2005, 68, 210–217. [CrossRef]

174. Platania, A.; Zappala, G.; Mirabella, M.U.; Gullo, C.; Mellini, G.; Beneventano, G.; Maugeri, G.; Marranzano, M. Association
between Mediterranean diet adherence and dyslipidaemia in a cohort of adults living in the Mediterranean area. Int. J. Food Sci.
Nutr. 2018, 69, 608–618. [CrossRef]

175. Roldan, C.C.; Marcos, M.L.T.; Marcos, F.M.; Albero, J.S.; Rios, R.S.; Rodriguez, A.C.; Royo, J.M.P.; López, P.J.T. Adhesion to the
Mediterranean diet in diabetic patients with poor control. Clin. Investig. Arterioscler. 2019, 31, 210–217, (In English and Spanish).
[CrossRef]

176. Antoniazzi, L.; Arroyo-Olivares, R.; Bittencourt, M.S.; Tada, M.T.; Lima, I.; Jannes, C.E.; Krieger, J.E.; Pereira, A.C.; Quintana-
Navarro, G.; Muñiz-Grijalvo, O.; et al. Adherence to a Mediterranean diet, dyslipidemia and inflammation in familial hyperc-
holesterolemia. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2014–2022. [CrossRef]

177. Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am.
J. Med. 2015, 128, 229–238. [CrossRef]

178. Neuenschwander, M.; Hoffmann, G.; Schwingshackl, L.; Schlesinger, S. Impact of different dietary approaches on blood lipid
control in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. Eur. J. Epidemiol. 2019, 34,
837–852. [CrossRef]

179. Mozaffarian, D.; Clarke, R. Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially
hydrogenated vegetable oils with other fats and oils. Eur. J. Clin. Nutr. 2009, 63 (Suppl. S2), S22–S33. [CrossRef]

180. Salas-Salvadó, J.; Farrés, X.; Luque, X.; Narejos, S.; Borrell, M.; Basora, J.; Anguera, A.; Torres, F.; Bulló, M.; Balanza, R.; et al. Effect
of two doses of a mixture of soluble fibres on body weight and metabolic variables in overweight or obese patients: A randomised
trial. Br. J. Nutr. 2008, 99, 1380–1387. [CrossRef]

181. Theuwissen, E.; Mensink, R.P. Water-soluble dietary fibers and cardiovascular disease. Physiol. Behav. 2008, 94, 285–292. [CrossRef]
182. Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the

Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [CrossRef] [PubMed]
183. Abumweis, S.S.; Barake, R.; Jones, P.J. Plant sterols/stanols as cholesterol lowering agents: A meta-analysis of randomized

controlled trials. Food Nutr. Res. 2008, 52, 1811. [CrossRef] [PubMed]
184. Bédard, A.; Corneau, L.; Vohl, M.C.; Dodin, S.; Lemieux, S. Effect of the Mediterranean diet on the lipid-lipoprotein profile: Is it

influenced by the family history of dyslipidemia? J. Nutrigenet. Nutrigenom. 2014, 7, 177–187. [CrossRef] [PubMed]

http://doi.org/10.1017/S000711450000101X
http://doi.org/10.1161/HYPERTENSIONAHA.114.03506
http://doi.org/10.7326/0003-4819-145-1-200607040-00004
http://doi.org/10.1186/1741-7015-11-207
http://doi.org/10.1056/NEJMoa1200303
http://doi.org/10.3390/nu11081842
http://doi.org/10.1161/HYPERTENSIONAHA.118.12259
http://doi.org/10.1007/s00394-015-1060-5
http://doi.org/10.1096/fj.09-148452
http://doi.org/10.1007/s00424-009-0767-7
http://doi.org/10.3945/ajcn.116.146803
http://doi.org/10.1186/1471-2164-11-253
http://doi.org/10.1124/mol.105.011692
http://doi.org/10.1080/09637486.2017.1389860
http://doi.org/10.1016/j.arteri.2019.03.005
http://doi.org/10.1016/j.numecd.2021.04.006
http://doi.org/10.1016/j.amjmed.2014.10.014
http://doi.org/10.1007/s10654-019-00534-1
http://doi.org/10.1038/sj.ejcn.1602976
http://doi.org/10.1017/S0007114507868528
http://doi.org/10.1016/j.physbeh.2008.01.001
http://doi.org/10.3390/nu12092671
http://www.ncbi.nlm.nih.gov/pubmed/32883047
http://doi.org/10.3402/fnr.v52i0.1811
http://www.ncbi.nlm.nih.gov/pubmed/19109655
http://doi.org/10.1159/000374116
http://www.ncbi.nlm.nih.gov/pubmed/25766081


Int. J. Mol. Sci. 2022, 23, 10814 39 of 58

185. Lampropoulou, M.; Chaini, M.; Rigopoulos, N.; Evangeliou, A.; Papadopoulou-Legbelou, K.; Koutelidakis, A.E. Association
between Serum Lipid Levels in Greek Children with Dyslipidemia and Mediterranean Diet Adherence, Dietary Habits, Lifestyle
and Family Socioeconomic Factors. Nutrients 2020, 12, 1600. [CrossRef]

186. Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. A
Biol. Sci.Med. Sci. 2018, 73, 318–326. [CrossRef]

187. Gomez-Marin, B.; Gomez-Delgado, F.; Lopez-Moreno, J.; Alcala-Diaz, J.F.; Jimenez-Lucena, R.; Torres-Peña, J.D.; Garcia-Rios, A.;
Ortiz-Morales, A.M.; Yubero-Serrano, E.M.; Malagon, M.D.M.; et al. Long-term consumption of a Mediterranean diet improves
postprandial lipemia in patients with type 2 diabetes: The Cordioprev randomized trial. Am. J. Clin. Nutr. 2018, 108, 963–970.
[CrossRef]

188. Georgia-Eirini, D.; Athina, S.; Wim, V.B.; Christos, K.; Theodoros, C. Natural Products from Mediterranean Diet: From Anti-
hyperlipidemic Agents to Dietary Epigenetic Modulators. Curr. Pharm. Biotechnol. 2019, 20, 825–844. [CrossRef]

189. Pignanelli, M.; Just, C.; Bogiatzi, C.; Dinculescu, V.; Gloor, G.B.; Allen-Vercoe, E.; Reid, G.; Urquhart, B.L.; Ruetz, K.N.; Velenosi,
T.J.; et al. Mediterranean Diet Score: Associations with Metabolic Products of the Intestinal Microbiome, Carotid Plaque Burden,
and Renal Function. Nutrients 2018, 10, 779. [CrossRef]

190. De Lorenzo, A.; Noce, A.; Bigioni, M.; Calabrese, V.; Della Rocca, D.G.; Di Daniele, N.; Tozzo, C.; Di Renzo, L. The effects of Italian
Mediterranean organic diet (IMOD) on health status. Curr. Pharm. Des. 2010, 16, 814–824. [CrossRef]

191. Hansrivijit, P.; Oli, S.; Khanal, R.; Ghahramani, N.; Thongprayoon, C.; Cheungpasitporn, W. Mediterranean diet and the risk of
chronic kidney disease: A systematic review and meta-analysis. Nephrology 2020, 25, 913–918. [CrossRef]

192. Asghari, G.; Farhadnejad, H.; Mirmiran, P.; Dizavi, A.; Yuzbashian, E.; Azizi, F. Adherence to the Mediterranean diet is associated
with reduced risk of incident chronic kidney diseases among Tehranian adults. Hypertens. Res. 2017, 40, 96–102. [CrossRef]

193. Hu, E.A.; Steffen, L.M.; Grams, M.E.; Crews, D.C.; Coresh, J.; Appel, L.J.; Rebholz, C.M. Dietary patterns and risk of incident
chronic kidney disease: The Atherosclerosis Risk in Communities study. Am. J. Clin. Nutr. 2019, 110, 713–721. [CrossRef]

194. Geng, T.T.; Jafar, T.H.; Neelakantan, N.; Yuan, J.M.; van Dam, R.M.; Koh, W.P. Healthful dietary patterns and risk of end-stage
kidney disease: The Singapore Chinese Health Study. Am. J. Clin. Nutr. 2021, 113, 675–683. [CrossRef]

195. Picard, K.; Senior, P.A.; Perez, S.A.; Jindal, K.; Richard, C.; Mager, D.R. Low Mediterranean Diet scores are associated with reduced
kidney function and health related quality of life but not other markers of cardiovascular risk in adults with diabetes and chronic
kidney disease. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1445–1453. [CrossRef]

196. Losappio, V.; Infante, B.; Leo, S.; Troise, D.; Calvaruso, M.; Vitale, P.; Renzi, S.; Stallone, G.; Castellano, G. Nutrition-Based
Management of Inflammaging in CKD and Renal Replacement Therapies. Nutrients 2021, 13, 267. [CrossRef]

197. Chauveau, P.; Aparicio, M.; Bellizzi, V.; Campbell, K.; Hong, X.; Johansson, L.; Kolko, A.; Molina, P.; Sezer, S.; Wanner, C.; et al.
Mediterranean diet as the diet of choice for patients with chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 725–735.
[CrossRef]

198. Mekki, K.; Bouzidi-bekada, N.; Kaddous, A.; Bouchenak, M. Mediterranean diet improves dyslipidemia and biomarkers in
chronic renal failure patients. Food Funct. 2010, 1, 110–115. [CrossRef]

199. Gomes-Neto, A.W.; Osté, M.C.J.; Sotomayor, C.G.; van den Berg, E.; Geleijnse, J.M.; Berger, S.P.; Gans, R.O.B.; Bakker, S.J.L.; Navis,
G.J. Mediterranean Style Diet and Kidney Function Loss in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2020, 15,
238–246. [CrossRef]

200. Ferraro, P.M.; Bargagli, M. Dietetic and lifestyle recommendations for stone formers. Arch. Esp. Urol. 2021, 74, 112–122, (In
English and Spanish).

201. Martínez-Pineda, M.; Yagüe-Ruiz, C.; Caverni-Muñoz, A.; Vercet-Tormo, A. Cooking Legumes: A Way for Their Inclusion in the
Renal Patient Diet. J. Ren. Nutr. 2019, 29, 118–125. [CrossRef]

202. Kammoun, K.; Chaker, H.; Mahfoudh, H.; Makhlouf, N.; Jarraya, F.; Hachicha, J. Diet in chronic kidney disease in a Mediterranean
African country. BMC Nephrol. 2017, 18, 34. [CrossRef] [PubMed]

203. Moradi, M.; Daneshzad, E.; Najafabadi, M.M.; Bellissimo, N.; Suitor, K.; Azadbakht, L. Association between adherence to the
Mediterranean diet and renal function biomarkers and cardiovascular risk factors among diabetic patients with nephropathy.
Clin. Nutr. ESPEN 2020, 40, 156–163. [CrossRef]

204. Palmer, S.C.; Maggo, J.K.; Campbell, K.L.; Craig, J.C.; Johnson, D.W.; Sutanto, B.; Ruospo, M.; Tong, A.; Strippoli, G.F. Dietary
interventions for adults with chronic kidney disease. Cochrane Database Syst. Rev. 2017, 4, CD011998. [CrossRef]

205. Saglimbene, V.M.; Wong, G.; Craig, J.; Ruospo, M.; Palmer, S.C.; Campbell, K.; Larsen, V.G.; Natale, P.; Teixeira-Pinto, A.;
Carrero, J.-J.; et al. The Association of Mediterranean and DASH Diets with Mortality in Adults on Hemodialysis: The DIET-HD
Multinational Cohort Study. J. Am. Soc. Nephrol. 2018, 29, 1741–1751. [CrossRef]

206. Martucci, M.; Ostan, R.; Biondi, F.; Bellavista, E.; Fabbri, C.; Bertarelli, C.; Salvioli, S.; Capri, M.; Franceschi, C.; Santoro, A.
Mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev. 2017, 75, 442–455. [CrossRef]

207. Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jönsson, L.S.; Kolb, H.; Lansink, M.;
et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011, 106 (Suppl. S3), S5–S78.
[CrossRef]

208. Pounis, G.; Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; De Curtis, A.; Persichillo, M.; Sieri, S.; Donati, M.B.; Cerletti, C.; de
Gaetano, G.; et al. Polyphenol intake is associated with low-grade inflammation, using a novel data analysis from the Moli-sani
study. Thromb. Haemost. 2016, 115, 344–352. [CrossRef] [PubMed]

http://doi.org/10.3390/nu12061600
http://doi.org/10.1093/gerona/glx227
http://doi.org/10.1093/ajcn/nqy144
http://doi.org/10.2174/1573407215666190628150921
http://doi.org/10.3390/nu10060779
http://doi.org/10.2174/138161210790883561
http://doi.org/10.1111/nep.13778
http://doi.org/10.1038/hr.2016.98
http://doi.org/10.1093/ajcn/nqz146
http://doi.org/10.1093/ajcn/nqaa348
http://doi.org/10.1016/j.numecd.2021.02.002
http://doi.org/10.3390/nu13010267
http://doi.org/10.1093/ndt/gfx085
http://doi.org/10.1039/c0fo00032a
http://doi.org/10.2215/CJN.06710619
http://doi.org/10.1053/j.jrn.2018.08.001
http://doi.org/10.1186/s12882-017-0448-2
http://www.ncbi.nlm.nih.gov/pubmed/28114891
http://doi.org/10.1016/j.clnesp.2020.09.032
http://doi.org/10.1002/14651858.CD011998.pub2
http://doi.org/10.1681/ASN.2018010008
http://doi.org/10.1093/nutrit/nux013
http://doi.org/10.1017/S0007114511005460
http://doi.org/10.1160/th15-06-0487
http://www.ncbi.nlm.nih.gov/pubmed/26355794


Int. J. Mol. Sci. 2022, 23, 10814 40 of 58

209. Temple, N.J.; Guercio, V.; Tavani, A. The Mediterranean Diet and Cardiovascular Disease: Gaps in the Evidence and Research
Challenges. Cardiol. Rev. 2019, 27, 127–130. [CrossRef]

210. Arouca, A.B.; Meirhaeghe, A.; Dallongeville, J.; Moreno, L.A.; Lourenço, G.J.; Marcos, A.; Huybrechts, I.; Manios, Y.; Lambrinou,
C.-P.; Gottrand, F.; et al. Interplay between the Mediterranean diet and C-reactive protein genetic polymorphisms towards
inflammation in adolescents. Clin. Nutr. 2020, 39, 1919–1926. [CrossRef]

211. Richard, C.; Couture, P.; Desroches, S.; Lamarche, B. Effect of the Mediterranean diet with and without weight loss on markers of
inflammation in men with metabolic syndrome. Obesity 2013, 21, 51–57. [CrossRef]

212. Bendall, C.L.; Mayr, H.L.; Opie, R.S.; Bes-Rastrollo, M.; Itsiopoulos, C.; Thomas, C.J. Central obesity and the Mediterranean diet:
A systematic review of intervention trials. Crit. Rev. Food Sci. Nutr. 2018, 58, 3070–3084. [CrossRef] [PubMed]

213. Bonaccio, M.; Cerletti, C.; Iacoviello, L.; de Gaetano, G. Mediterranean diet and low-grade subclinical inflammation: The Moli-sani
study. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 18–24. [CrossRef] [PubMed]

214. Luisi, M.L.E.; Lucarini, L.; Biffi, B.; Rafanelli, E.; Pietramellara, G.; Durante, M.; Vidali, S.; Provensi, G.; Madiai, S.; Gheri, C.F.;
et al. Effect of Mediterranean Diet Enriched in High Quality Extra Virgin Olive Oil on Oxidative Stress, Inflammation and Gut
Microbiota in Obese and Normal Weight Adult Subjects. Front. Pharmacol. 2019, 10, 1366. [CrossRef]

215. Casas, R.; Sacanella, E.; Urpi, M.; Chiva-Blanch, G.; Ros, E.; Martinez-Gonzalez, M.A.; Covas, M.-I.; Salas-Salvadó, J.; Fiol, M.;
Arós, F.; et al. The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in
subjects with high risk for cardiovascular disease. A randomized trial. PLoS ONE 2014, 9, e100084. [CrossRef]

216. Urpi-Sarda, M.; Casas, R.; Chiva-Blanch, G.; Romero-Mamani, E.S.; Valderas-Martínez, P.; Salas-Salvadó, J.; Covas, M.I.; Toledo,
E.; Andres-Lacueva, C.; Llorach, R.; et al. The Mediterranean diet pattern and its main components are associated with lower
plasma concentrations of tumor necrosis factor receptor 60 in patients at high risk for cardiovascular disease. J. Nutr. 2012, 142,
1019–1025. [CrossRef]

217. Marcelino, G.; Hiane, P.A.; Freitas, K.D.C.; Santana, L.F.; Pott, A.; Donadon, J.R.; Guimarães, R.D.C.A. Effects of Olive Oil and Its
Minor Components on Cardiovascular Diseases, Inflammation, and Gut Microbiota. Nutrients 2019, 11, 1826. [CrossRef]

218. Ramos, I.R.; Rangel-Zuñiga, O.A.; Lopez-Moreno, J.; Alcala-Diaz, J.F.; Perez-Martinez, P.; Jimenez-Lucena, R.; Castaño, J.P.; Roche,
H.; Delgado-Lista, J.; Ordovas, J.M.; et al. Mediterranean Diet, Glucose Homeostasis, and Inflammasome Genetic Variants: The
CORDIOPREV Study. Mol. Nutr. Food Res. 2018, 62, e1700960. [CrossRef]

219. Reddavide, R.; Rotolo, O.; Caruso, M.G.; Stasi, E.; Notarnicola, M.; Miraglia, C.; Nouvenne, A.; Meschi, T.; Angelis, G.L.D.; Di
Mario, F.; et al. The role of diet in the prevention and treatment of Inflammatory Bowel Diseases. Acta Biomed. 2018, 89, 60–75.
[CrossRef]

220. Weber, A.T.; Shah, N.D.; Sauk, J.; Limketkai, B.N. Popular Diet Trends for Inflammatory Bowel Diseases: Claims and Evidence.
Curr. Treat. Options Gastroenterol. 2019, 17, 564–576. [CrossRef]

221. Mazzocchi, A.; Leone, L.; Agostoni, C.; Pali-Schöll, I. The Secrets of the Mediterranean Diet. Does [Only] Olive Oil Matter?
Nutrients 2019, 11, 2941. [CrossRef]

222. Cerletti, C.; Gianfagna, F.; Tamburrelli, C.; De Curtis, A.; D’Imperio, M.; Coletta, W.; Giordano, L.; Lorenzet, R.; Rapisarda, P.;
Recupero, G.R.; et al. Orange juice intake during a fatty meal consumption reduces the postprandial low-grade inflammatory
response in healthy subjects. Thromb. Res. 2015, 135, 255–259. [CrossRef]

223. Spazzafumo, L.; Olivieri, F.; Abbatecola, A.M.; Castellani, G.; Monti, D.; Lisa, R.; Galeazzi, R.; Sirolla, C.; Testa, R.; Ostan, R.; et al.
Remodelling of biological parameters during human ageing: Evidence for complex regulation in longevity and in type 2 diabetes.
Age 2013, 35, 419–429. [CrossRef]

224. Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases.
J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69 (Suppl. S1), S4–S9. [CrossRef]

225. Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin,
J.E.; et al. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [CrossRef]

226. Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean Diet as a Tool to
Combat Inflammation and Chronic Diseases. An Overview. Biomedicines 2020, 8, 201. [CrossRef]

227. Val-Laillet, D.; Aarts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.; Alonso-Alonso, M.; Audette, M.; Malbert, C.; Stice, E.
Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.
Neuroimage Clin. 2015, 8, 1–31. [CrossRef]

228. Klatzkin, R.R.; Gaffney, S.; Cyrus, K.; Bigus, E.; Brownley, K.A. Stress-induced eating in women with binge-eating disorder and
obesity. Biol. Psychol. 2018, 131, 96–106. [CrossRef]

229. Van Strien, T. Causes of Emotional Eating and Matched Treatment of Obesity. Curr. Diabetes Rep. 2018, 18, 35. [CrossRef]
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K.; Celejewski, K.; et al. Peripheral ARtery Atherosclerotic DIsease and SlEep disordered breathing (PARADISE) trial—Protocol
for an observational cohort study. Kardiol. Pol. 2017, 75, 1332–1338. [CrossRef] [PubMed]

423. Schahab, N.; Sudan, S.; Schaefer, C.; Tiyerili, V.; Steinmetz, M.; Nickenig, G.; Skowasch, D.; Pizarro, C. Sleep apnoea is common in
severe peripheral arterial disease. PLoS ONE 2017, 12, e018173. [CrossRef] [PubMed]

424. Utriainen, K.T.; Airaksinen, J.K.; Polo, O.; Laitio, R.; Pietilä, M.J.; Scheinin, H.; Vahlberg, T.; Leino, K.A.; Kentala, E.S.; Jalonen,
J.R.; et al. Sleep apnoea is associated with major cardiac events in peripheral arterial disease. Eur. Respir. J. 2014, 43, 1652–1660.
[CrossRef]

425. Jelani, Q.-U.; Mena-Hurtado, C.; Gosch, K.; Mohammed, M.; Labrosciano, C.; Regan, C.; Scierka, L.E.; Spertus, J.A.; Nagpal, S.;
Smolderen, K.G. Association of sleep apnea with outcomes in peripheral artery disease: Insights from the PORTRAIT study. PLoS
ONE 2021, 16, e0256933. [CrossRef]

426. Le, N.A. Lipoprotein-associated oxidative stress: A new twist to the postprandial hypothesis. Int. J. Mol. Sci. 2014, 16, 401–419.
[CrossRef]

427. Lupattelli, G.; Pasqualini, L.; Siepi, D.; Marchesi, S.; Pirro, M.; Vaudo, G.; Ciuffetti, G.; Mannarino, E. Increased postprandial
lipemia in patients with normolipemic peripheral arterial disease. Am. Heart J. 2002, 143, 733–738. [CrossRef]

428. Valdivielso, P.; Hidalgo, A.; Rioja, J.; Aguilar, I.; Ariza, M.J.; González-Alegre, T.; González-Santos, P. Smoking and postprandial
triglycerides are associated with vascular disease in patients with type 2 diabetes. Atherosclerosis 2007, 194, 391–396. [CrossRef]

429. Jakubowicz, D.; Wainstein, J.; Landau, Z.; Raz, I.; Ahren, B.; Chapnik, N.; Ganz, T.; Menaged, M.; Barnea, M.; Bar-Dayan, Y.;
et al. Influences of Breakfast on Clock Gene Expression and Postprandial Glycemia in Healthy Individuals and Individuals with
Diabetes: A Randomized Clinical Trial. Diabetes Care 2017, 40, 1573–1579. [CrossRef]

430. Gordin, D.; Saraheimo, M.; Tuomikangas, J.; Soro-Paavonen, A.; Forsblom, C.; Paavonen, K.; Steckel-Hamann, B.; Vandenhende,
F.; Nicolaou, L.; Pavo, I.; et al. Influence of Postprandial Hyperglycemic Conditions on Arterial Stiffness in Patients with Type
2 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 1134–1143. [CrossRef]

431. Huang, D.; Refaat, M.; Mohammedi, K.; Jayyousi, A.; al Suwaidi, J.; Khalil, C.A. Macrovascular Complications in Patients with
Diabetes and Prediabetes. Biomed. Res. Int. 2017, 2017, 7839101. [CrossRef]

432. Yosefy, C. Hyperglycaemia and its relation to cardiovascular morbidity and mortality: Has it been resolved? Acta Diabetol. 2003,
40 (Suppl. S2), S380–S388. [CrossRef]

433. Yamagishi, S.I.; Nakamura, K.; Matsui, T.; Ueda, S.I.; Imaizumi, T. Role of postprandial hyperglycaemia in cardiovascular disease
in diabetes. Int. J. Clin. Pract. 2007, 61, 83–87. [CrossRef]

434. Smiljanec, K.; Mbakwe, A.U.; Ramos-Gonzalez, M.; Mesbah, C.; Lennon, S.L. Associations of Ultra-Processed and Unpro-
cessed/Minimally Processed Food Consumption with Peripheral and Central Hemodynamics, and Arterial Stiffness in Young
Healthy Adults. Nutrients 2020, 12, 3229. [CrossRef] [PubMed]

435. da Silva, A.; Felício, M.B.; Caldas, A.P.S.; Hermsdorff, H.H.; Torreglosa, C.R.; Bersch-Ferreira, C.; Weber, B.; Marcadenti, A.;
Bressan, J. Ultra-processed foods consumption is associated with cardiovascular disease and cardiometabolic risk factors in
Brazilians with established cardiovascular events. Int. J. Food Sci. Nutr. 2021, 72, 1128–1137. [CrossRef] [PubMed]

436. Hicks, C.W.; Yang, C.; Ndumele, C.E.; Folsom, A.R.; Heiss, G.; Black, J.H.; Selvin, E.; Matsushita, K. Associations of Obesity with
Incident Hospitalization Related to Peripheral Artery Disease and Critical Limb Ischemia in the ARIC Study. J. Am. Heart Assoc.
2018, 7, e008644. [CrossRef] [PubMed]

437. Keller, K.; Hobohm, L.; Geyer, M.; Münzel, T.; Lavie, C.J.; Ostad, M.A.; Espinola-Klein, C. Obesity paradox in peripheral artery
disease. Clin. Nutr. 2019, 38, 2269–2276. [CrossRef] [PubMed]
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552. Gogga, P.; Śliwińska, A.; Aleksandrowicz-Wrona, E.; Małgorzewicz, S. Association between different types of plant-based diets
and leptin levels in healthy volunteers. Acta Biochim. Pol. 2019, 66, 77–82. [CrossRef]

553. Pola, R.; Flex, A.; Gaetani, E.; Pola, P.; Bernabei, R. The -174 G/C polymorphism of the interleukin-6 gene promoter and essential
hypertension in an elderly Italian population. J. Hum. Hypertens. 2002, 16, 637–640. [CrossRef]

554. Fukao, T.; Lopaschuk, G.D.; Mitchell, G.A. Pathways and control of ketone body metabolism: On the fringe of lipid biochemistry.
Prostaglandins Leukot. Essent. Fatty Acids 2004, 70, 243–251. [CrossRef]

555. Bolla, A.M.; Caretto, A.; Laurenzi, A.; Scavini, M.; Piemonti, L. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes.
Nutrients 2019, 11, 962. [CrossRef]

556. Joshi, S.; Ostfeld, R.J.; McMacken, M. The Ketogenic Diet for Obesity and Diabetes-Enthusiasm Outpaces Evidence. JAMA Intern.
Med. 2019, 179, 1163–1164. [CrossRef]

557. Ludwig, D.S. The Ketogenic Diet: Evidence for Optimism but High-Quality Research Needed. J. Nutr. 2020, 150, 1354–1359.
[CrossRef]

558. Tangnijkul, Y.; Adams, L.E.; Herman, J.H. Serum ribonucleotide binding activity in osteoarthritis. Clin. Exp. Rheumatol. 1988, 6,
233–237.
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